
UC Davis
UC Davis Previously Published Works

Title
Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure.

Permalink
https://escholarship.org/uc/item/27g3v15h

Journal
CNS & neurological disorders drug targets, 15(5)

ISSN
1871-5273

Authors
Wong, Sarah
Giulivi, Cecilia

Publication Date
2016

DOI
10.2174/1871527315666160413122624
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27g3v15h
https://escholarship.org
http://www.cdlib.org/


Send Orders for Reprints to reprints@benthamscience.ae 

 CNS & Neurological Disorders - Drug Targets, 2016, 15, 000-000 1 

 1871-5273/16 $58.00+.00 © 2016 Bentham Science Publishers  

Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure 

Sarah Wong1 and Cecilia Giulivi1,2* 

1Department of Molecular Biosciences, School of Veterinary Medicine; 
2Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California 
Davis, CA 95616 

Abstract: Background: Autism spectrum disorders (ASD) are a growing concern with more than 1 in 
every 68 children affected in the United States by age 8. Limited scientific advances have been made 
regarding the etiology of autism, with general agreement that both genetic and environmental factors 
contribute to this disorder.  

Objective: To explore the link between exposure to PBDE, mitochondrial dysfunction and autism risk. 

Results: Perinatal exposures to PBDEs may contribute to the etiology or morbidity of ASD including mitochondrial dys-
function based on (i) their increased environmental abundance and human exposures, (ii) their activity towards implicated 
in neuronal development and synaptic plasticity including mitochondria, and (iii) their bioaccumulation in mitochondria. 

Conclusions: In this review, we propose that PBDE, and possibly other environmental exposures, during child develop-
ment can induce or compound mitochondrial dysfunction, which in conjunction with a dysregulated antioxidant response, 
increase a child’s susceptibility of autism. 

Keywords: Antioxidant response, autism risk, mitochondrial dysfunction, neuronal development, oxidative stress, PBDE  
exposure. 

INTRODUCTION 

 Autism spectrum disorders (ASD) are a growing concern, 
with more than 1 in every 68 children affected in the United 
States by the age of eight years. Complex interactions be-
tween genes and environmental factors are thought to con-
tribute to ASD risk. Based on a study on identical twins, 
exposure to shared environmental factors seems to play a 
more critical role than genetic heritability in autism [1]. Evi-
dence is accumulating for a potentially large role in ASD 
etiology and/or morbidity for the early in-utero environment, 
including environmental exposures. Among these, polybro-
minated biphenyl ethers (PBDE) exposure is a potential risk 
factor based on (i) their increased environmental abundance 
and human exposures [2], (ii) their activity towards targets 
implicated in neuronal development and synaptic plasticity 
[3], including mitochondria [4-16], (iii) their higher accumu-
lation in children than adults living in the same quarters [17], 
and (iv) the demonstrated association between PBDE perina-
tal exposure and developmental/delayed neurotoxicity [3, 18, 
19]. This study explores the potential detrimental role of 
PBDE exposures contributing to mitochondrial dysfunction 
and autism risk. 
 

*Address correspondence to this author at the University of California, Dept 
Molecular Biosciences, 1089 Veterinary Medicine Dr., 3009 VetMed3B, 
Davis, CA 95616; Tel: (530) 754-8603; E-mail: cgiulivi@ucdavis.edu 
 

MITOCHONDRIA AND AUTISM 

 Given the critical role of mitochondria in bioenergetics 
[20-24] and immunity [25], it is not surprising that mitochon-
drial dysfunction could contribute to the etiology and/or se-
verity of neurological disorders including autism [26-28]. 
One of the most prevalent metabolic disorders associated 
with ASD is mitochondrial dysfunction. A meta-analysis 
[20] showed that 5% of children with ASD met the criteria 
for a mitochondrial respiratory chain disorder (MRCD) as 
judged by the modified Walker criterion [29]. This well-
established approach relies on significant decreases in mito-
chondrial electron transport Complex activities (e.g., 30% or 
less of control values in cultured cells), clinical outcomes 
(e.g., learning disabilities) and/or the occurrence of known 
pathogenic mitochondrial DNA mutations [29]. When less 
stringent criteria are used, >30% of children in the general 
ASD population exhibit metabolic biomarkers representative 
of mitochondrial dysfunction [30]. A study [31] reported that 
up to 50% of children with ASD have at least one biomarker 
of mitochondrial dysfunction. Our work showed that 80% of 
children with autism with high severity scores (8 and above) 
demonstrated lower than normal electron transport chain 
function in lymphocytes when compared to neurotypical 
controls [23]. Our studies have also shown that children with 
autism are more likely to have mtDNA overreplication and 
mtDNA deletions than typically neurodeveloping children 
[23, 32], indicating that their mtDNA is more damaged as a 
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result of an imbalance between increased reactive species 
production and antioxidant responses. The higher incidence 
of high mtDNA copy number and deletions seems to reflect 
the fact that lymphocytic mitochondria from children with 
autism produced more reactive oxygen species than those 
from typically neurodeveloping children [23], and that oxi-
dative stress enhances mtDNA replication [33, 34]. Evidence 
for a compromised mitochondrial function (altered mito-
chondrial dynamics) and intracellular redox status in py-
ramidal neurons in ASD brains was provided when analyz-
ing post-mortem BA21 temporal cortex samples [35]. Fur-
thermore, a higher mtDNA copy number was also observed 
in a pilot study performed on post-mortem samples from 
brain regions of control and children with autism (Table 1). 
Frontal and temporal cortex from cases exhibited mtDNA 
over-replication compared to typically neurodeveloping chil-
dren (1.6- and 1.14-fold; p = 0.004 and 0.04; Table 1) and at 
similar ratios than those obtained with PBMC and in brain 
structures that had been implicated in autism [36, 37]. These 
data indicate that PBMC possess biomarkers of mitochon-
drial dysfunction found in brain tissues, providing strong 
rationale for launching systematic studies of mitochondrial 
dysfunction in autism using readily available PBMC. 
 
Table 1. mtDNA copy number in brain regions from control 

children and children with autism.* 

mtDNA copy number 
Cortex region 

Typically developing Autism 

Frontal 2803 ± 92 4414 ± 241* 

Temporal 3706 ± 103 4232 ± 124* 

*Samples obtained from the Autism Tissue Program brain bank were collected with a 
post-mortem interval of 24-h or less. Ages ranged from 6-15 years for both groups. 
Causes of death were multisystem organ failure, drowning, smoke inhalation, and 
gunshot. *p <0.05. 
 
 Some children with ASD have increased activities of 
certain Complexes within the mitochondrial electron trans-
port chain rather than deficits [23, 38]; however, this situa-
tion is also interpreted as a mitochondrial dysfunction given 
that the appropriate ratio of Complexes allows the correct 
oxidation of substrates for obtaining ATP. Some of the ASD 
cases with reported mitochondrial dysfunction present higher 
lactate-to-pyruvate ratios in plasma, which indicates higher 
fluxes of glucose going through glycolysis than via mito-
chondria [23, 24], and another study presented evidence of 
higher lactate in brain of a subset of subjects with autism 
[39]. The finding that not all individuals with mitochondrial 
dysfunction show high lactate-to-pyruvate ratios is not sur-
prising considering that increases in this ratio in plasma usu-
ally reflect a significant co-occurrence of a myopathy [23, 
38, 40], which may not be necessarily present in some ASD 
children. Even when a child presents a typical mitochondrial 
respiratory chain disorder, its diagnosis still constitutes a 
challenge to clinicians, especially because the clinical pres-
entation in children shows an enormous variation [41]. Fur-
ther evidence of mitochondrial dysfunction in ASD has 
demonstrated in human studies of genetic disorders associ-

ated with ASD and animal models, including fragile X dis-
orders [42-44], phosphatase and tensin homolog (PTEN) 
haploinsufficiency [45] or mutations [45], Rett syndrome 
[46-48], succinic semialdehyde dehydrogenase deficiency 
[49, 50], 15q11-q13 duplication syndrome [51, 52], Down’s 
syndrome [53, 54], among others [55, 56]. Taken together, 
these studies suggest that mitochondrial dysfunction may be 
present in a considerable number of children with ASD and, 
based on the broad phenotype of mitochondrial chain respi-
ratory disorders, that such dysfunction might be manifested 
as a spectrum of clinical outcomes.  
 Evidently the 7- to 8-fold increase in the incidence of 
autism in California from the early 1990s through the present 
[57] cannot be attributed solely to changes in diagnostic cri-
teria, the inclusion of milder cases, an earlier age at diagno-
sis or genetic causes suggesting that yet unidentified envi-
ronmental exposures could contribute to the escalating diag-
nostic risks. The etiology of mitochondrial dysfunction in 
ASD is unknown with limited evidence for a contribution 
from pathogenic mtDNA mutations [58-61]. This suggests 
that mitochondrial dysfunction in ASD may be de novo or 
acquired. In this regard, it has been proposed that ASD may 
arise from environmental triggers [1] in genetically predis-
posed subpopulations [62, 63]. This notion is supported by a 
study of dizygotic twins that estimated that the environment 
contributed more to the risk of developing autism (55%) than 
that attributed solely to genetic factors (37%) with these fac-
tors contributing about equally for the broader ASD diagnosis 
[1]. Mitochondria are central to this concept since mtDNA 
polymorphisms can result in increased disease predisposition 
[64, 65]. However, mitochondrial dysfunction can also result 
from dietary habits such as maternal folate [66, 67] and iron 
[68-70] status or environmental exposures previously impli-
cated in ASD including heavy metals [71-74], chemicals 
[75], polychlorinated biphenyls [76], pollution [77-79], pes-
ticides [80, 81] or maternal infection during pregnancy [28, 
82-89]. 
 Among these exposures, PBDEs may be viewed as suit-
able candidates to promote or enhance adverse outcomes of 
subclinical conditions based on (i) their increased environ-
mental abundance and human exposures [2], (ii) their activ-
ity towards targets implicated in neuronal development and 
synaptic plasticity [3] including mitochondria [4-16], (iii) 
their higher accumulation in children than adults living 
within the same quarters [17], (iv) the association between 
developmental/delayed neurotoxicity and perinatal exposure 
to PBDEs [3, 18, 19], and (v) the relatively high intracellular 
and mitochondrial bioaccumulation [7]. Although autism is a 
complex neurobehavioral syndrome with many risk genes 
[90-98], current data indicates that over-excitation of local 
networks is a common etiologic factor [99, 100]; however, 
the prevalence of mitochondrial dysfunction [20, 22-24, 98, 
101] and increased oxidative stress [32, 45, 101-105] ob-
served in autism may also set the basis for a disrupted net-
work, and evidenced more upon exposure to environmental 
triggers with a neurotoxic component. If perinatal PBDE expo-
sure were one of the precipitating factors in autism -in line 
with the “second-hit stress hypothesis”- the severity of this 
background would set the perinatal oxidative phosphorylation 
capacity, and thus, the relative severity of the disease at birth. 
Individuals with initially high oxidative phosphorylation 
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capacities would require multiple exposures (or a combina-
tion of triggers) to cross oxidative phosphorylation thresh-
olds and thus remain asymptomatic until late in life. Indi-
viduals starting with a lower initial capacity and requiring 
fewer exposures (or combinations) to have the same effect 
would develop symptoms early in life. This differential ef-
fect of the PBDE-induced bioenergetic decline could be fur-
ther accentuated in individuals with partial oxidative phos-
phorylation defects as reported in autism [20-24, 32, 38, 98, 
101, 105-109]. This concept is supported by the findings that 
mitochondrial dysfunction in neurons with PTEN deficiency, 
a genetic background shared by a subset of children with 
autism [27], in significantly enhanced by nanomolar concen-
trations of BDE-49, one of the least abundant PBDEs.  

GENERAL BACKGROUND ON PBDEs 

 PBDEs represent an important group of high volume 
chemicals extensively used in plastics, textiles, furniture, and 
electronic devices [110]. Global production of PBDEs has 
reached approximately 148 million lb/year [110]. PBDEs are 
used as additive flame-retardants in plastics to which they 
are not chemically bound and can thus leach from polymers 
and pervasively accumulate in the built environment and 
ecosystem [110-113]. PBDEs share structural similarity to 
the persistent non-coplanar polychlorinated biphenyls and 
have high heat stability, high lipid solubility, and low vapor 
pressure, which contribute to their environmental persistence 
and bioaccumulation [114] impacting individual- [115] and 
population-level health outcomes [116]. The extent of toxic-
ity by PBDE congeners can be dependent upon conforma-
tional differences, position and degree of halogenation and 
hydroxylation [117].  
 In contrast to the polychlorinated biphenyls, whose levels 
in environmental samples are slowly decreasing [118], 
PBDE residues in environmental media and in human tissues 
appear to be increasing [119]. Recent studies are demonstrat-
ing a world-wide increase in PBDEs’ concentrations in the 
human diet [120-137], especially in seafood and fish [120-
122, 125, 126, 130-134, 138], regardless of the cooking 
method [139], which may result in dietary exposures and 
PBDE body burdens in humans [110, 111, 131, 132]. For 
example, PBDE congeners in human breast milk from Swed-
ish women have increased exponentially over the last two 
decades [140, 141], and studies in US populations have 
demonstrated the presence of PBDEs in human breast milk, 
adipose tissue, and blood [142, 143]. Interestingly, the levels 
of PBDEs in breast milk of US women reflect a body burden 
that far exceeds that reported in the Scandinavian studies 
[140-142]. In particular, PBDE levels in northern California 
women are among the highest levels reported to date [144, 
145], as expected for the San Francisco Bay area, one of the 
most contaminated regions worldwide [146-149]. PBDE 
levels in breast adipose tissue from women living in this area 
were 3- to 25-times higher than those in other regions of the 
world [144, 145]. The average ∑PBDEs was 86 ng/g fat with 
BDE-47, -154, -153, -99, and -100 as the major congeners in 
1990 [150]. Data collected from women from 1995-1998 
showed that the total level was 2-times higher than that from 
1990, with 2- to 3-fold higher concentrations of congeners -
47, -99, and -100 [145]. Fig. (1) depicts the three-dimensional 

chemical structures of some PBDEs, such as BDE-47, -49, -
85, -99, and -100.  
 Circulating levels of PBDEs in children aged 2 to 5 years 
living in northern California from the Childhood Autism 
Risks from Genetics and the Environment (CHARGE) Study 
at the University of California Davis were reported to be 10-
to 1000-fold higher than similar aged populations in Mexico 
and Europe, 5-times higher than similar aged children across 
the U.S., and 2- to 10-fold higher than U.S. adults [151]. 
This higher exposure may be partially explained by the fact 
that infants can accumulate 2- to 4-times more PBDEs than 
adults within the same geographical area [152]. In addition, 
California regulations require all furnishings to pass flam-
mability tests for fire safety [153]. Although no specific 
flame-retardants are mandated, it is quite likely that PBDEs 
are added to polyurethane foam used in furnishings [2]. Then 
the main source for PBDE exposure in California compared 
to that of other regions would be hand-to-mouth contact with 
consumer products and ingestion/inhalation of dust in indoor 
microenvironments. In support of this argument, a study per-
formed with women living in northern California, indicated 
that individual PBDE congeners correlated with each other, 
but correlations across PBDE and polychlorinated biphenyls 
congeners were modest [145], suggesting that maternal ex-
posures to PBDEs came primarily from non-dietary sources 
[2, 150]. However, processed foods (especially pork and 
chicken products) and exposure to new upholstered furniture 
were the major predictors of blood levels of PBDEs in 2-5 
year olds from CHARGE Study [151] suggesting that both 
diet and environmental exposure might be relevant in this 
population of children from northern California.  
 Reports using animal models, as well as epidemiological 
and human tissue studies, indicate that certain environmental 
chemicals and drugs can cross the placenta during pregnancy 
and interact with fetal cell targets leading to disorders, which 
arise later in development [154-156]. PBDE concentrations 
in maternal blood predict the level of fetal exposures for 
some BDE congeners [157], suggesting maternal transfer to 
the developing fetus during pregnancy. Studies demonstrat-
ing induction of cytochrome P4501A in rat fetal livers whose 
mothers underwent PBDE exposures [158] and the presence 
of several PBDE congeners in human fetal liver [19] sub-
stantiates transplacental exposure to PBDEs in rodents and 
humans. The maternal transfer of both lipophilic PBDEs and 
their less lipophilic hydroxylated congeners are likely to 
cause developmental neurotoxicity [3, 18, 159-162]. For 
instance, BDE-49 and its hydroxylated metabolite, not typi-
cally measured in human samples, have been recently de-
tected in gestational tissues from women in Michigan at lev-
els comparable to commonly detected BDE-47 (17% of total 
PBDEs; [163]). This observation is consistent with reports 
identifying BDE-49 as a major contributor to PBDE load in 
fish [164, 165], including one study on Great Lakes fish that 
identified BDE-49 as the most abundant congener [166]. 
These data significantly underscore the importance of meta- 
and para-bromination substitutions in determining the bioac-
cumulation of highly neurotoxic congeners during gestation, 
and the possible contribution of hydroxylated metabolites to 
adverse outcomes. Similar to structurally related non-
coplanar polychlorinated biphenyls [162], PBDEs have a 
stringent structure-activity relationship towards altering Ca2+ 
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signaling pathways via interactions with microsomal ryano-
dine receptors, with BDE-49 and hydroxylated metabolites 
being most active [161]. Chronic, low-level maternal and 
fetal exposures to specific PBDE congener profiles during 
pregnancy could affect signaling systems essential for activ-
ity dependent dendritic growth and proper development of 
excitatory and inhibitory networks in the fetus [3, 161]. An 
imbalance of excitatory and inhibitory neurotransmission has 
been implicated in the etiology of a number of syndromic 
and idiopathic developmental disorders, including autism 
[100]. 
 

 

 
 
Fig. (1). Three-dimensional chemical structures of selected PBDEs. 
 

PBDEs, MITOCHONDRIA, AND AUTISM 

 Several key factors could relate PBDE exposure to 
autism susceptibility. Among them, maternal transfer of 
PBDEs to the fetus transplacentally during gestation, early 
postnatal exposure to PBDEs via maternal milk (especially 
those highly hydrophobic) and exposure to PBDEs during 
early postnatal development. Although the mechanisms re-
sponsible for PBDE-induced injury are not well understood, 
recent research has focused on the ability of PBDEs to dis-
rupt thyroid hormone status, leading to abnormalities in fetal 
growth and development in laboratory animals [18, 167-170] 
as well as disrupting intracellular Ca2+ homeostasis espe-
cially in excitable cells [4, 5, 8, 9, 11, 14-16, 171]. In this 
regard, BDE-47 and hydroxylated derivatives had been 
shown to release Ca2+ from or inhibit calcium uptake by en-
doplasmic reticulum and mitochondrial stores in PC12 cells 
[5, 9], human neuroblastoma cell line SH-N-SH [11], cere-
bellar fractions and cerebellar granule cells [8, 15], exhibit-
ing a preferential effect on mitochondria [4, 8, 15, 171]. A 
growing body of evidence suggests that PBDE or their hy-

droxylated metabolites can induce mitochondrial dysfunction 
by promoting inhibition of the electron transport chain or 
uncoupling electron transport with ATP synthesis [9, 172], 
mitochondrial depolarization [6, 10, 173], altered mitochon-
drial morphology [174], release of cytochrome c and apopto-
sis [10, 11], and increased oxidative stress [6, 7, 10, 11, 173, 
175] in vivo [173, 176, 177] or in vitro [5, 6, 9, 10, 14-16] in 
a variety of biological systems. mitochondrial dysfunction 
has been reported in individuals with autism or ASD [23, 24, 
38, 98, 101, 105, 107-109, 178, 179]. Our studies showed 
that Complex IV and V are inhibited by BDE-49 at low nM 
concentrations and that these effects are enhanced in the 
presence of PTEN deficiency, background shared by a subset 
of children with autism [27]. Given that the levels of PBDEs 
in blood samples from children aged 2-5 years from 
CHARGE were not significantly different than those from 
age-matched typically neurodeveloping children [180], it is 
tempting to propose that the response to a perinatal PBDE 
exposure differs between these diagnostic groups, com-
pounded by the bioaccumulation of PBDE in mitochondria 
[7]. This bioaccumulation of PBDEs implicated in neurotox-
icity [3, 161] may enhance the pre-existing mitochondrial 
dysfunction and/or initiate it, contributing to the onset or 
morbidity of ASD. 

ANTIOXIDANT RESPONSES AND AUTISM 

 The capacity of cells to maintain homeostasis during oxi-
dative stress resides in the induction of protective enzymes, 
as well as non-enzymatic defenses such as glutathione [181-
186], playing Nuclear Factor, Erythroid 2-Like 2 (Nrf2) as 
an important role in the regulation of these processes [187-
189]. Nrf2 induces antioxidant and detoxifying enzymes 
through its binding to the antioxidant response element 
(ARE) [190, 191]. Nrf2 is sequestered in the cytoplasm as an 
inactive complex with its cytosolic repressor Kelch-like ECH 
associated protein-1 (Keap-1). The dissociation of Nrf2 from 
Keap-1 is crucial for its nuclear translocation, followed by 
binding to DNA and activation of cytoprotective genes 
[191]. Nrf2 phosphorylation has been described as a critical 
event for the nuclear translocation of this transcription factor 
and its transcriptional activity [191, 192]. To date, multiple 
signaling kinases related to cell survival/proliferation have 
been reported to regulate Nrf2, including extracellular sig-
nal-regulated kinase (ERK), c-jun NH2-terminal kinase 
(JNK), phosphatidylinositol-3-kinase (PI3K) and protein 
kinase C (PKC) [191, 193]. Indeed, the phosphorylation of 
Nrf2 by these different kinases at multiple sites seems to be 
an important mechanism in Nrf2-mediated ARE activation 
and in regulating the stability of this transcription factor 
[194]. Post-translational modification of Nrf2 by various 
protein-kinase signaling pathways can affect its nuclear 
translocation. Some of the kinases identified as responsible 
for Nrf2 phosphorylation are ERK, JNK, PI3K and PKC [191]. 
 Nrf2 has an important role in the protection against in-
duced-organ injury [191] by regulating the response to cellu-
lar stress and cell survival/proliferation [188, 195-197]. 
Therefore, the Nrf2-ARE pathway could act as a sensor and 
respond to chemical stress before the onset of cytotoxicity. 
In line with this, Nrf2 could be activated in response to 
PBDE exposure as an adaptive response against oxidative 
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and inflammatory cell damage; however, a dysregulated 
Nrf2-mediated response might not be enough to overcome 
PBDE-mediated mitochondrial damage, considering the high 
susceptibility to oxidative stress by certain complexes and 
mitochondrial enzymes [198-200]. In support of this concept, 
lower gene expression of Nrf2 has been reported in granulo-
cytes of children with autism suggesting lower response to 
activate the antioxidant response capacity and possibly 
linked to the increased mtDNA deletions [201]. Nrf2 may 
also define the initial threshold for toxicity by controlling, at 
least in part, constitutive aspects of cell defense [190, 195, 
196]. In this regard, it has been described that an agent could 
stimulate the nuclear accumulation of Nrf2 at non-cytotoxic 
concentrations or after a short time of incubation, although at 
longer times of exposure, it could induce significant cytotox-
icity [195].  
 Several studies have shown mitochondrial dysfunction 
reported in PBMC from children with autism [23], deficits 
accompanied by increased oxidative stress, evidenced by 
higher rates of hydrogen peroxide production [23] and in-
creased mtDNA deletions [32]. The mitochondrial electron 
transport chain is the major intracellular source of reactive 
oxygen species, and as such, mtDNA becomes oxidatively 
modified as it is evidenced by its relatively high mutation 
rate [202] and accumulation of deletions with age [203, 204]. 
Mitochondria can compensate for these damages by respond-
ing with increased mtDNA replication without increases in 
oxidative phosphorylation [34, 205-209]; however, increases 
in copy number have also been associated with defective 
transcription, respiratory chain deficiency, and age-related 
accumulation of mtDNA deletions [210]. Not only the pro-
duction of reactive oxygen species is higher in samples from 
ASD cases but also evidence of lower antioxidant defenses 
has been presented. Glutathione deficits have been reported 
in plasma, immune cells and post-mortem brain from ASD 
children [105, 211-213]. A deficit in glutathione antioxidant 
capacity may limit the ability to catabolize hydrogen perox-
ide efficiently, increasing both oxidative stress-mediated 
damage and the vulnerability to subsequent pro-oxidant envi-
ronmental exposures [214, 215]. Thus, exposure to environ-
mental stressors could be further compounded (second hit 
hypothesis) in the presence of a pre-existent mitochondrial 
dysfunction. This is demonstrated by the enhanced neuro-
toxic effect of excitotoxic amino acids when oxidative phos-
phorylation is inhibited [216-219] or the exacerbated neu-
ronal mitochondrial toxicity to PBDEs in the presence of an 
autistic-like background (PTEN deficiency) [27]. In this re-
gard, oxidative stress may be a key mechanism by which 
mitochondria are negatively influenced by exposures to pro-
oxidant environmental triggers [71-76, 80, 81] and/or by 
medical conditions coexisting with ASD diagnosis such as 
immune dysregulation [201, 220]. Free radicals, when not 
accompanied by appropriate antioxidant defenses, can initi-
ate a cascade of deleterious events, which can promote or 
perpetuate mitochondrial and cellular damage [211, 221].  

CONCLUDING REMARKS 

 Finally, more research needs to be done to understand the 
risk factors for autism, specifically how environmental expo-
sures impact redox homeostasis and mitochondrial function, 

and how these exposures unveil functionally deficient back-
grounds contributing to a feed-forward cycle of damage. 
Although a growing body of evidence suggests that PBDE 
can induce mitochondrial dysfunction by a variety of mecha-
nisms, limited effort has been devoted to find the differential 
susceptibility of autism to those most biologically active 
PBDEs, not typically measured, but clearly implicated in 
neurotoxicity. Therapies seeking to decrease oxidative stress-
mediated damage, improve mitochondrial function or mini-
mize symptoms observed in some ASD cases need to be 
carefully evaluated if a careful biochemical and metabolic 
characterization of the subject has not been done to avoid 
deleterious side effects or refractory outcomes [222, 223]. 
This is relevant considering that reactive oxygen species do 
not solely elicit damage to biomolecules but also exhibit a 
role in signal transduction pathways significant to bioener-
getics and cellular metabolism [224-226].  

LIST OF ABBREVIATIONS 

ARE = Antioxidant response element  
ASD = Autism Spectrum Disorder  
CHARGE = Childhood Autism Risks from Genetics and 

Environment Study 
mtDNA = Mitochondrial DNA  
Nrf2 = Nuclear Factor, Erythroid 2-Like 2  
PBDE = Polybrominated diphenyl ethers  
PBMC = Peripheral blood monocytic cells  
PTEN = Phosphatase and tensin homolog  
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