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Flat power spectra belie arbitrarily complex processes
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Power spectral densities are a common, convenient, and powerful way to analyze signals. So much
so that they are now broadly deployed across the sciences and engineering—from quantum physics to
cosmology, and from crystallography to neuroscience to speech recognition. The features they reveal
not only identify prominent signal-frequencies but also hint at mechanisms that generate correlation
and lead to resonance. Despite their near-centuries-long run of successes in signal analysis, here we
show that flat power spectra can be generated by highly complex processes, effectively hiding all in-
herent structure in complex signals. Historically, this circumstance has been widely misinterpreted,
being taken as the renowned signature of “structureless” white noise—the benchmark of random-
ness. We argue, in contrast, to the extent that most real-world complex systems exhibit correlations
beyond pairwise statistics their structures evade power spectra and other pairwise statistical mea-
sures. To make these words of warning operational, we present constructive results that explore how
this situation comes about and the high toll it takes in understanding complex mechanisms. First,
we give the closed-form solution for the power spectrum of a very broad class of structurally-complex
signal generators. Second, we demonstrate the close relationship between eigen-spectra of evolution
operators and power spectra. Third, we characterize the minimal generative structure implied by
any power spectrum. Fourth, we show how to construct arbitrarily complex processes with flat
power spectra. Finally, leveraging this diagnosis of the problem, we point the way to developing
more incisive tools for discovering structure in complex signals.

PACS numbers: 02.50.-r 05.45.Tp 02.50.Ey 02.50.Ga

We dare not neglect any of the tools that have proved

useful in the past. But equally we dare not find ourselves

confined to their use.

John Tukey, The Future of Data Analysis, 1962 [1, p. 60]

I. INTRODUCTION

Innovative science probes the unknown. Success in

discovering the mechanisms that underlie the systems

we seek to understand, though, requires distinguishing

structure from noise. Often, this distinction falls to dis-

cretion: structure is that part of a signal we can predict,

while noise stands in as a catch-all for everything else.

∗ pmriechers@gmail.com
† chaos@ucdavis.edu

This conundrum holds especially in the analysis of sig-

nals from truly complex systems, as when analyzing data

from multi-electrode arrays in brain tissue or social ex-

periments. These systems are often said to be ‘noisy’

even though the so-called noise may be entirely function-

ally relevant, but in an unknown way. Such descriptions

fall far short of a principled approach that explains all

trends and correlational structure, which would claim

success only when all that remains unexplained in the

signal is structureless white noise. Even this principled

approach ultimately begs the central question, though:

how do we test if an apparently random signal is truly

white noise?

The challenge of discovering structure in noisy sig-

nals is compounded manifold, as we demonstrate in the

following, when our chosen observables hide arbitrary

amounts of in-principle-predictable structure behind a

familiar signature of white noise—the flat power spec-

trum. Said simply, observables can be completely de-
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void of pairwise correlation, while still embodying struc-

ture in higher-order correlations. More precisely, struc-

ture can be hidden beyond any arbitrarily-large order-N

correlation—that not appearing in pairwise, three-way,

nor any n-way statistics, up to some arbitrarily large N

[2]. Moreover, the hidden structure can be arbitrarily so-

phisticated. It can be used, for example, to embed mes-

sages while shifting (and so hiding) the messages’ content

beyond N -way correlation. Here, we explore the struc-

tures conveyed and hidden by power spectra, revealing a

novel perspective on the interplay between structure and

noise in Fourier analysis.

Section II discusses temporal structure and provides

closed-form expressions for the power spectra from au-

tonomous signal generators. It highlights the intimate

connection between power spectra and eigen-spectra of

a system’s time-evolution generator. Section III then in-

troduces a suite of results on structure that is hidden

by power spectra. Notably, it introduces a general con-

dition for fraudulent white noise processes—structured

processes with a flat power spectrum—which applies very

broadly, including to input-dependent processes with

nonstationary high-order statistics. Taken altogether the

results emphasize the power spectrum’s shortcomings for

the task of structure detection. In response, Sec. IV con-

siders more sophisticated measures of structure, intro-

ducing the dependence function which identifies the pres-

ence of novel finite-range dependencies that contribute to

total correlation. Section V concludes the development.

Appendices present detailed derivations, as well as sev-

eral generalizations, of the main results.

II. STRUCTURE IN SPACE AND TIME?

Pairwise correlations are encountered throughout the

sciences and engineering, especially in statistical physics.

They are assumed, estimated, relied on, designed with,

and used for interpretation widely. The following ex-

plores several specific examples of pairwise correlation

that arise in different fields. These will set the context

for our development, particularly for experts in the as-

sociated fields. However, our general results should be

accessible and relevant across disciplines, as they rely pri-

marily on basic probability theory and linear algebra.

A well-studied lesson from statistical physics is that

diverging correlation length heralds the emergence of

new types of order. Remarkably, mechanistically-distinct

physical systems share many universal behaviors near a

critical point of emergent order, including the scaling

of spatial pairwise correlation length [3]. More broadly,

pairwise correlations are indicators of fundamental phys-

ical processes. For example, the fluctuation–dissipation

theorem says that pairwise temporal correlations in equi-

librium determine the friction encountered in transport

processes. The Green–Kubo relations [4] make this ex-

plicit. Far from equilibrium, say in computing devices

and biological systems composed of excitable media, tem-

poral correlations are signatures of richly coordinated

state-trajectories.

Pairwise correlations are directly viewed in the fre-

quency domain via power spectral densities. Indeed,

power spectra are employed as a basic data analysis tool

in many scientific domains and have been key to major

scientific discoveries. For example, comparing alternative

theoretical predictions for power spectra of incident elec-

tromagnetic radiation from locally-thermalized bodies,

a unexpected discrepancy—the ultraviolet catastrophe—

led to the acceptance of Planck’s theory of quantized en-

ergies and the subsequent birth of quantum theory [5–7].

A contemporary example of the prominent role of power

spectra is seen in the exquisitely detailed map of the cos-

mic microwave background (CMB)—a snapshot of the

early universe’s spatial correlations. In fact, models of

the early universe are now benchmarked against their

ability to replicate the CMB power spectrum [8].

In applied mathematics, power spectra played a key

role in highlighting the defining features of the strange

attractors of dynamical systems theory [9, 10]. This led

to the discovery of Ruelle–Pollicott resonances, where

mixing and the decay of correlations in chaotic systems

were related to the point spectrum of the Ruelle–Perron–

Frobenius operator [11–13]. Indeed, the power spectra of

chaotic systems are still actively used to analyze the be-

havior of everything from open quantum systems [14, 15]

to climate models [16].

Power spectra are regularly used to discover struc-

ture in materials science and biology, too. X-ray diffrac-

tion patterns—used to identify crystalline and molecular

organization and central to discovering DNA’s double-

helix [17–20]—are power spectra of scatterer densities,

as we explain in App. A. Power spectra have been used

to identify temporal correlations in single-neuron spike

trains, refuting the common Poissonian white-noise as-

sumption common in theoretical and computational neu-

roscience [21–24]. This allows the possibility that tem-

poral correlations in the spike train—rather than just

the firing rate—can play an important role in the neural

code [25, 26]. On a much larger (mean-field) scale, brain

wave activity in different frequency bands gives signa-

tures of normal brain functioning, as well as pathologi-

cal conditions. Rhythmic brain-wave activity is clinically

assessed through real-time power spectra of electroen-

cephalography (EEG) signals [27–29].

From the smallest to the largest scales in the universe,

when probing both the inanimate and the animate, power
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spectra are a central diagnostic tool for structure and

validating scientific models. Their use is so important

that special-purpose spectral and network analyzers are

standard laboratory test equipment; they can be readily

purchased from dozens of major manufacturers.

Power spectra report pairwise correlations in a signal.

But how much of a system’s structure is faithfully rep-

resented by pairwise correlation? Are there important

types of order that evade power spectra completely? To

answer these questions, we first consider the problem

of hidden structure concretely through the lens of au-

tocorrelation and power spectra. Only then, once the

strengths and weakness of power spectra are clear, do we

move on along to more sophisticated measures of struc-

ture. Along the way we trace a path that begins to reveal

what one can mean by “statistical dependency”, “corre-

lation”, and “structure”.

A. Correlation and Power Spectra

To provide a common ground, consider discrete-

time processes described by an interdependent sequence

. . . X0X1X2 . . . of random variables Xt that at time t

take on values x ∈ A within an alphabet assumed (for

now) to be a subset of the complex numbers: A ⊂ C.

(For other kinds of stochastic process, t may represent

spatial or angular coordinates. For concreteness here, we

interpret t as indexing time.) An observed process may

have a discrete domain, as with a classical discrete-time

communication channel or a series of quantum measure-

ments, or otherwise may be a regularly-sampled process

evolving in continuous time.

A signal’s power spectrum or, more properly, its power

spectral density quantifies how its power is distributed

across frequency [30, 31]. For a discrete-domain process

it is:

P (ω) = lim
N→∞

1
N

〈∣∣∣ N∑
t=1

Xte
−iωt

∣∣∣2〉 , (1)

where ω is the angular frequency and the angle brackets

denote the expected value over the random variable chain

X1X2X3 . . . XN .

For wide-sense stationary stochastic processes the au-

tocorrelation function:

γ(τ) =
〈
XtXt+τ

〉
, (2)

is independent of the global time shift t and depends

only on the relative time-separation τ between observ-

ables [32]. The bar above Xt denotes its complex conju-

gate. Equation (2) makes plain the connection between

pairwise statistics and the pairwise correlation function.

For wide-sense stationary stochastic processes, the power

spectrum is also determined by the signal’s autocorrela-

tion function γ(τ):

P (ω) = lim
N→∞

1
N

N∑
τ=−N

(
N − |τ |

)
γ(τ)e−iωτ . (3)

The windowing function N − |τ | appearing in Eq. (3) is

a direct consequence of Eq. (1); it is not imposed ex-

ternally, as is common practice in signal analysis. (This

factor is important for controlling convergence in our sub-

sequent derivations.)

Equation (3) suggests that the power spectrum is very

nearly the Fourier transform of the autocorrelation func-

tion, except for the N − |τ | term. In fact, the Wiener–

Khinchin theorem proves that the power spectrum is in-

deed equal to the Fourier transform of the autocorrela-

tion function for wide-sense stationary processes [33, 34].

Note, too, that the pairwise correlation function γ(τ)

can be obtained via the inverse Fourier transform of the

power spectrum P (ω).

B. Temporal Structurelessness

Our goal is to understand temporal structure and to

identify it in stochastic processes. To detect structure,

even when hidden, we first must establish a baseline ref-

erence process that has no temporal structure: genuine

white noise.

White noise processes are those for which each ran-

dom variable Xt is statistically independent of all others

Xt′ 6=t, and each is identically distributed according to the

same probability density function (PDF) over the alpha-

bet. That is, the random variables in the sequence are

independent and identically distributed (IID).

Familiar examples include a sequence of coin flips or

the sequence of sums when rolling a pair of dice. As an

example from contemporary physics, consider the (clas-

sical) process that results from observing a sequence of

Bell-pair quantum states [35]. For each Bell pair, one

of the entangled particles is sent to Alice and the other

sent to Bob. Alice makes a sequence of measurements

(along any measurement axis). The measurement output

sequence she observes is pure white noise, with each mea-

surement outcome having equal and independent proba-

bility of being up or down along the measurement axis. In

fact, more sophisticated deployments of Bell pairs are be-

ing developed to provide certifiable random number gen-

eration [36]. Experiments now concentrate on increasing

the rate of generating white noise [37, 38].

The most recognizable feature of all white noise pro-
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cesses is their flat power spectrum. For any IID pro-

cess, it follows directly from Eq. (2) that γ(0) = 〈|Xt|2〉,
whereas γ(τ) = | 〈Xt〉 |2 for τ 6= 0. From Eq. (3), this

immediately yields the familiar flat power spectrum of

white noise, together with a δ-function at zero frequency,

corresponding to the constant offset of the noise. For

real-valued IID processes with zero mean, this simplifies

further to γ(τ) = σ2 δ0,τ and so P (ω) = σ2. In fact,

the flat power spectrum has height equal to the variance

σ2 = 〈X2
t 〉 − 〈Xt〉2 of the white noise for any real-valued

IID process. The flat power spectrum for IID processes

indicates that any temporal structure in the generating

source has such short memory that it vanishes within the

short sampling time ∆t between each observation.

Gaussian white noises tend to be the most com-

monly employed white noise processes and, usually, for

good reason. By the central limit theorem, Gaus-

sian white noise arises generically in systems whenever

many events—with amplitude of finite variance and with

rapidly decaying correlation (compared to the timescale

between observations)—contribute additively to each in-

dividual observation. Suppose, for example, that the ex-

pected number of these contributions to each new obser-

vation is simply proportional to the time since the last

observation. When sampled at interval ∆t, the central

limit theorem then tells us that each observation of the

accumulated noise is IID and Gaussian distributed with

variance σ2
η ∝ ∆t. This immediately leads to the famil-

iar standard deviation of ση ∝
√

∆t of the additive noise

η(t) that appears when numerically integrating stochas-

tic differential equations (e.g., Langevin equations); this,

in turn, produces the trajectories of slower random vari-

ables [39].

The memoryless nature of repetitive sampling from a

distribution is apparent in the state machine shown in

Fig. 1(a). The same Gaussian distribution is repeat-

edly sampled with probability 1 (as depicted by the self-

transition probability there) for each observation, regard-

less of what happened previously.

Other “structureless” white noises are also possible.

In fact, any of an uncountably infinite set of differ-

ent IID processes—Gaussian, Poisson, Bernoulli, or any

process that resamples a particular distribution at each

timestep—all yield the flat power spectrum or white

noise. Non-Gaussian noise can emerge from repetitive

sampling of a system’s (non-Gaussian) stationary dis-

tribution when the relaxation timescales are far shorter

than the time elapsed between samples. Alternatively,

non-Gaussian white noise can arise when only a few phys-

ical events contribute to each observation, in which case

the non-Gaussianity may reveal features of the physical

generative mechanism. Nevertheless, these processes pos-

sess no temporal structure on the timescale of observation

4

�2 = hX2
t i � hXti2 of the white noise. The flat power

spectrum for IID processes indicates that any temporal

structure in the generating source has such short mem-

ory that it vanishes within the short sampling time �t

between each observation.

Gaussian white noises tend to be the most com-

monly employed white noise processes and, usually, for

good reason. By the central limit theorem, Gaus-

sian white noise arises generically in systems whenever

many events—with amplitude of finite variance and with

rapidly decaying correlation (compared to the timescale

between observations)—contribute additively to each in-

dividual observation. Suppose, for example, that the ex-

pected number of these contributions to each new obser-

vation is simply proportional to the time since the last

observation. When sampled at interval �t, the central

limit theorem then tells us that each observation of the

accumulated noise is IID and Gaussian distributed with

variance �2
⌘ / �t. This immediately leads to the famil-

iar standard deviation of �⌘ /
p
�t of the additive noise

⌘(t) that appears when numerically integrating stochas-

tic di↵erential equations (e.g., Langevin equations); this,

in turn, produces the trajectories of slower random vari-

ables [25].

The technical level of results here is bounc-

ing around, from elementary almost pedagogical

to sophisticated. What audience are we target-

ing here? The reader is assumed knowledgeable

enough to derive the stated claims? If not, we’d

better provide cites to the textbooks where they

can find the results explained.

The memoryless nature of repetitive sampling from

a distribution is apparent in the state machines shown

in Fig. 1(a). The same Gaussian distribution is repeat-

edly sampled with probability 1 (as depicted by the self-

transition probability there) for each observation, regard-

less of what happened previously.

Other “structureless” white noises are also possible.

In fact, any of an uncountably infinite set of di↵er-

ent IID processes—Gaussian, Poisson, Bernoulli, or any

process that resamples a particular distribution at each

timestep—all yield the flat power spectrum or white

noise. Non-Gaussian noise can emerge from repetitive

sampling of a system’s (non-Gaussian) stationary dis-

tribution when the relaxation timescales are far shorter

than the time elapsed between samples. Alternatively,

non-Gaussian white noise can arise when only a few phys-

ical events contribute to each observation, in which case

the non-Gaussianity may reveal features of the physical

generative mechanism. Nevertheless, these processes pos-

sess no temporal structure on the timescale of observation

and, in particular, generate absolutely no correlations in

the sequence of observations.
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(a) Gaussian white noise
process and its flat power

spectrum.

1

.

1

.

1

.

1

�

�

3�A
m

�A
m

2�A
m

k1

2�A
m

�A
m

k2

3�A
m

k3

�A
h

3�B
m

�B
m

2�B
m

k1

2�B
m

�B
m

k2

3�B
m

k3

�B
h

�0�0 �0�0 �0�0 �1�1 �0�0

9

(b) Non-Gaussian white noise
process and its flat power

spectrum.

FIG. 1. Genuine white noise processes have no memory: This
is represented graphically by a machine with a single state
that is repeatedly visited with each observation. The same
probability density function, inscribed in the state, is sam-
pled at each timestep. (a) Gaussian white noise memoryless
stochastic process. (b) Another white noise process, although
non-Gaussian. The class of all possible (not-necessarily Gaus-
sian) memoryless white noises is identical with the class of
processes generated by single-state machines. This class, in
turn, is identical to that of all IID processes (spanning all pos-
sible probability density functions). These temporally struc-
tureless processes constitute all possible varieties of genuine
white noise. Give the (flat) power spectrum for each.
The reader needs this.

The hallmark of this structural paucity is the single

state for the hidden Markov model (HMM) that describes

all of these IID processes, as depicted in Fig. 1(b) [26].

The single states means that no influences from the past

can a↵ect the next or future samples. These are the

genuine white noises.

In sharp contrast, we will consider stochastic processes

with arbitrarily sophisticated temporal structure on the

timescale of observation. The much more general class we

next consider allows for a thorough investigation of tem-

porally structured stochastic processes. One surprising

feature is that these very structured processes, described

by arbitrarily complicated and memoryful collections of

internal states can have the flat power spectrum of white

noise.

C. Models of temporal structure

Need cites to HMM literature: [27–33].

Structure arises over time from the interdependence

between observables. To explicitly address structure in

a broad class of temporally structured processes, we use

hidden Markov models (HMMs) as our preferred repre-

sentation for autonomous signal generators. Later sec-

tions will introduce yet more sophisticated models with

input dependence.

Despite Markovian state-to-state transitions, HMMs

can generate temporally-structured non-Markovian

ω

P
(ω

)

(a) Gaussian white noise process (inset) and its flat power
spectrum.
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(b) Non-Gaussian white noise
process and its flat power

spectrum.

FIG. 1. Genuine white noise processes have no memory: This
is represented graphically by a machine with a single state
that is repeatedly visited with each observation. The same
probability density function, inscribed in the state, is sam-
pled at each timestep. (a) Gaussian white noise memoryless
stochastic process. (b) Another white noise process, although
non-Gaussian. The class of all possible (not-necessarily Gaus-
sian) memoryless white noises is identical with the class of
processes generated by single-state machines. This class, in
turn, is identical to that of all IID processes (spanning all pos-
sible probability density functions). These temporally struc-
tureless processes constitute all possible varieties of genuine
white noise. Give the (flat) power spectrum for each.
The reader needs this.

The hallmark of this structural paucity is the single

state for the hidden Markov model (HMM) that describes

all of these IID processes, as depicted in Fig. 1(b) [26].

The single states means that no influences from the past

can a↵ect the next or future samples. These are the

genuine white noises.

In sharp contrast, we will consider stochastic processes

with arbitrarily sophisticated temporal structure on the

timescale of observation. The much more general class we

next consider allows for a thorough investigation of tem-

porally structured stochastic processes. One surprising

feature is that these very structured processes, described

by arbitrarily complicated and memoryful collections of

internal states can have the flat power spectrum of white

noise.

C. Models of temporal structure

Need cites to HMM literature: [27–33].

Structure arises over time from the interdependence

between observables. To explicitly address structure in

a broad class of temporally structured processes, we use

hidden Markov models (HMMs) as our preferred repre-

sentation for autonomous signal generators. Later sec-

tions will introduce yet more sophisticated models with

input dependence.

Despite Markovian state-to-state transitions, HMMs

can generate temporally-structured non-Markovian

ω

P
(ω

)

(b) Non-Gaussian white noise process (inset) and its flat
power spectrum.

FIG. 1. Genuine white noise processes have no memory: This
is represented graphically by a machine with a single state
that is repeatedly visited with each observation. The same
probability density function, inscribed in the state, is sam-
pled at each timestep. (a) Gaussian white noise memoryless
stochastic process. (b) Another white noise process, although
non-Gaussian. For each (a) and (b), the flat power spectrum
is given theoretically (thick gray), with height equal to the
variance of the probability density function. We also display
the numerically-obtained power spectrum (thin blue) for each.
The class of all possible (not-necessarily Gaussian) memory-
less white noises is identical with the class of processes gener-
ated by single-state machines. This class, in turn, is identical
to that of all IID processes (spanning all possible probability
density functions). These temporally structureless processes
constitute all possible varieties of genuine white noise.

and, in particular, generate absolutely no correlations in

the sequence of observations.

The hallmark of this structural paucity is the single

state for the hidden Markov model (HMM) that describes

all of these IID processes, as depicted in Fig. 1(b) [40].

The single states means that no influences from the past
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can affect the next or future samples. These are the

genuine white noises.

In sharp contrast, we will consider stochastic processes

with arbitrarily sophisticated temporal structure on the

timescale of observation. The much more general class

we next consider allows for a thorough investigation of

temporally structured stochastic processes. One surpris-

ing feature is that these very structured processes, de-

scribed by arbitrarily complicated transition dynamics

within memoryful collections of internal states, can have

the flat power spectrum of white noise.

C. Models of Temporal Structure

Structure arises over time from the interdependence

between observables. To explicitly address structure in a

broad class of temporally structured processes, we use

hidden Markov models (HMMs) as our preferred rep-

resentation for autonomous signal generators [41–47].

Later sections will introduce yet more sophisticated mod-

els with input dependence.

Despite Markovian state-to-state transitions, HMMs

can generate temporally-structured non-Markovian

stochastic processes—those with infinite Markov order.

Processes generated by even finite-state HMMs, in fact,

typically have infinite-range statistical dependencies

between observables since simple state-transition motifs

guarantee this feature [48]. In addition to this richness

and their ability to compactly generate the exact tem-

poral statistics of nonlinear dynamical systems, HMMs

are attractive since they are amenable to linear operator

techniques [49–55].

Let the 4-tuple M =
(
S,A,P, T

)
be a discrete-time

HMM that generates the stationary stochastic process

. . . X−2X−1X0X1X2 . . . according to the following. S
is the (finite) set of hidden states of the hidden Markov

chain and A ⊆ C is the observable alphabet. St is the

random variable for the hidden state at time t that takes

on values s ∈ S. Xt is the random variable for the ob-

servation at time t that takes on values x ∈ A.

Given the hidden state at time t, the possible ob-

servations are distributed according to the conditional

probability density functions: P =
{

p(Xt|St = s)
}
s∈S .

For each s ∈ S, p(Xt|St = s) may be abbreviated as

p(X|s) since the probability density function in each

state is assumed to not change over t. Similarly, we will

write p(x|s) for p(Xt = x|St = s). Finally, the hidden-

state-to-state stochastic transition matrix T has elements

Ts,s′ = Pr(St+1 = s′|St = s), which give the probability

of transitioning from hidden state s to s′ given that the

system is in state s, where s, s′ ∈ S. It is important for

subsequent developments that Pr(·) denotes a probability
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FIG. 2. Simple 3-state HMM that generates a stochastic pro-
cess according to the state-to-state transition dynamic T and
the probability density functions (PDFs) {p(X|s)}s∈S associ-
ated with each state. Theorem 1 asserts that its power spec-
trum is the same (modulo constant offset) as the power spec-
trum generated from an alternative process where the state’s
PDFs are solely concentrated at the average value 〈x〉p(X|s)
of the original PDF associated with the state.

in contrast to p(·) which denotes a probability density.

Epitomizing the class of processes considered, Fig. 2

presents a rather simple HMM with continuous observ-

able alphabet A = R, whose samples are distributed ac-

cording to the probability density function shown within

each hidden state. As seen in the HMM’s top-right

state, both continuous probability density functions and

discrete output probabilities can be accommodated in

this framework: Finite probability of a particular ob-

servable is accomplished by an appropriately weighted

Dirac δ-function in the probability density function. The

memoryful structure in Fig. 2 should be contrasted with

the completely memoryless process of sampled Gaussian

white noise shown in Fig. 1.

Figure 3’s Bayes network depicts the structure of

conditional independence among the random variables

for these memoryful signal generators. For exam-

ple, for a generic HMM, p(Xt|Xt−N . . . Xt−2Xt−1 =

xt−N . . . xt−2xt−1) cannot be simplified since the con-

dition on even arbitrarily distant past observables can

influence the probability of the current observable. How-

ever, when conditioning on hidden states, the situation

can simplify markedly. For example:

p(Xt|Xt−N . . . Xt−2Xt−1 = xt−N . . . xt−2xt−1,

St−N . . .St−2St−1 = st−N . . . st−2st−1)

= p(Xt|St−1 = st−1)

=
∑
s∈S

Tst−1,s p(X|s) .
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FIG. 3. Bayesian network for a state-emitting hidden Markov
model graphically depicts the structure of conditional in-
dependence among random variables for the hidden state
{Sn}n∈Z at each time n and the random variables {Xn}n∈Z
for the observation at each time n.

The general properties of HMMs allow one to calcu-

late any statistic about the generated process from the

hidden-state-to-state transition matrix T and set P of

conditional probability density functions. For simplic-

ity in the following, assume a finite set of hidden states

and a single attracting component. Then every transi-

tion matrix T admits a unique stationary distribution π.

This is determined as T ’s left eigenvector associated with

the eigenvalue of unity: 〈π|T = 〈π|. The eigenvector is

normalized in probability: 〈π|1〉 = 1, where |1〉 is the

column vector of all ones. Note also that |1〉 is the right

eigenvector of T associated with the eigenvalue of unity,

T |1〉 = |1〉. This property conserves state probability in

hidden Markov chain evolution.

We can now provide the correlation functions and

power spectral density in general and in closed form

for this entire class of stochastic process generated by

HMMs. Helpfully, for particular HMMs, the expressions

become analytic in the model parameters.

Appendix B shows that the autocorrelation function is

given by:

γ(τ) =


〈π|ΩT |τ | Ω |1〉 if τ ≤ 1〈
|x|2
〉

if τ = 0

〈π|ΩT |τ | Ω |1〉 if τ ≥ 1

, (4)

where Ω is the |S|-by-|S| matrix defined by:

Ω =
∑
s∈S
〈x〉p(X|s) |s〉 〈s| . (5)

We use the hidden-state basis in which |s〉 is the col-

umn vector of all 0s except for a 1 at the index corre-

sponding to state s. 〈s| is simply its transpose. This

yields a natural decomposition of the identity operator:

I =
∑
s∈S |s〉 〈s|. In the hidden-state basis, then, the Ω

matrix simply places state-conditioned average outputs

along its diagonal.

The power spectrum is calculated starting from Eq. (3)

together with Eq. (4), using the spectral decomposi-

tion techniques developed for nonnormal and nondiag-

onalizable operators in Ref. [55]. In the derivation it is

important to treat individual eigenspaces separately, as

our generalized framework naturally accommodates. Ap-

pendix C gives the derivation’s full details. Qualitatively,

the power spectrum decomposes naturally into a discrete

part Pd(ω) (a weighted sum of Dirac δ-functions) and a

continuous part Pc(ω) (a collection of diffuse peaks):

P (ω) = Pc(ω) + Pd(ω) .

For the power spectrum’s continuous part the end result

is:

Pc(ω) =
〈
|x|2
〉

+ 2 Re 〈π|ΩT
(
eiωI − T

)−1
Ω |1〉 , (6)

where Re(·) denotes the real part of its argument.

Remarkably, all of the ω-dependence is in the appar-

ently simple term
(
eiωI − T

)−1
. This is the resolvent of

T along the unit circle in the complex plane. However,

and central to our main results, this frequency depen-

dence is filtered through 〈π|Ω and Ω |1〉. Notably, if

the average-observation matrix was proportional to the

identity, then all frequency dependence would be lost

since Re 〈π|
(
eiωI − T

)−1 |1〉 is independent of ω. Fre-

quency dependence of the power spectrum thus requires

that there are different averages associated with differ-

ent states. Surprisingly though, none of the structure of

the conditional probability density functions {p(X|s)}s
matters for the power spectrum, except for the average

value observed in each state. Structure beyond averages

is simply not captured.

D. Apparent Structure

To fully appreciate the structure that is captured by

the power spectrum requires a spectral decomposition of

the transition matrix. The set ΛT of T ’s eigenvalues is

calculated as usual. However, since transition matrices

are generically nonnormal and often nondiagonalizable,

the spectral projection operators associated with T de-

serve a brief review.

In particular, the spectral projection operator Tλ as-

sociated with eigenvalue λ can be defined as the residue

of (zI − T )−1 as z → λ:

Tλ = 1
2πi

∮
Cλ

(
zI − T

)−1
dz , (7)

where z ∈ C and Cλ is a small counterclockwise con-

tour around the eigenvalue λ. Alternatively, the spec-

tral projection operators can be constructed from all left
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eigenvectors, generalized left eigenvectors, right eigenvec-

tors, and generalized right eigenvectors associated with

λ. The construction is given explicitly in Ref. [55]. In

the simple case where the eigenvalue is nondegenerate,

the eigenprojector takes on the simple form:

Tλ =
|λ〉 〈λ|
〈λ|λ〉 .

However, the left and right eigenvectors are not sim-

ply complex-conjugate transposes of each other, as they

would be in the normal-operator case familiar from closed

quantum systems and undirected networks. For ex-

ample, the spectral projection operator associated with

stationarity—T1 = |1〉 〈π|—can be interpreted as the

classical version of a density matrix but, typically, the

stationary distribution is not uniform and so 〈π| is not

proportional to the transpose of |1〉.
We will also use the broader class of spectral compan-

ion operators:

Tλ,m = Tλ(T − λI)m . (8)

They have the useful property that Tλ,mTζ,n =

δλ,ζTλ,m+n. Clearly, the spectral projection operator is

contained in this set, as Tλ = Tλ,0. It should be noted

that Tλ,m = 0 for m ≥ νλ, where νλ is the index of the

eigenvalue λ—i.e., the size of the largest Jordan block

associated with λ. One should keep in mind that the

transition matrix can be represented as:

T =
∑
λ

(
λTλ,0 + Tλ,1

)
.

While the resolvent has the general spectral decomposi-

tion:

(zI − T )−1 =
∑
λ∈ΛT

νλ−1∑
m=0

1

(z − λ)m+1
Tλ,m . (9)

The spectral expansion of the resolvent given by

Eq. (9) allows us to better interpret the qualitative shape

of the power spectrum:

Pc(ω) =
〈
|x|2
〉

+
∑
λ∈ΛT

νλ−1∑
m=0

2 Re
〈π|ΩT Tλ,mΩ |1〉

(eiω − λ)m+1
. (10)

Note that 〈π|ΩT Tλ,mΩ |1〉 is a complex-valued scalar

and all of the frequency dependence now handily resides

in the denominator. When T is diagonalizable, Eq. (10)

reduces to:

Pc(ω) =
〈
|x|2
〉

+
∑
λ∈ΛT

2 Re

(
λ 〈π|ΩTλΩ |1〉

eiω − λ

)
.

Appendix E gives the corresponding results for

continuous-time processes.

The discrete (δ-function) portion of the power spec-

trum is:

Pd(ω) =

∞∑
k=−∞

∑
λ∈ΛT
|λ|=1

2π δ(ω−ωλ+2πk) Re 〈π|ΩTλΩ |1〉 ,

(11)

where ωλ is related to λ by λ = eiωλ . Equation (11) is

valid even when T is nondiagonalizable: An extension of

the Perron-Frobenius theorem guarantees that T ’s eigen-

values on the unit circle have index νλ = 1. With T1 =

|1〉 〈π|, it is useful to note that 〈π|ΩT1Ω |1〉 =
∣∣〈x〉∣∣2, so

that the δ-function at zero frequency appears whenever

the average observation is nonzero.

When plotted as a function of the angular frequency ω

around the unit circle, the power spectrum suggestively

appears to emanate from the eigenvalues λ ∈ ΛT of the

hidden linear dynamic. These are the coronal spectro-

grams displayed in Figs. 4(c) and (d); these will be dis-

cussed after the general phenomena is explained.

T ’s eigenvalues on the unit circle yield Dirac δ-

functions in the power spectrum. T ’s eigenvalues within

the unit circle yield more diffuse line profiles, increas-

ingly diffuse as the magnitude of the eigenvalues retreats

toward the origin. Moreover, the integrated magnitude

of each contribution is determined from the amplitude

〈π|ΩTλΩ |1〉. Finally, we note that nondiagonalizable

eigenmodes yield qualitatively different line profiles.

The spectral decomposition of the power spectrum of-

fers several insights into the minimal temporal structure

required to generate the observed power spectrum. In

particular, since (i) each local maxima in the power spec-

trum emanates from an eigenvalue of the hidden state-

to-state transition matrix and (ii) since the number of

unique eigenvalues is upper bounded by the number of

hidden states (i.e., |ΛT | ≤ |S|), we have the following

result: Counting both diffuse peaks and δ-functions, the

number of observed peaks in the power spectrum (from

ω ∈ (−π, π] in the discrete-time setting) puts a lower

bound on the number of hidden states of any model ca-

pable of generating the observed stochastic process. Note

further that all transition matrices must have an eigen-

value of unity and that this eigenvalue can only produce

a δ-function at ω = 0 with no other way to shape the

power spectrum over other frequencies. This gives the

immediate consequence that all single-state HMMs (i.e.,

all IID processes) have a flat power spectrum, as sug-

gested earlier. In such cases, ΛT = {1}, and there are no

other eigenvalues to shape the power spectrum.

Figure 4 shows the power spectrum of a particular
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(a) A b-parametrized HMM with
mean values of each state’s pdf

〈x〉p(X|s) indicated as the number

inside each state.

(b) Eigenvalue evolution for all
λ ∈ ΛT sweeping transition

parameter b from 1 (thick blue) to
0 (thin red).

(c) Power spectrum and eigenvalues
at b = 3/4.

(d) Power spectrum and
eigenvalues at b = 1/4.

FIG. 4. Parametrized HMM of a stochastic process, its eigenvalue evolution, and two coronal spectrograms showing power
spectra emanating from eigen-spectra.

parametrized family of stochastic processes. Figure 4(a)

displays the HMM’s skeleton with state-to-state transi-

tion probabilities parametrized by b. The mean values

〈x〉p(X|s) observed from each state are indicated as the

blue number inside each state. The process generated

depends on the actual PDFs and the transition parame-

ter b. Although, and this is one of our main points, the

power spectrum is ignorant to the PDFs’ details.

The evolution of the eigenvalues ΛT of the transition

dynamic among hidden states is shown from thick blue to

thin red markers in Fig. 4(b), as we sweep the transition

parameter b from 1 to 0. A subset of the eigenvalues pass

continuously but very quickly through the origin of the

complex plane as b passes through 1/2. The continuity of

this is not immediately apparent numerically, but can be

revealed with a finer increment of b near b ≈ 1/2. Notice

the persistent eigenvalue of λT = 1, which is guaranteed

by the Perron–Frobenius theorem.

Using coronal spectrograms, introduced in Refs. [56]

and [54], Figs. 4(c) and 4(d) illustrate how the observed

power spectrum P (ω) emanates from the eigen-spectrum

ΛT of the hidden linear state-dynamic. Specifically, in

Fig. 4(c) and again, at another parameter setting, in

Fig. 4(d), we show the continuous part of the power

spectrum Pc(ω) (plotted around the unit circle in solid

blue) and the eigen-spectrum ΛT (plotted as red dots on

and within the unit circle) of the state-to-state transi-

tion matrix for the 11-state hidden Markov chain (Fig.

4(a)) that generates it. As anticipated from Eq. (10), the

power spectrum has sharper peaks when the eigenvalues

are closer to the unit circle. The integrated magnitude

of each peak depends on 〈π|Ω |λ〉 〈λ|Ω |1〉.
Interestingly, our continuous spectrum (closely related

to the continuous spectrum of unitary models of chaotic

dynamics) is the shadow of the discrete spectrum of

nonunitary dynamics. This suggests that resonances

in various physics domains concerned with a continu-

ous spectrum can be modeled as consequences of simpler

nonunitary dynamics. Indeed, hints of this appear in the

literature already [57–59].

III. HIDDEN STRUCTURE

Remarkably, the power spectrum generated by any

hidden-Markov process with continuous random vari-

ables for the observables is the same as the power spec-

trum generated by a potentially much simpler one—a

process that is a function of the same underlying Markov

chain but instead emits the state-dependent expectation

value of the observable within each state.

Theorem 1. Let P =
{

p(X|s)
}
s∈S specify any state-

paired collection of probability density functions over the

domain A ⊆ C. Let B =
{
〈x〉p(X|s)

}
s∈S and let Q ={

δ(x− 〈x〉p(X|s))
}
s∈S . Then, the power spectrum gener-

ated by any hidden Markov model M =
(
S,A,P, T

)
dif-

fers at most by a constant offset from the power spectrum

generated by the hidden Markov modelM′ =
(
S,B,Q, T

)
that has the same hidden Markov chain but in any state

s ∈ S emits, with probability one, the average value

〈x〉p(X|s) of the state-conditioned probability density func-

tion p(X|s) ∈ P of M.

Proof. From Eqs. (6) and (11), we see that Pc(ω) +

Pd(ω) −
〈
|x|2
〉

depends only on T and
{
〈x〉p(X|s)}s∈S .

Thus, all HMMs sharing the same T and
{
〈x〉p(X|s)}s∈S

have the same power spectrum P (ω) = Pc(ω) + Pd(ω),

modulo a constant offset determined by differences in〈
|x|2
〉
.

Figure 5 demonstrates Thm. 1 for the power spectrum
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FIG. 5. Demonstrating Thm. 1 for the processes generated
by the HMM skeleton of Fig. 4(a), using transition param-
eter b = 3/4 as in Fig. 4(c). Besides an overall constant
offset of 〈|x|2〉, the power spectrum is insensitive to all details
of the state-conditioned PDFs except for their averages. On
top of the theoretical curve (thick gray) given by Eq. (6) we
overlay horizontal offsets of the power spectra calculated nu-
merically for stochastically-generated time series. The state-
conditioned PDFs used to define the different stochastic pro-
cesses are: (i) single δ-functions, (ii) single Gaussians, (iii)
two symmetrically spaced δ-functions (with no support at the
mean), and (iv) weighted δ-functions with asymmetric spac-
ing. For each, a time series of length 218 was generated. The
Welch method was used to calculate the average power spec-
trum for each process using FFTs of segments of length 29.
The inset shows the raw power spectrum for each process
without the offset.

shown in Fig. 4(c).

One immediate consequence of Thm. 1 is the following:

Corollary 1. Any hidden Markov chain with any ar-

bitrary state-paired collection of zero-mean distributions,

i.e.:

P ∈
{
{p(X|s)}s∈S : 〈x〉p(X|s) = 0 for all s ∈ S

}
,

generates a flat power spectrum indistinguishable from

white noise.

Proof. This follows immediately from Thm. 1 and the

fact that the all-zero sequence has a power spectrum that

is zero everywhere. Thus, the corresponding power spec-

trum of the actual process is a flat (nonzero) power spec-

trum of uniform height 〈|x|2〉.
We can relax the corollary to include cases where the

state-conditioned PDFs are all equal to a potentially-

nonzero constant. Although, a δ-function at zero fre-

quency (of integrated magnitude equal to the square

magnitude of the constant) will then be observed in ad-
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FIG. 5: A demonstration of Thm. 1, using the HMM
skeleton of Fig. 4a, using transition parameter b = 3/4
as in Fig. 4c. Here we demonstrate that, besides an

overall constant o↵set of h|x|2i, the power spectrum is
insensitive to all details of the state-conditioned pdfs
except for their averages. On top of the theoretical

curve (thick gray) given by Eq. (5), we overlay
horizontal o↵sets of the power spectra calculated

numerically for stochastically-generated time series,
where the state-conditioned pdfs are (i) single delta

functions, (ii) single Gaussians, (iii) two symmetrically
spaced delta functions (with no support at the mean),

and (iv) weighted delta functions with asymmetric
spacing. For each of the numerical examples, a time
series of length 218 was generated; the Welch method

was used to calculate the average power spectrum using
FFTs of segments of length 29. The inset shows the raw

power spectra without the o↵set.

the corollary to include cases where the state-conditioned

pdfs are all equal to some potentially-nonzero constant,

although a delta function at zero frequency (of integrated

magnitude equal to the square magnitude of the con-

stant) will then also be observed in addition to the flat

power spectrum.

The implications of this corollary can be jolting. It is

quite surprising, for example, that a power spectrum can

be completely flat even when a ring of sequential states

are visited which emit observables according to a set of

probability density functions with no overlapping sup-

port. An example of this is given in Fig. 6. In such a

case, any awake observer should immediately detect obvi-

ous structure and forbidden sequences in the process; yet

the power spectrum remains silent about the structure,

reporting only the flat signature of white noise. Structure

is not always so obvious though without some reliable aid.

Indeed, the structure becomes much more di�cult to de-

tect (by any means) when the state-conditioned prob-

ability density functions have overlapping support (the

generic case of non-Markovian processes) so that the la-

tent state is not obvious from casual observation.
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FIG. 6: A demonstration of Cor. 1. The
obviously-structured stochastic process described by
this HMM has a flat power spectrum for all values of

the transition parameter p 2 [0, 1].

In the following sections, we will address further ways

to achieve the appearance of white noise without needing

to meet the requirements of Cor. 1. But first, let us reflect

on the results so far.

On the one hand, Thm. 1 and Cor. 1 should strongly

suggest to data analysts to look beyond power spectra

when attempting to extract a process’s full architecture.

On the other, whenever a process’ power spectrum is

structured, it is a direct fingerprint of the resolvent of

the hidden linear dynamic. In short, the power spectrum

is a filtered image of the resolvent along the unit circle.

The power spectrum of a particular stochastic process

is shown in Fig. 4 and using coronal spectrograms, intro-

duced in Ref. [4], it illustrates how the observed spec-

trum can be thought of as emanating from the spectrum

of the hidden linear dynamic, as all power spectra must.

Figure 4a shows the state-emitting HMM with state-to-

state transition probabilities parametrized by b; the mean

values hxip(x|s) of each state’s pdf p(x|s) are indicated as

the blue number inside each state. The process generated

depends on the actual pdfs and the transition parameter

b although, and this is our point, the power spectrum is

ignorant to the details of the pdfs.

The evolution of the eigenvalues ⇤T of the transition

ω

P
(ω

)

FIG. 6. Demonstrating Cor. 1: The overtly-structured
stochastic process generated by the HMM (inset) has a flat
power spectrum for all values of the transition parameter
p ∈ [0, 1]. The flat power spectrum is shown analytically
(thick gray) and numerically (thin blue) for p = 1/10. The
numerical power spectrum was calculated from a simulated
time series of length 220 using the Welch method, performing
FFTs on segments of length 29.

dition to the flat power spectrum.

The corollary’s implications are striking. It is quite

surprising, to consider one broad class of examples, that

a power spectrum can be completely flat even when a

ring of sequential states are visited that emit observables

with probability density functions having no overlapping

support. Figure 6 gives an example. In such a case, any

cogent observer immediately detects the obvious struc-

ture in the mismatched supports—observed values are

distinct—and forbidden realizations. Yet the power spec-

trum remains silent about this structure, reporting only

the featureless signature of white noise.

In other more challenging settings, structure is not

always so obvious without some reliable aid. Indeed,

structure becomes increasingly difficult to detect (by any

means) when the state-conditioned probability density

functions have overlapping support. This is the generic

case of non-Markovian processes. The hidden states can-

not be detected via casual inspection.

While they give a concrete sense of missing structure,

these cases fall far short of telling the full story of how

power spectra mask structure. The following sections,

culminating in Thm. 2, address additional ways white

noise appears without needing to meet the requirements

of Cor. 1. (Reference [2] goes further still, showing how

the structure can indeed be hidden much deeper.)
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A. Nonlinear Pairwise Correlation

In a way, the structure of the stochastic process in

Fig. 6 was hidden as shallowly as possible to evade the

power spectrum. As mentioned, the structure should be

trivial to detect by other means. Indeed, while the linear

pairwise correlation γ(τ) vanished for all τ > 0, there is

still pairwise dependence between the generated random

variables, which is nonlinear. This pairwise dependence

can be teased out using the pairwise mutual information

I(X0;Xτ ) between observables at different times. For

the process of Fig. 6, if we take the limit of the narrow

Gaussians in the state-conditioned PDFs to be pairs of

δ-functions, then the pairwise mutual information can be

calculated exactly as shown in App. F. In fact, I(X0;Xτ )

will be unchanged for any set of four PDFs we could

have chosen for the states of the example HMM, as long

as the PDFs all have mutually exclusive support for the

observable output. (This then makes the hidden state a

function of the instantaneous observable.)

A concise summary of the pairwise mutual information

is provided via Ref. [54]’s power-of-pairwise-information

(POPI) spectrum:

I(ω) = −H(X0) + lim
N→∞

N∑
τ=−N

e−iωτ I(X0;Xτ ) ,

where H(·) is the Shannon entropy of its argument. We

generated plots of both the pairwise mutual informa-

tions and the POPI spectrum for this example (shown

in App. F) and find the decay of pairwise information to

scale intuitively with the phase-slip-parameter p. While

the example of Fig. 6 has no linear correlation, neverthe-

less it does have pairwise structure. Thus, the structure

of the example process was hidden from power spectra,

but not hidden from the POPI spectrum.

The following sections continue investigating

temporally-structured processes, but focus on those

with no linear pairwise correlation (and so a flat power

spectrum) and no pairwise mutual information (and so

a flat POPI spectrum). These will lead us to introduce

a general condition for flat power spectra. And, since

power spectra fail so often to detect structure, we turn

from criticizing them to being constructive: introducing

ways to detect hidden structure.

B. Sophisticated Fraudulent White Noise

Theorem 1 established that the power spectrum from

processes with continuous observable random variables

is the same as the power spectrum from much simpler

corresponding processes with discrete observable random

variables. Accordingly, Thm. 1 motivates studying the

power spectra of processes with discrete observable ran-

dom variables to determine if there are further ways to

achieve a flat power spectrum, beyond Cor. 1’s possibili-

ties. For observables that are discrete random variables,

it is sufficient to consider their probability distributions

rather than their probability density functions.

We begin this next step of the development by estab-

lishing the following simple lemma:

Lemma 1. Any stochastic process (not necessarily sta-

tionary) with the Single-Condition-Independent Prop-

erty (SCIP):

Pr(Xt|Xt′ = x) = Pr(Xt)

= Pr(Xt′) ,

for all x ∈ A and all t 6= t′, generates a flat power spec-

trum, mimicking white noise.

Proof. For any such process, Pr(Xt) is the stationary

distribution µX of the instantaneous observable under the

stochastic dynamic. Moreover, SCIP means that the joint

probability of any two observations decomposes:

Pr(Xt = x,Xt+τ = x′) = Pr(Xt+τ = x′|Xt = x) Pr(Xt = x)

= Pr(Xt+τ = x′) Pr(Xt = x)

= µX(x′)µX(x) .

Substituting µX(x′)µX(x) for Pr(Xt = x,Xt+τ = x′)

in the autocorrelation definition of Eq. (2) immediately

implies that SCIP processes have τ -independent pairwise

correlation γ(τ) = |〈x〉|2 for τ 6= 0. The power spectrum

is thus flat over all frequencies, except possibly with a

δ-function at ω = 0.

SCIP processes not only have a flat power spectrum

but also a flat POPI spectrum. SCIP implies I(X0;Xτ ) =

0 for all τ 6= 0 which, in turn, implies I(ω) = 0.

These processes completely lack any pairwise correlation,

whether linear or nonlinear.

Notably, Lem. 1 is not covered by Cor. 1; nor is Cor. 1

subsumed by Lem. 1. Accordingly, the following develops

a single simple condition (culminating in Thm. 2) that

covers all of these cases of fraudulent white noise.

Crucially, the class of potentially-fraudulent-white-

noise processes suggested by Lem. 1 is nontrivial. In

addition to IID processes, this class of processes includes

non-Markovian processes that hide all of their structure

beyond pairwise correlations.

The Random–Random–XOR process (RRXOR), dis-

cussed at length in Ref. [54], is an example. Over blocks

of length 3, the first two bits are generated randomly

from a uniform distribution and the third bit is then the
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logical XOR operation of the last two. Explicitly:

X3n+φ = XOR(X3n−2+φ, X3n−1+φ) , whereas

X3n−2+φ ∼
(

1
2 ,

1
2

)
and

X3n−1+φ ∼
(

1
2 ,

1
2

)
,

for all n ∈ {1, 2, . . . }. As a SCIP process, the RRXOR

process has a flat power spectrum although it does

not fall under the purview of Cor. 1. Indeed, the

RRXOR process has no pairwise correlation at all since

I(X0;Xτ ) = 0 for all τ > 0. Accordingly, the POPI spec-

trum is zero over all frequencies. The structure in this

process is strictly three-way correlation. In Ref. [54], the

phase φ itself is a random variable, and synchronizing to

the phase is a surprisingly difficult task [60]. No matter,

whether or not the phase φ is given, the process has no

pairwise correlation—resulting in a flat power spectrum

and flat POPI spectrum—and only reveals correlation in

its three-way structure.

It is interesting to note that the related RRXNOR pro-

cess, where X3n = XNOR(X3n−2, X3n−1), also has a flat

power spectrum. In fact, this suggests a new method

to hide structure: embed a correlated message into a

sequence of RRXOR and RRXNOR 3-bit sequences that

lifts all correlation beyond pairwise. Specifically, the orig-

inal message is transformed into a sequence of choices

about whether to use XOR or XNOR on the previous

two random bits. As long as the read frame and the em-

bedding mechanism is known, the message can be eas-

ily extracted. But, if it is not known that a message is

embedded, it cannot be detected simply by looking for

pairwise correlations.

Through similar construction, structure can be shifted

up to arbitrarily-high orders of correlation [2]. Stochas-

tic processes can be constructed with N -way correlation

but no n-way correlation for all n < N . Moreover, an

arbitrarily correlated message can be embedded within

such a process, such that its structure is lifted beyond

any desired order of correlation.

C. Content-preserving Whitening

Corollary 1 gave a method to construct an arbitrarily

complex process with a truly flat power spectrum, so long

as all latent states have the same average output. Here,

we introduce an alternate method to construct arbitrarily

complex processes with truly flat power spectra. These

processes, in addition, are devoid of n-way correlation for

all n < N .

1. Choose an embedding block length N ≥ 3.
2. Choose any stochastic process (“Process A”) with

a binary output alphabet.

3. Construct “Process B” as follows:

• Whenever Process A would produce a 0, Pro-

cess B will sample a word uniformly from the

set of all words of length N with an even num-

ber of 1s.
• Whenever Process A would produce a 1, Pro-

cess B will sample a word uniformly from the

set of all words of length N with an odd num-

ber of 1s.

Any Process B constructed in this manner has a truly

flat power spectrum. Process B will also be devoid of

n-way correlation for all n < N . Moreover, if A is a sta-

tionary process such that its statistical complexity Cµ(A)

is well defined [61, 62], then Process B is also a stationary

process with Cµ(B) ≥ Cµ(A).

This also works for “infinity-structured” processes,

those with divergent statistical complexity. Choose any

binary Process-A family with Cµ → ∞. This can be,

for example, Ref. [63]’s Heavy-Tailed Periodic Mixture

Process that has infinite past–future mutual informa-

tion: E → ∞. Then add some structure, via content-

preserving whitening, to obtain a binary Process-B fam-

ily with Cµ →∞ and a truly flat power spectrum.

Similar constructions can also be developed for pro-

cesses with larger alphabets. Further examples will be

given in Ref. [2].

Through the lens of pairwise correlation, such struc-

ture is simply missed. However, before moving on to

consider more advanced methods to detect such struc-

ture, we finish our investigation of flat power spectra from

structured processes. The next section addresses a broad

class of possibly-input-dependent process generators and

we give a very general condition for when a flat power

spectrum results.

D. Input-dependent Generators and Fraudulent

White Noise

Probing fraudulent white noise more broadly, con-

sider an arbitrarily correlated message ~m and an input-

dependent generatorM(~m) of an observable output pro-

cess {Xt}t∈T . The lengths of the inputs and outputs need

not be commensurate, and the input and output alpha-

bets may also be distinct. The generator is fully speci-

fied by the tupleM(~m) =
(
S,A,P, {Tt(~m)}t,µ1

)
. That

is, the internal states S, output alphabet A, and state-

dependent PDFs P are static. However, the hidden-

state-to-state transition matrix Tt(~m) at time t is poten-

tially a function of the full input ~m. Since stationarity is

no longer assumed, the initial distribution µ1 over hidden

states must be specified for the statistics of the output

process to be well defined.
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FIG. 7. Bayesian network for memoryful input-dependent
generators.

Figure 7 shows the relevant Bayes network for this gen-

eral type of input-dependent generator. Contrast this

with Fig. 3, which showed the Bayes network of au-

tonomous HMM generators. Autonomous HMMs can be

seen as a special case of these possibly-input-dependent

generators when the process M(~m) = M is input-

independent and the initial distribution µ1 = π is taken

to be the stationary distribution 〈π| = 〈π|T of the time-

independent transition matrix Tt(~m) = T .

The memoryful input-dependent generators we now

consider also generalize the memoryful transducers con-

sidered in Ref. [64] to use continuous-variable outputs

and allow the lengths of input and output to be incom-

mensurate. Via any of the above models, very general

message-embedding schemes can be developed that pro-

duce sophisticated fraudulent white noise.

Even with all the generalizations, we can determine

autocorrelation and power spectra. Similar to the deriva-

tion for HMMs, we find that if the process is wide-sense

stationary then (for τ ≥ 1):

γ(τ) = 〈µt|ΩTt:t+τ (~m) Ω|1〉 , (12)

which must overall be t-independent (so long as t ≥ 1).

Here, 〈µt| = 〈µ1|T1:t(~m) and Ta:b(~m) =
∏b−1
t=a Tt(~m),

and Ω is again given by Eq. (5). (Notice that

Ta:a+τ (~m) = T τ for the special case of autonomous

HMMs.)

Thus, autocorrelation can be calculated as

〈µ1|ΩT1:1+τ (~m) Ω|1〉, assuming that the pairwise

statistics are stationary. This can also be written as:

γ(τ) =
〈
〈x〉p(X|St) 〈x〉p(X|St+τ )

〉
Pr(St,St+τ )

, (13)

where we treat 〈x〉p(X|St) as a random variable that

depends on St and the whole expression becomes t-

independent assuming stationary pairwise statistics. Ac-

cordingly, the autocorrelation function is constant and

the power spectrum is flat whenever:

Pr
(
〈x〉p(X|St+τ ) |St = s

)
= Pr

(
〈x〉p(X|St+τ )

)
= Pr

(
〈x〉p(X|St)

)
,

for all τ , for all t ∈ T , and for all s ∈ S.

However, this requirement is too strict to cover all cases

of interest. For example, it does not yet imply the flat

power spectrum of the RRXOR process. More generally,

constant autocorrelation and flat power spectra can be

guaranteed by an even weaker condition.

To appreciate this, define the set Ξ of average out-

puts exhibited by the states: Ξ ≡ ⋃s∈S{〈x〉p(X|s)
}

. Fur-

thermore, we define Sξ ⊂ S as the set of states that

all exhibit the same average output ξ ∈ Ξ. Explicitly,

Sξ ≡ {s ∈ S : 〈x〉p(X|s) = ξ}. Using these quantities,

we can state our result more precisely as the following

theorem.

Theorem 2. Let {Xt}t be a stochastic process generated

by any of the hidden-state modelsM(~m) discussed above,

including autonomous HMMs and input-dependent gen-

erators, Xt the random variable for the observable at time

t, and St the random variable for the hidden state at time

t. Such processes have constant autocorrelation and a

flat power spectrum if:

Pr(St+τ ∈ Sξ′ |St ∈ Sξ) = Pr(St+τ ∈ Sξ′)
= Pr(St ∈ Sξ′) , (14)

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ′ ∈
Ξ.

Proof. Starting from Eq. (13), we find the autocorrela-

tion for all such processes:

γ(τ) =
〈
〈x〉p(X|St) 〈x〉p(X|St+τ )

〉
Pr(St,St+τ )

=
∑
s,s′∈S

Pr(St = s,St+τ = s′) 〈x〉p(X|s) 〈x〉p(X|s′)

=
∑
ξ,ξ′∈Ξ

Pr(St ∈ Sξ,St+τ ∈ Sξ′) ξ ξ′

=
∑
ξ∈Ξ

Pr(St ∈ Sξ)ξ

×
∑
ξ′∈Ξ

Pr(St+τ ∈ Sξ′ |St ∈ Sξ)ξ′ . (15)

Combining Eq. (14) and Eq. (15), we see that:

γ(τ) =
∑
ξ∈Ξ

Pr(St ∈ Sξ)ξ
∑
ξ′∈Ξ

Pr(St+τ ∈ Sξ′)ξ′

= |〈ξ〉|2 ,

which is a constant. Thus, the power spectrum is flat, if
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Eq. (14) holds.

Theorem 2 says that a flat power spectrum results

whenever the average output of the future latent state

is independent of the average output of the current la-

tent state.

This generalized condition for flat power spectra cov-

ers the special case for HMMs as well as fraudulent

white noise from message-embedding schemes with sta-

tionary pairwise statistics, but nonstationary high-order

statistics. Appendix G shows that a modified version of

Thm. 2 also applies to another class of generators that

can be more natural for measured quantum systems and

systems with computational dependencies. Theorem 2

subsumes Cor. 1 as well as Lem. 1. And, it offers the

most general guarantee yet for constant autocorrelation

and flat power spectrum.

By way of contrast consider the following. While zero

pairwise mutual information is always a sufficient condi-

tion for flat power spectrum, it is not a necessary con-

dition. Here, in Thm. 2, we find a very general con-

dition for a flat power spectrum. Appendix H estab-

lished a related theorem (Thm. 4) that further gener-

alizes the condition for flat power spectra, allowing for

time-dependent PDFs associated with each state. More-

over, Thm. 2 and Thm. 4 constructively suggest how to

design such processes. Notably, these generalized condi-

tions do not require a stationary dynamic over the hidden

states of the observation-generating mechanism, which

furthermore allows messages to ride undetected aboard

fraudulent white noise.

This final result emphasizes the main argument’s gen-

erality: power spectra are mute when detecting a broad

range of observable structure. Whether observing phys-

ical, biological, or social systems, we seek structure that

reveals mechanism and begets predictability. Through

the lens of power spectra, or pairwise correlation more

generally, much structure is simply missed. The chal-

lenge then is to look for structure beyond pairwise.

IV. STRUCTURE IN NOISE?

One systematic method for exploring beyond-pairwise

correlations in stationary stochastic processes is through

the sequence of myopic entropy rates [50, 53, 54, 65–67]:

hL = H(XL|X1X2 . . . XL−1) , (16)

with h1 = H(X1). For example, the RRXOR process has

h1 = h2 = log |A| = 1 bit/symbol—it appears as random

as possible when considering symbols individually or in

pairs. Structure is unveiled, though, for L ≥ 3 when

hL < 1. That is, progressively longer Markov-order-L

approximations of the infinite-Markov-order process re-

veal progressively more of its hidden structure.

In fact, hL’s convergence reflects how structure is hid-

den in the stochastic process [67]. As L → ∞, hL ap-

proaches the process’ Shannon entropy rate h—the irre-

ducible randomness per symbol after all orders of correla-

tion have been taken into account. Notably, the accumu-

lation of the excess myopic entropy
∑∞
L=1(hL−h) = E—

the excess entropy—quantifies the total mutual informa-

tion between the past and future of a process: E =

I(. . . , X−1, X0 ; X1, X2, . . . ). So, while I(X0;Xτ ) = 0 for

all τ > 0 for the RRXOR process, the past and future

are nevertheless correlated since E > 0. And the con-

vergence to predictability can be viewed in the frequency

domain through the excess-entropy spectrum introduced

in Ref. [54]. Taken together, this suggests that myopic

entropy rates serve well to identify hidden structure be-

yond pairwise correlation. They show how predictabil-

ity improves as progressively longer historical context is

used.

However, correlations are not always restricted to con-

tiguous blocks. Therefore, there can be pairwise correla-

tions among distant observables while h2 = 0. Moreover,

the myopic entropy rates as defined above are restricted

to stationary processes. Consequently, despite their util-

ity, myopic entropies are not ideal for direct indication of

L-way correlation in the most general setting.

A more direct indicator of L-way correlation is found in

the dependence function DL, which quantifies the maxi-

mal uniquely-L-way correlation that exists in a process.

We say a set χ of random variables is fully correlated if

all constituent random variables inform all of the others;

that is, if:

H(X|χ \ {X,X ′})−H(X|χ \ {X})
= I
(
X ; X ′ |χ \ {X,X ′}

)
> 0 ,

for all X,X ′ ∈ χ. A process is then L-way correlated if it

has a set of L random variables that are fully correlated.

One way to quantify this L-way correlation is through

the following dependence function:

DL ≡ sup{
χ⊂{Xt}t: |χ|=L

} min
X,X′∈χ

I
(
X ; X ′ |χ \ {X,X ′}

)
;

(17)

defined here only for L ≥ 2. L-way dependence is nonzero

if and only if there are novel L-way contributions to a

process’ total correlation. Note that dependence can be

applied to nonstationary processes and processes of finite

duration.

Consider, as a simple example of noncontiguous depen-
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dencies, a process consisting of two interlaced RRXOR

processes with unambiguous phase. Explicitly:

X6n = XOR(X6n−4, X6n−2) and

X6n−1 = XOR(X6n−5, X6n−3) ,

whereas X6n−5, X6n−4, X6n−3, and X6n−2 are all gen-

erated from a uniform distribution for all n ∈ {1, 2, . . . }.
Joint probabilities over contiguous variables are com-

pletely uncorrelated and as random as possible, up until a

block-length of 5. Let’s treat the example as a stationary

process: Calculating probabilities from word frequencies

in a single realization, with the implicit assumption of

stationarity, effectively inducing random phase. Then,

we find full randomness in the myopic entropy rates up

to block length 5: h` = log |A| = 1 bit for 1 ≤ ` < 5.

Then, finally, a reduction in apparent entropy occurs at

h5, after which h` < h`−1 for ` ≥ 5. Notably, h3 re-

flects maximal randomness within its purview of inspec-

tion. Whereas, the process actually has three-way, but

no lower-order dependencies. This yields D1 = D2 = 0

and D3 > 0. With known phase, we would have D3 = 1

bit.

However, when the process is unknown and only a sin-

gle realization is available for analysis, probabilities can

be inferred only from motifs of random-variable clus-

ters. For example, estimating Pr(Xt−2, Xt, Xt+2) as if

the process were stationary, leads to finding 0 < D̃3 < 1,

where D̃L denotes approximating the dependence func-

tion assuming stationarity and testing a limited set of

motifs. Usefully, D̃L sets a lower bound on DL. So,

nonzero D̃L implies L-way dependence. Curiously, the

assumption of stationarity induces D̃L > 0 for all L ≥ 3;

reminiscent of how hL − hL−1 > 0 for all L ≥ 3 for

the RRXOR process with ambiguous phase. In each

case, these higher-order correlations correspond to the

observer’s resolving phase ambiguity.

The dependence function seems to fulfill its desired role

of identifying high-order correlations that cannot be ex-

plained by lower-order phenomena. Taking a step back,

though, we might question the whole endeavor. Can a

single model-free signal-analysis method ever reliably de-

tect information processing and thus complex structure

in the world around us? We have clearly ousted power

spectra for this task. Nevertheless, our arguments here

lend support to an affirmative answer, but at the cost of

more nuanced and computationally intensive techniques.

What is the range of validity of the informational mea-

sures discussed above? Can they be entrusted with find-

ing structure in the noise?

First, it should be noted that Shannon entropy is only

fully justifiable for alphabets A of countable cardinal-

ity. So, apparently continuous observables must be par-

titioned into measurable sets to apply the informational

measures like the myopic entropy rates and the depen-

dencies DL. Nevertheless, quantum physics suggests that

even very large and apparently continuous systems are, in

principle, always represented in a countable basis. Prac-

tically too, measurement devices only have a finite preci-

sion, so observations are discretized in practice anyway.

Therefore, Shannon entropies (like the myopic entropy

rates and the dependencies) can be applied in principle.

However, a second and likely more-severe challenge

arises from limited data: reliable estimates of probabil-

ities are not always available. Model building offers the

strongest response to this challenge. Generative models

inferred from low-order statistics sometimes encapsulate

predictions of rare events. And, at least, they give a

prediction for high-order statistics. Testing these predic-

tions against observation allows refining one’s model and

discovering new structure.

V. CONCLUSION

Our investigation began with the modest task of show-

ing how to calculate the correlation function and power

spectrum given a signal’s generator. To this end, we

briefly introduced hidden Markov models as signal gen-

erators and then used the linear-operator techniques of

Ref. [55] to calculate their autocorrelation and power

spectra in closed-form. This led to several lessons. First,

we saw that the power spectrum is a direct fingerprint

of the resolvent of the model’s time-evolution operator,

analyzed along the unit circle. Second, spectrally decom-

posing the not-necessarily-diagonalizable time evolution

operator, we discovered the range of qualitative behav-

iors that can be exhibited by autocorrelation functions

and power spectra. Third, contributions from eigenval-

ues on the unit circle had to be extracted and dealt

with separately. Contributions from eigenvalues on the

unit circle correspond to Dirac δ-functions—the analog of

Bragg peaks in diffraction. Whereas, eigen-contributions

from inside the unit circle correspond to diffuse peaks,

which become sharper for eigenvalues closer to the unit

circle. Finally, we found that nondiagonalizable eigen-

modes yield qualitatively different line profiles than their

diagonalizable counterparts.

These first results incisively answer the challenges

raised by Ruelle–Pollicott resonance theory about the

possible relationship between complex eigenvalues of

time-evolution operators and the correlation and power

spectra of observables [11–13]. In short, we provided the

exact relationship between the time-evolution operator

and the correlation functions and power spectra, as well

as the possible behavior modes of each. The result is
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a deeper theoretical understanding and constructive cal-

culational methods that complement early investigations

that experimentally delivered meromorphic power spec-

tra from chaotic dynamical systems [9, 10].

Accordingly, our findings are relevant to modern appli-

cations of Ruelle–Pollicott resonance theory. These ap-

plications are leading, for example, to better understand-

ing of sensitivities in climate models [16] and the dynam-

ics of open quantum systems via their correspondence

to classical chaotic dynamical systems [14, 15]. Our re-

sults provide full analytical correspondence between ob-

served correlation and the spectral properties of nonuni-

tary models. Our approach also bears on Koopman op-

erator theory and its applications, which has received a

new wave of attention due to the success of recent data-

driven algorithms [68]. However, our results also clarify

that resonances discovered via pairwise correlation are

generically an insufficient representation of the spectral

features of such nonnormal dynamics. This emphasizes

that the full spectral representation of the effective non-

normal dynamics [55], generically inaccessible via pair-

wise correlation, is worth pursuing. Success in this will

immediately yield predictions about many complex sys-

tems of interest.

The most surprising and more immediate finding,

though, is that temporal structure can fully evade de-

tection by power spectra. Arbitrarily sophisticated pro-

cesses can have exactly flat power spectra and so mas-

querade as white noise. Accordingly, we called such pro-

cesses fraudulent white noise processes. Theorem 1 and

Cor. 1 characterized the many ways that structure can be

hidden from power spectra. And, ultimately, Thm. 2 ad-

dressed the more general condition for fraudulent white

noise, in which the generated time-series could be input-

dependent and nonstationary.

We started out noting that, on the one hand, diver-

gent correlation length often heralds the emergence of

new types of order. And, on the other, that pairwise

correlation is generically identified as the structure in

random systems. However, we showed that there is of-

ten rich structure even in the absence of pairwise corre-

lations. What types of order are we failing to predict

due to an historical emphasis on pairwise correlations?

Complex systems surely exhibit emergent structure be-

yond the reach of pairwise statistics. There is almost

surely more functionally-relevant brain activity available

in EEGs beyond what is reported in their power spectra.

Perhaps, however, we should consider beyond-pairwise

structure for even simple generators of structure. For

example, cosmological models could be more thoroughly

tested against structure in the CMB beyond what is con-

tained in the two-point angular correlation functions.

Having diagnosed the structures inaccessible via power

spectra, we briefly discussed how to detect beyond-

pairwise structure in general, introducing the dependence

function to detect any L-way correlations for any L. We

also stressed the importance of model building whenever

possible. In particular, it can help anticipate and perhaps

avoid never-yet encountered catastrophes, which are of-

ten a byproduct of the high interconnectivity of complex

socio-economic systems [69]. Model building also allows

us to discover new mechanisms in nature.

This all said, nature can still keep us in the dark. We

showed that the correlations in a message can be shifted

to arbitrarily-high orders of correlation. The result is

that, for finite length messages, statistical inference can

be made effectively impossible regardless of one’s sophis-

tication [2]. Nature herself employs this technique when-

ever we observe an increase in entropy—giving the im-

pression of randomness generated, when it is only ever

structure hidden in inaccessibly-obscure high-order cor-

relations. In a sense, having pulled the wool over our

eyes, Mother Nature lulls us into complacency with a

soothing hiss of fraudulent white noise. Waking up to

the true hues of reality—prying open the black box, dis-

pelling apparent white noise—continues to require new

theory and new experimentation.

... it is clearly wise to learn what a procedure really

seems to be telling us about.

John Tukey, The Future of Data Analysis, 1962 [1, p. 60]
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Appendix A: Diffraction patterns as power spectra

Diffraction patterns are used extensively to infer ma-

terial structure from the scattering of, for example, an

incident X-ray beam [70–74]. Generally, consider ~r ∈ Rn
to be a vector in n-dimensional real space. The spatial

arrangement of elastic scatterers is given by the scatter-

ers’ density f(~r). Ideally, we wish to recover f(~r) from

our diffraction experiments, which provide measured in-

tensities. However, far-field patterns of diffracted in-

tensity yield only Idiff(~ω) = c|F (~ω)|2, where F (~ω) =
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Rn f(~r)e−i~ω·~r dn~r is the n-dimensional Fourier transform

of f(~r) and c is some constant. In other words, F (~ω)’s

phase information is lost when only intensity is measured.

The X-ray beam’s expected diffracted intensity is pro-

portional to
〈
|F (~ω)|2

〉
, which is the n-dimensional gen-

eralization of a power spectrum. However, it is also in-

teresting to relate the n-dimensional diffraction pattern,

along a curve in reciprocal space, to the more familiar

one-dimensional power spectrum.

For a given directional frequency ~ω, decompose ~r =

~r‖ + ~r⊥, where ~r‖ ≡ (~r · ω̂)ω̂ and ω̂ = ~ω/|~ω|. Then,

let µ⊥(~r‖) be the accumulated density within the entire

cross-sectional plane perpendicular to and uniquely iden-

tified by ~r‖; i.e., µ⊥(~r‖) ≡
∫
Rn−1 f(~r‖ + ~r⊥) dn−1~r⊥. We

then find that in general:

Idiff(~ω) = c

∣∣∣∣∫
R
µ⊥(~r‖)e

−iωr‖ dr‖

∣∣∣∣2 . (A1)

In particular, we see that the diffraction pattern along

any line ~ω = ωω̂ (with varying ω but fixed ω̂) is the

power spectrum of the net magnitude of scatterers within

sequential cross sections of real space perpendicular to ω̂.

For molecular or crystalline structures, when the net

scatterer density is well-approximated by a superposition

of more elementary densities f(~r) =
∑
j fj(~r − ~rj), we

obtain the alternative expression:

Idiff(~ω) = c

∣∣∣∣∣
∞∑

`=−∞

F (`)(~ω)e−iω`d

∣∣∣∣∣
2

. (A2)

Here, the layer-scattering factors are defined:

F (`)(~ω) ≡
∑

j∈{m:`d≤rm‖<`d+d}

Fj(~ω)e
−iω(rj‖−`d)

,

for cross-sectional layers of depth d, where rj‖ = ~rj · ω̂.

And:

Fj(~ω) =

∫
Rn
fj(~r)e

−i~ω·~r dn~r

is the n-dimensional Fourier transform of fj(~r). Again,

the diffraction pattern (along some line in reciprocal

space passing through the origin) appears as a one-

dimensional power spectrum. However, this time the

diffraction pattern is the power spectrum of the complex-

valued layer-scattering factors F (`)(~ω) over a discrete

spatial domain. The frequency-dependence of F (`)(~ω) is

often factored out to ‘correct’ the diffraction pattern, so

that only the structure of interest remains [75, 76]. The

corrected diffraction pattern is thus a standard power

spectrum, with the form of Eq. (1). Equation (A2) is

an especially useful expression for layered structures, as
demonstrated in Ref. [56].

Appendix B: Autocorrelation for processes

generated by autonomous HMMs

Let’s derive the autocorrelation function in general and

in closed form for the class of autonomous HMMs intro-

duced in the main text. Helpfully, for particular models,

the expressions become analytic in terms of the model

parameters.

Directly calculating, we find that the autocorrelation

function, for τ > 0, for any such HMM is:

γ(τ) =
〈
XtXt+τ

〉
=

∫
x∈A

∫
x′∈A

xx′p(X0 = x,Xτ = x′) dx dx′

=
∑
s∈S

∑
s′∈S

∫
x∈A

∫
x′∈A

xx′p(X0 = x,Xτ = x′,S0 = s,Sτ = s′) dx dx′

=
∑
s∈S

∑
s′∈S

∫
x∈A

∫
x′∈A

xx′ Pr(S0 = s,Sτ = s′) p(X0 = x|S0 = s) p(Xτ = x′|Sτ = s′) dx dx′

=
∑
s∈S

∑
s′∈S
〈π|s〉 〈s|T τ |s′〉 〈s′|1〉

(∫
x∈A

x p(x|s) dx
)(∫

x′∈A
x′ p(x′|s′) dx′

)
= 〈π|

(∑
s∈S
〈x〉p(X|s) |s〉 〈s|

)
T τ
(∑
s′∈S
〈x〉p(X|s′) |s′〉 〈s′|

)
|1〉 ,

where the integrals are written in a form meant to be easily accessible but should generally be interpreted as Lebesgue
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integrals. In the above derivation, note that:

p(X0 = x,Xτ = x′,S0 = s,Sτ = s′) = Pr(S0 = s,Sτ = s′)p(X0 = x,Xτ = x′|S0 = s,Sτ = s′)

holds by definition of conditional probability. The decomposition of:

p(X0 = x,Xτ = x′|S0 = s,Sτ = s′) = p(X0 = x|S0 = s)p(Xτ = x′|Sτ = s′)

for τ 6= 0 follows from the conditional independence in

the relevant Bayesian network shown in Fig. 3. Moreover,

the equality:

Pr(S0 = s,Sτ = s′) = 〈π|s〉 〈s|T τ |s′〉 〈s′|1〉

can be derived by marginalizing over all possible interven-

ing state sequences. We can use the hidden-state basis,

where |s〉 is the column vector of all 0s except for a 1

at the index corresponding to state s, while 〈s| is simply

its transpose. This yields a natural decomposition of the

identity operator: I =
∑
s∈S |s〉 〈s|.

Since the autocorrelation is a Hermitian function—i.e.,

γ(−τ) = γ(τ)—and:

γ(0) =
〈
|x|2
〉
π(X)

= 〈π|
∑
s∈S

〈
|x|2
〉

p(X|s) |s〉 ,

we find the full autocorrelation function is given by:

γ(τ) =


〈π|ΩT |τ | Ω |1〉 if τ ≤ 1〈
|x|2
〉

if τ = 0

〈π|ΩT |τ | Ω |1〉 if τ ≥ 1

, (B1)

where Ω is the |S|-by-|S| matrix defined by:

Ω =
∑
s∈S
〈x〉p(X|s) |s〉 〈s| .

The Ω matrix simply places state-conditioned average

outputs along its diagonal.

To better understand the range of possible behaviors

of autocorrelation, we can go a step further. In particu-

lar, we employ the general spectral decomposition of T τ

derived in Ref. [55] for nonnormal and potentially non-

diagonalizable operators:

T τ =
[ν0−1∑
m=0

δτ,mT0,m

]
+
∑

λ∈ΛT \{0}

νλ−1∑
m=0

(
τ

m

)
λτ−mTλ,m,

(B2)

where
(
τ
m

)
is the generalized binomial coefficient:(

τ

m

)
=

1

m!

m∏
n=1

(τ − n+ 1) ,

with
(
τ
0

)
= 1. As briefly summarized in Sec. II D, ΛT is

the set of T ’s eigenvalues while Tλ is the spectral pro-

jection operator associated with the eigenvalue λ. Re-

call that νλ is the index of the eigenvalue λ, i.e., the

size of the largest Jordan block associated with λ, and

Tλ,m = Tλ(T−λI)m. Substituting Eq. (B2) into Eq. (B1)

yields:

γ(τ) =
[ν0−1∑
m=1

δτ,m 〈π|ΩT0,m Ω |1〉
]

+
∑

λ∈ΛT \{0}

νλ−1∑
m=0

(
τ

m

)
λτ−m 〈π|ΩTλ,m Ω |1〉 ,

for τ > 0.

It is significant that the zero eigenvalue contributes a

qualitatively distinct ephemeral behavior to the autocor-

relation while |τ | < ν0. All other eigenmodes contribute

products of polynomials times decaying exponentials in

τ . When T is diagonalizable, the autocorrelation is sim-

ply a sum of decaying exponentials.

Appendix C: Analytical power spectra

The following derives both the continuous and dis-

crete part of the power spectrum for HMM-generated

processes. The development parallels that in Ref. [56], al-

though that derivation was restricted to the special case

of diffraction patterns from Mealy (i.e., edge-emitting)

HMMs with countable alphabets. In contrast, the follow-

ing derives analytical expressions for the power spectrum

of any stochastic process generated by an HMM. No-

tably, it also allows uncountably infinite alphabets. Also,

it is developed for Moore (i.e., state-emitting) HMMs—

although Mealy and Moore HMMs are class-equivalent

and can be easily transformed from one to the other.
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1. Diffuse Spectra

Recall Eq. (3):

P (ω) = lim
N→∞

1
N

N∑
τ=−N

(
N − |τ |

)
γ(τ)e−iωτ ,

and Eq. (4)’s explicit expression for the correlation func-

tion:

γ(τ) =


〈π|ΩT |τ | Ω |1〉 if τ ≤ 1〈
|x|2
〉

if τ = 0

〈π|ΩT |τ | Ω |1〉 if τ ≥ 1

.

From these we can rewrite the power spectrum directly

in terms of the generating HMM’s transition matrix:

P (ω) =
〈
|x|2
〉
+

lim
N→∞

2

N
Re

N∑
τ=1

(
N − τ

)
〈π|ΩT τ Ω |1〉 e−iωτ

=
〈
|x|2
〉
+

lim
N→∞

2

N
Re 〈π|Ω

( N∑
τ=1

(
N − τ

)
T τe−iωτ

)
Ω |1〉 .

(C1)

We used the fact that z + z = 2Re(z) for any z ∈ C.

For convenience, we introduce the variable z ≡ e−iω. We

then note that the summation splits:

N∑
τ=1

(
N − τ

)
T τe−iωτ = N

N∑
τ=1

(zT )τ −
N∑
τ=1

τ(zT )τ .

For positive integer N , it is always true that:

(I − zT )

N∑
τ=1

(zT )τ = zT − zN+1TN+1 ,

and:

(I − zT )

N∑
τ=1

τ(zT )τ = −NzN+1TN+1 +

N∑
τ=1

(zT )τ .

Hence, whenever I−zT is invertible (i.e., whenever eiω /∈
ΛT ), we have:

N∑
τ=1

(zT )τ = (I − zT )−1
(
zT − zN+1TN+1

)
,

and:

N∑
τ=1

τ(zT )τ = (I − zT )−1
(
−NzN+1TN+1 + (I − zT )−1

(
zT − zN+1TN+1

))
.

Together, this yields:

N∑
τ=1

(
N − τ

)
T τe−iωτ = N

N∑
τ=1

(zT )τ −
N∑
τ=1

τ(zT )τ

= N(I − zT )−1
(
zT − zN+1TN+1 + zN+1TN+1

)
− (I − zT )−2

(
zT − zN+1TN+1

)
= NT (z−1I − T )−1 − (I − zT )−2

(
zT − zN+1TN+1

)
.

Noting that (z−1I − T )−1 = (eiωI − T )−1, this implies that the continuous (i.e., diffuse) part of the power spectrum

becomes:

Pc(ω) =
〈
|x|2
〉

+ lim
N→∞

2

N
Re 〈π|Ω

( N∑
τ=1

(
N − τ

)
T τe−iωτ

)
Ω |1〉

=
〈
|x|2
〉

+ lim
N→∞

2

N
Re 〈π|Ω

(
NT (z−1I − T )−1 − (I − zT )−2

(
zT − zN+1TN+1

))
Ω |1〉

=
〈
|x|2
〉

+ 2 Re 〈π|ΩT (z−1I − T )−1 Ω |1〉 − lim
N→∞

2

N
Re 〈π|Ω (I − zT )−2

(
zT − zN+1TN+1

)
Ω |1〉 (C2)

=
〈
|x|2
〉

+ 2 Re 〈π|ΩT (eiωI − T )−1 Ω |1〉 . (C3)
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Equation (C3) is the principle result, yielding the contin-

uous part of the power spectrum in closed form. However,

it is also worth noting that Eq. (C2) (without theN →∞
limit yet being taken) provides the exact result for the

expected periodogram from finite-length N samples.

2. Discrete Spectra

The transition dynamic’s eigenvalues Λρ(T ) =
{
λ ∈

ΛT : |λ| = 1
}

on the unit circle are responsible for a

power spectrum’s Dirac δ-functions. In the physical con-

text of diffraction patterns, these δ-functions are the fa-

miliar Bragg peaks. For finite length-N samples, eigen-

values on the unit circle give rise to Dirichlet kernels. As

N →∞, the analysis simplifies since the Dirichlet kernels

converge to δ-functions.

The following derives the exact form of the δ-function

contributions, showing how their presence and integrated

magnitude can be calculated directly from the stochastic

transition dynamic. Recall that the spectral projection

operator Tλ,0 associated with the eigenvalue λ can be

defined as the residue of (zI − T )−1 as z → λ:

Tλ,0 = 1
2πi

∮
Cλ

(
zI − T

)−1
dz .

The spectral companion operators are:

Tλ,m = Tλ,0(T − λI)m ,

with the useful property that Tλ,mTζ,n = δλ,ζTλ,m+n and

Tλ,m = 0 for m ≥ νλ. The index νλ of the eigenvalue λ

is the size of the largest Jordan block associated with λ.

The Perron-Frobenius theorem guarantees that all

eigenvalues on the unit circle have an index of one: i.e.,

νλ = 1 for all λ ∈ Λρ(T ). This means that the algebraic

and geometric multiplicities of these eigenvalues coincide

and they are all associated with diagonalizable subspaces.

Taking advantage of the index-one nature of the eigen-

values on the unit circle, and using the shorthand Tλ ≡
Tλ,0 for the spectral projection operators, we define:

Θ ≡
∑

λ∈Λρ(T )

λTλ

and

F ≡ T −Θ .

We then consider how the spectral decomposition of T τ

splits into contributions from these two independent com-

ponents: From Ref. [55], and employing the simplifying

notation that 0τ−m = δτ−m,0, we find:

T τ =
∑
λ∈ΛT

νλ−1∑
m=0

λτ−m
(
τ

m

)
Tλ,m

=
( ∑
λ∈Λρ(T )

λτTλ

)
+
( ∑
λ∈ΛT \Λρ(T )

νλ−1∑
m=0

λτ−m
(
τ

m

)
Tλ,m

)
= Θτ + F τ ,

where
(
τ
m

)
= 1

m!

∏m
n=1(τ −n+ 1) is the generalized bino-

mial coefficient.

As the sequence length N → ∞, the summation over

τ in Eq. (C1) divided by the sequence length becomes:

lim
N→∞

N∑
τ=1

N − τ
N

T τe−iωτ

=

∞∑
τ=1

T τe−iωτ

=
( ∞∑
τ=1

Θτe−iωτ
)

+
( ∞∑
τ=1

F τe−iωτ
)
. (C4)

In Eq. (C4), only the summation involving Θ is capable

of contributing δ-functions. Expanding that sum yields:

∞∑
τ=1

Θτe−iωτ

=
∑

λ∈Λρ(T )

Tλ

∞∑
τ=1

(λe−iω)τ

=
∑

λ∈Λρ(T )

Tλ

(
−1 +

∞∑
τ=0

ei(ωλ−ω)τ
)

=
∑

λ∈Λρ(T )

Tλ

( −1

1− ei(ω−ωλ)
+

∞∑
k=−∞

π δ(ω − ωλ + 2πk)
)
,

(C5)

where ωλ is related to λ by λ = eiωλ . The last line is

obtained using well-known properties of the discrete-time

Fourier transform [77].

From Eqs. (C1), (C4), and (C5), we find that the po-

tential δ-function at ωλ (and its 2π-periodic offsets) has

integrated magnitude:
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∆λ ≡ lim
ε→0

∫ ωλ+ε

ωλ−ε
P (ω) dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε
2 Re 〈π|Ω

(
lim
N→∞

N∑
τ=1

N − τ
N

T τe−iωτ
)

Ω |1〉 dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε
2 Re 〈π|Ω

( ∞∑
τ=1

Θτe−iωτ
)

Ω |1〉 dω

= lim
ε→0

∫ ωλ+ε

ωλ−ε
2 Re 〈π|Ω

∑
ζ∈Λρ(T )

Tζ

( −1

1− ei(ω−ωζ)
+

∞∑
k=−∞

π δ(ω − ωζ + 2πk)
)

Ω |1〉 dω

= 2πRe 〈π|ΩTλ Ω |1〉 lim
ε→0

∫ ωλ+ε

ωλ−ε
δ(ω − ωλ) dω

= 2πRe 〈π|ΩTλ Ω |1〉 . (C6)

Finally, from Eq. (C6) and the 2π-periodicity of the

power spectrum, we obtain the full discrete (i.e., δ-

function) contribution to the power spectrum:

Pd(ω) =
∑

λ∈Λρ(T )

2πRe 〈π|ΩTλΩ |1〉
∞∑

k=−∞

δ(ω − ωλ + 2πk).

(C7)

Appendix D: Cross-correlation and spectral densities

Cross-correlation and cross-spectral densities are often

important in applications [78, 79]. These may be espe-

cially useful when analyzing input–output processes, to

characterize the correlation of input and output, or to

characterize the correlation between different aspects of

the output. Our results can be easily extended to address

these quantities.

Using an HMM that describes the joint stochastic pro-

cess of two observables (x, y) ∈ A, it is straightforward to

generalize our developments to cross-correlation γXY (τ):

γXY (τ) = 〈XtYt+τ 〉

(rather than necessarily autocorrelation γ = γXX) and

the associated cross-spectral densities PXY (ω):

PXY (ω) = lim
N→∞

1
N

〈( N∑
t=1

Xte
iωt
)( N∑

t=1

Yte
−iωt

)〉

= lim
N→∞

1
N

N∑
τ=−N

(
N − |τ |

)
γXY (τ)e−iωτ

of distinct observables x ∈ X and y ∈ Y. The indi-

vidual stochastic processes for each observable by itself

can simply be obtained by marginalizing over the other

observable.

Explicitly, the expressions take the form:

γXY (τ) =


〈π|ΩY T |τ | ΩX |1〉 if τ ≤ 1〈
XtYt

〉
if τ = 0

〈π|ΩX T |τ | ΩY |1〉 if τ ≥ 1

,

where:

ΩY =
∑
s∈S
〈y〉p(X,Y |s) |s〉 〈s| ,

and: 〈
XtYt

〉
=
∑
s∈S
〈π|s〉 〈xy〉p(X,Y |s) .

Moreover, the continuous part of the cross-spectral den-

sity is given by:

PXY c(ω) =
〈
XtYt

〉
+ 〈π|ΩX T

(
eiωI − T

)−1
ΩY |1〉

+ 〈π|ΩY T
(
e−iωI − T

)−1
ΩX |1〉 .

And so on.

Appendix E: Continuous-time processes

For simplicity and generality, the main development

addressed discrete-time dynamics. (Indeed, discrete-time

dynamics are, in a sense, more general than continuous-

time dynamics, while continuous-time dynamics can be

obtained as the limiting behavior of discrete-time dy-

namics.) However, correlation and power spectra are of-

ten applied to continuous-time processes. And so, the
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continuous-time setting is often of direct interest. The

following makes a more explicit connection to continuous-

time processes.

First, we note that a continuous-time process is typi-

cally observed only intermittently at some sampling fre-

quency f0. The duration τ0 = 1/f0 between obser-

vations thus induces a discrete-time transition opera-

tor Tτ0 between states in that time interval. In such

cases, the discrete-time transition matrix is related to

the continuous-time generator G of time evolution by

Tτ0 = eτ0G. Accordingly, the continuous-time genera-

tor can be obtained from the discrete-time dynamic as:

G = f0 lnTτ0 [80]. The relationship between discrete and

continuous time is the same relationship that yields the

well-known conformal mapping of the interior of the unit

circle in the complex plane to the left-half of the complex

plane, which also relates z-transforms and Laplace trans-

forms. Of most direct relevance here, the eigenvalues of

Tτ0 and G are simply related by ΛTτ0 =
⋃
ζ∈ΛG

{eτ0ζ}.
Continuous-time representations can be analyzed di-

rectly. Consider the generic case of a continuous-time

dynamic over a hidden state-space, with two types of ex-

ample in mind:

1. The system evolves through a continuous state-

space and describes both typical linear systems and

typical nonlinear systems, including chaotic dy-

namical systems. Then G is the generator that in-

duces the finite-time Ruelle–Frobenius–Perron op-

erator.

2. Or, observations are functions of a finite state space

with continuous-time transition rates. For exam-

ple, we observe current flowing or not, depending

on the conformation of a biomolecular ion channel.

These different settings all have the same expression for

the autocorrelation and power spectrum. We now give

them in closed-form.

For τ > 0, we find the autocorrelation to be:

γ(τ) = 〈π|Ω e|τ |G Ω |1〉 .

From this, we derive the continuous part of the power

spectrum Pc(ω) with respect to angular frequency ω =

2πf ∈ R, with the result that:

Pc(ω) = 2 Re 〈π|Ω
(
iωI −G

)−1
Ω |1〉 .

Appealing to the resolvent’s spectral expansion again al-

lows us to better understand the possible shapes of their

power spectrum:

Pc(ω) =
∑
λ∈ΛG

νλ−1∑
m=0

2 Re
〈π|ΩGλ,mΩ |1〉

(iω − λ)m+1
. (E1)

Since all of the frequency-dependence is isolated in the

denominator and since 〈π|ΩGλ,mΩ |1〉 is a frequency-

independent complex-valued constant, peaks in Pc(ω)

arise only via contributions of the form Re c
(iω−λ)n for

c ∈ C, ω ∈ R, λ ∈ ΛG, and n ∈ Z+.

This provides a rich starting point for applications and

further theoretical investigation. For example, Eq. (E1)

helps explain the shapes of power spectra of nonlinear dy-

namical systems, as have appeared, e.g., in Ref. [10]. Fur-

thermore, it suggests an approach to the inverse problem

of inferring the spectrum of the hidden linear dynamic

via power spectra.

Appendix F: Pairwise mutual information example

For the process generated by the HMM given in Fig. 6,

taking the limit of ever-narrower Gaussians in the state-

conditioned PDFs, so that we work with pairs of δ-

functions, then the process becomes Markovian and the

pairwise mutual information can be calculated exactly:

I(X0;Xτ ) = H(X0)−H(Xτ |X0)

= H(X0,S0)−H(Xτ ,Sτ |X0,S0)

= H(S0) + H(X0|S0)−H(Xτ ,Sτ |S0)

= H(S0) + H(X0|S0)−H(Sτ |S0)−H(Xτ |Sτ )

= H(S0)−H(Sτ |S0)

= H(π)−
∑
s∈S

π(s)H(Sτ |S0 = s)

= H(π)−
∑
s∈S

π(s)H
(
〈s|T τ

)
= H(π) +

∑
s,s′∈S

π(s) 〈s|T τ |s′〉 log 〈s|T τ |s′〉 , (F1)

where π = [1, 1− p, 1− p, 1− p]/(4− 3p).

Continuing, 〈s|T τ |s′〉 can be calculated via T ’s spec-

tral decomposition. Since T is diagonalizable and nonde-

generate for all values of the transition parameter p, we

find:

〈s|T τ |s′〉 =
∑
λ∈ΛT

λτ 〈s|Tλ |s′〉 .

Moreover:

〈s|T1 |s′〉 = 〈s|1〉 〈π|s′〉
= π(s′) ,

so 〈s|T τ |s′〉 simplifies somewhat to:

〈s|T τ |s′〉 = π(s′) +
∑

λ∈ΛT \{1}

λτ 〈s|Tλ |s′〉
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In fact, Eq. (F1) is valid for any set of four PDFs we

could have chosen for the example HMM’s states, as long

as the PDFs all have mutually exclusive support for the

observable output, since this then makes the hidden state

a function of the instantaneous observable.

Using the linear algebra of Eq. (F1), we calculate the

pairwise mutual information and POPI spectrum numer-

ically. The pairwise mutual informations are shown for

p ∈ {0.1, 0.5, 0.9} in Fig. 8. Reasonably, the loss of in-

formation is monotonic over temporal distance. More

surprisingly, the decay of pairwise mutual information is

very-nearly exponential as made clear in the inset loga-

rithmic plot.

The POPI spectrum, which can be rewritten for a

wide-sense stationary process as:

I(ω) = lim
N→∞

2

N∑
τ=1

cos(ωτ) I(X0;Xτ ) ,

is shown for these same p-values in Fig. 9. The POPI

spectrum was approximated by truncating the summa-

tion of modulated pairwise mutual informations at a suf-

ficiently large separation of τ = 2000.

τ

I(
X

0
;X

τ
)

lo
g
2
I(
X

0
;X

τ
)

FIG. 8. Nontrivial pairwise mutual information for the pro-
cess from Fig. 6 with a flat power spectrum.

Appendix G: Measurement Feedback Models

Let’s now turn to describe an alternative set of

possibly-input-dependent models, which may be more

convenient for describing certain phenomena. For exam-

ple, they are more natural for describing measured quan-

tum systems. They also reduce to the canonical models

used in computational mechanics [62, 64] after a number

of simplifying assumptions.

ω

I(
ω
)

FIG. 9. Power-of-Pairwise-Information (POPI) spectrum for
the process from Fig. 6.

After introducing them, we show that Thm. 2 applies

to them as well as to the other model types discussed

in the main body. In this way, we extend the theory of

fraudulent white noise to these models as well.

The models we consider generate observable behav-

ior during transitions between states, rather than in the

states themselves. This is a natural approach in the

quantum setting since measurement feedback changes the

state of the quantum system with dependence on the

measurement outcome. For projective measurements,

measurement fully defines the new state, but for the

much more general class of quantum measurements de-

scribed by positive operator valued measures (POVMs),

the measurement outcome plays a more nuanced role in

updating the state. More generally, edge-emitting models

can be natural descriptors of complex systems with con-

trol and feedback. And, fittingly, edge-emitting models

have been used elsewhere as well. For instance, they ap-

pear extensively in computer science and computational

mechanics—the latter of which spans the study of nat-

ural computation in physical systems and the minimal

resources required for prediction.

1. Measurement Feedback Models

Here we introduce Measurement Feedback Models

(MFMs) MMFM(~m), which are input-dependent gener-

ators of an observable output process {Xt}t∈T . As be-

fore, the lengths and alphabets of the inputs and outputs

need not be commensurate. The output is generated via

MMFM(~m) =
(
S,A, {T (x)

t (~m)}t∈T ,x∈A,µ1

)
, where S is

the countable set of hidden states, A is the alphabet of

observables, and µ1 is the initial distribution over hid-
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den states. For a given t and x, the matrix elements

〈s|T (x)
t (~m) |s′〉 provide the probability density of transi-

tioning from state s to s′ while emitting the observable

x; that is:

〈s|T (x)
t (~m) |s′〉 = p~m(Xt+1 = x,St+1 = s′|St = s) .

where p~m is the probability density (induced by ~m) of the

labeled transition. The symbol-labeled transition matri-

ces {T (x)
t (~m)}t∈T ,x∈A yield the net state-to-state tran-

sition probabilities when marginalizing over all possible

observations: ∫
x∈A

T
(x)
t (~m) dx = Tt(~m)

where 〈s|Tt(~m) |s′〉 = Pr~m(St+1 = s′|St = s).
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FIG. 10. Alternative Bayesian networks for measurement
feedback models.

Figure 10 displays two different (but equally valid)

Bayesian networks for the decomposition of conditional

dependencies among observables and latent states of a

MFM. Each decomposition suggests a preferred interpre-

tation. The decomposition of the top panel (a) allows

identifying a PDF with each directed edge between la-

tent states of a measurement feedback modelMMFM(~m).

Accordingly, panel (a) suggests that the transited edge

determines the probability of the observable. Whereas,

the decomposition of the bottom panel (b) suggests that

the observation determines the probability of the latent

state transition. The fact that both decompositions are

valid insists, perhaps surprisingly, that the interpreta-

tions have no physical distinction. The interpretation of

causality is ambiguous although each calculus of condi-

tional dependencies is reliable.

The measurement feedback models may initially ap-

pear rather restrictive when considering the possibili-

ties of, say, measuring a quantum system in different

bases and with different instruments. However, in prin-

ciple, the different measurement choices are incorpo-

rated through the different transformations Tt(~m), both

through any pre-determined measurement choices in ~m

and through dynamic-determination via feedback of the

measurement outcomes themselves.

Reference [81]’s process tensors can also be used to

model classical observable processes generated by gen-

eral quantum dynamics. Although unnecessarily elab-

orate for most purposes, process tensors are appealing

since they rigorously incorporate general quantum mea-

surements. Ultimately though, they, together with a set

of “experiments” ~m, could be mapped onto the alterna-

tive rather-simpler models proposed here, if the goal is

only to model the observable classical output process.

2. Theorem 2 for Measurement Feedback

The MFM’s average-observation matrices are:

Ωt =

∫
x∈A

xT
(x)
t (~m) dx .

Notably, they are no longer diagonal in the hidden-state

basis. Rather, they assign to each matrix element the av-

erage observation associated with that transition, multi-

plied by the probability of the edge being traversed when

conditioned on occupying the outgoing state. That is:

〈s|Ωt |s′〉 =

∫
x∈A

xp~m(St+1 = s′, Xt = x|St = s) dx

= Pr
~m

(St+1 = s′|St = s)

×
∫
x∈A

xp~m(Xt = x|St = s,St+1 = s′) dx

= 〈s|Tt(~m) |s′〉 〈x〉p~m(Xt|St=s,St+1=s′) . (G1)

If the process is wide-sense stationary, then for τ > 0:

γ(τ) = 〈µt|Ωt Tt+1:t+τ (~m) Ωt+τ |1〉 , (G2)

which must be t-independent.

For input-independent processes with time-

independent transition dynamics—where T
(x)
t (~m) = T (x)

and µ1 = π—this simplifies to the autonomous Mealy-

type HMMs with continuous PDFs for the observable

associated with each hidden-state-to-state transition.
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The autocorrelation function (for τ ≥ 1) then reduces

to:

γ(τ) = 〈π|ΩT τ−1 Ω|1〉 ,

while the power spectrum’s continuous part is:

Pc(ω) =
〈
|x|2
〉

+ 2 Re 〈π|Ω
(
eiωI − T

)−1
Ω |1〉 . (G3)

Note that this expression lacks T , the transition dynamic,

when compared to Eq. (6). This follows since Ω induces

a transition for these Mealy-type HMMs, reducing the

number of subsequent transitions by one.

Let’s return to the general setting for autocorre-

lation given by Eq. (G2) for processes generated by

possibly-input-dependent models. Developing the ana-

log of Thm. 2 requires recognizing that the average ob-

servation on each edge matters, rather than previously,

where the average observation from each state mattered.

For MFMs, constant autocorrelation and flat power spec-

trum can again be guaranteed by a rather weak condition:

The average output of the current edge does not by itself

influence the average output of a future edge.

More explicitly, consider the set of all edges:

E(t) ≡
{

(s, s′) ∈ S × S : 〈s|Tt(~m) |s′〉 6= 0
}
,

which are transitions between hidden states that can be

traversed at time t with positive probability. Since out-

puts occur during edge transitions, we redefine Ξ as the

set of average outputs exhibited by the edges. Equa-

tion (G1) indicates that the desired definition is:

Ξ ≡
⋃
t∈T

⋃
(s,s′)∈E(t)

{ 〈s|Ωt |s′〉
〈s|Tt(~m) |s′〉

}
.

Furthermore, we define Et to be the random variable

for the edge traversed at time t; i.e., Et is the joint random

variable: Et = (St,St+1). And we define E(t)
ξ ⊂ E(t) as

the set of edges (at time t) with average output ξ ∈ Ξ:

E(t)
ξ ≡

{
(s, s′) ∈ E(t) : 〈s|Ωt|s′〉

〈s|Tt(~m)|s′〉 = ξ
}
. (G4)

With these in hand, we can state the theorem analogous

to Thm. 2.

Theorem 3. Let {Xt}t be a stochastic process generated

by any measurement feedback model MMFM(~m), includ-

ing autonomous Mealy-type HMMs and input-dependent

generators. Such processes have constant autocorrelation

and a flat power spectrum if:

Pr(Et+τ ∈ E(t+τ)
ξ′ |Et ∈ E(t)

ξ ) = Pr(Et+τ ∈ E(t+τ)
ξ′ )

and there exists a constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(Et ∈ E(t)
ξ ) = c ,

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ.

Proof. Starting from Eq. (G2), we find the autocorrela-

tion for all such processes by calculating:

γ(τ) = 〈µt|Ωt Tt+1:t+τ (~m) Ωt+τ |1〉
=

∑
s,s′,s′′,s′′′∈S

〈µt |s〉 〈s|Ωt |s′〉 〈s′|Tt+1:t+τ (~m) |s′′〉 〈s′′|Ωt+τ |s′′′〉 〈s′′′|1〉

=
∑

(s,s′)∈E(t)

(s′,s′′′)∈E(t+τ)

(
〈s|Ωt|s′〉
〈s|Tt(~m)|s′〉

)(
〈s′′|Ωt+τ |s′′′〉
〈s′′|Tt+τ (~m)|s′′′〉

)
〈µt |s〉 〈s|Tt(~m) |s′〉 〈s′|Tt+1:t+τ (~m) |s′′〉 〈s′′|Tt+τ (~m) |s′′′〉 〈s′′′|1〉

=
∑

(s,s′)∈E(t)

(s′,s′′′)∈E(t+τ)

( 〈s|Ωt |s′〉
〈s|Tt(~m) |s′〉

)( 〈s′′|Ωt+τ |s′′′〉
〈s′′|Tt+τ (~m) |s′′′〉

)
Pr(St = s,St+1 = s′,St+τ = s′′,St+τ+1 = s′′′)

=
∑

(s,s′)∈E(t)

(s′,s′′′)∈E(t+τ)

( 〈s|Ωt |s′〉
〈s|Tt(~m) |s′〉

)( 〈s′′|Ωt+τ |s′′′〉
〈s′′|Tt+τ (~m) |s′′′〉

)
Pr
(
Et = (s, s′), Et+τ = (s′′, s′′′)

)
=
∑
ξ,ξ′∈Ξ

ξξ′ Pr
(
Et ∈ E(t)

ξ , Et+τ ∈ E(t+τ)
ξ′

)
=
∑
ξ∈Ξ

ξ Pr
(
Et ∈ E(t)

ξ

)[∑
ξ′∈Ξ

ξ′ Pr
(
Et+τ ∈ E(t+τ)

ξ′

∣∣Et ∈ E(t)
ξ

)]
.
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Now, suppose that:

Pr(Et+τ ∈ E(t+τ)
ξ′ |Et ∈ E(t)

ξ ) = Pr(Et+τ ∈ E(t+τ)
ξ′ )

and there exists some constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(Et ∈ E(t)
ξ ) = c ,

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ. Then, we

find:

γ(τ) =
∑
ξ∈Ξ

ξ Pr
(
Et ∈ E(t)

ξ

)
×
[∑
ξ′∈Ξ

ξ′ Pr
(
Et+τ ∈ E(t+τ)

ξ′

∣∣Et ∈ E(t)
ξ

)]
=
(∑
ξ∈Ξ

ξ Pr
(
Et ∈ E(t)

ξ

))(∑
ξ′∈Ξ

ξ′ Pr
(
Et+τ ∈ E(t+τ)

ξ′

))
= |c|2 ,

which is a constant for all separations τ > 0, t ∈ T ,

and ξ, ξ′ ∈ Ξ. Finally, a process with stationary low-

order statistics and a flat autocorrelation has a flat power

spectrum, as an immediate consequence of Eq. (3). This

proves Thm. 3.

For the special case of an autonomous HMM that

generates observations during hidden-state-to-state tran-

sitions, this condition simplifies significantly. Specifi-

cally, Ωt → Ω and Tt(~m) → T become t-independent,

which furthermore means that E(t)
ξ → Eξ becomes t-

independent. For autonomous wide-sense stationary pro-

cesses, we have Pr(Et) = Pr(Et+τ ) for all separations

τ > 0 and for all t ∈ T . It then trivially follows that∑
ξ∈Ξ ξ Pr(Et ∈ Eξ) is constant for all t ∈ T . So, the

only requirement for an autonomous edge-emitting HMM

to produce fraudulent white noise is that it satisfies the

condition:

Pr(Et+τ ∈ Eξ′ |Et ∈ Eξ) = Pr(Et+τ ∈ Eξ′)

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ.

Theorem 3 provides a very general condition for flat

power spectra from measurement feedback models.

Appendix H: Theorem 2 for time-dependent PDFs

Moreover, Thm. 3 suggests how Thm. 2 general-

izes even further to possibly-input-dependent hidden-

state models with time-dependent PDFs associated with

each state. We will call these morphing hidden models

(MHMs)MMHM(~m). MHMs include, as special cases, all

models (Moore-type HMMs and input-dependent gener-

ators) considered in the main text. We employ methods

similar to those used in § G 2.

A MHM is a possibly-input-dependent generator of an

observable output process {Xt}t∈T . The output is gen-

erated viaMMHM(~m) =
(
S,A, {Pt(~m)}t, {Tt(~m)}t,µ1

)
.

Here, again, the lengths and alphabets of the inputs and

outputs need not be commensurate. That is, the internal

states S and output alphabet A are static. However, the

hidden-state-to-state transition matrix Tt(~m)—as well as

the state-dependent PDFs Pt(~m)—are time-dependent

such that their values at time t are potentially a func-

tion of the full input vector ~m. More specifically, Pt(~m)

is the set of hidden-state-dependent probability density

functions p~m(Xt|s) at time t. As before, µ1 specifies the

initial distribution over hidden states: S1 ∼ µ1.

For such cases, set:

Ωt =
∑
s∈S
〈x〉p~m(Xt|s) |s〉 〈s| .

The Ωt matrix is time-dependent with the state-

conditioned expected outputs along its diagonal.

Since the average state output now varies in time, we

must generalize Ξ from its more restricted use in the main

text. Specifically, redefine Ξ as the set of state-dependent

average outputs generated throughout time:

Ξ ≡
⋃
t∈T

⋃
s∈S

{
〈x〉p~m(Xt|s)

}
.

Furthermore, we define S(t)
ξ ⊂ S as the set of states (at

time t) with average output ξ ∈ Ξ:

S(t)
ξ ≡

{
s ∈ S : 〈x〉p~m(Xt|s) = ξ

}
.

Using these, we can state the following theorem, which

generalizes Thm. 2.

Theorem 4. Let {Xt}t be a stochastic process gener-

ated by any morphing hidden model MMHM(~m). Such

processes have constant autocorrelation and a flat power

spectrum if:

Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ ) = Pr(St+τ ∈ S(t+τ)
ξ′ )

and there exists a constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ ) = c ,

for all separations τ > 0, t ∈ T , and ξ, ξ′ ∈ Ξ.

Proof. For the processes under consideration, we find

the linear pairwise correlation (for τ ≥ 1) to be:
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〈XtXt+τ 〉p~m(Xt,Xt+τ ) = 〈µt|Ωt Tt:t+τ (~m) Ωt+τ |1〉
=
∑
s,s′∈S

〈µt |s〉 〈s|Ωt |s〉 〈s|Tt:t+τ (~m) |s′〉 〈s′|Ωt+τ |s′〉 〈s′|1〉

=
∑
ξ,ξ′∈Ξ

ξξ′
∑
s∈S(t)

ξ

s′∈S(t+τ)

ξ′

Pr
~m

(St = s,St+τ = s′)

=
∑
ξ,ξ′∈Ξ

ξξ′ Pr(St ∈ S(t)
ξ ,St+τ ∈ S(t+τ)

ξ′ )

=
∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ )
(∑
ξ′∈Ξ

ξ′ Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ )
)
. (H1)

Now, suppose that:

Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ ) = Pr(St+τ ∈ S(t+τ)
ξ′ )

and there exists some constant c ∈ C such that:∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ ) = c

for all separations τ > 0, for all t ∈ T , and for all ξ, ξ′ ∈
Ξ. Then, we find:

〈XtXt+τ 〉p~m(Xt,Xt+τ )

=
∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ )
(∑
ξ′∈Ξ

ξ′ Pr(St+τ ∈ S(t+τ)
ξ′ |St ∈ S(t)

ξ )
)

=
(∑
ξ∈Ξ

ξ Pr(St ∈ S(t)
ξ )
)(∑

ξ′∈Ξ

ξ′ Pr(St+τ ∈ S(t+τ)
ξ′ )

)
= |c|2 .

is constant for all t ∈ T , and ∀ξ, ξ′ ∈ Ξ.

That 〈XtXt+τ 〉p~m(Xt,Xt+τ ) is constant verifies that the

autocorrelation does not depend on the overall time shift

of the process, so 〈XtXt+τ 〉p~m(Xt,Xt+τ ) = γ(τ). More-

over, γ(τ) is constant. Finally, a process with constant

autocorrelation has a flat power spectrum, as an imme-

diate consequence of Eq. (3). This proves Thm. 4.
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