
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
AI for Optimized Execution of AI

Permalink
https://escholarship.org/uc/item/27h0x698

Author
Ahn, Byung Hoon

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27h0x698
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

AI for Optimized Execution of AI

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Byung Hoon Ahn

Committee in charge:

Professor Hadi Esmaeilzadeh, Chair
Professor Steven Swanson, Co-Chair
Professor Sorin Lerner
Professor Ramesh Rao
Professor Dean Tullsen

2022

Copyright

Byung Hoon Ahn, 2022

All rights reserved.

The Dissertation of Byung Hoon Ahn is approved, and it is acceptable in quality

and form for publication on microfilm and electronically.

University of California San Diego

2022

iii

DEDICATION

To my wife, Hwajin.

iv

EPIGRAPH

Times and conditions change so rapidly that
we must keep our aim constantly focused on the future.

Walt Disney

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiii

Acknowledgements . xiv

Vita . xvii

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Background . 2
1.2 AI-Enabled Compilation for Intelligent Systems . 5
1.3 Thesis Contributions . 7

Chapter 2 AI for Optimized Execution of AI . 10
2.1 Adaptive Code Optimization for Expedited Deep Neural Network Compilation . 10
2.2 Introduction . 11
2.3 Challenges in Deep Neural Network Compilation . 12

2.3.1 Compilation Workflow for Deep Neural Networks 13
2.3.2 Optimizing Compiler for Deep Neural Networks . 14
2.3.3 Challenges in Deep Neural Network Compilation 14

2.4 CHAMELEON: Adaptive Code Optimization for Expedited Deep Neural Network
Compilation . 17
2.4.1 Overall Design of Chameleon . 19
2.4.2 Adaptive Exploration: Learning about the Unseen Design Space to

Expedite Convergence of Optimization . 19
2.4.3 Adaptive Sampling: Adapting to the Distribution to Reduce Costly Hard-

ware Measurements . 21
2.4.4 Implementation Details . 23

2.5 Evaluation . 26
2.5.1 Adaptive Exploration: Improving Efficacy of Search Algorithm 27
2.5.2 Adaptive Sampling: Reducing Number of Costly Hardware Measurements 27
2.5.3 Integration: Reducing Optimization Time and Output Inference Time . . 30

2.6 Related Works . 34

vi

2.7 Conclusion . 35

Chapter 3 Foundational Algorithms for Optimized Execution of AI 36
3.1 Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge

Devices . 36
3.2 Introduction . 38
3.3 Challenges and Our Approach . 40

3.3.1 Irregularly Wired Neural Networks . 40
3.3.2 Challenges . 42
3.3.3 Design Objectives . 43

3.4 SERENITY: Memory-Aware Scheduling of Irregularly Wired Neural Networks . . 44
3.4.1 Dynamic Programming-based Scheduling: Achieving Optimal Peak

Memory Footprint . 46
3.4.2 Optimizing Scheduling Speed: Speeding up the Dynamic Programming-

based Scheduling . 52
3.4.3 Identity Graph Rewriting: Improving the Search Space for Better Peak

Memory Footprint . 56
3.5 Evaluation . 59

3.5.1 Methodology . 59
3.5.2 Experimental Results . 60

3.6 Related Works . 65
3.7 Conclusion . 67
3.8 Future Directions . 67

Chapter 4 Hybridization of AI and Foundational Algorithms for Optimized Execution
of AI . 69

4.1 Mathematical Embedding of Hardware Specification for Neural Compilation . . . 69
4.2 Introduction . 70
4.3 Challenges in Neural Compilation . 72

4.3.1 Neural Compilation for Model Deployment . 72
4.3.2 Challenges and Opportunities in Neural Compilation 73

4.4 Glimpse: Mathematical Embedding of Hardware Specification for Faster Neural
Compilation . 75
4.4.1 Blueprint: Mathematically Embedding Architectural Features of Hardware 76
4.4.2 Hardware-Aware Exploration: Adapting Optimization Steps with Meta-

learning . 78
4.4.3 Hardware-Aware Sampling: Using Statistics to Minimize Invalid Config-

urations . 80
4.5 Evaluation . 82

4.5.1 Blueprint . 83
4.5.2 Hardware-Aware Explorer . 85
4.5.3 Hardware-Aware Sampling . 87
4.5.4 Putting It All Together . 87

4.6 Related Works . 89

vii

4.7 Conclusion . 91
4.8 Future Directions . 91

Chapter 5 Expanding the Scope to End-to-End Intelligent Systems 93
5.1 Programming Abstractions for Cross-Domain Multi-Acceleration 93
5.2 Introduction . 94
5.3 Yin Abstraction . 97

5.3.1 Abstract Domain Description . 97
5.3.2 Component & Flow Programming Model . 99

5.4 Yang Abstraction . 100
5.4.1 Abstract Engine Specification . 100
5.4.2 Hints for Engine Selection . 102

5.5 XLVM: Accelerator-Level Virtual Machine . 103
5.5.1 Queued-Fractalized Dataflow Graph (QF-DFG) . 103
5.5.2 Engine Selector . 103
5.5.3 Engine Compiler . 106

5.6 Evaluation . 107
5.6.1 Experimental Setup . 107
5.6.2 Experimental Results . 109

5.7 Related Works . 112
5.8 Conclusion . 113
5.9 Future Directions . 113

Chapter 6 Other Works by This Author . 115

Bibliography . 117

viii

LIST OF FIGURES

Figure 1.1. Examples of Intelligent Systems: translation, smart factory, home robots,
personal assistants, surveillance, and self-driving cars. 2

Figure 1.2. The final architecture of Tesla’s FSD pipeline [Source: Tesla AI Day
2021 [169]]. 3

Figure 1.3. Number of AI publications in the world, 2010–21 [Source: AI Index
Annual Report 2022 by Stanford University [189]]. 4

Figure 1.4. Example compiling a function int sum(int a, int b) with LLVM [99]. 5

Figure 1.5. Overview of the dissertation. 7

Figure 2.1. Overview of our model compilation workflow. Highlighted in green is the
scope of this work and where CHAMELEON comes into play. 13

Figure 2.2. AutoTVM optimization time breakdown for ResNet-18 on Titan Xp. 16

Figure 2.3. Overall design and compilation overview of the CHAMELEON. 18

Figure 2.4. Adaptive Exploration Module of CHAMELEON in action. 20

Figure 2.5. Clusters of candidate configurations. 21

Figure 2.6. Cumulative Distribution Function (CDF) of the difference in runtime
among the configurations in the cluster. 22

Figure 2.7. Component evaluation of CHAMELEON. 28

Figure 2.8. Comparison to AutoTVM’s diversity exploration. 29

Figure 2.9. Layer evaluation of output performance for ResNet-18’s 11th layer. 31

Figure 2.10. Layer and end-to-end evaluation. Dashed lines denote AutoTVM’s perfor-
mance. 32

Figure 3.1. Architecture of network models from NAS and Random Network Gen-
erators. Topology of such networks include distinctive irregular wirings
between the nodes. 40

Figure 3.2. ImageNet accuracy vs number of multiply-and-accumulate or parameters,
where irregularly wired neural networks show higher performance for same
amount of compute or number of parameters than regular topology neural
networks. 41

ix

Figure 3.3. CDF of the peak memory footprint for the different possible schedules of a
given irregularly wired neural network. 42

Figure 3.4. Overall workflow of SERENITY, memory-aware scheduling of irregularly
wired neural network. 45

Figure 3.5. Illustration of identifying redundant zero-indegree set z and making z
unique (square) throughout the topological ordering algorithm to reduce
re-computation. 47

Figure 3.6. Visualization of scheduling the node u8 = H during the search step i= 8.
Starting from s8, µ8, and µpeak,8 the figure shows how the algorithm
calculates s9, µ9, and µpeak,9 . 48

Figure 3.7. Illustration of divide-and-conquer, which divides the graphs into multiple
subgraphs (divide), schedules each of them using the optimal scheduler
(conquer), then concatenates the sub-schedules to get the final schedule
(combine). 52

Figure 3.8. Illustration of the adaptive soft budgeting. (a) shows how schedules are
pruned, and (b) illustrates how the soft budget τ relates to the number of
explored schedules. 54

Figure 3.9. Illustration of the graph rewriting patterns: channel-wise partitioning and
kernel-wise partitioning can reduce the memory cost of convolution and
depthwise convolution respectively. 57

Figure 3.10. Reduction in peak memory footprint of SERENITY against TensorFlow Lite
(no memory hierarchy). 61

Figure 3.11. Reduction in off-chip memory communication of SERENITY against Ten-
sorFlow Lite (with memory hierarchy). 61

Figure 3.12. Memory footprint while running SwiftNet Cell A with and without the
memory allocator (red arrow denotes reduction). 63

Figure 3.13. Scheduling time evaluation for SERENITY. 65

Figure 4.1. Visualization of ResNet-18 7th layer’s search space on different generation
of GPUs (Titan Xp vs. RTX 2080 Ti). While the overall search space may
look similar, the optimal configuration is different. We cannot just reuse
the optimal binary from one hardware to run DNN on another hardware. . . 73

Figure 4.2. Overview of compilation with Glimpse. Unlike current hardware-agnostic
approaches which navigate the search space blindfolded, Glimpse takes
hints from glimpse of hardware Blueprints for faster neural compilation. . 75

x

Figure 4.3. Detailed diagram of Glimpse and its components. Dotted arrows are offline
training procedure. 79

Figure 4.4. Design space exploration of Blueprint. Point marked with red star strikes
balance between the information loss from compression and the compila-
tion time. 83

Figure 4.5. Comparison of initial sampled configurations from random search, Au-
toTVM, Chameleon, and Glimpse for representative combinations of DNN
layers and GPUs. There are 100 configurations in each set and are sorted
in descending order. 84

Figure 4.6. Comparison to AutoTVM transfer learning, provided 100 seconds opti-
mization time budget per layer. 84

Figure 4.7. Comparison in number of search steps. Results show Glimpse provides
significant reduction. 86

Figure 4.8. Comparison to hardware-agnostic sampling approaches in reduction of
invalid configurations. 86

Figure 4.9. End-to-end improvement in optimization time. 89

Figure 4.10. End-to-end improvement in inference speed. 89

Figure 5.1. Yin-Yang dual abstractions break the vertical barriers of domain-specific
stacks and enable cross-domain multi-acceleration in the heterogeneous
cloud. 95

Figure 5.2. Yin-Yang dual abstractions and XLVM for cross-domain multi-acceleration. 96

Figure 5.3. Domain description for Digital Signal Processing (DSP). 98

Figure 5.4. Deep brain stimulation. 99

Figure 5.5. Implementation of deep brain stimulation with CNF programming model. . 101

Figure 5.6. Engine specification of DeCO engine. 102

Figure 5.7. Visualization of QF-DFG of deep brain stimulation. 104

Figure 5.8. Textual form of QF-DFG of deep brain stimulation. 104

Figure 5.9. Speedup with various number of accelerator engines against CPU baseline. 110

Figure 5.10. Performance-per-Joule improvement achieved by multi-acceleration. 110

xi

Figure 5.11. LoC improvements of Yin-Yang in comparison with the baseline manual
programming. 111

xii

LIST OF TABLES

Table 2.1. Knobs in the design space to optimize convolution. 15

Table 2.2. Hyper-parameters uses in CHAMELEON. 25

Table 2.3. Hyper-parameters uses in AutoTVM [35]. 25

Table 2.4. Hyper-parameters used in CHAMELEON’s PPO [154] search agent. 25

Table 2.5. Details of the DNN models used in evaluating CHAMELEON. 26

Table 2.6. Details of the layers used in evaluating CHAMELEON. 26

Table 2.7. Details of the hardware used for evaluation of CHAMELEON. 27

Table 2.8. End-to-end evaluation of the optimization time for deep networks. 33

Table 2.9. End-to-end evaluation of the output performance for deep networks. 33

Table 3.1. Specification of the networks used for evaluation. 60

Table 3.2. Comparison of the scheduling time for different algorithms to schedule
SwiftNet. 1 , 2 , and 3 represent dynamic programming, divide-and-
conquer, and adaptive soft budgeting respectively. N/A denotes infeasible
within practical time. 65

Table 4.1. Details of the DNN models. 82

Table 4.2. Details of the GPUs. 82

Table 4.3. Comparisons to state-of-the-art optimizing compilers [5, 35, 165] for Hyper-
Volume (HV), a metric that summarizes the multiple objectives of optimizing
compilation: search time (GPU Hours) and end-to-end model inference
latency (milliseconds). 88

Table 5.1. Cross-domain benchmark suite. 107

Table 5.2. Domains and engines used in the evaluation. 108

xiii

ACKNOWLEDGEMENTS

Above all, I thank and praise God, the Lord of all creation.

”Lord, you are my God; I will exalt you and praise your name, for in perfect faithfulness you

have done wonderful things, things planned long ago.” – Isaiah 25:1

This dissertation would not have been possible without the help of many people. Foremost,

I owe immense thanks to my advisor Prof. Hadi Esmaeilzadeh for guiding me through the journey

that initially felt as if I were walking through a deep dark void. I thank him for his patience while

I was spending time exploring radical research ideas, and for the unparalleled opportunities he

provided. The past four years working with him have transformed me into a better researcher

and a better person, and I could never thank him enough for all he has done for me.

I would also like to thank my committee members, Prof. Steve Swanson, Prof. Sorin

Lerner, Prof. Ramesh Rao, and Prof. Dean Tullsen, for their insightful comments and whole-

hearted encouragements. Valuable feedbacks from them helped me improve my dissertation.

My Ph.D. journey has been an exciting ride with a unique blend of both academic and

industry research. I thank all my mentors in the industry for offering me to work on exciting

projects and even deep dive into the startup scene. I had the privilege of working with Dr. Jinwon

Lee, Dr. Harris Teague, Dr. Chris Lott, and Dr. Jilei Hou at Qualcomm AI Research; Dr. Eiman

Ebrahimi at Protopia AI; Dr. Hojin Kee, Dr. Jinmook Lee, and Cecile Foret at Apple; Dr. Abdul

Wasay and Dr. Tim Mattson at Intel Labs. In particular, I would like to thank Jinwon who

extended his mentorship to help me in every step of my Ph.D. studies and my job search.

My life as a Ph.D. student would not have been the same without my amazing colleagues

in Alternative Computing Technologies (ACT) lab, Dr. Ahmed Taha Elthakeb, Brahmendra

Yatham, Chris Priebe, Edwin Mascarenhas, Fatemeh Mireshghallah, Hanyang Xu, Joon Kyung

Kim, Lavanya Karthikeyan, Parsa Assadi, Prannoy Pilligundla, Rohan Mahapatra, Sean Kinzer,

Shu-Ting Wang, and Soroush Ghodrati (I would also include Dr. Kazem Taram and Mojan

Javaheripi as honorary members), as well as the former graduates, Dr. Amir Yazdanbakhsh, Dr.

Divya Mahajan, Dr. Hardik Sharma, and Prof. Jongse Park. I will miss all the fun, the countless

xiv

hours of stimulating discussions that led to awesome research ideas, and the sleepless nights we

spent together before the deadlines. I look forward to continuing our collaboration even after

graduation. A special thanks to Jongse for hosting me at KAIST during the pandemic.

I thank many of my Korean friends in San Diego for making me feel home. I will miss

the barbeque parties with Jonghun Park, Joon Kyung Kim, Kyung Soo Kim, Mingyu Woo, Yujin

Park, and Yun Joon Soh. I will also miss taking strolls around the Geisel library with Juno Kim.

In particular, I thank Jaeyoung Kang without whom I might have starved during the pandemic. I

am also grateful to everyone at San Diego Calvary Korean Church for their love. While I cannot

list all of them, I thank all my friends accross the world for always cheering and praying for me.

I would also like to give thanks to many staffs at UCSD. Julie Conner in the Department

of Computer Science and Engineering has been very supportive to me despite the countless

questions I bugged her with. Emily Stewart in the International Student and Programs Office

helped me with many difficult immigration issues that I faced over the years.

I feel deeply indebted to the people who encouraged me to pursue Ph.D. I thank Prof.

Seon Wook Kim for introducing me to the field of compiler optimization during my undergraduate

studies at Korea University. I also thank Prof. Sung-Jea Ko and Prof. Myo Taeg Lim at Korea

University for supporting me with reference letters to come to the United States for graduate

studies. I also thank Dr. Yeonbok Lee, Dr. Jonghun Lee, Dr. Shin-gyu Kim, Prof. Myungsun

Kim, Dr. Sukjin Kim, and Dongjin Koh at Samsung for helping me take my first step as a

researcher and encouraging me to pursue Ph.D. studies. I also thank the National Institute for

International Education (NIIED) for the financial support during the first two years of my studies.

I would like to extend my deepest gratitude to my family: my father, Chan Young Ahn;

my mother, Mi Sung Kim; my brother, Byung In Ahn; sister-in-law, Jinsil Kim; my nephew Woo

Rim Ahn; my in-laws, Jong Hee Lee, Youjung Cho, and Jaesang Lee. I feel very fortunate to

have such a wonderful family. Their love, patience, and support made it possible for me to be

here and I owe a lot to them.

Last but not least, I thank the love of my life, Hwajin Lee, without whom this dissertation

xv

would not have been possible and without whom none of this would matter. I thank my wife for

her patience, encouragement, and dedication. Her endless love and unwavering support even

during the most difficult times fueled me with the energy to soldier through the difficulties I

faced during my Ph.D. studies. I look forward to spending more time with her and creating many

wonderful memories throughout the rest of my life with her.

Chapter 2, in part, contains a re-organized reprint of the material as it appears in Interna-

tional Conference on Learning Representations (ICLR) 2020. Ahn, Byung Hoon; Pilligundla,

Prannoy; Yazdanbakhsh, Amir; Esmaeilzadeh, Hadi. The dissertation author was the primary

investigator and author of this paper.

Chapter 3, in part, contains a re-organized reprint of the material as it appears in Confer-

ence on Machine Learning and Systems (MLSys) 2020. Ahn, Byung Hoon; Lee, Jinwon; Lin,

Jamie Menjay; Cheng, Hsin-Pai; Hou, Jilei; Esmaeilzadeh, Hadi. The dissertation author was the

primary investigator and author of this paper1.

Chapter 4, in part, contains a re-organized reprint of the material as it appears in Design

Automation Conference (DAC) 2022. Ahn, Byung Hoon; Kinzer, Sean; Esmaeilzadeh, Hadi.

The dissertation author was the primary investigator and author of this paper.

Chapter 5, in part, contains a re-organized reprint of the material as it appears in IEEE

Micro 2022. Kim, Joon Kyung; Ahn, Byung Hoon; Kinzer, Sean; Ghodrati, Soroush; Mahapatra,

Rohan; Yatham, Brahmendra; Wang, Shu-Ting; Kim, Dohee; Sarikhani, Parisa; Mahmoudi,

Babak; Mahajan, Divya; Park, Jongse; Esmaeilzadeh, Hadi. The dissertation author was the

co-investigator and co-author of this paper.

1Qualcomm Technologies, Inc. (“QTI”) grants Byung Hoon Ahn (“Licensee”) a limited, revocable, non-
transferable, non-exclusive, royalty and fee free copyright license to copy and reproduce, in whole or in part, the
paper entitled “Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices”
published in MLSys 2020 along with any supplemental material provided with the paper (“Content”) as part of
Licensee’s Ph.D. thesis submission, provided that the Content is cited as belonging to Qualcomm Technologies,
Inc., has the appropriate copyright notice as a footnote and is only disclosed to Licensee’s PH.D. school Director
and to the academic reviewers of the thesis. Any further disclosure of the Content will require additional permission
or license. The Content remains the exclusive property of QTI and no other rights are granted.

xvi

VITA

2015 Bachelor of Engineering, Korea University

2020 Master of Science, University of California San Diego

2022 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, and Hadi Es-
maeilzadeh, “Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks
for Edge Devices,” MLSys, 2020

Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh, “Chamele-
on: Adaptive Code Optimization for Expedited Deep Neural Network Compilation,” ICLR, 2020

Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmendra Yatham,
Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman Ebrahimi, Nam Sung Kim, Cliff Young,
and Hadi Esmaeilzadeh, “Planaria: Dynamic Architecture Fission for Spatial Multi-Tenant Ac-
celeration of Deep Neural Networks,” MICRO, 2020

Byung Hoon Ahn, DoangJoo Synn, Masih Derkani, Eiman Ebrahimi, and Hadi Esmaeilzadeh,
“Protopia AI: Taking on the Missing Link in AI Privacy and Data Protection,” NeurIPS Demon-
strations, 2021

Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh, “Glimpse: Mathematical Embedding
of Hardware Specification for Neural Compilation,” DAC, 2022

Joon Kyung Kim, Byung Hoon Ahn, Sean Kinzer, Soroush Ghodrati, Rohan Mahapatra, Brah-
mendra Yatham, Shu-Ting Wang, Dohee Kim, Parisa Sarikhani, Babak Mahmoudi, Divya
Mahajan, Jongse Park, and Hadi Esmaeilzadeh, “Yin-Yang: Programming Abstraction for Cross-
Domain Multi-Acceleration,” IEEE Micro Special Issue on Compiling for Accelerators, 2022

xvii

ABSTRACT OF THE DISSERTATION

AI for Optimized Execution of AI

by

Byung Hoon Ahn

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Hadi Esmaeilzadeh, Chair
Professor Steven Swanson, Co-Chair

In the recent decade, Intelligent Systems–advanced computer systems that can make

useful predictions or decisions based on observations–have become increasingly ubiquitous:

from personal assistants to self-driving cars. These intelligent systems are incarnations of

Artificial Intelligence (AI), powered by the recent advances in Deep Neural Networks (DNNs)

that now exhibit superhuman performance in many tasks such as image classification, game

playing, and protein-folding problems. Such astounding performance of DNNs depend on two

key ingredients: Data and Computing Power. In the current era of big data, the rate of data

generation has reached an overwhelming level that is beyond the capabilities of conventional

xviii

computing systems. The hardware design has gone through a significant change and has exploded

in diversity to cope with the rate of data generation and the computational intensity of DNNs.

Nevertheless, developing Compilers to optimize the code for them remains an open challenge.

DNNs have made significant strides in context-sensitive natural language translation.

These advances can be seen as an opportunity to utilize DNNs for the compilation of DNNs,

themselves, which in fact is a series of translation tasks. To this end, the dissertation begins by

introducing an effort to integrate deep reinforcement learning to improve the compilers’ capability

to adapt to unseen search spaces in code optimization. This marks an initial step in leveraging AI

for Optimized Execution of AI on commodity platforms. Although the exciting results from the

work shows the potential for leveraging machine intelligence for compilation, it does not fully

justify relinquishing the swathe of conventional optimization techniques and the foundational

algorithms that have been curated with human ingenuity over decades. As such, the dissertation

also explores the other end of the spectrum–Foundational Algorithms–to tackle the problem of

memory footprint in neural execution. This work achieves memory-optimal scheduling building

on dynamic programming, a well-known foundational algorithm in computer science. Having

observed that both worlds–AI and Foundational Algorithms–can bring significant benefits to

compiler optimization, this dissertation culminates to an ambitious effort to take advantage of the

best of both worlds. The dissertation presents Hybridization of AI and Foundational Algorithms

for optimized execution of AI, where we utilize mathematical embeddings to extract core

information from the hardware specification while using meta learning to fuse those information

into compilers for improved compilation performance.

Intelligent systems comprise components from various domains that are not limited to

DNNs. Therefore, it naturally makes Cross-Domain Multi-Acceleration our next step. To this

end, this dissertation devises a set of abstractions for various application domains and their

hardware, then a virtual machine for execution of end-to-end applications. The work sets the

foundations for cross-domain multi-acceleration to expand the scope of the aforementioned

AI-enabled compilation techniques to the end-to-end intelligent systems.

xix

Chapter 1

Introduction

In the recent decade, Intelligent Systems–advanced computer systems that can make

useful predictions or decisions based on their observations–have become increasingly ubiqui-

tous. For example, machine translation [68], smart factory [47], home robots [9, 149], personal

assistants [8, 18, 66, 148], surveillance [12], and self-driving cars [164, 169] are no longer the

figment of human imagination but are real services and products that have deeply penetrated into

our daily lives (Figure 1.1). These intelligent systems are incarnations of Artificial Intelligence

(AI), and are powered by the recent advances in Deep Neural Networks (DNNs). To demon-

strate, Figure 1.2 illustrates the software architecture of the Tesla’s Full Self-Driving (FSD)

pipeline [169]. Vision includes various network DNN models and components such as Reg-

Net [139] and Bi-directional Feature Pyramid Network [168]. In fact, their more recent updates

and future plans include Spatial Attention [177] and Neural Radiance Fields (NeRF) [115]. Also,

the Neural Net Planner includes a Monte-Carlo Tree Search (MCTS) based algorithm similar to

that of AlphaGo [160]. Similarly, many other intelligent systems also rely on DNNs that exhibit

superhuman performance in many tasks such as image classification [75], game playing [160],

and protein-folding problems [90].

1

Self-driving carsPersonal assistants

Home robotsSmart factory

Surveillance

Translation

Figure 1.1. Examples of Intelligent Systems: translation, smart factory, home robots, personal
assistants, surveillance, and self-driving cars.

1.1 Background

Inception of large-scale datasets and hardware advances.

Such astounding performance of DNNs depend on two key ingredients: Data and

Computing Power. In current era of big data, the rate of data generation has reached an

overwhelming level that is beyond the capabilities of the conventional computing systems [108].

In fact, large-scale datasets such as ImageNet [48], WMT [25], and LibriSpeech [133] are now

readily available to train large DNN models and are growing to extreme scales. On the other

hand, hardware has also experienced significant changes in the recent decade. Insatiable demand

for computation in DNN applications and the Dark Silicon era [51] have coincided calling

for innovations with less support from the technological advancements (Moore’s Law [151]

and Dennard Scaling [49]) [80]. In fact, both the industry [11, 14, 56, 88] and the academic

community [36, 37, 60, 64, 72, 89, 134, 157] have opted for acceleration. Both communities have

made large strides and innovations in the DNN hardware design in the Golden Age of Domain-

Specific Architectures [78]. In fact, the Cambrian explosion of domain-specific accelerators now

2

Figure 1.2. The final architecture of Tesla’s FSD pipeline [Source: Tesla AI Day 2021 [169]].

enable training of large-scale deep learning models in order of minutes, over what used to be

days a few years ago [114].

Cambrian explosion of deep neural networks.

Another important trend in the past decade is the unprecedented growth in the research

community for deep neural networks. As shown in the Annual Report from Stanford Univer-

sity [189], ”from 2010 to 2021, the total number of AI publications doubled, growing from

162,444 in 2010 to 334,497 in 2021.” (Figure 1.3) This translates to around 916 AI publications

per day in 2021. Many of these papers either propose new model architectures or build on the

foundational models to solve real-world problems. This fast growth in diversity of deep learning

models is a testament to the wide-adoption of DNNs. On the other hand, such diversity of DNNs

raises a question to the computer architects and compiler engineers on how to optimize the

execution of DNNs.

3

Figure 1.3. Number of AI publications in the world, 2010–21 [Source: AI Index Annual Report
2022 by Stanford University [189]].

Deep learning compilers.

Given the increasing diversity of deep learning models and the Cambrian explosion of

DNN hardware, it becomes imperative that we generate efficient code for neural execution. The

community initially relied on hand-optimized kernels such as NVIDIA cuDNN or Intel MKL that

serve as backend for popular deep learning libraries such as TensorFlow [1] and PyTorch [135].

However, the complexity of the tensor operations in DNNs and the volatility of algorithms call for

developing Automated Compilation Frameworks that bridge the gap between the deep learning

models (SW) and the deep learning accelerators (HW). To this end, industry and academia

have developed deep learning compilers such as TVM [34], TensorComprehensions [170],

Glow [143], TensorFlow XLA [146], and Intel nGraph [45]. These compilers benefit from

various optimization to achieve or surpass the code performance of hand-optimized libraries [104].

Nevertheless, there are still many open challenges in developing deep learning compilers.

4

int sum(int a, int b) {
return a + b;

}

define i32 @sum(i32, i32) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%5 = load i32, i32* %3, align 4
%6 = load i32, i32* %4, align 4
%7 = add nsw i32 %5, %6
ret i32 %7

}

_sum:
.cfi_startproc

%bb.0:
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset %rbp, -16
movq %rsp, %rbp
.cfi_def_cfa_register %rbp
movl %edi, -4(%rbp)
movl %esi, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
popq %rbp
retq
.cfi_endproc

x N

Figure 1.4. Example compiling a function int sum(int a, int b) with LLVM [99].

1.2 AI-Enabled Compilation for Intelligent Systems

Opportunities in integrating AI into compilers.

Figure 1.4 demonstrates an example compiling a function int sum(int a, int b)

with LLVM [99]. Input to the compiler is a code in C which is passed to the front-end of the

compiler (e.g., clang) to be transformed into LLVM Intermediate Representation (IR). Then,

the middle-end of the compiler applies various LLVM target-independent optimizations such as

loop invariant code motion and common subexpression elimination. Finally, the back-end of

the compiler applies various target-dependent optimization as well as legalization, instruction

selection, scheduling, and register allocation. The overall compilation process and the code

optimization can be viewed as a series of transformations from the source code to the final output

binary. Recently, however, the research community has made significant strides in context-

sensitive natural language translation [171]. These advances can be seen as an opportunity to

utilize DNNs for the compilation of DNNs, themselves, which in fact is a series of translation

tasks.

5

AI-enabled compilation of deep neural networks.

Code optimization in deep learning compilers is a time-consuming process that navigates

through an immense search space. For example, black-box optimization for deep learning kernels

has around 1010 possibilities, and it may take over 10 hours to compile even a relatively small

model such as ResNet-18 [75]. In fact, scheduling of layers permits all topological orderings

of layers in the computational graph of DNNs, making the task of finding memory-optimal

schedule to have exponential complexity. While the application of AI to solve these problems

look appealing on surface, it not only requires using the right algorithms but also determining

whether AI is really necessary. To this end, this dissertation explores the both ends of the

spectrum (AI algorithms vs Foundational algorithms) then propose a hybridization of the two to

develop the AI-Enabled Compilation of Deep Neural Networks.

AI-enabled compilation of end-to-end intelligent systems.

Accelerating DNNs have a significant impact on the overall latency and efficiency of

running intelligent systems. However, the algorithms that constitute intelligent systems span

domains beyond just DNNs. For example, even the above mentioned FSD pipeline in Figure 1.2

also includes many non-DNN components. To accelerate and optimize the end-to-end intelligent

systems, the solutions that have been developed for DNN code optimization would not suffice.

Nevertheless, each domain and their hardware comes with its own vertically-specialized domain-

specific stack which by design is difficult to conjugate with other stacks. This makes it difficult

to reuse the insights from the AI-enabled compilation of deep neural networks to other domains

or to expand the scope of the optimization to other domains. To this end, this dissertation builds

the foundations for AI-Enabled Compilation of Intelligent Systems by developing a horizontal

system stack that can break the vertical barriers of the specialized domain-specific stacks to

enable Cross-Domain Multi-Acceleration.

6

AI for Optimized Execution of AI

AI
Algorithms

Foundational
Algorithms

Chapter 2:
CHAMELEON

Chapter 3:
SERENITY

Chapter 4:
Glimpse

Other Domains (e.g., DSP,
Robotics, Analytics)

Chapter 5:
Yin-Yang

Cross-Domain
Multi-Acceleration

AI for DNN
Compilation

Foundational Algorithms
for DNN Compilation

Hybridization
of AI and

Foundational
Algorithms

Programming Abstractions for
Cross-Domain Multi-Acceleration

Figure 1.5. Overview of the dissertation.

1.3 Thesis Contributions

This section provides an overview of this dissertation. The dissertation first dive into

AI-enabled compilation of deep neural networks, then the last part of the dissertation proposes

novel programming abstractions to expand the scope of AI-enabled compilation to the end-to-end

intelligent systems (Figure 1.5).

Chapter 2: AI for optimized execution of AI.
Adaptive code optimization for expedited deep neural network compilation.

We provide an adaptive code optimization framework that takes advantage of AI al-

gorithms. We present CHAMELEON which can significantly reduce the compilation time and

offer automation while avoiding dependence to hand-optimization, enabling far more diverse

tensor operations in the next generation deep learning models. The framework comprises three

key components: Adaptive Exploration module that utilizes reinforcement learning to adapt

to unseen design space of new networks to reduce search time yet achieve better performance,

Adaptive Sampling algorithm that utilizes clustering to adaptively reduce the number of costly

hardware measurements, and Sample Synthesis module that takes a domain-knowledge inspired

7

approach to find configurations that would potentially yield better performance. Importantly, the

work marks an initial effort to bring an AI algorithm–reinforcement learning–to the realm of

optimizing compilers for neural networks. Chapter 2 describes this effort in more detail.

Chapter 3: Foundational algorithms for optimized execution of AI.
Memory-aware scheduling of irregularly wired neural networks for edge devices.

We provide a memory-optimization framework that utilizes a foundational algorithms

in computer science. We present SERENITY which can find memory-optimal schedules for

neural execution. The framework automatically schedules the nodes of the deep neural network

computational graph to minimize the memory footprint to meet the limitations of the edge devices.

The framework includes three key components: Dynamic Programming-based Scheduler that

takes advantage of the signatures from the repeated subpaths while searching for optimal

schedules, Adaptive Soft Budgeting technique that performs a light-weight meta-search to

find the appropriate memory budget for pruning suboptimal paths for a signficantly faster

scheduling, and Identity Graph Rewriting that, similar to strength reduction in modern compilers,

exchanges subgraphs with mathematically equivalent counterparts that can lead to a lower

memory footprint. This work shows that foundational algorithms or compiler heuristics based

on human ingenuity can even yield optimal solutions in deep learning compiler, where optimal

solutions are commonly unattainable. Chapter 3 describes the proposed solution in more detail.

Chapter 4: Hybridization of AI and foundational algorithms for optimized execution of
AI. Mathematical embedding of hardware specification for neural compilation.

We provide a Bayesian optimization framework for code optimization that takes a hybrid

approach between AI and foundational algorithms. The proposed framework Glimpse transforms

a previously blind black-box optimization process into a gray-box optimization which takes

hints from a mathematical embedding of hardware specification for faster neural compilation.

The work introduces two key ideas: Blueprint that encodes key architectural information of

the hardware specified in the public data sheet, and a hardware-aware optimization framework

called Glimpse that takes into account the information present in the Blueprint. Importantly,

8

Blueprint builds on a widely used mathematical embedding algorithm: Principal Component

Analysis (PCA), and the components in Glimpse (Prior Distribution Generator, Hardware-

Aware Exploration, and Hardware-Aware Sampling) build on modern AI algorithms such as

meta-learning. This work serves a case study of how AI algorithms and foundational algorithms

can be assembled together seamlessly to improve deep learning compilation. Chapter 4 describes

the work in more detail.

Chapter 5: Expanding the scope to end-to-end intelligent systems.
Programming abstractions for cross-domain multi-acceleration.

As an effort to expand the scope of the compilation to the end-to-end intelligent systems,

we explore how applications that comprise multiple domains can be accelerated. This effort

includes two parts: devising Yin-Yang programming abstractions that breaks the vertical barriers

of the specialized domain-specific stacks, and developing XLVM: a dataflow virtual machine that

maps domain functions to best-fit accelerator capabilities. Overall, this work introduces the

foundational framework on top of which we can expand the scope of the AI-enabled compilation

(built on the learnings from Chapter 2–4) to the end-to-end intelligent systems. Chapter 5

describes the work in more detail and discusses the future directions.

9

Chapter 2

AI for Optimized Execution of AI

2.1 Adaptive Code Optimization for Expedited Deep Neural
Network Compilation

Achieving faster execution with shorter compilation time can foster further diversity and

innovation in neural networks. However, the current paradigm of executing neural networks

either relies on hand-optimized libraries, traditional compilation heuristics, or very recently

genetic algorithms and other stochastic methods. These methods suffer from frequent costly

hardware measurements rendering them not only too time consuming but also suboptimal. As

such, we devise a solution that can learn to quickly adapt to a previously unseen design space

for code optimization, both accelerating the search and improving the output performance. This

solution dubbed CHAMELEON1 leverages reinforcement learning whose solution takes fewer

steps to converge, and develops an adaptive sampling algorithm that not only focuses on the

costly samples (real hardware measurements) on representative points but also uses a domain-

knowledge inspired logic to improve the samples itself. Experimentation with real hardware

shows that CHAMELEON provides 4.45×speed up in optimization time over AutoTVM, while also

improving inference time of the modern deep networks by 5.6%.

1Chameleon is an animal that is capable of Adapting to their environments which helps them survive. In our
work, CHAMELEON is an entity that Adapts to the variations in the design space and the distribution of the candidate
configurations, enabling expedited deep neural network compilation.

10

2.2 Introduction

The enormous computational intensity of Deep Neural Networks (DNNs) have resulted

in developing either hand-optimized kernels, such as NVIDIA cuDNN or Intel MKL that serve

as backend for a variety of programming environment such as TensorFlow [1] and PyTorch [135].

However, the complexity of the tensor operations in DNNs and the volatility of algorithms, which

has led to unprecedented rate of innovation [100], calls for developing automated compilation

frameworks. To imitate or even surpass the success of hand-optimized libraries, recent research

has developed stochastic optimization passes: for general code, STOKE [152], and neural

network code, TVM [34] and TensorComprehensions [170]. TVM and TensorComprehensions

are based on random or genetic algorithms to search the space of optimized code for neural

networks. AutoTVM [35] builds on top of TVM and leverage boosted trees [33] as part of

the search cost model to avoid measuring the fitness of each solution (optimized candidate

neural network code), and instead predict its fitness. However, even with these innovations the

optimizing compilation time can be around 10 hours for ResNet-18 [75], and even more for

deeper or wider networks.

Since the general objective is to unleash new possibilities by developing automatic opti-

mization passes, long compilation time hinders innovation and could put the current solutions

in a position of questionable utility. To solve this problem, we first question the very statistical

guarantees which the aforementioned optimization passes rely on. The current approaches are

oblivious to the patterns in the design space of schedules that are available for exploitation, and

causes inefficient search or even converges to solutions that may even be suboptimal. Also, we

notice that current approaches rely on greedy sampling that neglects the distribution of the candi-

date solutions (configurations). While greedy sampling that passively filter samples based on the

fitness estimations from the cost models work, many of their hardware measurements (required

for optimization) tend to be redundant and wasteful. Moreover, we found that current solutions

that rely on greedy sampling lead to significant fractions of the candidate configurations being

11

redundant over iterations, and that any optimizing compiler are prone to invalid configurations

which significantly prolongs the optimization time. As such, this work sets out to present an

Adaptive approach dubbed CHAMELEON to significantly reduce the compilation time and offer

automation while avoiding dependence to hand-optimization, enabling far more diverse tensor

operations in the next generation DNNs. We tackle this challenge from two fronts with the

following contributions:

1. Devising an Adaptive Exploration module that utilizes reinforcement learning to adapt to

unseen design space of new networks to reduce search time yet achieve better performance.

2. Proposing an Adaptive Sampling algorithm that utilizes clustering to adaptively reduce

the number of costly hardware measurements, and devising a domain-knowledge inspired

Sample Synthesis to find configurations that would potentially yield better performance.

Real hardware experimentation with modern DNNs (AlexNet, VGG-16, and ResNet-18)

on a high-end GPU (Titan Xp), shows that the combination of these two innovations, dubbed

CHAMELEON, yields 4.45×speedup over the leading framework, AutoTVM.

2.3 Challenges in Deep Neural Network Compilation

The general life-cycle of deep learning models from its birth to deployment comprises

of two major stages. First stage is the designing and the training of a deep learning model by a

research scientist, with the primary goal of achieving the highest feasible accuracy. Then, with a

general demand to enable the intelligence on a wide range of devices (from mobile CPUs in the

edge to cloud-scale GPUs), the second stage has emerged for the deployment of the pre-trained

deep learning model to a target hardware by a deployment engineer. These stages are each

iterative processes: research scientists iterate until it reaches the target performance in terms of

accuracy whereas the deployment engineers iterate until the performance in terms of inference

speed with a given hardware satisfies the given constraints. Importantly, these two stages are

12

Target-
Independent
Passes

Target-
Dependent
Passes

Optimizing
Compiler

Programmer Frontend Compiler

DNN
Model

Optimized
Code

Code
Template

Design
Space

Hardware
DΘ

τ
τ(Θ*)

M Hardware
Measurement

Figure 2.1. Overview of our model compilation workflow. Highlighted in green is the scope of
this work and where CHAMELEON comes into play.

most often separate processes, and this paper mainly focuses on the second stage (deployment)

of the cycle with an overarching goal of accelerating the overall deployment cycle by reducing

the optimizing compilation time without compromising the performance of the output code.

2.3.1 Compilation Workflow for Deep Neural Networks

Figure 2.1 illustrates how a compiler for DNNs takes an input model M and emits

an optimized code τ(Θ∗) that runs the model efficiently on a given hardware. This flow is

commensurate with TensorComprehensions [170] and TVM [34], using which we implement

CHAMELEON that is available as a separate package for adoption in even other frameworks. The

first phase of the workflow is the frontend compiler which performs the translation from the

compiler and applies target-independent and white-box target-dependent optimizations that do

not incorporate a measure of runtime. Target-independent passes transform the input DNN model

without specificity to the target hardware. Operator fusion and data layout transformation in

TVM are some examples of these passes, which lie in the same category as dead-code elimination

or loop-invariant code motion in GCC [162] or LLVM [99]. Target-dependent passes, on the

other hand, the compiler takes the hardware architecture (target) into account while optimizing

the program; however, this also does not actively leverage runtime measures. The last stage is a

black-box optimization pass, called optimizing compiler, that given a measure of performance

at runtime from the hardware can further optimize the code. CHAMELEON falls in this class

by offering an optimizing compiler that adapts to different design space to be more swift in

optimizing deep neural networks compared to conventional approaches.

13

2.3.2 Optimizing Compiler for Deep Neural Networks

Optimizing compilers [92] usually take a black-box approach and use hardware measure-

ments to configure the optimization based on a measure of fitness f of each solution. In order

to make the problem tractable, the optimizing compilers for deep neural networks reduce the

problem down to tuning the knobs θ for the output code template τ , and can be formulated as:

Θ∗ = argmax
Θ

f(τ(Θ)), for Θ ∈ DΘ. (2.1)

A combination of assignment to the knobs is said to be a configuration Θ= (θ1, θ2, ..., θn) while

the dimensions of the design space DΘ is defined by the knobs. As such, in Equation 2.1, an

optimizing compiler starts from a code template τ for each layer, and makes use of a search

algorithm and real hardware measurements to efficiently find the best configuration Θ∗ ∈ DΘ. In

this context, there are three variables that determine the effectiveness of the optimizing compiler:

(1) a large and diverse enough design space that covers a variety of transformations, (2) an

effective search algorithm to adequately navigate this space, and (3) a mechanism to cut down

the number of costly hardware measurements that check the fitness of a solution. Table 2.1 lists

the knobs for performing convolution on a GPU, where it is crucial that the code (1) maximizes

data reuse, (2) uses the shared memory wisely, and (3) minimizes bank conflicts. The knobs

optimize various aspects of the execution, including tiling (e.g., tile x, tile y, . . .), unrolling (e.g.,

auto unroll max step and unroll explicit), and these knobs define a design space with 1010 possibilities.

Given the vastness of the design space, the remaining challenges are designing an effective

search algorithm and designing a mechanism that reduces the cost of each step in the search (i.e.

reducing the need to measure the hardware).

2.3.3 Challenges in Deep Neural Network Compilation

As shown in Figure 2.2, optimizing compilation for DNNs may still take an eon even

with the advances from prior works [34, 35, 170] With active research [7, 40, 70, 114, 185,

14

Ta
bl

e
2.

1.
K

no
bs

in
th

e
de

si
gn

sp
ac

e
to

op
tim

iz
e

co
nv

ol
ut

io
n.

K
N

O
B

S
D

E
FI

N
IT

IO
N

til
e

f,
til

e
y,

til
e

x
Fa

ct
or

s
fo

rt
ili

ng
an

d
bi

nd
in

g
nu

m
be

ro
ffi

lte
rs

he
ig

ht
,a

nd
w

id
th

of
fe

at
ur

e
m

ap
s.

til
e

rc
,t

ile
ry

,t
ile

rx
Fa

ct
or

s
fo

rt
ili

ng
re

du
ct

io
n

ax
is

su
ch

as
nu

m
be

ro
fc

ha
nn

el
s,

he
ig

ht
,a

nd
w

id
th

of
fil

te
rs

.
au

to
un

ro
ll

m
ax

st
ep

T
hr

es
ho

ld
of

nu
m

be
ro

fs
te

ps
in

th
e

lo
op

to
be

au
to

m
at

ic
al

ly
un

ro
lle

d.
un

ro
ll

ex
pl

ic
it

E
xp

lic
itl

y
un

ro
ll

lo
op

,t
hi

s
m

ay
le

tc
od

e
ge

ne
ra

to
rt

o
ge

ne
ra

te
pr

ag
m

a
un

ro
ll

hi
nt

.

15

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
Convolution Layer

0.0H

0.5H

1.0H

1.5H

2.0H

2.5H

3.0H

Op
tim

iza
tio

n
Ti

m
e

(H
ou

rs
)

78
.5

7%
87

.6
4%

82
.0

0%
84

.4
6%

88
.4

5%
87

.2
4%

85
.0

7%
86

.4
4%

84
.1

7%
88

.6
2%

79
.3

2%
87

.4
3%

ResNet-18 Optimization Time
Physical Measurement
Search Algorithm

Figure 2.2. AutoTVM optimization time breakdown for ResNet-18 on Titan Xp.

186] that has been able to cut down the training time to only few hours [70, 185] and even

minutes [7, 186] on big models (e.g., ResNet-50 [75]) for ImageNet, it renders the optimizing

compilation time of the current solutions seem even more prominent. Especially, since the

above-mentioned compilers have been integrated to the deep learning pipelines of major players

in the industry [107, 143, 170], many users of these pipelines including the deployment engineers

must go through the compilation workflow depicted in Figure 2.1 numerous times. Therefore,

current long compilation time can be a hindrance to deploying DNN in various hardware, hence

a major bottleneck in enabling intelligence on wider range of target platforms.

Furthermore, as we explore various neural topologies [178, 181] for better performance

as illustrated in [4], even deeper or wider networks [167, 188], and new operations [81] to

achieve higher performance [100], we are forced to optimize the networks more frequently. The

long optimization times are multiplied with such trend, leaving the practical utility of the current

compiler solutions to question. As such, the primary goal of this work is reducing the optimizing

compilation time to meet the immediate needs of the industry for expedited DNN compilation to

foster further diversity and innovation in designing DNNs.

Such long optimization time results from the inefficiency of simulated annealing which

(while it stochastically guarantees a reasonable solution after huge number of iterations) fails

16

to capture the patterns in the design space that can be exploited during the search. On the

other hand, we can see in the figure that majority of the optimization time is spent on reaching

for measurements on real hardware that is used as a feedback for the aforementioned search.

Also, current approach even suffers from numerous invalid configurations that not only wastes

the limited hardware measurement budget that the compiler starts with, but also incurs serious

overhead to reset the target hardware for subsequent hardware measurements. As such, it

is important that a sampling mechanism that selects potential configurations for hardware

measurements to be smarter to ensure that each measurement is maximizing the chances of

achieving a good solution and that it evades the invalid configurations. However, the current

approaches rely on greedy sampling that passively sample based on the estimations from the cost

models. This not only has a tendency to overfit but also neglect that solutions are distributed

non-uniformly and that there are numerous invalid configurations.

2.4 CHAMELEON: Adaptive Code Optimization for Expedited
Deep Neural Network Compilation

As discussed in Section 2.3, current solutions fall short of providing a swift optimization

framework for optimizing emergent deep neural networks, because of the futility of the search in

adapting to the design space from a random walk based search algorithm and the inefficiency of

the physical hardware measurements from the greedy sampling. Therefore, developing a new

framework that can overcome current challenges to unfetter neural network innovation from a

prolonged optimization times can be boiled down to two problems: 1 improving the search

algorithm to better adapt to the design space, and 2 improving the sampling algorithm to both

better adapt to the distribution of the solutions and decrease the possibility of running into invalid

configurations. As such we make two innovations in the optimizing compiler for deep neural

networks to develop CHAMELEON by applying reinforcement learning to the search that can adapt

to new design spaces (Adaptive Exploration) and devising an Adaptive Sampling that replaces

17

A
da
pt
iv
e

Ex
pl
or
at
io
n

M
od
ul
e

A
da
pt
iv
e

Sa
m
pl
in
g

M
od
ul
e

H
ar

dw
ar

e

kn
ob

 n
-1

kn
ob

 n

……

C
od

e
Te

m
pl

at
e

De
si

gn
Sp

ac
e
D

Θτ
Q

ue
ry

C
on

fig
s
SΘ

XX XX
X

X X

XX XX
XXX

X
XX X

X
XXX X

X X
X XX

X

XX
X

Sa
m

pl
ed

C
on

fig
s
SΘ

G

en
er

at
ed

C
od

es

τ(Θ
)

Θ
C

on
fig

f
Ru

nt
im

e
M

ea
su

re
m

en
t

(to
 u

pd
at

e
C

os
t M

od
el

)

G
en

er
at

ed
C

od
e

<
/ >

<
/ >

<
/ >

<
/ >

(to
 u

se
 a

s
te

m
pl

at
e

fo
r c

od
e

ge
ne

ra
tio

n)

Co
de

G
en
er
at
or

Co
st

M
od
el Es

tim
at

ed
Ru

nt
im

e

Fi
gu

re
2.

3.
O

ve
ra

ll
de

si
gn

an
d

co
m

pi
la

tio
n

ov
er

vi
ew

of
th

e
C

H
A

M
E

L
E

O
N

.

18

the current greedy sampling.

2.4.1 Overall Design of Chameleon

Figure 2.3 outlines the overall design of our optimizing compiler, dubbed CHAMELEON,

and gives an overview of the optimizing compilation process. CHAMELEON takes code template

τ for each layer in the network and the corresponding design space DΘ as its input, and

iteratively optimizes the code for configuration Θ to finally output τ(Θ∗). The proposed Adaptive

Exploration maneuvers the design space while using a cost model as a proxy for hardware

measurements to the output set of candidate configurations SΘ. These configurations are then

sampled with Adaptive Sampling so that the sampled configurations S′
Θ subsume the initial

candidate configurations while reducing its number significantly. The sampled configurations S′
Θ

are then passed to the code generator which combines the input template τ and the configurations

S′
Θ to create a set of τ(Θ) that are sent to real hardware for runtime measurements. Runtimes

from the hardware are used as the measure of fitness f and update the cost model to enhance the

exploration of the subsequent iterations. After multiple iterations, τ(Θ∗) with the best fitness f

(shortest runtime) is selected as an output for the layer.

2.4.2 Adaptive Exploration: Learning about the Unseen Design Space to
Expedite Convergence of Optimization

As stated in Section 2.3, the current state-of-the-art approach [35] that leverages simulated

annealing relies on the stochastic guarantees of its random walks. Therefore, the current approach

requires numerous iterations of exploration to converge to a reasonable solution causing long

compilation hours, thus insufficient to enable disruptive innovations in neural networks. We take

an inspiring approach that avoids naive dependence on the stochastic guarantee of simulated

annealing and leverage a technique that can learn to adapt to unseen design space to not only

accelerate convergence but also bring some performance gains. As such, we develop Adaptive

Exploration by leveraging Reinforcement Learning (RL), which is concerned with learning to

19

maximize reward given an environment by making good exploration and exploitation tradeoffs,

in our case maximizing fitness f of the explored configurations SΘ.

Reinforcement learning formulation.

Our RL-based Adaptive Exploration module uses an actor-critic style RL, where policy

network learns to emit a set of directions (vector of increment/decrement/stay) for each knob

in the design space that will increase f of the next configuration and the value network learns

the design space DΘ to estimate the value of the action. The first layer of these networks that

takes the current configuration Θ as input is shared to foster information sharing among the two

networks, and its output is fed into the subsequent layers the networks. These networks not only

learn the dependencies among the different knobs of the design space (which are interrelated)

that helps our module navigate through the design space but also lean the potential gains of the

modifications to the configurations.

…

…

Policy
Network

Config
Updater

Policy
Network

Config
Updater

Policy
Network

Config
Updater

1st Config 2nd Config nth Config

Search Step

Episode

Configs SΘ

… …

… …

Figure 2.4. Adaptive Exploration Module of CHAMELEON in action.

Learning procedure.

Having formulated the RL-based Adaptive Exploration Module, an iteration of our

optimization begins with a set of initial configurations and takes multiple search steps (episode)

for each of the configurations. As shown in Figure 2.4, the agent makes an action and applies it

to the configuration using configuration updater to get another configuration that potentially has

better f . After finishing multiple search steps in the episode, all configurations SΘ are evaluated

using a cost model, which its return values are used as a surrogate reward to update our agent, to

20

cluster

(a) VGG-16 4th layer

cluster

(b) ResNet-18 11th layer

Figure 2.5. Clusters of candidate configurations.

reduce the number of costly hardware measurements. By taking this approach, f of SΘ improves

as our module progresses through the episodes. In other words, by repeating multiple episodes

and iterations, our Adaptive Exploration Module gradually learns to locate good configurations.

2.4.3 Adaptive Sampling: Adapting to the Distribution to Reduce Costly
Hardware Measurements

Reducing number of costly hardware measurements.

After the exploration step (regardless of the exploration method), we observe that the

candidate configurations are clustered in subregions of the design space and these clusters are

non-uniformly distributed (Figure 2.5). We also find that, while the design space’s surface is

discrete and un-smooth, a large fraction of configurations within each cluster achieve similar

runtime (Figure 2.6). Utilizing these characteristics of the design space, we devise Adaptive

Sampling that can sample a new set of candidates, by adapting to the shape of the design space

and the non-uniformity of the distribution while leaving the performance of optimization intact.

We first leverage clustering algorithm to find configurations that are representative of each cluster;

the sampling module uses centroids as the representative configurations. Our Adaptive Sampling

21

Majority of the configurations displays
similar performance to the centroid

Figure 2.6. Cumulative Distribution Function (CDF) of the difference in runtime among the
configurations in the cluster.

iterates over a different number of clusters for their respective centroids and the L2 loss.

In the context of optimizing compiler, selecting the number of centroids for clustering

entails making the important tradeoff between selecting more centroids for better performance

or fewer centroids for a reduced number of hardware measurements. As such, we must devise a

method that would automatically make the tradeoff in a reasonable manner. We take advantage

of the decreasing trend in the aforementioned L2 loss as we increase the number of centroids, and

devise a Threshold-based Swift Meta-Search to determine the number of clusters. By setting the

threshold (hyperparameter) it allows the compiler to determine the point of diminishing return

(knee of the curve), inflection point beyond which fewer centroids may lead to performance

degradation and more clusters would prolong the optimization substantially. Overall, our

sampling curtails the number of hardware measurements so that it is just enough to subsume the

entire subspace of the candidate configurations.

Improving candidate configurations using sample synthesis.

While the above sampling algorithm significantly reduces the number of hardware

measurements compared to the conventional greedy sampling, without impacting the performance

of the output code, we are still left with a critical issue of redundancy among the candidate

22

configurations. We find that the exploration algorithm (regardless of the type) combined with

the greedy sampling frequently leads to redundancy among the candidate configurations over

different iterations of optimization due to the overfitting of the cost model from the greediness

of the sampling. Even though the exploration algorithm tries to explore unvisited regions of

the design space, these explored (not exploited) configurations are discarded due to the greedy

sampling which entirely depends on the cost model for its selections of the configurations.

Therefore, the current greedy sampling algorithm has its limitation in focusing the hardware

measurements to the same region over and over.

On the other hand, we find that from a code optimization point of view, we know that

many of the automated approaches for black-box optimization are prone to invalid configurations,

which results from too large a tile that goes over the input feature map boundary or errors during

memory accesses (cannot be solved analytically). These invalid configurations not only blow

the chances for better exploration but also leads to an extra optimization time overhead to reset

the physical hardware for the subsequent hardware measurement. We try to overcome both

of these limitations by devising Sample Synthesis. When our compiler runs into redundant

samples, the proposed synthesis method analyzes the candidate samples to determine the most

probable (most frequent = mode function) non-invalid choice for each knob to come up with a new

configuration. This statistical combination of the most frequent knob settings yield configurations

that combine the strengths of different knobs to converge to a better overall solution. In spirit, the

recombination (crossover) operator in genetic algorithms also tries to combine the best features

of the solutions with high fitness values. Algorithm 1 presents the integration of our Adaptive

Sampling and the Sample Synthesis.

2.4.4 Implementation Details

Architecture exploration for the adaptive exploration.

We use Proximal Policy Optimization (PPO) [154], a policy gradient that has been shown

to adapt to various problems and have good sample complexity, as our reinforcement learning

23

Algorithm 1. Adaptive Sampling and Sample Synthesis
1: procedure ADAPTIVESAMPLING(sΘ,vΘ) ▷ sΘ: candidate configs, vΘ: visited configs
2: new candidates← ∅, previous loss←∞
3: for k in range(8, 64) do
4: new candidates, clusters, L2 loss← K-means.run(sΘ,k)
5: if Threshold × L2 loss ≥ previous loss then break ▷ Exit loop at knee of loss curve
6: previous loss← L2 loss
7: end for
8: for candidate in new candidates do ▷ Replace visited config with new config
9: if candidate in vΘ then new candidates.replace(candidate, mode(sΘ))

10: end for
11: return new candidates ▷ Feed to Code Generator to make measurements on hardware
12: end procedure

algorithm. Since reinforcement learning could incur computational overhead that could prolong

the optimization time, we optimize the actor-critic networks through architecture exploration to

find good tradeoff for size of these networks (that determines the computational overhead) and

the optimization performance.

Design choices for the adaptive sampling.

We use a K-means Clustering to determine centroids of the configurations, because

K-means has been shown effective in practice and it only requires K, over error ϵ or radius in

other algorithms which are much more challenging to tune. For example, DBSCAN [53] or

mean-shift clustering [42] are very sensitive to the above hyperparameters. On the other hand, K

can be framed as a lever to balance the performance and speed of optimizing compilation which

abstracts away the aforementioned challenges, enabling the Threshold-based Swift Meta-Search

that identifies the optimal number of clusters.

Hyperparameter tuning.

Hyperparameter tuning is a very important task in machine learning-based tools and

models. As such, we present the hyperparameters we used for the evaluation in Table 2.2, which

its tuning took several days. For the hyperparameters in Table 2.3, we used the same set of values

that were used in the AutoTVM paper [35] in order to conduct a fair comparison or CHAMELEON.

24

Table 2.2. Hyper-parameters uses in CHAMELEON.

HYPERPARAMETER VALUE DESCRIPTION

iterationopt 16 number of iterations for optimization process
(equivalent to 1000 hardware measurements)

modeGBT xgb-reg type of loss used for cost model
bGBT 64 maximum batch size of planning in GBT [33]

cost model per iteration of optimization process
episoderl 128 number of episodes for reinforcement learning
steprl 500 maximum steps of one reinforcement learning episode

thresholdmeta 2.5 threshold used for meta-search in sampling

Table 2.3. Hyper-parameters uses in AutoTVM [35].

HYPERPARAMETER VALUE DESCRIPTION

Σ(bGBT) 1000 total number of hardware measurements
modeGBT xgb-reg type of loss used for cost model
bGBT 64 batch size of planning in GBT [33]
nsa 128 number of Markov chains in parallel simulated annealing

stepsa 500 maximum steps of one simulated annealing run

Table 2.4. Hyper-parameters used in CHAMELEON’s PPO [154] search agent.

HYPERPARAMETER VALUE

Adam Step Size 1×10−3

Discount Factor 0.9
GAE Parameter 0.99

Number of Epochs 3
Clipping Parameter 0.3
Value Coefficient 1.0

Entropy Coefficient 0.1

25

Table 2.5. Details of the DNN models used in evaluating CHAMELEON.

NETWORK DATASET NUMBER OF TASKS

AlexNet ImageNet 5
VGG-16 ImageNet 9

ResNet-18 ImageNet 12

Table 2.6. Details of the layers used in evaluating CHAMELEON.

NAME MODEL LAYER TYPE TASK INDEX

L1 AlexNet convolution 1
L2 AlexNet convolution 4
L3 VGG-16 convolution 1
L4 VGG-16 convolution 2
L5 VGG-16 convolution 4
L6 ResNet-18 convolution 6
L7 ResNet-18 convolution 9
L8 ResNet-18 convolution 11

Additionally, for parameters used in the Adaptive Exploration module, which is not

present in AutoTVM, we have tuned the hyperparameters using the set of layers presented in

Table 2.6. We emphasize, however, that the hyperparameters have been tuned offline before

the deployment of CHAMELEON, and the hyperparameters are not changed during the use of the

framework or the experimentation. So the tuning overhead is not part of the compilation after

the Adaptive Exploration module is tuned once before releasing the compiler to the deployment

practitioners.

2.5 Evaluation

We integrate CHAMELEON into TVM [34] to perform component evaluation and com-

pare with AutoTVM [35]. We first evaluate components of CHAMELEON in Section 2.5.1 and

Section 2.5.2 on set of convolution layers sampled from AlexNet [96], VGG-16 [161], and

26

Table 2.7. Details of the hardware used for evaluation of CHAMELEON.

SPECIFICATIONS DETAILS

GPU Titan Xp
Host CPU 3.4G Hz Intel Core i7

Main Memory 32GB 2400 MHz DDR3

ResNet-18 [75]. Then we provide end-to-end evaluation of CHAMELEON on both set of layers and

end-to-end deep models, in Section 2.5.3. Full details of the hardware used for the evaluation of

CHAMELEON are provided in Table 2.7.

2.5.1 Adaptive Exploration: Improving Efficacy of Search Algorithm

In the previous approach [35], authors have built a cost model to estimate fitness instead

of performing costly measurements on real hardware, then used simulated annealing to find

potentially optimal configurations. Figure 2.7(a) compares the number of search steps taken per

iteration to reach or converge to the solution in simulated annealing and Adaptive Exploration,

respectively. Overall, observation is that CHAMELEON’s Adaptive Exploration requires 2.88×less

search steps compared to simulated annealing to find good solution. This comes from the

ability of the reinforcement learning algorithm in Adaptive Exploration Module to (1) learn the

correlation between different dimensions, and (2) reuse information across different iterations,

instead of starting from scratch while naively relying on the stochastic guarantees of simulated

annealing process.

2.5.2 Adaptive Sampling: Reducing Number of Costly Hardware
Measurements

Figure 2.7(b) summarizes the effect of applying CHAMELEON’s Adaptive Sampling mod-

ule on simulated annealing and reinforcement learning based search. First, the results show that

using Adaptive Sampling helps the framework to make less hardware measurements regardless

of the search algorithm used. The Adaptive Sampling algorithm reduces the number of mea-

27

L1 L2 L3 L4 L5 L6 L7 L8 gm0.0x

1.0x

2.0x

3.0x

4.0x

5.0x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

2.
75

x
1.

63
x

3.
57

x
3.

85
x

3.
30

x
2.

49
x

3.
81

x
2.

46
x 2.
88

x

Adaptive Exploration

(a) Reduction in number of steps.

L1 L2 L3 L4 L5 L6 L7 L8 gm0.0x

1.0x

2.0x

3.0x

4.0x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

2.
08

x

2.
12

x

1.
71

x 2.
19

x

1.
65

x

1.
67

x 2.
12

x 2.
50

x

1.
98

x

2.
84

x

2.
05

x

2.
23

x

2.
40

x 2.
72

x

1.
92

x

2.
12

x 2.
55

x

2.
33

x

Adaptive Sampling
Simulated Annealing
Adaptive Exploration

(b) Reduction in number of hardware measurements.

Exploration
Time

Hardware
Measurements x IterationsAutoTVM

CHAMELEON x Iterations

Adaptive
Sampling

Time per iteration for AutoTVM

Adaptive
Exploration

Time per iteration
for CHAMELEON

CHAMELEON significantly reduces optimization time
(c) Illustration of how the each component of CHAMELEON reduces the
optimization time when compared to AutoTVM.

Figure 2.7. Component evaluation of CHAMELEON.

28

L1 L2 L3 L4 L5 L6 L7 L8 gm0.8x

0.9x

1.0x

1.1x

1.2x

1.3x

1.4x
Im

pr
ov

em
en

t o
ve

r A
ut

oT
VM

1.
15

x

1.
05

x

1.
02

x

0.
83

x

0.
85

x

0.
95

x

0.
95

x 1.
00

x

0.
97

x

1.
16

x

1.
18

x

1.
09

x

1.
05

x

1.
07

x

1.
18

x 1.
26

x

1.
11

x

1.
14

x

Simulated Annealing
Diversity Exploration
Adaptive Sampling

(a) Simulated Annealing.

L1 L2 L3 L4 L5 L6 L7 L8 gm0.8x

0.9x

1.0x

1.1x

1.2x

1.3x

1.4x

Im
pr

ov
em

en
t o

ve
r R

L

1.
04

x

1.
01

x 1.
05

x

0.
88

x 0.
96

x 1.
04

x

0.
91

x

1.
07

x

0.
99

x

1.
12

x

1.
27

x

1.
20

x

1.
03

x 1.
10

x

1.
25

x 1.
32

x

1.
26

x

1.
19

x

Reinforcement Learning

(b) Reinforcement Learning.

Figure 2.8. Comparison to AutoTVM’s diversity exploration.

surements by 1.98×when used with simulated annealing and 2.33×with reinforcement learning

One observation is that the Adaptive Sampling is more effective with reinforcement learning

search. This comes from the reinforcement learning agent’s capacity to better localize the search

to meaningful samples (exploitation) while still aiming to find good solution by making diverse

search (exploration).

Diversity exploration of AutoTVM aims to spread out the candidate configurations with

a regularizing effect that fosters uniform sampling. In contrast, our Adaptive Sampling uses a

clustering algorithm to perform more measurements on the regions with higher likelihood of

achieving better output performance, leading to a non-uniform sampling. While AutoTVM states

that diversity-aware selection had no meaningful impact on most of the evaluated workloads,

our Adaptive Sampling brings significant improvement as depicted in Figure 2.8. As shown,

Adaptive Sampling brings an average of 13.5% and 19.0% improvement on simulated annealing

and reinforcement learning, respectively.

29

2.5.3 Integration: Reducing Optimization Time and Output Inference
Time

CHAMELEON integrates two components into the workflow: RL-based Adaptive Explo-

ration (AE) and Adaptive Sampling (AS). This section compares the performance of CHAMELEON

with AutoTVM [35] that leverages Simulated Annealing (SA) for its exploration.

Layer evaluation.

Figure 2.9 shows the trend of output code performance of ResNet-18’s 11th layer over

number of hardware measurements during optimization. The figure illustrates that our Adaptive

Exploration finds better configurations than simulated annealing which results in better output

code performance, and the Adaptive Sampling reduces number of hardware measurements

significantly during optimization. Also, CHAMELEON’s Adaptive Exploration and Adaptive

Sampling working in tandem emits better code with shorter optimization time than others. As

such, Figure 2.10(a) compares optimization time and the performance of the output code in

CHAMELEON and AutoTVM to confirm the observation. CHAMELEON achieved 1.17×better perfor-

mance with 4.82×shorter optimization time compared to AutoTVM. Overall, the results suggest

that our Adaptive Exploration effectively maneuvers the design space, and Adaptive Sampling

reduces hardware measurements and the overall optimization time while even improving output

performance.

End-to-end evaluation.

Up until now, we have focused on evaluation with subset of layers. Now we continue

our discussion to the applicability of CHAMELEON to optimization of end-to-end deep neural

networks. Figure 2.10(b) shows that CHAMELEON spends 3.59×, 5.73×, and 4.28×less time

than AutoTVM to optimize AlexNet, VGG-16, and ResNet-18, respectively. On average, our

work shows 4.45×optimization time speedup while achieving up to 6.4% improvement in

terms of performance of output code. Inference time in Figure 2.10(b) illustrates the speedup

for optimized code. Raw numbers are available in Table 2.8 and Table 2.9. All in all, such

30

5.
26

5.
22

5.
19

4.
71

39
2

49
6

RE
LE

AS
E

Si
m

ul
at

ed
 A

nn
ea

lin
g

(A
ut

oT
VM

)

Ad
ap

tiv
e

Ex
pl

or
at

io
n

+
 A

da
pt

iv
e

Sa
m

pl
in

g
(C

H
A
M
EL

EO
N

)
Si

m
ul

at
ed

 A
nn

ea
lin

g
+

 A
da

pt
iv

e
Sa

m
pl

in
g

Ad
ap

tiv
e

Ex
pl

or
at

io
n

C
H
AM

EL
EO

N
 s

ig
ni

fic
an

tly
 re

du
ce

s
nu

m
be

r o
f h

ar
dw

ar
e

m
ea

su
re

m
en

ts
 (f

ro
m

 8
00

 to
 3

92
)

w
hi

le
 e

ve
n

im
pr

ov
in

g
th

e
ou

tp
ut

 c
od

e
pe

rfo
rm

an
ce

 (f
ro

m
 4

.7
1

to
 5

.2
6)

Fi
gu

re
2.

9.
L

ay
er

ev
al

ua
tio

n
of

ou
tp

ut
pe

rf
or

m
an

ce
fo

rR
es

N
et

-1
8’

s
11

th
la

ye
r.

31

L1 L2 L3 L4 L5 L6 L7 L8 gm0.0x

2.5x

5.0x

7.5x

10.0x

Sp
ee

du
p

ov
er

 A
ut

oT
VM 7.

59
x

3.
13

x 4.
91

x 5.
85

x
6.

36
x

3.
69

x
2.

88
x

6.
28

x
4.

82
x

Optimization Time

L1 L2 L3 L4 L5 L6 L7 L8 gm0.9x

1.0x

1.1x

1.2x

1.3x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

1.
18

x
1.

21
x

1.
21

x
1.

07
x

1.
09

x
1.

25
x

1.
17

x
1.

20
x

1.
17

x

Output Performance

(a) Layer evaluation.

AutoTVM

CHAMELEON

SA + AS
AE

AlexNet
VGG-16

ResNet-18
geomean0.95x

1.0x

1.05x

1.1x

1.15x

Im
pr

ov
em

en
t o

ve
r A

ut
oT

VM

1.
00

x

1.
00

x

1.
00

x

1.
00

x

1.
01

x

1.
00

x

1.
00

x

1.
00

x

1.
05

x

1.
03

x

1.
04

x

1.
04

x1.
06

x

1.
06

x

1.
04

x

1.
06

x

Output Performance

(b) End-to-end evaluation.

Figure 2.10. Layer and end-to-end evaluation. Dashed lines denote AutoTVM’s performance.

32

Ta
bl

e
2.

8.
E

nd
-t

o-
en

d
ev

al
ua

tio
n

of
th

e
op

tim
iz

at
io

n
tim

e
fo

rd
ee

p
ne

tw
or

ks
.

N
E

T
W

O
R

K
S

A
(A

ut
oT

V
M

)
A

E
S

A
+

A
S

A
E

+
A

S
(C

H
A

M
E

L
E

O
N

)

A
le

xN
et

4.
31

H
ou

rs
4.

06
H

ou
rs

1.
25

H
ou

rs
1.

20
H

ou
rs

V
G

G
-1

6
11

.1
8

H
ou

rs
8.

82
H

ou
rs

2.
57

H
ou

rs
1.

95
H

ou
rs

R
es

N
et

-1
8

9.
13

H
ou

rs
7.

39
H

ou
rs

2.
14

H
ou

rs
2.

13
H

ou
rs

Ta
bl

e
2.

9.
E

nd
-t

o-
en

d
ev

al
ua

tio
n

of
th

e
ou

tp
ut

pe
rf

or
m

an
ce

fo
rd

ee
p

ne
tw

or
ks

.

N
E

T
W

O
R

K
S

A
(A

ut
oT

V
M

)
A

E
S

A
+

A
S

A
E

+
A

S
(C

H
A

M
E

L
E

O
N

)

A
le

xN
et

1.
02

77
m

s
1.

02
07

m
s

0.
97

62
m

s
0.

96
73

m
s

V
G

G
-1

6
3.

98
29

m
s

3.
97

10
m

s
3.

87
33

m
s

3.
84

58
m

s
R

es
N

et
-1

8
1.

02
58

m
s

0.
98

97
m

s
0.

98
97

m
s

0.
98

31
m

s

33

improvements result from efficient Adaptive Exploration and the reduced number of hardware

measurements from Adaptive Sampling.

2.6 Related Works

CHAMELEON uniquely offers a solution that exclusively enables (i) Reinforcement Learn-

ing and (ii) Sampling in the context of (iii) Optimizing Compilers for neural networks. As such,

we discuss the related work from each of the three independent research directions.

Optimizing compilers.

TensorComprehensions [170] and TVM [34] use genetic algorithm and simulated an-

nealing to choose parameters of polyhedral optimization for neural networks. In a more general

context, some computing libraries [58, 175] make use of black box optimization and also

profiling-based compilation passes [31, 128] utilize runtime information to generate optimized

code. Later, AutoTVM [35] incorporates learning with boosted trees within the cost model

for TVM to reduce the number of real hardware measurements. While CHAMELEON is inspired

and builds on these prior works, unlike them, it is based on reinforcement learning for Adap-

tive Exploration, and Adaptive Sampling that leverages clustering to reduce the number of

measurements.

Reinforcement learning for hyper-parameter optimization.

There are a growing body of studies on using reinforcement learning to perform various

optimizations [61, 111, 112, 120, 126, 182] for a variety of objectives including hyper-parameter

optimization for neural networks. For instance, DeepArchitect [127] and NAS [195] use rein-

forcement learning to automate the process of designing deep neural network models and their

associated parameters. HAQ [174] and ReLeQ [50] use reinforcement learning to chose levels of

quantization for the layers of a given deep neural network. AMC [76] formulates neural network

compression as a RL problem. [132] combined RL with graph neural networks and genetic

algorithms to optimize DNN execution. Our work exclusively explores a different problem, that

34

is optimizing compilers using reinforcement learning.

Sampling algorithms for learning.

Active learning is a broad field [30, 41, 65, 156, 163, 180] that uses a measure of the

change in the model to decide which training data elements should be used to update the model.

Passive learning [131, 187] is an alternative view that independent of the model, analyze the

distribution of the training data set and selects a subset. The Adaptive Sampling algorithm for

CHAMELEON shares similarities with Passive learning but it differs in its context. The sampling is

designed to reduce the number of samples (configuration) for hardware measurement from the

exploration of the design space whilst performing an optimization to accelerate the process.

2.7 Conclusion

We present CHAMELEON to allow optimizing compilers to adapt to unseen design spaces

of code schedules to reduce the optimization time. This paper is also an initial effort to bring

reinforcement learning to the realm of optimizing compilers for neural networks, and we also

develop an Adaptive Sampling with domain-knowledge inspired Sample Synthesis to not only

reduce the number of samples required to navigate the design space but also augment its quality

in terms of fitness. Experimentation with real-world deep models shows that CHAMELEON not

only reduces the time for compilation significantly, but also improves the quality of the code. This

encouraging result suggests a significant potential for various learning techniques to optimizing

deep learning models.

Acknowledgement. Chapter 2, in part, contains a re-organized reprint of the material as

it appears in International Conference on Learning Representations (ICLR) 2020. Ahn, Byung

Hoon; Pilligundla, Prannoy; Yazdanbakhsh, Amir; Esmaeilzadeh, Hadi. The dissertation author

was the primary investigator and author of this paper.

35

Chapter 3

Foundational Algorithms for Optimized
Execution of AI

Section 2 explored the use of reinforcement learning, an AI Algorithm in deep learning

compilers. The use of reinforcement learning augmented the compiler with adaptation capability

that improved both compilation time and the execution speed of the DNN model. Overall,

significant benefits from applying reinforcement learning to compilation suggest significant

potential in integrating AI algorithm to compilers. In fact, many research including, but not

limited to, [3, 103, 144, 145, 166, 191] confirms that various AI algorithms can help explore

the exponentially large search spaces for compilation. However, an important question here is

whether this exciting result means that we should relinquish the conventional methods that have

enabled faster computing for a long time. To answer this question, this section dives into the use

of a Foundational Algorithm: Dynamic Programming [21] in the context of compilation. More

specifically, this section utilizes dynamic programming for memory-aware scheduling of the

deep learning models’ computational graph.

3.1 Memory-Aware Scheduling of Irregularly Wired Neural
Networks for Edge Devices

Recent advance on automating machine learning through Neural Architecture Search

and Random Network Generators, has yielded networks that deliver higher accuracy given the

36

same hardware resource constrains, e.g., memory capacity, bandwidth, number of functional

units. Many of these emergent networks; however, comprise of irregular wirings (connections)

that complicate their execution by deviating from the conventional regular patterns of layer,

node connectivity, and computation. The irregularity leads to a new problem space where

the schedule and order of nodes significantly affect the activation memory footprint during

inference. Concurrently, there is an increasing general demand to deploy neural models onto

resource-constrained edge devices due to efficiency, connectivity, and privacy concerns. To

enable such a transition from cloud to edge for the irregularly wired neural networks, we set

out to devise a compiler optimization that caps and minimizes the footprint to the limitations of

the edge device. This optimization is a search for the schedule of the nodes in an intractably

large space of possible solutions. We offer and leverage the insight that partial schedules

leads to repeated subpaths for search and use the graph properties to generate a signature for

these repetition. These signatures enable the use of Dynamic Programming as a basis for the

optimization algorithm. However, due to the sheer number of neurons and connections, the

search space may remain prohibitively large. As such, we devise an Adaptive Soft Budgeting

technique that during dynamic programming performs a light-weight meta-search to find the

appropriate memory budget for pruning suboptimal paths. Nonetheless, schedules from any

scheduling algorithm, including ours, is still bound to the topology of the neural graph under

compilation. To alleviate this intrinsic restriction, we develop an Identity Graph Rewriting

scheme that leads to even lower memory footprint without changing the mathematical integrity

of the neural network. We evaluate our proposed algorithms and schemes using representative

irregularly wired neural networks. Compared to TensorFlow Lite, a widely used framework for

edge devices, the proposed framework provides 1.86×reduction in memory footprint and 1.76×

reduction in off-chip traffic with an average of less than one minute extra compilation time.

37

3.2 Introduction

Growing body of work focuses on Automating Machine Learning (AutoML) using

Neural Architecture Search (NAS) [29, 38, 43, 106, 109, 140, 195, 196] and now even, Random

Network Generators [178, 181] which emit models with irregular wirings, and shows that such

irregularly wired neural networks can significantly enhance classification performance. These

networks that deviate from regular topology can even adapt to some of the constraints of the

hardware (e.g., memory capacity, bandwidth, number of functional units), rendering themselves

especially useful in targeting edge devices. Therefore, lifting the regularity condition provides

significant freedom for NAS and expands the search space [38, 43, 181].

The general objective is to enable deployment of neural intelligence even on stringently

constrained devices by trading off regular wiring of neurons for higher resource efficiency.

Importantly, pushing neural execution to edge is one way to address the growing concerns

about privacy [117] and enable their effective use where connectivity to cloud is restricted [179].

However, the new challenge arises regarding orchestrating execution of these irregularly wired

neural networks on the edge devices as working memory footprint during execution frequently

surpass the strict cap on the memory capacity of these devices. The lack of multi-level memory

hierarchy in these micro devices exacerbates the problem, because the network cannot even be

executed if the footprint exceeds the capacity. To that end, despite the significant potential of

irregularly wired neural networks, their complicated execution pattern, in contrast to previously

streamlined execution of models with regular topology, renders conventional frameworks futile

in taking these networks to edge due to their large peak memory footprint. While peak memory

footprint is largely dependent on scheduling of neurons, current deep learning compilers [34, 170]

and frameworks [1, 85, 135] rely on basic topological ordering algorithms that are oblivious

to peak memory footprint and instead focus on an orthogonal problem of tiling and kernel

level optimization. This paper is an initial step towards embedding peak memory footprint

as first-grade constraint in deep learning schedulers to unleash the potential of the emergent

38

irregularly wired neural networks. As such, this paper makes the following contributions:

(1) Memory-aware scheduling for irregularly wired neural networks. Scheduling for

these networks is a topological ordering problem, which enumerates an intractably large space

of possible schedules. We offer and leverage the insight that partial schedules leads to repeated

subpaths for search and use the graph properties to generate a signature for these repetition while

embedding a notion of the running memory usage. These signatures enable the use of Dynamic

Programming as a basis for the optimization algorithm.

(2) Adaptive soft budgeting for tractable compilation time. Even with the dynamic

programming as the base, due to the sheer number of neurons and connections, the search space

may remain too large (exponentially large) in practice. As such, we devise an Adaptive Soft

Budgeting technique that uses a lightweight meta-search mechanism to find the appropriate

memory budget for pruning the suboptimal paths. This technique aims to find an inflection point

beyond which tighter budgets may lead to no solution and looser budget prolongs the scheduling

substantially, putting the optimization in a position of questionable utility.

(3) Identity graph rewriting for enabling higher potential in memory reduction. Any

scheduling algorithm, including ours, is still bound to the topology of the neural graph under

compilation. To relax this intrinsic restriction, we devise an Identity Graph Rewriting scheme

that exchanges subgraphs leading to a lower memory footprint without altering the mathematical

integrity of the neural network.

Results show that our adaptive scheduling algorithm improves peak memory footprint for

irregularly wired neural networks by 1.68×compared to TensorFlow Lite, the de facto framework

for edge devices. Our graph rewriting technique provides an opportunity to lower the peak

memory footprint by an additional 10.7%. Furthermore, our framework can even bring about

1.76× reduction in off-chip traffic for devices with multi-level memory hierarchy, and even

eliminate the traffic in some cases by confining the memory footprint below the on-chip memory

capacity. These gains come at average of less than one minute extra compilation time.

39

(a) RandWire (b) SwiftNet

Figure 3.1. Architecture of network models from NAS and Random Network Generators.
Topology of such networks include distinctive irregular wirings between the nodes.

3.3 Challenges and Our Approach

3.3.1 Irregularly Wired Neural Networks

Recent excitement in Automated Machine Learning (AutoML) [46, 50, 54, 76, 98,

174] aims to achieve human out of the loop in developing machine learning systems. This

includes Neural Architecture Search (NAS) [29, 38, 106, 140, 195, 196] and Random Network

Generators [178, 181] that focus on automation of designing neural architectures. Figure 3.1

demonstrates that networks of this regime are characterized by their distinctive irregular graph

topology with much more irregular wirings (dataflow) compared to conventional networks with

regular graph topology. This paper refers to these networks as irregularly wired neural networks.

40

Multiply-and-accumulate (Billions)

To
p-

1
Im

ag
eN

et
 A

cc
ur

ac
y

(%
)

85

65

70

75

80

200 10 30 40

DPN-131

Inception V1
MobileNet

ShuffleNet

Inception V2

Inception V3
Xception ResNet-152

SENet

AmoebaNet-A

ReNeXt-101PolyNet
Inception ResNet V2

Inception V4

NASNet-A
NASNet-B

RandWire

AmoebaNet-A

AmoebaNet-B

RandWire

irregularly wired neural networks
regular topology neural networks

irregularly wired neural networks
show better performance for

same amount of compute than
regular topology neural networks

top left means is better

(a) ImageNet accuracy vs number of multiply-and-accumulate.

Number of Parameters (Millions)

To
p-

1
Im

ag
eN

et
 A

cc
ur

ac
y

(%
)

85

65

70

75

80

800 40 100 140

DPN-131

irregularly wired neural networks

Inception V1
MobileNet
ShuffleNet

Inception V2

Inception V3
Xception

ResNet-152

SENet

AmoebaNet-C

ReNeXt-101

PolyNetInception ResNet V2
Inception V4

NASNet-A

NASNet-A

RandWire

AmoebaNet-A

RandWire

regular topology neural networks

irregularly wired neural networks
show better performance for

same number of parameters than
regular topology neural networks

top left means is better

6020 120

NASNet-A

(b) ImageNet accuracy vs number of parameters.

Figure 3.2. ImageNet accuracy vs number of multiply-and-accumulate or parameters, where
irregularly wired neural networks show higher performance for same amount of compute or
number of parameters than regular topology neural networks.

41

concat

conv

(a) SwiftNet Cell A.

Peak Memory Footprint (KB)

C
um

ul
at

iv
e

Di
st

rib
ut

io
n

of
 S

ch
ed

ul
es

 (%
)

250 KB
constraint100

0
20
40
60
80

350 400200 250 300

4.1% of schedules
satisfy the constraint

0.04% of schedules
are optimal

(b) CDF of peak memory for different possible
schedules.

Figure 3.3. CDF of the peak memory footprint for the different possible schedules of a given
irregularly wired neural network.

From the performance perspective, these networks have shown to outperform manually

designed architectures in terms of accuracy while using less resources. In fact, majority of

winning neural architectures in competitions with primary goal of reducing resources [62] rely

on NAS, suggesting its effectiveness in that respect. Figure 3.2 plots the accuracy of different

models given their computation. The figure clearly shows that the Pareto frontier of irregularly

wired neural networks from NAS and Random Network Generators are better than the hand

designed models with regular topology. This indicates that the efficiency in terms of accuracy

given fixed resources are better with the irregularly wired neural networks.

3.3.2 Challenges

Many existing compilers [34, 170] and frameworks [1, 85, 135] rely on basic topological

ordering algorithms to schedule the graph. While the current approach may be sufficient to run

conventional networks on server-class machines, such scheme may be unfit for running irregularly

wired neural networks on resource-constrained edge devices. This is because, unlike running

networks with regular topology, running irregular networks results in varied range of memory

footprint depending on the schedule. For instance, given the constraints of a representative edge

device (SparkFun Edge: 250KB weight/activation memory and 60M MACs), Figure 3.3(b) shows

42

that 4.1% of the schedules barely meets the hard memory constraint, while only 0.04% would

achieve the optimal peak memory. In reality, such limitation will prevent further exploration

regarding the diversity and innovation of network design, and in order to allow edge computing

regime to take full advantage of the irregularly wired neural networks, this limitation should be

alleviated if not removed.

3.3.3 Design Objectives

Scheduling algorithm.

To address this issue, our work aims to find a schedule of nodes s∗ from the search space

S that would minimize peak memory footprint µpeak. S enumerates all possible orderings of the

nodes v ∈ V where V is the set of all nodes within a graph G.

s∗ = argmin
s

µpeak(s,G), for s ∈ S (3.1)

The most straightforward way to schedule is a brute force approach which just enumerates

S and picks one with the minimum peak memory footprint. While this extreme method may

find an optimal solution, it is too costly in terms of time due to its immense complexity: Θ(|V |!)

where |V | denotes number of nodes in the graph. One way to improve is to narrow down the

search space to just focus on only the topological orderings ST ⊂ S. However, this will still

suffer from a complexity with an upper bound of O(|V |!) (takes days to schedule DAG with

merely 30 nodes). In fact, previous works [24, 27] already prove optimal scheduling for DAGs

is NP-complete. On another extreme are heuristics for topological ordering such as Kahn’s

algorithm [91], with complexity of O(|V |+ |E|) where V and E are number of nodes and

edges. However, as demonstrated in Figure 3.3, such method may yield suboptimal schedule of

nodes which will not run on the target hardware. To this end, we explore dynamic programming

combined with adaptive soft budgeting for scheduling to achieve an optimal solution while

keeping the graph constant s∗, without adding too much overhead in terms of time. We explain

our algorithms in depth in Section 3.4.1 and 3.4.2.

43

Graph rewriting.

Any scheduling algorithm including ours is intrinsically bounded by the graph topology.

Therefore, we explore to transform the search space through graph rewriting [138]. Graph

rewriting is generally concerned with substituting a certain pattern in the graph with a different

pattern to achieve a certain objective. For a computational dataflow graph, leveraging distributive,

associative, and commutative properties within the computation of the graph, graph rewriting

can maintain the semantics while bringing significant improvements regarding some objective.

For example, in general programs, ∑i logxi can be represented as ∑oddi logxi+∑eveni logxi or

log∏ixi, while x+x can be translated to x×2 or x << 1. Likewise, we bring this insight to

neural networks to find a set of possible transformations X that can rewrite the original graph G

to a new graph G′ that would also change our search space S to one with a lower peak memory

footprint:

X ∗ = argmin
X

(µpeak(s
∗,X (G))) (3.2)

We identify a set of candidate patterns for transformation χ : g→ g′ (g ∈ G and g′ ∈ G′),

which constitutes X . While transforming the graph, our method keeps the mathematical integrity

of the graph intact, thus not an approximation method. We embed this systematic way to improve

peak memory footprint and the search space as identity graph rewriting, and we address this

technique in Section 3.4.3.

3.4 SERENITY: Memory-Aware Scheduling of Irregularly
Wired Neural Networks

As discussed in Section 3.3, the objective is reducing the peak memory footprint while

executing irregularly wired neural networks. We propose SERENITY, memory-aware scheduling

that targets devices with restricted resources (e.g., edge devices). Figure 3.4 summarizes the

overall scheduling process, highlighting the major contributions of our approach. Input to

44

1

2

3 4

5

7

8 9

10

11 12

13 14 15

16

17

G
s*

G

G
ra

ph
Re

w
rit

te
n

G
ra

ph
Sc

he
du

le

Id
en

tit
y

G
ra

ph
 R

ew
rit

er

D
yn

am
ic

Pr

og
ra

m
m

in
g-

ba
se

d
Sc

he
du

le
r

Ad
ap

tiv
e

So
ft

B
ud

ge
tin

g

Re
w

rit
e

gr
ap

h
to

 a
lle

vi
at

e
ac

tiv
at

io
n

m
em

or
y

fo
ot

pr
in

t
of

 th
e

gr
ap

h

Fi
nd

 m
em

or
y-

op
tim

al

sc
he

du
le

 g
iv

en
 a

n
in

pu
t g

ra
ph

Ad
ap

tiv
el

y
m

an
ag

e
so

ft
bu

dg
et

 to
 s

pe
ed

up

 s
ch

ed
ul

in
g

G

fla
g

=
{‘n

o
so

lu
tio

n’
, ‘

tim
eo

ut
’,

‘s
ol

ut
io

n’
}

τ , T
s*

Fi
gu

re
3.

4.
O

ve
ra

ll
w

or
kfl

ow
of

S
E

R
E

N
IT

Y
,m

em
or

y-
aw

ar
e

sc
he

du
lin

g
of

ir
re

gu
la

rl
y

w
ir

ed
ne

ur
al

ne
tw

or
k.

45

SERENITY is a graph of irregularly wired neural network G, which in fact acts as an intermediate

representation (IR) during the scheduling process. We augment this IR with the metadata of

the nodes such as the operation type, input/output edges, input/output shapes, and memory cost.

Then the graph rewriter transforms the graph G → G′ to relax the memory costs of memory

intensive patterns with the goal of reducing the peak memory footprint µpeak of G. SERENITY

schedules the graph to an optimal schedule s∗ using the dynamic programming-based scheduler.

However, since the scheduling may be slow due to the complexity, we scale down search space

by leveraging divide-and-conquer which partitions the graph into multiple subgraphs. Them,

we augment the scheduler with an adaptive soft budgeting which prunes suboptimal paths

by adaptively finding a budget for thresholding through a swift meta-search to speed up the

scheduling process. This section focuses on the innovations of SERENITY: dynamic programming-

based scheduling, divide-and-conquer, adaptive soft budgeting, and graph rewriting, which are

explained in detail in Section 3.4.1, 3.4.2, and 3.4.3, respectively.

3.4.1 Dynamic Programming-based Scheduling: Achieving Optimal
Peak Memory Footprint

Our goal for the scheduling algorithm is to minimize the peak memory footprint µpeak(s,G).

As stated in Section 3.3.3, recursive algorithms that covers the entire search space S or the

subspace of all topological orderings ST ⊂ S takes impractically long time. This is primarily

due to the repetitive re-computation of subproblems that upper bounds the algorithm by O(|V |!).

Therefore, we leverage dynamic programming [21, 22, 77] which includes a memoization scheme

that has been shown to be effective in reducing the complexity of time-intensive algorithms by

reusing solutions from their subproblems, while still finding optimal solution by sweeping the

entire search space.

Identifying signature to enable dynamic programming.

The first step to applying dynamic programming to a new problem is characterizing the

structure of an optimal solution: s∗ = s∗n (s∗n is an optimal solution for n number of nodes). Then,

46

A

B C

D E F

H I J

K

L

G

GGraph Recursive Topological Ordering

A

B C J

CD JG B E F J B C

…

Se
ar

ch
 S

te
p

CDG CDG… …
z

s

Redundant zero-indegree set z

Dynamic Programming-based Topological Ordering

A

B C J

A,B,CD A,B,JG E F A,C,J

…

Se
ar

ch
 S

te
p

CDG…

Unique zero-indegree set z

Scheduled SchedulableXX For memoizationXX

Figure 3.5. Illustration of identifying redundant zero-indegree set z and making z unique
(square) throughout the topological ordering algorithm to reduce re-computation.

47

outdegree of : 1→ 0
outdegree of : 1→ 0

µ 8

A

B C

D E F

H I J

K

L

G

GGraph

Scheduled To Schedule/AllocateBA To DeallocateB

Activation Memory
D E F I J

(1) Schedule/Allocate H D E F I J H

(0) Initial State

(2) Deallocate F I J HD E

D E

H I

D
E

i = 8

µpeak

µpeak,9 = max(µpeak,8, µpeak)

µ9

s8 = A B CD E F I Jµ peak,8 from M8

z8 = HG

u8 = H

s9 = A B CD E F I J H

Figure 3.6. Visualization of scheduling the node u8 = H during the search step i= 8. Starting
from s8, µ8, and µpeak,8 the figure shows how the algorithm calculates s9, µ9, and µpeak,9

it requires identifying a recursive relationship between the optimal solution of a subproblem

s∗i and the original problem s∗i+1, and we do this by analyzing the straightforward recursive

topological ordering, which while inefficient sweeps the entire search space. In essence, topo-

logical ordering algorithm is a repeated process of identifying a set of nodes that are available

for scheduling and iterating the set for recursion. In graph theory such a set of nodes available

for scheduling is called zero-indegree set z, where z is a set of nodes which all of their incoming

edges and the corresponding predecessor nodes (indegree) have been scheduled. Figure 3.5

demonstrates the recursion tree of the different topological ordering algorithms, where the height

of the tree is the search step and every path from the root to the leaf is a topological ordering

s ∈ ST . The figure highlights the redundant z in the recursive topological ordering in the recur-

sion tree, then merges these z to make them unique, identifying it as the signature for repetition,

and prevent the aforementioned re-computation. This makes the scheduling for z into a unique

subproblem, that constitutes the dynamic programming-based topological ordering.

48

Integrating the peak memory footprint constraint.

On top of the dynamic programming formulation that shows potential for optimizing the

search space significantly, we overlay the problem specific constraints to achieve the optimal

solution. In particular, we calculate the memory footprint µi+1 and its corresponding peak

µpeak,i+1 in each search step i to select optimal path s∗i+1 for memoization. Here, we clarify

the process of a search step, explaining the details of calculating µpeak,i+1 and saving si+1 for

each search step i. In each search step, we start with number of unique zero-indegree sets zi

(signature), saved in ith entry of memoizationMi. For each zi, we append the schedule up to the

point si, sum of activations in the memory µi for the signature zi, and the peak memory footprint

of the si denoted µpeak,i. Therefore, in each search step i, we start with si, µi, and µpeak,i for si.

Then, when we iterate zi to schedule a new node ui, its output activation is appended to si to

form si+1, and is allocated in the memory. Size of ui is product (∏) of ui.shape, where shape

is a property of the activation tensor that includes channels, height, width, and the precision

(e.g., byte, float), is added to µi, so µi+1← µi+∏(ui.shape). Then we use µi+1 as µpeak to

update µpeak,i+1 (peak memory footprint for si+1). Since some predecessors of ui will not be

used anymore after allocating ui, we update the outdegrees of the node by decrementing them.

Having updated the outdegree, we will be left with a zero-outdegree set that denotes the nodes

that are ready for deallocation. We deallocate the nodes in the set and update µi+1 accordingly.

To demonstrate scheduling of a node ui, Figure 3.6 simulates scheduling a node u8 = H

in i= 8. In the figure, (1) H is appended to s8 and allocated to memory as it is scheduled, and

then the scheduler records maximum of the µpeak,8 and the sum of all activations in the memory

at this point as µpeak,9. Then, it recalculates the outdegrees of the predecessor nodes of H : D

and E ’s outdegree are decremented from one to zero. (2) Then these nodes are deallocated and

sum of the activation memory here is recorded as µ9.

49

Finding schedule with optimal peak memory footprint.

After scheduling ui, we save the new signature into theMi+1 for next search step i+1.

Since the goal of this work is to minimize the overall µpeak, we identify the corresponding

optimal schedule s∗i+1 for each zi+1 by only saving si+1 with the minimum µpeak,i+1. We

integrate the aforementioned step of scheduling ui and updatingMi+1 to complete the proposed

dynamic programming-based scheduling algorithm. Algorithm 2 summarizes the algorithm. As

a first step, the algorithm starts by initializing the memoization tableM0, then the algorithm

iterates different search steps. In each search step i, the algorithm performs the above illustrated

memory allocation for all ui in zi, and saving si+1, µi+1, and µpeak,i+1. After iterating all search

steps to n−1, s∗ is saved inMn with a unique entry, for n being number of nodes in G.

Proof of the algorithm.

Here we prove the optimality of the above dynamic programming-based scheduling

algorithm.

Proof

THEOREM 1. In order to find a schedule s∗ with an optimal peak memory consumption µ∗, it is

sufficient to keep just one schedule-peak memory pair (si, zi) in ST i for each zero-indegree set

zi, and to append subsequent nodes on top of si to get si+1 in each search step.

Proof. If i = 0, the optimal s0 is an empty sequence and µ0 must be 0. On the other hand,

if i ≥ 1, assume that (suboptimal) vi constitutes s∗, substituting u∗i ∈ zi and achieves µ∗.

In such case, let vi be replaced with (optimal) u∗i , which will result in µpeak ← min(µi +

∏vi.shape,µi+∏u∗i .shape), and µi+1 is calculated by deducting ∏pi.shape,∀pi ∈ (ui.preds∩

zero-outdegree(si+1,G)). By recursively applying uk for rest of the search steps k, the algorithm

should find an alternative sequence s∗′ with µ∗′≤ µ∗ due to the min operator above, contradicting

the original assumption on the optimality of s∗. Therefore, our algorithm finds a schedule with

an optimal peak memory consumption. ■

50

Algorithm 2. Dynamic Programming-based Scheduling
1: Input: graph G
2: Output: optimal schedule s∗

3: // initialize memoization
4: s0← [], µ0,µpeak,0← 0, z0← zero-indegree(s0,G)
5: M0[z0]← (s0,µ0,µpeak,0)
6: // iterate search step
7: for i= 0 to n−1 do
8: // iterate (schedule, current memory, peak memory)
9: for zi,(si,µi,µpeak) inMi do

10: for ui in zi do
11: si+1← si.append(ui) // allocate
12: zi+1← zero-indegree(si+1,G)
13: µi+1,µpeak← µi+∏(ui.shape)
14: µpeak,i+1←max(µpeak,i,µpeak)
15: for pi in ui.preds do
16: if pi is in zero-outdegree(si+1,G) then
17: µi+1← µi+1−∏(pi.shape) // deallocate
18: end if
19: end for
20: // memoize schedule with least peak memory
21: if µpeak,i+1 ≤Mi+1[zi+1].µpeak,i+1 then
22: Mi+1[zi+1]← (si+1,µi+1,µpeak,i+1)
23: end if
24: end for
25: end for
26: end for
27: s∗,µ∗peak←M[·]n.sn,M[·]n.µpeak,n // solution

51

A

B C

D

E

F G

H

Divide Conquer Combine

A
B
C
D

Schedule

Schedule

g1

g2
Concatenate

s* sg1

sg2E
F
G
H

A
B
C
D
E
F
G
H

Figure 3.7. Illustration of divide-and-conquer, which divides the graphs into multiple subgraphs
(divide), schedules each of them using the optimal scheduler (conquer), then concatenates the
sub-schedules to get the final schedule (combine).

Complexity of the algorithm.

The complexity of the proposed dynamic programming-based scheduling is O(|V |×

2|V |), which is significantly faster than the exhaustive search of ST with an upper bound com-

plexity of O(|V |!).

3.4.2 Optimizing Scheduling Speed: Speeding up the Dynamic
Programming-based Scheduling

While the above scheduling algorithm improves complexity of the search, search space

may still be intractable due to the immense irregularity. Therefore, we devise divide-and-conquer

and adaptive soft budgeting to accelerate the search by effectively shrinking and pruning the

search space.

Divide-and-conquer.

We can observe from Figure 3.1 that the topology of irregularly wired neural networks

are hourglass shaped (▷◁), because many NAS and Random Network Generators design cells

with single input and single output then stack them to form an hourglass shape topology. [176]

shows that, during general purpose code scheduling, graphs can be partitioned (divide) into

multiple subgraphs and the corresponding solutions (conquer) can be concatenated (combine)

52

to form an optimal solution for the overall problem. While the complexity of the scheduling

algorithm remains the same, this divide-and-conquer approach can reduce the number of nodes

in each subproblem, speeding up the overall scheduling time. For instance, for a graph that

can be partitioned into N equal subgraphs, the scheduling time will decrease from |V |×2|V | to

|V |×2|V |/N that we can speed up scheduling by multiple orders of magnitude compared to the

naive approach, depending on the size of the graph and the number of partitions.

As such, Figure 3.7 shows this insight can be extended to our problem setting, where we

can first perform scheduling on each cell and merge those solutions together to form the final

solution. First, stage is partitioning the original graph G into multiple subgraphs g (divide). Then,

utilizing the independence among the subgraphs, each subgraph g can be scheduled separately

for their corresponding optimal schedule sg (conquer). Considering that the number of nodes

in the subgraph g is much smaller than the entire graph G, the scheduling time will decrease

significantly. Finally, the schedules of the subgraphs are concatenated to give optimal schedule

s∗ of the entire graph (combine).

Adaptive soft budgeting.

While divide-and-conquer approach scales down the number of nodes, the algorithm

may still not be fast enough due to the exponential complexity of the algorithm. Therefore, we

explore avoiding suboptimal solutions during the early stage of scheduling without affecting the

optimality of the original algorithm. Since our goal is to find a single solution that can run within

a given memory budget τ∗ = µ∗ while all other solutions can be discarded, setting some budget τ

that is greater or equal to µ∗ and pruning suboptimal schedules with which their µpeak exceeds τ

can focus the search to a smaller search space S ′T ⊂ST while still achieving the optimal schedule

s∗. On top of this, we develop a meta-search for τ . This is inspired from engineers buying a

larger memory (increase τ) if a program fails due to stack overflow (= ’no solution’ due to an

overly aggressive pruning) and selling out excess memory (decrease τ) if the current budget

is prohibitive (= ’timeout’ due to lack of pruning). SERENITY takes advantage of this insight to

53

32

23

35

τ = 36

35 38 38
J

s1

A

B C

D E F

H I

K

L

G

GGraph

Scheduled SchedulableXX For memoizationXX

A,B,C,D,E,I …
Se

ar
ch

 S
te

p

FHG

…

J

D 6 E 6 F 6
J 6I 3H 3G 3

A,B,C,D,E,I,F,H ……

C 6

23 32
s2

> τ

z

z

s3

35

output activation size

(a) While both path s1 and s2 schedules lead to same z′, their µ and µpeak varies and we can prune
schedules that yield higher µpeak than a given budget τ . Numbers next to box or circle are µ and
numbers next to edges are µpeak

Pr
oh

ib
iti

ve

Sc
he

du
lin

g
Ti

m
e

('ti
m

eo
ut

')

Sc
he

du
lin

g
Fa

ilu
re

('n
o

so
lu

tio
n'

)

No
. o

f E
xp

lo
re

d
Sc

he
du

le
s

∝
Sc

he
du

lin
g

Ti
m

e

Budget

Optimal Budget τ* Hard Budget τmax
Soft Budget τ

Adaptive Soft Budgeting

(b) Adaptive soft budgeting starts by setting a hard budget τmax as the maximum value for the soft
budget τ . Then, conducts a binary search for τ , higher than τ∗ that it finds a solution yet not too high
that scheduling completes quickly.

Figure 3.8. Illustration of the adaptive soft budgeting. (a) shows how schedules are pruned, and
(b) illustrates how the soft budget τ relates to the number of explored schedules.

54

develop an adaptive soft budgeting scheme while scheduling to cut down the overall number of

explored schedules. Figure 3.8 illustrates the overall idea by first showing how some schedules

are pruned with regard to a given budget τ in Figure 3.8(a) then implication of different τ on

scheduling time in Figure 3.8(b).

Algorithm 3. Adaptive Soft Budgeting
1: Input: graph G
2: Output: optimal schedule s∗

3: τmax← µ(Kahn’sAlgorithm(G),G) // hard budget
4: τold, τnew← τmax

5: flag← ’no solution’
6: repeat
7: // binary search for τ : decrease τ if ’timeout’
8: // and increase τ if ’no solution’
9: if flag is ’timeout’ then

10: // simultaneous
11: τold← τnew, τnew← τnew/2
12: else if flag is ’no solution’ then
13: // simultaneous
14: τold← τnew, τnew← (τnew+ τold)/2
15: end if
16: if flag is ’solution’ then
17: s∗← schedule // optimal schedule
18: end if
19: until flag is ’solution’

Figure 3.8(a) depicts a certain point while scheduling G, where nodes G , H , F , and J

can be scheduled. In particular, the figure compares two possible solutions s1 and s2 which

schedules H→ F and F→ H , respectively given τ = 36. While s1 and s2 both starts from z with

µ = 32, scheduling H leads to µpeak = 32+3 (H) = 35, whereas scheduling F or J leads to

µpeak = 32+6 (F or J) = 38. Therefore, since we assume τ = 36, s2 and s3 will fail because

µpeak = 38 for s2 and s3 exceeds 36. So, as long as we set the budget τ higher than µ∗, the

scheduler still finds a single optimal solution while avoiding many suboptimal paths. On the

other hand, too small a τ < µ∗ leads to no solution because the optimal path would be pruned

away.

55

Having established the possibility of pruning, our question boils down to discovering τ

that is greater or equal to µ∗ which we call an optimal budget τ∗, yet close enough to shrink the

search space effectively. Figure 3.8(b) and Algorithm 3 summarizes the proposed adaptive soft

budgeting. Since we start with no information about the approximate range for τ , we resort to a

commonly used topological ordering algorithm called Kahn’s algorithm [91] (O(|V |+ |E|)) to

adaptively gain idea of the range for τ . We use the peak memory footprint from this sequence

and use it as our hard budget τmax, and in contrast we call adaptively changing τ as a soft

budget. Since τmax ≥ µ∗, we know that any τ ≥ τmax do not need to be explored. Having this

upper bound for the search, adaptive soft budgeting implements a binary search to first run

the scheduling algorithm with τ and T as input, where T is an hyperparameter that limits the

scheduling time per search step. The binary search increases τ (τnew ← (τnew+ τold)/2) if it

finds ’no solution’ and decreases τ (τnew← τnew/2) if a search step returns ’timeout’ (search step

duration exceeds T). The binary search stops as soon as it finds a schedule (’solution’), and this

method using binary search is guaranteed to work due to the monotonically increasing number

of explored schedules with τ .

3.4.3 Identity Graph Rewriting: Improving the Search Space for Better
Peak Memory Footprint

Reorganizing the computational graph of the irregularly wired neural networks may lead

to significant reduction in the peak memory footprint µpeak during computation. For example, it

is notable that large stream of NAS-based works [38, 106] rely on extensive use of concatenation

as a natural approach to merge information from multiple branches of the input activations and

expand the search space of the neural architectures. However, concatenation with many incoming

edges may prolong the liveness of the input activation and increase the memory pressure, which

is unfavorable especially for resource constrained scenarios. To address this issue, we propose

identity graph rewriting to effectively reduce µpeak around the concatenation while keeping the

arithmetic outputs identical. To this end, we present two main examples of the graph patterns in

56

µpeak = Σsize(xi) + size(y) µpeak = max(size(xi) + size(wixi))

µpeak = Σsize(xi) + size(y) µpeak = max(size(xi) + size(y))

Channel-wise
Partitioning

Kernel-wise
Partitioning

=

=

wij

concat

conv

x1 x2 xn

w1…wm

y

add

partial
conv w?1

x1 x2
xn

w?2 w?n

y

concat

depth-conv

x1 x2 xn

w1…wn

y

concat

partial
depth-conv w1

x1 x2
xn

w2 wn

y

yxi ith Input Output jth Channel of ith Kernel

x

x

Figure 3.9. Illustration of the graph rewriting patterns: channel-wise partitioning and kernel-wise
partitioning can reduce the memory cost of convolution and depthwise convolution respectively.

irregularly wired neural networks that benefits from our technique:

Channel-wise partitioning (convolution).

One typical pattern in irregularly wired neural networks is concatenation (concat: [·])

that takes multiple branches of the input prior to a convolution (conv: ∗). While executing

such pattern, peak memory footprint µpeak occurs when the output y ∈ Rn is being computed

while concatenated branches of input x ∈ Rn are also mandated to reside in the memory. Our

objective is to achieve the same arithmetic results and logical effect as concat yet sidestep the

corresponding seemingly excessive memory cost. To this end, we channel-wise partition the

conv that follows the concat so that the partitioned conv can be computed as soon as the input

xi becomes available. Equation 3.3-3.6 detail the mathematical derivation of this substitution.

57

Specifically, as shown in Equation 3.3, each kernel iterates and sums up the result of convolving

channels in conv. However, using the distributive property of ∑i and ∗, these transform to

summation of channel-wise partitioned convolution, which we call partial conv. This partial

conv removes concat from the graph leading to lower memory cost. As illustrated in Figure 3.9,

the memory cost of same computation reduces from ∑xi + y to max(w⋆i ∗ xi) + y, which

becomes more effective when there are more incoming edges to concat.

y =
[
∑
i

w1i ∗xi, ...,∑
i

wmi ∗xi
]

(concat+conv) (3.3)

= ∑
i

[
w1i ∗xi, ...,wmi ∗xi

]
(3.4)

= ∑
i

[
w1i, ...,wmi

]
∗xi (3.5)

= ∑
i

[
w⋆i ∗xi

]
(partial conv+add) (3.6)

Kernel-wise partitioning (depthwise convolution).

Depthwise convolution (depthconv) [81, 159] has been shown to be effective in reducing

computation yet achieve competitive performance, hence its wide use in networks that target

extreme efficiency as its primary goal. For concatenation (concat) followed by a depthwise

convolution (depthconv), similar to above concat+conv case, peak memory footprint µpeak occurs

when the concatenated x is inside the memory and the result y additionally gets saved to the

memory before x is deallocated. This time, we leverage the independence among different kernels

to kernel-wise partition the depthconv that follows the concat so that each input xi is computed to

smaller feature maps without residing in the memory too long. As such, Equation 3.7-3.8 derives

this substitution. Equation 3.7 shows that every component in the y is independent (different

subscript index) and is viable for partitioning. In other words, this rewriting simply exposes the

commutative property between depthconv and concat plus kernel-wise partitioning to reduce

µpeak significantly.

58

y =
[
w1 ∗x1, ...,wn ∗xn

]
(concat+depthconv) (3.7)

=
[
[w1 ∗x1], ..., [wn ∗xn]

]
(partial depthconv+concat) (3.8)

Implementation.

Following the general practice of using pattern matching algorithms in compilers [87, 99,

143], we implement identity graph rewriting using pattern matching to identify regions of the

graph which can be substituted to an operation with lower computational cost. Likewise, we

make use of this technique to identify regions that leads to lower memory cost.

3.5 Evaluation

We evaluate SERENITY with four representative irregularly wired neural networks graphs.

We first compare the peak memory footprint of SERENITY against TensorFlow Lite [69] while

using the same linear memory allocation scheme1 for both. Furthermore, we also experiment

the impact of such peak memory footprint reduction on off-chip memory communication. We

also conduct an in-depth analysis of the gains from the proposed dynamic programming-based

scheduler and graph rewriting using SwiftNet Cell A [38]. Lastly, we study the impact of

adaptive soft budgeting on the scheduling time.

3.5.1 Methodology

Benchmarks and datasets.

Table 3.1 lists the details of the networks–representative of the irregularly wired neural

networks from Neural Architecture Search (NAS) and Random Network Generators (RAND)–

used for evaluation: DARTS [106] for ImageNet, SwiftNet [38] for a dataset comprised of human

presence or absence (HPD), and RandWire [181] for CIFAR10 and CIFAR100. DARTS [106] is

1TensorFlow Lite implements a linear memory allocator named simple memory arena: https://github.com/
tensorflow/tensorflow/blob/master/tensorflow/lite/simple memory arena.cc

59

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/simple_memory_arena.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/simple_memory_arena.cc

Table 3.1. Specification of the networks used for evaluation.

NETWORK TYPE DATASET # MAC # WEIGHT TOP-1
ACCURACY

DARTS NAS IMAGENET 574.0M 4.7M 73.3%
SWIFTNET NAS HPD 57.4M 249.7K 95.1%
RANDWIRE RAND CIFAR10 111.0M 1.2M 93.6%
RANDWIRE RAND CIFAR100 160.0M 4.7M 74.5%

a gradient-based NAS algorithm. In particular we focus on the learned normal cell for image

classification on ImageNet: only the first cell because it has the highest peak memory footprint

and the reset of the network is just repeated stacking of the same cell following the practice

in NASNet [196]. SwiftNet [38] is network from NAS by targeting human detection dataset.

RandWire [181] are from Random Network Generators for image classification on CIFAR10

and CIFAR100. The table also lists their dataset, multiply-accumulate count (# MAC), number

of parameters (# WEIGHT), and top-1 accuracy on their respective dataset.

3.5.2 Experimental Results

Comparison with TensorFlow Lite.

Figure 3.10 evaluates SERENITY over TensorFlow Lite on different cells of the afore-

mentioned networks in terms of reduction in memory footprint. The figures illustrate that

SERENITY’s dynamic programming-based scheduler reduces the memory footprint by a factor

of 1.68×without any changes to the graph. In addition, the proposed graph rewriting technique

yields an average of 1.86×(extra 10.7%) reduction in terms of peak memory footprint. The

results suggest that SERENITY yields significant reduction in terms of the peak memory footprint

for irregularly wired neural networks.

Improvement in off-chip memory communication.

We also show how SERENITY affects the off-chip memory communication, which largely

affects both power and inference speed [36, 60, 157]. To this end, Figure 3.11 sweeps different

60

1.
83
x

2.
20
x

2.
39
x

2.
09
x

1.
40
x

1.
27
x 1.
68
x

1.
25
x

1.
39
x

1.
68
x2.
20
x

2.
44
x

2.
70
x 3.
45
x

1.
40
x

1.
27
x 1.
68
x

1.
25
x

1.
39
x 1.
86
x

0.00

1.00

2.00

3.00

4.00

Normal Cell A Cell B Cell C Cell A Cell B Cell A Cell B Cell C Geomean

DARTS
ImageNet

SwiftNet
Visual Wake Words Dataset

RandWire
CIFAR10

RandWire
CIFAR100

R
ed

uc
ti

on
 i

n
Pe

ak
 M

em
or

y

TensorFow Lite
Dynamic Programming+Memory Allocator
Dynamic Programming+Graph Rewriting+Memory Allocator

Higher the better

Re
du
ct
io
n
in
 P
ea
k
M
em
or
y

Normal Cell A Cell B Cell C Cell A Cell B Cell CCell A Cell B Geomean
SwiftNet

Human Presence
DARTS
ImageNet

RandWire
CIFAR10

RandWire
CIFAR100

Figure 3.10. Reduction in peak memory footprint of SERENITY against TensorFlow Lite (no
memory hierarchy).

1.
92
x 2.

58
x

2.
51
x

1.
15
x

1.
08
x

1.
29
x

1.
08
x

1.
30
x

1.
52
x1.
92
x 2.

68
x

1.
25
x

1.
11
x

1.
31
x

1.
11
x 1.
61
x

1.
49
x1.
92
x

3.
56
x

1.
25
x

1.
19
x

1.
09
x

1.
08
x 1.
51
x2.
00
x

1.
35
x

2.
50
x

1.
82
x

1.
38
x 1.
76
x

0.00

1.00

2.00

3.00

4.00

Normal Cell A Cell B Cell C Cell A Cell B Cell A Cell B Cell C Geomean

DARTS
ImageNet

SwiftNet
Visual Wake Words Dataset

RandWire
CIFAR10

RandWire
CIFAR100

Re
du

ct
io

n
in

 O
ff

-c
hi

p

32KB 64KB 128KB 256KB

Re
du
ct
io
n
in
 O
ff
-c
hi
p

Normal Cell A Cell B Cell C Cell A Cell B Cell CCell A Cell B Geomean
SwiftNet

Human Presence
DARTS
ImageNet

RandWire
CIFAR10

RandWire
CIFAR100

M
em
or
y
 C
om
m
un
ic
at
io
n

on
ly

 S
ER
EN
IT
Y
 fi

ts
 o

n-
ch

ip

on
ly

 S
ER
EN
IT
Y
 fi

ts
 o

n-
ch

ip
on

ly
 S
ER
EN
IT
Y
 fi

ts
 o

n-
ch

ip

on
ly

 S
ER
E
N
IT
Y
 fi

ts
 o

n-
ch

ipSERENITY removes off-chip communication

N
/A

N
/A

N
/A

N
/A

N
/A N
/A

Figure 3.11. Reduction in off-chip memory communication of SERENITY against TensorFlow
Lite (with memory hierarchy).

61

on-chip memory configurations to measure the reduction in off-chip communication on systems

with multi-level memory hierarchy. Since we know the entire schedule a priori, we use Belady’s

optimal algorithm [20], also referred to as the clairvoyant algorithm for measuring the off-chip

memory communication, to distill the effects of the proposed scheduling. The results show that

SERENITY can reduce the off-chip memory communication by 1.76× for a device with 256KB on-

chip memory. In particular, while there were few cases where peak memory footprint was already

small enough to fit on-chip (N/A in figure), there were some cases where SERENITY eradicated

the off-chip communication by successfully containing the activations in the on-chip memory

while TensorFlow Lite failed to do so (marked in figure). This suggests that SERENITY’s effort of

reducing memory footprint is also effective in reducing the off-chip memory communication in

systems with memory hierarchy, hence the power consumption and inference speed.

Improvement from dynamic programming-based scheduler and identity graph
rewriting.

To demonstrate where the improvement comes from, Figure 3.12 plots the memory

footprint while running Swiftnet Cell A. Figure 3.12(a) shows the memory footprint of SERENITY

with the memory allocation. The figure shows that SERENITY’s dynamic programming-based

scheduler brings significant improvement to the peak memory footprint (551.0KB→250.9KB),

and the graph rewriting further improves this by 25.1KB (250.9KB→225.8KB) by utilizing patterns

that alleviate regions with large memory footprint. In order to focus on the effect of the scheduler

and graph rewriting, Figure 3.12(b) presents the memory footprint of SERENITY without the

memory allocation: the sum of the activations while running the network. The figure shows that

the proposed scheduler finds a schedule with the optimal (minimum) peak memory footprint

without changes to the graph. Then, it shows that the proposed graph rewriting can further

reduce the peak memory footprint by 12.5KB (200.7KB→188.2KB). The results suggest that the

significant portion of the improvement comes from the proposed dynamic programming-based

scheduler and the graph rewriting.

62

0

50

100

150

200

250

M
em

or
y

Fo
ot

pr
in

t
(K

B)

Time

Dynamic Programming+Memory Allocator
Dynamic Programming+Graph Rewriting+Memory Allocator

25.1KB reduction in peak memory
footprint with Memory Allocator

M
em
or
y
Fo
ot
pr
in
t (
KB
)

Time
(a) Memory footprint with the memory allocator (peak memory footprint of TensorFlow Lite = 551.0KB).

0

50

100

150

200

M
em

or
y

Fo
ot

pr
in

t
(K

B)

Time

Dynamic Programming
Dynamic Programming+Graph Rewriting

12.5KB reduction
in peak memory footprint

Time

M
em
or
y
Fo
ot
pr
in
t (
KB
)

(b) Memory footprint without the memory allocator.

Figure 3.12. Memory footprint while running SwiftNet Cell A with and without the memory
allocator (red arrow denotes reduction).

63

Scheduling time of SERENITY.

Figure 3.13 summarizes the (static) scheduling time taken for SERENITY to schedule

the networks. Results show that the average scheduling time is 40.6 secs without the graph

rewriting and 48.8 secs with graph rewriting, which the difference comes from the increase in

the number of nodes from graph rewriting. The results show that all the above gains of SERENITY

come at the cost of less than one minute average extra compilation time. While the dynamic

programming-based scheduling suffers from an exponential time complexity, SERENITY manages

to make the scheduling tractable through the proposed divide-and-conquer and adaptive soft

budgeting.

Speed up from divide-and-conquer and adaptive soft budgeting.

Table 3.2 summarizes the scheduling time of SwiftNet [38] for different algorithms

to demonstrate the speed up from divide-and-conquer and adaptive soft budgeting techniques.

As such, the table lists different combination of algorithms, number of nodes, and the corre-

sponding scheduling time. Straightforward implementation of the aforementioned 1 dynamic

programming-based scheduling leads to an immeasurably large scheduling time regardless of the

graph rewriting. However, additional application of the 2 divide-and-conquer (1 + 2) leads

to a measurable scheduling time: 56.53 secs and 7.29 hours to schedule without and with the

graph rewriting, respectively. Furthermore, we observe that further applying 3 adaptive soft

budgeting (1 + 2 + 3) significantly reduces the scheduling time 37.9 secs and 111.9 secs to

schedule without and with the graph rewriting, respectively. Above results indicate that applying

the proposed algorithms leads to a scheduling time of practical utility.2

2Initial implementation presented in [4] was developed using Python which took around a minute to schedule.
However, an alternative implementation in C++ resulted in a significantly faster scheduling in the order of seconds,
or even sub-second.

64

3.
2s 5.
7s

4.
5s

27
.8
s 11

8.
1s

15
.1
s

28
.5
s 74
.4
s

87
.9
s

40
.6
s

3.
2s

42
.1
s

30
.5
s

39
.3
s 11

8.
1s

15
.1
s

28
.5
s 74
.4
s

87
.9
s

48
.8
s

1

10

100

1000

Normal Cell A Cell B Cell C Cell A Cell B Cell A Cell B Cell C Mean

DARTS
ImageNet

SwiftNet
Visual Wake Words Dataset

RandWire
CIFAR10

RandWire
CIFAR100

Sc
he

du
lin

g
Ti

m
e

(s
ec

on
ds

)

Dynamic Programming+Memory Allocator
Dynamic Programming+Graph Rewriting+Memory Allocator

Sc
he
du
lin
g
Ti
m
e
(s
ec
on
ds
)

Normal Cell A Cell B Cell C Cell A Cell B Cell CCell A Cell B Mean
SwiftNet

Human Presence
DARTS
ImageNet

RandWire
CIFAR10

RandWire
CIFAR100

Figure 3.13. Scheduling time evaluation for SERENITY.

Table 3.2. Comparison of the scheduling time for different algorithms to schedule SwiftNet. 1 ,
2 , and 3 represent dynamic programming, divide-and-conquer, and adaptive soft budgeting
respectively. N/A denotes infeasible within practical time.

GRAPH ALGORITHM # NODES AND SCHEDULING

REWRITING PARTITIONS TIME

✗ 1 62 ={62} N/A
✗ 1 + 2 62={21,19,22} 56.5 secs
✗ 1 + 2 + 3 62={21,19,22} 37.9 secs

✓ 1 92={92} N/A
✓ 1 + 2 92={33,28,29} 7.2 hours
✓ 1 + 2 + 3 92={33,28,29} 111.9 secs

3.6 Related Works

The prevalence of neural networks has led to the development of several compilation

frameworks for deep learning [1, 45, 135, 143]. However, even industry grade tools, mostly focus

on tiling and fine-grained scheduling of micro-operations on the conventional hardware [69, 129]

or accelerators [36, 37, 56, 60, 72, 88, 89, 134, 157]. However, these framework are mostly

designed for the common regular patterns that have dominated deep learning from almost its

conception. As such, these tools inherently had no incentive to deal with the form of irregularities

65

that the emerging NAS [29, 38, 43, 106, 140, 195, 196] and Random Networks [178, 181] bring

about. This paper, in contrast, focuses on this emergent class that breaks the regularity convention

and aims to enable their execution on memory constrained edge devices.

Scheduling and tiling for neural networks.

While prior works on scheduling [93, 102, 176] focus on classical computing workloads,

there have been limited study about the implications of scheduling in the neural networks domain.

There is also a significant body of work on scheduling operations on hardware accelerators [2]

that also considers tiling [5, 34, 107, 170]. However, graph scheduling for irregularly wired

neural network, specially with memory constraints, is an emerging problem, which is the focus

of this paper.

Graph rewriting for neural networks.

It has been a common practice to rewrite parts of the graph using rule-based [1, 45,

129, 135, 143] or systematic approaches to expose parallelism and make models more target-

aware [86, 87, 153]. While these approaches may alleviate the complexity of the graph and

reduce the peak memory footprint as a side effect, these frameworks do not explore and are not

concerned with scheduling. Our work exclusively explores graph rewriting in the context of

improving the peak memory footprint.

Optimizing neural networks.

There are different optimization techniques that aim to simplify the neural network

indifferent dimensions. Sparsification/compression [17, 74, 101, 194], quantization [44, 52,

73, 121, 193], activation compression [84], and kernel modifications reduce the complexity of

the individual operations or remove certain computations. However, our focus, the problem of

memory-aware graph scheduling still remains orthogonal to these inspiring efforts.

66

3.7 Conclusion

As the new forms of connectivity emerges in neural networks, there is a need for system

support to enable their effective use, specially for intelligence at the edge. This paper took

an initial step toward orchestrating such network under stringent physical memory capacity

constraints. We devised signatures to enable dynamic programming and adaptive soft budgeting

to make the optimization tractable. Even more, an identity graph writing was developed to further

the potential for gains. The encouraging results for a set of emergent networks suggest that there

is significant potential for compiler techniques that enables new forms of intelligent workloads.

3.8 Future Directions

Improving scalability of memory-aware scheduling.

While SERENITY [4] focused on the scheduling (or sequencing) for irregularly wired

neural networks with up to 100 nodes, neural networks may have orders of magnitude larger

number of nodes in its computational graphs. In fact, if we consider a tiled version of the original

graph, the graph can grow to even larger [59]. In such case, the proposed dynamic programming-

based solution, despite the heuristics, may take eons to find optimal solutions. [59] and [16] have

explored the combination of graph neural network with attention and GFlowNet [23], respectively,

to improve the scalability of scheduling computational graphs. Further investigations into this

direction to achieve near-optimal solutions for scheduling large-scale computational graphs can

bring significant benefits.

Extending insights to memory placement.

Another important optimization problem in neural execution is the memory place-

ment [94]. As the computational graphs of the DNNs are static, memory placement can be

determined at compile time over online cache management algorithms [158, 190] that offer

sub-optimal performance. While some recent works that leverage reinforcement learning [120],

domain knowledge [119], and graph neural networks [94], its performance are far from the

67

optimal performance that is offered by dynamic programming [22] or constraint program-

ming [113, 142]. As the use of the algorithms that offer optimal solutions are often limited

due to its large overhead, the experiences from [4] to reduce its scheduling time can provide

opportunities to make the optimal approaches more pragmatic.

Memory management of irregularly wired neural networks.

While SERENITY [4] focused on the scheduling (or sequencing) for irregularly wired

neural networks, there is another aspect in memory management: memory allocation. Even if we

manage to find optimal schedules of the neural network, lack of intelligent memory allocation

algorithm may cause memory fragmentation that may lead to a bloated memory usage. At the

time of publication, TensorFlow Lite [69] implemented a linear memory allocation named simple

memory arena. However, an effort [155] from IBM Research explored a mixed-integer program-

ming to find optimal memory allocation for small graphs and a profile-guided optimization to

make this more scalable. Furthermore, an effort [137] from the Google TensorFlow Lite team ex-

plored various heuristics to improve memory allocation. While both directions made significant

strides in improving memory allocation, their target is still limited to relatively simple models

and sometimes fails to achieve optimal memory allocation for large-scale irregularly wired

neural networks. Developing practical solutions that can achieve optimal memory allocation

with negligible compilation overhead would provide significant benefits.

Acknowledgement. Chapter 3, in part, contains a re-organized reprint of the material

as it appears in Conference on Machine Learning and Systems (MLSys) 2020. Ahn, Byung

Hoon; Lee, Jinwon; Lin, Jamie Menjay; Cheng, Hsin-Pai; Hou, Jilei; Esmaeilzadeh, Hadi. The

dissertation author was the primary investigator and author of this paper3.

3Qualcomm Technologies, Inc. (“QTI”) grants Byung Hoon Ahn (“Licensee”) a limited, revocable, non-
transferable, non-exclusive, royalty and fee free copyright license to copy and reproduce, in whole or in part, the
paper entitled “Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices”
published in MLSys 2020 along with any supplemental material provided with the paper (“Content”) as part of
Licensee’s Ph.D. thesis submission, provided that the Content is cited as belonging to Qualcomm Technologies,
Inc., has the appropriate copyright notice as a footnote and is only disclosed to Licensee’s PH.D. school Director
and to the academic reviewers of the thesis. Any further disclosure of the Content will require additional permission
or license. The Content remains the exclusive property of QTI and no other rights are granted.

68

Chapter 4

Hybridization of AI and Foundational
Algorithms for Optimized Execution of AI

Section 2 is a case study of AI Algorithm improving the adaptiveness of deep learning

compiler, and Section 3 is a case study of Foundation Algorithm achieving optimal solution.

Having observed that both worlds–AI and Foundational Algorithms–can bring significant benefits

to compiler optimization, this section presents an ambitious effort to take advantage of the Best of

Both Worlds. To this end, this section explores a Hybridization of AI and Foundational Algorithms

for optimized execution of AI. In more detail, this section utilizes Principal Component Analysis

(PCA), a widely used dimensionality reduction technique, to embed hardware specifications into

a hardware representation. Then, this section explores a combination of Meta Learning with

Hypernetworks to improve neural compilation.

4.1 Mathematical Embedding of Hardware Specification for
Neural Compilation

Success of Deep Neural Networks (DNNs) and their computational intensity has heralded

Cambrian explosion of DNN hardware. While hardware design has advanced significantly,

optimizing the code for them is still an open challenge. Recent research has moved past traditional

compilation techniques and taken a stochastic search algorithmic path that blindly generates

rather stochastic samples of the binaries for real hardware measurements to guide the search.

69

This paper opens a new dimension by incorporating the mathematical embedding of the hardware

specification of the GPU accelerators dubbed Blueprint to better guide the search algorithm and

focus on sub-spaces that have higher potential for yielding higher performance binaries. While

various sample efficient yet blind hardware-agnostic techniques have been proposed, none of the

state-of-the-art compilers have considered hardware specification as hints to improve the sample

efficiency and the search. To mathematically embed the hardware specifications into the search,

we devise a Bayesian optimization framework called Glimpse with multiple exclusively unique

components. We first use the Blueprint as an input to generate prior distributions of different

dimensions in the search space. Then, we devise a light-weight neural acquisition function

that takes into account the Blueprint to conform to the hardware specification while balancing

the exploration-exploitation trade-off. Finally, we generate an ensemble of predictors from the

Blueprint that collectively vote to reject invalid binary samples. We compare Glimpse with

hardware-agnostic compilers. Comparison to AutoTVM [35], Chameleon [5], and DGP [165]

with multiple generations of GPUs shows that Glimpse provides 6.73×, 1.51×, and 1.92× faster

compilation time, respectively, while also achieving the best inference latency.

4.2 Introduction

Prevalent adoption of Deep Neural Networks (DNNs) in voice assistants, smart speakers,

and enterprise applications has triggered a Cambrian explosion of DNN hardware to cope with

the colossal computational intensity of DNNs. While the hardware designs have advanced

significantly, inseparable task of generating optimized code for them is still an open challenge.

In fact, hand-optimized libraries such as NVIDIA cuDNN or Intel MKL that serve backend for

programming interfaces such as TensorFlow [1] and PyTorch [135] have been the go-to solutions

for higher performance DNN execution. However, recent research in neural compilers has taken

a leap beyond hand-optimized libraries and traditional compilation techniques, and embraced

stochastic search algorithms such as simulated annealing to improve the search. These search

70

algorithms navigate an exponentially large search space for the optimized code, which is one

of the main reason behind the success of optimizing compilers [34]. To traverse the search

space in a sample efficient manner, recent innovations in optimizing compilers strived to reduce

the compilation time with cost models to approximate the large search space [35, 145] and

effective search algorithms [5, 165]. However, these search algorithms [5, 35, 103, 145, 165,

191], classified as black-box optimization, are blindly and solely guided by the real hardware

measurements. These measurements, however, comes at a large cost in terms of time yet barely

provides any architectural hints to effectively guide the search algorithms due to their blindness.

As such, although these neural compilers have made their way into the deep learning pipelines

of major deep learning solutions providers including Amazon, Xilinx, and Qualcomm, the

current paradigm of hardware-agnostic neural compilers takes hours to optimize even a small

model. In fact, this even grows to days on GPUs to optimize multitude of models on many GPU

accelerators1, which curtails the overall productivity in DNN model deployment.

This paper sets out to explore a new path where we provide neural compilers with

perception such that it can take a glimpse of the mathematical embedding of the hardware

blueprints to better guide the search algorithm. We devise a Bayesian optimization framework

called Glimpse that uniquely explores the mathematical embedding of the GPU specifications

dubbed Blueprints to expedite the neural compilation while also improving the resulting bi-

nary performance. We first use Blueprints to generate a set of prior distributions of different

dimensions of the search space. Then, we devise a light-weight neural acquisition function

learned using meta-learning-based algorithm that takes into account the Blueprint to conform

to the hardware while balancing the exploration-exploitation trade-off. Finally, we generate an

ensemble of predictors from the Blueprint that collectively vote to reject invalid binary samples.

We compare Glimpse with state-of-the-art hardware-agnostic neural compilers AutoTVM [35],

Chameleon [5], and DGP [165] with modern DNNs including AlexNet [96], ResNet-18 [75],

1For example, 10 DNN models on 100 different GPUs would take around 10,000 GPU hours to optimize which
translates to $9,000 with Amazon EC2 instances (on-demand, p2.xlarge). This is an exorbitant (per model update)
cost for businesses considering the swift evolution of the neural architectures deployed in real world applications.

71

VGG-16 [161] on multiple generations of GPUs including Titan Xp, RTX 2070 Super, RTX 2080

Ti, RTX 3090. Integration of Glimpse to TVM [34] shows that Glimpse provides 6.73×, 1.51×,

and 1.92× faster compilation time over AutoTVM, Chameleon, and DGP, respectively, while

also achieving the best inference latency. Further analysis show up to 2.18× improvement in the

initial configurations over transfer learning, 5.07× and 2.55× reduction in the number of search

steps compared to AutoTVM and Chameleon. Glimpse also reduces invalid configurations by

5.56× and 4.53× over AutoTVM and Chameleon.

4.3 Challenges in Neural Compilation

After the models are trained using programming interfaces such as TensorFlow [1] or

PyTorch [135], they are sent to the deployment engineers whose goal is to make sure the models

meet various Quality-of-Service (QoS) requirements such as inference latency in end-to-end

applications. The deployment engineers utilize optimizing compilers such as TVM [34] to tune

the performance on a given target hardware, we use the term Neural Compilers throughout the

paper. In fact, major deep learning solution providers such as Amazon, Xilinx, and Qualcomm

incorporate these neural compilers within their Software Development Kit (SDK).

4.3.1 Neural Compilation for Model Deployment

Current neural compilers generally try to optimize s ∈ S while considering the target

hardware as a black-box function f(xs), where x and s are the code templates (e.g., Conv2D,

Dense, and etc.) and their configuration (sampled from combinations of tiling, bindings, unrolling,

and etc.), respectively. Usually the size of the overall search spaces S is astronomically large,

which render simple grid search algorithms impractical. For example, the first layer of VGG-16

has over 200 million combinations. To make this worse, these search spaces are not differentiable,

and the optimal configurations are sparsely distributed throughout the search space making it a

complex problem to solve. Recent advances in neural compilation [5, 35, 103, 145, 165, 191]

have introduced a cost model f̂ ≈ f that approximates the vast search space and proposed

72

Titan Xp RTX 2080 Ti
Optimized Configuration from Target HW Optimized Configuration from Different HW

27.79% slowdown31.33% slowdown

Figure 4.1. Visualization of ResNet-18 7th layer’s search space on different generation of
GPUs (Titan Xp vs. RTX 2080 Ti). While the overall search space may look similar, the optimal
configuration is different. We cannot just reuse the optimal binary from one hardware to run
DNN on another hardware.

intelligent search algorithms that better navigates the search space. However, the neural compilers

still suffer from long compilation times of over tens of hours to days for even a single neural

network.

4.3.2 Challenges and Opportunities in Neural Compilation

Although the problem of neural compilation as stated in Section 4.3.1 is already difficult,

current neural compilation formulation has a narrow focus on a single hardware. However, in

reality, there are multiple generations of hardware that are embedded in the intelligent devices.

For instance, if we consider GPUs that are widely used to execute DNNs, generations of the

GPU (e.g., Pascal, Turing, Ampere, etc.) vary machine by machine. To this end, the deployment

engineers are left with a formidable task of tuning the DNN model for multiple not single target

hardware, meaning n repetitions of the overall neural compilation for n hardware. In other words,

considering θ ∈Θ (where Θ encodes the hardware configurations such as number of different

73

cores, clocks, bandwidth, bus types, and etc.), problem formulation must be updated to:

s∗ = argmax
s

f(xs|Θk), for s ∈ S & many k ∈ N (4.1)

Simplest approach to cope with the variations in hardware is to just ignore and reuse

the optimized configuration from another hardware. For example, using s∗ from Titan Xp to

compile DNN on RTX 2080 Ti. However, this may not result in the optimized performance

we desire. In fact, Figure 4.1 shows that while the overall search space takes a similar shape

for different hardware, the optimal configuration differs among them. For ResNet-18 7th layer,

reusing s∗ led to 27.79% slowdown of the output code for Titan Xp→RTX 2080 Ti, and 31.33%

for RTX 2080 Ti→Titan Xp. On the other hand, transfer learning [35] is the most common way

of reusing the compilation experiences. However, this also suffers from similar degradation in

the performance of the resulting binary. An alternative approach would be to develop multiple

neural compilers, one for each hardware, but this is neither cost-effective nor scalable solution to

the long neural compilation time problem. Most importantly, such approach cannot cope with

the constant evolution of the hardware. Simply put, current hardware-agnostic techniques are

not scalable. On the other end of the spectrum, some analytical model or a simulator within the

neural compilation loop to give full view of the hardware to run a white-box optimization, the

confidentiality of the hardware design and the potential slow down of the compilation process

from the complex hardware prohibits this.

However, silver lining here is that: (i) while the precise blueprints of the hardware are

difficult if not impossible to get and use in neural compilation, some features or the specification

of the hardware are available in public data sheets [130], and (ii) despite the fact that optimal

solutions are different for different hardware, their search spaces have similar characteristics

that open up opportunities to transfer the optimization experiences. Overall, the macro view of

the problem of neural compilation for multiple hardware makes the problem more challenging,

yet introduces a new unexplored dimension in designing neural compilers: hardware-awareness.

74

Glimpse

Code Templates
& Search Space

Hardware
Blueprints

</></></>

Multiple
Target Hardware

Real Hardware Measurements

Blueprint
Generation

Binary

f

DNN
Model

Conv2D

Conv2D

Conv2D

Dense

Public
Data SheetsMathematical

Embedding

Figure 4.2. Overview of compilation with Glimpse. Unlike current hardware-agnostic ap-
proaches which navigate the search space blindfolded, Glimpse takes hints from glimpse of
hardware Blueprints for faster neural compilation.

4.4 Glimpse: Mathematical Embedding of Hardware Speci-
fication for Faster Neural Compilation

Deviating from the current blind and hardware-agnostic neural compilers, we propose

Glimpse, a novel neural compiler with perception to take a sneak peek of the hardware specifica-

tions in the form of mathematical embedding dubbed Blueprint. We first devise a mathematical

embedding Blueprint to encapsulate the hardware specifications. Then, we develop a hardware-

aware neural compiler dubbed Glimpse that takes the Blueprints to take a glimpse of the hardware

blueprint to adaptively and quickly optimize the input DNNs to the target hardware. To this

end, this work can be subdivided into two main components that work together: (i) Blueprint

a mathematical embedding that encodes key specifications of the hardware, and (ii) Glimpse

that translates the embedding into useful knowledge such as prior distributions to guide the

search, search strategy in the form of neural acquisition function that can expedite the optimizing

compilation, and ensemble of predictors to reject the invalid configurations. Figure 4.2 illustrates

the overall flow of the compilation with Glimpse and Blueprint.

75

4.4.1 Blueprint: Mathematically Embedding Architectural Features of
Hardware

To provide hardware-awareness to the neural compiler, we need to feed the neural

compiler with the specification about the target hardware. However, unlike with white-box

optimization where we would have the full view of the design and the specification of the

hardware enabling explicit description of the hardware within the neural compiler, the com-

plexity of the hardware designs as well as the confidentiality of the designs make it hard if not

impossible to get the design. To close the structural gap between the demand for faster DNN

deployment hence faster neural compilation and the practical difficulty in incorporating hardware

information, Glimpse utilizes the architectural specifications provided by the vendors in public

data sheets [130]. The data sheet lists the number of different processors/cores, bus interfaces,

cache size, clock cycles, and the compute capacity in GFLOPS provided by the manufacturer.

We create a mathematical embedding of these specifications. These mathematical embeddings

can provide neural compilers with a sneak peek of the architecture, and as a result provide hints

about the search space and assist compiler while learning to quickly optimize tensor programs to

better optimality.

Design.

We devise a novel abstraction of the hardware dubbed Blueprint which is a mathematical

embedding vector that summarizes the important features of the target hardware. Two key

considerations while developing the Blueprint are (i) minimizing the loss of information while

(ii) maintaining low overhead. While (i) is an obvious objective, (ii) is one of the key subtleties.

As suggested in Section 4.3, one of the key challenges we face in developing neural compilers

is the eons of time required for optimization. Therefore, one of the key design consideration

was reducing the size of the embeddings that can impact the compilation time. In fact, parsing

overhead for the neural compilers to gain architectural insights from the Blueprint may accrue

to constitute a significant fraction of the neural compilation time. We perform a dimensionality

76

reduction of the original feature vectors using Principal Component Analysis (PCA) to get get

the minimal mathematical embedding vector that summarizes the hardware. We use PCA over

neural autoencoders as PCA provides an intuitive knob that allows us to balance the size with

the information loss. On the other hand, using neural autoencoders would require more complex

design space exploration of the neural model. Also, neural networks required more computation

to achieve the same dimensionality reduction.

Prior distribution generation from Blueprint.

We consider the neural compilation as a Bayesian optimization problem where the

optimization begins with a prior distribution and updates the distribution over multiple iterations

to gradually improve the posterior distribution, improving the quality of sampled binaries

as we progress through the compilation. While this prior distribution can be learned from

scratch, this has been shown to be very inefficient [5, 35]. As such, we use the aforementioned

hardware Blueprint and the network specification to generate the prior distribution that can

speed up the compilation significantly. We use a parametric neural model f ′k(π)≈ fk instead of

non-parametric Gaussian processes to approximate the spaces. Then, taking inspiration from

HyperNetworks [71], we devise a prior distribution generatorH that takes a layer specification

and Blueprint as input and outputs the parameters π for the prior distribution f ′k(π). To train

H, we gathered a large scale dataset similar to [192] of s and f . One important design choice

forH was generating n distributions for n dimensions of the search space. H generates fk,tile x

and fk,tile y for the dimensions tile x and tile y, respectively. To get the initial samples from the

search space, Glimpse enumerates combinations of the argmax(fk,∗), weighted by the Πfk,∗.

Overall, this prior distribution generatorH serves an effective initialization for the optimizing

compilation procedure, reducing the number of costly hardware measurements to locate optimal

configuration s∗. Importantly, as prior distribution generation from Blueprint is a one-off process

per layer, the computational cost ofH was negligible.

77

4.4.2 Hardware-Aware Exploration: Adapting Optimization Steps with
Meta-learning

Current hardware-agnostic techniques [5, 35, 103, 145, 165, 191] take black-box ap-

proach and utilize stochastic optimization algorithms. To transfer the experience among different

compilation instances, above method such as AutoTVM [35] uses the cost model as a proxy

to transfer knowledge among similar layers. While these approaches allow the users to reuse

the cost model, they still require significant number of real hardware measurements before they

start yielding satisfactory output code. Likewise, reusing cost models among different hardware

usually yield sub-optimal output code as stated in Section 4.3.2. The main reason for such

sub-optimal performance is because the subtle differences in the architecture leads to significant,

yet nonlinear, changes in the performance for the target hardware. Unlike these naive approaches

to transfer experiences, Glimpse leverages the information encapsulated in Blueprints to improve

the hardware-awareness of the exploration process. The main insight is that, while the exact

locations of the optimal configuration in the search spaces may be different among multiple

hardware, the know-hows on how to achieve that optimal configuration may be transferable.

Glimpse incorporates a hardware-aware strategy to conduct the search. In particular, we take

inspiration from MetaBO [172] to learn the Meta-Optimizer in the Figure 4.3 to emit neural

acquisition functions f(·|θ) for Hardware-Aware Exploration that dictates the exploration and

exploitation strategy.

Training.

Training first begins by sampling the maximums Xs from the prior distribution from Sec-

tion 4.4.1. Then, we follow the natural Bayesian optimization pass of (i) sampling initial

solutions from the surrogate cost model f , (ii) Hardware-Aware Exploration to determine the

configurations Xs to explore, and (iii) Hardware-Aware Sampling to prune invalid configurations

to determine the candidates for real measurements X ′
s. Measurements f (reward), Tuples of

configuration and the optimization budget (Xs, t,T) (state) where t and T are the optimization

78

Xs

θ

Su
rr
og
at
e

Co
st
 M
od
el

H
ar
dw
ar
e-
Aw
ar
e

Sa
m
pl
in
g

Sa
m
pl
ed
 b
in
ar
ie
s

fo
r
Re
al
 H
ar
dw
ar
e

m
ea
su
re
m
en
ts

M
ea

su
re

m
en

ts

fro
m

 R
ea

l H
ar

dw
ar

e

H
ar

dw
ar

e
Bl

ue
pr

in
ts

C
od

e
Te

m
pl

at
e

an
d

Se
ar

ch
 S

pa
ce

f(X
s')

f'
H
ar
dw
ar
e-
Aw
ar
e

Ex
pl
or
at
io
n

x

M
et
a

O
pt
im

iz
er

Pr
io
r
D
is
tr
ib
ut
io
n

G
en
er
at
or

1

2
3

Xs
'

f'(
 |

) θ.

G
lim
ps
e

i-
th
 B
at
ch (N
eu
ra
l A
cq
ui
si
ti
on
 F
un
ct
io
n)

Fi
gu

re
4.

3.
D

et
ai

le
d

di
ag

ra
m

of
G

lim
ps

e
an

d
its

co
m

po
ne

nt
s.

D
ot

te
d

ar
ro

w
s

ar
e

of
fli

ne
tr

ai
ni

ng
pr

oc
ed

ur
e.

79

step and the budget, respectively, and the optimal configuration xs ∈Xs (action) are collected as

the dataset to train the Meta-Optimizer. Highlighted inside the brackets translates the Glimpse

training setting into the reinforcement learning parlance, similar to the [172]. We iterate through

various hardware and networks to train our Meta-Optimizer. As we progress through the Meta-

Optimizer training, the Hardware-Aware Exploration that gets emitted gradually improves and

learns to (i) make the optimal trade-off between exploration-exploitation and, more importantly,

(ii) learn how to incorporate the hardware-awareness in the Hardware-Aware Exploration mod-

ule. Final outcome of this off-line process is the hardware-aware optimization strategy ingrained

in the Hardware-Aware Exploration module.

4.4.3 Hardware-Aware Sampling: Using Statistics to Minimize Invalid
Configurations

Besides the above innovations, Glimpse tackles an innate issue in neural compilers:

frequent invalid configurations. Chameleon [5] suggested using clustering that samples the

centroids to reject invalid configurations. However, clustering-based sampling is hardware-

agnostic, and it fails to filter out many of the invalid configurations, leading to significant waste

in GPU time and low (real measurements) sample efficiency. In contrast, Glimpse incorporates

the hardware-guided approach to reject invalid configurations. Glimpse generates an ensemble

of predictors p for different dimensions of the search space from the Blueprints. For example,

ptile x and ptile y are generated for tile x and tile y, respectively. For each configuration sampled

from the Hardware-Aware Exploration, ensemble predictors vote the validity of the configuration.

Sampler rejects the configuration if considered invalid by more than τ2 of the predictors. As

each of these predictors are hardware-aware, their accuracy is significantly higher than other

hardware-agnostic approaches.

2We use τ = 1
3 , found through a gridsearch hyperparameter search.

80

Algorithm 4. Overall flow of Glimpse with Blueprint.
1: Data: Π: Layer specification, Θ: Blueprint
2: Result: x∗: Optimal configuration
3: // Section 4.4.1: Generate prior distributions
4: f̂ ←H(Π,Θ)
5: for i← 0 to n do
6: // Section 4.4.2: Hardware-Aware Exploration
7: xs← simulated annealing with f̂ as energy function
8: xspruned← meta-optimizer with Θk as hints
9: // Section 4.4.3: Hardware-Aware Sampling

10: xssampled gets sampling to minimize invalid configs.
11: // Run real hardware measurements
12: for x ∈ xssampled do
13: y← f(x); O ← (x,y); x∗← x with maximum y
14: end for
15: // Update cost model
16: update f using O
17: end for

Design.

Instead of a large and complex monolithic predictor could be an alternative design point

for Hardware-Aware Sampling in Glimpse, we use an ensemble of light-weight predictors for

two reasons. First, statistically speaking, ensemble methods have been shown to yield a better

predictive performance than could be obtained from any of the constituent predictor alone. In this

case, comparable to a large complex monolithic predictor. In fact, smaller predictors are more

appropriate considering the dearth amount of data. Furthermore, as key design consideration

for neural compilers is the compilation speed for higher overall productivity, ensemble of light-

weight predictors were used to minimize computational overhead of prediction. These predictors

are super fast as they are threshold-based: their time complexity is O(1) over Chameleon [5]’s

O(nkI), where n is the number of samples, k is the number of clusters, and I is the number of

iterations.

81

Table 4.1. Details of the DNN models.

DNN Models Dataset Number of Tasks

AlexNet

VGG-16

Resnet-18

ImageNet

ImageNet

ImageNet

12
(5 conv2d, 4 winograd conv2d, 3 dense)

21
(9 conv2d, 9 winograd conv2d, 3 dense)

17
(12 conv2d, 4 winograd conv2d, 1 dense)

Table 4.2. Details of the GPUs.

Hardware Generation (gencode)
Titan-Xp

RTX 2070 Super
RTX 2080 Ti

Pascal (sm_61)
Turing (sm_75)
Turing (sm_75)

RTX 3090 Ampere (sm_86)

Integration and implementation.

Algorithm 4 summarizes the overall flow of Glimpse with Blueprint. We use Py-

Torch [135] to implementH for prior generation and the meta-optimization.

4.5 Evaluation

We integrate Glimpse with Apache TVM v0.8 [34] to perform evaluation of both compo-

nent and end-to-end scenario. We ran our framework on host machine with AMD Ryzen 7 3700X,

64GB DDR4, with NVIDIA RTX 2070 Super, and used CUDA 11.3 to program DNNs onto GPUs as

summarized in Table 4.2. We compare Glimpse against the state-of-the-art optimizing compilers:

AutoTVM [35], Chameleon [5], and DGP [165]. We optimize AlexNet [96], VGG-16 [161], and

ResNet-18 [75] on multiple generations of GPUs connected via RPC (Titan Xp, RTX 2070 Super,

RTX 2080 Ti, RTX 3090) as summarized in Table 4.1.

82

4.5.1 Blueprint

Design space exploration of Blueprint.

Unlike hardware-agnostic proposals [5, 35, 103, 145, 165, 191], Glimpse utilizes the

information embedded in Blueprint to speed up the neural compilation. As such, minimizing the

information loss about the architectural specifications listed in the data sheets [130] is imperative.

Importantly, the Blueprint needs to be designed to have as low overhead as possible. Figure 4.4

summarizes the design space exploration of Blueprint. Our design of Blueprint strikes balance

between the amount of information in the vector (¡ 0.5% for minimal information loss in terms of

Root-Mean-Squared-Error (RMSE) while using Blueprint) versus the size of the embedding (for

fast compilation).

Prior distribution generation with Blueprint.

Figure 4.5 plots the distribution of the initial configurations sampled with and without

Blueprint for representative GPU / DNN Model / Layer combinations. The results show that

using Blueprint improves the initial configuration. In fact, some layers even reach the optimal

configuration within first few steps of optimization, enabling sub-minute compilation time. In

contrast, AutoTVM [35] and Chameleon [5] reports that it takes at least few hundred steps

(around hour per layer) to reach a similar performance.

We also compare against transfer learning which is the core mechanism used in Au-

toTVM [35] to reuse knowledge from prior optimization runs. We used logs from all but

0

0.05

0.1

0.15

0.2

0% 25% 50% 75% 100%In
fo

rm
at

io
n

Lo
ss

Size of Blueprint

Optimal trade-off of information loss
and compilation speed

Figure 4.4. Design space exploration of Blueprint. Point marked with red star strikes balance
between the information loss from compression and the compilation time.

83

0

1000

2000

3000

4000

0 20 40 60 80 100

Random AutoTVM Chameleon Glimpse

0

1000

2000

3000

4000

0 20 40 60 80 100

Random AutoTVM Chameleon Glimpse

0

1000

2000

3000

0 20 40 60 80 100

Random AutoTVM Chameleon Glimpse

0

1000

2000

3000

4000

0 20 40 60 80 100

Random AutoTVM Chameleon Glimpse

G
FL

O
PS

Titan Xp / ResNet-18 / L7 RTX 2070 Super / ResNet-18 / L12

RTX 2080 Ti / VGG-16 / L17 RTX 3090 / AlexNet / L8

G
FL

O
PS

Figure 4.5. Comparison of initial sampled configurations from random search, AutoTVM,
Chameleon, and Glimpse for representative combinations of DNN layers and GPUs. There are
100 configurations in each set and are sorted in descending order.

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
83 1.

00

0.
98

0.
98

1.
00

1.
00 1.
11

0.
91 1.
00 1.

28

1.
00

1.
00

1.
001.
04 1.

32 1.
56

1.
22

1.
66

1.
38

1.
20

1.
59

1.
26

1.
63

2.
18

1.
14 1.

40

0.00

1.00

2.00

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

ge
om

ea
n

Titan Xp RTX 2070 Super RTX 2080 Ti RTX 3090

O
ut

pu
t

co
de

 p
er

fo
rm

an
ce

/

Au
to

TV
M

AutoTVM w/o Transfer Learning AutoTVM w/ Transfer Learning Glimpse (Ours)

Figure 4.6. Comparison to AutoTVM transfer learning, provided 100 seconds optimization time
budget per layer.

84

combination of target network and hardware for transfer learning, and plot the output code

performance when provided 100 seconds of budget per layer. Figure 4.6 shows that Blueprint

outperforms both AutoTVM with and without transfer learning by 40.0%. Despite the belief that

transfer learning would be sufficient to transfer knowledge among tasks, it sometimes performed

worse than baseline AutoTVM. In fact, the results in AutoTVM [35] also suggests that transfer

learning only achieves fraction of the final binary performance that are achieved with hundreds

to thousands of hardware measurements. These results suggest that knowledge from transfer

learning not only necessitates significant number of additional real hardware measurements but

also is prone to being misguided. In contrast, Blueprint provides effective initializations to the

Glimpse compiler and consistently yields the best performance.

4.5.2 Hardware-Aware Explorer

Speed of convergence.

In AutoTVM [35] and Chameleon [5], authors formulate a cost minimization with

a batch of Markov chains and use optimization algorithms such as simulated annealing and

reinforcement learning. While the output code performance is determined by the final cost the

optimization achieves, the number of updates or steps these Markov chains take is the key factor

that determines the optimization time. Figure 4.7 compares the number of search steps among

the three works: AutoTVM [35], Chameleon, and Glimpse3. Glimpse achieves 5.07× and 2.55×

speed-up against AutoTVM and Chameleon, which shows that Glimpse’s Hardware-Aware

Explorer may converge significantly faster than optimizing compilers for single hardware. This

notable reduction in the number of search steps come from the Glimpse compiler’s ability to

take hints from the mathematical embeddings of the Blueprints about the optimization steps, on

when and where to explore and exploit.

3Here, we do not provide comparisons against acquisition functions such as Expected Improvement (EI), and
Upper Confidence Bound (UCB). AutoTVM’s experimental results show that they yielded no improvement.

85

47
.7

%

48
.0

%

53
.0

%

57
.9

%

47
.6

%

52
.9

%

58
.4

%

47
.0

%

42
.2

% 57
.1

%

49
.4

%

45
.3

%

50
.3

%

19
.1

%

21
.7

%

19
.2

%

18
.5

%

21
.6

%

19
.4

%

18
.4

%

21
.5

%

19
.0

%

18
.7

%

21
.5

%

18
.7

%

19
.7

%

0%

50%

100%
Al

ex
N

et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

ge
om

ea
n

Titan Xp RTX 2070 Super RTX 2080 Ti RTX 3090

Se
ar

ch
 S

te
ps

 /
 A

ut
oT

VM

AutoTVM Chameleon Glimpse (Ours)

Lower the Better

Figure 4.7. Comparison in number of search steps. Results show Glimpse provides significant
reduction.

0.
83

1.
55

1.
12

0.
86

1.
30

1.
29

1.
09

1.
55

1.
49

1.
13

1.
53

1.
29

1.
23

4.
40

3.
30

10
.6

0

8.
78

3.
62

21
.1

1

7.
31

4.
50

12
.4

1

1.
92 2.

63

4.
07

5.
56

0.00

3.00

6.00

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

Al
ex

N
et

Re
sN

et
-1

8

VG
G

-1
6

ge
om

ea
n

Titan Xp RTX 2070 Super RTX 2080 Ti RTX 3090

Re
du

. i
n

In
va

lid
 C

on
fig

s.

/
Au

to
TV

M

AutoTVM Chameleon Glimpse (Ours)

Higher the Better

Figure 4.8. Comparison to hardware-agnostic sampling approaches in reduction of invalid
configurations.

86

4.5.3 Hardware-Aware Sampling

There is an intrinsic issue of the search space provided by TVM [34] where there exists

numerous invalid configurations leading to large delays in compilation speed and waste in GPU

hours. In current compilers, around 10% of the measurements made were invalid. Figure 4.8

presents the reduction in fraction of invalid configurations with respect to the number of hardware

measurements for sampling in Chameleon [5] and Glimpse compared to AutoTVM [35]. Glimpse

reduces the invalid configurations by 5.56× and 4.53× compared to AutoTVM and Chameleon,

respectively. The results suggest, that weak statistical guarantees of the sample synthesis and

the adaptive sampling to reduce the frequency of these invalid configurations are insufficient to

cope with the above issue. Instead, Hardware-Aware Sampling in Glimpse effectively reduces

the number of hardware measurements using the statistical approach.

4.5.4 Putting It All Together

Figure 4.9 and Figure 4.10 compares the end-to-end compilation time and the output

binary performance of Glimpse compared to state-of-the-art hardware-agnostic techniques:

AutoTVM [35], Chameleon [5], and DGP [165]. First, Glimpse cuts down the search time 6.73×,

1.51×, and 1.92× compared to AutoTVM, Chameleon, and DGP respectively, while achieving

the best inference latency of the output binary. The gains come from the collaboration of (i)

prior distributions generated from Blueprint, (ii) effective balance of exploration-exploitation as

well as hardware-awareness of Hardware-Aware Exploration, and (iii) hardware measurements

reduction with statistical Hardware-Aware Sampling. Table 4.3 summarizes the search reduction

(GPU time), inference time improvement. Also, following [165], we present Hyper-Volume

(HV) to measure the efficacy of different approaches considering multi-objectives.

HV = Search Reduction× Inference Reduction×100 (4.2)

Glimpse cuts down the search time significantly compared to hardware-agnostic tech-

87

Ta
bl

e
4.

3.
C

om
pa

ri
so

ns
to

st
at

e-
of

-t
he

-a
rt

op
tim

iz
in

g
co

m
pi

le
rs

[5
,3

5,
16

5]
fo

rH
yp

er
-V

ol
um

e
(H

V
),

a
m

et
ri

c
th

at
su

m
m

ar
iz

es
th

e
m

ul
tip

le
ob

je
ct

iv
es

of
op

tim
iz

in
g

co
m

pi
la

tio
n:

se
ar

ch
tim

e
(G

PU
H

ou
rs

)a
nd

en
d-

to
-e

nd
m

od
el

in
fe

re
nc

e
la

te
nc

y
(m

ill
is

ec
on

ds
).

M
od

el
ΣG

P
U
 S

ea
rc

h
(G

PU
 H

ou
rs

)

Al
ex

N
et

Re
sN

et
-1
8

VG
G
-1
6

18
.6
5

36
.5
3

49
.0
8

Au
to

TV
M

 (N
eu

rIP
S’

19
)

M
ea

n
In

fe
re

nc
e

(m
s)

0.
55

18
1.
89

26

C
ha

m
el

eo
n

(IC
LR

’2
0)

H
V

4.
24

30
3.
18

95
2.
84

01

Se
ar

ch

Re
du

. (
%

)

72
.1
6

76
.6
7

82
.5
6

In
fe

re
nc

e
Re

du
. (

%
)

5.
88

4.
16

3.
44

D
G

P
(IC

C
V’

21
)

H
V

4.
55

78
3.
64

12
3.
25

76

Se
ar

ch

Re
du

. (
%

)

65
.9
6

70
.4
3

76
.8
3

In
fe

re
nc

e
Re

du
. (

%
)

6.
91

5.
17

4.
24

G
lim

ps
e

(O
ur

s)

H
V

5.
74

92
4.

39
54

3.
70

45

Se
ar

ch

Re
du

. (
%

)

82
.8

4
84

.8
5

87
.3

7

In
fe

re
nc

e
R

ed
u.

 (%
)

6.
94

5.
18

4.
24

0.
47

99
Ti

ta
n

Xp
RT

X
20

70
 S

up
er

RT
X

20
80

 T
i

RT
X

30
90

1.
02

58
3.
98

29

1.
02

77
1.
33

05
4.
57

51

0.
96

62
0.
92

82
3.
18

65

0.
78

72

88

1.
00

0

1.
00

0

1.
00

0

1.
06

2

1.
04

3

1.
03

6

1.
07

4

1.
05

5

1.
04

4

1.
07

4

1.
05

5

1.
04

4

0.9001.0001.100
AlexNet ResNet-18 VGG-16

AutoTVM (NeurIPS'19) Chameleon (ICLR'20) DGP (ICCV'21) Glimpse (Ours)

3.
59 4.
29

5.
73

4.
45

2.
94

4.
32

3.
38

3.
50

5.
83 6.
60

7.
92

6.
73

0.00

4.00

8.00

Ale
xN
et

Re
sN
et-
18

VG
G-
16

ge
om
ea
nIm

pr
ov

em
en

t /
 A

ut
oT

VM

Figure 4.9. End-to-end improvement in optimization time.

1.
00

0

1.
00

0

1.
00

0

1.
06

2

1.
04

3

1.
03

6

1.
07

4

1.
05

5

1.
04

4

1.
07

4

1.
05

5

1.
04

4

0.9001.0001.100
AlexNet ResNet-18 VGG-16

AutoTVM (NeurIPS'19) Chameleon (ICLR'20) DGP (ICCV'21) Glimpse (Ours)

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
06

2

1.
04

3

1.
03

6

1.
04

7

1.
07

4

1.
05

5

1.
04

4

1.
05

8

1.
07

5

1.
05

5

1.
04

4

1.
05

8

0.9

1.0

1.1

AlexN
et

ResN
et-1

8

VGG-16

geomean

Near optimal

Figure 4.10. End-to-end improvement in inference speed.

niques while achieving the fastest inference. Therefore, Glimpse shows the highest HV score:

the best trade-off between search time and inference speed. Even if inference speed is the main

criterion [165], Glimpse provides the best inference speed.

4.6 Related Works

A large body of inspiring works on neural compilers have been introduced to generate

high-performance binaries for innovative neural accelerators [104]. While many neural compilers

such as TVM [34] blindly rely on the statistical guarantees of stochastic optimization, this paper

uniquely explores the use of hardware blueprints, a proxy of the complete architecture description

89

to improve the initialization, exploration, and the sampling to improve neural compilation. Below,

we discuss the most related works:

Neural compilers.

While TVM [34] significantly improves inference speed of DNNs, it comes with an

intractable search space. AutoTVM [35] develops learned cost models and TenSet [192] pro-

vides large scale dataset to improve the cost models to approximate this large search space To

find optimal configurations, TVM [34] builds on random search and genetic algorithms while

AutoTVM [35], GGA [124], and Chameleon [5] explored simulated annealing, guided genetic

algorithm, and reinforcement learning to further improve the search efficacy. [165] explored

deep Gaussian process to transfer knowledge to different layers on a single target GPU. Prior

works were blind about the hardware during optimization, discarding the opportunity to transfer

experiences between optimization runs on different hardware. While these blind approaches

incur large GPU hours for compilation, this paper explores the use of Blueprint as a mechanism

to let compilers perceive the target hardware and predict the search space landscape to expedite

the search, reducing the overall GPU hours while also achieving faster inference.

Meta-learning for neural compilation.

Meta-learning [55] proposes a mechanism to learn to learn that guides and expedites op-

timization. For example, MetaBO [172] explored meta-learning in the context of Bayesian

optimization for more sample efficient optimiation. In the context of neural compilation,

MetaTune [145] leverages meta-learning to expedite the convergence of the cost models. In con-

trast, Glimpse incorporates a unique blend of meta-optimizer that takes domain-knowledge about

the architectures as input. Specifically, we develop a mechanism that feeds the Hardware-Aware

Exploration with information in Blueprint, which led to significant reduction in compilation time

as well as the inference latency.

90

4.7 Conclusion

This paper presents Glimpse, a neural compiler that exclusively explores mathematical

embeddings of the hardware Blueprints to improve both the speed and the performance of

neural compilation. Experiments on modern DNNs on a multiple generations of hardware

shows that hardware-awareness of Glimpse significantly reduces the compilation time while

achieving the best inference latency. Encouraging results with Glimpse of Blueprint for neural

compilation suggest significant potential in abstractions that encode domain knowledge to

improve optimization.

4.8 Future Directions

Glimpse [3] was an effort to (1) develop abstractions for hardware and (2) apply it to

deep learning compilers as a case study of hardware-aware optimization. Encouraging results

suggest a significant potential in diving deeper into each of directions.

Abstractions for heterogenous hardware.

While Glimpse focused on GPUs as the target hardware, there are many different types

of hardware the enable modern computing. For example, despite the wide-spread use of GPUs

for training and inference at server scale such as Inference-as-a-Service (INFaaS), many edge

devices still rely on CPUs or small micro-controllers. Also, recent Cambrian explosion of

deep learning hardware and their heterogeneity limits the naive extension of the work to all

hardware. To this end, one possibility is to explore graph neural networks as a means to develop

a generalized embedding of hardware.

Hardware-aware optimization.

Hardware-aware neural architecture search [28, 29, 173], model compression [76], and

quantization [50, 174] have shown significant potential in leveraging the feedback from hardware

for various optimization problems. In fact, the very baseline of the Glimpse [3], AutoTVM [35]

91

and Chameleon [5] both leverage the feedback from the hardware for the code optimization

problem. While naive black-box optimization provide a simple and intuitive way to utilize the

feedback from the target hardware, it can be an inefficient way to perform optimization. To

this end, researching the hardware-aware gray-box optimization for the above model design

and compression problems can potentially lead to significant benefits. Likewise, it would be

interesting to extend the ideas in [3] to various hyperparameter tuning, network scheduling,

hardware architecture exploration, and even physical design flow.

Acknowledgement. Chapter 4, in part, contains a re-organized reprint of the material

as it appears in Design Automation Conference (DAC) 2022. Ahn, Byung Hoon; Kinzer, Sean;

Esmaeilzadeh, Hadi. The dissertation author was the primary investigator and author of this

paper.

92

Chapter 5

Expanding the Scope to End-to-End Intel-
ligent Systems

Previous sections suggest exciting potential of Hybridization of AI and Foundational

Algorithms in Optimizing the Execution of Deep Neural Networks (DNNs). However, the End-

to-End Intelligent Systems consists of Algorithms from More Domains beyond just DNNs. This

section expands the scope beyond accelerating DNNs to accelerating the end-to-end applications

that constitute intelligent systems. To this end, this section explores the acceleration of end-to-

end applications in the intelligent systems and introduces Cross-Domain Multi-Acceleration and

develops a set of abstractions with a execution engine to showcase its benefits. This work lays

the foundation for further investigations into AI-Enabled Compilation of Intelligent Systems.

5.1 Programming Abstractions for Cross-Domain Multi-
Acceleration

Field-Programmable Gate Array (FPGA) accelerators offer performance and efficiency

gains by narrowing the scope of acceleration to one algorithmic domain. However, real-life

applications are often not limited to a single domain, which naturally makes Cross-Domain Multi-

Acceleration a crucial next step. The challenge is, existing FPGA accelerators are built upon

their specific vertically-specialized stacks, which prevents utilizing multiple accelerators from

different domains. To that end, we propose a pair of dual abstractions, called Yin-Yang, which

93

work in tandem and enable programmers to develop cross-domain applications using multiple

accelerators on a FPGA. The Yin abstraction enables cross-domain algorithmic specification,

while the Yang abstraction captures the accelerator capabilities. We also develop a dataflow virtual

machine, dubbed XLVM, that transparently maps domain functions (Yin) to best-fit accelerator

capabilities (Yang). With six real-world cross-domain applications, our evaluations show that

Yin-Yang unlocks 29.4× speedup, while the best single-domain acceleration achieves 12.0×.

5.2 Introduction

Field-Programmable Gate Arrays (FPGAs) have emerged as a promising acceleration plat-

form for diverse application domains both at the edge and on the cloud (Amazon F1 instances [15]

and Microsoft SmartNICs [56]). Despite the benefits, the accelerators by definition limit the

scope of acceleration to an algorithmic domain, while real-life applications [97, 105, 150] often

extend beyond a single domain. It is evident that for such cross-domain applications, utilizing

multiple accelerators–even on a single FPGA–from different domains can unlock new capabilities

and offer higher performance and efficiency. However, each accelerator often comes with its

own vertically-specialized domain-specific stack, as illustrated in Figure 5.1, which by design

is difficult to conjugate with other stacks. Thus, there is a need for a horizontal programming

abstraction that enables programmers to develop end-to-end applications without delving into

the isolated accelerator stacks.

To that end, this paper sets out to devise such abstractions by building upon a collection

of programmer-transparent layers. We first devise a pair of dual abstractions, called Yin-Yang,

where 1) the Yin abstraction allows domain experts to concisely describe the capabilities of

each domain, and 2) the Yang abstraction enables hardware designers to abstractly denote

compute capabilities and data interfaces for their FPGA accelerators, henceforth referred to

as engines. The Yin abstraction also offers a lightweight programming interface that allows

programmers to aggregate Yin-defined cross-domain capabilities together as a single program,

94

DSP Graph
Processing Robotics Analytics Genomics

DeCO

DeCO DFG
Optimizer/
Compiler

DFG

RoboX

RoboX
Compiler

Macro
Dataflow

Graph

Graphicionado

Graphicionado
optimizer/
compiler

Vertex
Programming

Model

TABLA
Template

Architecture

TABLA
Model

Compiler

TABLA
DFG

Darwin

Darwin Code
Generator

Darwin
Compiler

 Abstract Domain
Descriptions

 Abstract Engine
Specifications

Figure 5.1. Yin-Yang dual abstractions break the vertical barriers of domain-specific stacks and
enable cross-domain multi-acceleration in the heterogeneous cloud.

while preserving the domain boundaries. Then, to enable the two abstractions to work in tandem,

we develop XLVM (Accelerator-Level Virtual Machine) and its execution workflow is delineated

in Figure 5.2. XLVM is a dataflow virtual machine that builds and executes the program as a

Queued-Fractalized Dataflow Graph (QF-DFG). In QF-DFG, like fractals, each node is another

QF-DFG but at a progressively finer granularity, until a node is a primitive scalar operation. For

given QF-DFG, the XLVM’s Engine Selector chooses components of the application (i.e., nodes of

QF-DFG) to appropriate engines, using the engine specifications from Yang abstraction. XLVM

also comes with Engine Compiler that compiles the individual engines into runnable executables

and links them as a unified execution flow by automatically converting dependencies (i.e., edges

of QF-DFG) to inter-engine communication between FPGA accelerators.

95

Ya
ng

:
Ab

st
ra

ct
 E

ng
in

e
Sp

ec
ifi

ca
tio

ns

Yi
n:

Ab

st
ra

ct
 D

om
ai

n
D

es
cr

ip
tio

ns

C
om

po
ne

nt
 a

nd
 F

lo
w

Pr
og

ra
m

A
cc
el
er
at
or
-L
ev
el
 D
at
af
lo
w

 V
ir
tu
al
 M
ac
hi
ne
 (X
LV
M
)

Tr
an

sl
at

or

En
gi

ne
 S

el
ec

to
r

XL
VM

 R
un

tim
e

Q
F-

D
FG

En
gi

ne
-s

pe
ci

fic

C
om

pi
le

r

Ap
pl

ic
at

io
n

Pr
og

ra
m

m
er

Do
m

ai
n

Ex
pe

rts
En

gi
ne

De
ve

lo
pe

rs

En
gi

ne

Ex
ec

ut
ab

le
D

ev
ic

e
D

riv
er

Fi
gu

re
5.

2.
Y

in
-Y

an
g

du
al

ab
st

ra
ct

io
ns

an
d

X
LV

M
fo

rc
ro

ss
-d

om
ai

n
m

ul
ti-

ac
ce

le
ra

tio
n.

96

We collect diverse real-world applications and offer it as an open-source benchmark

suite for cross-domain multi-acceleration. These applications range from deep brain stimulation,

geological exploration, film captioning, stock exchange, medical imaging, and surveillance. Each

of these benchmarks comprises algorithms from more than one domain where each is accelerated

across multiple domain-specific accelerators. Using this benchmark suite, we evaluate the

proposed abstractions and its concrete system implementation. By enabling cross-domain multi-

acceleration, our work improves speedup from 12.0× to 29.4× (i.e., 145% extra benefits on

average) compared to an end-to-end execution with a single FPGA accelerator that offers the

highest gain. These results suggest the effectiveness of the Yin-Yang abstractions and their

associated system framework in enabling cross-domain multi-acceleration.

5.3 Yin Abstraction

5.3.1 Abstract Domain Description

The goal of Yin abstraction is to delineate the capabilities of each domain, without any

accelerator or application specific constructs. For every domain, a unique abstract definition,

called domain description, is provided independently by the domain experts to pre-define

domain’s common capabilities. As the objective is to allow multi-acceleration, a domain

description consists of a set of capabilities, each of which is a potential agent for acceleration.

However, note that the capabilities defined in domain descriptions are accelerator-agnostic and

not linked to a specific accelerator. Yet, these capabilities can be mapped to various accelerators

through our virtual machine XLVM (Section 5.5). To enable programmers to use the domain

capabilities in their applications, we also provide a set of lightweight programming model

(Section 5.3.2). Using the programming interface, programmers can develop their applications by

importing the domain descriptions and instantiating the domain capabilities, while still preserving

the domain specificity, interface, and boundary of each instantiation.

97

1 import domain.abstract_data.array as array
2
3 domain digital_signal_processing {
4 default reference fftw
5
6 capability fft(input array in_array,
7 output array out_array,
8 param int length,
9 param int axis,
10 param string norm)
11 capability band_pass_filter(input array in_array,
12 output array out_array,
13 param array frequency_bands)}
14 capability convolution(input array in_array,
15 output array out_array,
16 state array weight,
17 param string mode,
18 param string boundary)}

Figure 5.3. Domain description for Digital Signal Processing (DSP).

Example domain description for digital signal processing.

Figure 5.3 illustrates an example domain description for the digital signal processing

domain. The domain descriptions are composed of the following: domain name, a set of

capabilities with input/output semantics, a default reference implementation, and a cost model.

The domain name is specified using the keyword domain on line 3. On line 4-18, the domain

capabilities and their input/output are specified. For instance, lines 14-18 define the convolution

capability, a frequently used operation in digital signal processing and is often accelerated by

DSP accelerators. The capability keyword denotes the computational capability supported in this

domain, and is followed by a unique denotation. Each capability has required input (input) and

output (output) specifications as the arguments to its definition. The input and output data type

and dimensions form the interface to the computation capability. We also have the state keyword

that semantically stores the state across multiple executions. State is necessary for domains

that share a temporal component such as robotics, data analytics, and deep learning. The param

keyword denotes data whose values remain constant across executions.

98

DSP Analytics Control

Model Predictive
ControlLogistic Regression

Brain Signal

Lab Rat

Optical Stimulation

Band Pass Filter

Fast Fourier Transform

Figure 5.4. Deep brain stimulation.

5.3.2 Component & Flow Programming Model

The domain descriptions define the capabilities of individual domains that constitute end-

to-end applications, but there is a need for programming interface that enables programmers to use

the capabilities for application development without concerning the low-level hardware details.

Due to the modular nature of the Yin abstraction, the Component and Flow programming model

(CNF) is built upon lightweight annotations to create the linkage between domain description

capabilities and end-to-end application kernels. Components and Flows in CNF represent the

computation and dataflow in between, respectively. In particular, Component is a language

construct that is explicitly used within the code, whereas the Flow is implicitly present in

between.

Deep brain stimulation.

To demonstrate the use of CNF programming model, we take a cross-domain applica-

tion, deep brain stimulation [150], as an example. Figure 5.4 illustrates the algorithms and the

workflow of this cross-domain application. This application takes and processes the electrophys-

iological response of the brain (DSP) to measure the biomarkers (Analytics), and generates a

set of optical stimulations (Control) for memory enhancement in rats. In this setup, the elec-

trophysiological activity of the brain is collected in real-time, and passed through Fast Fourier

Transform (FFT) and a set of Band Pass Filters (BPF) of distinctive frequency bands (i.e., delta

99

(0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-100 Hz)). Next,

the pipeline uses Logistic Regression (LR) to decode and classify these brain waves to be used

as biomarkers. Based on the classification output, a Model Predictive Control (MPC) process

configures the synthesized brain waves (i.e., amplitude, frequency, and duration). Offloading

the major compute-heavy algorithms to the corresponding accelerators–FFT to DeCO [83], lo-

gistic regression to Tabla [110], and control optimization to RoboX [147]–will provide runtime

performance improvements1.

Example CNF code for deep brain stimulation.

Figure 5.5 illustrates a CNF implementation of deep brain stimulation. First, lines 1–3

import domain descriptions into the application and bring the available pre-defined capabilities.

Then, CNF enables programmers to express 1) the component boundaries, 2) its interfaces,

and 3) the hierarchical structure. On line 5, the components are defined using the keyword

Component along with its inputs (e.g. wave) and outputs (e.g. stimuli), which is followed by the

code for its computation on lines 6–15. CNF also allows the programmer to express arbitrary

levels of component hierarchy, where Components may be defined inside a Component. Once

a component has been defined, the programmer can instantiate it as many times as needed to

express the algorithm.

5.4 Yang Abstraction

5.4.1 Abstract Engine Specification

To manage various accelerators and to allow flexible additions of newly developed ac-

celerators, we devise the Yang abstraction, as the counterpart to the Yin abstraction. The Yang

abstraction offers a means for the accelerator developers to abstractly describe the accelerator

specifications. In this paper, an engine denotes an abstract compute platform, which exclusively

1The original work [147] proposed RoboX as an ASIC but it is straightforward to develop the architecture as an
FPGA accelerator.

100

1 import domain.digital_signal_processing as dsp
2 import domain.data_analytics as analytics
3 import domain.controls as controls
4
5 with Component(inputs=[wave], outputs=[stimuli]) as DBS:
6 with Component(inputs=[wave], outputs=[filtered]) as DSP:
7 signals = dsp.fft(wave)
8 filtered = dsp.band_filter(signals)
9 with Component(inputs=[filtered], outputs=[logit]) as Analytics:
10 logit = analytics.logistic_regression(filtered)
11 with Component(inputs=[logit], outputs=[stimuli]) as Control:
12 stimuli = controls.model_predictive_control(logit)
13 bands = DSP(wave)
14 logit = Analytics(bands)
15 stimuli = Controls(logit)
16
17 while True:
18 wave = mouse.measure()
19 stimuli = DBS(wave)
20 mouse.apply(stimuli)

Figure 5.5. Implementation of deep brain stimulation with CNF programming model.

supports a single domain and is able to serve a subset of the capabilities defined in the corre-

sponding domain description. Thus, Yang abstraction allows the engine developers to specify the

provided capabilities and communication interfaces of an engine as a structured specification,

called engine specification.

Example engine specification describing an digital signal processing accelerator.

Figure 5.6 illustrates an example engine specification of DeCO [83] using our engine

specification language. To provide a flexible abstraction that can be used by a variety of

engines, but also to ensure multi-acceleration, an engine specification needs to express 1) its

own capabilities, and 2) the interface it exposes to connect with different engines. Line 3 shows

that the engine name is specified using the keyword engine and domain (digital signal processing).

On Line 4–7, how the engine communicates its input and output with the outside world is

specified using the keyword interface. The engine specification provides pre-defined interfaces

such as FIFO, SRAM, or BRAM, etc. Also, its capabilities (i.e., fft and band pass filter) and their

101

1 import engine.hw_interfaces as inouts
2
3 engine deco implements digital_signal_processing {
4 interface input_mem = inouts.bram
5 interface output_mem = inouts.bram
6 interface weight_mem = inouts.bram
7 interface config = inouts.bram
8
9 capability fft(input_mem int8[N][M] { mem[n*N+m] } in_array,
10 output_mem int8[N][M] { mem[m*M+n] } out_array,
11 config int8 length,
12 config int8 axis,
13 config char[] norm)
14 capability band_pass_filter(input_mem int8[N][M] { mem[m*M+n] } in_array,
15 output_mem int8[N][M] { mem[m*M+n] } out_array,
16 config int8[] frequency_bands)
17
18 fusion {fft: [band_pass_filter], band_pass_filter : [] }
19 cost {path: “deco_model”}

Figure 5.6. Engine specification of DeCO engine.

semantics for input, output, weight, and configuration memory are specified in lines 9–16.

5.4.2 Hints for Engine Selection

Our Yang abstraction also offers two keywords, fusion and cost, to allow the engine

developers to provide engine-specific information, which can be used as hints for the engine

selection process later in XLVM. The keyword, fusion, denotes a set of capabilities that can be

sequentially executed internally in an engine, while avoiding external data communication with

the host or other engines. For instance, line 18 illustrates that the fft capability can be fused with

the band pass filter capability, while band pass filter cannot be fused with any other capabilities

on DeCO. The cost construct lets engine developers specify a means to estimate the latency of

capabilities. This can be mapped to a cycle-accurate simulator, hard-coded metric, or a machine

learning-based cost models as in AutoTVM [35].

102

5.5 XLVM: Accelerator-Level Virtual Machine

The Yin-Yang abstractions need to be realized as a unified execution flow so that the

application is executed efficiently and the maximal gains can be achieved from cross-domain

multi-acceleration. To accomplish this objective, we devise Accelerator-Level Dataflow Virtual

Machine (XLVM), which is at the confluence of the Yin-Yang abstractions. XLVM preserves

and translates the CNF program as a queued-fractalized dataflow graph (QF-DFG) intermediate

representation (IR). Then, we develop Engine Selector that selects the engines for the application,

maximizing acceleration gains. Finally, we also develop Engine Compiler, which compiles

the individual engines into the corresponding runnable executables and links them as a unified

execution flow.

5.5.1 Queued-Fractalized Dataflow Graph (QF-DFG)

For effective engine selection and runtime orchestration, it is crucial to have an inter-

mediate representation (IR) that 1) preserves the program and domain semantics (input, output,

interface, and hierarchy of components), and 2) is flexible to support any granularity required for

multi-acceleration. As such, we devise queued-fractalized dataflow graph (QF-DFG), which is

designed to capture the details of the program such as dependency (order of execution), function-

ality (operation), and compositionality (hierarchy) of the CNF programs. In QF-DFG, each edge

denotes a dataflow and node denotes an operation of multiple levels of granularity, progressing

from coarse granular nodes to finer nodes until primitive scalar operations are reached. Figure 5.7

and Figure 5.8 shows a snippet of the QF-DFG IR, which corresponds to the CNF program in

Figure 5.5.

5.5.2 Engine Selector

QF-DFG is a target-independent IR which, when created from CNF, is oblivious to the

target engines for execution, similar to target-independent IR stages of the traditional compilers.

103

FFT

BPF

LR

MPC

DeCO

TABLA

RoboX

Figure 5.7. Visualization of QF-DFG of deep brain stimulation.

1 Component:
2 cid: 0, name: DBS,
3 sub_cids: [1, 4, 5]
4 inputs: (name: wave, flow_id: 0)
5 outputs: (name: stimuli, flow_id: 1)
6 Component:
7 cid: 1, name: DSP,
8 sub_cids: [2, 3], super_cids: 0
9 inputs: (name: wave, flow_id: 0)
10 outputs: (name: bands, flow_id: 2)
11 Component:
12 cid: 2, name: fft,
13 sub_cids: null, super_cids: 1
14 inputs: (name: wave, flow_id: 0)
15 outputs: (name: signals, flow_id: 2)
16 domain: dsp, engine_name: DeCO,
17 capability: fft
18
19 Flow:
20 flow_id: 0, name: wave, is_queue: true
21 source_cid: 3, dest_cid: 0
22 Flow:
23 flow_id: 1, name: stimuli, is_queue: true
24 source_cid: 0, dest_cid: 3

Figure 5.8. Textual form of QF-DFG of deep brain stimulation.

104

Unlike traditional compilation processes where the target platform is explicitly known, the duality

of domains and engines provided by Yin-Yang opens a new avenue for optimal target engine

determinations as it exhibits the following properties: 1) a domain possibly has multiple engines

that can support different subsets of its capabilities; and 2) every engine, even within the same

domain, has different performance energy tradeoffs. Thus, to choose an optimal combination of

engines for a given QF-DFG and a set of engine specifications, XLVM is equipped with Engine

Selector, which exploits 1) a simple cost model as a proxy to estimate the performance of engine

assignment, and 2) an optimized objective function.

Cost model and objective function.

We model the execution time of end-to-end multi-acceleration applications using three

cost functions: 1) computation latency (T), 2) data copy overhead (C), and 3) data format

conversion cost (D). To simplify the design, we model the overall cost for the given QF-DFG as

a sum of these functions, which does not consider the dynamic runtime factors such as pipelined

execution and bandwidth contention with other applications. Using this cost model, we formulate

the objective function of Engine Selector as a combination of engines S for the QF-DFG from

the candidate engine set E, that minimizes total execution latency:

argmin
S⊂E

Cost = ∑
i

Ti+∑
ij

Cij +∑
ij

Dij , for i, j ∈ S

Algorithm 5 illustrates the engine selection process, which takes a QF-DFG and maps the

graph nodes to a set of available engines that minimize the expected latency by optimizing the

cost function. Engine Selector conducts a brute-force search of all possible engine assignment

combinations to the QF-DFG and formulates the candidate set for the engine selections (Line

4–5). Then, Engine Selector evaluates the cost function per each candidate selection and chooses

the candidate that imposes the minimum latency cost (Line 7–15). The selection results are

augmented to the QF-DFG as metadata. While we demonstrated the engine selection process

optimizing for the execution time, the objective function can be updated for other objectives such

105

Algorithm 5. Engine selection algorithm for QF-DFG

1: Input: QF-DFG G(N,E)
2: Output: Engine Selection S
3: candidates←∅, cost← {}
4: while new candidate exists() do
5: candidates← candidates ∪ {(n, e) | ∀ n ∈N,∃ e ∈ n.domain.engines}
6: end while
7: for c in candidates do
8: cost[c]← 0
9: for (n, e) in c do

10: cost[c]← cost[c] + T (n, e)
11: for (n child, e child) in children((n, e)) do
12: cost[c]← cost[c] + C(e, e child) + D(e, e child)
13: end for
14: end for
15: end for
16: S← find engine selection with minimum cost(cost)
17: return S

as energy efficiency or SLO.

5.5.3 Engine Compiler

Once every node has been assigned to an engine, Engine Compiler individually invokes

the engine-specific compiler to obtain the engine executable. The canonical set of operations

in engine executables constitutes loading the input data to engines, setting the configuration

registers, triggering the computation, observing the runtime status, and receiving the output

data. The underlying implementations of these operations for accelerators are all disparate,

which makes the runtime orchestration difficult. To unify the interfaces, XLVM abstracts the

engines as files that can perform computation and formalizes the engine interfaces as a set of file

management APIs. Similar to the Unix I/O, these APIs include (1) open a new engine, (2) read

data back from the engine, (3) write data to the engine, (4) initiate compute of a capability, and (5)

close the engine. Thus, to link this computational file abstraction with the low-level hardware

interfaces, the engine developers are asked to provide engine-specific device drivers.

106

Table 5.1. Cross-domain benchmark suite.

Name Description Domains Used
Capabilities

DSP FFT

Data Analytics LR

Optimized Control MPC

Robotics KF

Computer Vision MPC

video-
sync

Calculate correct offset to sync a
movie and subtitle file DSP MPEG-Decode

FFT

Data Analytics LR

Finance Black-Scholes

leukocyte
Detect and tracks rolling leukocytes
(white blood cells) in a microscopy
of blood vessels vivo video

Computer Vision GICOV
MGVF

Deep Learning Tiny-Yolo-v2

DSP MPEG-Decode

Real-time object detection system
which decodes MPEG encoded
video

security-
camera

Deep Brain Stimulation closed-loop
control pipeline to optimize
stimulation signals for memory
enhancement

memory-
enhance

KinectFusion for 3D map
generation with model predictive
control for cave exploration

robot-
explorer

Text sentiment classification on
stock market news articles to
estimate call option price

stock-
market

5.6 Evaluation

5.6.1 Experimental Setup

Benchmarks.

Cross-domain multi-acceleration is an emerging field and there is a lack of established

workloads that span multiple domains. We take real-life applications comprising well known

algorithms to create a benchmark suite that can evaluate cross-domain multi-acceleration. Ta-

ble 5.1 summarizes these benchmarks, the domains they contain, and the accelerated kernels: (1)

memory-enhance is the deep brain stimulation introduced in Section 5.3.2; (2) robot-explorer is a

four-wheeled robot equipped with a Kinect sensor to find its way through a cave and requires a

KinectFusion (KF) algorithm to reconstruct a 3D map of the cave and MPC algorithm to navigate

107

Table 5.2. Domains and engines used in the evaluation.

Domain Capabilities Engine Platform
FFTW [48] CPU
ffmpeg [55] CPU
DeCO [46] FPGA

LogiCore [59] FPGA
MLPack [56] CPU
InAccel [60] FPGA
Tabla [36] FPGA

ACADO [68] CPU
RoboX [19] FPGA

OpenCV [53] CPU
SLAMBench [54] FPGA

Iron [62] FPGA
QuantLib [57] CPU

HyperStreams [58] FPGA
TensorFlow [44] CPU

TVM [45] CPU
DnnWeaver [16] FPGA

Deep Learning

DSP

Data Analytics

Robotics

Computer Vision

Finance

Tiny-Yolo-v2

FFT, MPEG-Decode

LR

MPC

GICOV, MGVF,
KF

Black-Scholes

through the cave; (3) video-sync synchronizes subtitles with speech segments for video files,

and requires MPEG-decoding and FFT to boost the speech-text pattern matching process; (4)

stock-market predicts the call option price in the stock market, and requires sentiment analysis

using LR on news articles to extract market signals with Black-Scholes model to predict call

option pricing; (5) leukocyte detects leukocytes from video microscopy of blood vessels, and uses

Gradient Inverse Coefficient of Variation (GICOV) score to perform detection in the frame and

Motion Gradient Vector Flow (MGVF) matrix to track the leukocytes; (6) security-camera detects

suspicious objects from its input video stream by decoding the MPEG encoded video stream

using MPEG-Decoding and performing an object detection using deep learning (Tiny-Yolo-v2).

108

Compute platforms.

Table 5.2 summarizes the domains used in the benchmarks, the accelerated capabilities,

the used engines, and their platforms. Our system is equipped with a host CPU, Intel Xeon

E3 (3.50 GHz). For fair comparison, we use optimized software libraries to obtain the best

performance, including Intel MKL 2020, OpenBlas v0.3, and OpenCV 3.4.2. For FPGA, we use

Xilinx KCU1500 with open-source hardware accelerators [110, 125]. Accelerators are attached to

the host via a PCIe interconnect.

Runtime measurements.

We run the experiments for ten times and attain the average to report. When open-source

RTL implementations of existing FPGA accelerators are unavailable, we use the author-provided

simulators to measure the performance. Using the kernel execution time on the platforms, we

estimate the end-to-end application runtime.

Energy measurements.

To measure the energy consumption, we use the Intel Running Average Power Limit

(RAPL) for CPU and use the simulators for the FPGA accelerators.

Programming effort.

Accurately measuring human effort is impossible, yet similar to prior works, FlexJava

and EnerJ, we count the number of lines of code (LoC) and the number of annotations to quantify

the human effort.

5.6.2 Experimental Results

Performance improvement.

Figure 5.9 shows the speedup gains as the number of accelerator engines increases

compared to the CPU-only baseline. All the benchmarks provide benefits even from a single-

engine acceleration, which yields a 12.0× speedup when the best-performing engine is used for

accelerating the benchmarks. However, the results show that the speedup increases to 29.4× on

109

Figure 5.9. Speedup with various number of accelerator engines against CPU baseline.

Figure 5.10. Performance-per-Joule improvement achieved by multi-acceleration.

average when leveraging more engines, which amounts to a 145% extra speedup. Thus, there is

untapped potential in accelerating multiple kernels, which is unleashed by our dual abstractions

and XLVM. The rightmost bar (“Manual Program”) also shows the speedup when the maximal

number of accelerators are enabled manually by programmers, which represent the ideal speedup

that Yin-Yang would be able to achieve. The results show that Yin-Yang almost reaches this ideal

speedup, while requiring less programming effort. Overall, our system attests to the common

wisdom that “the more accelerators, the better”.

Performance-per-Joule improvement.

Figure 5.10 illustrates the performance-per-Joule improvement of multi-acceleration over

the CPU baseline. As the figure shows, acceleration using a single engine achieves an overall

Performance-per-Joule improvement of 7.0× against the baseline. By leveraging more engines

110

Figure 5.11. LoC improvements of Yin-Yang in comparison with the baseline manual program-
ming.

through the Yin-Yang abstractions, we can achieve higher performance-per-Joule improvements

of 12.2×, which is translated to 74.2% extra efficiency. Similar to the performance we observed

above, we also report the manual multi-acceleration result, which shows that Yin-Yang closely

reaches to the ideal efficiency gain, only leaving a marginal room for improvement.

Programmability.

Figure 5.11 shows Lines of Code (LoC) improvements of the dual abstractions when

compared to manual programming. The bar on the left represents LoC that programmers write,

while the stacked bar on the right delineates the summated LoC that programmers, domain

experts, and engine developers should write in aggregate. The results show that Yin-Yang

effectively reduces the LoC by 33.1% on average while obtaining the same functionality and

performance. The human efforts needed for domain descriptions and engine specifications is

imposed only once when registering the domains and engines. From the programmers perspective,

the LoC is reduced from 383 to 137, which increases the reduction rate to 64.2%. These results

suggest that the proposed dual abstractions allow domain experts and engine developers to

take part in enabling multi-acceleration with minimum effort, and CNF emancipates application

programmers from the onerous task of hardware development and low-level programming for

orchestrating multiple accelerators.

111

5.7 Related Works

Abstractions for heterogenous platforms.

Although various general purpose abstractions for accelerators such as OpenCL exist,

they do not incorporate the algorithmic domain knowledge. Intel oneAPI [82] provides libraries

and compilation tools that can target multiple accelerators. The libraries of oneAPI contain

fine-grained constructs that allow programmers to focus on their domain of interest and optimize

it. SysML [57] is a system architecture modeling tool built upon Unified Modeling Language

(UML). While SysML has a similarity to our CNF programming model, it offers a general-purpose

and unified abstraction that lacks the notion of domains. In contrast, this work provides cross-

domain programming abstractions and necessary mechanisms to make it easy for programmers

to harmoniously combine existing accelerators from different domains together to develop a

single application.

Domain-specific abstractions.

There are a plethora of one-sided acceleration solutions [83, 147] for a single domain,

which is either algorithm-centric or hardware-centric. Our approach differs from these works in

providing dual abstractions that move away from one-sided representation of a single domain

and links multiple domains. This enables us to utilize disjointly pre-designed accelerators to be

used in tandem for cross-domain applications.

FPGA acceleration.

High-Level Synthesis (HLS) is an effective tool that allows programmers to use a high-

level language for accelerator development. While HLS improves programmability, its per-

formance gains are usually lower than the custom-designed accelerators, as shown in prior

works [32]. In contrary, Yin-Yang is an alternative programming tool that offers three different

abstractions for three parties–(1) domain experts, (2) engine developers, and (3) application

programmers, which allow them to collaboratively enable multi-acceleration for cross-domain

applications.

112

5.8 Conclusion

Cross-domain multi-acceleration can unlock new capabilities. For this emerging direction,

we uniquely provide dual abstractions which preserve domain knowledge while linking algorith-

mic representations to hardware capabilities. As a mechanism to provide this linkage, we develop

XLVM, which represents the program as QF-DFG and determines efficient engine-to-capability

mappings. Experimental results using a real-life benchmark suite show significant improvements

in performance and energy when multiple accelerators from different domain are used. This

paper also provides an open-source benchmark suite for the emerging area of cross-domain

multi-acceleration, which is available at https://github.com/he-actlab/cross-domain-benchmarks.

5.9 Future Directions

To cope with the fact that the end-to-end intelligent systems consists of algorithms from

more domains beyond just DNNs. Yin-Yang [95] expands the scope beyond accelerating DNNs

to accelerating the end-to-end applications that constitute intelligent systems. This work lays the

foundation for further investigations into AI-enabled compilation of intelligent systems.

AI-enabled compilation for intelligent systems.

To this end, exploring the use of various AI algorithms to optimize the execution of end-

to-end applications will be an interesting research. For example, finding optimal solutions in the

exponentially large search spaces for the compilation and execution becomes more pronounced

for end-to-end applications. A promising starting point will be the extension of the works

introduced in Chapter 2–4. Then, as the AI algorithms constantly evolve to be able to solve

more problems, more effectively, and in a more scalable manner, it would be timely to adopt new

algorithms to improve cross-domain multi-acceleration.

Acknowledgement. Chapter 5, in part, contains a re-organized reprint of the material as

it appears in IEEE Micro 2022. Kim, Joon Kyung; Ahn, Byung Hoon; Kinzer, Sean; Ghodrati,

113

https://github.com/he-actlab/cross-domain-benchmarks

Soroush; Mahapatra, Rohan; Yatham, Brahmendra; Wang, Shu-Ting; Kim, Dohee; Sarikhani,

Parisa; Mahmoudi, Babak; Mahajan, Divya; Park, Jongse; Esmaeilzadeh, Hadi. The dissertation

author was the co-investigator and co-author of this paper.

114

Chapter 6

Other Works by This Author

While the main thrust of the dissertation focused on the AI-Enabled Compilation for

Intelligent Systems, there are many other directions that are imperative to enabling machine

intelligence. This section outlines some of the research problems explored including (1) multi-

tenancy and (2) AI privacy.

Spatial multi-tenant acceleration of deep neural networks.

The main stream of the dissertation focused on how to leverage AI algorithms to find

better configurations for the kernels, mainly focusing on tiling and loop unrolling. The AI-enabled

compilation explored throughout the dissertation makes it possible to achieve near-maximum

utilization of various accelerators for Deep Neural Networks (DNNs). However, without multi-

tenancy, it is difficult to imagine leveraging cost-effective and scalable DNN services. In fact,

the community has developed both software and hardware solutions to unlock multi-tenancy

in CPUs and GPUs. To extend this multi-tasking capability to the deep learning accelerators,

PREMA [39] and AI-MT [19] focused on temporal multi-tenant acceleration of deep neural

networks. In Alternative Computing Technologies (ACT) Lab, we developed the very first spatial

multi-tenant acceleration of deep neural networks dubbed Planaria [64] for better throughput,

SLA satisfaction, and fairness. The work explored the topic of spatial multi-tenancy through a

novel approach of dynamic architecture fission, and provided a concrete architecture, Planaria,

and its respective scheduling algorithm.

115

Software-only solution for AI privacy.

Services such as voice assistants [18, 66], smart speakers [8], and many enterprise appli-

cations [10, 13, 67] consume a staggering amount of data. Much of the data are not necessarily

required to perform the task, yet the data are consumed by the services un-encrypted. These

sensitive and private information are high-bounty targets for the data thieves who actively seek

to sniff and use these information against the users of the aforementioned services. While

data is protected at rest and in motion through encryption [79, 141], it is exposed during infer-

ence as the data needs to be processed in an un-encrypted fashion due to latency requirements.

For instance, Fully Homomorphic Encryption [63, 136, 184] and Secure Multiparty Compu-

tations [26, 122, 123, 183] slow down the AI services to yet preclude them from practical

applications [116, 118]. To this end, at Protopia AI, we developed a software only solution

called for AI privacy Stained Glass Transform™ [6]. This solution utilizes curated stochastic

perturbations to redact private information with minimal overhead as well as minimal changes to

the original service.

116

Bibliography

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: A system for large-scale machine learning. In OSDI, 2016.

[2] Mohamed S. Abdelfattah, David Han, Andrew Bitar, Roberto DiCecco, Shane O’Connell,
Nitika Shanker, Joseph Chu, Ian Prins, Joshua Fender, Andrew C. Ling, and Gordon R.
Chiu. DLA: Compiler and FPGA overlay for neural network inference acceleration. In
FPL, 2018.

[3] Byung Hoon Ahn, Sean Kinzer, and Hadi Esmaeilzadeh. Glimpse: mathematical embed-
ding of hardware specification for neural compilation. In DAC, 2022.

[4] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei Hou, and Hadi
Esmaeilzadeh. Ordering chaos: Memory-aware scheduling of irregularly wired neural
networks for edge devices. In MLSys, 2020.

[5] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh.
Chameleon: Adaptive code optimization for expedited deep neural network compilation.
In ICLR, 2020.

[6] Byung Hoon Ahn, DoangJoo Synn, and Masih Derkani Eiman Ebrahimi Hadi Es-
maeilzadeh. Protopia AI: Taking on the missing link in AI privacy and data protection. In
NeurIPS Demonstrations, 2021.

[7] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch SGD:
training ResNet-50 on ImageNet in 15 minutes. arXiv, 2017.

[8] Amazon. Amazon alexa. https://developer.amazon.com/en-US/alexa/.

[9] Amazon. Amazon astro. https://www.amazon.com/Introducing-Amazon-Astro/dp/
B078NSDFSB.

117

https://developer.amazon.com/en-US/alexa/
https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB
https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB

[10] Amazon. Amazon case studies. https://aws.amazon.com/solutions/case-studies/.

[11] Amazon. Amazon inferentia. https://aws.amazon.com/machine-learning/inferentia/.

[12] Amazon. Amazon ring. https://www.amazon.com/stores/Ring/Ring/page/
77B53039-540E-4816-BABB-49AA21285FCF.

[13] Amazon. Amazon sagemaker customers. https://aws.amazon.com/sagemaker/customers/.

[14] Amazon. Amazon trainium. https://aws.amazon.com/machine-learning/trainium/.

[15] Amazon. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-types/f1/,
2017.

[16] Anonymous. Robust scheduling with GFlowNets. In ICLR (Under Review), 2023.

[17] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolu-
tional neural networks. JETC, 2017.

[18] Apple. Apple siri. https://www.apple.com/siri/.

[19] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A multi-neural network acceleration
architecture. In ISCA, 2020.

[20] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal, 1966.

[21] Richard Bellman. Dynamic programming. Science, 1966.

[22] Richard Ernest Bellman. Dynamic programming treatment of the traveling salesman
problem. Journal of the ACM, 1961.

[23] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio.
Flow network based generative models for non-iterative diverse candidate generation.
NeurIPS, 2021.

[24] David Bernstein, Michael Rodeh, and Izidor Gertner. On the complexity of scheduling
problems for parallel/pipelined machines. TC, 1989.

[25] Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn,
Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu
Soricut, Lucia Specia, and Aleš Tamchyna. Findings of the 2014 workshop on statistical
machine translation. In WMT, 2014.

118

https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/machine-learning/inferentia/
https://www.amazon.com/stores/Ring/Ring/page/77B53039-540E-4816-BABB-49AA21285FCF
https://www.amazon.com/stores/Ring/Ring/page/77B53039-540E-4816-BABB-49AA21285FCF
https://aws.amazon.com/sagemaker/customers/
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.apple.com/siri/

[26] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMa-
han, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggrega-
tion for privacy-preserving machine learning. In CCS, 2017.

[27] John Bruno and Ravi Sethi. Code generation for a one-register machine. Journal of the
ACM, 1976.

[28] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train
one network and specialize it for efficient deployment. ICLR, 2020.

[29] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on
target task and hardware. In ICLR, 2019.

[30] Wenbin Cai, Ya Zhang, and Jun Zhou. Maximizing expected model change for active
learning in regression. In ICDM, 2013.

[31] Pohua P Chang, Scott A Mahlke, and Wen-Mei W Hwu. Using profile information to
assist classic code optimizations. Software: Practice and Experience, 1991.

[32] Sung-En Chang, Yanyu Li, Mengshu Sun, Runbin Shi, Hayden K-H So, Xuehai Qian,
Yanzhi Wang, and Xue Lin. Mix and match: A novel FPGA-centric deep neural network
quantization framework. In HPCA, 2021.

[33] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In KDD,
2016.

[34] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: An automated end-to-end optimizing compiler for deep learning.
In OSDI, 2018.

[35] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze,
Carlos Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. In
NeurIPS, 2018.

[36] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks. JSSC, 2016.

[37] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi
Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Dadiannao: A machine-learning
supercomputer. In MICRO, 2014.

[38] Hsin-Pai Cheng, Tunhou Zhang, Yukun Yang, Feng Yan, Shiyu Li, Harris Teague, Hai He-
len Li, and Yiran Chen. SwiftNet: Using graph propagation as meta-knowledge to search

119

highly representative neural architectures. arXiv, 2019.

[39] Yujeong Choi and Minsoo Rhu. Prema: A predictive multi-task scheduling algorithm for
preemptible neural processing units. In HPCA, 2020.

[40] Valeriu Codreanu, Damian Podareanu, and Vikram Saletore. Achieving deep learning
training in less than 40 minutes on ImageNet-1K & best accuracy and training time
on ImageNet-22K & Places-365 with scale-out Intel® Xeon®/Xeon Phi™ architectures,
2017.

[41] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. JAIR, 1996.

[42] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature space
analysis. TPAMI, 2002.

[43] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang.
AdaNet: Adaptive structural learning of artificial neural networks. In ICML, 2017.

[44] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks: Training deep neural networks with weights and activations
constrained to +1 or -1. arXiv, 2016.

[45] Scott Cyphers, Arjun K. Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew
Brookhart, Avijit Chakraborty, William Constable, Christian Convey, Leona Cook, Omar
Kanawi, Robert Kimball, Jason Knight, Nikolay Korovaiko, Varun Kumar Vijay, Yix-
ing Lao, Christopher R. Lishka, Jaikrishnan Menon, Jennifer Myers, Sandeep Aswath
Narayana, Adam Procter, and Tristan J. Webb. Intel nGraph: An intermediate representa-
tion, compiler, and executor for deep learning. arXiv, 2018.

[46] Jeff Dean. Machine learning for systems and systems for machine learning. In NIPS
Workshop on ML Systems, 2017.

[47] Deloitte. Smart factory for smart manufacturing. https://www2.deloitte.com/us/en/pages/
consulting/solutions/the-smart-factory.html.

[48] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

[49] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest Bassous, and
Andre R LeBlanc. Design of ion-implanted mosfet’s with very small physical dimensions.
JSSC, 1974.

[50] Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir Yazdan-

120

https://www2.deloitte.com/us/en/pages/consulting/solutions/the-smart-factory.html
https://www2.deloitte.com/us/en/pages/consulting/solutions/the-smart-factory.html

bakhsh, and Hadi Esmaeilzadeh. ReLeQ: A reinforcement learning approach for deep
quantization of neural networks. IEEE Micro, 2020.

[51] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and
Doug Burger. Dark silicon and the end of multicore scaling. In ISCA, 2011.

[52] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and
Dharmendra S. Modha. Learned step size quantization. In ICLR, 2020.

[53] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

[54] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In NIPS, 2015.

[55] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In ICML, 2017.

[56] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu,
Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen
Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram Lanka, Steven K.
Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger. A configurable cloud-
scale DNN processor for real-time AI. In ISCA, 2018.

[57] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical guide to SysML: the
systems modeling language. Morgan Kaufmann, 2014.

[58] Matteo Frigo and Steven G Johnson. FFTW: An adaptive software architecture for the
FFT. In ICASSP, 1998.

[59] Mukul Gagrani, Corrado Rainone, Yang Yang, Harris Teague, Wonseok Jeon, Herke
Van Hoof, Weiliang Will Zeng, Piero Zappi, Christopher Lott, and Roberto Bondesan.
Neural topological ordering for computation graphs. NeurIPS, 2022.

[60] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. TETRIS:
Scalable and efficient neural network acceleration with 3d memory. In ASPLOS, 2017.

[61] Yuanxiang Gao, Li Chen, and Baochun Li. Post: Device placement with cross-entropy
minimization and proximal policy optimization. In NeurIPS, 2018.

[62] Kent Gauen, Rohit Rangan, Anup Mohan, Yung-Hsiang Lu, Wei Liu, and Alexander C
Berg. Low-power image recognition challenge. In ASP-DAC, 2017.

121

[63] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[64] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim, Sean Kinzer, Brahmendra Reddy
Yatham, Navateja Alla, Hardik Sharma, Mohammad Alian, Eiman Ebrahimi, Nam Sung
Kim, Cliff Young, and Hadi Esmaeilzadeh. Planaria: Dynamic architecture fission for
spatial multi-tenant acceleration of deep neural networks. In MICRO, 2020.

[65] Jack Goetz, Ambuj Tewari, and Paul Zimmerman. Active learning for non-parametric
regression using purely random trees. In NeurIPS, 2018.

[66] Google. Google assistant. https://assistant.google.com/.

[67] Google. Google cloud customers. https://cloud.google.com/customers/.

[68] Google. Google translate. https://translate.google.com/.

[69] Google. TensorFlow Lite. https://www.tensorflow.org/mobile/tflite.

[70] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
Training ImageNet in 1 hour. arXiv, 2017.

[71] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In ICLR, 2017.

[72] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. EIE: efficient inference engine on compressed deep neural network. In
ISCA, 2016.

[73] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In ICLR, 2016.

[74] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In NIPS, 2015.

[75] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[76] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for
model compression and acceleration on mobile devices. In ECCV, 2018.

[77] Michael Held and Richard M Karp. A dynamic programming approach to sequencing
problems. Journal of the SIAM, 1962.

[78] John L Hennessy and David A Patterson. A new golden age for computer architecture.

122

https://assistant.google.com/
https://cloud.google.com/customers/
https://translate.google.com/
https://www. tensorflow.org/mobile/tflite

CACM and Turing Lecture, 2019.

[79] Simon Heron. Advanced encryption standard (AES). Network Security, 2009.

[80] Mark D Hill and Vijay Janapa Reddi. Accelerator-level parallelism. CACM, 2021.

[81] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv, 2017.

[82] Intel. Intel oneAPI: Programmable inference accelerator. https://software.intel.com/
content/www/us/en/develop/tools/oneapi.html, 2019.

[83] Abhishek Kumar Jain, Xiangwei Li, Pranjul Singhai, Douglas L Maskell, and Suhaib A
Fahmy. DeCO: A DSP block based FPGA accelerator overlay with low overhead inter-
connect. In FCCM, 2016.

[84] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady Pekhimenko.
Gist: Efficient data encoding for deep neural network training. In ISCA, 2018.

[85] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for
fast feature embedding. In MM, 2014.

[86] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. Exploring hidden dimensions in
parallelizing convolutional neural networks. In ICML, 2018.

[87] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and Alex
Aiken. Optimizing DNN computation with relaxed graph substitutions. In SysML, 2019.

[88] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc
Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,
Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert
Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew,
Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and
Doe Hyun Yoon. In-datacenter performance analysis of a tensor processing unit. In ISCA,

123

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

2017.

[89] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas
Moshovos. Stripes: Bit-serial deep neural network computing. In MICRO, 2016.

[90] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf
Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko,
Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie,
Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor
Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steineg-
ger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol
Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis.
Highly accurate protein structure prediction with alphafold. Nature, 2021.

[91] Arthur B Kahn. Topological sorting of large networks. CACM, 1962.

[92] Ken Kennedy and John R Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc., 2001.

[93] Christoph Keßler and Andrzej Bednarski. A dynamic programming approach to optimal
integrated code generation. In LCTES, 2001.

[94] Shauharda Khadka, Estelle Aflalo, Mattias Marder, Avrech Ben-David, Santiago Miret,
Shie Mannor, Tamir Hazan, Hanlin Tang, and Somdeb Majumdar. Optimizing memory
placement using evolutionary graph reinforcement learning. ICLR, 2021.

[95] Joon Kyung Kim, Byung Hoon Ahn, Sean Kinzer, Soroush Ghodrati, Rohan Mahapatra,
Brahmendra Yatham, Shu-Ting Wang, Dohee Kim, Parisa Sarikhani, Babak Mahmoudi,
Divya Mahajan, Jongse Park, and Hadi Esmaeilzadeh. Yin-Yang: Programming abstrac-
tions for cross-domain multi-acceleration. In IEEE Micro, 2022.

[96] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with
deep convolutional neural networks. In NIPS, 2012.

[97] F Künhe, J Gomes, and W Fetter. Mobile robot trajectory tracking using model predictive
control. In LARS, 2005.

[98] David Laredo, Yulin Qin, Oliver Schütze, and Jian-Qiao Sun. Automatic model selection
for neural networks. arXiv, 2019.

[99] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, 2004.

[100] Yann LeCun. Deep learning hardware: Past, present, and future. In ISSCC, 2019.

124

[101] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In NIPS, 1990.

[102] Chingren Lee, Jenq Kuen Lee, Tingting Hwang, and Shi-Chun Tsai. Compiler optimiza-
tion on vliw instruction scheduling for low power. TODAES, 2003.

[103] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. AdaTune: Adaptive tensor
program compilation made efficient. In NeurIPS, 2020.

[104] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan,
Lin Gan, Guangwen Yang, and Depei Qian. The deep learning compiler: A comprehensive
survey. In TPDS, 2020.

[105] Alexander Liniger, Alexander Domahidi, and Manfred Morari. Optimization-based
autonomous racing of 1: 43 scale rc cars. Optimal Control Applications and Methods,
2015.

[106] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In ICLR, 2019.

[107] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing CNN
model inference on CPUs. In USENIX ATC, 2019.

[108] Steve Lohr. The age of big data. New York Times, 2012.

[109] Mohammad Loni, Ali Zoljodi, Amin Majd, Byung Hoon Ahn, Masoud Daneshtalab,
Mikael Sjödin, and Hadi Esmaeilzadeh. Faststereonet: A fast neural architecture search
for improving the inference of disparity estimation on resource-limited platforms. IEEE
TSMC, 2021.

[110] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdanbakhsh,
Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A unified template-based framework
for accelerating statistical machine learning. In HPCA, 2016.

[111] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource
management with deep reinforcement learning. In HotNets, 2016.

[112] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and
Mohammad Alizadeh. Learning scheduling algorithms for data processing clusters. In
SIGCOMM, 2019.

[113] Kim Marriott, Peter J Stuckey, and Peter J Stuckey. Programming with constraints: an
introduction. MIT press, 1998.

[114] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevicius,

125

David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks,
Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy Hock, Xinyuan Huang,
Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan, Tayo
Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie,
Tom St John, Carole-Jean Wu, Lingjie Xu, Cliff Young, and Matei Zaharia. MLPerf
training benchmark. MLSys, 2020.

[115] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view
synthesis. In CACM, 2021.

[116] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Ali Jalali, Ahmed Taha Taha
Elthakeb, Dean Tullsen, and Hadi Esmaeilzadeh. Not all features are equal: Discovering
essential features for preserving prediction privacy. In WWW, 2021.

[117] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali,
Dean Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect
inference privacy. In ASPLOS, 2020.

[118] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali,
Dean Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect
inference privacy. In ASPLOS, 2020.

[119] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V Le, and Jeff Dean.
A hierarchical model for device placement. In ICLR, 2018.

[120] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement
optimization with reinforcement learning. In ICML, 2017.

[121] Asit Mishra and Debbie Marr. Apprentice: Using knowledge distillation techniques to
improve low-precision network accuracy. In ICLR, 2018.

[122] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine
learning. In CCS, 2018.

[123] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In S&P, 2017.

[124] Jiandong Mu, Mengdi Wang, Lanbo Li, Jun Yang, Wei Lin, and Wei Zhang. A history-
based auto-tuning framework for fast and high-performance DNN design on GPU. In
DAC, 2020.

[125] Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul H. J. Kelly,

126

Andrew J. Davison, Mikel Luján, Michael F. P. O’Boyle, Graham Riley, Nigel Topham,
and Steve Furber. Introducing slambench, a performance and accuracy benchmarking
methodology for slam. In ICRA, 2015.

[126] Alexander Nareyek. Choosing search heuristics by non-stationary reinforcement learning.
In Metaheuristics: Computer Decision-Making. Springer, 2003.

[127] Renato Negrinho and Geoff Gordon. DeepArchitect: Automatically designing and training
deep architectures. arXiv, 2017.

[128] Diego Novillo. SamplePGO - the power of profile guided optimizations without the
usability burden. In LLVM Compiler Infrastructure in HPC, 2014.

[129] NVIDIA. TensorRT: Programmable inference accelerator. https://developer.nvidia.com/
tensorrt, 2017.

[130] NVIDIA. List of nvidia graphics processing units, since 1993.

[131] Jack O’Neill, Sarah Jane Delany, and Brian MacNamee. Model-free and model-based ac-
tive learning for regression. In Advances in Computational Intelligence Systems. Springer,
2017.

[132] Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli, and
Oriol Vinyals. Reinforced genetic algorithm learning for optimizing computation graphs.
In ICLR, 2020.

[133] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In ICASSP, 2015.

[134] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally. Scnn:
An accelerator for compressed-sparse convolutional neural networks. In ISCA, 2017.

[135] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library. In NeurIPS, 2019.

[136] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai.
Privacy-preserving deep learning via additively homomorphic encryption. TIFS, 2017.

[137] Yury Pisarchyk and Juhyun Lee. Efficient memory management for deep neural net
inference. MLSys Workshop on Resource-Constrained Machine Learning, 2020.

127

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

[138] Detlef Plump. Term graph rewriting. In Handbook Of Graph Grammars And Computing
By Graph Transformation: Volume 2: Applications, Languages and Tools. World Scientific,
1999.

[139] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár.
Designing network design spaces. In CVPR, 2020.

[140] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution
for image classifier architecture search. In AAAI, 2019.

[141] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446,
2018.

[142] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

[143] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James
Hegeman, Roman Levenstein, Bert Maher, Nadathur Satish, Jakob Olesen, Jongsoo Park,
Artem Rakhov, and Misha Smelyanskiy. Glow: Graph lowering compiler techniques for
neural networks. arXiv, 2018.

[144] Jaehun Ryu, Eunhyeok Park, and Hyojin Sung. One-shot tuner for deep learning compilers.
In CC, 2022.

[145] Jaehun Ryu and Hyojin Sung. MetaTune: Meta-learning based cost model for fast and
efficient auto-tuning frameworks. In arXiv, 2021.

[146] Amit Sabne. Xla : Compiling machine learning for peak performance, 2020.

[147] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. Robox: an
end-to-end solution to accelerate autonomous control in robotics. In ISCA, 2018.

[148] Samsung. Samsung bixby. https://www.samsung.com/us/apps/bixby/.

[149] Samsung. Samsung bot care. https://research.samsung.com/robot.

[150] Parisa Sarikhani, Svjetlana Miocinovic, and Babak Mahmoudi. Towards automated
patient-specific optimization of deep brain stimulation for movement disorders. In EMBC,
2019.

[151] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum, 1997.

[152] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ASPLOS,
2013.

128

https://www.samsung.com/us/apps/bixby/
https://research.samsung.com/robot

[153] Andreas Schösser and Rubino Geiß. Graph rewriting for hardware dependent program
optimizations. In AGTIVE, 2007.

[154] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. arXiv, 2017.

[155] Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Raymond. Profile-guided
memory optimization for deep neural networks. arXiv, 2018.

[156] Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

[157] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra,
and Hadi Esmaeilzadeh. Bit Fusion: Bit-level dynamically composable architecture for
accelerating deep neural networks. In ISCA, 2018.

[158] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning to the
cache replacement problem. In MICRO, 2019.

[159] Laurent Sifre and Stéphane Mallat. Rigid-motion scattering for image classification. Ph.D.
dissertation, 2014.

[160] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timo-
thy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of go with deep neural networks and tree search. In Nature, 2016.

[161] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

[162] Richard M Stallman and GCC DeveloperCommunity. Using the GNU compiler collection:
a GNU manual for GCC version 4.3.3. CreateSpace, 2009.

[163] Masashi Sugiyama. Active learning in approximately linear regression based on condi-
tional expectation of generalization error. JMLR, 2006.

[164] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul
Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy
Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in perception for autonomous driving: Waymo open dataset. In CVPR, 2020.

[165] Qi Sun, Chen Bai, Tinghuan Chen, Hao Geng, Xinyun Zhang, Yang Bai, and Bei Yu. Fast

129

and efficient DNN deployment via deep gaussian transfer learning. In ICCV, 2021.

[166] Qi Sun, Chen Bai, Hao Geng, and Bei Yu. Deep neural network hardware deployment
optimization via advanced active learning. In DATE, 2021.

[167] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In CVPR, 2015.

[168] Mingxing Tan, Ruoming Pang, and Quoc V Le. EfficientDet: Scalable and efficient object
detection. In CVPR, 2020.

[169] Tesla. Tesla AI Day, 2021.

[170] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor
Comprehensions: Framework-agnostic high-performance machine learning abstractions.
arXiv, 2018.

[171] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

[172] Michael Volpp, Lukas P Fröhlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank
Hutter, and Christian Daniel. Meta-learning acquisition functions for transfer learning in
bayesian optimization. In ICLR, 2020.

[173] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song
Han. Hat: Hardware-aware transformers for efficient natural language processing. ACL,
2020.

[174] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. HAQ: Hardware-aware
automated quantization with mixed precision. In CVPR, 2019.

[175] R Clinton Whaley and Jack J Dongarra. Automatically tuned linear algebra software. In
SC, 1998.

[176] Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling using integer
programming. In PLDI, 2000.

[177] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional
block attention module. In ECCV, 2018.

[178] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings.
In NeurIPS, 2019.

130

[179] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat
Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand, Hao Lu,
Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda,
Xiaodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian, Sungjoo Yoo, and
Peizhao Zhang. Machine learning at facebook: Understanding inference at the edge. In
HPCA, 2019.

[180] Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active learning for regression using greedy
sampling. Information Sciences, 2019.

[181] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly
wired neural networks for image recognition. In ICCV, 2019.

[182] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement
learning. In NeurIPS, 2018.

[183] Andrew Chi-Chih Yao. How to generate and exchange secrets. In SFCS, 1986.

[184] Ryo Yonetani, Vishnu Naresh Boddeti, Kris M Kitani, and Yoichi Sato. Privacy-preserving
visual learning using doubly permuted homomorphic encryption. In ICCV, 2017.

[185] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional
networks. arXiv, 2017.

[186] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. ImageNet
training in minutes. In ICPP, 2018.

[187] Hwanjo Yu and Sungchul Kim. Passive sampling for regression. In ICDM, 2010.

[188] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. BMVC, 2016.

[189] Daniel Zhang, Saurabh Mishra, Erik Brynjolfsson, John Etchemendy, Deep Ganguli,
Barbara J. Grosz, Terah Lyons, James Manyika, Juan Carlos Niebles, Michael Sellitto,
Yoav Shoham, Jack Clark, and C. Raymond Perrault. The AI index 2021 annual report.
arXiv, 2021.

[190] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vigfusson. Optimal data placement for
heterogeneous cache, memory, and storage systems. POMACS, 2020.

[191] Minjia Zhang, Menghao Li, Chi Wang, and Mingqin Li. DynaTune: Dynamic tensor
program optimization in deep neural network compilation. In ICLR, 2021.

[192] Lianmin Zheng, Ruochen Liu, Junru Shao, Tianqi Chen, Joseph E Gonzalez, Ion Stoica,
and Ameer Haj Ali. TenSet: A large-scale program performance dataset for learned tensor

131

compilers. In NeurIPS Track on Datasets and Benchmarks, 2021.

[193] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. DoReFa-
Net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv, 2016.

[194] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of
pruning for model compression. In ICLR Workshop, 2018.

[195] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
ICLR, 2017.

[196] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

132

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Background
	AI-Enabled Compilation for Intelligent Systems
	Thesis Contributions

	AI for Optimized Execution of AI
	Adaptive Code Optimization for Expedited Deep Neural Network Compilation
	Introduction
	Challenges in Deep Neural Network Compilation
	Compilation Workflow for Deep Neural Networks
	Optimizing Compiler for Deep Neural Networks
	Challenges in Deep Neural Network Compilation

	Chameleon: Adaptive Code Optimization for Expedited Deep Neural Network Compilation
	Overall Design of Chameleon
	Adaptive Exploration: Learning about the Unseen Design Space to Expedite Convergence of Optimization
	Adaptive Sampling: Adapting to the Distribution to Reduce Costly Hardware Measurements
	Implementation Details

	Evaluation
	Adaptive Exploration: Improving Efficacy of Search Algorithm
	Adaptive Sampling: Reducing Number of Costly Hardware Measurements
	Integration: Reducing Optimization Time and Output Inference Time

	Related Works
	Conclusion

	Foundational Algorithms for Optimized Execution of AI
	Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices
	Introduction
	Challenges and Our Approach
	Irregularly Wired Neural Networks
	Challenges
	Design Objectives

	Serenity: Memory-Aware Scheduling of Irregularly Wired Neural Networks
	Dynamic Programming-based Scheduling: Achieving Optimal Peak Memory Footprint
	Optimizing Scheduling Speed: Speeding up the Dynamic Programming-based Scheduling
	Identity Graph Rewriting: Improving the Search Space for Better Peak Memory Footprint

	Evaluation
	Methodology
	Experimental Results

	Related Works
	Conclusion
	Future Directions

	Hybridization of AI and Foundational Algorithms for Optimized Execution of AI
	Mathematical Embedding of Hardware Specification for Neural Compilation
	Introduction
	Challenges in Neural Compilation
	Neural Compilation for Model Deployment
	Challenges and Opportunities in Neural Compilation

	Glimpse: Mathematical Embedding of Hardware Specification for Faster Neural Compilation
	Blueprint: Mathematically Embedding Architectural Features of Hardware
	Hardware-Aware Exploration: Adapting Optimization Steps with Meta-learning
	Hardware-Aware Sampling: Using Statistics to Minimize Invalid Configurations

	Evaluation
	Blueprint
	Hardware-Aware Explorer
	Hardware-Aware Sampling
	Putting It All Together

	Related Works
	Conclusion
	Future Directions

	Expanding the Scope to End-to-End Intelligent Systems
	Programming Abstractions for Cross-Domain Multi-Acceleration
	Introduction
	Yin Abstraction
	Abstract Domain Description
	Component & Flow Programming Model

	Yang Abstraction
	Abstract Engine Specification
	Hints for Engine Selection

	XLVM: Accelerator-Level Virtual Machine
	Queued-Fractalized Dataflow Graph (QF-DFG)
	Engine Selector
	Engine Compiler

	Evaluation
	Experimental Setup
	Experimental Results

	Related Works
	Conclusion
	Future Directions

	Other Works by This Author
	Bibliography

