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Reliability analysis of the influence of seepage on levee stability
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Abstract

Reliability analysis is used to evaluate the probability of failure of a flood 
defence embankment subject to a blanket layer foundation condition, where 
high seepage forces increase the likelihood of internal erosion and slope 
failure. The stochastic effect of hydraulic conductivity and blanket layer 
thickness, in addition to soil shear strength properties, is considered for the 
underseepage and slope stability failure modes using the first-order 
reliability method. The blanket layer thickness controls the factor of safety 
(F) and reliability, followed by the unit weight of the blanket layer. Despite 
variation over orders of magnitude, hydraulic conductivity is less important 
than and comparable to the effect of soil shear strength parameters. 
Aleatory uncertainty is evaluated using fragility curves and a confidence 
interval on the expected value of F (stochastic F). Uncertainty in probability 
distribution parameters allows quantification of a subset of epistemic 
uncertainty and is used to construct confidence intervals for fragility.



Introduction

Earthen embankments, or levees, are flood defence structures constructed 
to protect an area of land during a period of high water. In contrast to dams, 
levees are long structures than retain high water only occasionally, during 
floods. Historically, levee design in the USA has been based on minimum 
safety factors specified for various modes of failure (DWR, 2012; USACE, 
2000). Since first established in the mid-nineteenth century, most levees in 
California have been continually enlarged and lengthened, responding to 
changing land use and changing regulatory environment (Kelley, 1998; Seed 
et al., 2012). Due to being located on floodplains and being close to active 
stream channels, the foundation soils underlying a levee are often 
unconsolidated floodplain deposits ranging in size from cobbles and gravel to
clay, which can change character dramatically over a short distance (e.g. 
DWR, 2012). While the most commonly reported mechanism of failure is 
overtopping, other common failure mechanisms include piping – that is, 
internal erosion caused by seepage through or under the levee – and, less 



frequently, slope failures induced by seepage through the levee (e.g. ASCE, 
2010). In addition to these common modes of failure, there are many other 
conditions that can lead to failure or influence other failure modes, such as 
penetrations (e.g. pipelines), mammal burrows, current erosion, wave 
erosion and/or vegetation (DWR, 2012). During periods of high water, there 
is a hydraulic head difference between the waterside (i.e. river channel) and 
landside of a levee, inducing flow through the embankment and the 
foundation (e.g. Cedergren, 1997; Harr, 2012). The resulting seepage forces 
negatively influence the stability of the slope by adding to the driving force 
and reducing soil strength, respectively (e.g. Duncan and Wright, 2005; Holtz
and Kovacs, 1981).

Given the extent of the levee systems and the complexity of the interaction 
between the different potential modes of failure, stochastic methods are 
increasingly being applied in the context of risk analysis to assess potential 
for failure and to prioritise repairs and modifications. To communicate risk 
effectively, the probability of occurrence of a failure mode (e.g. 
underseepage or slope stability) must capture the uncertainty associated 
with a failure mechanism model and the associated physical parameters 
(Phoon et al., 2003). In this context, it is necessary to distinguish two sources
of uncertainty: (a) aleatory uncertainty is associated with the natural 
variability of a phenomenon or physical property, whereas (b) epistemic 
uncertainty is associated with an incomplete state of knowledge (e.g. Vick, 
2002). For example, the hydraulic conductivity (K, units of L/T) of a soil layer 
takes on a range of values depending on location within the deposit and can 
be represented by a probability distribution (aleatory uncertainty), whereas 
the uncertainty associated with the value of K at a specific location, other 
than at a location where it was measured, is epistemic. Distinguishing 
between the two types of uncertainty is important for incorporating results of
a stochastic analysis into the design of a system component (Der Kiureghian 
and Ditlevsen, 2009).

In this study, performed as a part of a larger effort to evaluate the influence 
of vegetation on levee performance (Lanzafame and Sitar, 2018), the 
authors discuss the application of reliability analysis for stochastic 
assessment of embankment performance while accounting for the 
uncertainty in hydraulic properties of the embankment soil. Specifically, the 
first-order reliability method (FORM) (Zhang and Der Kiureghian, 1995) is 
used because it is invariant and, therefore, the solution is not dependent on 
how the mechanistic model is formulated (Hasofer and Lind, 1974). 
Furthermore, when compared to simplified reliability methods or importance 
sampling methods (e.g. Monte Carlo), FORM can reach a solution with a 
relatively small number of model evaluations and provides a number of 
additional quantitative results for evaluating both aleatory and epistemic 
uncertainty, including parameter importance and sensitivity measures (Der 
Kiureghian, 2005; Ditlevsen and Madsen, 2005). Finally, from a practical 
perspective, levee design and maintenance decisions often must be 



prioritised under the restriction of limited resources. The stochastic analyses 
described herein provide a direct quantitative comparison (i.e. probability) 
between failure modes considering the range of likely values for key 
properties. They also identify properties with the greatest impact on the 
computed results, which is invaluable in guiding investigations and in the 
overall decision-making process.

Model embankment

Analyses in this study assume a model embankment similar to those found 
on the Sacramento River in California, USA, specifically, a sandy 
embankment situated on top of a low hydraulic conductivity layer of silt and/
or clay and a high hydraulic conductivity layer of sandy material (Figure 1). 
The low-hydraulic-conductivity layer represents the native ground surface, a 
fine-grained fluvial overbank deposit that is generally continuous and 
relatively thin, extending from the channel into the adjacent floodplain, and 
commonly referred to as a blanket layer (Batool et al., 2015; Meehan and 
Benjasupattananan, 2012). A relatively thick sandy aquifer provides a high-
hydraulic-conductivity connection to the river and in combination with the 
blanket layer represents the embankment foundation. The embankment is 
5·2 m tall (H E) with a 6·6 m wide crown and 2·5:1 H:V slopes; a 6·1 m wide 
berm is located along the waterside toe at the top of the blanket layer (5·5 m
average thickness), with the riverbed 10·7 m below the landside toe. During 
periods of high water, the seepage path of concern for underseepage and 
slope stability failure modes is from the channel to the landside ground 
surface through horizontal flow through the aquifer and vertical flow through 
blanket. The hydraulic gradient is greatest in the blanket layer due to the 
high contrast in hydraulic conductivity with the underlying aquifer and 
increases the likelihood of foundation erosion and slope failure. Soil 
properties and subsurface geometry were selected using existing 
geotechnical data (GEI Consultants, Inc. and HDR, 2015), and the 
embankment is marginally stable when the channel water level reaches the 
embankment crest (i.e. slope stability F ≈ 1·0). The water surface elevation 
(WSE) corresponding to the 200-year return period flood level is used for 
deterministic and stochastic analyses herein due to its role as a reference 
case for the current levee design standards in California (URS, 2014).



Analytical Methods

Seepage within the embankment and foundation is governed by the 
difference in total hydraulic head, h, between the channel and the landside 
of the embankment, for which a phreatic condition at the ground surface is 
assumed. The distribution of pore pressure was evaluated using a saturated–
unsaturated transient finite-element code, Unsat1 (Neuman, 1972), with 
transient parameters set to reach steady-state conditions. A finite-element 
mesh with approximately 9000 rectangular elements was generated with 
three boundary conditions: constant head on the vertical sides and channel-
side ground surface; impermeable boundaries on the aquifer base and 
embankment crest; and constant-head seepage face conditions on the 
landside ground surface and embankment slope. Elements range in size from
1·5 m near the boundaries to 0·2 m in and near the embankment, with a 
maximum aspect ratio of 3:1. As found by Benjasupattananan (2013), the 
model was relatively insensitive to the presence of an aquitard below the 9·8 
m thick aquifer and thus was not included in the finite-element mesh. As 
such, once steady-state conditions are reached, the computed seepage 
forces depend only on WSE in the channel and the hydraulic conductivity of 
the blanket and aquifer, K b and K a (for a constant cross-sectional geometry),
respectively.



The underseepage failure mode is controlled by internal piping of the 
foundation, which depends on the initiation and progression of erosion from 
the landside to waterside beneath the embankment (e.g. Sibley et al., 2017).
For the analyses herein, the factor of safety against heave/uplift of the 
blanket layer is used as a surrogate for assessing internal erosion piping and 
is evaluated using the effective stress method (e.g. Duncan et al., 2011): the
ratio of critical gradient, i c, to vertical gradient measured across the blanket 
layer (i) at the landside embankment toe, F us = i c/i. The critical gradient is 
the ratio of buoyant blanket layer soil unit weight to that of water, i c = (γ B −
γ w)/γ w, whereas i is found from the vertical change in head across the 
blanket divided by blanket layer thickness, i = h B/z B. Note that a condition 
of F us < 1·0 for critical gradient does not imply failure of the entire 
embankment, but rather it represents a high potential for internal erosion, 
which may eventually progress to complete failure, in this case a breach, if 
not addressed.

Slope stability was evaluated using Spencer’s method of slices (Spencer, 
1967). Drained conditions (steady-state effective stress analysis) and a 
Mohr–Coulomb failure envelope (i.e. cohesion, c′, and friction angle, ϕ′) were 
assumed to estimate soil strength (Shewbridge and Schaefer, 2013). The 
pore pressures obtained from seepage analyses were applied at the base of 
each slice. Pore pressures were assumed to be zero above the phreatic line 
within the embankment – that is, negative pore pressures were assumed to 
play no role in slope stability. Note that a condition of F ss < 1·0 for slope 
stability does not imply failure of the entire embankment, but rather the 
anticipated failure of an embankment to provide a stable slope, which may 
eventually lead to complete failure (embankment breach) if not addressed.

Reliability of the embankment is quantified by probability of failure, p, for 
underseepage and slope stability failure modes

where x is a vector of random variables, the mechanical model parameters 
considered stochastically with a probability distribution function (PDF), as 
opposed to a deterministic value, and F( x ) ≤ 1·0 is the limit state. P[·] 
represents the unknown cumulative distribution function (CDF) of F( x ), the 
conceptual objective of a reliability analysis, which is dependent on the 
random variable PDFs and the mechanical model used to define the limit 
state. For practical problems, there is no closed-form solution for the 
multivariate probability distribution of F( x ) and various approximate 
methods are used to solve p. Reliability is evaluated herein with FORM, and 
the improved Hasofer–Lind/Rackwitz–Flessler (iHL-RF) algorithm (Zhang and 
Der Kiureghian, 1995) is implemented in Ferum (Bourinet, 2010), Matlab-
based reliability software. To provide a numerically robust solution and 
ensure invariance, all computations are transformed from the original space 
(i.e. x -space) to the standard normal space (i.e. u -space) using the 



Rosenblatt transformation such that u = T( x ) (Der Kiureghian et al., 2006). 
The iHL-RF algorithm iteratively finds the combination of random variables, u
*, such that F(T −1( u *)) = 1·0, and the probability density P[F(T −1( u *)) = 
1·0] is maximised. Values in u * are collectively referred to as the design 
point and when transformed back to the original space as x * = T −1( u *) 
represent the mechanistic model parameter values most likely to exist at the
limit state, F( x ) = 1·0. The probability of failure is the integration of 
probability density beyond the limit state, which is computed in FORM using 
a linear (i.e. first-order) half-space approximation of the limit-state function 
at the design point. It follows from linear algebra that the unit normal vector 
to the half-space approximation, α , can be used to find the distance from 
the u -space origin to the design point, β = αu *, the reliability index. 
Probability is computed from β using the multivariate normal CDF, p = 
Φ[−β]. The vector α is the negative normalised limit-state function gradient, 
containing one element for each random variable

An element in α quantifies the contribution of variance of a random variable 

to the overall variance in F, and the unit vector property (i.e. ) 
allows for relative comparison with magnitude. For this reason, α is called 
the importance vector, where the magnitude indicates relative importance 
for β and the sign indicates whether the random variable functions as a 
capacity (α i < 0) or demand (α i > 0) on F. Alternative reliability methods, for
example, second moment (Ang and Cornell, 1974), Taylor or point estimate 
(USACE, 1999), only estimate the mean and standard deviation of F( x ) in 
the original space to produce β, whereas FORM finds the most likely failure 
condition and quantifies the contribution of uncertainty through partial 
derivatives of the solution with respect to each random variable.

Parameter sensitivity can be explicitly quantified using partial derivative 
computations that are automatically evaluated during a FORM analysis. 
Whereas the importance vector, α , is based on the limit-state function 
gradient with respect to each random variable, sensitivity vectors can be 
formulated that quantify the gradient of reliability index with respect to the 
mean and standard deviation of each random variable, ∇ μ β and ∇ σ β (ref). 
When scaled by standard deviation of each random variable (σ x , a row 
vector) the sensitivity vectors become dimensionless and are referred to as 
the importance vectors δ and η (Der Kiureghian, 2005)



Sensitivity can be generalised to represent the partial derivative with respect
to any distribution parameter in the set θ using the notation ∇ θ β, a row 
vector with each element consisting of the partial derivative of β with 
respect to distribution parameter θ j : ∂β/∂θ j .

Fragility curves are used to convey the aleatory uncertainty of a particular 
system as a plot of failure probability against load (Casciati and Faravelli, 
1991) – for example, seismic hazard (Gardoni et al., 2002a) and flood 
defences (Simm et al., 2008; USACE, 2010). For the embankment considered
herein, fragility curves are constructed using β from separate reliability 
analyses with WSE set to various deterministic values. Following Der 
Kiureghian (1989) and Gardoni et al. (2002b), it is possible to use FORM to 
estimate the standard deviation of β, σ β , due to the variance in n 
parameters, θ, as follows

Note that a standard deviation must be assigned to θ j , which can 
conceptually be considered a ‘distribution of a distribution’, and adds an 
additional layer of complexity to the analysis. However, this allows ±σ β 

confidence bounds to be placed on the fragility curves, P[μ β ], computed 
after the equation

Because σ β is based on the standard deviation of distribution parameters, it 
represents a source of epistemic uncertainty for the embankment, as the 
true value is unknown. Uncertainty associated with distribution parameters is
the only source of epistemic uncertainty considered for analyses herein, 
which represents a relatively small portion of the overall epistemic 
uncertainty. For example, spatial variability and model uncertainty are two 
other sources of epistemic uncertainty that are not considered in the 
analyses presented here.

FORM can also be used to estimate the first and second moments of F( x ), μ 
FS and σ FS, using the definition of reliability index, β = σ/μ, and the first-order 
approximation of the limit state at the design point

Thus, the stochastic F confidence bounds on a mean estimate of F can be 
constructed (i.e. μ FS ± σ FS), which represent the effect of aleatory 
uncertainty in the random variables on F. Furthermore, the mean estimate of
F can be compared to the deterministic analysis, which employs the ‘best-



estimate’ values rather than the entire probability distribution for each 
random value.

Random variables and probability distributions

The variables that directly influence the underseepage failure mode are the 
hydraulic conductivity ratio (K r), the blanket layer thickness (z B) and the unit
weight (γ B). These three variables indirectly influence slope stability by 
controlling seepage forces, while the variables that directly influence the 
slope failure mode are the embankment unit weight (γ E) and friction angle (

), blanket unit weight (γ B), effective cohesion ( ) and friction angle (
). Note that γ B has a direct influence on both failure modes. The variability of
these random variables is summarised in Table 1 using the coefficient of 
variation, δ = σ/μ, along with the values used for reliability analyses 
described herein. These parameters were obtained from published sources, 
as noted in the table, and from subsurface data collected during 
investigations at the site of the prototype embankment (GEI Consultants, Inc.
and HDR, 2015).

The random variables controlling slope stability were modelled using the 
normal distribution, with parameters μ and σ derived from field data that 
matched well with typical values of δ from the literature. The lognormal 
distribution was used to describe the variability of K because it often ranges 
over several orders of magnitude and is non-negative (Freeze, 1975). 
Reported δ varies widely for K (Benson, 1993), although 0·3–2·0 is commonly
cited (e.g. USACE, 1999; Uzielli et al., 2006). Published data sets with test 
results that support reported values of δ for K are relatively limited 
(Lanzafame, 2017; Lanzafame and Sitar, 2018), and it is unclear whether the
high variability is due to aleatory or epistemic uncertainty. While a 
probability distribution and associated δ imply aleatory variability, errors 
from field and laboratory tests as well as inclusion of data collected over a 
relatively large regional extent imply that epistemic uncertainty may have a 
significant role in reported δ. For analyses herein, deterministic values of the 
horizontal hydraulic conductivity of the aquifer, K a,h, and the vertical 
hydraulic conductivity of the blanket layer, K b,v, were used to fix the mean 



values of the lognormal distributions and δ is set to a conservative value of 
2·0, near the upper end of values found for a suite of alluvial near-surface 
soils in California (URS, 2014). Lognormal distribution parameters λ and ζ are
the mean and standard deviation of ln K.

The ratio of hydraulic conductivity is more important than absolute values for
controlling the distribution and magnitude of seepage forces (Batool et al., 
2015; Chowdhury et al., 2012; USACE, 1999), and incorporating K a,h and K b,v 
as a single random variable reduces the necessary number of computations 
in a reliability analysis. Hydraulic conductivity ratio is defined as K r = K a,h/K 
b,v; thus, for a particular value of K r infinite combinations of K a,h and K b,v are 
available and only one set must be selected as parameters to specify in the 
finite-element method (FEM) seepage model. However, the seepage solution 
is insensitive for K r less than about 50 for the model levee considered herein
(Lanzafame et al., 2017), and for a given K r, the value of K b,v is chosen such 
that K a,h = 8 × 10−5 m/s. K is anisotropic (K h = 4 K v) for the blanket layer 
and isotropic for the embankment and aquifer soils. Lognormal distribution 
parameters for K r can be determined as a function of the random variables K
a,h and K b,v as follows (Table 1)

where the subscripts r, a and b refer to K r, aquifer and blanket, respectively. 
The skewness of the distribution results in a mean value of 8000 and a 
median (ln λ r) of 1600 for K r.

The blanket layer thickness, z B, was modelled with a truncated normal 
distribution, which adds maximum and minimum values as parameters and 
redistributes the normal probability density function within these limits (e.g. 
Kottegoda and Rosso, 2008). Although modifications to the PDF with respect 
to the normal distribution are not negligible, the lower limit (z 1) is 
occasionally necessary to prevent errors in the FEM seepage analysis 
(Lanzafame and Sitar, 2018). The truncated normal distribution does not 
significantly affect reliability results as long as the design point from a FORM 
solution is not close to the distribution limits (Lanzafame and Sitar, 2018).

Results

Deterministic analyses of underseepage and slope stability were completed 
for various hydraulic loads. At the 200-year WSE, the phreatic surface exits 
the landside embankment slope at the breakout height, 2·1 m above the 
landside toe elevation (Figure 1), and the deterministic factors of safety for 
underseepage and slope stability failure are F us = 1·5 and F ss = 1·3, 
respectively. The change in the deterministic factors of safety with 
increasing water level for the two failure modes is presented in Figure 2. The 
results show that the factor of safety for slope stability decreases to 1·0 and 



the factor of safety for underseepage decreases to 1·2 as the water level 
reaches the crest of the embankment.

Reliability results from the FORM analyses are summarised in Tables 2 and 3 
and consist of the probability of exceeding the set limit state, p, the value of 
the parameter at the point with the highest probability of failure, x*, and the 
importance vectors α , δ and η . The probability of an unsafe condition, P[F 
≤ 1·0], is 0·17 for underseepage (β = 0·98) and 0·06 for slope stability (β = 
1·54). While the likelihood of failure is an important measure of risk, from a 
practical perspective, the importance vectors have a much greater 
significance since they show which parameter(s) has the greatest effect on 



the computed result. Thus, for underseepage (Table 2) the importance 
vector, α , for blanket layer thickness (z B) has the largest magnitude, 
showing that the blanket layer thickness is the most important random 
variable, followed by the blanket unit weight (γ B), with the hydraulic 
conductivity ratio (K r) an order of magnitude less. In this case, the variables 
z B and γ B are capacity variables (i.e. α i < 0), whereas K r is a demand 
variable, which is consistent with the design point (x* and u*), indicating that
the critical condition for underseepage is when z B and γ B have values less 
than the median and K r has a value above the median. Because z B is the 
most important random variable, the design point has the highest deviation 

from the median, . Importance vectors for the distribution mean 
and standard deviation (δ and η) confirm the general importance of z B while 
also showing that the value of the mean has a bigger effect on reliability 
than the standard deviation for K r and γ B, as δ i > η i for both variables. 
Again, from a practical standpoint, this result suggests that measuring the 
thickness of the blanket layer is more important than measuring its hydraulic
conductivity. Since obtaining the thickness of the blanket at multiple 
locations is much simpler than measuring its hydraulic conductivity, this is 
very useful information that would not have been as apparent from other 
types of analyses.



Similarly, for the slope stability failure mode, z B and γ B are also the most 
important random variables (Table 3). The importance of K r is of similar 

magnitude to and γ E, with  and being the least important variables.
As with underseepage, K r is the only demand variable and the design point 
indicates that the critical condition is a thin blanket layer. This result has a 
clear physical meaning, since the blanket layer acts to resist the base failure 
and, therefore, its thickness and weight will have a significant influence on 
the computed factor of safety. The results also show that the value of 
cohesion used in the analyses has a greater influence than the value of the 
friction angle, hence focusing the attention on that particular parameter in 
embankment design.

Fragility curves for underseepage and slope stability are presented in Figures
3 and 4 for water levels between the embankment toe and crest elevations. 
Each point on the fragility curve represents the probability of exceeding the 
limit state for a specific WSE due to the probability distribution specified for 
each random variable. Thus, the value of p (and β) at each WSE is a result of 
the aleatory uncertainty contribution from each random variable, which is 
quantified in Figures 3 and 4 with the importance vector, α . Values of α in 
Figures 3 and 4 are from FORM results for the 200-year WSE, which 
remained consistent across the range of WSEs considered. Because the 
estimate of β is dependent on the parameters used for each random variable
probability distribution, there is uncertainty in the calculated value at each 
WSE, which is quantified using the confidence interval σ β (Equation 4). Thus, 
the confidence bounds for fragility (Equation 5) in Figures 3 and 4 quantify a 
subset of the epistemic uncertainty for each failure mode, and the individual 
contribution from each random variable is also ranked and tabulated. For 
underseepage and slope stability, z B is the greatest source of epistemic 



uncertainty, although γ B has comparable level of influence for the 
underseepage failure mode.



The stochastic estimate of F using FORM (μ FS) is illustrated in Figures 5 and 6
for various WSEs, along with the confidence interval given by μ FS ± σ FS. This 
represents the expected value of F (at each WSE), given the range of values 
possible (i.e. aleatory variability) for each parameter assigned a probability 
distribution. The individual contribution of each random variable is tabulated 
and ranked on the figures using the importance vector, α . As WSE increases 



and approaches the embankment crest elevation, μ FS, for underseepage and
slope stability decreases to 1·2 and 1·0, with the confidence intervals ±0·4 
and ±0·2, respectively. Figures 5 and 6 also compare deterministic F (Figure 
2) to μ FS, which is a comparison of F computed using the mean values of 
each parameter against the mean value of F given the aleatory variability in 
each parameter (i.e. the complete probability distribution, as opposed to only
the mean), respectively. Given that μ FS is from FORM and has an invariant 
solution, it is a better estimate of the expected value for F. For the 
deterministic case where F = 1·0, the design point is nearly equivalent to the
mean values of each random variable; thus, F and μ FS are equivalent. At the 
200-year WSE, the deterministic F is 0·04 greater than the median value of 
the factor of safety, μ FS, for underseepage (unconservative F), but 0·20 
below μ FS for slope stability (conservative F). Although the deterministic and 
stochastic assessments of F are not identical, differences are less than the 
confidence interval for μ FS, which is governed by aleatory uncertainty in the 
input random variables. As illustrated by the ranked values on Figures 5 and 
6, reducing uncertainty in z B and γ B will result in the greatest reduction of 
uncertainty for underseepage and slope stability F.





To illustrate further the role of stochastic seepage properties on 
embankment performance, probability distribution parameters were varied 
for K r and z B. The lognormal distribution of K r was evaluated with a median 
value (exp λ) of 1000, 100 and 10, each with a δ of 0·3 and 2·0 for K (cases 
A–F). The truncated normal distribution of z B was modified by reducing δ and



modifying the upper and lower truncation limits, z 1 and z u (cases G–J). 
Changes in β and p are tabulated in Table 4 for the ten cases considered, in 
addition to changes in importance, α i , for K r, z B and γ B. As expected, 
reducing δ increases β and decreases p for both failure modes. Reducing the 
median of K r increases β and the importance of K r while decreasing the 
importance of z B, although Imp(z B) > Imp(K r) for cases A–F. Removing the 
upper truncation limit for z B has a negligible effect (case G), whereas 
increasing the lower truncation limit (cases H and I) changes β and α by a 
small amount.

Discussion

Despite the high aleatory variability for K and K r, the blanket layer thickness 
controls embankment underseepage and slope stability for the high-
permeability-contrast blanket layer foundation considered herein. As 
illustrated in Table 4, the importance of K r increases as the median value 
used in stochastic analyses decreases, becoming comparable to that of z B 
only when the median of K r is 10 (cases E and F). Although the trend 
continues as the median of K r approaches 1, this implies that the blanket 
and aquifer are a single homogeneous soil unit since hydraulic conductivity 
values for the blanket and aquifer becomes equal – that is, the blanket layer 
foundation condition is no longer applicable. Thus, for a blanket layer 
condition, the aleatory variability of K r is more comparable to typical soil 
shear strength properties, but contributes less to the aleatory variability in F 
than z B.

Fragility curves quantify the aleatory variability for each failure mode, as well
as a subset of the overall epistemic uncertainty associated with the selection
of probability distribution parameters for each random variable. Although the
fragility for underseepage is higher than that with respect to slope stability, 
the computed probability is only for the limit state, F ≤ 1·0, which does not 
necessarily imply the embankment is more likely to be breached from 
internal erosion piping against a slope stability failure.



Stochastic F and the confidence interval, μ FS ± σ FS, illustrate the influence of
aleatory variability in shear strength and hydraulic properties on the 
deterministic assessment of F. Given the distribution parameters considered 
herein, it is clear that underseepage and slope stability failure modes are not
necessarily safe if deterministic F > 1·0, particularly for WSE above the 200-
year level. Figures 5 and 6 indicate that the deterministic F is unconservative 
with respect to the stochastic F for underseepage, but conservative for slope 
stability, which is a result of the mechanical sensitivity for each failure mode 
in combination with the aleatory variability for each random variable. The 
non-linear shape for each stochastic F curve is due to the non-linear 
relationship of β with increasing WSE as the design point for z B approaches 
the lower truncated normal distribution limit z 1.

As the blanket layer thickness is reduced, it cannot be allowed to cross the 
lower surface of the potential sliding mass for slope stability computations: a 
constant finite-element mesh is necessary to prevent numerical errors from 
negatively impacting the solution. Thus, while there is a physical justification 
for limiting blanket layer thickness with the truncated normal distribution, it 
can influence FORM results, particularly as the design point for z B decreases.
In general, analyses should be repeated with various z 1 values to confirm 
that reliability results are not affected. Further, numerical considerations 
associated with various distribution effects are described by Lanzafame and 
Sitar (2018).

Analyses discussed herein assume homogeneous seepage and strength 
properties within each soil unit, which ignores the variation that occurs 
spatially. The influence of spatial correlation has been previously included in 
FORM analysis of seepage (Sitar et al., 1987) and slope stability problems 
(Kim and Sitar, 2013), as well as random sampling (e.g. Liu et al., 2017). 
Since the focus of this study was on the relative importance of seepage and 
strength properties with respect to underseepage and slope stability failure 
modes, spatial variability would have had relatively minor influence.

Conclusions

Reliability analyses using FORM show that the blanket unit weight and 
thickness dominate underseepage and slope stability assessments, as 
expected from deterministic analyses. Hydraulic conductivity does not 
influence underseepage and slope stability significantly more than typical 
shear strength parameters, despite the potentially large order of magnitude 
range in variability, for a blanket layer condition with high contrast with 
respect to the aquifer. Fragility curves illustrate the influence of aleatory and
a subset of epistemic uncertainty, most of which is due to blanket layer 
thickness and unit weight. In addition to reliability index, stochastic F curves 
provide a graphical interpretation of the uncertainty in deterministic 
estimates of F. Reliability analyses provide a useful tool for conveying the 
risk associated with embankment performance, in this case underseepage 
and slope stability. Once implemented in software for the particular problem 



of interest, FORM analyses are numerically efficient, relative to alternative 
methods such as Monte Carlo simulation. Using fragility curves and 
uncertainty estimates provides a straightforward method of comparing 
aleatory and epistemic uncertainty and directly assessing the relative 
importance of critical properties. From a practical standpoint, probabilistic 
analyses allow for a direct quantitative comparison between failure modes 
and identify the parameters that have the most significant influence on the 
computed results.
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