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Abstract

Stochastic Models for the Control of Mosquito-borne Pathogens

by

Sean L. Wu

Doctor of Philosophy in Epidemiology

and the Designated Emphasis in

Computational Biology

University of California, Berkeley

Assistant Professor in Residence John M. Marshall, Chair

In this dissertation mechanistic stochastic models of mosquito population dynamics rel-
evant for the control of mosquito borne pathogens are discussed. The first chapter re-
examines the classical theory of vector control, which has been developed since its in-
ception over a century ago and has produced a set of quantitative metrics that are the
basis for measuring pathogen transmission. One metric is vectorial capacity, which de-
scribes the ability of a local mosquito population to transmit pathogens, expressed in a
single equation. Despite its appealing simplicity, the formula is too coarse a description
to describe mosquitoes in any particular place. Vectorial capacity is reevaluated as an
emergent property arising from how mosquitoes use resources on a landscape accord-
ing to biological imperatives, using a stochastic model based on behavioral state transi-
tions. The second chapter builds a simulation modeling framework to evaluate the effects
of gene drive and other genetic control strategies on epidemiological and entomological
outcomes. The simulation modeling framework is constructed using stochastic Petri nets
(SPN), a mathematical modeling language that succinctly expresses state and events in
a bipartite network. The SPN can be interpreted as describing either a deterministic or
stochastic system, and associated software is developed to numerically solve the resulting
system of ordinary differential equations or continuous-time Markov chain. In the final
chapter, an algorithm is developed to simulate stochastic jump processes as disaggregated
agent-based models (ABM). To speed up simulation times, the algorithm approximates a
subset of hazard rates used to specify the model, but also converges upon the true process
as the time step goes to zero. The simulation technique is relevant to a wide variety of
contagion processes of interest to epidemiology, and also related fields such as ecology
and the quantitative social sciences.
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2.1 Structure of an Activity Bout. Top) MBITES and MBDETES model mosquito
behavioral states and state transitions required for the gonotrophic cycle. The
first two columnns list the behavioral states, and the last two columns describe
the potential state transitions. A mosquito is either searching for a blood host
(F) or attempting to blood feed (B), searching for aquatic habitat (L) or attempt-
ing to oviposit (O), or resting (R). Transitions depend on whether the last bout
was a success or failure, and optionally on refeeding behavior† or laying a par-
tial egg batch and skip oviposit‡. The next activity bout is also affected by
whether a mosquito decides to make an attempt or initiate a search⇤. Bottom)
In MBITES models, each behavioral state has an associated activity bout that
has a common structure, as illustrated in the diagram. The activity bout in-
volves a sequence of four phases: launch, do an activity (either a search or
an attempt), land, and rest. The type of activity is determined both by its be-
havioral state and by presence and availability of resources. A mosquito will
stay (S) unless there are no resources present or if the mosquito has become
frustrated (⇤), in which case it will initiate a search. If the mosquito decides to
stay, it makes a choice and an approach that may or may not succeed at what
it was trying to do. When a mosquito lands, it selects a micro-site for a resting
spot from the set of possibilities at that site. During the resting period, data
from the last bout are logged, the behavioral state is updated, and the waiting
time to the next launch is determined. A mosquito enters the bout either after
emerging from aquatic habitat or after exiting its previous bout and surviving. 13
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2.2 The structure of a blood feeding attempt bout in MBITES. The flowchart fol-
lows the progression of a mosquito through simulated events, from the launch
(dark grey oval), choosing a host from the atRiskQ (aquamarine diamond), and
the events that follow depending on what sort of host was chosen (yellow rect-
angles). If a human is chosen (or more generally, a blood host that is also a host
for the pathogen), then each mosquito must approach and attempt to probe
(salmon rectangle) and then blood feed (red rectangle). If a non-human host
is, probing is ignored. Traps mimicking a blood host can also be chosen. After
a blood meal (red rectangle), a mosquito must land and choose a resting spot
(yellow diamonds). A post-prandial resting period follows a successful blood
meal which has its own hazards (purple oval), including additional hazards
associated with a flight laden with blood, which may be followed by decision
to feed again (dark red diamond). Similarly, after failing the attempt (green
pentagons to green rectangle), a mosquito must land and choose a resting spot
(yellow diamonds). At each step, it is possible to die (light grey ovals). At any
point when failure occurs or during landing, a mosquito could choose to leave
the haunt and initiate a search on the next bout. This condition is checked after
completing the bout (pink diamond). At the end of a bout, the mosquito’s be-
havioral state and other state variables are updated. The endpoint of each bout
is either death (grey ovals), a repeated blood feeding attempt (dark red oval)
or a state transition to either a blood feeding search (pink oval) or to oviposit
(blue ovals). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 The structure of an egg laying attempt bout in MBITES. The flowchart fol-
lows the progression of a mosquito through simulated events, from the launch,
choosing a habitat or trap from the eggQ (aquamarine diamond), and the
events that follow depending on whether the mosquito chose a habitat or a
trap (yellow rectangles). If a mosquito approaches the habitat, it could lay
eggs. Alternatively, a mosquito could approach a trap and fail in the approach
(thus surviving) or die (light grey ovals). If a mosquito is deterred in the ap-
proach to its habitat or the trap, it fails (green pentagons to green rectangle).
After a successful approach to a habitat, a mosquito lays eggs (blue rectangle).
After laying eggs or failing, a mosquito must land and survive (yellow dia-
monds). If not all eggs were laid, a mosquito can choose another habitat to
lay (light blue diamond). At any point when failure occurs or during landing,
a mosquito could choose to leave the haunt and initiate a search on the next
bout. This condition is checked after completing the bout (pink diamonds).
At the end of a bout, the mosquito’s behavioral state and other state variables
are updated. The outcome of each bout is either death (light grey ovals), a re-
peated egg laying attempt bout (dark blue ovals) or a state transition to either
an egg laying search (light blue ovals) or a blood feeding attempt (red or pink
ovals). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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2.4 Comparison of results from MBITES and MBDETES under restricted (Marko-
vian) assumptions on waiting times and state transition probabilities. B: Egg
laying rate is the number of eggs laid, per female, per day. C: Blood feeding
by age is the age distribution of mosquitoes taking bloodmeals. D: Feeding cy-
cle duration is the time between post-prandial resting periods. In each panel,
MBITES is summarized as a red histogram overlaid against the smooth den-
sity (in blue) predicted by MBDETES. All cases see excellent agreement, with
MBITES fluctuating around MBDETES due to finite sample size of mosquitoes
in the stochastic simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Measures of Mosquito Dispersion. Smoothed distribution (red line) and den-
sity (blue area) functions are displayed for summary statistics calculated for
one particular landscape (50% peri-domestic habitats). A: The spatially aver-
aged movement kernel is simply the probability of movement by distance, av-
eraged over all haunts on the landscape. B: Cumulative movement, gives the
distribution of total distance traveled by mosquitoes over their entire lifetime,
and has a long right tail. C: Lifetime displacement is the absolute displace-
ment of a mosquito, that is, the distance between the natal aquatic habitat they
emerged from and the site at which their died. D: Dispersion of VC shows
the distribution of secondary bites by distance, and follows closely absolute
displacement of mosquitoes. All plots are calibrated to the same x-axis for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Simulated Landscapes. 3 simulated landscapes at A: 0%, B: 50%, and C: 100%
peri-domestic habitats. Haunts that contain only blood feeding haunts are
plotted as red circles, haunts that contain only aquatic habitats are plotted
as green triangles, and those haunts that contain both types of resources are
shown as blue squares (i.e., peri-domestic habitats). Dispersal kernels were
calibrated as if this was an area of about 100 km2. . . . . . . . . . . . . . . . . . 30

2.7 Vectorial Capacity. In MBITES, vectorial capacity (VC) is computed directly
as the average number of infectious bites (i.e., probing) arising from all the
mosquitoes blood feeding on a single human on a single day; it is effectively
the number of pairs of events where a blood meal by a mosquito is followed
at least EIP days later by that same mosquito probing in attempt to feed on a
human, measured per human, per day. Summary VC A,B,C: and number of
human blood meals per mosquito over its lifespan (D,E,F; referred to as the sta-
bility index by Macdonald) are shown by column for 0%, 50%, and 100% peri-
domestic habitats. Each histogram gives the distribution of VC or the number
of human blood hosts across mosquitoes for that percent peri-domestic habitats. 31
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2.8 Behavioral State Distribution. Chord diagrams showing the empirical state
transition matrices for three of the 26 experiments: A: 0%, B: 50%, and C: 100%
peri-domestic habitats. These were calculated for each experiment by sum-
ming transitions for each mosquito between two states and then averaging to
produce a Markov transition matrix. The width of the directed edges between
each behavioral state is proportional to the probability of that transition, and
the area on the perimeter of the circle labeled for each state is proportional
to the mean time spent in that state. The three chord diagrams are accom-
panied below (D-F) by quasi-stationary probability distributions which give
the asymptotic distribution of how a mosquito spends time across behavioral
states conditional on survival. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Binomic Parameters. Simulations in MBITES illustrate that all of the bionomic
parameters are sensitive to the proportion of peri-domestic habitats, which
gives a measure of how frequently a mosquito must search. The x-axis of each
plot ranges from 0% to 100%, and each summary bionomic parameter is plot-
ted as mean (solid line), median (dashed line), and the shaded area covers the
20-80% quantile range of the data. The distribution of number of blood hosts
B: exhibits significant right skew, such that the mean exceeds the 80% quantile
at low proportion peri-domestic breeding habitats. Because the simulations
are stochastic, the exact number of mosquitoes from which Monte Carlo esti-
mates of the bionomic parameters were computed varied somewhat over the
26 landscapes, the mean was 456,579 mosquitoes with a standard deviation of
754 mosquitoes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10 Dispersion and Movement Parameters. In MBITES, vectorial capacity (VC)
and its dispersion are highly sensitive to the proportion of peri-domestic habi-
tats. Interpretation of axes follows Fig 2.9, and each summary bionomic pa-
rameter is plotted as mean (solid line), median (dashed line), and the shaded
area covers the 20-80% quantile range of the data. A: Number of secondary
bites produced increases dramatically as a function of peri-domestic habitats.
B: Spatial dispersion shows no strong trend however, due to the strong cluster-
ing of haunts in the landscape (it largely follows the trend of absolute lifetime
displacement (C), as opposed to cumulative movement (D). At low percent
peri-domestic breeding habitats, significant right skew in the distribution of
VC pulls the mean above the 80% quantile. . . . . . . . . . . . . . . . . . . . . . 35



vii

3.1 Modules in the MGDrivE 2 framework. (A) Genetic inheritance is embodied
by a three-dimensional tensor referred to as an “inheritance cube”. Maternal
and paternal genotypes are depicted on the x and y-axes and offspring geno-
types on the z-axis. (B) Mosquito life history is modeled according to an egg-
larva-pupa-adult (female and male) life cycle in which density dependence
occurs at the larval stage, and life cycle parameters may vary as a function of
environmental variables over time. Genotypes are tracked across all life stages,
and females obtain a composite genotype upon mating - their own and that of
the male they mate with. Egg genotypes are determined by the inheritance
cube. (C) The landscape represents a metapopulation in which mosquitoes are
distributed across population nodes and move between them according to a
dispersal kernel. Population sizes and movement rates may vary as a function
of environmental variables. (D) The epidemiology module describes recipro-
cal transmission of a vector-borne pathogen between mosquitoes and humans.
This requires modeling human as well as mosquito populations, and the num-
ber of individuals having each infectious state. Epidemiological parameters
may vary as a function of environmental variables. . . . . . . . . . . . . . . . . . 43

3.2 Epidemiology module. MGDrivE 2 includes two basic models for reciprocal
pathogen transmission between mosquitoes and humans - one for malaria (A),
and one for arboviruses (B). In both cases, female mosquitoes emerge from pu-
pae at a rate equal to dP/2 as susceptible adults (SV ), become exposed/latently
infected (EV,1) at a rate equal to the force of infection in mosquitoes, �V , and
progress to infectiousness (IV ) through the extrinsic incubation period (EIP =
1/�V ), which is divided into n bins to give an Erlang-distributed dwell time.
The mortality rate, µF , is the same for female mosquitoes in each of these states.
For malaria (A), susceptible humans (SH) become infected/infectious (IH) at a
rate equal to the force of infection in humans, �H , and recover at rate r, becom-
ing susceptible again. For arboviruses (B), susceptible humans (SH) become
exposed/latently infected (EH) at a rate equal to �H , progress to infectious-
ness (IH) at rate equal to �H , and recover (RH) at rate, r. Infection dynamics
couple the mosquito and human systems via the force of infection terms; �V is
a function of IH , and �H is a function of IV , shown via red edges. . . . . . . . . 45
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3.3 Stochastic Petri net (SPN) implementation of MGDrivE 2. (A) Petri net rep-
resentation of the life history module. The set of purple circles corresponds to
places, P, and red rectangles to transitions, T. This Petri net shows a model in
which development times for the egg stage are Erlang-distributed with shape
parameter n = 2, and for the larval stage are Erlang-distributed with shape
parameter n = 3. Population dynamics are derived directly from this graph;
e.g., the transition corresponding to oviposition has one edge beginning at F ,
meaning at least one female mosquito must be present for oviposition to occur.
When oviposition occurs, a token is added to E1 (new eggs are laid) and a to-
ken is returned to F . (B) Conceptual representation of the SPN software archi-
tecture showing the separation between the model representation (blue circles)
and set of sampling algorithms (red rectangles). These two components of the
codebase meet at the simulation API, enabling users to match models and sim-
ulation algorithms interchangeably. Output may be returned as an array in R
for exploratory work, or written to CSV files for large simulations. . . . . . . . . 49

3.4 Example MGDrivE 2 simulations. Example MGDrivE 2 simulations for a
population replacement gene drive system designed to drive a malaria-refractory
gene into an An. gambiae s.l. mosquito population with seasonal population
dynamics and transmission intensity calibrated to a setting resembling the is-
land of Grand Comore, Union of the Comoros. The gene drive system re-
sembles one recently engineered in An. stephensi [3] for which four alleles are
considered: an intact homing allele and malaria-refractory gene (denoted by
“H”), a wild-type allele (denoted by “W”), a functional, cost-free resistant al-
lele (denoted by “R”), and a non-functional or otherwise costly resistant al-
lele (denoted by “B”). Model parameters describing the construct, mosquito
bionomics and malaria transmission are summarized in Table 3.1. (A) Cli-
matological time-series data - temperature in red and rainfall in purple - that
were used to calculate time-varying adult mosquito mortality rate and larval
carrying capacity, respectively. The resulting adult female population size is
shown in green. (B) Allele frequencies for adult female mosquitoes over the
simulation period. Grey vertical bars beginning at year three denote eight
consecutive weekly releases of 10,000 male mosquitoes homozygous for the
drive allele (HH). (C) Spread of the malaria-refractory trait through the female
mosquito population, and consequences for mosquito and human infection
status. Following the release of the drive system at year three, the proportion
of refractory female mosquitoes (dotted light purple line) increases and the
proportion of infectious mosquitoes (dotted dark purple line) declines. As hu-
mans recover from infection and less develop new infections, the P. falciparum
parasite rate (solid red line) declines until it reaches near undetectable levels
by year five. (D) Human malaria incidence is halted by the beginning of year
four. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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Chapter 1

Introduction

The use of mathematical models to understand and control mosquito borne pathogens
has a long and distinguished history, beginning with Ronald Ross’s initial investiga-
tions into the relationship between prevalence of malaria parasites in human hosts and
mosquito vectors after he demonstrated mosquitoes were responsible for transmission
of the disease causing pathogen. Ross’s model was analyzed by the famed mathemati-
cian Alfred Lotka, and later extended to incorporate insights and synthesis by malariolo-
gist George Macdonald, and has since been known as the Ross-Macdonald (RM) model.
These early mathematical models resemble demonstrations of simple physical laws in
ideal media, neglecting (or relegating to fixed constants) details such as abiotic interac-
tions, uneven distribution of bites, immune response, and finite populations [139, 140].

Nontheless, their parsimonious construction succinctly represents the most important
events in the process of malaria transmission: bloodfeeding and infection of susceptible
humans or mosquitoes, death of infectious mosquitoes, and recovery of infected humans.
The RM model is expressed as a pair of coupled nonlinear ordinary differential equa-
tions requiring 7 parameters, each of which has an unambiguous definition (though not
necessarily always easy to measure in the field). At equilibrium, the equations can be
manipulated to provide simple, intuitive expressions for vectorial capacity and the basic
reproduction number, giving insight into the effect sizes of interventions that target dif-
ferent features of malaria ecology [138]. Perhaps due to the clarity of thought and persua-
sive conclusions drawn from the RM model, most models developed since Ross’s original
mathematical insights still incorporate most of their simplifying assumptions [125].

While the original RM model was used to demonstrate large-scale, strategic aspects
of malaria control, such as Ross’s insight that malaria elimination required only that the
adult mosquito population be brought below some critical value necessary to sustain en-
demic transmission, or George Macdonald’s later use of the model to argue forcefully for
adult vector control which guided the Global Malaria Eradication Program (1955-1969),
the model is too abstract to provide real insights about any specific place [141]. Making
models more relevant for specific locations means making more complicated models. In
some cases, sufficiently increased complexity means that one must turn to new methods
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of building models to effectively grapple with the required complexity, a topic investigated
in the final chapter of this dissertation.

The first two chapters in this dissertation develop theory and methods to mechanis-
tically model mosquito borne pathogen transmission systems. The first chapter, “Vector
bionomics and vectorial capacity as emergent properties of mosquito behaviors and ecol-
ogy” takes a critical view at mechanistic models of adult mosquito population dynamics,
many of which still fulfill some or most of the canonical set of assumptions used in RM-
style models [125]. By constructing micro-scale models of adult behavior based on the
smallest atomic unit of mosquito behavior, the flight bout, where a mosquito launches
into the air to fulfill a biological imperative, succeeds or fails, and lands to rest, de-
pendence of bionomic parameters describing mosquito populations relevant for disease
transmission and control were shown to be highly sensitive to details of the spatial ar-
rangement of resources that mosquitoes use throughout their life. Relative density or
sparsity of resources in an area changes the way that a mosquito spends its time, given
the same biological imperatives, giving a mechanistic explanation of the way that trans-
mission dynamics depend on local setting. The stochastic simulation algorithm used is
described fully in the final chapter, where it is verified against closed form analytical re-
sults.

In the second chapter, a simulation framework (MGDrivE 2) is developed to model
meso-scale population dynamics of mosquitoes with special application to modeling ge-
netic inheritance and genetic control strategies for mosquito borne pathogen transmis-
sion. The modeling framework is designed using stochastic Petri nets (SPN), a mathe-
matical modeling language that represents state and events as two sets of nodes on a bi-
partite graph. Used to great effect in operations research and chemical physics especially,
SPNs are seldom used in epidemiological simulation despite their ability to succinctly
structure complex state spaces and design the events that affect state. The mathematical
and computational framework builds upon previous work by [130] and is available as an
open source R package on CRAN [156]. Mathematical models developed with MGDrivE
2 can be used to gain insight into how genetic control strategies may affect disease trans-
mission at an intermediate scale in which humans and mosquitoes move among nodes in
a metapopulation network. Such a scale is amenable to mathematical analysis if neces-
sary, but incorporates enough details to suggest how genetic control may work in realistic
settings.

The final chapter in this dissertation develops a new method to reformulate stochas-
tic models of epidemiological interest as agent-based models (ABM). The simulation al-
gorithm considers the ABM to be a disaggregated representation of a stochastic jump
process, of which the continuous-time Markov chain models commonly use to simulate
stochastic epidemics are a special case [4]) For complicated state spaces, ABMs can of-
ten be the most convenient and intuitive way to specify a model, but model updating
can be a point of friction for researchers attempting to use the agent-based representation
to simulate a system of interest. What is missing for mathematical epidemiologists is a
clear recipe to turn systems in which in which agents interact through a discrete set of
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events which are allowed to change their internal state into a simulation algorithm with
desirable properties. A problem of ad hoc simulation algorithms is that they may be either
unacceptably slow or induce unwanted or even unnoticed approximations. The method
developed in this chapter allows for each agent’s internal dynamics to update exactly in
continuous time, but events that depend on the state of other agents (such as infection)
are approximated over a time step.

The work presented in this dissertation investigates interactions between mosquitoes,
environment, humans, and genetics, through stochastic mechanistic models, and also de-
vises a new way to build complex models. While in the age of Big Data and machine
learning an investigation of mechanistic models may seem quaint, the process of model
building and refinement, and falsification if a model is incapable of reproducing observed
patterns, is a core activity of science. Subjecting mathematical models of physical laws to
statistical testing has been used for no less an august purpose than putting to the test
Newtonian mechanics versus Einstein’s General Theory of Relativity [110, pp. 119-125].
On a more earthly scale, Ross’s original models of malaria were shown to be inadequate
and subsequently modified by Macdonald in the 1950s to account for the omitted phe-
nomenon of superinfection, in which a given host may be simultaneously infected by mul-
tiple genetically distinct parasite broods [111, 141], leading to qualitatively different pre-
dictions. While recent advances in mechanistic models may in some cases exceed the
ability of field biologists to measure all relevant metrics which would be required to eval-
uate their adequacy, the concurrent development in statistical theory and computation
for complex stochastic models, such as data augmentation, history matching, filtering
techniques, and various Bayesian approaches mean that iterated model building, testing,
and refinement is possible for even complicated mechanistic descriptions of a process [25,
154]. Understanding how phenomenon in the world came about requires a critical mind
to imagine not only how a process operates but how one might be fooled by other, hid-
den mechanisms. Mechanistic models are excellent tools for developing these faculties,
and advanced statistical techniques can sift away those which do not meet some level of
rigorous testing. The following chapters are my attempt to grapple with understanding
the processes behind mosquito borne pathogen transmission, genetic control, and how to
go about the actual business of model building. I hope they prove useful.
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Chapter 2

Vector bionomics and vectorial capacity
as emergent properties of mosquito
behaviors and ecology

2.1 Introduction1

Mosquitoes transmit the pathogens that cause malaria, filariasis, dengue, and other dis-
eases that account for approximately 17% of the global burden of infectious diseases [70].
Mosquito-borne pathogens are transmitted to a vertebrate host while mosquitoes probe
or blood feed, so the intensity of transmission and the risk of infection are related to
mosquito blood feeding behaviors and local population density. Development of con-
cepts and metrics to measure transmission intensity by mosquitoes, such as the entomo-
logical inoculation rate (EIR) and vectorial capacity (VC), were motivated by or derived
from mathematical models of pathogen transmission by mosquitoes [38, 119, 105, 48, 141].
Entomologists meanwhile identified and developed field methods to measure some of the
parameters that are key determinants of the EIR and VC: mosquito survival, mosquito
population density, the overall blood feeding frequency, and human blood index, the ra-
tio of mosquitoes to humans in the area, and the pathogen’s extrinsic incubation period
(EIP) [49, 136]. These parameters are also important determinants of vector population
responses to vector control interventions, such as insecticide-treated nets, indoor residual
spraying, and spatial repellents, to name but a few. These parameters and metrics arise
from basic mosquito behavioral algorithms for finding and using resources, avoiding haz-
ards, and adjusting to weather and other factors that characterize mosquito ecology [91,
18]. An important question is how parameters relevant for pathogen transmission and
vector control are co-determined by basic behavioral algorithms and genetically deter-
mined preferences of each vector species and by the availability and distribution of re-
sources and other ecological factors.

1This chapter has been previously published [157]
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The canonical model of the entomological aspects of malaria transmission, called the
Ross-Macdonald model, describes changes in the sporozoite rate [105]. The associated
formulae for VC and EIR, which arise from a common conceptual and mathematical ba-
sis, summarize transmission intensity in terms of a few parameters (Table 2.1) [138, 141].
Both formulae count the expected number of events occurring on one human on one day:
VC measures the number of infectious bites that would arise from all mosquitoes blood
feeding on a typical human, as if that human were perfectly infectious; and the daily
EIR measures the number of infectious bites received by a typical human. The number
of bites arising must approximately balance the number of bites received, after account-
ing for time lags (e.g. the EIP), mosquito migration, and imperfect transmission from
infected humans. Mathematical formulas for VC and the EIR derived a priori are conse-
quently related by a simple formula [22]. The quantitative logic supporting these metrics
is both parsimonious and compelling, and these metrics and associated bionomic param-
eters form the basis of medical entomology and most models of mosquito-borne pathogen
transmission [125].

m The number of female mosquitoes per human
f The blood feeding rate, per mosquito, per day
Q Proportion of blood meals on the pathogens’ hosts
g The mosquito death rate, per mosquito, per day
n Extrinsic Incubation Period (EIP), in days

� = gm The number of female mosquitoes emerging, per human, per day
S = fQ/g The expected number of human blood meals per mosquito
P = e�gn The probability of surviving the EIP

Table 2.1: Vectorial Capacity The five parameters comprising the classical formula for vecto-
rial capacity (VC or denoted V ), describing the total number of infectious bites arising from all
the mosquitoes feeding on a single human on a single day under the assumptions of the Ross-
Macdonald model [105, 141, 138]. The expected number of blood meals on the pathogen’s hosts,
summed over a mosquito lifespan, is given by the term S = fQ/g. The probability of surviv-
ing the EIP is P = e

�gn. Mosquito population density is m = �/g. Under the assumptions, the
formula for VC is V = �S

2
P. In the Ross-Macdonald model, the entomological inoculation rate,

E , is related to VC by a formula: E = V /(1 + S) ⇡ V , where  is the proportion of bites on
humans that infects a mosquito; the approximation holds when  is small, such that mosquito
super-infection is rare. In MBITES, the same quantity can be computed directly by Monte Carlo
simulation.

While the Ross-Macdonald model and associated bionomic parameters are a useful
way of summarizing overall transmission intensity, a weakness of the model is that it does
not include many other parameters and metrics that are important for pathogen transmis-
sion dynamics, the measurement of transmission, and responses to vector control. These
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include metrics for heterogeneous biting by mosquitoes [34], the spatial dimensions of
transmission or control [120, 30, 29], vector contact rates with and quantitative responses
to various kinds of vector control deployed in myriad combinations and coverage levels
[92], environmental factors that affect variance in the number of mosquitoes caught [84],
and nuances of behavior affecting the accuracy of various field methods [136]. Models
describing effect sizes of vector control rely on assumptions about the way interventions
alter the basic bionomic parameters [94], but there has been very little theory developed
to understand either what contextual factors determine baseline bionomic parameters or
how contextual factors influence the effect sizes of control [50]. What is needed is a syn-
thetic framework for weighing entomological heterogeneity: spatial and temporal hetero-
geneity in the availability of hosts and the rates of blood feeding on hosts; heterogeneity
in the availability of habitats, egg laying, and mosquito population dynamics; age-specific
mosquito mortality; mating and the availability of mates; energetics, sugar feeding and
the availability of sugar sources; and the risks and costs associated with searching for
all these resources. Understanding and quantifying the inter-dependency of mosquito
behavior on hazards and resources through observation presents enormous challenges.

One way to forge a new synthesis is to model mosquito behavior at its most irre-
ducible level and in extreme detail in order to prioritize new research. To that end, we
here present a new framework for building individual-based models based on the con-
cept of an “activity bout”. A bout is initiated when a mosquito launches itself in the air to
do something and ends after a mosquito has landed, rested, and is about to launch itself
into the air again. It includes a sequence of events which may be of varying duration de-
pending on factors both internal and external to the mosquito. In the models we present
here, a bout is the irreducible unit of mosquito activity. Specific actions during the bout
depend on the mosquito’s current behavioral state. This behavioral state depends on cues
from local ecology and the mosquito’s current physiological state and determines what
activity the mosquito is intent on accomplishing at any given time, such as seeking to
blood feed or oviposit. Success and survival through each bout depend on context and
chance. Probabilities are affected by the resources and hazards in its vicinity, the cues
it uses to find those resources, its efficiency in using those resources, and other factors
such as vector interventions that suppress transmission by killing mosquitoes or altering
their behavior. This description of behavioral states makes clear the joint dependence of
behavioral state transitions on the mosquito’s biology as well as local ecology.

To understand how ecology and behavior jointly affect transmission, we developed
bout-based behavioral state models for mosquitoes to show how the values of bionomic
parameters in the Ross-Macdonald model arise from basic mosquito behavioral algo-
rithms in response to ecology. These models consider a behavioral state space and model
the dynamic transitions between states as they follow the biological imperatives of their
state and succeed or fail depending on the availability of local resources and other factors.
MBITES (Mosquito Bout-based and Individual-based Transmission Ecology Simulator) is
a framework for building individual-based simulation models of mosquito behavioral
activity bouts in exquisite detail. Simulated mosquito activities are implemented as algo-
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rithms executing activity bouts and behavioral transitions in response to resources that
are organized on spatially explicit landscapes. MBDETES (Mosquito Bout-based Differ-
ential Equation-based Transmission Ecology Simulator) is a differential equation based
model of behavioral state transitions that is more analytically tractable than MBITES.
Under a restricted set of assumptions, some MBITES models can be represented as a
continuous-time Markov process, for which MBDETES is the set of master equations.
Because MBDETES describes the expected behavior of some MBITES models, we use the
two frameworks for mutual verification through both simulation and analysis.

These two bout-based behavioral state models make it possible to investigate how
behavioral algorithms and resource distributions affect local decisions and give rise to
the parameters that are widely acknowledged to be important for pathogen transmis-
sion. Through Monte Carlo simulation of models developed in MBITES, it is possible
to compute any quantity describing adult mosquito reproductive success or capability to
act as effective pathogen vectors and, through careful in silico analysis, to learn what fac-
tors determine their values. To this end, MBITES provides algorithms to compute from
simulation output: lifespans, metrics of mosquito dispersal from the natal aquatic habi-
tat, stability index (number of human blood meals per mosquito lifetime), the length of
a feeding cycle, survival through one feeding cycle, blood feeding rate, entomological
inoculation rate (EIR), egg production and dispersal, vectorial capacity (VC), and the spa-
tial scales over with VC is dispersed. By summarizing models according to these values,
we can map these behavioral models to regularly discussed and estimated metrics that
are the target of inference and control in many intervention studies. We show how the
classical mosquito bionomic parameters used by the Ross-Macdonald model arise from
mosquito behavioral algorithms in their ecological context, but we also describe their dis-
tribution and spatial dimensions. These behavioral state models thus provide a way of
synthesizing more than a century of studies that have observed and measured aspects of
individual mosquito behavior in a variety of contexts, from laboratory through the field.

2.2 Methods

MBITES
MBITES is a framework for building individual-based continuous-time discrete-event
simulation models for adult mosquito behavior and ecology. The framework is highly
mimetic: simulated mosquito activity is designed to resemble what we believe actual
mosquitoes are doing. The descriptions of mosquito behavior in the sections below map
onto the structures and algorithms that are built into MBITES. For each simulated mosquito,
MBITES samples events and outputs a lifetime trajectory through behavioral state space
as well as spatial location. The framework accommodates differences in behavioral al-
gorithms and life-history traits across species, different ecological contexts, and different
purposes. To make it useful as a research tool, some pre-defined behavioral states are
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optional. An important feature of MBITES is a resource landscape can be configured
to suit any situation. MBITES has a modular design: several functions can be called to
model each biological or ecological process, and it is comparatively easy to add, remove
or modify new functions or features. Mathematical and computational details, including
functional forms and some options are documented in the code.

MBITES is under active development and it is being maintained with version con-
trol. This document describes MBITES version 1.0. The code was written in R and C
[123]. Source code for MBITES are released at a permanent GitHub archive (https:
//github.com/dd-harp/MBITES/tree/v1.0/MBITES); configuration files for sim-
ulations are also available here (https://github.com/dd-harp/MBITES/tree/v1.
0/scripts).

The Landscape

MBITES simulates mosquito behavior on a set of points in space called haunts, small areas
where mosquitoes can rest between long range search flights. Resources may be present at
some of these haunts. Landing spots within a haunt are represented as a set of micro-sites.
The set of points and associated resources is called the landscape.

Each adult mosquito emerges from one of these haunts and moves among the haunts
throughout its life as it searches for and utilizes the resources it needs. In this manuscript
we consider only two types of resources. First, blood feeding haunts are places where ver-
tebrate animals are typically found such that mosquitoes could take a blood meal, which
could include the area around a family dwelling or other structure, a field where farming
occurs, or an outdoor spot where humans or other vertebrate animals are found. Sec-
ond, some haunts include aquatic habitats where mosquitoes attempt to lay eggs. In this
manuscript we do not consider density-dependent dynamics in aquatic habitats, as our
focus is on the behavioral algorithms that structure how cohorts of mosquitoes behave af-
ter emergence. We acknowledge the possibility and importance of nonlinear dependence
in adult mosquito behaviors, such as the choice of where to oviposit, and competition for
resources by larval mosquitoes in aquatic habitats. However, we feel confident in pre-
senting the current set of adult behavioral algorithms as an initial step, to be followed up
with development of detailed aquatic algorithms which will incorporate such dynamics;
the modular design patterns we have used in MBITES allows for such development to be
feasible and transparent.

Two other types of resources included in MBITES, which will be described in detail in
future manuscripts, are sugar sources and mating sites. Each haunt may have one or more
resource type and more than one of each type of resource; more than one potential blood
host could be present, and there could be more than one suitable aquatic habitat, such as
a pond and a rain-storage barrel in the backyard of a home, for instance. The question of
how to model a landscape – how many haunts make up the landscape, how large an area
is represented by each haunt, whether to include haunts without other resources, and how
many micro-sites in each haunt – is flexible. In some instances, a haunt could represent
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a small area around a habitat or the area immediately surrounding a single household.
The question is intrinsically related to mosquito search and dispersal, a question that may
require some tuning, depending on the purpose of a simulation.

In addition to the resources present, each haunt is assigned a set of local hazards, or
parameters that affect survival at the site, which reflects highly local conditions (such as
predators) that may make a haunt more or less dangerous than others of the same type.

Each haunt is also characterized by a set of micro-sites, which define specific aspects
of the places within a haunt where the mosquito lands to rest. Different types of haunts
may have different sets of micro-sites with different resting surfaces. A homestead is a
pre-defined haunt type with three micro-sites” a mosquito may rest either in the house,
or outside on the house, or outside on surrounding vegetation. If there is no human
dwelling at a haunt, it could have only vegetation. Other types can be easily constructed
(e.g., a homestead with livestock sheds) with their own set of relevant micro-sites for
resting.

These micro-sites were devised to simulate survival through the post-prandial resting
period or contact with various kinds of vector control in a highly realistic way, includ-
ing exposure to residual pesticides and house entering. Housing quality and housing
improvements can affect the probability of entering a house; when a mosquito attempts
to enter a house, it may encounter an eave tube; insecticide spraying can be applied to
the interior walls of houses (or not), their exterior walls (or not), or vegetation (or not) so
that contact is simulated only if a mosquito lands on the type of micro-site that has been
sprayed; and area repellents or other local features can make it more likely a mosquito
will leave the haunt, thereby initiating a new search bout. Encounter with environmental
vector based intervention, such as indoor residual spraying (excluding personal-level in-
terventions, such as topical repellents, which we considered separately) at any point may
incur death or physiological damage.

Modular Design

MBITES is designed to be nested within a broader framework for simulating the transmis-
sion dynamics and control of mosquito-borne pathogens. Because individual mosquitoes
are simulated as a continuous-time discrete-event process, a mosquito’s actions can be
simulated exactly and do not need to be discretized to the nearest time step. While each
mosquito agent is simulated exactly, between-agent synchronization occurs at fixed time
steps. Synchronization allows agents to update each other on where they are, how many
resources have been consumed, etc. in order to simulate interaction. In all simulations for
this paper we chose the synchronization time step as one day. In principle, any synchro-
nization time step can be used so long as it is short enough that the consequences of one
mosquito (or agent) are synchronized before they would affect another.

Because agents in MBITES interact on the landscape, it is necessary for haunts to have
associated data structures that record information to pass between different parts of the
model. For example, when a human visits a certain blood feeding haunt, they must leave
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a piece of information denoting their id, when they arrived, and the duration of their
stay so that during the mosquito portion of the MBITES simulation, mosquitoes visiting
that haunt have a list of potential blood hosts they can select from to take a blood meal.
We call these data structures queues, and they allow different modules to interact in a
generic way, facilitating a design that is both flexible and extensible. To continue the
blood feeding example, it is not important for mosquitoes to know the specific algorithms
by which human movement between blood feeding haunts is simulated, as long as when
a mosquito arrives at a haunt to take a blood meal, it can query the queue there to find
out which blood hosts are available. It is information contained in these queues that are
synchronized in each time step.

As described, at each blood feeding haunt, MBITES tracks all available blood meal
hosts in a queue called the atRiskQ. Because not all hosts present at a haunt are equally
available or attractive to the mosquito, the atRiskQ stores not only the identities of blood
hosts but also a biting weight for each human and other potential blood host. These bit-
ing weights reflect a combination of time spent and comparative attractiveness of all the
hosts. When a mosquito chooses a blood host, she samples from the discrete distribution
on blood hosts parameterized by those biting weights.

Each haunt also has a queue object called the eggQ that lists aquatic habitats at the
haunt and ovitraps. The eggQ stores any eggs laid by mosquitoes for potential use by
linked models of immature mosquito population dynamics in aquatic habitats. Like po-
tential blood hosts, these habitats are not equally available or attractive to the mosquito,
so each eggQ has a search weight. These weights can be changed dynamically to mimic
specific behaviors; for example, it is possible to change the search weight if larvae are
present [115].

A landscape is thus comprised of the locations of multiple points in space called
haunts where mosquitoes rest, their resources, a set of micro-sites describing landing
spots (e.g. homestead, shed, field, forest edge), local hazards, and queues. Importantly,
the ability to characterize landing spots in varying granular levels of detail allows for
specific simulations that can adapt to levels of detail present in field data. In this way,
complex composite types of haunts can be built up by adding the basic elements, as in
our previous example of a single blood feeding haunt with several independent aquatic
habitats representing a large house with multiple mosquito breeding ponds in the back-
yard; the flexibility can accommodate complex ecological dynamics of structured habitat
and behavior such as skip oviposition. All these elements determine where a mosquito
attempts to do something on the landscape and affects its probability of success and sur-
vival.

Mosquito Dispersal

Mosquito movement in MBITES may occur during a behavioral bout if a search is trig-
gered. It is a relocation from one haunt to a different haunt. A mosquito may decide
to leave a haunt for several reasons; if the mosquito survives the search flight, it picks
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a destination according to a probability mass function, which we call the haunt-specific
movement kernel. While movement is random in the sense that it is sampled from this
distribution, the form of this distribution is not constrained. Diffusive movement could be
approximated by a landscape sufficiently rich in haunts where the haunt-specific move-
ment kernel followed simple nearest neighbor rules, but other models are also possible.

The decision of how to configure haunts and how to model movement is not deter-
mined within MBITES. A user chooses the number of haunts and their locations knowing
these are the only locations where a mosquito can be. Computation of the probability
distribution functions describing dispersal to each haunts from any starting point is done
prior to the MBITES simulation; the simulation accepts as input the computed proba-
bility vectors giving inter-point movement. Haunts could thus include a set of points
describing all areas where mosquitoes rest or only those that are significant because of
the presence of other resources. Since dispersal is modeled during pre-processing, the
user has complete control over the proportion that survive dispersal and the probability
of reaching each one of the other haunts.

As utilities for setting up simulations, MBITES has developed some simple parametric
functions to compute these probabilities as a function of distance and an activity-specific
search weight, !x, where x denotes a particular blood feeding haunt or aquatic habitat [34].
These functions thus provide multiple ways of computing the probability of moving from
one haunt to any other haunt, optionally conditional on behavioral state.

Behavioral States and Other Variables

Simulations in MBITES include variables describing mosquito behavioral states and other
states that maybe relevant for survival [136]. At any point during a mosquito’s lifespan, it
will seek to mate, sugar feed, blood feed, or lay eggs; these are biological imperatives that
must be accomplished to survive and reproduce. In terms of simulation, this means that at
all points in time a mosquito is alive, it belongs to one of a discrete set of behavioral states
that govern its actions while in that state, as well as what state it is likely to transition to
next.

Transitions between behavioral states were developed around a basic description of
adult mosquito behavior. A newly emerged female mosquito must harden and mate be-
fore it is mature, whereupon it begins a cycle of blood feeding and egg laying throughout
the rest of its life. After a search to find suitable blood meal hosts, the mosquito selects
a host and approaches it in an attempt to blood feed. Assuming it is successful, after
the blood meal, the mosquito typically rests to lose some of the water weight in a post-
prandial resting period. During this time, blood is provisioned into eggs that require
some time to mature. Once the egg batch is mature, the mosquito initiates a search to find
a suitable aquatic habitat and then lays eggs. Sugar feeding occurs frequently throughout
a mosquito’s life, depending on availability of resources and energy levels, and both sexes
participate in the activity [45].
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In order to allow detailed simulation of activities mosquitoes undertake during each
behavioral state, as well as allowing for flexibility to account for differences among species,
behavioral algorithms simulate specific actions mosquitoes take as they attempt to ac-
complish goals associated with each state, as well as transitions to future states. While
there is a general pattern to be followed (e.g., blood feed, rest, lay eggs, and repeat), each
mosquito follows a probabilistic sequence through a set of distinct phases surrounding
the activity bout as they seek to accomplish their goals. Transitions between behavioral
states depend on various internal characteristics of the individual mosquito and logical
prerequisites. Egg batches must mature before a mosquito is considered gravid and enters
the egg laying state. If a mosquito is gravid, it will tend to lay eggs, though re-feeding can
occur regardless (see below). Otherwise, disregarding sugar feeding and mating for the
moment, a mosquito’s state is oriented towards blood feeding. A mosquito must leave a
haunt to initiate a search if the resources it needs are not present, but a decision to leave
the haunt and initiate a search can also occur even if resources are present, depending on
other events that occur during a bout and properties of a haunt. For example, area re-
pellents could increase the probability of a failure, and force a mosquito to initiate a new
search.

In addition to a mosquito’s behavioral states, MBITES includes a set of other variables
making it possible to model heterogeneity among individual mosquitoes in extreme de-
tail. Each mosquito in MBITES is described by internal variables that include but are
not limited to: physical and physiological condition, energy reserves, size of the most
recent blood meal, the number of mature eggs ready to be laid, infection status, physi-
cal condition, and a set of variables related to sugar feeding and mating. For example,
inter-site movement is physiologically stressful on the mosquito, and during travel be-
tween haunts, a mosquito’s energy level (an optional variable) can be decremented. The
energy level can be replenished by blood meals (for females), or sugar feeding, and could
be modeled as an important source of mortality while searching in resource-sparse envi-
ronments. A random variate is drawn to determine the amount of physical damage (e.g.,
wing tattering) that was incurred and modifies its physical condition or physiological
damage (e.g., after exposure to insecticides). Physical and physiological damage takes a
cumulative toll on the mosquito.

MBITES is capable of modeling both female and male mosquito populations and be-
havior. For female mosquitoes, the primary behavioral states are blood feeding and egg
laying (the two necessary components of the gonotrophic cycle). In this manuscript, male
mosquitoes are not considered and the optional behavioral states of sugar feeding and
mating and all associated variables have been turned off in order to introduce and focus
on algorithms describing blood feeding and egg laying by females.

Each behavioral state – blood feeding or egg laying – requires one or more activity
bouts. Additionally, each behavioral state may require one or more types of activity,
namely searching or attempting. Thus the set of possible activity bout types each asso-
ciated with a behavioral state has been denoted by a letter (Fig 2.1, Table 2.2): the blood
feeding search bout (F); the blood feeding attempt bout (B); the search bout for egg laying
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(L); the egg laying attempt bout (O). A letter is also assigned to the post-prandial resting
period (R) that always follows a blood meal, which is a part of the blood feeding attempt
bout. If a mosquito dies, it’s behavioral state is set to (D).

State / Activity Name Success Fail or Repeat†

Blood Feeding Search Bout F B F
Blood Feeding Attempt Bout B R B | F⇤

Post Prandial Resting Period R L | O⇤ B†

Egg Laying Search Bout L O L
Egg Laying Attempt Bout O B | F⇤ L | O‡

Enter ExitLaunch Land Rest

Activity Bout

Move

Succeed or fail    
Search

Choose target

Attempt action
Attempt

Log

Update Timing

State

Mate

Sugar feed

Oviposit

Blood feed

Choose 
Microsite* Update State

S*

]

Figure 2.1: Structure of an Activity Bout. Top) MBITES and MBDETES model mosquito behav-
ioral states and state transitions required for the gonotrophic cycle. The first two columnns list the
behavioral states, and the last two columns describe the potential state transitions. A mosquito is
either searching for a blood host (F) or attempting to blood feed (B), searching for aquatic habi-
tat (L) or attempting to oviposit (O), or resting (R). Transitions depend on whether the last bout
was a success or failure, and optionally on refeeding behavior† or laying a partial egg batch and
skip oviposit‡. The next activity bout is also affected by whether a mosquito decides to make an
attempt or initiate a search⇤. Bottom) In MBITES models, each behavioral state has an associated
activity bout that has a common structure, as illustrated in the diagram. The activity bout involves
a sequence of four phases: launch, do an activity (either a search or an attempt), land, and rest.
The type of activity is determined both by its behavioral state and by presence and availability of
resources. A mosquito will stay (S) unless there are no resources present or if the mosquito has
become frustrated (⇤), in which case it will initiate a search. If the mosquito decides to stay, it
makes a choice and an approach that may or may not succeed at what it was trying to do. When
a mosquito lands, it selects a micro-site for a resting spot from the set of possibilities at that site.
During the resting period, data from the last bout are logged, the behavioral state is updated,
and the waiting time to the next launch is determined. A mosquito enters the bout either after
emerging from aquatic habitat or after exiting its previous bout and surviving.
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 X,Y TX,Y

L ! O PL,O

1�PL,L

TL
1�PL,L

O ! F PO,F

1�PO,O�PO,L L,O

TO+PO,L L,OTL,O

1�PO,O�PO,L L,O

O ! B PO,B

1�PO,O�PO,L L,O

TO+PO,L L,OTL,O

1�PO,O�PO,L L,O

F ! B PF,B

1�PF,F

TF
1�PF,F

B ! R PB,R

1�PB,B�PB,F B,F

TB+PB,F F,BTF,B

1�PB,B�PB,F F,B

F ! R  F,B B,R TF,B + TB,R

O ! R  O,F F,R +
PO,F

PO,F+PO,B
(TO,F + TF,R) +

 O,B B,R
PO,B

PO,F+PO,B
(TO,B + TB,R)

L ! R  L,O O,R TL,O + TO,R

R ! R
P

X 6=R PR,X X,R TR +
P

X 6=R PR,XTX,R

Table 2.2: State Transitions & Waiting Times In MBITES, it is possible to compute the expected
state transitions and waiting times from any state to the next state. In MBDETES and limiting
cases of MBITES, these single-state transition expectations can be used to estimate the state tran-
sition probabilities and waiting times from one state to every other state, including the length of
a gonotrophic cycle, from resting to resting (i.e., from R ! R). The table gives formulas for the
probability of surviving to reach the behavioral state Y starting from another state X , X,Y , where
X,Y 2 {L,O, F,B,R}. Note that PX,Y denotes the single activity bout probability of a state tran-
sition. It also gives the expected waiting time to Y from X is TX,Y . These formulae are expressed
in terms of the single bout state transitions and waiting times, PX,Y and TX = �

�1
X (or they can be

by making a simple substitution from one of the formulas appearing in the table above it.)

The Activity Bout

Regardless of behavioral state, all activity bouts have four phases: launch, do an activity,
land, and rest (Fig 2.1). Launching itself into the air, finding a suitable landing spot,
and resting prior to the next launch must occur regardless of the biological state of the
mosquito (blood feeding or oviposition, in this manuscript) and are a common part of
each behavioral state and activity bout. However because the purpose of activity bouts
is to accomplish different biological goals, the activity phase of each bout depends on the
behavioral state. The specific activities undertaken differ depending on behavioral state,
and it is possible to modify these activities to describe what happens during each bout in
virtually unlimited detail. The endpoint of each bout is either death or another bout and
possibly a behavioral state transition (Table 2.2, Fig 2.1).

The paths through a bout are sampled from appropriate distributions that determine
whether the bout resulted in death, success (state transition), or failure (remain in the
same behavioral state). These activity bouts, prefaced by a launch and ending with a
rest, may be of varying duration, but encompasses all of the activity by a mosquito from
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launch to launch.
The modular nature of MBITES makes it possible to configure all these options to

consider a biological process of interest. While all bouts share similar structure and call
on similar functions (e.g. optionally, flights could expend energy or contribute to cumu-
lative wing damage), the activities and outcomes will differ based on each individual
mosquito’s internal physiological state. Thus, a mosquito’s life consists of a series of tran-
sitions between behavioral states, each of which may take several bouts to accomplish,
completely determining a mosquito’s activity throughout its life.

Launch and Timing

A new bout begins the moment a mosquito launches itself into the air. The timing of the
start of the launch phase is determined during the previous bout during the resting phase
following landing. By sampling the time to next launch at this point in the simulation,
launch times can be (optionally) conditional on events that have taken place during the
previous bout.

Do an Activity — Search of Attempt

After launching, the specific behavioral algorithms called by the mosquito depend on
its behavioral state (decision point “state” in Fig 2.1), as well as the local distribution of
resources necessary to fulfill the mosquito’s current biological needs. A mosquito will
either “attempt” to accomplish the task required by their behavioral state or “search” for
the resource it needs to accomplish that task. In any particular activity bout, a mosquito
will either search or attempt, but not both. Searching or attempting algorithms are behav-
ioral state-specific, and will be called during that phase of the bout (attempting to blood
feed, as illustrated in Fig 2.2, for example, means something very different behaviorally
than attempting to oviposit, as illustrated in Fig 2.3). Details of the attempt algorithms
are described below.

The searching algorithm moves a mosquito to a new haunt on the landscape to find
resources, as described earlier in section Mosquito Dispersal, while the attempting al-
gorithm describes how a mosquito fulfills its behavioral imperatives once necessary re-
sources are present, which will be described below for egg laying and blood feeding.

There are many factors that determine whether a mosquito will make an attempt or
begin a search. A mosquito will stay and make an attempt if the necessary resource is
present at the haunt, but it could leave and initiate a search if it has previously been frus-
trated in its attempts or if the resource is not present. Many events occurring during the
bout can trigger a decision to leave and initiate a search during the next bout. For exam-
ple, if the mosquito is primed to blood feed and blood hosts are present, the mosquito
will tend to approach a potential blood host and try to blood feed. If there are no blood
hosts present, the mosquito will search and move to a new haunt. Even if blood hosts are
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Figure 2.2: The structure of a blood feeding attempt bout in MBITES. The flowchart follows the
progression of a mosquito through simulated events, from the launch (dark grey oval), choosing
a host from the atRiskQ (aquamarine diamond), and the events that follow depending on what
sort of host was chosen (yellow rectangles). If a human is chosen (or more generally, a blood
host that is also a host for the pathogen), then each mosquito must approach and attempt to probe
(salmon rectangle) and then blood feed (red rectangle). If a non-human host is, probing is ignored.
Traps mimicking a blood host can also be chosen. After a blood meal (red rectangle), a mosquito
must land and choose a resting spot (yellow diamonds). A post-prandial resting period follows
a successful blood meal which has its own hazards (purple oval), including additional hazards
associated with a flight laden with blood, which may be followed by decision to feed again (dark
red diamond). Similarly, after failing the attempt (green pentagons to green rectangle), a mosquito
must land and choose a resting spot (yellow diamonds). At each step, it is possible to die (light
grey ovals). At any point when failure occurs or during landing, a mosquito could choose to
leave the haunt and initiate a search on the next bout. This condition is checked after completing
the bout (pink diamond). At the end of a bout, the mosquito’s behavioral state and other state
variables are updated. The endpoint of each bout is either death (grey ovals), a repeated blood
feeding attempt (dark red oval) or a state transition to either a blood feeding search (pink oval) or
to oviposit (blue ovals).

present, after multiple failed attempts, or if the blood hosts are not sufficiently attractive,
a mosquito may become frustrated and leave.
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Figure 2.3: The structure of an egg laying attempt bout in MBITES. The flowchart follows the
progression of a mosquito through simulated events, from the launch, choosing a habitat or trap
from the eggQ (aquamarine diamond), and the events that follow depending on whether the
mosquito chose a habitat or a trap (yellow rectangles). If a mosquito approaches the habitat, it
could lay eggs. Alternatively, a mosquito could approach a trap and fail in the approach (thus sur-
viving) or die (light grey ovals). If a mosquito is deterred in the approach to its habitat or the trap,
it fails (green pentagons to green rectangle). After a successful approach to a habitat, a mosquito
lays eggs (blue rectangle). After laying eggs or failing, a mosquito must land and survive (yellow
diamonds). If not all eggs were laid, a mosquito can choose another habitat to lay (light blue dia-
mond). At any point when failure occurs or during landing, a mosquito could choose to leave the
haunt and initiate a search on the next bout. This condition is checked after completing the bout
(pink diamonds). At the end of a bout, the mosquito’s behavioral state and other state variables
are updated. The outcome of each bout is either death (light grey ovals), a repeated egg laying
attempt bout (dark blue ovals) or a state transition to either an egg laying search (light blue ovals)
or a blood feeding attempt (red or pink ovals).

Land

After its flight, a mosquito must land and rest. This must occur at one of the micro-sites
at a haunt, as described earlier. During the landing phase, an algorithm called restingSpot
simulates the mosquitoes choice of micro-site, and to simulate the consequences of land-
ing there (e.g. encountering a sprayed surface or entering or leaving a house). Movement
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to a micro-site within a haunt to land and rest is designed to emulate short hops (e.g.,
< 10m) a mosquito may take that differs from longer range searching behavior. The al-
gorithm also tracks if the attempt was successful. Repeated failures at the same site may
lead to the mosquito becoming frustrated, in which case the next activity bout will include
a search regardless of resources availability.

Rest

The duration of the resting phase, the time elapsed between landing and the next launch,
will in general differ based on behavioral state, other state variables, and events that may
have transpired during the bout. Several probability distribution functions functions are
available to simulate heterogeneity in the time required by mosquitoes to accomplish
certain tasks based on individual characteristics and spatial location. The default option
is for these times to follow an exponential distribution.

During the resting phase, internal characteristics of the mosquito are updated, includ-
ing cumulative wing damage, and internal energy reserves which have been used for
flight. Egg batches (if present) are also checked for maturity, depending on if the mosquito
has successfully blood fed, and if so how much. The next behavioral state is determined
by the success or failure of the current bout. Other variables are also updated during this
time, such as age and (if a pathogen model is present), infection status.

Survival

A mosquito can die at many points during a bout as a result of specific events, such as
being swatted while attempting to blood feed, or as a result of contact with some vector
control device. Survival through a bout is also computed during every resting phase.
Mortality is associated with the stress of flight, which sets a baseline mortality probability
(per flight). A mosquito must also survive any local hazards, which determine the site-
specific probability of dying while landing or flying at each site, such as from predation
by jumping spiders or dragon flies.

Attempt Algorithms

The following sections describe in detail the algorithms that determine how a mosquito
makes an attempt to blood feed or oviposit. In addition, a separate section discusses the
post-prandial resting period and algorithms for simulating oogenesis and re-feeding.

Blood Feeding Attempt and Pathogen Transmission [B]

During an activity bout in which a mosquito attempts to blood feed (Fig 2.2), a detailed
sequence of events describing the blood feeding attempt is simulated, any of which can
result in a failure (the green nodes in Fig 2.2) with its associated state transitions (the
green box in lower right of Fig 2.2). In the event of failure, the mosquito could either fail
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to survive the landing, be frustrated and leave the site to search for other blood hosts (a
blood feeding search, F), or remain and try again (B).

When the mosquito attempts to feed on a blood host after launching, a sequence of
critical processes must be simulated. Upon arriving at a site with viable blood hosts, the
mosquito chooses a particular host at that site to approach from the atRiskQ object at that
site, which maintains a list of available hosts (described in the section Modular Design).

If the mosquito chooses a human host, a detailed sequence of events is simulated.
First, the mosquito must approach and land on the host successfully. The approach can
result in failure or death if it is deterred by swatting or a sudden movement or something
else. If the mosquito survives the approach and lands on the human host, it will try to
probe the host, which can also result in failure or death. Finally, if probing is success-
ful, the mosquito proceeds to feed. When a mosquito blood feeds, a random variable is
drawn to determine the blood meal size, which affects egg maturation and batch size.
Notably, the blood meal could infect a mosquito if the human host is infectious. Follow-
ing successful feeding, the mosquito will make a short hop within the current site and
find a resting spot to digest the blood meal (post-prandial rest, purple oval), simulated by
the restingSpot algorithm, where the specific micro-site for resting is chosen from the set
of micro-sites available.

Note that it is during probing that mosquitoes could transmit pathogens from their
salivary glands into humans infecting them. During blood feeding, mosquitoes could
take up pathogens in blood and become infected. This functionality is part of MBITES,
but the details are beyond the scope of this paper.

If the mosquito chooses a non-human host (or more generally, a blood host that is not
suitable for the pathogen), probing is not modeled. A mosquito can either survive and
blood feed, survive without blood feeding, or die. If the mosquito survives, restingSpot
is called (as above).

The Post-Prandial Resting Period and Oogenesis [R]

The postprandial resting period is part of the blood feeding attempt bout following land-
ing (purple oval, Fig 2.2), but it requires special consideration. After calling restingSpot, a
long delay is simulated which represents the time needed for diuresis and the early stages
of digestion to occur. Several options are available for modeling survival and the events
that follow as blood is concentrated and provisioned into eggs. First, mortality rates can
be higher because the mosquito is heavy with blood, increasing the chance that they fall
victim to successful predation [127]. Second, a function has been provided to model over-
feeding: the physiological stress of processing a blood meal can kill a mosquito, so it is
possible to model mortality as an increasing function of blood meal size. A function de-
termines how much, if at all, the energy reserves are topped up by the blood in the blood
meal.

During the resting period, an egg batch is produced; however, the mosquito will not
be considered gravid until the batch is mature. The number of eggs in a batch is de-
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termined by a probability distribution function family, such as a discretized Gaussian
distribution. Oogenesis (production of an egg batch) and the time delay to egg matura-
tion is modeled explicitly in MBITES. Oogenesis is modeled in three ways: first, a simple
phenomenological model, which simply draws a random variate from a Gaussian dis-
tribution with mean and variance parameterized to match entomological understanding;
second, a semi-mechanistic model in which the size of the egg batch is linearly propor-
tional to the size of the blood meal, in which a new blood meal adds to the egg batch
size; and third, a model in which the egg batch is linearly proportional to the size of the
blood meal, but eggs from a new blood meal completely replace a previous egg batch. The
third model is unrealistic but mathematically convenient (i.e., it was included so that there
would be a memoryless model that could exactly match the assumptions of MBDETES).

In the first oogenesis model, each egg in the egg batch is considered to require a certain
provision of blood for its maturation. Because each egg requires its own resources, the
total blood provision needed for a batch is a linear function of the egg batch size. After
the blood provision has been fulfilled, which could require multiple blood meals, the egg
batch is mature and the mosquito will become gravid.

In the other two models, time to maturation is modeled as a delay between the initial
biological commitment of the mosquito to produce a batch of eggs, and the time when
the mosquito is considered gravid, upon which it will be primed to transition to the egg
laying behavioral state. The time to maturation implements a simple phenomenological
model, where a random variate is drawn for the maturation time which is coincident
with the resting period; after this time delay, the mosquito will become gravid and either
search for suitable aquatic habitats (L) or attempt to oviposit (O), depending on the local
availability of resources. Re-feeding can occur in both these models.

Re-feeding

Re-feeding (the red diamond in Fig 2.2) is possible. A mosquito may take multiple blood
meals prior to oviposition, which lengthens the time interval between successive ovipo-
sition attempts. Re-feeding depends in part on the model for oogenesis, as an oogenesis
model could explicitly force re-feeding when a batch of eggs is not yet mature.

When re-feeding is not forced by the oogenesis model, MBITES allows for probabilistic
re-feeding behavior that can optionally be disabled. Re-feeding behavior is a Bernoulli
event that occurs when a mosquito is exiting the post-prandial rest (R) at the end of a
blood feeding attempt bout. The probability of re-feeding is a function of either the size
of the previous blood meal or the previous egg batch, accounting for mosquito propensity
to top up the size of the egg batch before ovipositing.

Egg Laying Attempt and Oviposition [O]

After arriving at a haunt containing an aquatic habitat (i.e. after a search), or if the
mosquito is already at a suitable haunt with one or more aquatic habitats, the mosquito
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chooses a particular habitat, or possibly an ovitrap (Fig 2.3). If a mosquito chooses an
aquatic habitat, it will approach the habitat and attempt to lay eggs. The outcome of an
egg laying attempt bout is either death, a failed attempt, or oviposition. Like the blood
feeding attempt bout, mosquitoes can fail at any time during the attempt (green pen-
tagons), which, if the mosquito survives the failed attempt, will lead it to either reattempt
at the current site (L), or become frustrated and search for a new site (O). If a mosquito
is successful it lays some fraction of her eggs in an aquatic habitat. If an ovitrap exists at
a site, it competes for attractiveness with other aquatic habitats that may be present, and
ovipositing mosquitoes could become trapped and die in it.

MBDETES
MBDETES (Mosquito Bout-based Differential Equation Transmission Ecology Simulator)
is a system of coupled ordinary differential equations for modeling mosquito bout-based
behavioral states and state transitions that offers analytical tractability but reduced flex-
ibility compared with MBITES. MBDETES was developed as a way of approximating
some models developed in MBITES: any MBITES model in which the behavioral state
transitions are memoryless and the waiting time to the next state transition is always
exponentially distributed is the the stochastic analogue of a model in MBDETES.

The analytic tractability of MBDETES and speed of numerical solutions serves sev-
eral purposes. First, we can check that the complex behavioral algorithms in MBITES
are indeed functioning correctly, by comparing the output of Monte Carlo simulations
against analytic solutions in situations where their expected behavior is known. Second,
MBDETES provides a simple null case against which the importance of process stochas-
ticity and individual level heterogeneity can be judged, allowing examination of situa-
tions where estimation of mean quantities through Monte Carlo simulation (e.g., running
MBITES repeatedly) deviates from the deterministic approximation. It is not the goal of
MBDETES to produce a full deterministic approximation of the complete spatial dynam-
ics of MBITES, but for model checking and investigating the importance of stochasticity
on the individual level.

The variables in MBDETES equations represent the density of mosquitoes that are in
each behavioral state, and the parameters describe state transition probabilities and asso-
ciated waiting times. Let a variable name denote the population density of mosquitoes in
each state, where the variable names in MBDETES matches the code letter for the behav-
ioral states and the postprandial resting period in MBITES: blood feeding (B), egg laying
(O), searching for blood (F), searching for habitats (L), and post-prandial resting (R), for
each site. Let PXY denote the proportion of mosquitoes transitioning from state X to Y
after one bout, 1/�X denote the duration of time to complete one bout in state X , and let
⇤F (t) and ⇤B(t) denote the rates of mosquitoes emerging end entering into F and B states,
respectively:
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dF
dt = ⇤F (t) + �BPBFB + �OPOFO + �RPRFR� �F (1� PFF )F

dB
dt = ⇤B(t) + �FPFBF + �RPRBR + �OPOBO � �B(1� PBB)B

dR
dt = �BPBRB � �RR

dL
dt = �RPRLR + �OPOLO � �L(1� PLL)L

dO
dt = �RPROR + �LPLOL� �O(1� POO)O

(2.1)

Note that there are some more general cases of MBITES (i.e., with mating and sugar
feeding) in which behavioral state transitions can be formulated as a continuous-time
Markov process and could thus be described by similar systems of equations. MBITES
models that build up state memory over time in a mosquito, breaking the memoryless
assumption of Markovian systems (by depending on age, oogenesis, egg-batch size, or
other variables which depend on previous states), could possibly be modeled, but they
would require more complex systems of equations. In particular, the model of oogenesis
in which re-feeding depends on previous blood meals would require modifying the state
space to track egg batch size, or use integro-differential equations. We note also that it is
possible to develop MBDETES models that are “spatial.” While such models can be built,
they are beyond the scope of this paper.

2.3 Results
Behavioral state models, such as MBDETES and models developed in MBITES, are based
on a detailed description of mosquito behaviors, behavioral states, and behavioral state
transitions. These models do not supply the standard bionomic parameters. Instead, they
show how mosquito bionomic parameters most relevant for pathogen transmission arise
from the simple algorithms that drive the mosquito behavior. In addition, MBITES has
additional built-in flexibility to show how these parameters are affected by geography
(distribution of resources), ecology (interactions of mosquitoes with other biotic and abi-
otic elements of their environment), climate, and other factors external to the individual
mosquito. The small set of summary statistics that has been traditionally used to describe
aspects of mosquitoes relevant for transmission (Table 1) are thus emergent features of a
complex interaction of mosquito behavior in an environment. In MBITES, these param-
eters arise naturally from mosquito behavior for a given place, shedding light into what
aspects of ecology affect these population level summary metrics the most.

Here, using some models that were developed within the MBITES framework, we
show how to compute these parameters and illustrate some basic features of mosquito
ecology relevant for transmission. We also use MBDETES to verify MBITES (and vice
versa).
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Vectorial Capacity and Bionomic Parameters
VC in MBITES models can be computed in two ways. First, VC could be estimated by
taking the product of the average bionomic parameters, using standard formulas (Table
2.1). Second, the bionomic parameters are not specified as parameters in MBITES, but
they can be computed as a summary description of mosquito behavior through Monte
Carlo simulation.

It has been shown that the traditional formula for VC can be reduced to just three terms
– the number of emerging adult female mosquitoes, per human, per day (�); the proba-
bility of mosquito survival through the extrinsic incubation period (EIP) of the pathogen
(P ); and the stability index (S) [138]. The Ross-Macdonald formula for the VC is equiv-
alent to: V = �S2P . The stability index appears twice because pathogen transmission
requires a mosquito to take two distinct human blood meals – one to infect the mosquito
and another to infect the pathogen’s human host (after surviving the EIP and becoming
infectious). Unlike the entomological inoculation rate, the VC does not rely on any infor-
mation about the parasite reservoir in humans; that is, VC measures only the entomolog-
ical capacity of a particular setting to sustain pathogen transmission, and is independent
of prevalence of human infection [138].

Expectations in MBITES and MBDETES

One method to compute the bionomic parameters is by computing the expected transition
probabilities from each state to all other states accessible from it. This discrete distribution
can be calculated by following the sequence of Bernoulli events in Figures 2.2 and 2.3, for
example, taking expectation values at each step. By averaging in this way, the PX,Y quan-
tities for MBDETES can be computed from MBITES. The exact multinomial probability
distribution over outcomes (PX,Y ) for each bout can also be calculated numerically with-
out simulation, by summing the relative probability of each path through the bout; certain
branch points are based on random sampling, such as blood meal size, in these cases, we
calculate the expectation with respect to the random variable by numerical integration
(these functions can be found in the file https://github.com/dd-harp/MBITES/
blob/v1.0/MBITES/R/MBDETES-Calibration.R in the MBITES package).

Using these methods, we can then compute quantities in MBITES or MBDETES link-
ing estimates back to the bionomics commonly used as input (or derived as equilibrium)
in Ross-Macdonald style models. From the single-bout transition probabilities and wait-
ing times for each bout type, PXY and TX , we derived formulas for the proportion sur-
viving and the waiting time for surviving mosquitoes to make the transition from: F to
B, including loops back into F ; from B to R including loops back into F and B; from L to
O; including loops back into L; and from O to L, including loops back into L and O. The
waiting time in each state TX is determined by parameter, and the inverse is the rate pa-
rameter �X used for simulation in MBDETES (Table 2.2). These closed-form solutions for
the means of these bionomics allow us to compare MBDETES to classical Ross-Macdonald



Chapter 2. Vector bionomics and vectorial capacity as emergent properties of mosquito

behaviors and ecology 24

parameters.
The inverse of this resting period to resting period waiting time maps onto the feeding

rate parameter f in the Ross-Macdonald model (see Table 2.1); TR,R 7! 1/f . The rest to
rest survival probability is also needed to link MBDETES to Ross-Macdonald parameters;
this maps onto the probability of surviving through one feeding cycle, PR,R 7! e�g/f , or
� lnPR,R

TR,R
7! g.

Monte Carlo Simulation in MBITES

In these simulations, there is a more direct way of computing the VC. For each mosquito
from emergence to death, MBITES logs each activity bout, including the time, location,
behavioral state, the values of other variables, the identity of every human host probed,
and the identity of every host who gave a blood meal. Mosquito survival can be com-
puted simply from the distribution of the mosquito age at death. Similarly, the overall
feeding frequency can be computed from the distribution of time intervals between suc-
cessive blood meals.

The formulas for VC arise from an anthropocentric concept that counts events happen-
ing to a human on a day. Here, we compute VC directly by following every bite occurring
on a single person on a single day, and then summing all secondary bites by the initial
biting mosquito separated from the initial bite by at least EIP days. To put it another way,
the average VC is the number of pairs of human bites given by one mosquito that are
separated by at least EIP days, summed over all mosquitoes and divided by the number
of humans, reported per day. The distribution of VC uses the infecting human as the
reference (thus VC is in units of human

�1
day

�1).
To compute the VC in this way, MBITES simulation output was summarized as fol-

lows: 1) the first bite in the pair must have been a blood meal; only blood feeding can
infect a mosquito; and 2) the second bite in the pair included all events in which a human
was probed (as parasites or pathogens usually enter the wound in a matrix of salivary
proteins during probing); 3) the time interval between the two events was greater than or
equal to the EIP; 4) the number of secondary bites is tallied over all mosquitoes by adding
them to the human who was bitten on the first encounter; 5) the total was divided by
the number of days. Because all events in the simulation occur at a set of sites in space,
the spatial dispersion of VC can be calculated by simply attaching the distance between
these secondary bites from the primary bite to each pair of bites. This level of realism is
possible because probing and blood feeding are accounted for separately and accurately
in MBITES.

Notably, because MBITES simulates the blood meal as a process of probing followed
by blood feeding, some mosquitoes may be killed or interrupted after probing but prior
to blood feeding, so there could be small differences in the computed quantities of VC
from the classic Ross-Macdonald formula and computation via MBITES.
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Verifying MBITES and MBDETES
To address a challenge facing most complicated individual-based models, we have iden-
tified models in MBITES that are the stochastic analogues of models in MBDETES. The
following sections illustrate how this was done.

Bionomic Parameters with MBDETES

To compute some of the bionomic quantities in MBDETES, we set F (0) = 1 and ⇤F (t) +
⇤B(t) = 0 such that the equations track a cohort as it ages. Using these equations, we
track the proportion surviving by age: F +B+R+L+O, the laying rate �O(POF +POB)O,
and the blood feeding rate, �BPBRB. In practice, given these initial conditions, this set of
equations can be numerically solved to derive bionomic parameters of interest.

Because the length of a feeding cycle is a crucial determinant of transmission potential,
we developed another set of equations to compute the probability distribution of the time
needed to complete a single feeding cycle. Our equations describe all histories taken by a
mosquito just beginning a post-prandial rest (R1) which could lead to one of two absorb-
ing states: death or the next rest, which implies successful feeding (R2). By numerically
solving these equations, the distribution of feeding cycle lengths, conditional on survival
can be computed. Details on the equations and computation are presented in Appendix
A.

Mapping MBITES onto MBDETES

A challenge for most complex individual-based models is having a method for verifica-
tion. Here, for a comparatively simple model developed in MBITES, there is a theoretical
match to a system of ordinary differential equations formulated in MBDETES. The two
models can be used for mutual verification.

We developed a model in MBITES that maps onto a set of equations in MBDETES un-
der a specific set of conditions. First, we use a “trivial” landscape in which there were
three haunts with symmetric movement probabilities: one haunt with only a blood feed-
ing resource, one haunt with only an aquatic habitat, and one haunt with both types of
resources (i.e., a peri-domestic haunt). Second, exponential distributions were used to
sample all waiting times for behavioral state transitions. Third, re-feeding probability
is only a function of blood meal size. We summarized the Monte Carlo simulation in
MBITES by computing histograms, which were overlaid on top of density functions com-
puted in MBDETES by numerically solving the system of Kolmogorov forward equations
Eq (2.1).

The equations in MBDETES were parameterized following the method presented ear-
lier (section Expectations in MBITES and MBDETES). Additionally, we set⇤F (t) = ⇤B(t) =
0, and let dD/dt = �dF/dt� dB/dt� dR/dt� dL/dt� dO/dt, and initial conditions such
that F + B + R + L + O +D = 1. Under these conditions the system of equations corre-
sponds to the Kolmogorov forward equations for individual behavioral space trajectories,
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averaging over the three haunts. In this interpretation, the state variables F,B,R, L,O,D
represent the distribution of probability mass over the set of states a mosquito may be-
long to at any point in time t. If provided with an initial mass over states at t = 0, the
numerical solution gives the time evolution of the probability to find a mosquito in any
state at any time t.

In Fig 2.4 we show a comparison of MBDETES and MBITES for several bionomic pa-
rameters, where MBITES was simulated under a set of simplified conditions such that
MBDETES correctly describes the predicted probability density functions of the parame-
ters. Bionomic parameters for MBITES were computed from simulation output and com-
pared to deterministic approximations from MBDETES by overlaying histograms over
predicted density functions and comparing means (Fig 2.4). MBDETES was simulated by
numerically solving the system of Kolmogorov forward equations Eq (2.1). Under this set
of assumptions, the numerical results from MBDETES are matched by the results of the
MBITES Monte Carlo simulation.

Dispersion in MBITES
Because the specific trajectory a mosquito takes is a random process that depends on the
particular haunt containing the aquatic habitat from which it emerged, the complex inter-
actions between a mosquito’s internal behavioral state, the spatial arrangement of haunts
and resources, and the movement of human (and non-human) blood hosts, it follows that
the movement of mosquitoes on a landscape emerges from interactions among these com-
ponents and algorithms. Averaging across all location-specific movement kernels gives a
sense of how far mosquitoes are likely to travel (Fig 2.5), though the realized distribution
for any particular simulation will differ depending on how often each route is used.

Dispersion in MBITES is a probability mass function describing the distances traveled
as mosquitoes redistribute themselves among point sets: all distances traveled are drawn
from the set of pairwise distances among sites. The dispersal kernels can be visualized
directly for each site (i.e., the probability mass on each distance), or from a simulation or
overall: we compute the empirical cumulative distribution function (eCDF) of distances
traveled; 2) fit a smooth curve to the eCDF; and 3) take the derivative of the smoothed
eCDF. These smoothed kernels were estimated through the “lokern” package for R [71],
and provide a rough estimate of how far mosquitoes will travel.

Distributions of mosquito movement by distance can also be directly calculated by
Monte Carlo simulation through MBITES, allowing examination of characteristic scales
of movement in the presence of specific models of human activity. Functionally rele-
vant summaries of mosquito movement come from simulating MBITES and plotting these
same kernels for spatial dispersion of VC as computed above (Fig 2.5). A key difference
between these dispersal kernels and simulated empirical kernels is that the interactions
between mosquitoes and humans will produce empirical kernels that are not necessar-
ily the same as what one would obtain if we had simply used the dispersion kernels to
smooth average bionomic parameters over space.
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Figure 2.4: Comparison of results from MBITES and MBDETES under restricted (Markovian)
assumptions on waiting times and state transition probabilities. B: Egg laying rate is the number
of eggs laid, per female, per day. C: Blood feeding by age is the age distribution of mosquitoes
taking bloodmeals. D: Feeding cycle duration is the time between post-prandial resting periods.
In each panel, MBITES is summarized as a red histogram overlaid against the smooth density (in
blue) predicted by MBDETES. All cases see excellent agreement, with MBITES fluctuating around
MBDETES due to finite sample size of mosquitoes in the stochastic simulation.

Detailed measures of how far mosquitoes disperse through space, transport parasites,
or distribute eggs relative to their natal aquatic habitat can be calculated and described by
probability density functions. In Fig 2.5, densities for one particular landscape were cal-
culated by taking the empirical cumulative distribution function (CDF) from simulation
output, applying a smoothing algorithm to estimate a smooth CDF, and differentiating
to estimate a probability density function (PDF) [71]. Four measures of dispersal were
computed. First, the upper left density is the average site to site movement kernel, and
shows the average “one hop” distance a mosquito will make during a activity bout if it
leaves to search. Cumulative dispersion (upper right) is the average distance traveled
by a mosquito summing over all hops in its lifetime. Absolute dispersion (lower left)
summarizes the mean displacement of mosquitoes; that is, the distance between their na-
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Figure 2.5: Measures of Mosquito Dispersion. Smoothed distribution (red line) and density (blue
area) functions are displayed for summary statistics calculated for one particular landscape (50%
peri-domestic habitats). A: The spatially averaged movement kernel is simply the probability of
movement by distance, averaged over all haunts on the landscape. B: Cumulative movement,
gives the distribution of total distance traveled by mosquitoes over their entire lifetime, and has
a long right tail. C: Lifetime displacement is the absolute displacement of a mosquito, that is, the
distance between the natal aquatic habitat they emerged from and the site at which their died.
D: Dispersion of VC shows the distribution of secondary bites by distance, and follows closely
absolute displacement of mosquitoes. All plots are calibrated to the same x-axis for comparison.

tal aquatic habitat they emerge as adults from and the site of death. Most relevant for
pathogen transmission is VC, for which the average distance between each pair of sec-
ondary bites is a measure of the capability of the local ecology and vector population to
sustain pathogen transmission spatially. Dispersion of secondary bites tracks much more
closely measures of absolute dispersion rather than cumulative distance traveled, which
will be explored in greater detail below.
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Co-Distribution of Resources
Searching behavior, in which mosquitoes take long range flights or many short hopping
flights to look for resources, plays a crucial role in mosquito behavior but also contributes
an important source of mortality that could be avoided if local resources are plentiful.
The distribution of local resources structures mosquito movement, therefore, holding all
else constant, the amount of time a mosquito spends searching for resources should affect
the various summary bionomics that describe the mosquito population and its ability to
be effective vectors of pathogens. To illustrate the effect of distribution of resources on
the bionomic parameters, we conducted a set of experiments showing the influence of
resource co-distribution on summary bionomics.

The set of in-silico experiments was designed to explore how bionomics changed as a
function of the availability of peri-domestic habitats, which describes the proportion of
blood feeding at haunts that have a viable aquatic habitat in the local vicinity; in terms of
simulation, a peri-domestic haunt has both types of resources present. The proportion of
haunts with viable aquatic habitats nearby may differ depending on local distribution of
resources. The extent to which the haunts get visited depends the extent to which there is
significant correlation between the set of points at which mosquitoes can locate suitable
blood meal hosts and the set of points at which mosquitoes can oviposit egg batches.

Peri-domestic Simulation

To examine the effect of peri-domestic habitats on generated mosquito bionomics, 26 re-
source landscapes were generated, each containing 250 blood feeding haunts, and 250
aquatic habitats. peri-domestic habitats (the percent of haunts that contained both re-
sources), ranged from 0% in landscape 1, to 100% in landscape 26 (Fig 2.6). Put another
way, in landscape 1, each site contained either a blood feeding haunt or an aquatic habitat,
whereas in landscape 26, each site contained both types of resources. In all landscapes
the total number of resources was held constant as described above. Spatial variance in
location of haunts was simulated by choosing 25 parent points for blood feeding haunts,
and then scattering 9 offspring blood feeding haunts around each parent, for a total of
250 haunts in 25 clusters. In the simulation where peri-domestic habitats was held at
0%, aquatic habitats were simulated independently using the same algorithm. For all
other landscapes, overlap was simulated by selecting some fraction of the total number
of aquatic habitats and attaching them randomly to blood feeding haunts.

In each simulation, all biological parameters were held constant such that the only
varying parameter was the spatial arrangement of resources. In addition, mosquito emer-
gence rates from each aquatic habitat was also held constant, such that on average, each
habitat produced one adult female per day. We acknowledge that in the absence of pop-
ulation dynamic feedback effects the model may not correspond to any true ecological
system. For the specific analysis considered here, we are specifically interested in how
spatial arrangement of resources affects how mosquitoes distribute their time across be-
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Figure 2.6: Simulated Landscapes. 3 simulated landscapes at A: 0%, B: 50%, and C: 100% peri-
domestic habitats. Haunts that contain only blood feeding haunts are plotted as red circles, haunts
that contain only aquatic habitats are plotted as green triangles, and those haunts that contain both
types of resources are shown as blue squares (i.e., peri-domestic habitats). Dispersal kernels were
calibrated as if this was an area of about 100 km2.

havioral states, and the effect it has on commonly used bionomic parameters. We intend
to revisit the question of population dynamic feedback effects in future research.

Sensitivity of parameters to peri-domestic habitats

To study sensitivity of bionomics to peri-domestic habitats, we calculated all bionomic
parameters for each of the 26 simulated landscapes. Of particular interest was the change
in VC as a function of peri-domestic habitats. As the percentage of blood feeding haunts
with associated peri-domestic mosquito aquatic habitats increased, mean VC (measured
in units person

�1
day

�1) increased by 2 orders of magnitude (Fig 2.7). While the sta-
bility index also increased as a function of peri-domestic habitats, the absolute differ-
ence between S evaluated at 0% and 100% peri-domestic was smaller, only increasing
by one order of magnitude (Fig 2.7). Importantly, we currently assume no competition
among mosquitoes during oviposition, but we note that nonlinear competition has been
observed and can easily be included in the model, at the cost of complicating analytic
analysis [115].

Significant differences were also observed in how mosquitoes transitioned between
and partitioned their time over the set of behavioral states. To quantify, we computed
empirical state transition matrices for each landscape, consisting of the behavioral states
F,B,R, L,O, plus an absorbing state D for death. For each mosquito, all jumps between
states were tabulated in the transitions matrix T, which was then normalized such that
Te0 = 1. These empirically estimated Markov transition matrices are displayed as chord
diagrams in Fig 2.8 for 0%, 50%, and 100% peri-domestic habitats. Transitions between
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Figure 2.7: Vectorial Capacity. In MBITES, vectorial capacity (VC) is computed directly as the
average number of infectious bites (i.e., probing) arising from all the mosquitoes blood feeding
on a single human on a single day; it is effectively the number of pairs of events where a blood
meal by a mosquito is followed at least EIP days later by that same mosquito probing in attempt
to feed on a human, measured per human, per day. Summary VC A,B,C: and number of human
blood meals per mosquito over its lifespan (D,E,F; referred to as the stability index by Macdonald)
are shown by column for 0%, 50%, and 100% peri-domestic habitats. Each histogram gives the
distribution of VC or the number of human blood hosts across mosquitoes for that percent peri-
domestic habitats.

states are represented by colored edges, where width of the edges is proportional to the
probability of that transition. Colored areas on the circumference of the diagram repre-
sent the states, where size is proportional to that element of the quasi-stationary distri-
bution for that landscape (the mean proportion of time spent in that state, conditional
on survival). From 0% to 100% peri-domestic habitats the probability of a blood feeding
search leading to another search dropped from 0.90 to 0.17 in the most resource-rich set-
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ting, which we consider as easy access to local resources. To determine how mosquitoes
partitioned their time across these states, for each normalized matrix T, we calculated
the quasi-stationary distribution across the transient states F,B,R, L,O [36]. This dis-
tribution describes how a mosquito spends its time, conditional on survival. At 0%
peri-domestic, mosquitoes spend near 77% of their time prior to absorption searching
for blood meals, and close to 12% of their time searching for suitable aquatic habitats to
oviposit (Fig 2.8D). At 100% peri-domestic, these proportions drop to a mere 11% and 6%,
respectively (Fig 2.8F).

For each of the 26 resources landscapes, we also calculated mosquito lifespan, stability
index, duration of feeding cycle, blood feeding rate, absolute and cumulative mosquito
dispersion, VC, and spatial dispersion of VC (Figures 2.9, 2.10). As the resources were
rearranged to increase peri-domestic habitats, lifespan, number of blood hosts, and blood
feeding rate increased, while duration of the feeding cycle decreased. Certain bionomics,
such as blood feeding rate, and length of feeding cycle tended to reach a plateau after
peri-domestic habitats increased beyond about 20%, as the mosquito life cycle does not
allow these values to change indefinitely. Cumulative mosquito movement (the cumula-
tive distance traveled in all activity bouts) decreases as peri-domestic habitats increases;
as the environment becomes more resource rich, mosquitoes do not need to travel as far
to fulfill their biological intent (their current behavioral state). In contrast, absolute dis-
persion (the displacement of a mosquito between the natal habitat they emerged from and
where they died) stays relatively constant as a function of peri-domestic habitats. This
apparent discrepancy between the simulation results and intuition can be understood by
noting that while the percent of haunts that were considered peri-domestic changed be-
tween the 26 landscapes, the spatial arrangement of haunts did not (distances and clusters
were preserved). Holding these spatial characteristics constant implies that observed dif-
ferences are due solely to changes in search patterns of mosquitoes as resources become
more or less locally dense.

As noted in Fig 2.7, VC increased dramatically as peri-domestic habitats increased. It
is notable that at very low levels of peri-domestic habitats, the mean is strongly affected
by a few outliers generating large numbers of secondary bites; the effect of these outliers is
dampened as peri-domestic habitats increases and more humans contribute to secondary
biting (Fig 2.10). Spatial dispersion of secondary bites remains relatively constant across
landscapes; and follows closely the absolute dispersion of mosquitoes. This is primarily
due to two effects. First, because VC was calculated assuming a pathogen with an EIP
of 10 days, only mosquitoes that survived at least that long would be able to contribute
secondary bites, so the site that secondary bites would be successfully delivered to would
be close to the site of the eventual death of the mosquito. Additionally, because the spatial
characteristics of the landscape were not affected to a large extent by the rearrangement
of resource overlap, although the absolute value of VC changed dramatically, its spatial
dispersion did not.
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Figure 2.8: Behavioral State Distribution. Chord diagrams showing the empirical state transi-
tion matrices for three of the 26 experiments: A: 0%, B: 50%, and C: 100% peri-domestic habitats.
These were calculated for each experiment by summing transitions for each mosquito between
two states and then averaging to produce a Markov transition matrix. The width of the directed
edges between each behavioral state is proportional to the probability of that transition, and the
area on the perimeter of the circle labeled for each state is proportional to the mean time spent
in that state. The three chord diagrams are accompanied below (D-F) by quasi-stationary proba-
bility distributions which give the asymptotic distribution of how a mosquito spends time across
behavioral states conditional on survival.

2.4 Discussion
The sensitivity of standard bionomic parameters, including lifespan, stability index, and
vectorial capacity, to the proportion of habitats that are peri-domestic has implications
for disease transmission potential as well as response to control. By rearranging the spa-
tial arrangement of the same resources, we showed that increasing proportion of peri-
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Figure 2.9: Binomic Parameters. Simulations in MBITES illustrate that all of the bionomic pa-
rameters are sensitive to the proportion of peri-domestic habitats, which gives a measure of how
frequently a mosquito must search. The x-axis of each plot ranges from 0% to 100%, and each sum-
mary bionomic parameter is plotted as mean (solid line), median (dashed line), and the shaded
area covers the 20-80% quantile range of the data. The distribution of number of blood hosts
B: exhibits significant right skew, such that the mean exceeds the 80% quantile at low propor-
tion peri-domestic breeding habitats. Because the simulations are stochastic, the exact number of
mosquitoes from which Monte Carlo estimates of the bionomic parameters were computed varied
somewhat over the 26 landscapes, the mean was 456,579 mosquitoes with a standard deviation of
754 mosquitoes.

domestic habitats causes proportionate increase in VC and affects the dispersion of these
potential secondary bites. Each parameter that strongly affects VC is sensitive to the pro-
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Figure 2.10: Dispersion and Movement Parameters. In MBITES, vectorial capacity (VC) and its
dispersion are highly sensitive to the proportion of peri-domestic habitats. Interpretation of axes
follows Fig 2.9, and each summary bionomic parameter is plotted as mean (solid line), median
(dashed line), and the shaded area covers the 20-80% quantile range of the data. A: Number of
secondary bites produced increases dramatically as a function of peri-domestic habitats. B: Spatial
dispersion shows no strong trend however, due to the strong clustering of haunts in the landscape
(it largely follows the trend of absolute lifetime displacement (C), as opposed to cumulative move-
ment (D). At low percent peri-domestic breeding habitats, significant right skew in the distribution
of VC pulls the mean above the 80% quantile.

portion of peri-domestic breeding sites (Figure 9, lifespan, mean age of blood-feeding
mosquitoes, and length of gonotrophic cycle). This was alluded to in an earlier mathemat-
ical model [112] but this is the first demonstration of sensitivity to peri-domestic breeding
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in a stochastic agent-based model. The strong dependence of bionomics upon the prox-
imity of breeding sites to blood feeding haunts has encouraging implications for larval
source management based vector control. In the case where enough such habitats are
findable, sustained larval source management could potentially reduce the proportion of
peri-domestic habitats and consequently reduce VC. Adult vector control methods could
also be preferentially deployed based on the proportion of peri-domestic breeding sites.
The distribution of a mosquito’s lifespan across various behavioral states changes sub-
stantially as a function of this proportion (Figure 8). One implication is that, if mosquitoes
were sugar feeding more frequently than usual in a resource sparse environment where
behavior is dominated by long searching flights (as in 0% peri-domestic breeding exam-
ple), attractive toxic sugar baits (ATSB) could potentially have a large impact. Alterna-
tively in settings where more time is spent in and around human dwellings, traditional
tools such as long-lasting insecticide treated nets (LLINs) and indoor residual spraying
(IRS) may remain the best choice for vector control.

MBITES was developed as a framework for building models of sufficient complex-
ity to examine whether the current widely used small set of entomological parameters is
adequate to the task of identifying critical features of transmission and informing con-
trol. Despite the model’s enormous complexity, what became obvious was that much of
what was occuring during a single activity bout can be summarized by simple outcomes
and their accompanying behavioral state transitions: death, failure or success to feed or
oviposit, and the decision to stay or search. MBDETES is our method to grapple with the
complexity of MBITES mathematically. While MBITES is a stochastic agent-based model
with upwards of 40 parameters, MBDETES has 18 parameters and is expressed as a set
of differential equations. One result from this rigorous mapping of detailed behavioral
algorithms onto aggregate probabilities in MBDETES, was that much of the individual-
level stochasticity in a bout was only important insofar as it affected aggregate transitions,
though it is possible more complex models would show greater effect. Landscape details
and mosquito responses to these details, on the other hand, proved to be enormously con-
sequential for simulated outcomes. If one seeks to further reduce complexity, the result is
the Ross-Macdonald model with five bionomic parameters, and the derived quantity of
vectorial capacity summarizes transmission potential in a single expression.

A relevant lesson emerging from our analysis is how difficult it would have been to
try and piece together estimates of mosquito bionomic parameters by measuring just di-
rectly observable aspects of mosquito behavior. The large number of parameters describ-
ing the outcome of a bout suggests the relevance of any particular direct observation of
mosquitoes is only meaningful when it is measured along with all other parameters, and
the importance of any particular behavior for transmission would thus probably differ
by context. Our simulations have shown that it is important to challenge conventions
and refine models. Estimated vectorial capacity is likely relevent for transmission only if
measures of dispersion of infectious bites are taken into account [103, 140].

Despite the compelling logic and parsimony of the Ross-Macdonald model, do mod-
els of this type really capture all of the essential features of a time and place? Even if
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parsimony were the only measure of quality, there must be some way to determine the
appropriate level of model complexity, which implies the necessity of building at least
some non-parsimonious models for comparison. The functionality that is potentiated
by MBITES and MBDETES comes with a cost; their parametric complexity makes these
models suboptimal for tasks that demand parsimony. As with any complex, mimetic
simulation model, issues of over-parameterization and limits of available field data to
provide suitable parameter values arises. One way to parameterize such models is by
assuming some specific behavior has evolved optimally to some ecological context, and
then back-solving for parameters which would lead to such behavior [104]. Another is
calibration, where the model is fit to data by either statistical or more ad hoc approaches.
However, another purpose of complex models is sensitivity analysis (SA). For a highly
detailed model that reflects, as best as possible, existing entomological and ecological
knowledge, SA methods may be employed in a variety of ways to identify non-obvious
ways that mosquito populations could vary, and to help guide future empirical data col-
lection which could best reduce uncertainty in some aspect of model output. Such knowl-
edge can be quite relevant for planning intervention and control in natural systems, in
addition to more basic scientific interests [75, 144]. SA is most powerful when used to
evaluate how parameters, alone or in concert, produce qualitatively different model re-
sponses. Given a response of interest, Monte Carlo methods can help detect parameter in-
teraction and the differing scales at which parameters wax or wane in importance, which
can reveal unusual model behavior, identify possible control strategies, and improve in-
terpretation of how models respond to perturbation [65, 143]. While extensive Monte
Carlo simulations to perform SA may seem daunting, there is much active work in the
field, including statistical emulation, efficient computer-based experimental design, and
advanced history matching techniques [153, 124, 10].

Using individual-based models developed in MBITES, we have shown how bionomic
parameters, vectorial capacity, and dispersion of mosquitoes and their bites arise from
a set of mosquito behavioral algorithms in response to the distribution of resources and
their spatial arrangement. Standard models lack the ability to comprehensively explore
these questions, and while existing models offer compelling evidence of spatial effects
[63], MBITES offers a higher level of individual and spatial resolution. In these models,
search and dispersion are strongly affected by the co-distribution of resources [133], and
the contextual factors affecting the frequency of search strongly affect vectorial capacity.
The importance of ecological context was expressed eighty years ago by Hackett [67]:

Everything about malaria is so moulded by local conditions that it becomes a thousand
epidemiological puzzles. Like chess, it is played with a few pieces but it is capable of
an infinite variety of situations.

This has been quoted frequently by malariologists, but it has been difficult to reconcile
Hackett’s view picture with the elegant concepts of VC and entomological inoculation
rates, which concisely summarize the factors that are most likely to affect transmission.
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VC has a virtual hegemony in mechanistic models (where EIR is a derived concept), due
partly to its simplicity and sound logic [125]. If the challenges of malaria transmission
dynamics and control are best understood as a collection of puzzles to be solved and not
effectively summarized by VC or EIR, then what other aspects of vector biology matter?
The view of malaria as a chess game has, perhaps, been most apparent in the variable
responses of vector control, where small behavioral differences among species have af-
fected the rates of contact with interventions and thus the outcome of control. Our results
suggest that fine-grained heterogeneity in movement driven by the co-distribution of re-
sources shape mosquito dispersion, and that among-individual differences in VC and its
associated dispersion will also have strong affects on transmission.

In retrospect, it is remarkable that investigation of pathogen transmission by mosquitoes
has been so stable since it was jump-started by an intuitive leap by Ronald Ross [128].
Entomological work that followed over the next decades iteratively refined Ross’s ideas
culminating in a fully fledged theory of transmission [105, 141], including field meth-
ods to measure a handful of relevant parameters. After more than a century of studying
mosquito behavior, medical entomologists have assigned approximate bionomic parame-
ter values to most of the parameters for most of the dominant vector species that transmit
human infectious diseases. These have been assembled from hundreds of studies con-
ducted in various ways over several decades. Biology and genetics constrain the behav-
iors giving rise to some of the differences in the average value of parameters assigned
to some species. Our simulations show these bionomic parameters must also be partly
determined by local resources and ecology. Consistent with Ronald Ross’s original con-
ception of a priori models as methods to assimilate disprate data, models like MBITES can
help synthesize conclusions about transmission and control from novel sources of data,
including entomological, genetic, ecological, and spatial. Despite this, existing studies
do not adequately characterize a vector species across multiple settings. Studies are gen-
erally too heterogeneous in their design and implementation to be comparable across
settings [64]. Few studies have identified systematic differences in mosquito bionomics
looking across ecological contexts, perhaps because there has been no theory to suggest
what they should look for. Neither evidence nor theory alone could provide a sufficient
basis for making an educated guess about how the values of bionomic parameters vary in
a different ecological setting or the effect modification of setting on vector control. These
highly mimetic models of mosquito behavior can be used to set priorities in the study of
pathogen transmission by mosquitoes, help shed light on the effect sizes of vector control,
and explain heterogeneity in the outcome of control studies. In providing a framework
for re-examining mosquito behavior and perhaps forging a new synthesis of ecology and
behavior, these behavioral state models provide an in silico laboratory to fill some of the
gaps required to understand and synthesize much of the data on mosquitoes that is not
directly related to estimation of the basic bionomic parameters.

The mathematical and computational framework for simulation and analysis that is
presented here can be used to investigate a broad range of questions about the interface
between mosquito biology and life-history traits, the local ecology, and vector control.



Chapter 2. Vector bionomics and vectorial capacity as emergent properties of mosquito

behaviors and ecology 39

This framework was designed to evaluate heterogeneity and complexity through simu-
lation, rather than through ad hoc approximation. While this approach has some disad-
vantages over parametrically simple models, it fills an important need by providing a
way of testing whether those simple models cover all the relevant phenomena. MBITES
makes it possible to systematically investigate whether the behavior of individual-based
models ever deviates from the behavior of parametrically simpler models of transmis-
sion, such as the Ross-Macdonald model or MBDETES. The high degree of realism can
also provide other functionality, such as power calculations for randomized control trials,
investigation of bias and accuracy of field methods, in silico investigation of the interac-
tions among vector-based interventions, and calibration of effect sizes versus coverage
for vector-based interventions.
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Chapter 3

MGDrivE 2: A simulation framework for
gene drive systems incorporating
seasonality and epidemiological
dynamics

3.1 Introduction1

Interest in gene drive technology has continued to grow in recent years as a range of
promising new constructs have been developed in the lab and discussions have moved
towards implementing field trials in some cases. Recently developed systems include a
CRISPR-based homing system intended for population suppression targeting the dou-
blesex gene in Anopheles gambiae, the main African malaria vector [97], a split gene
drive system intended for confineable and transient population replacement in Aedes ae-
gypti, the main vector of dengue, chikungunya and Zika viruses [102], and CRISPR-based
homing systems intended for population replacement in An. gambiae [28] and Anopheles
stephensi, the main malaria vector in urban India [3].

As the technology advances and potential field trials are discussed [80], models are
needed that incorporate additional ecological detail, including parameters that change
over time in response to environmental variables such as temperature and rainfall, as
well as models linking entomological and epidemiological outcomes [81]. Many insects,
including mosquitoes, display a high degree of seasonality in their population dynam-
ics, as development time from one life stage to another, and mortality rates associated
with each life stage, vary with temperature and other environmental variables [114]. For
An. gambiae and several other mosquito disease vectors, population size varies largely
in response to recent rainfall, which creates pools of standing water and hence enhanced
carrying capacity of the environment for mosquito larvae [151]. Seasonal changes in tem-

1This chapter has been previously published [155]
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perature and rainfall thus lead to seasonal changes in mosquito population density and
consequent disease transmission, which must be accounted for in disease control strate-
gies.

Models of disease transmission are also becoming increasingly relevant to models of
gene drive dynamics, as: i) the readiness of a gene drive system for field trials will be
determined in part by its expected (i.e., modeled) epidemiological impact, and ii) initial
field trials are expected to have a measured entomological outcome alongside a modeled
epidemiological outcome [80]. Given the potential for a non-localized gene drive system
to spread broadly, it has been acknowledged that constructs at the trial stage should be
expected to cause a significant reduction in disease transmission, as even a confined trial
could lead to wide-scale spread for an effective system [80]. Therefore, readiness for field
trials should be determined by alignment with a target product profile (TPP) and/or list
of preferred product characteristics (PPCs) that include expected impact on disease trans-
mission [81]. Models that incorporate both gene drive and epidemiological dynamics
can account for local malaria or arboviral transmission dynamics and specify gene drive
construct parameters that achieve the desired level of epidemiological control.

Previously, we developed the MGDrivE 1 modeling framework to model the popu-
lation dynamics of a variety of genetics-based and biological control systems and their
spread through spatially-explicit populations of mosquitoes, or insects having a similar
life history [130]. Here, we present MGDrivE 2, which significantly improves upon the
capabilities of MGDrivE 1 by addressing the above-mentioned considerations, namely: i)
the ability of parameter values to change over time, and hence to model seasonal pop-
ulation dynamics, and ii) the incorporation of an epidemiology module that can accom-
modate pathogen transmission between humans and mosquitoes. Minor additional im-
provements have been made to the inheritance, life history and landscape modules of the
framework to reflect advances in these fields; for instance, a more resolved understand-
ing of maternal deposition of Cas protein for CRISPR-based gene drive systems has been
incorporated [33]. Models in MGDrivE 2 are represented as a stochastic Petri net (SPN),
which has both computational and architectural benefits: model specification is separate
from simulation, models can be efficiently stored and updated in memory, and a wealth
of fast simulation algorithms from other fields can be used [60].

In this paper, we describe the key developments implemented in MGDrivE 2. We then
demonstrate the application of the framework to the disease control impact of a CRISPR-
based homing gene drive system intended to drive a disease-refractory gene into a pop-
ulation, and conclude with a discussion of future needs and applications for simulation
packages in the field of gene drive modeling.

3.2 Design and Implementation
MGDrivE 2 is a significant extension of and development from MGDrivE 1, a model for
the spread of gene drive systems through spatially-explicit mosquito populations. The
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MGDrivE 2 model incorporates: i) an “inheritance module” that describes the distribu-
tion of offspring genotypes for given maternal and paternal genotypes, ii) a “life history
module” that describes the development of mosquitoes from egg to larva to pupa to adult,
iii) a “landscape module” that describes the distribution and movement of mosquitoes
through a metapopulation, and iv) an “epidemiology module” that describes pathogen
transmission between mosquitoes and humans (Fig 3.1). The framework is formulated
as a SPN that can be mapped to a continuous-time Markov process in which model pa-
rameters may vary over time. It can also be implemented as a deterministic model via
mean-field approximation of the stochastic model [21].

The core framework is developed in R (https://www.r-project.org/). The SPN
framework enables separation of model components, allowing users to modify code on
a component-by-component basis as needed for model specification or computational
speed. We now describe the model extensions and developments from MGDrivE 1 to 2 in
more detail. Full details of the MGDrivE 2 model framework are provided in Appendix
B.

Time-dependent parameters and seasonality
The incorporation of time-dependent parameters represents a significant improvement of
the MGDrivE 2 modeling framework. In MGDrivE 1, the mosquito life history module
follows the lumped age-class model of [68] as adapted by [40], which describes devel-
opment from egg to larva to pupa to adult using delay-difference equations. The delay
framework allows development times to be modeled as fixed rather than exponentially-
distributed; however, it is not compatible with time-varying parameters as these could
vary during the delay. In MGDrivE 2, the discrete-time, fixed-delay framework of MG-
DrivE 1 is replaced by a continuous-time implementation in which each life stage is di-
vided into a series of substages. For a single substage, the development time is exponentially-
distributed; but as the number of substages increases, the distribution of development
times becomes concentrated around the mean. Specifically, if a life stage with a mean
development time of 1/d is divided into a series of n substages, the new development
times are Erlang-distributed with mean, 1/d, and variance, 1/(dn2

), or equivalently, with
shape parameter, n, and rate parameter, d/n. The mean development time, d(t), may
also vary over time, t; however the number of substages, n, and hence the mean-variance
relationship for development times, must remain constant within a simulation.

Most importantly, the new model implementation allows any model parameter to
vary with time, enabling the framework to account for seasonal variation in development
times and mortality rates due to environmental dependencies. Temperature is known
to strongly influence development times for juvenile mosquito stages, and mortality rates
for all mosquito life stages [17, 114], and rainfall is known to influence the carrying capac-
ity of the environment for larvae, and therefore density-dependent larval mortality rates
[151, 116]. The new model formulation allows these parameters to vary in continuous
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Figure 3.1: Modules in the MGDrivE 2 framework. (A) Genetic inheritance is embodied by a
three-dimensional tensor referred to as an “inheritance cube”. Maternal and paternal genotypes
are depicted on the x and y-axes and offspring genotypes on the z-axis. (B) Mosquito life history
is modeled according to an egg-larva-pupa-adult (female and male) life cycle in which density
dependence occurs at the larval stage, and life cycle parameters may vary as a function of envi-
ronmental variables over time. Genotypes are tracked across all life stages, and females obtain
a composite genotype upon mating - their own and that of the male they mate with. Egg geno-
types are determined by the inheritance cube. (C) The landscape represents a metapopulation in
which mosquitoes are distributed across population nodes and move between them according to
a dispersal kernel. Population sizes and movement rates may vary as a function of environmen-
tal variables. (D) The epidemiology module describes reciprocal transmission of a vector-borne
pathogen between mosquitoes and humans. This requires modeling human as well as mosquito
populations, and the number of individuals having each infectious state. Epidemiological param-
eters may vary as a function of environmental variables.

time in response to environmental data, and hence for seasonal variations in temperature
and rainfall to drive seasonal variations in mosquito population density.

Parameters defining other modules of the model - inheritance, landscape and epidemi-
ology - are also able to vary over time within the new model formulation. For instance,
gene drive systems under the control of temperature-dependent promoters [160, 42] may
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have time-varying homing efficiencies, mosquito movement rates may vary seasonally in
response to temperature and other environmental factors [99], and epidemiological pa-
rameters such as the extrinsic incubation period (EIP) and pathogen transmission prob-
abilities from human-to-mosquito and mosquito-to-human are all known to display sea-
sonal variation through temperature dependence [17, 114].

Epidemiology module
The epidemiology module describes reciprocal transmission of a vector-borne pathogen
between mosquitoes and humans. This requires modeling of both vector and human
populations, as well as an attribute describing the number of individuals in the vec-
tor and human populations having each infectious state (Fig 3.2). To model malaria,
the Ross-Macdonald model is included, which has susceptible (SV), exposed/latently
infected (EV), and infectious (IV) states for mosquitoes, and susceptible (SH), and in-
fected/infectious (IH) states for humans [129, 106]. Malaria infection in humans is de-
scribed by an SIS model, in which humans become infected at a per-capita rate equal
to the “force of infection” in humans, �H , and recover at a rate, r. Malaria infection in
mosquitoes is described by an SEI model, in which adult mosquitoes emerge from pupae
in the susceptible state, become exposed and latently infected at a per-capita rate equal to
the force of infection in mosquitoes, �V , and progress to infectiousness at a rate equal to
�V . The force of infection in humans, �H , is proportional to the fraction of mosquitoes that
are infectious, IV /NV , where NV is the adult mosquito population size, and the force of
infection in mosquitoes, �V , is proportional to the fraction of humans that are infectious,
HH/NH , where NH is the human population size. Since an exponentially-distributed EIP
leads to some mosquitoes having unrealistically brief incubation periods, we divide the
EV state into a series of n sub-states, as described in section 2.1, leading to the EIP be-
ing Erlang-distributed with shape parameter, n, and rate parameter, �V /n [137]. Finally,
transmission parameters may be tied to specific mosquito genotypes - for instance, an
antimalarial effector gene may be associated with a human-to-mosquito or mosquito-to-
human transmission probability of zero.

To model arboviruses such as chikungunya, Zika and single serotypes of dengue virus,
we include an SEIR model for human transmission, in which the human states are: sus-
ceptible (SH), exposed/latently infected (EH), infectious (IH), and removed/recovered
(RH) [95, 126]. The EH and RH states are included because arboviruses are generally
thought to be immunizing, and have latent periods that tend to be on a similar timescale
to the duration of infectiousness. Humans become exposed/latently infected at a per-
capita rate equal to �H , progress to infectiousness at rate, �H , and recover at rate, r. For
mosquito transmission, the SEI model with an Erlang-distributed EIP is used again. Fur-
ther details of the mathematical formulation of both the malaria and arbovirus models
are provided in Appendix B. The extensibility of the SPN framework means that more
complex epidemiological models can be developed and implemented by users.
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Figure 3.2: Epidemiology module. MGDrivE 2 includes two basic models for reciprocal pathogen
transmission between mosquitoes and humans - one for malaria (A), and one for arboviruses
(B). In both cases, female mosquitoes emerge from pupae at a rate equal to dP /2 as susceptible
adults (SV ), become exposed/latently infected (EV,1) at a rate equal to the force of infection in
mosquitoes, �V , and progress to infectiousness (IV ) through the extrinsic incubation period (EIP
= 1/�V ), which is divided into n bins to give an Erlang-distributed dwell time. The mortality
rate, µF , is the same for female mosquitoes in each of these states. For malaria (A), susceptible
humans (SH ) become infected/infectious (IH ) at a rate equal to the force of infection in humans,
�H , and recover at rate r, becoming susceptible again. For arboviruses (B), susceptible humans
(SH ) become exposed/latently infected (EH) at a rate equal to �H , progress to infectiousness (IH )
at rate equal to �H , and recover (RH ) at rate, r. Infection dynamics couple the mosquito and
human systems via the force of infection terms; �V is a function of IH , and �H is a function of IV ,
shown via red edges.

Modeling vector-borne disease transmission within a metapopulation framework gen-
erally requires each population node in the network to have both a defined mosquito
and human population size. Since the mosquito vectors we are interested in are an-
thropophilic, they tend to coexist with humans, so human population sizes and state
distributions can be attributed to the same nodes at which mosquito populations are de-
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fined; however MGDrivE 2 also includes the possibility of human-only and mosquito-
only nodes. Mosquito-only nodes could represent sites with only non-human animals
from which mosquitoes bloodfeed, while human-only nodes could represent locations
unsuitable for mosquitoes. As mosquitoes are able to move between nodes in the metapop-
ulation, so can humans. This is an important factor to include, as human movement has
been shown to drive the spatial transmission of mosquito-borne diseases such as dengue
virus [146].

Other extensions to inheritance, life history and landscape modules
Additional functionality has been included in the inheritance and life history modules
of the MGDrivE framework since publication of version 1.0. The inheritance module
is unchanged, and inheritance “cubes”, describing the distribution of offspring geno-
types given maternal and paternal genotypes for a given genetic element, are usable in
both versions. Several new inheritance cubes have been made available, including: a)
homing-based remediation systems, including ERACR (Element for Reversing the Auto-
catalytic Chain Reaction) and e-CHACR (Eracing Construct Hitchhiking on the Autocat-
alytic Chain Reaction) [47, 158], and b) newly proposed drive systems capable of regional
population replacement, including CleaveR (Cleave and Rescue) [118] and TARE (Toxin-
Antidote Recessive Embryo) drive [32].

In the life history module, there are now two density-dependent functional forms to
regulate population size - logistic and Lotka-Volterra - with the potential to add more.
For mosquito vectors such as Ae. aegypti and An. gambiae, density-dependence is thought
to act at the larval stage due to increased resource competition at higher larval densities
[151, 116]. The adult population size, N , is used to determine the carrying capacity of that
habitat patch for larvae, K, which determines the degree of additional density-dependent
mortality experienced by larvae at that patch. For the logistic model, the per-capita larval
mortality rate is given by µL + (1 + L(t)/K), where µL is the density-independent larval
mortality rate, and L(t) is the total larval population size for the patch at time t. For the
Lotka-Volterra model, the per-capita larval mortality rate is given by µL + ↵L(t), where ↵
is the density-dependent term. Further details on these two density-dependent functions
are provided in Appendix B.

In the landscape module, movement through the network of population nodes is again
determined by a dispersal kernel; however, due to the continuous-time nature of MG-
DrivE 2, movement between patches is described by a rate rather than a probability. The
mathematical mapping between the rate matrix of MGDrivE 2 and the transition proba-
bility matrix of MGDrivE 1 is provided in Appendix B.

Stochastic Petri net formulation
The most fundamental change from MGDrivE 1 to 2 is restructuring the model as a SPN
[66]. Adopting a SPN framework has several benefits. First, SPNs allow the mathematical
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specification of a model to be decoupled from its algorithmic implementation, allowing
users to leverage extensive sampling algorithms from the physical and chemical simula-
tion communities for efficient computation [60, 53]. Second, SPNs have a well-established
and consistent formalism, allowing them to be readily understood and modified by any-
one familiar with this [62]. And third, SPNs are isomorphic to continuous-time Markov
chains (CTMCs), meaning that model parameters can be time-varying, including Erlang-
distributed aquatic stage durations and the pathogen EIP.

A Petri net is a bipartite graph consisting of a set of places, P, and a set of transitions, T.
Directed edges or “arcs” lead from places to transitions (input arcs) and from transitions
to places (output arcs). The set of arcs that connect places to transitions and transitions to
places can be denoted by two matrices whose entries are non-negative integers describing
the weight of each arc. The places define the allowable state space of the model; however,
in order to describe any particular state of the model, the Petri net must be given a mark-
ing, M, which is defined by associating each place with a non-negative integer number
of tokens. In the language of CTMCs, a marking, M , is referred to as a “state.” When
a transition occurs, it induces a state change by “consuming” tokens in M given by the
set of input arcs, and “producing” tokens in M according to the set of output arcs [152].
Each transition has a “clock process,” parameterized by a “hazard function” which de-
fines that event’s current rate of occurrence. In MGDrivE 2, tokens represent an integer
number of mosquitoes or humans, and the distribution of tokens (mosquitoes or humans)
across states at time t defines a marking, M(t). A graphical representation of a Petri net
for the mosquito life history module of MGDrivE 2 is depicted in (Fig 3.3A), with a full
description of the mathematical formalism provided in Appendix B.

The code that generates the Petri net is independent of the code that simulates tra-
jectories from it. Once the Petri net is stored as a set of sparse matrices, it is passed to
a simulation application program interface (API) which allows trajectories to be simu-
lated as ordinary differential equations (ODEs), stochastic differential equations (SDEs),
or CTMCs (Fig 3.2B). Each of these are referred to as “step” functions, but are not limited
to discrete time steps; these functions are responsible for updating the model between
time points where the user requests output to be recorded. The ODE step function pro-
vides a deterministic approximation and interfaces with the numerical routines provided
in the “deSolve” R package [142]. Three stochastic numerical routines are provided that
treat the model as a continuous-time Markov process and provide different levels of ap-
proximation. The most straightforward method to sample trajectories is Gillespie’s di-
rect method, which samples each event individually [57]. While statistically exact, this
is prohibitively slow for medium-to-large population sizes. Two approximate stochastic
methods are provided that have been widely used in the chemical physics literature: i)
a second order continuous SDE approximation known as the chemical Langevin equa-
tion [54], and ii) a fixed-step tau-leaping method [55]. Both methods achieve substan-
tial gains in computational speed at the expense of statistical accuracy. While the SDE
approximation is often faster, tau-leaping retains the discrete character of the process it
approximates and is usually the preferred technique. A full description of each of the nu-
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merical routines is provided in Appendix B. In addition, we demonstrate how a user can
write a custom simulation algorithm and incorporate it within the MGDrivE 2 codebase
in the “Advanced Topics” vignette available at https://marshalllab.github.io/
MGDrivE/docs_v2/articles/advanced_topics.html.

3.3 Results
To demonstrate how the MGDrivE 2 framework can be used to initialize and run a simu-
lation of the spread of a gene drive system through a metapopulation with time-varying
model parameters, including its implications for vector-borne pathogen transmission,
we have provided vignettes with the package, available via installation from CRAN at
https://CRAN.R-project.org/package=MGDrivE2 and additional examples and
information on GitHub at https://marshalllab.github.io/MGDrivE/docs_v2/
index.html. The vignettes provide extensive examples of how to use the software,
including advanced features such as implementing custom time-varying rates and nu-
merical simulation algorithms. They consist of a set of five “core” manuals that describe
how to simulate population genetics and dynamics for a mosquito-only population and
metapopulation, then how to incorporate SEI-SIS Ross-Macdonald malaria transmission
dynamics in a population with humans included, and finally how to incorporate SEI-SEIR
arbovirus transmission dynamics. Following these are three “advanced” manuals that in-
troduce: i) how to process and analyze output from simulations that write to CSV files,
ii) how users can write custom time-varying hazard functions, and iii) how a user might
implement their own numerical simulation routine, using an explicit Euler method for
ODEs as an example.

Here, we describe the application of the package to model the release of a popula-
tion replacement gene drive system designed to drive a malaria-refractory gene into an
An. gambiae mosquito population with seasonal population dynamics and transmission
intensity calibrated to a setting resembling the island of Grand Comore, Union of the
Comoros. The gene drive system resembles one engineered in An. stephensi that is inte-
grated into the kynurenine hydroxylase gene and includes a recoded copy of that gene
that rescues its function [3]. This design selects against resistance alleles that interrupt its
function. Four alleles are considered: an intact homing allele (denoted by “H”), a wild-
type allele (denoted by “W”), a functional, cost-free resistant allele (denoted by “R”), and
a non-functional or otherwise costly resistant allele (denoted by “B”). Full details of the
inheritance dynamics are provided in [3] and model parameters are summarized in Table
3.1.

The life history module is parameterized with typical bionomic parameter values for
An. gambiae (Table S1), including mean-variance relationships describing the develop-
ment times of juvenile life stages [16]. The carrying capacity of the environment for larvae
is a function of recent rainfall, and the adult mortality rate is a function of temperature.
Remotely sensed rainfall data for Grand Comore was obtained from the ERA5 dataset
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Figure 3.3: Stochastic Petri net (SPN) implementation of MGDrivE 2. (A) Petri net representation
of the life history module. The set of purple circles corresponds to places, P, and red rectangles
to transitions, T. This Petri net shows a model in which development times for the egg stage are
Erlang-distributed with shape parameter n = 2, and for the larval stage are Erlang-distributed
with shape parameter n = 3. Population dynamics are derived directly from this graph; e.g.,
the transition corresponding to oviposition has one edge beginning at F , meaning at least one
female mosquito must be present for oviposition to occur. When oviposition occurs, a token is
added to E1 (new eggs are laid) and a token is returned to F . (B) Conceptual representation of the
SPN software architecture showing the separation between the model representation (blue circles)
and set of sampling algorithms (red rectangles). These two components of the codebase meet at
the simulation API, enabling users to match models and simulation algorithms interchangeably.
Output may be returned as an array in R for exploratory work, or written to CSV files for large
simulations.

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5)
[1], and a mathematical relationship adapted from [151] was used to translate this to lar-
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val carrying capacity, assuming that half of the island’s carrying capacity was provided
by permanent breeding sites (e.g., large cisterns) and half was provided by recent rainfall.
Temperature data for Grand Comore was also obtained from the ERA5 dataset, and adult
mortality was derived using methods described by [114]. Both climatological time series
covered the ten year period beginning January 1, 2010. For the purpose of this demon-
stration, Grand Comore was treated as a single randomly mixing population, although
simulations involving a more detailed landscape module are included in the vignettes.

The epidemiology module is parameterized with typical parameter values for Plas-
modium falciparum transmission (Table 3.1), human population size and life expectancy
parameters from the National Institute of Statistics and Demographic Studies, Comoros
[79], and is calibrated to local malaria prevalence estimates from the Malaria Atlas Project
[121]. This calibration was achieved by multiplying the carrying capacity time series by
a constant such that the average adult female mosquito population over a year sustained
malaria transmission in the human population at the estimated local prevalence. Finally,
we caution that these simulations are merely intended to demonstrate the software’s ca-
pabilities and that, while the simulations are parameterized with data from Grand Co-
more, they are not intended to provide an accurate forecast of local gene drive mosquito
dynamics, or to imply approval of the intervention by the local population and regulatory
agencies.

Simulation workflow
The code for this simulation is available at https://github.com/MarshallLab/MGDrivE/
tree/master/Examples/SoftwarePaper2. We begin by loading the MGDrivE 2
package in R, as well as the package for the original MGDrivE simulation, which provides
the inheritance cubes required for simulation of genetically-stratified mosquito popula-
tions. Next, we define model parameters, including the bionomic parameters of An. gam-
biae s.l., and demographic and epidemiological parameters specific to Grande Comore.
To parameterize time-varying adult mosquito mortality (hourly) and larval carrying ca-
pacity (daily), we load CSV files containing those data as time series for the ten year
simulation period. We then use the base “stepFun()” function in R to create an interpo-
lating function of those time-series data that will return a value for any time within the
simulation period, which is required for calculation of hazard functions. More sophis-
ticated interpolating functions, such as splines, may also be used. We also specify the
inheritance cube at this point, as the number of modeled genotypes and distribution of
offspring genotypes for given parental genotypes will be used to build the Petri net.

Next, we use functions from MGDrivE 2 to create the “places” and “transitions” of the
Petri net, which are stored as lists in R and then converted into a sparse matrix represen-
tation used in the simulation code. Epidemiological dynamics and states are coded auto-
matically by calling the functions that create the Petri net. In this case, “spn P epiSIS node()”
and “spn T epiSIS node()” will generate the places and transitions for a single node model
with SEI-SIS mosquito and human malaria transmission dynamics. Each transition has a
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tag that specifies the hazard function it requires. Following that, we write custom time-
varying hazard functions for adult mosquito mortality and larval mortality (a function
of carrying capacity). We provide a guided walkthrough of how a new user might write
their own time-varying hazard function in the vignette “Simulation of Time-inhomogeneous
Stochastic Processes.” Once the vector of hazard functions has been stored (as a list), we
create the data frame that stores the times, genotypes, sex, and size of each release event.

With the construction of all model components necessary for the simulation, we call
the simulation API which handles the details of simulating trajectories from the model.
In this case, we chose the tau-leaping algorithm to sample stochastic trajectories, and to
record output on a daily basis. MGDrivE 2 allows users to choose how model output is
reported back - for exploratory or smaller simulations, users may return output directly
to R as an array; however for larger simulations, it is often preferable to write directly to
CSV files due to memory considerations, and MGDrivE 2 has sophisticated functions to
both specify CSV output and process completed simulations.

Entomological population dynamics
In (Fig 3.4), we display a potential visualization scheme produced in Python for the sim-
ulations described above. The code to produce this visualization is available at https://
github.com/Chipdelmal/MoNeT/tree/master/DataAnalysis/v2 (note that MG-
DrivE 2 code does not depend on Python). (Fig 3.4A) displays the climatological time-
series data - temperature in magenta and rainfall in blue - which were used to calculate
time-varying adult mosquito mortality rate and larval carrying capacity, respectively. The
total adult female population size averaged over 100 stochastic runs is shown in green.
This is relatively consistent throughout the year due to moderate seasonal changes in tem-
perature in the tropical climate of the Comoros and the presence of permanent breeding
sites such as cisterns throughout the island. (Fig 3.4B) displays allele frequencies for adult
female mosquitoes over the simulation period. After eight consecutive weekly releases of
10,000 male mosquitoes homozygous for the drive allele (HH) three years into the simula-
tion, we see the drive allele (H) spread to high frequency in the population, the wild-type
allele (W) be completely lost, and the in-frame resistant allele (R) accumulate to a small
but noticeable extent. This occurs due to the drive of the H allele, and because the R allele
is generated at a low rate and has neither a fitness cost nor benefit relative to the H and W
alleles. The out-of-frame or otherwise costly resistant allele (B) initially rises in frequency
more quickly than the R allele due to its higher generation rate, but declines in frequency
once there are no more W alleles to cleave due to its inherent selective disadvantage.

Epidemiological dynamics
The gene drive system we consider includes a malaria-refractory gene that results in
complete inability of mosquitoes to become infected with the malaria parasite, whether
present in either one or two allele copies. In (Fig 3.4C), we depict the spread of the
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malaria-refractory trait through the female mosquito population, and the consequences
this has for mosquito and human infection status. Prior to the release, we see that in-
fection prevalence in humans (P. falciparum parasite rate, PfPR) is mildly seasonal, with
the proportion of infected humans (solid red line) waxing and waning in response to the
fluctuating mosquito population size (green line in Fig 3.4A). The proportion of infectious
female mosquitoes (dotted dark purple line) oscillates in synchrony with the proportion
of infected humans; but at a much lower proportion due to the short mosquito lifespan
and the fact that most mosquitoes die before the parasite completes its EIP. Following the
release of the drive system and refractory gene at year three, the proportion of refractory
female mosquitoes (dotted light purple line) increases and, consequently, the proportion
of infectious mosquitoes declines. As humans recover from infection and less develop
new infections, the PfPR declines until it reaches near undetectable levels by year five.
Lastly, (Fig 3.4D) depicts human malaria incidence, measured as the number of new in-
fections per 1,000 humans per day. Stochastic variation in this model output is more
pronounced due to the small number of incident cases relative to the total population.
Incidence is halted by the beginning of year four, but PfPR takes almost a year longer to
approach zero as infected humans clear parasites.

3.4 Future directions
We are continuing development of the MGDrivE 2 software package and welcome sug-
gestions and requests from the research community regarding future directions. The
field of gene drive research is moving quickly, and we intend the MGDrivE 2 frame-
work to serve as a flexible tool to address exploratory, logistical and operational ques-
tions regarding genetics-based control systems for mosquito disease vectors. This in-
cludes exploratory modeling of novel genetic constructs, assessment of candidate con-
structs against TPPs and PPCs, and field trial planning as constructs progress through
the development pipeline. Future functionality that we are planning includes: i) model-
ing of mosquito traps to address questions related to monitoring and surveillance, and ii)
more detailed epidemiological models addressing phenomena important to malaria and
arbovirus transmission - for instance, dengue models that incorporate multiple serotypes
with temporary cross-protective immunity and complications related to antibody-dependent
enhancement [150], and malaria models that incorporate age-structure, immunity, asymp-
tomatic infection and superinfection [61].

Additionally, we are exploring numerical sampling algorithms that can increase com-
putational efficiency and speed, facilitated by separation of model specification and sim-
ulation in the software. The complexity of models that can be developed in MGDrivE
2 means that sensitivity analyses can become extremely computationally intensive, and
the ability of the SPN framework to leverage efficient algorithms in these circumstances
will be highly valuable. We also continue to be interested in developing a correspond-
ing individual-based model capable of efficient modeling when the number of possible
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Figure 3.4: Example MGDrivE 2 simulations. Example MGDrivE 2 simulations for a population
replacement gene drive system designed to drive a malaria-refractory gene into an An. gambiae s.l.
mosquito population with seasonal population dynamics and transmission intensity calibrated to
a setting resembling the island of Grand Comore, Union of the Comoros. The gene drive system re-
sembles one recently engineered in An. stephensi [3] for which four alleles are considered: an intact
homing allele and malaria-refractory gene (denoted by “H”), a wild-type allele (denoted by “W”),
a functional, cost-free resistant allele (denoted by “R”), and a non-functional or otherwise costly
resistant allele (denoted by “B”). Model parameters describing the construct, mosquito bionomics
and malaria transmission are summarized in Table 3.1. (A) Climatological time-series data - tem-
perature in red and rainfall in purple - that were used to calculate time-varying adult mosquito
mortality rate and larval carrying capacity, respectively. The resulting adult female population
size is shown in green. (B) Allele frequencies for adult female mosquitoes over the simulation pe-
riod. Grey vertical bars beginning at year three denote eight consecutive weekly releases of 10,000
male mosquitoes homozygous for the drive allele (HH). (C) Spread of the malaria-refractory trait
through the female mosquito population, and consequences for mosquito and human infection
status. Following the release of the drive system at year three, the proportion of refractory female
mosquitoes (dotted light purple line) increases and the proportion of infectious mosquitoes (dot-
ted dark purple line) declines. As humans recover from infection and less develop new infections,
the P. falciparum parasite rate (solid red line) declines until it reaches near undetectable levels by
year five. (D) Human malaria incidence is halted by the beginning of year four.

states exceeds the number of individuals in the population - for instance, for multi-locus
systems such as daisy-drive [117] and multiplexing schemes in which a single gene is tar-
geted at multiple locations to reduce the rate of resistance allele formation [122], and for
epidemiological models in which age structure, immunity and mosquito biting hetero-
geneity become prohibitive for population models [61].
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Parameter: Symbol: Value: Reference:
Gene drive construct:
Cleavage rate cH 1 [3]
Proportion of cleaved alleles sub-
ject to accurate homology-directed
repair (HDR) in females

PHDR,F 0.99 [3]

Proportion of cleaved alleles subject
to accurate (HDR) in males

PHDR,M 1 [3]

Proportion of resistant alleles that
are in-frame, functional

PRES 0.17 [3]

Cleavage rate due to maternal de-
position of Cas9

PMC 0.937 [3]

Proportion of resistant alleles due to
maternal deposition of Cas9 that are
in-frame, functional

PMR 0.17 [3]

Female fecundity cost due to BB
genotype

SBB,F 0.998 [3]

Mosquito bionomics:
Egg production per adult female
(day�1)

� 32 [39]

Mean duration of egg stage (days) TE 3 [159]
Mean duration of larval stage (days) TL 7 [159]
Mean duration of pupa stage (days) TE 2 [159]
Coefficient of variation (duration of
egg stage)

CV (TE) 0.2 [16]

Coefficient of variation (duration of
larval stage)

CV (TL) 0.3 [16]

Coefficient of variation (duration of
pupae stage)

CV (TE) 0.2 [16]

Carrying capacity of environment
(larvae)

K (time-
varying)

Data: [1],
Method: [151]

Mortality rate of adult mosquitoes
(day�1)

µF , µM (time-
varying)

Data: [1],
Method: [114]

Malaria transmission:
Blood feeding index f 1/3 [138]
Human blood index Q 0.9 [138]
Transmission efficiency: infected
mosquito to human

b 0.55 [138]

Transmission efficiency: infected
human to mosquito

c 0.15 [138]

Mean duration of extrinsic incuba-
tion period (days)

EIP (1/�V ) 10 [137]

Coefficient of variation of extrinsic
incubation period

CV(EIP) 0.4 [77]

Human infectious period (days) 1/r 200 [138]
Human lifespan (years) 1/µH 62 [79]
Human population size NH 350,998 [79]

Table 3.1: Parameters for example simulation output. Model parameters describing the gene
drive construct, mosquito bionomics and malaria epidemiology for simulations resembling re-
leases on Grand Comore, Union of the Comoros.)
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Chapter 4

Principled simulation of agent-based
models in epidemiology

4.1 Introduction
Stochastic simulation of complex mathematical models is a vital tool for understanding
and describing disease transmission systems. While early efforts by probabilists Bailey
and Kendall [12, 87], and the biochemist and physician-epidemiologist pair Kermack and
McKendrick [89, 90] were highly mathematical in nature, they were at best, coarse ap-
proximations of natural processes. In the century hence, disease transmission models
have incorporated myriad details including age structure, commuting, migration, and
within-host immunology to better represent our understanding of how these systems
function. Complex simulation models have been used to great effect in understanding
rapidly changing epidemic situations, such as the outbreak of a novel pathogen, or events
which require immediate response, such as the 2001 veterinary epidemic of hand foot
and mouth disease in the UK [85]. When addressing urgent public health crises, complex
models of epidemic processes can be invaluable tools, serving as platforms for data in-
tegration [145], estimation of current burden [147], forecasting trends [46], evaluation of
intervention strategies and counterfactual scenarios [82], among other roles.

These models are often formulated as compartmenal models and simulated as stochas-
tic jump processes, where a jump is a change in an individual’s epidemiological state.
Sample paths (trajectories) are piecewise constant, and change only due the to occurrence
of discrete events that change the epidemiological state of individuals (jumps). When
jumps are only allowed to occur after exponentially distributed intervals, the process is a
continuous-time Markov chain (CTMC). Because the modeler is free to design the states,
state transitions, and associated distribution of inter-jump intervals as they see fit, this
class of models can be directly specified from the results of survival analysis [6], allow-
ing close alignment to empirical data and standard survival models. In general, jump
processes are also valued for their deep connection to deterministic models (e.g., com-
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partmental models) in limiting cases which can aid model verification; such results are
well known for CTMC models [21, 56] and exist for some non-Markovian extensions [20].
Furthermore, these models benefit from over a half-century of rigorous mathematical and
algorithmic study [88], especially in chemical kinetics, physics, and operations research
communities, which has led to a plethora of publicly available algorithms to sample tra-
jectories from such processes, as well as techniques for statistical inference and model
fitting.

The complexity of these models, however, frustrates analytic approaches and can even
thwart straightforward application of classic simulation techniques, making quick devel-
opment and application challenging, especially in epidemic response situations. Incorpo-
rating non-Markovian dynamics is still difficult in most simulation frameworks, and be-
cause the majority of “industrial strength” simulation software is designed for relatively
straightforward chemical reaction networks [131], peculiarities of epidemiological simu-
lation such as highly nonlinear force of infection terms, age and location-based mixing,
immunological dynamics, and other elaborations make direct utilization of these software
difficult. While there exist some open-source software for simulation of epidemiological
dynamics, many frameworks are restricted to simple compartmental models, or may have
a significant enough learning curve that they are simply not an option when a model must
be developed in a matter of days [72, 43]. In addition, researchers may require specific
forms of model output that can be difficult for software packages to support.

Beacuse of their expressive power, agent-based models (ABM) are often the most
straightforward way to turn a whiteboard description of a complex system into useable
code, and are a viable alternative to other methods of representing a model. Many ABMs
are developed as bespoke programs for a specific analysis, but the technical complexity of
implementation means that a variety of subjective decisions may be made when writing
simulation code. Not all design choices will lead to simulation algorithms that necessarily
have a limiting interpretation as some stochastic jump process, valuable for both model
verification and model modification based on the formal rules of the stochastic process.

Here we describe a method to construct approximate ABM representations of stochas-
tic models in which agents with arbitrarily complex internal dynamics interact through
discrete events in continuous time. Our method relies on specification of a discrete time
step of size �t, over which interactions between agents are approximated (dependent
events); dynamics within an agent (internal events) are still simulated exactly in contin-
uous time. A significant contribution in this work is presenting a generic algorithm to
simulate systems that are relevant to a wide class of epidemiological models, via approx-
imation of dependent events which can help speed up even highly complex ABMs. We
also demonstrate that our algorithm approaches the true continuous time jump process
as �t ! 0. To verify our method and provide numerical comparisons to exact stochas-
tic simulation, we use our algorithm to simulate a Markovian and non-Markovian SIR
(Susceptible-Infectious-Recovered) model. We conclude with a discussion of strengths
and weaknesses of our approach, as well as fruitful next steps to generalize our method.
We hope that our method gives mathematical epidemiologists considerable freedom in
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designing a model to fit their needs, and that by approximating dependent events, even
highly complex models can be feasible to simulate. We also expect our method will be of
interest to researchers in ecology, demography, and the quantitative social sciences.

4.2 Materials and methods

Hazard Rates in Stochastic Simulation
Formally, a jump process is a stochastic process, X whose trajectories (sample paths) are
piecewise constant functions of time over a countable set of states, S so that X(t) 2 S , t �
0. Here we restrict ourselves to considering time-homogeneous processes, so that only
the dwell time in the current state is relevant for the process. In order to sample tra-
jectories from X , we must specify hazard functions �j(⌧, s) associated with each event
j 2 {1, . . . ,M}. The hazard functions tell us the conditional probability of j occurring in
the next infinitesimal time interval [⌧, ⌧ + dt), if the process has dwelled in state s 2 S
for some time ⌧ (in the case where there is no dependence on ⌧ , the hazard will be a
constant value and X is a CTMC). When j occurs, it is allowed to change the state X
in some way. Given a set of M events, simulation consists of sampling when the next
event occurs, which event was it, updating state appropriately, recalculating hazards that
change, and repeating this process [52]. The state space can be defined implicitly, and can
be (countably) infinite, so long as only a finite number of events have non-zero hazards
at any time.

To define the process that the ABM will sample from, we let X(t) = (s1, ..., sn) be a
vector where n is the number of agents being simulated, and each sh is the state of person
h. Expanding state space in this was to achieve an agent-based representation is known as
disaggregation, and may be used to study ABMs via the technical condition of lumpabil-
ity [14]. Then, any events which affect person h and whose hazard function depends on
more elements of X than only sh is a dependent event; events which affect person h and
whose hazard function is only allowed to depend on sh is an internal event. Consider the
recovery event in an SIR model. The recovery event for person h does not need to know
about the states of anyone else in order to calculate the hazard of recovery and so is an
internal event. However, the infection event for individual h does require knowing the
state of other agents in order to compute the hazard, and therefore is a dependent event.

To draw approximate trajectories from the ABM requires a choice of time step�t, over
which hazards for each agent’s dependent events may only use information from other
agents at the start of the step, ignoring changes which occur during the time step. Put
another way, agents only exchange information at the start of each time step. Then over
a time step beginning at time t, a susceptible agent i is subject to infection hazard (force
of infection, hereafter FOI) �(u)I(t) for u 2 [t, t +�t), where �(u) is the effective contact
rate [11]. Note that we allow the contact rate to possibly depend on time, and that the
approximation is in setting the number of infected individuals to a constant value (the
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number at time t). Dependent events can be simulated via rejection sampling. Internal
events, by definition will not depend on any other individuals and therefore will not be
approximated. This type of simulation is reminiscent of tau-leaping techniques [55], but
whereas in standard tau-leaping all hazard functions are approximated as constants over
the time step, our method only approximates dependent events, and internal events are
simulated exactly.

We postpone a complete description of our method to section Simulation Algorithm,
and first demonstrate that the accept-reject sampling we use for sampling dependent
event times can draw correct times in a base case.

Approximation of Hazard Rates
Consider the a single susceptible agent who is subject to a single event, infection. Let ⌧S!I

be a random variable giving the time at which this agent becomes infected, tmax be the
end of the current time step, [tmax ��t, tmax ), and � be the FOI which is valid over that
time step.

In our model, each agent stores its current state sh, the time at which it entered that
state tnow , and the next scheduled event time tnext and state s0h. For all internal events,
simulation is identical to classic discrete event simulation techniques. While the agent’s
next scheduled event time is less than tmax the agent will update their state and time
according to that scheduled event, and sample a new state and time. If the new event
time is greater than tmax, the update does not occur until the time step in which that
event falls.

In the case of infection, a dependent event, if we naively sampled the time of infection
as ⌧S!I ⇠ tnow + Exp(�), we would be ignoring future stochastic changes in FOI, which
could change at tmax . Crucially, from the perspective of this agent, the FOI is a stochas-
tic quantity, because it depends on the states of other agents. To develop a reasonable
approximation, one needs to implement a rejection algorithm to sample ⌧S!I .

The sampling is described graphically in Fig 4.1 A. During this time step, � is constant
(red region), and the agent samples a putative time to infection b⌧S!I ⇠ tnow + Exp(�).
Note that there is no restriction tnow be equal to the start of the time step, because it
could have been a randomly sampled quantity from previous events. If b⌧S!I falls within
the remaining time for which that hazard is valid (purple region of size tmax � tnow,
which is to say b⌧S!I < tmax ), then we accept the sample and infect the agent at time b⌧S!I .
The probability of the putative time being accepted is 1� e��(tmax�tnow).

If however we reject the putative time (b⌧S!I � tmax ) then we set the agents next event
time to be tmax , and do not change the agent’s state. Then, on the next time step, the
agent sets their current time to the start of that time step and resamples b⌧S!I using the
newly updated FOI �0. The probability of acceptance is 1� e��0�t.
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Figure 4.1: Approximate infection hazard over a time. The left filled circle and unfilled right
circle indicate that time steps are closed on the left and open on the right.

Accept-reject Algorithm for Piecewise Constant Hazard Rates
When�t ! 0, the accept-reject algorithm for time of infection becomes exact. To demon-
strate this, first consider the case where the FOI is a deterministic quantity, and, further-
more, that it is a constant. Then the probability of acceptance on any time step of size �t
is p = 1� e���t. Consequently, the expected number of rejections prior to the acceptance

is given as
1P
n=0

((1� p)np)n =
1�p
p . The expected number of trials including the acceptance

is thus 1�p
p + 1 =

1
p , or the expectation of a Geometric random variable. Note that this is

not quite the same as the expected value of the time to infection, which is 1
� . The value

1
p�t = �t

1�e���t “overshoots” because the acceptance could have occurred at any point in
the final time step, not just at the end.

Now, conditional on being accepted during trial n (that is, prior to its conclusion), the
time ⌧ at which the acceptance occurs within the time step [(n� 1)�t, n�t) is given by an
upper truncated Exponential distribution (Fig E.1). This random variable has expectation
E[⌧ ] =

R �t

0
�e��⌧

1�e���t ⌧ d⌧ =
�t

1�e��t +
1
� . Then the time at which the event occurs should be

equal to the number of rejections, each scaled by the time step size, plus this quantity,
which is: �t(1�p)

p +
�t

1�e��t +
1
� =

1
� , so we show that the accept-reject algorithm recovers
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precisely the same average waiting time as the Exponential random variate.
If instead of constant, the FOI is a deterministic piecewise constant function such that

�n is the value of the FOI between [n�t, (n+1)�t) similar reasoning applies but the num-
ber of trials needed no longer follows a Geometric distribution. The time of acceptance
within the acceptance interval however, still follows a truncated Exponential, because it
is conditioned on the infection event occurring in that time step of (piecewise) constant
hazard. In this case, sampling ⌧S!I is equivalent to sampling the first event time of an
nonhomogeneous Poisson process (NHPP) with intensity function �(t).

From [41], one way to sample from such a process is by inversion of the distribution
of inter-event times, which has distribution function F (⌧ ;�) = 1� e�

R ⌧
0 �(u) du. To sample

the first event time, one should draw a uniform random number u between [0, 1) and
solve so that ⌧ is the first event time: � log(1� u) =

R ⌧

0 �(u) du. If the cumulative hazard
function ⇤(⌧) =

R ⌧

0 �(u) du is especially easy to invert, then by the random time change
(RTC) theorem, we can also sample from the distribution of t by sampling v from a unit
rate Exponential distribution and then solving ⌧ = ⇤

�1
(v) [100].

When FOI is piecewise constant, ⇤(⌧) will be piecewise linear so inversion of the cu-
mulative hazard will be the most straightforward sampling method. To compare the
accept-reject algorithm with inversion sampling of NHPP first event times, we discretized
a continuous intensity function �̃(t) = 1

8 sin

⇣
(t�6)2⇡

24

⌘
+

1
8 . The function has a period of 24

hours, with a maximum amplitude of 0.25 (corresponding to 1/4 events an hour) with
a vertical shift so that it is non-negative and a phase shift of 6 hours such that the max-
imum intensity occurs each day at noon and minimum intensity at midnight (Fig E.2).

The integrated continuous intensity is ⇤̃(⌧) = 1
8

✓
t� 12 sin(

⌧⇡
12 )

⇡

◆
.

In Fig 4.2 we show that the accept-reject sampler for first event times of NHPPs is
equivalent to exact inversion methods given in [41, 100]. In both panels the red curve is
the density function of first event times calculated directly from f(⌧) = �̃(⌧)e�⇤̃(⌧), and
we drew 10

6 samples using each algorithm to construct the histograms. We see that both
the accept-reject algorithm and integrated hazard sampling are sampling from the correct
density function.

In a full model with interacting agents, each agent’s FOI depends on the state of other
agents, and the piecewise constant approximation means that on the [n�t, (n+1)�t) time
step that FOI is computed at n�t and remains constant until the next time step at time
(n + 1)�t, when agents may exchange information. Let us consider what happens as we
let �t ! 0. Because the model is a set of simple counting processes in continuous time,
meaning that only jumps of size 1 are allowed, the probability of two events occurring
simultaneously is zero [24]. So when �t is near zero, we expect that on each time step
either 0 or 1 event will occur, regardless of how many agents are in the system. With
infinitesimal time steps, after a single event occurs, the FOI for all agents will be updated
immediately and the algorithm becomes exact.
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Figure 4.2: Comparison of Rejection Sampler and Direct Inversion for sampling first event
times. Panel A: using integrated hazard to sample, Panel B: using accept-reject algorithm to sam-
ple. Red curves in both panels are the exact density, from numerical integration.

Simulation Algorithm
Our agent-based simulation algorithm for stochastic epidemic models where each agent
is subject to a single dependent event, infection, is given in pseudocode below. General-
ization to multiple dependent events (such as multiple strains or routes of transmission,
for example) can be easily accommodated by keeping track of multiple force of infec-
tion (hazard) terms for each agent, and letting the accept-reject algorithm sample the first
event time over all competing dependent events. Each agent in the population being sim-
ulated (h 2 {1, . . . , n}) stores (at minimum) the following pieces of information: their
current state sh, next state s0h, current time tnowh, and next time tnexth.

1. Initialize. For each agent h, set tnowh = tnexth = 0 and set their initial state sh =

s0h = sh(0) 2 S . Set system time t = 0.

2. Set tmax = t+�t.

3. Compute the force of infection on each agent �h.

4. Simulate each human’s trajectory between [tnowh, tmax ):

• While tnexth < tmax :

a) tnowh = tnexth
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b) sh = s0h
c) Run code associated with the new state sh and sample the next state tran-

sition and time (s0h, tnexth).

5. Set t = tmax .

6. Return to step 2 or quit.

When the agent is in a susceptible state and the accept-reject algorithm is being used to
sample their time to infection, it is crucial that if the putative time of infection is rejected,
the next time is set as tnexth = tmax so that on the next time step, a new putative infection
time is drawn. Because each agent updates themselves in continuous time within the
while loop on step 4, the distribution of sampled times for internal events will be exact.
Additionally, because each agent stores their own next state and time, so there is no need
for a complex global event queue.

How in particular each agent samples from the tuple (s0h, tnexth) in step 4c is left un-
specified. Any exact sampling method for competing hazards is valid, and choice of
method will depend on the problem at hand. Additionally we did not specify how to
record model output; the method which provides the most granular output, and enabling
survival analysis of results to verify the model, would delegate writing output to code
associated with the event which causes the transition to each new state sh, in step 4c. If
coarse-grained output is deemed sufficient, a natural place to track output is step 2, which
already requires a for loop over all agents.

Fig 4.3 shows how the simulation algorithm samples from an SIR epidemic [4] with
three agents over two time steps. The state space for each agent is S = {S, I, R}. At
time t = (n � 1)�t, there are two infectious individuals and one susceptible individual.
For susceptible individual 3, we additionally show their FOI �3(t) in blue. Note that while
agents may experience state changes at any point in time (agent 1 recovers during the first
time step and agent 2 during the second time step), the FOI is only allowed to change at
each time step when agents exchange information (shown by red arrows). During the
first time step, agent 3 samples a putative time to infection which exceeds time n�t, so it
is rejected. Agent 1 recovers sometime before the end of the time step, but is not allowed
to update agent 3 until the start of the next step. When the next time step begins, after
updating its FOI, agent 3 again samples a putative infection time, which occurs during
that time step (b⌧S!I < (n+ 1)�t), becoming infectious at that time. Additionally, agent 2
recovers sometime before the end of the time step.

While the diagram only shows a trajectory that overestimates the true FOI over each
interval, if there was another S individual who transitioned to I during the time step their
contribution would be left out and it would be an underestimate.
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Figure 4.3: Graphical representation of simulation algorithm with three agents. Rows
s1(t), s2(t), s3(t) are piecewise constant functions that give each agent’s state in the state space
(S, I, R) at time t; each agents’ trajectory will be a piecewise constant function through state space.
S (susceptible) is green, I (infectious) is blue, and R (recovered) is violet. The blue stripe �3(t)
gives the FOI on agent 3 (the only one to begin as susceptible).

4.3 Results
To illustrate use of our agent-based simulation method, we simulate a Markovian and
non-Markovian SIR model. For both models we compare the sampled transition prob-
ability distribution from the ABM to that sampled from an exact stochastic simulation
algorithm (SSA). We also compare samples from the ABM to closed form results on final
epidemic size distributions, which provides exact analytic checks of algorithm accuracy.
For the Markovian SIR model we can additionally compare the agent-based simulation
to numerical solutions of the Kolmogorov forward equation (master equation) of the sys-
tem, which gives the exact transition probabilities of the stochastic model. Because both
these results provide a complete description of the probabilistic behavior of the stochastic
models, they are more useful than comparing sampled trajectories (time series). How-
ever, we show some simple comparisons of sampled trajectories between exact stochastic
simulation and the agent-based model in Fig E.3.

All of our code, written in R and C++ to reproduce all findings and figures in this
paper is available at https://github.com/dd-harp/euler-abm.
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Markovian SIR Model
In Eq (4.1) we present the Kolmogorov forward equations (KFE) for the Markovian SIR
model, following [4]. Because much recent research into methods for solving KFEs orig-
inates in statistical physics, which, unlike probability theory or mathematical epidemi-
ology commonly uses step operators, we present the equations using step operators and
work out a more familiar form, as presented in [86]. A brief introduction to using step
operators to simplify writing KFEs for stochastic jump processes is available in Appendix
C. The term P(S, I, R, t) is the probability for the system to be in state (S, I, R) at time t,
such that S + I +R = N . We consider a simple mass action force of infection term to sim-
plify the mathematics, so that the deterministic R0 =

�
�N , but the method is not restricted

to simple mass action.

d

dt
P(S, I, R, t) =

infectionz }| {
(E1

SE
�1
I � 1)[�SI P(S, I, R, t)]

+

recoveryz }| {
(E1

IE
�1
R � 1)[�I P(S, I, R, t)]

= (E1
SE

�1
I )[�SI P(S, I, R, t)]� �SI P(S, I, R, t)

+ (E1
IE

�1
R )[�I P(S, I, R, t)]� �I P(S, I, R, t)

= �(S + 1)(I � 1)P(S + 1, I � 1, R, t)� �SI P(S, I, R, t)

+ �(I + 1)P(S, I + 1, R� 1, t)� �I P(S, I, R, t)

= �(�SI + �I)P(S, I, R, t) + �(S + 1)(I � 1)P(S + 1, I � 1, R, t)

+ �(I + 1)P(S, I + 1, R� 1, t)

(4.1)

While solution of the KFEs via matrix exponentiation or, for small state spaces, direct
numerical integration of the ODEs is possible, in order to evaluate the probability transi-
tion matrix over all possible (N+1)(N+2)

2 unique model states we use a recently developed
technique based on continued fraction expansion which can calculate the state transition
probability matrix directly [73, 35]. For an up to date review of methods for solving tran-
sition probabilities for common epidemic models, except the method of [35], see [76].

Solutions of Eq (4.1), computed via the continued fractions method are the “ground
truth” against which we want to evaluate samples from our ABM method. For com-
parison to an exact SSA, we choose to implement the Modified Next Reaction Method
(MNRM) of [7] to sample exact trajectories from the KFE because it is simple to code and
easily extends to the non-Markovian case.

Transition Probabilities

Solutions to the KFEs for the Markovian SIR model will give the exact transition prob-
ability matrix at a future time t given an initial state. That is, given some number of
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susceptible, infected, and recovered individuals at time 0, S(0), I(0), R(0), the KFEs can
be solved to give the probability distribution over all possible states of the system at
future time t � 0, P(S, I, R, t|S(0), I(0), R(0)). This conditional probability distribution
describes the exact probability law of the stochastic process; we use the method of [73],
implemented in the R package, MultiBD [74] to solve for that distribution. We compare
the exact distribution from solving Eq (4.1) to Monte Carlo simulation from the MNRM
and ABM.

To assess the ability of the agent-based model to sample from the correct probability
distribution over future states when simulating trajectories, we initiated a simulation with
initial conditions S(0) = 60, I(0) = 10, R(0) = 0, � = 1/3.5, and R0 = 2.5. We sampled 10

5

trajectories from the ABM, exiting the simulation when the next event time would exceed
t = 5, and using a time step�t = 0.01. We drew the same number of trajectories from the
MNRM simulation algorithm so we could have a sense of how an exact stochastic sam-
pler would approximate the true distribution. The results are visualized in Fig 4.4. We
visualized the bivariate probability distribution over P(S, I, t = 5|S(0), I(0)) using con-
tours to represent curves of constant probability. Because of the constraint N = S+ I+R,
we do not lose any statistical information by disregarding R. Panel A compares the sam-
pled MNRM (dashed contours) to the exact (solid contours), and Panel B compares the
sampled ABM to the exact distribution. In both cases we observed very good equivalence
between the sampled distributions and the exact distribution.

Effect of Time Step on Accuracy

We expect that as�t increases, the accuracy of the approximate ABM will deteriorate. We
therefore evaluated the distribution P(S, I, t = 5|S(0), I(0)) using the same parameters as
the previous section, for a grid of time step sizes of 0.001, 0.005, 0.01, 0.025, 0.05, 0.075,
0.1, 0.5, 1. We chose this grid to span over several orders of magnitude, from extremely
small values where we expect the ABM will be essentially exact, to a time step of one day,
which for this specific setting is expected to be highly inaccurate. For each value of�t, we
drew 2⇥ 10

5 samples from the ABM to generate a Monte Carlo estimate of the transition
probabilities. To calculate the exact transition probabilities, we used [74] to solve Eq (4.1).

For each time �t, we calculated absolute error as the sum of differences between the
Monte Carlo estimate of the transition matrix and the exact transition matrix. Interest-
ingly, although moving from the smallest step size of 0.001 to a more modest size of 0.1
spanned two orders of magnitude, absolute error changed little, from 0.045 to 0.059. In-
creasing �t to 0.5 and 1, however, swiftly increased absolute error to intolerable levels.
We show a visual comparison of the effect of various step sizes on absolute error in Fig 4.5,
where we plot the absolute difference between between each element in the bivariate dis-
tribution as a heatmap, visually revealing the method is highly accurate until large time
steps of 0.5 and 1.
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Figure 4.4: Comparison of exact transition probabilities to MNRM and ABM transition proba-
bilities. Panel A: Comparison of MNRM (dashed contours) against exact probability distribution
(solid contours), Panel B: Comparison of ABM (dashed contours) against exact probability distri-
bution (solid contours). In both panels the x-axis and y-axis give the probability of having that
number of susceptible and infectious individuals at t = 5, respectively.

Final Epidemic Size Distribution

An alternative to computing transition probabilities from Eq (4.1) for checking that our
ABM is sampling from the correct process is to compare the final epidemic size distribu-
tion computed by Monte Carlo simulation to an exact analytic result. For SIR models,
a closed form final epidemic size distribution was developed in [135, 13] and recently
reviewed in [9]. This closed form solution for the distribution of final epidemic sizes
is particularly valuable because this distribution will be affected by the distribution of
duration of infectiousness, meaning it provides a complete check on the the ability of a
sampling algorithm to simulate the SIR model.

If the duration of infectious period F has a moment generating function (MGF) given
by  F (t) = E[etF ] and where the initial states are given as S(0) = N, I(0) = m, the rate of
effective contact by �, then the final epidemic size vector is p(N)

= (p(N)
0 , . . . , p(N)

N ) where
p(N)
k is the probability that k of the initial N susceptible individuals are infected when the

epidemic ends. The probability p(N)
k for any element of the vector is given in Eq (4.2) and

a complete derivation is shown in Appendix D.
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Figure 4.5: Absolute error between ABM and exact transition probabilities for different sized
time steps. Panels show absolute error between transition probabilities calculated from the ABM
versus exact distribution, from smallest time step (0.001) in the upper left to largest (1.0) in lower
right. Darker areas correspond to small error while lighter regions correspond to higher error.
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(4.2)

Because the equations use the MGF of the infectious period distribution, Eq (4.2) can
compute final epidemic size distributions for both the Markovian and non-Markovian
SIR model.

We compared the final epidemic size distribution sampled from the exact simulation
algorithm (MNRM) and the ABM with �t = 0.01 to the exact closed form probabilities
calculated from Eq (4.2) in Fig 4.6. We used initial conditions of N = 50 and m = 1, and
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sampled 10
4 epidemic sizes from each stochastic simulation. The effective contact rate

was calculated to give R0 = 2.5, and � = 1/5. The exact probabilities are given by red
dots, and the empirical probabilities are given by the purple horizontal lines; pointwise
95% confidence intervals were computed for each empirical probability by Wilson’s score
method and the coverage interval is given as the shaded rectangle around the empirical
probability [134]. In both cases the empirical distribution from stochastic simulation is
nearly identical to the analytic probabilities, with remaining deviations due to Monte
Carlo finite sample error.

Figure 4.6: Final epidemic size distributions for Markovian SIR model. Panel A: Analytic final
epidemic size distribution (red) versus empirical distribution (purple) from MNRM [7], Panel B:
same, but empirical distribution (purple) from ABM. For each possible final size value we plot-
ted the mean of simulation results as a purple dot with error bars indicating the pointwise 95%
confidence interval from Wilson’s score method.

Non-Markovian SIR Model
In Eq (4.3) we present the Kolmogorov forward equations for the non-Markovian (semi-
Markov) SIR model, where the infectious period ⌧ ⇠ F is a random variable that has a
density function f =

d
d⌧F , which may differ from an Exponential distribution. Because

we assume that infection events still occur according to the points of a Poisson process,
the contribution to the KFE from infection is the same as Eq (4.1).

However the contribution from the recovery term is more complicated. In particular,
we need to introduce the two-time joint probability distribution P(S, I, R, t;St�⌧ , It�⌧ , Rt�⌧ , t�
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⌧), which is the joint probability of the system being in state (St�⌧ , It�⌧ , Rt�⌧ ) at a time t�⌧ ,
and in state (S, I, R) at a later time t. In Eq (4.3), the recovery term must sum over all pos-
sible states that the process could have been in ⌧ units of time in the past, where ⌧ ranges
from [0,1), and is weighted by f(⌧)d⌧ , the probability of an infectious period of duration
⌧ . This means when a S particle becomes an I particle at time t� ⌧ it immediately samples
a time to recovery according to f . Those recovery events which complete at time t have
probability f(⌧)d⌧ of requiring that amount of time to do so.

In this sense, the recovery events in the system are still controlled by the points of the
Poisson process generating infection events, but represent delayed effects of that event.
An excellent description of stochastic systems with delayed effects is given in [26]; an-
other slightly different approach to these systems is described by [98].

d

dt
P(S, I, R, t) =

infectionz }| {
(E1

SE
�1
I � 1)[�SI P(S, I, R, t)]

+

recoveryz }| {
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�1
R � 1)

"
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0
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(4.3)
The final non-Markovian Kolmogorov forward equation has four terms. The first and

second terms represent infection events that will push the state into, and out of (S, I, R),
respectively. The third term represents infection events that fired some time ⌧ in the past
and whose delayed recovery event will push the process into state (S, I, R) at time t.
Likewise the final term represents those infection events whose delayed recovery events



Chapter 4. Principled simulation of agent-based models in epidemiology 70

are just about to push the process out of that state.
To draw exact samples from the non-Markovian SIR model, we used the MNRM from

[7] for arbitrarily distributed delays. We modified Algorithm 7 such that the delayed re-
action channels store completion events as a priority queue implemented as binary heap,
after drawing the delay, ⌧ from the appropriate distribution.

Transition Probabilities

To assess the ability of the agent-based model to sample from the correct transition proba-
bility distribution over future states when simulating trajectories from the non-Markovian
model, we initiated a simulation with conditions S(0) = 60, I(0) = 10, R(0) = 0, � = 1/3.5,
and R0 = 2.5. We sampled 10

5 trajectories from the ABM, exiting the simulation when
the next event time would exceed t = 5, and using a time step �t = 0.01. We drew
the same number of trajectories from the MNRM simulation algorithm in order to com-
pare approximate transition probabilities from the ABM to an exact sampler. Unlike the
Markovian SIR model, the non-Markovian KFEs in Eq (4.3) are analytically and numeri-
cally intractable, so the comparison in this section is only between the exact MNRM and
ABM. The results are displayed in Figure 4.7. We visualized the bivariate probability
distribution over P(S, I, t = 5|S(0), I(0)) using contours to represent curves of constant
probability. We observed a very good equivalence between the transition probabilities
sampled via the approximate ABM (dashed contours) and exact sampler (solid contours).

Final Epidemic Size Distributions

As a further verification that our approximate ABM correctly sampled trajectories for
the non-Markovian model, we used Eq (4.2) to compute exact final epidemic size distri-
butions for the non-Markovian SIR and compared both the MNRM samples and ABM
samples to the closed form solution. The delay distribution (f(⌧) in Equation 4.3) was
a Gamma distribution, with a mean of 5 days and standard deviation of 0.5 days, giv-
ing a distribution peaked near the mean with most of the probability mass concentrated
between 4 and 6 days. We chose a Gamma distribution because it has an analytically
tractable moment generating function, so that the closed-form final epidemic size distri-
butions are easy to compute.

We calibrated � to give R0 = 1.85, and sampled 10
4 epidemic sizes from each simula-

tion method. The ABM used a time step size �t = 0.01. As before, N = 50 and m = 1.
The procedure used to construct pointwise confidence intervals was the same as used in
the Markovian example. Fig 4.8 shows that our approximate ABM with the chosen time
step is able to sample from the closed form probability distribution with high accuracy
(Panel B), and its performance is indistinguishable from an exact sampler (Panel A).
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Figure 4.7: Comparison of exact transition probabilities to MNRM and ABM transition proba-
bilities. Comparison of transition probability distribution sampled from MNRM (solid contours)
to distribution sampled from the ABM (dashed contours). The x-axis and y-axis give the proba-
bility of having that number of susceptible and infectious individuals at t = 5, respectively.

4.4 Discussion
We have presented a practical approach to simulating ABMs with attractive properties.
One interesting consequence of using a time step is that integration with other models
becomes easier. If certain hazards depended upon, say a mosquito model with some
discrete time step, that information could be exchanged between models at each step.
As the model is formulated with continuous hazards, the size of a time step can vary
over a simulation run, potentially widening applicability of the method. Furthermore, its
generality means there are several interesting avenues for further development.

A clear next step is a method for bounding approximation error during a simula-
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Figure 4.8: Final epidemic size distributions for non-Markovian SIR model. Panel A: Analytic
final epidemic size distribution (red) versus empirical distribution (purple) from MNRM [7], Panel
B: same, but empirical distribution (purple) from ABM. For each possible final size value we plot-
ted the mean of simulation results as a purple dot with error bars indicating the pointwise 95%
confidence interval from Wilson’s score method.

tion run, which would allow for development of methods for adaptive selection of �t.
While the ABM formulation means the model’s computational structure is different (dis-
aggregated) compared to chemical kinetic simulations, hazard functions can could still
be queried by looping over all individuals in the simulation. Because the discrete time
step only approximates dependent events, agents without any enabled dependent events
could be skipped. A first approach at adaptive selection of�t may look somewhat similar
to the straightforward methods presented in [55], and there is a wealth of citing literature
that could be used for further development.

Another interesting avenue for future research is investigating how to handle multiple
types of interaction which occur on different time scales. Because in the example SIR
models presented here, agents only interact through a single dependent event, which is
assumed to occur at the points of a Poisson process, all interactions occur on the same
time scale. However, if multiple types of dependent interaction were simulated (frequent
contacts between close friends versus rare meetings between acquaintances, for example),
total error induced by a choice of�t would depend on contributions from approximation
error from all interaction types. While chemical kinetics has developed several methods
for dealing with reactions occurring on very different characteristic time scales (see [69]
for an example), it is not clear what is the best way to deal with separation of time scale in



Chapter 4. Principled simulation of agent-based models in epidemiology 73

the ABM. A naive approach would involve slower interaction terms being updated only
at some integer multiple of�t, but further work should be undertaken to characterize the
best way to choose such an updating scheme suitable for multiple time-scales, with the
caveat that appropriate schemes would be highly problem dependent.

Our method is not restricted to pure jump stochastic processes. One generalization of
a pure jump process is to assume that the system can be described by coupling continuous
state variables to the discrete variables such that between jump times, the continuous part
evolves according to a differential equation. Such systems are known as piecewise deter-
ministic Markov processes (PDMP) when the distribution of inter-event times is given
by an nonhomogeneous Poisson process whose intensity may depend on the continuous
variables [161]. This model representation may be natural to simulate multi-scale mod-
els, where within-host immune dynamics follow a differential equation model, like the
method proposed in [51] to model host-pathogen interaction. In the case where the de-
terministic dynamics are fully internal to each agent the implementation simply involves
solving a differential equation for each agent to sample their next state and time. More
complex internal dynamics, such as allowing the continuous state to follow a stochastic
differential equation, can be implemented in the same way, as long as the next jump time
for each agent’s discrete state is computable from the solution of the process (for exam-
ple, from a first hitting time). These models can be useful to integrate results from medical
survival analysis [2].

The computational methods for epidemiological problems have borrowed heavily
from other computational disciplines, but some of the unique features of epidemiological
systems would benefit innovation and algorithms to addressing the kinds of problems
that arise. In particular, for simulation of complex epidemiological models, agent-based
models are a useful alternative to other modeling techniques, and can be both flexible and
extensible. In this work we have presented a generic algorithm to sample trajectories from
agent based models, for agents which may experience dependent or internal events, pa-
rameterized by hazard functions. Approximation of a subset of event hazards, those that
depend on multiple agents’ state, speeds up simulation. A key contribution of our ABM
simulation technique is that it will converge to a continuous-time stochastic jump process
in the limit of small step sizes. Our intention is not to argue that models without a lim-
iting interpretation are wrong, but that in many practical cases being able to connect the
ABM to a well defined stochastic process is valuable, such as for parameterization from
results of survival analysis or for verification of simulation software. Construction from
continuous-time hazards means that ABMs developed in this framework can be more
clearly linked to other results in stochastic simulation, easing inclusion of various elab-
orations relevant to epidemiological simulation, such as time-varying hazards [101, 31].
We hope that the simplicity of the method presented in this paper can help researchers
respond more quickly to urgent situations where stochastic models are required.
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Appendix A

MBDETES: Duration of Feeding Cycle

To compute the probability distribution of the duration of a feeding cycle, we reformu-
lated the MBDETES cohort differential equation model as a model of possible behavioral
state transitions taken between an initial post-prandial resting state R1, and a second post-
prandial resting state R2, accounting for state-dependent mortality in between (Equation
A.1). The state notation is the same as used in the main text, F is searching for blood host,
B is bloodfeeding, L is searching for oviposition site, and O is oviposition. The model fol-
lows all possible histories of a mosquito as it leaves R1, to either of two absorbing states,
R2, or death D.

Because we assume that mosquitoes blood feed and oviposit only once per gonotrophic
cycle, the distribution of the length of time needed for surviving mosquitoes to transition
between R1 and R2 is equal to the distribution for the duration of a feeding cycle.

The state vector {R1(t), L(t), O(t), F (t), B(t), R2(t), D(t)} is a probability mass function
(PMF) describing the probability for a mosquito to belong to each state at any time t � 0.
The set of differential equations below (also in Figure A.1) describes the flow of probabil-
ity (Kolmogorov forwards equations) between the states as time passes. The trajectories
from solving the equations over time thus gives the time-dependent PMF of a mosquito
to be in each state.

To solve the equations we set {R1(0) = 1, L(0) = 0, O(0) = 0, F (0) = 0, B(0) =

0, R2(0) = 0, D(0) = 0}. Because dead mosquitoes go to compartment D, probability mass
is conserved. Mosquitoes dwell in R1 on average for some time tR prior to leaving; but if
the delay was fixed rather than exponentially distributed one could partition the proba-
bility instead across {L(0) = R1(0)PRL, O = R1(0)PRO, F = R1(0)PRF , B = R1(0)PRB, D =

R1(0)PRD}, and simply add the fixed delay time to the solution output. To get the prob-
ability density function for the time to complete a feeding cycle, conditional on survival,
simply renormalize such that the density at time t is R2(t)

1�
R1
0 D(⌧)d⌧

=
R2(t)
R2(1) . Because R2 and

D are the only two absorbing states, 1�R2(1) = D(1).
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(A.1)

Figure A.1: Graphical representation of Equation A.1, edges are colored by their origin compart-
ment, and correspond to elements in the matrix ODE.
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Appendix B

MGDrivE 2: Description of the Modeling
Framework

B.1 Lifecycle Model
The lifecycle model is similar to the discrete time ecology module used in MGDrivE [130].
Major differences include the switch to continuous time and replacement of fixed, con-
stant delays with Erlang distributed delays in aquatic life stages. This change means that,
whereas MGDrivE’s deterministic model was formulated as a set of delay difference
equations, MGDrivE 2’s deterministic model is a set of ordinary differential equations
(ODEs) (using the “linear chain trick” to simulate Erlang-distributed delays, [78]).

Similar to MGDrivE, the lifecycle model includes egg (E), larval (L), and pupal (P)
aquatic stages. Upon emergence from P, adult mosquitoes are assigned a sex, the proba-
bility of which may depend on genotype. Upon emergence, females (F) become mated in
the presence of male mosquitoes (M), and oviposit at an age-independent (though pos-
sibly time-dependent) rate until they die. If there are no adult males, newly emerging
females transfer to an unmated adult female (U) compartment, where they remain until
death or successful mating if males become available.

The system of ODEs describing the deterministic lifecycle model are solved at their
non-trivial equilbrium to provide initial conditions for simulations in MGDrivE 2. These
ODEs are a limiting case of the stochastic continuous-time Markov chain (CTMC) model,
when populations are large (for technical conditions, see [96]). In our presentation of the
ODEs and their equilibrium solutions, we ignore indexing by genotype because, for most
simulations, the equilibrium solution corresponds to a baseline scenario prior to releases
of modified mosquitoes, where mosquito populations are composed solely of wild-types.
These equations also ignore indexing by node. We use (nE, nL, nP ) to denote the number
of sub-stages in each aquatic stage (the Erlang shape parameter). Subscript i refers to
any particular sub-stage, such that eggs are denoted Ei, larvae as Li, pupae as Pi, and
NF , NM the mated adult female and male populations, respectively. Because the non-
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trivial equilibrium will have zero unmated females, there is no NU compartment.
Shape and rate parameters for the Erlang-distributed delays can be constructed as

follows. Consider a random delay with mean 1
q and variance 1

nq2 , where n is an integer.
Such a random delay can be assumed to follow an Erlang distribution, and one way to
construct a model of this system is to build a linear system of n bins, where the rate of
transfer from the i � 1

th to ith bin is given by qn. In a deterministic model, this will be a
linear system of ODEs and, for a stochastic model, a CTMC.

We present the life history model with two different parameterizations of larval den-
sity dependence, which we call the “Lotka-Volterra” and “Logistic” versions, in reference
to ecological theory. Both sets of equations are available in the code, and are provided as
an example of how to use different functional forms of rate equations with the same Petri
net structure.

Lotka-Volterra Density-Dependent Equations

This set of equations uses a linear form of per-capita density-dependent mortality for the
larval instar stages that corresponds to the functional form assumed by [68].

d

dt
E1 = (�NF )� (µE + qEnE)E1

d

dt
Ei = qEnEEi�1 � (µE + qEnE)Ei; i = (2, ..., nE)

d

dt
L1 = qEnEEnE �

 
µL + ↵

X

j

Lj + qLnL

!
L1

d

dt
Li = qLnLLi�1 �

 
µL + ↵

X

j

Lj + qLnL

!
Li; i = (2, ..., nL)

d

dt
P1 = qLnLLnL � (µP + qPnP )P1

d

dt
Pi = qPnPPi�1 � (µP + qPnP )Pi; i = (2, ..., nP )

d

dt
NF = �qPnPPnP � µFNF

d

dt
NM = (1� �)qPnPPnP � µMNM

(B.1)

In this set of equations, the parameter ↵ represents increased mortality rates that occur
as a function of crowding, and has units of time�1area2.

To solve the model with linear density-dependence at equilibrium, we assume that the
equilibrium number of adult female mosquitoes, NF is known, and that all rate constants,
with the exception of ↵ are also fixed; we then solve for all remaining state variables plus
↵, giving a system of 2 + nE + nL + nP equations and the same number of unknowns.
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PnP =
NFµF

nP qP�

NM =
(1� �)nP qPPnP
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µP + qPnP

qPnP
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✓
qEnE

µE + qEnE

◆
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✓
µP + qPnP

qLnL

◆
P1
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EnE

⇣
nL�1
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⌘
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⇣
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nL

⌘
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⌘

E q

⇣
nL�1
nL

⌘

E

n
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L q
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✓
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◆i�1

; i = (2, ..., nL � 1)

↵ =

EnEnEqE
L1

� (µL + nLqL)
P

j Lj

(B.2)

Logistic Density-Dependent Equations

This set of equations uses a rational form of per-capita density-dependent mortality for
the larval instar stages that uses a carrying capacity K parameterization (equivalent to
the logistic model in ecology).
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d

dt
E1 = (�NF )� (µE + qEnE)E1

d

dt
Ei = qEnEEi�1 � (µE + qEnE)Ei; i = (2, ..., nE)

d

dt
L1 = qEnEEnE �

✓
µL

✓
1 +

P
j Lj

K

◆
+ qLnL

◆
L1

d

dt
Li = qLnLLi�1 �

✓
µL

✓
1 +

P
j Lj

K

◆
+ qLnL

◆
Li; i = (2, ..., nL)

d

dt
P1 = qLnLLnL � (µP + qPnP )P1

d

dt
Pi = qPnPPi�1 � (µP + qPnP )Pi; i = (2, ..., nP )

d

dt
NF = �qPnPPnP � µFNF

d

dt
NM = (1� �)qPnPPnP � µMNM

(B.3)

In this parameterization of density-dependent mortality, µL is the natural mortality
rate of larvae without any effects of resource depletion or competition (because whenP

j Lj is small, the mortality is approximately µL).
To solve the model at equilibrium, we assume that the equilibrium number of adult

female mosquitoes, NF is known, and that all rate constants, with the exception of K,
are also fixed; we then solve for all remaining state variables plus K, giving a system of
2 + nE + nL + nP equations and the same number of unknowns.
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(B.4)

In fact, because both of these per-capita density dependent rates of mortality are linear
functions in the number of larvae present (such that the overall mortality is quadratic in
the number of larvae), at equilibrium the parameters ↵ and K are related by the simple
expression:

µL

K
= ↵ (B.5)

Parameters
Due to the continuous-time model structure as well as reformulating the fixed delays of
MGDrivE as Erlang-distributed random delays, parameters used in MGDrivE cannot
be directly “plugged-in” to MGDrivE 2 simulations. In this section we discuss how to
parameterize MGDrivE 2, and discuss similarities and differences with those in [108,
130]. We note that there will be certain mathematical artifacts which prevent a one-to-
one mapping between the two models due to the change between a lagged discrete-time
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Markov chain (DTMC) to continuous-time Markov chain (CTMC) model formulation.
For more details on how these arise and their effects, please consult [44, 5].

Aquatic Survival

Let the probability to survive any aquatic state x 2 {E,L, P} be ✓x. In MGDrivE, these
were given as:

✓x = (1� µx)
Tx (B.6)

In MGDrivE 2, the aquatic state is broken in nx substages to produce an overall
Erlang-distributed dwell time, ⌧ . The Erlang distribution has shape parameter nx and
rate parameter nxqx, where qx =

1
Tx

; therefore E[⌧ ] = 1
qx

= Tx and Var[⌧ ] = 1
nxq2x

. Because
the dwell time ⌧ is a random variable the probability of survival is expressed :

✓x =

Z 1

0

e�µx⌧ Erlang(⌧ ;nx, qxnx)d⌧

✓x =

Z 1

0

e�µx⌧ qxnnx
x

(nx � 1)!
⌧nx�1e�qxnx⌧d⌧

=

✓
qxnx

qxnx + µx

◆nx

(B.7)

If we wanted to match survival probabilities between the two models, we just consider
µx in equation B.7 to be an unknown and solve for it:

µx =
qxnx
nx
p
✓x

� qxnx (B.8)

Note that we can arrive at the solution from equation B.7 by considering not a single
random variable ⌧ but rather the random variables X, Y , where the latter is the time to
death, if death were to occur, and the former is time to advancement out of stage x, were
advancement to occur. Then we want the probability that X < Y :

P (X < Y ) =

Z 1

0

Z ⌧

0

µxe
�µx⌧ Erlang(⌧ 0;nx, qxnx) d⌧d⌧

0

=

✓
qxnx

qxnx + µx

◆nx (B.9)

Intuition behind the solution may be acquired if we take literally the interpretation
of the Erlang distribution as being used in the “linear chain trick”; in this case at each
substage the overall probability of survival is

⇣
qxnx

qxnx+µx

⌘
. Because there are nx substages,

the total survival probability is the product of the nx stages.
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Population Growth Rate

In MGDrivE, the intrinsic population growth rate Rm was defined as “equal to the rate of
female egg production multiplied by the life expectancy of an adult mosquito multiplied
by the proportion of eggs that will survive through all of the juvenile life stages in the
absence of density-dependence” [108].

In MGDrivE it had units of mosquito
�1
day

�1:

RM =

✓
�

µ

◆✓
✓E✓L✓P (1� µ)

✓
1

2

◆◆
(B.10)

It is essentially the same in MGDrivE 2, using the form of ✓x from equation B.6:

RM =

✓
�

µ

◆
(✓E✓L✓P�) (B.11)

Note however, the absence of the 1� µ term; this is because equation B.11 is a contin-
uous time rate; adults are available to oviposit immediately upon emergence, so there is
no need extra mortality between emergence and adulthood [40].

Parameterization from Growth Rates

In MGDrivE the model was typically parameterized such that equilibrium solutions were
available in closed form. The assumptions, outlined in the supplemental information
of [108] and based on the model of [40], are that µE = µL = µP ; that is, the density-
independent mortality of each aquatic stage is the same. In the absence of density-
dependent effects, the total probability of surviving the aquatic stages was (1�µL)

(TE+TL+TP ).
Combined with knowledge of the generation time g, the daily population (geometric)
growth rate rM , and the per-generation geometric growth RM = (rM)

g, µL could be found
in closed form, and from that the remaining unknowns, ↵ and Leq (strength of density
dependence and equilibrium larval population) could also be solved in closed form. The
relevant equations were S51-S55 in [130].

In MGDrivE 2 we want to be able to solve for equilibria under similar assumptions
of equal density-independent mortality across aquatic stages. Let us define µA = µE =

µL = µP so we seek a solution to the unknown constant aquatic stage mortality µA. We
first expand Equation B.11 in terms of Equation B.7:

RM =

✓
�

µ

◆✓
qEnE

qEnE + µA

◆nE
✓

qLnL

qLnL + µA

◆nL
✓

qPnP

qPnP + µA

◆nP

� (B.12)

Here, RM is the per-generation growth rate; in MGDrivE it was (rM)
g. However,

because MGDrivE 2 is a continuous time model, the equations for geometric growth are
not appropriate. The equivalent infinitesimal rate of growth is log (rM) such that RM =

eg log(rM ), which is the left hand side of Equation B.12.
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Finding closed form solutions to this equation is difficult because of the additional
terms introduced by the Erlang delays. Therefore we use Newton’s method in R (with
uniroot) to numerically solve for µA. The input to the function is the daily growth rate
rM and biological parameters �, µ, qE, nE, qL, nL, qP , nP ,�, and it returns the value of µA

such that the following equation holds:

�
elog(rM )g

�
�

�

✓
�

µ

◆✓
qEnE

qEnE + µA

◆nE
✓

qLnL

qLnL + µA

◆nL
✓

qPnP

qPnP + µA

◆nP
�
= 0 (B.13)

Lifespan Modification

In MGDrivE, the genotype-specific parameter ! was used to reduce lifespans of non wild-
type organisms due to fitness costs associated with the homing cassette, or intentional
fitness reduction. However, for MGDrivE 2 we generalize this to modify lifespans in
either direction, relative to wildtype, because experimental data showed evidence of in
some cases substantial lifespan increases from driving certain genetic material in model
organisms [83].

Because wildtype lifespans (x) were geometrically distributed random variables, and
daily survival was given by (1 � µ)!, one could solve for a reduced lifespan, y < x, by
noting the daily mortality probability can be written p = 1 � ((1� µ)!) = 1 � ! + µ!.
Then note that the mean lifespan is y =

1
1�!+µ! . Thus to solve for !, we solve for the root

of the equation 1
1�!+µ! � y = 0, where only ! is unknown.

In MGDrivE 2 adult lifespans are exponentially distributed random variables. To
change the lifespan y (no longer restricted to y < x, y may be any positive number),
consider modifying the mortality hazard by the factor !. To find ! we just solve the
following equation:

y =

Z 1

0

⌧ µ!e�(µ!)⌧d⌧

! =
1

yµ

(B.14)

Movement

In the continuous time model, mosquito movement is given by a rate of movement from
each node i to all other nodes j 6= i. When parameterizing these rates, we need to take into
account that they will be a function of the total probability of a mosquito to leave its natal
habitat i over its lifetime, P . Given that adult mosquitoes are subject to mortality with
rate µ, one can solve for the rate of movement out of node i to anywhere (�) as follows:
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P =

Z 1

0

�e�(�+µ)⌧d⌧

� =
µP

1� P

(B.15)

Then, if from node i, we have some vector of movement probabilities {⇡ij}j 6=i which
give the probability to move from i to j conditional on leaving i, we can set the movement
hazard between to be �⇡ij so we get the right lifetime leaving probability. The new vector
of movement hazards is {�⇡ij}j 6=i.

Genetic Inheritance & Modification
Because MGDrivE 2 builds upon our previous work [130], the data structure used in MG-
DrivE to store all probabilities, fitness costs, etc. related to genotypes (the “inheritance
cube”) is compatible with MGDrivE 2. In fact, we use the same cubes developed in that
model and do not introduce any new cubes in this text.

While data structures can be reused, the fitness modifiers that describe the effect of in-
herited genotype on the life-history have a slightly different interpretation. In MGDrivE,
genotype specific multipliers applied to daily probabilities, they had to be bounded in
order to prevent nonsensical parameter values. If P represents a wild-type daily survival
probability, for example, the modifier ! must be 0 < ! < 1

P . Because MGDrivE 2 is pa-
rameterized directly in terms of hazards, the genotype-specific effects can be any positive
real number. This has the added benefit of making them amenable to parameterization
directly from survival analysis routinely preformed on biological lab experiments which
often estimate relative hazards [83].

B.2 Epidemiological Dynamics
To introduce epidemiological dynamics in MGDrivE 2, we use the SEI-SIS coupled model
of mosquito and human infection dynamics as the basic model (Figure B.1), as more com-
plex vector-host models tend to be modifications of the basic form. This type of model
is known as the Ross-Macdonald model in mathematical epidemiology [109, 138]. MG-
DrivE 2 also supports SEI-SEIR models, which we introduce briefly later.

Here SH refers to susceptible humans, IH to infected/infectious humans, SV to suscep-
tible mosquitoes, (EV,1, ..., EV,n) to incubating mosquitoes, and IV to infectious mosquitoes.
Because only mated adult females undergo gonotrophic cycles which require bloodfeed-
ing, infection dynamics are only present in F .

To investigate the dynamics of the model, it is important to focus on events (transi-
tions) that change state, and the rate at which they occur. For epidemiological dynamics,
the two primary events are mosquito to human transmission and human to mosquito
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transmission, each driven by a Poisson process. Computation of the rate with which each
process occurs in time depends on the per-capita force of infection (FOI) terms: �H and
�V , the rates at which any particular susceptible human gets infected and moves to the
infected class, and the rate at which any particular susceptible mosquito gets infected and
moves to the incubating class, respectively. When multiplied by the total numbers of sus-
ceptible humans or susceptible mosquitoes, respectively, we arrive at the correct rate for
the Poisson processes.

Figure B.1: SEI-SIS pathogen transmission system; orange arrows denote the contribution of each
species to the force of infection term on the other.

SV EV,{1,...,n} IV

SH IH

�V

�H

Transmission Terms
The function �H is the per-capita FOI on susceptible humans, such that �HSH is the total
rate at which infection in the human population occurs in the deterministic model, or the
intensity of the Poisson process for human infections in the stochastic model. Using Ross-
Macdonald parameters as in [138], �H = abIV

⇣
1

NH

⌘
. This is because, if a is the human

biting rate, b mosquito-human transmission efficiency, then the total number of infectious
bites produced by the mosquito population is abIV . Assuming uniform biting on humans,
any particular person has probability 1

NH
of being bitten, so abIV

⇣
1

NH

⌘
is the per-capita

FOI. Multiplication by SH , the total number of humans, gives the total rate of infection in
the human population.

The per-capita FOI in the mosquito population is �V SV . The FOI on susceptible mosquitoes
is written as �V = ac

⇣
IH
NH

⌘
. Again, a is the human biting rate, c is the human-mosquito

transmission efficiency, and IH
NH

is the probability that a bite lands on an infectious human.
Multiplying by the total susceptible vector population, SV , gives the total rate of infection
in the mosquito population.
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Deterministic Approximation
In this section we describe how to develop a mean-field approximation given by a system
of ODEs to the stochastic SEI-SIS system.

Mean-field Approximation of Human Stochastic Dynamics

Here we describe in detail the method used to approximate the stochastic CTMC model
of infection dynamics in the human population, as its state space is smaller and the same
methods can be used for the larger mosquito dynamics. The methods follow those pre-
sented in [152]. Because we are only considering the human population, we drop the H
superscript on state variables.

If we consider the mosquito population to be constant, as it would be at dynamic
equilibrium for the deterministic model, then �H will be a constant and we can decouple
the human SIS dynamics from the mosquito SEI system. We show a diagram of the human
only dynamics in Figure B.2.

Figure B.2: Susceptible-infected-susceptible (SIS) human infection dynamics
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One way to analyze a CTMC is to derive the Chapman-Kolmogorov equations of the
process. These equations give the conditional probabilities to transition to any ending
state from a given starting state, over some time interval. For example if at time t  t0 the
process (represented by X(t)) is in a state x, then the probability to jump to any state x0 is
P (X(t+ t0) = x0|X(t) = x), where P is a distribution over future states. It is often easier
to work with the differential form of these equations, where the derivative is taken with
respect to time, giving a system of differential equations that describes the time evolution
of the Markov transition kernel over state space. Taking the derivative of these equations
will involve expanding P(t + �t), which if expanded as P(t)P(�t), leads to the linear
system of ODEs known as the Kolmogorov forward equations (KFE).

The CTMC is a process which jumps between points in state space (S, I) ! (S 0, I 0).
Put another way, the joint density must be understood as giving the probability to tran-
sition between all unique pairs of ways a number of people can be either susceptible or
infectious, when birth, death, infection, and recovery can change state. Taking into ac-
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count all events that can cause the system state at time t to change, we can derive the KFE
as:

d

dt
P(S, I; t) = �

�
µ(S + I) + µS + µI + �HS � rI

�
P(S, I; t)

+ µ
�
(S � 1) + I

�
P(S � 1, I; t)

+ µ(S + 1)P(S + 1, I; t)

+ µ(I + 1)P(S, I + 1; t)

+ �H(S + 1 )P(S + 1, I � 1; t)

+ r(I + 1)P(S � 1, I + 1; t)

(B.16)

The KFE can be manipulated to derive the deterministic approximation to the CTMC.
Because we assume constant �H , the hazard/rate functions for each event are all first
order in the state variables, the deterministic approximation will accurately describe the
expected value of the stochastic model.

To go about this, we first construct the stoichiometry matrix Su⇥v, where u is dimension
of the state space, and v is the number of unique events in the process. As the dimension
of both state and event spaces are small, we can easily write this as:

S =

 !S S!D I!D S!I I!S

S 1 �1 0 �1 1

I 0 0 �1 1 �1

�
(B.17)

To begin developing our deterministic approximation, we take the time-derivative of
the expectation of our state vector at time t, denoted as X(t) (full derivation in [152]). We
also define h(X(t)) as a v-dimensional column vector of rates/intensities of each event at
that point x in state space.

d

dt
E [X(t)] =

d

dt

X

x2M

xP(x; t), where M is the set of all allowed model states

=

X

x2M

x
d

dt
P(x; t)

=

X

x2M

x
vX

i=1

⇥
hi(x� S(i)

)P(x� Si
; t) + hi(x)P(x; t)

⇤

...

=

vX

i=1

E
⇥
S(i)hi (X(t))

⇤

=

vX

i=1

S(i)E [hi (X(t))]

(B.18)
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After making the substitution y(t) = E(X(t)), the above equation can be recognized
as a matrix ODE giving the deterministic approximation of the system.

d

dt
y(t) =

vX

i=1

Sihi(y(t))

=S
�
h(y(t))

�
(B.19)

Substituting in our stoichiometry matrix S and SIS hazard functions, we derive the
following matrix ODE (writing out the column vector y(t) explicitly in terms of our two
state variables):

d

dt

����
S(t)
I(t)

���� =
����
1 �1 0 �1 1

0 0 �1 1 �1

����

����������

µ
�
S(t) + I(t)

�

µS(t)
µI(t)
�HS(t)
rI(t)

����������

(B.20)

Separating the variables and completing the matrix vector multiplication leads to the
familiar ODE form of the SIS model with demography. We defer the equilibrium solution
until later, when we can solve for the mosquito equilibrium jointly.

d

dt
S(t) = µ

�
S(t) + I(t)

�
�µS(t)� �HS(t) + rI(t)

d

dt
I(t) = �µI(t) + �HS(t)� rI(t)

(B.21)

Mean-field Approximation of Mosquito Stochastic Dynamics

Similar as we did for humans, we consider �V to be a constant and decouple the mosquito
SEI dynamics from the human SIS dyanmics. A flow graph of the mosquito dynamics is
shown in Figure B.3, which shows the possible states a adult female mosquito may exist
in during its life, with death (D) as an absorbing state. As described in the main text, we
partition the exposure (extrinsic incubation period, EIP) into n compartments such that
the overall dwell time is Erlang distributed. As before, because we are purely focused on
the mosquito model, we drop the V superscript for state variables.

For a single adult female mosquito, the transition rates on the edges of the graph spec-
ify the hazard rates of leaving the current state; the aggregated process for a population
of mosquitoes sums the individual hazards by the number of mosquitoes in that state.

Upon emergence, the mosquito enters the susceptible S state, subject to force of infec-
tion �V . Susceptible mosquitoes are also subject to a mortality rate, µ, which is constant
across all compartments, leading to an exponentially distributed lifespan with mean 1

µ .
If the mosquito becomes infected, which occurs at rate �V , it will advance through the
extrinsic incubation period (EIP) prior to becoming infectious.
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Figure B.3: Susceptible-exposed-infected (SEI) mosquito infection dynamics
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The EIP is broken into n bins, with transition from the kth to k + 1
th occurring at

a rate nq. This specification allows an Erlang (Gamma with integer shape parameter)
distributed duration of EIP, with mean 1

�V
and variance 1

n�2
V

. A mosquito survives the

EIP with probability limn!1(
n�V

n�V +µ)
n
= e

� µ
�V . Conditional on survival, the proportion

of mosquitoes that become infectious t days after becoming infected is distributed as
Gamma(t;n, 1

n�V
) =

(n�V )n

(n�1)! t
n�1e�tn�V (using shape/scale parameterization).

Written in matrix form, the infinitesimal generator matrix for a single adult female
mosquito, or a cohort emerging at the same time has the following form:

Q =

2

666666666664

S E1 ... Ek ... En I D

S �(�V + µ) �V . . . 0 . . . 0 0 µ
E1 0 �(n�V + µ) n�V 0 . . . 0 0 µ
...
Ek 0 0 . . . �(n�V + µ) n�V 0 0 µ
...

En 0 0 . . . 0 . . . �(n�V + µ) n�V µ
I 0 0 . . . 0 . . . 0 �µ µ
D 0 0 . . . 0 . . . 0 0 0

3

777777777775

(B.22)
For the model of a single adult female mosquito, or a cohort that emerged at the same

time, the infinitesimal generator (Equation B.22), the KFE is:
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d

dt
P(S; t) = ��V SP(S; t)� µP(S; t)

d

dt
P(E1; t) = �V SP(S; t)� n�VP(E1; t)� µP(E1; t)

...
d

dt
P(Ek; t) = n�VP(Ek�1; t)� n�VP(Ek; t)� µP(Ek; t)

...
d

dt
P(En; t) = n�VP(En�1; t)� n�VP(En; t)� µP(En; t)

d

dt
P(I; t) = n�VP(En; t)� µP(I; t)

d

dt
P(D; t) = µ

�
P(S; t) +P(E1; t) + . . .+P(En; t) +P(I; t)

�

(B.23)

While Equation B.23 describes how the probability distribution over states for a cohort
of mosquitoes changes over time, to account for emergence (which we will need for the
deterministic approximation), we let ✏ give the rate at which females emerge into S from
pupae. For brevity, P(. . . ; t) appearing in the joint density function means that those
elements of the random vector do not change.

d

dt
P(S,E1, . . . , En, I; t) = ✏ P(S � 1, . . . ; t)� ✏ P(. . . ; t)

� �V SP(. . . ; t) + �V (S + 1)P(S + 1, E � 1, . . . ; t)

� (2 + n)µP(. . . ; t)

+ µP(S + 1, . . . ; t) + µP(. . . , E1 + 1, . . . ; t) + . . .+ µP(. . . , I + 1; t)

� (n�V )nP(. . . ; t)

+ qnP(. . . , E1 + 1, E2 � 1, . . . ; t) + . . .+ n�VP(. . . , En + 1, I � 1; t)
(B.24)

As we did for deriving the deterministic approximation of human infection dynamics,
we write out the stoichiometry matrix Su⇥v of dimensions (2+n)⇥ (2n+4). Because each
column in S describes an allowable jump in state space, the total number of terms in the
KFEs should be equal to 2(2n + 4) = 4n + 8; checking this with the derivation in the
previous section allows us to confirm that the equations are correct. Once we have S, the
mean-field approximation follows the same method as in Section B.2.
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S =

2

6666666664

!S S!E1 S!D E1!E2 E1!D ... Ei!Ei+1 Ei!D ... En!I En!D I!D

S 1 �1 0 0 0 . . . 0 0 . . . 0 0 0

E1 0 1 �1 �1 �1 . . . 0 0 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
Ei 0 0 0 0 0 . . . �1 �1 . . . 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
En 0 0 0 0 0 . . . 0 0 . . . �1 �1 0

I 0 0 0 0 0 . . . 0 0 . . . 1 0 �1

3

7777777775

(B.25)
Using the stoichiometry and the KFEs we write down the approximating equations in

matrix ODE form:

d

dt

�����������

S(t)
E1(t)

...
En(t)
I(t)

�����������

= S

���������������

✏
�V S(t)
µS(t)

...
n�VEn(t)
µEn(t)
µI(t)

���������������

(B.26)

Because the emergence rate ✏ and the force of infection on mosquitoes �V are consid-
ered a constants, all jump terms are of zero or first order and the deterministic approxi-
mation will correctly approximate the mean behavior of the stochastic system. For clarity,
we write the system of linear ODEs component-wise:

d

dt
S(t) = ✏� �V S(t)� µS(t)

d

dt
E1(t) = �V S(t)� n�VE1(t)� µE1(t)

...
d

dt
En(t) = n�VEn�1(t)� n�VEn(t)� µEn(t)

d

dt
I(t) = n�VEn(t)� µI(t)

(B.27)

Quasi-stationary distribution for mosquito infection dynamics
In order to solve the coupled mosquito SEI - human SIS model at equilibrium, we need to
be able to solve for the distribution of adult female mosquitoes across states (S,E1, ..., En, I).
This is because, given an endemic equilibrium prevalence in humans, we can compute
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the number of infectious mosquitoes I required to sustain that prevalence of disease.
From that, we can use the quasi-stationary solution of the CTMC model given in Equation
B.22 to compute the total adult female mosquito population and their distribution across
stages, which can then be plugged into the life history equilibrium Equation B.2 or Equa-
tion B.4 to solve the entire model’s endemic equilibrium. We note that for the stochastic
model, this is not a stationary distribution, but a quasi-stationary distribution (QSD), as
there exist absorbing states in the model.

To compute the QSD, note death (D) is an absorbing state and the set of transient states
is T = (S,E1, ..., En, I). Then the random variable representing time to absorption (death)
as a phase-type distribution. The QSD over T will arise by conditioning on survival.
This distribution allows us to distribute mosquitoes across the transient states properly at
equilibrium. We partition Q as [19, 27]:

eQ =

✓
T t
0 0

◆
(B.28)

Here, T|T |⇥|T | is a subintensity matrix of transition rates between transient states, and
t|T |⇥1 is a column vector of exit rates to the absorbing state. We denote the random vari-
able following a continuous phase-type distribution describing time until absorption as
⌧ ⇠ PH(⇡,T) with density function f⌧ (u) = ⇡eTut, where ⇡1⇥|T | is a row vector specifying
the initial distribution over transient states.

Let U = (�T)
�1 be the matrix containing the means of random variables uij denoting

time spent in state j starting from i, prior to absorption. We can use this matrix to define
the QSD over T , denoted as ⇡̃. The j

th element of the quasi-stationary distribution is [36,
37]:

e⇡j =
⇡>Ufj
⇡>Ue

(B.29)

In Equation B.29, fj is a column vector with 1 in the j
th row and 0 elsewhere, and

e is a column vector of 1’s. In our specific case, ⇡ places all mass on state S because
the mosquito cannot emerge from the pupa stage already infected (there is no vertical
transmission of pathogen), so the quasi-stationary distribution can be directly obtained
from U.

Coupled SEI-SIS Equilibrium Solutions

In order to solve for the mosquito population required to produce some equilibrium
prevalence in humans, let NV be the total adult female population, summing over in-
fection states. Writing the SIS human dynamics (Equation B.21) with the expanded form
of �H , we have:
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d

dt
SH(t) = µ

�
SH(t) + IH(t)

�
�µSH(t)�

✓
abIV

✓
1

SH(t) + IH(t)

◆◆
SH(t) + rIH(t)

d

dt
IH(t) = �µIH(t) +

✓
abIV

✓
1

SH(t) + IH(t)

◆◆
SH(t)� rIH(t)

(B.30)

Because we consider both the human population size NH = SH + IH and equilibrium
prevalence x =

IH
NH

known constants, we can solve the model at equilibrium in terms of
the number of infected mosquitoes, such that:

IV =
IH(SH + IH)(r + µ)

abSH
(B.31)

After we have solved for the number of infected mosquitoes IV , we can derive the
total female mosquito population this implies:

IV = NV

✓
(n�V )n�V

(n�V + µV )(�V + µV )

◆

NV = IV

✓
(n�V + µV )(�V + µV )

(n�V )n�V

◆ (B.32)

This total size NV can be spread across the EIP stages via Equation B.29. Given NV , we
can calculate equilibrium solutions for the full lifecycle model by plugging in this number
of adult females into either Equation B.2 or B.4.

SEIR Model
We also present results for an SEIR style model of human dynamics. An additional pa-
rameter, �H , is the rate of progression from EH ! IH , that is, the inverse of the duration
of latency in humans.

d

dt
SH = µNH � �HSH � µSH

d

dt
EH = �HSH � �HEH � µEH

d

dt
IH = �H � rIH � µIH

d

dt
RH = rIH � µRH

(B.33)

Where NH is the total human population and the force of infection on humans follows
the Ross-Macdonald form �H = abIV

�
1

NH

�
. We consider that the total population size NH

and the number of infected and infectious humans IH are known, allowing us to solve
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for RH and EH at equilibrium. It should be noted that for realistic parameter values, this
model only has a non-trivial equilibrium when µ < µNH�rIH

IH
, which results in extremely

unrealistic (short) lifespans. The other two equilibrium points are the trivial disease free
equilibrium when �H = 0 and the normal (�H > 0) case when RH(1) ! NH , that is,
for realistic values of parameters, all surviving individuals will become infected subse-
quently recover. For that reason we do not explicitly calculate the endemic equilibrium.
In general the SEIR human model should be used to evaluate the impact of gene drive
interventions on one-off epidemic situations (eg; does releasing large numbers of modi-
fied mosquitoes 10 days after initial cases appear make a significant difference in final
outcome), rather than for investigating endemic diseases, which require more complex
models with waning immunity.

B.3 Stochastic Petri Net
Here we provide an introduction to the stochastic Petri net modeling formalism used in
MGDrivE 2. Notation in this introduction is borrowed from [152].

Properties of SPN
SPN is a mathematical modeling language to describe discrete event systems, that is, a
system which has a countable set of events (although only a finite number may enabled
at any given time), each of which changes state in some way when it occurs. When events
are assumed to happen after Exponentially-distributed intervals (alternatively, each event
occurs at a constant, age-independent rate), the SPN is isomorphic to a CTMC, and can be
extended to provide a modeling semantics for generalized semi-Markov processes [59].
For practical application, a benefit of adopting the SPN modeling language is that model
representation is separate from numerical simulation. This can allow both for highly
efficient simulation, as the model can be represented via vectors and sparse matrices, and
also utilization of model-agnostic simulation algorithms that take as input a generic SPN
model and output sampled trajectories.

A Petri net is, formally, a bipartite graph, consisting of a set of places, P , and a set of
transitions, T . Directed edges, often called arcs, lead from places to transitions and from
transitions to places. Arcs are allowed to have a positive integer weight. Therefore, if
u = |P| and v = |T |, the set of arcs that connect places to transitions can be denoted by
a non-negative integer matrix Prev⇥u, and the set of arcs connecting transitions to places
by Postv⇥u.

This bipartite graph so far defines the structural properties of the model. When trans-
lating conceptual models to the language of Petri nets, the places define the allowable
state space of the model. However, in order to describe any particular state of the model,
the Petri net must be given a marking, M , which is given by associating with each place
a non-negative integer number of tokens, such that M 2 Nu. Put more concretely, we
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can imagine taking some number of indistinguishable tokens and assigning each one to a
place in the set P ; the resulting vector in Nu is a valid state of the model. In the language
of CTMCs the marking M is referred to as the state, and we use the terms interchangeably.

Each transition k 2 T is allowed to change state when it occurs (fires). A transition k is
enabled in some marking M and may fire when there are tokens on the place correspond-
ing to each input arc (kth row of Pre) greater than or equal to the arc weight. When the
transition fires, M is updated by removing tokens from M given by the set of input arcs
and weights, that is, according to Pre. It then adds tokens in M according to its output
arcs and weights in Post. This can be represented succinctly if we let A = Post � Pre,
then if rk is a column vector of zeros with a one at place k, the state can be updated as
M 0

= M + Srk, where S = A|. S has dimensions u⇥ v, so it maps vectors in the space of
events to vectors in the space of marking updates.

So far we have described a deterministic Petri net. However, associate with each tran-
sition a clock that tells us when k will fire, if it were the first of all enabled transitions to
fire and let the process associated with k be a Poisson process Yk with intensity �k which
may depend on the current time t, and current marking M(t). Finally, if we let all enabled
processes Yk compete under a race condition by sampling the next firing time for each
clock, ⌧k, such that k0

= argmink{⌧k}, then k0 is the event that fires. In that case the system
time is updated to t0 = t + ⌧k0 and the state as M(t0) = M(t) + Srk0 . It can be rigorously
proven that such a construction is a continuous-time Markov chain [24].

An advantage of this construction of a Markov process rather than the more traditional
presentation via the infinitesimal generator matrix is that processes with infinite state
spaces can be compactly represented, because only a finite number of clock processes
compete at any given time. In this way, infinite birth death processes, for example, can be
succinctly represented graphically and simulated. Additionally, because most transitions
only have a few input and output arcs, the matrices Pre and Post, which define the
bipartite graph, will be highly sparse.

SPN Architecture
We have developed algorithms to construct Petri nets for arbitrary genetic inheritance
cubes [130], metapopulation structure, Erlang-distributed aquatic stages, infection dy-
namics, and human populations. Once built, and augmented with parameters for hazard
functions in T , the resulting SPN model can be numerically evaluated via a variety of
sampling algorithms. We describe the SPN architecture without considering epidemio-
logical dynamics, as those are considered in a later section.

MGDrivE 2 has been designed with consideration for computational efficiency. We
store the matrices defining the SPN in sparse matrix format using the Matrix R package
[15]. In addition, when constructing T , we check the input inheritance cube. If the vi-

ability mask (⇤) indicates a certain cross will never produce viable offspring, or if the

probability of offspring for a cross is zero (Ih), that transition is not instantiated in the
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SPN.
Generation of the set of places P for a single node is simple, and requires the user

to pass the inheritance cube Ih, and the shape parameters for Erlang dwell distributions
associated with egg, larval, and pupal aquatic stages to the function. The function returns
the named set of places, along with an indexing data structure containing the indices of
places stratified by life stage and genotype, both for easy debugging and the construction
of arcs when the set of transitions is made. We note that SPN defines no particular order
on the set P but we “unroll” the set hierarchically into a vector first by node, life-stage,
and genotype, for easier comprehension and testing.

After P is constructed, we can construct transitions T , using P as input, as well as

the aforementioned shape parameters of aquatic dwell times and Ih. While not strictly
necessary for SPN, we adopted several conventions here which simplify later generation
of hazard functions. We first defined “classes”, K, of transitions, such that, for example,
all transitions related to oviposition were grouped together. Each class K then is a proper
subset of all transitions, K ⇢ T , and

S
i Ki = T . Each individual transition in a set kj 2 Ki

has an associated R function which returns a data structure containing, at minimum, an
index vix, indicating where in T , kj can be found, a label, a character string giving
the name of the transition, s and s w, indices of input arcs (the places they originate at),
and weights respectively, o and o w, the same for output arcs from this transition back
to places, and class, giving the name of the class Ki as a character string this transition
belongs to. To make T , we iterate through classes Ki, and kj within classes, storing each
transition’s packet of information in the vector T . Because each transition “knows” its
input and output arcs, as well as their weights, adding new classes of transitions is simple,
as a single function merely needs to be written that takes in places and perhaps genetic
information, and returns this minimal packet of information.

Once P and T are constructed, the SPN is formally constructed. However for compu-
tation, we prefer to store a more compact representation of the net. It is at this point we
build the sparse matrices Pre and Post. To do so, we simply allocate two v ⇥ u sparse
integer matrices, then iterate through k 2 T . We use the information packet described
earlier, specifically s, s w and o, o w, to fill in the non-zero entries of Pre and Post re-
spectively. Because we have already induced ordering on P and T , the matrices have the
right sorting of rows and columns.

Hazard Functions
To build a CTMC model from the Petri net (SPN), each transition must have a hazard
function �k (t,M(t)). In the code implementation of MGDrivE 2, each hazard first checks
if that transition is enabled, if not it immediately returns zero and else computes the haz-
ard rate. We allow �k to be a function of time for simulation of inhomogeneous processes.
Because in this manuscript we consider only Markovian systems, hazards only depend on
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the current system state M(t) and time t. Unless otherwise noted, we use �k to generically
denote the joint hazard and enabling function for process Yk.

This use of CTMC is known as a Markov population process, and has been used to
model stochastic population models for some time now [93]. However, it can be use-
ful to include exogeneous stochastic processes into the model, which may affect hazard
rates. These processes could represent, for example, environmental processes such as
temperature or rainfall. Knowledge of these processes would be necessary to evaluate
the hazard functions. Consider the situation in which process Yk is affected by environ-
mental stochasticity represented by z so that the hazard is �k (t,M(t), z); for concreteness,
consider z to be temperature and k to be larval mortality. We must also consider a specific
function of interest (f ) to be computed from trajectories of MGDrivE 2, which we would
like to estimate via Monte Carlo, to average over uncertainty in z. Again for concrete-
ness, we could consider functions like time required for a specific gene to fixate, or time
required for pathogen extinction in a specific node. To propagate uncertainty from arbi-
trary exogenous processes, we simply draw many samples from z and then run Monte
Carlo simulation of MGDrivE 2 on each realized exogenous trajectory; we can imagine
an “outer” loop sampling a trajectory z̃ from z and an “inner” loop computing Monte
Carlo estimates of f , conditioning on z̃ as deterministic input to �k (t,M(t), z̃). Because
z is by definition an exogeneous source of stochastic variation, the probability factorizes
such that this method properly propagates uncertainty into our estimation of f . For spe-
cific functions, more efficient methods than naive Monte Carlo may exist, and we refer to
the panoply of variance-reduction methods covered in [23].

In MGDrivE 2, once the Petri net (P , T ) is constructed (and we have parameters ✓

and inheritance cube Ih), we can construct the v-dimensional column vector of hazard
functions ⇤. Specifically, we store the individual �k functions as function closures within
the vector⇤, as functions are first class objects in R. We note that this can be easily adapted
to other programming languages, for example in C++98, functors could be used in lieu
of closures, and in C++11/14, lambda functions could achieve the same effect [113]. Each
closure stores only the elements of ✓ and Ih necessary for computation of the hazard.
We note that the function closure based storage of hazard functions means that it is easy
to include additional computational state for specialized algorithms or more complex
processes, such as enabling times or integrated hazards.

So far we have described what the fully constructed object ⇤ is, but not yet how we
implemented it in code, which we do now. Much like the construction of T , we rely heav-
ily on our assignment of transitions into classes; after allocating memory for a v-length
vector, we begin iterating through k 2 T . First, we scan the class of the transition; this
tells us the appropriate function factory to call that will return �k, the function closure
that computes the hazard. We pass the packet k to the function factory, along with pa-
rameters ✓. The packet provides all the necessary information to set up the enabling rule,
and the function factory pulls out the necessary components of ✓ to compute that specific
hazard, which are stored in the function closure. All returned hazard functions �k accept
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only two arguments, t time, and M , the state (marking).
We allow the option for users to select if the vector of hazard functions shall be “ex-

act” or “approximate”. Exact hazards are required for both sampling algorithms that
simulate integer numbers of tokens, in which case enabling rules make sense. In this case
evaluation of �k proceeds as described above. If however a continuous-state approxima-
tion is desired, either from a deterministic interpretation of the hazard functions as rate
functions for mean-field approximation, or from a drift-diffusion stochastic differential
equation, we ignore the check for sufficient tokens on input arcs, as the model no longer
has an integer state space.

Numerical Simulation
One key feature of the SPN representation of MGDrivE 2 is the convenient decoupling of
model specification and sampling method, allowing model-independent development of
fast algorithms. This lets us benefit from extensive work into optimized stochastic sam-
pling algorithms from the chemical kinetics and physical simulation communities, many
of which can be used nearly “off the shelf” with a place/transition model representation.
We refer to the encyclopedic book by [107] as one of many resources for fast simulation
routines.

Currently we do not support exact simulation of inhomogeneous processes, although
approximate simulation is best done via the Poisson time-step method, where inhomo-
geneous terms are discretized to a piecewise constant step function with the same �t as
used in the approximate time-step. Exact simulation of inhomogeneous processes is dif-
ficult, although an algorithm based on random time change was presented by [7], and
[148] investigate exact and approximate rejection-based methods. We leave the incorpo-
ration of these or similar sampling methods into the MGDrivE 2 framework for future
development.

We provide example code to numerically integrate deterministic trajectories, based on
the deSolve R package of ODE solvers [142], using a mean-field approximation to the
stochastic system [21]. We also provide several stochastic samplers for both exact and
approximate trajectories, inspired by the smfsb R package [152].

In certain situations, when populations are large (that is, no places have a small num-
ber of tokens) and hazard functions are close to linear (guaranteed when using mass-
action forms), it may be the case that stochastic fluctuations can be safely neglected. [96]
made rigorous the conditions under which CTMCs may converge to ODEs. Such an ap-
proach essentially simplifies to considering the hazard functions as rate functions, and
the state M(t) as a continuous quantity (motivating the ability for the user to select gener-
ation of “approximate” ⇤) [53]. Even when stochastic fluctuations are non-negligible such
that deterministic approximation is not valid, it may be useful to provide the option for
deterministic integration of the SPN model for quick visualization of transient behavior,
or for sensitivity analysis.
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At present we only offer Gillespie’s “direct-method” to sample statistically exact tra-
jectories, a well known method to sample from stochastic models [57]. Being an exact
sampler, it samples integer-valued trajectories, and thus uses exact hazards and enabling
functions. Briefly, the method works via a simple update step where first the vector of
hazard functions is evaluated, h(t) = ⇤ (t,M(t)). The Markov transition kernel to the
next state can be factored such that the sampler first samples the random variable ⌧ de-
scribing when the jump occurs, relative to t, ⌧ ⇠ Exp (

P
k hk(t)). Next it samples which

process caused the jump, and updates the system accordingly, that is, it selects the pro-
cess causing the jump, k0 with probability hk0 (t+⌧)P

k hk(t+⌧) . Then update the marking according
to matrix equation M 0

(t + ⌧) = M(t) + Srk0 . In general, large populations of mosquitoes
and/or large numbers of nodes would render exact simulation practically impossible, if,
for example many tens of thousands of individual events needed to fire each day, each
requiring a system update and resampling of random variables for each event, both of
which are computationally expensive tasks.

In addition, there are two approximate stochastic sampling algorithms that have been
implemented for use in MGDrivE 2, and we anticipate future algorithmic development
focusing on implementation of improved approximate samplers. The first of these is a
simple fixed size tau-leaping method, the Poisson time-step (PTS), reviewed in [152] and
first introduced by [55]. The basic concept behind the PTS algorithm is that if none of
the hazard functions change significantly over a small time step, say [t, t +�t), then one
can approximate the state change by sampling a Poisson distributed random variable
for enabled each k 2 T , such that the elements of the r vector indicating how many
times each event fired are each independent Poisson random variates with rate parame-
ter �k (t,M(t))�t. Then the matrix update can be preformed with those sampled Poisson
variates in the vector r, system time updated, and another iteration preformed. The extent
to which the assumption that hazards do not change significantly over the interval deter-
mines the quality of the approximation. The original tau-leaping algorithm has spawned
many variations on the theme, including some with strong probabilistic guarantees of
approximation quality [8], which may be incorporated for MGDrivE 2.

The second approximate stochastic sampling algorithm is based on a continuous state
stochastic differential equation (SDE), known as the diffusion approximation. We offer a
brief heuristic explanation of the algorithm but a detailed derivation can be found in [58].
If one starts with the integer valued Markov jump process, it will have a set of differential
equations known as Kolmogorov’s forward equations (KFE), sometimes referred to as
(chemical) Master equation. The KFE gives the complete time-evolution of the probability
mass function across allowable system states, and is usually intractable. It is possible (see
[149] for a brief overview) to generate a partial differential equation (PDE) second-order
approximation to the KFE known as the Fokker-Planck equation, which approximates
the probability mass function with a probability density function evolving according to
first order drift and second order diffusion coefficients. Considering the marking M as a
continuous state, the Fokker-Planck equation can be interpreted as a u-dimensional SDE
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driven by independent Wiener processes. While advanced techniques for simulation of
SDEs exist [132], we implement the simple Euler-Maruyama method in MGDrivE 2.
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Appendix C

Brief Description of Step Operators

Step operators are a convenient way to simplify the expression of Kolmogorov forward
equations (master equations; henceforth KFE) for jump processes. We introduce them
here in the context of continuous-time Markov chains, following the exposition of [149].
Mathematically, the step operator E is a linear operator on a function f(n) where n 2 Z.
Because the probability flux on the right hand side of the differential KFE has contri-
butions from all states with nonzero transition probabilities, and states are expressed as
vectors of integers, the step operator E can be used to write KFEs. The main advan-
tage of using step operators to write the KFE is that one no longer needs to keep track
of what specific elements of the probability distribution the flux is flowing in and out of,
one simply needs to keep note of how many “particles” of each type (corresponding to
specific positions in the state vector) are being created and destroyed for each event that
is allowed to change system state.

The step operator E is defined as below; for events which may cause the creation or
destruction of more than one particle, note that E is defined for powers l. Most important
for actually writing KFEs is the final relation, (El � 1), which simplifies the inbound and
outbound probability fluxes into a single term.

E[f(n)] = f(n+ 1)

El
[f(n)] = f(n+ l)

E�1
[f(n)] = f(n� 1)

�
El � 1

�
[f(n)] = El

[f(n)]� f(n)

(C.1)

When writing KFEs with the step operator defined in Equation C.1, note that to repre-
sent an event which creates l particles, one would use

�
E�l � 1

�
[f(n)]. This is because the

probability flux will include an incoming component from the state with l fewer particles,
and the outbound flux from the current state.

Finally, for systems with more than one type of particle (the state space is a vector
with more than one element), we can compose step operators to represent events which
simultaneously change multiple particle counts simultaneously. Examples include pre-
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dation in the stochastic Lotka-Volterra model, where predation simultaneously increases
the count of predators and decreases the count of prey, or infection in simple epidemic
models, which decrease the count of susceptibles and increases the count of infecteds. For
an event which changes the count of type 1 and 2 particles by l1 and l2, one would use
Equation C.2. To evaluate El1

1 E
l2
2 [f(n)], one applies the operators on f(n) one after the

other.
�
El1

1 E
l2
2 � 1

�
[f(n)] = El1

1 E
l2
2 [f(n)]� f(n) (C.2)

To illustrate use of the step operator E, we demonstrate their use on a Lotka-Volterra
model. In this model there are two types of particles, prey X and predators Y . There are
three events, which can be written using notation from chemical kinetics as follows:

X ! X +X

X + Y ! Y + Y

Y ! ;
(C.3)

These correspond to reproduction of prey, predation, and death of predators. At any
point in time, the probability of the state n1 prey (X) and n2 predators (Y ) at time t is
denoted as P (n1, n2; t). Reproduction of prey has per-capita rate �. Predation occurs
according to simple mass-action with reaction constant �. Finally, death of predators
occurs with per-capita rate µ.

Now we write out the KFE and repeatedly apply the step operator until we get back
to the familiar component-wise form.
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d

dt
P (n; t) =

prey reproducez }| {
(E�1

1 � 1)[�n1P (n1, n2; t)]

+

predator diesz }| {
(E2 � 1)[µn2P (n1, n2; t)]

+

predationz }| {
(E1E

�1
2 � 1)[�n1n2P (n1, n2; t)]

= E�1
1 [�n1P (n1, n2; t)]� �n1P (n1, n2; t)

+ E2[µn2P (n1, n2; t)]� µn2P (n1, n2; t)

+ E1E
�1
2 [�n1n2P (n1, n2; t)]� �n1n2P (n1, n2; t)

= �(n1 � 1)P (n1 � 1, n2; t)� �n1P (n1, n2; t)

+ µ(n2 + 1)P (n1, n2 + 1; t)� µn2P (n1, n2; t)

+ �(n1+1)(n2 � 1)P (n1 + 1, n2 � 1; t)� µn1n2P (n1, n2; t)

= (n1 � 1)�P (n1 � 1, n2; t)� n1�P (n1, n2; t)

+ (n2 + 1)µP (n1, n2 + 1; t)� n2µP (n1, n2; t)

+ (n1 + 1)(n2 � 1)�P (n1 + 1, n2 � 1; t)� n1n2�P (n1, n2; t)

=

outbound probability fluxz }| {
�(n1� + n2µ+ n1n2�)P (n1, n2; t)

+

inbound (prey reproduce)z }| {
(n1 � 1)�P (n1 � 1, n2; t)+

inbound (predator dies)z }| {
(n2 + 1)µP (n1, n2 + 1; t)

+

inbound (predation)z }| {
(n1 + 1)(n2 � 1)�P (n1 + 1, n2 � 1; t)

(C.4)
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Appendix D

Derivation of Final Epidemic Size
Distributions

Another metric to check that our ABM is sampling from the correct process is to compare
the final epidemic size distribution computed by Monte Carlo simulation of the ABM to
an exact analytic result. We rely on the method presented in [135] and well described in
[9] to compute final size distributions for SIR epidemic models with general distributions
of infectious periods.

For a SIR epidemic where infectious periods F have a moment generating function
(MGF) which is  F (t) = E[etF ] and where the initial states are given as S(0) = N, I(0) =

m, the rate of effective contact by �, then the final epidemic size vector is p(N)
= (p(N)

0 , . . . , p(N)
N )

where p(N)
)k is the probability that k of the initial N susceptibles are infected when the

epidemic ends. From [13], these probabilities are related by the recursive equation:

kX

i=0

2

64
�
k
i

�
p(N)
i

�
N
i

� h
 F

⇣
� (N�k)�

N

⌘ii+m

3

75 = 1 (D.1)

Using Equation D.1, we calculate an explicit recursive formula for the probabilities
p(N)
k , k = 0, . . . , N . We begin by using

�k
i

�
/
�N
i

�
=

�N�i
k�i

�
/
�N
k

� to get:

kX

i=0

2

64
�
N�i
k�i

�
p(N)
i

�
N
k

� h
 F

⇣
� (N�k)�

N

⌘ii+m

3

75 = 1 (D.2)

Then pull 1/
�N
k

� out of the sum and multiply both sides by
�
N
k

�
:

kX

i=0

2

64
�
N�i
k�i

�
p(N)
ih

 F

⇣
� (N�k)�

N

⌘ii+m

3

75 =

✓
N

k

◆
(D.3)
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Next pull out the final summation of the left hand side:

k�1X

i=0

2

64
�
N�i
k�i

�
p(N)
ih

 F

⇣
� (N�k)�

N

⌘ii+m

3

75+
p(N)
kh

 F

⇣
� (N�k)�

N

⌘ik+m =

✓
N

k

◆
(D.4)

Now multiply all terms through by
h
 F

⇣
� (N�k)�

N

⌘ik+m

, noting that we can move the
power in the denominator up to the numerator by adjusting the power by (k +m)� (i+
m) = k � i:

k�1X

i=0

"✓
N � i

k � i

◆
p(N)
i


 F

✓
�(N � k)�

N

◆�k�i
#
+p(N)

k =

✓
N

k

◆
 F

✓
�(N � k)�

N

◆�k+m

(D.5)

Finally, solve for p(N)
k , the desired probability:

p(N)
k =

✓
N

k

◆
 F

✓
�(N � k)�

N

◆�k+m

�
k�1X

i=0

"✓
N � i

k � i

◆
p(N)
i


 F

✓
�(N � k)�

N

◆�k�i
#

(D.6)

In order to turn Equation D.6 into an algorithm, we note that when k = 0 the sum
drops out and the equation simplifies to:

p(N)
0 =  F (��)m (D.7)

Probabilities for k = 1, . . . , N can then be solved for recursively. It should be noted that
for N much larger than 100, the algorithm given by Equation D.6 suffers from numerical
instability, and so should only be used for small populations. Because the equations are
defined solely in terms of the MGF of the infectious period distribution, the probabilities
from Equation D.6 can be used for both the Markovian and non-Markovian SIR model.
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Appendix E

Principled simulation of agent-based
models in epidemiology: supplemental
figures

Figure E.1: Truncated Exponential distribution of infection time on time step where the b⌧S!I

is accepted. An Exponential distribution truncated at �t with rate parameter � has the density
f(⌧ ;�,�t) = �e��⌧

1�e���t .



Appendix E. Principled simulation of agent-based models in epidemiology:

supplemental figures 119

Figure E.2: Nonhomogeneous diurnal intensity function. Continuous intensity function �̃(t)
(red solid line) and piecewise approximation �(t) (purple step function; approximation used for
simulation is on much finer time-step, coarse approximation is purely for visual effect).
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Figure E.3: Comparison of simulation trajectories from exact stochastic simulation and ABM.
Panel A: Markovian SIR trajectories. Panel B: non-Markovian SIR trajectories. For each panel
we drew 104 trajectories from the MNRM and ABM simulation algorithms and summarized the
results by plotting the mean and 95% simulation interval. The MNRM trajectory is denoted by
dashed lines and the ABM by solid lines.




