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Abstract: The plasma membrane is a site of conflict between host defenses and many viruses.
One aspect of this conflict is the host’s attempt to eliminate infected cells using innate and adaptive
cell-mediated immune mechanisms that recognize features of the plasma membrane characteristic of
viral infection. Another is the expression of plasma membrane-associated proteins, so-called restriction
factors, which inhibit enveloped virions directly. HIV-1 encodes two countermeasures to these host
defenses: The membrane-associated accessory proteins Vpu and Nef. In addition to inhibiting
cell-mediated immune-surveillance, Vpu and Nef counteract membrane-associated restriction factors.
These include BST-2, which traps newly formed virions at the plasma membrane unless counteracted
by Vpu, and SERINC5, which decreases the infectivity of virions unless counteracted by Nef. Here we
review key features of these two antiviral proteins, and we review Vpu and Nef, which deplete
them from the plasma membrane by co-opting specific cellular proteins and pathways of membrane
trafficking and protein-degradation. We also discuss other plasma membrane proteins modulated
by HIV-1, particularly CD4, which, if not opposed in infected cells by Vpu and Nef, inhibits viral
infectivity and increases the sensitivity of the viral envelope glycoprotein to host immunity.

Keywords: HIV-1; Vpu; Nef; BST-2; SERINC5; CD4

1. Introduction

The host–pathogen relationship typically involves a conflict between host-defenses and viral
countermeasures, which over time and consequent to cross-species transmission often leaves telltale
genetic signatures [1]. Much of this conflict, particularly in the case of enveloped viruses, plays out
on the plasma membrane. One aspect involves an effort by the host to kill infected cells before they
substantially amplify the virus. This cell-mediated immune surveillance can be mediated by cytotoxic
T lymphocytes (CTL), which recognize foreign viral peptides displayed at the cell surface by class
I MHC molecules [2], or by natural killer (NK) cells, which recognize abnormalities in the plasma
membrane as well as viral envelope glycoproteins such as HIV-1 Env once on the cell surface and
bound by specific antibodies [3]. Moreover, the host cell can express, either constitutively or in response
to interferons, various proteins with direct antiviral activity, some of which act on HIV-1 virions as
they assemble and bud from the plasma membrane [4–7].

HIV-1 encodes two membrane-associated “accessory” proteins to counteract these host defenses:
Nef and Vpu down-regulate class I MHC, inhibiting antigen presentation and CTL activity [8,9];
they down-regulate NK receptors [10,11]; and they down-regulate cell-intrinsic host antiviral proteins,
so-called restriction factors, that directly inhibit the release or infectivity of progeny virions [4–7].
The best characterized of these restriction factors are BST-2, which traps budded virions on the surface
of infected cells and is counteracted by Vpu [4,5], and SERINC3 and SERINC5, which inhibit the
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infectivity of progeny virions and are counteracted by Nef [6,7]. These antiviral host proteins were
discovered through quests to explain in vitro virologic phenotypes: The efficient release of cell-free
virions from most cell types requires vpu [12,13], whereas optimal virion-infectivity requires nef [14].
Over two decades of detailed studies have characterized the Vpu and Nef proteins: Their timing
of expression, their diverse activities and cellular targets, their structures, and their mechanisms
of action. These mechanisms center on their abilities to act as non-enzymatic adaptors that recruit
cellular components of the membrane protein quality control and trafficking machinery to their targets.
The result is the depletion of proteins from the plasma membrane that are deleterious to the virus.
Remarkably, the targets of Vpu and Nef include CD4, the virus’s primary receptor [15,16]. Here,
we review the key plasma-membrane associated restriction factors, BST-2 and the SERINC proteins,
as well as the antiviral effects of CD4 during virion-production. We also review Vpu and Nef, including
their cellular cofactors and the key protein-protein interaction interfaces through which these viral
proteins act as membrane-associated adaptors. Finally, we introduce the plethora of changes to the
plasma membrane recently cataloged, particularly by high-depth proteomic analyses, and how the
significance of these changes might be assessed.

2. The Key Plasma Membrane Proteins that Inhibit HIV-1 Release and/or Infectivity and How
They Work

2.1. BST2: Historical Basis of Discovery (The Inhibitor That Vpu Counteracts to Enhance Virion-Release);
Protein Topology; Mechanism of Action

BST-2 (bone marrow stromal antigen-2) is constitutively expressed in many cell types including
the lymphoid and myeloid cells that host HIV-1 in vivo [17], but like other classic restriction factors it is
interferon-inducible [18]. It is a potent restrictor of several families of enveloped viruses that assemble at
the plasma membrane, including retroviruses, filoviruses, γ-herpesviruses, and arenaviruses [4,5,19–21].
BST-2 has several aliases including Tetherin, a renaming of the protein based on its ability to trap
or “tether” budded virions on the surface of the cell that produced them; PDCA-1, plasmacytoid
dendritic cell antigen-1 (a prominent surface protein on these cells but not specific to them); and CD317.
BST-2 is a dimeric type II transmembrane glycoprotein that associates with lipid rafts. BST-2’s
topology as a transmembrane protein is unusual in that its C-terminal end is modified by a
glycosyl-phosphatidylinositol (GPI) anchor (Figure 1) [22]. This topology enables BST-2 to insert one
membrane anchor—usually the transmembrane domain—in the plasma membrane, while inserting
the other—usually the GPI anchor—in the lipid envelope of the virion [23]. Between these two
membrane anchors, the ectodomain of the BST-2 dimer forms a disulfide-linked, parallel coiled-coil [24].
This presumably rigid linear structure enables BST-2 to partition one end in the plasma membrane and
the other in the virion during the budding process, physically linking the virion to the cell surface
and preventing its release. These key features—a transmembrane domain, a coiled-coil ectodomain,
and a GPI anchor—are necessary and sufficient for virion-trapping [25]. The identification of BST-2 as
a restriction factor solved a long-standing virologic mystery: How did Vpu stimulate the release of
HIV-1 virions [13]? The answer was by antagonizing BST-2 [4,5]. To do this, the Vpu proteins of group
M HIV-1 bind BST-2 via a direct interaction between the transmembrane domains of each protein (see
below and Figure 4) [26–28]. Vpu also utilizes sequences in the N-terminal region of the cytoplasmic
domain of BST-2 (as well as sequences in its own cytoplasmic domain) to remove BST-2 from the
plasma membrane and ultimately degrade it (Figures 3 and 6). This region of BST-2 contains putative
ubiquitin acceptor sites—sequence STS—and a clathrin adaptor protein (AP) binding motif—sequence
YxYxxV (Figure 6)—each of which contributes to susceptibility to Vpu [29,30]. Notably, the mRNA of
BST-2 encodes an internal start codon, the use of which yields a short isoform missing the N-terminal
12 cytoplasmic residues including the STS and YxYxxV sequences [31]. Because it lacks the YxYxxV
endocytosis-motif, this short isoform is expressed at higher levels on the cell surface than the long
isoform, and it is a more potent inhibitor of virion-release. The short isoform is also relatively refractory
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to modulation by Vpu. These characterizations of the short and long isoforms are based on mutational
analyses; the extent to which mixed dimers exist and their functional attributes are unclear.

Cells 2019, 8, 1020 3 of 25 

 

characterizations of the short and long isoforms are based on mutational analyses; the extent to which 
mixed dimers exist and their functional attributes are unclear.  

Virion-entrapment by BST-2 has immunologic consequences. To the extent that entrapped 
virions remain on the cell surface, they increase the surface-concentration of the viral Env 
glycoprotein, rendering the cells more susceptible to immune surveillance by antibody dependent 
cellular cytotoxicity (ADCC, discussed further below in the context of CD4) [32,33]. On the other 
hand, to the extent that entrapped virions are internalized into endosomes, they might support 
endosomal sensing of infection or the presentation of viral antigens by MHC [34,35]. Moreover, BST-
2 activates NF-κB, and, at least in the case of retroviruses, this activity is augmented by virion-
entrapment [36,37]. This property supports a role for BST-2 as a virus-sensor. The activation of NF-
κB requires tyrosine 6 but not tyrosine 8 of the YxYxxV sequence, suggesting that the endocytosis of 
BST-2 is not required for signaling activity. Lastly, BST-2 is a ligand for immunoglobulin-like 
transcript 7 (ILT-7), a receptor on plasmacytoid dendritic cells (pDCs) that negatively regulates the 
production of type I interferons in response to signaling through TLRs [38,39]. This immune evasion 
activity might explain the presence of BST-2 on many cancer cell types. Despite causing the net 
removal of BST-2 from the cell surface, Vpu enables HIV-1 infected T cells to inhibit the production 
of interferons by pDCs in a manner dependent on BST-2 [40]. It apparently does this by directing a 
subpopulation of residual BST-2 away from virion-assembly sites, where it remains free to interact 
directly with ILT-7. BST-2 is found not only on the plasma membranes but also in endosomes. In 
macrophages, it co-localizes with virions in large virion-containing compartments, but the 
significance of this is unclear [41]. 

 
Figure 1. The cellular proteins BST-2, SERINC5, and CD4. BST-2 has a short cytoplasmic domain and 
two membrane anchors, a transmembrane (TM) domain, and a glycosyl-phosphatidylinositol (GPI) 
anchor, separated by an extracellular coiled-coil. This topology enables BST-2 to partition one end—
usually the GPI anchor—into the lipid bilayer of the budding virion while the other end remains in 
the plasma membrane. The short cytoplasmic domain of BST-2 contains sites for ubiquitination (STS), 
and a clathrin mediated endocytic motif, YxYxxV. The BST-2 ectodomain has two N-linked 
glycosylation sites, shown in tan color. SERINC5 is a multi-pass transmembrane protein containing 
10 transmembrane domains, 5 extracellular loops, and 4 intracellular loops. The single N-linked 
glycosylation site is indicated. ICL4 contains determinants of sensitivity to Nef: L350 and I352 and a 
palmitoylation motif, CCFCS, support Nef-responsiveness, whereas the EDTEE sequence, which 
binds clathrin adaptor proteins, seems to inhibit it. CD4 is a glycosylated, dimeric integral membrane 
protein belonging to the immunoglobulin superfamily. It has four extracellular Ig domains (D1–D4); 
domain D1 interacts with HIV envelope glycoprotein. CD4 contains two glycosylation sites. The 
membrane proximal cytoplasmic region is α-helical and contains hydrophobic residues (I410, L413, 
L414) that facilitate the interaction with clathrin adaptor proteins and are required for Nef-mediated 
down-regulation. 

Figure 1. The cellular proteins BST-2, SERINC5, and CD4. BST-2 has a short cytoplasmic domain
and two membrane anchors, a transmembrane (TM) domain, and a glycosyl-phosphatidylinositol
(GPI) anchor, separated by an extracellular coiled-coil. This topology enables BST-2 to partition one
end—usually the GPI anchor—into the lipid bilayer of the budding virion while the other end remains
in the plasma membrane. The short cytoplasmic domain of BST-2 contains sites for ubiquitination (STS),
and a clathrin mediated endocytic motif, YxYxxV. The BST-2 ectodomain has two N-linked glycosylation
sites, shown in tan color. SERINC5 is a multi-pass transmembrane protein containing 10 transmembrane
domains, 5 extracellular loops, and 4 intracellular loops. The single N-linked glycosylation site is
indicated. ICL4 contains determinants of sensitivity to Nef: L350 and I352 and a palmitoylation motif,
CCFCS, support Nef-responsiveness, whereas the EDTEE sequence, which binds clathrin adaptor
proteins, seems to inhibit it. CD4 is a glycosylated, dimeric integral membrane protein belonging to
the immunoglobulin superfamily. It has four extracellular Ig domains (D1–D4); domain D1 interacts
with HIV envelope glycoprotein. CD4 contains two glycosylation sites. The membrane proximal
cytoplasmic region is α-helical and contains hydrophobic residues (I410, L413, L414) that facilitate the
interaction with clathrin adaptor proteins and are required for Nef-mediated down-regulation.

Virion-entrapment by BST-2 has immunologic consequences. To the extent that entrapped
virions remain on the cell surface, they increase the surface-concentration of the viral Env glycoprotein,
rendering the cells more susceptible to immune surveillance by antibody dependent cellular cytotoxicity
(ADCC, discussed further below in the context of CD4) [32,33]. On the other hand, to the extent that
entrapped virions are internalized into endosomes, they might support endosomal sensing of infection
or the presentation of viral antigens by MHC [34,35]. Moreover, BST-2 activates NF-κB, and, at least in
the case of retroviruses, this activity is augmented by virion-entrapment [36,37]. This property supports
a role for BST-2 as a virus-sensor. The activation of NF-κB requires tyrosine 6 but not tyrosine 8 of the
YxYxxV sequence, suggesting that the endocytosis of BST-2 is not required for signaling activity. Lastly,
BST-2 is a ligand for immunoglobulin-like transcript 7 (ILT-7), a receptor on plasmacytoid dendritic cells
(pDCs) that negatively regulates the production of type I interferons in response to signaling through
TLRs [38,39]. This immune evasion activity might explain the presence of BST-2 on many cancer cell
types. Despite causing the net removal of BST-2 from the cell surface, Vpu enables HIV-1 infected T cells
to inhibit the production of interferons by pDCs in a manner dependent on BST-2 [40]. It apparently
does this by directing a subpopulation of residual BST-2 away from virion-assembly sites, where it
remains free to interact directly with ILT-7. BST-2 is found not only on the plasma membranes but also
in endosomes. In macrophages, it co-localizes with virions in large virion-containing compartments,
but the significance of this is unclear [41].
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2.2. SERINC Family Members: Historical Basis of Discovery (The Inhibitors That Nef Counteracts to Enhance
Virion-Infectivity); Protein Topology; Mechanism of Action

SERINC (SERine INCorporator) proteins are named for their apparent biochemical
activity—facilitating the incorporation of serines into membrane lipids [42]. These proteins are
conserved from yeast to humans; lower eukaryotes encode fewer genes (one in yeast) than higher
eukaryotes (five in humans). SERINC homologues share a similar topology: They are integral
membrane proteins with 9 to 11 membrane spanning regions. SERINC mRNA is expressed in
many tissues. Up-regulation of SERINC5 mRNA in oligodendrocytes during active myelination
suggests an important role for these proteins in neuronal development and function [43,44], consistent
with their suggested role in the synthesis of serine-containing lipids such as sphingomyelin and
phosphatidylserine [42]. Two SERINC family members—SERINC3 and SERINC5—were identified
as inhibitors of HIV-1 infectivity that are antagonized by Nef [6,7]. This identification solved a
long-standing mystery: Virions of nef -encoding HIV-1 are more infectious than virions of isogenic
viruses lacking nef [14]. Of the five SERINC proteins encoded in the human genome, all but SERINC2
can potentially restrict the infectivity of HIV-1, but SERINC5 is the most potent, and it appears to
account for the majority of the Nef phenotype [7,45,46]. SERINC proteins localize at least partly to
the plasma membrane as well as the endoplasmic reticulum, and they are incorporated into budding
virions. HIV-1 Nef, as well as GlycoGag of MLV and S2 of EIAV, counteract the inhibitory effect of
the SERINC proteins and restore the infectivity of virions [6,7,47]. These viral proteins decrease the
expression of SERINCs at the plasma membrane and exclude them from virions. These effects appear
to be mediated by clathrin and AP-2-dependent endocytosis [48,49]. Whereas the ability to inhibit
HIV-1 infectivity is conserved across SERINC5 orthologs from several species, their sensitivity to Nef
is not [50]; this enabled mapping of Nef-responsiveness to a specific intracellular loop of SERINC5
(see below). Unlike other restriction factors, SERINC5 is not interferon-inducible [7], and on genetic
grounds it does not seem engaged in an evolutionary arms race with pathogens like HIV-1 (discussed
further below) [51]. Five alternatively spliced mRNA isoforms of SERINC5 are described; the longest
isoform is the most abundant, stable, and functionally relevant [52]. SERINC5 is an N-glycosylated,
type II transmembrane protein with 10 membrane spanning domains, five extracellular loops, and four
intracellular loops [45,53]. N-glycans and the tenth transmembrane domain along with the C-terminal
cytoplasmic domain support the steady-state expression of SERINC5 [52,53]. The intracellular loop 4
(ICL4) of SERINC5 is critical for sensitivity to Nef: Hydrophobic residues in the human protein—L350
and I352—are required [50]. ICL4 also contains a CCFCS sequence, which is a putative palmitoylation
site [54] and an EDTEE sequence, which can bind the µ subunits of the clathrin adaptors AP-1 and
AP-2 in vitro and appears to confer partial resistance to Nef [55].

How SERINC5 inhibits the infectivity of HIV-1 virions is an open question. An important
mechanistic clue is that SERINC5’s activity depends on the envelope glycoprotein of the virus.
Pseudotyping of HIV-1 with the envelope glycoproteins of VSV or Ebola virus confers resistance to
the SERINCs [6]. Moreover, HIV-1 Envs differ in sensitivity to SERINC5: Envs that are generally
more sensitive to neutralization by antibodies and more likely to form relatively “open” trimers are
more sensitive to SERINC5 [7,56]. One model is that SERINC5 interacts with Env trimers and inhibits
their activity. This model is indirectly supported by the observation that SERINC5 increases the
susceptibility of HIV-1 Env to certain antibodies—primarily those targeting the MPER of gp41 but also
one glycan-specific antibody—suggesting a change in the conformation of Env [57,58]. Alternatively or
in addition, virion-incorporated SERINC5 might delay fusion of the virion and target cell membranes,
such that the infectivity of virions with relatively unstable trimers decays [59]. SERINC proteins
could plausibly modify virion-lipids in a manner that inhibits fusion, but such modifications have
not been detected [60]. Moreover, inhibition of virion-fusion, at least the initiation of pore-formation
detected in common assays, does not seem quantitatively sufficient to account for the inhibition of
infectivity [6,7,59]. Although we have focused here on SERINC5, other cell-specific factors might
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contribute to the virologic phenotype of nef, raising the possibility that restriction factor(s) antagonized
by Nef remain to be discovered [61].

2.3. CD4: The Primary Receptor, But Whose Interaction with Env During Virion-Production Inhibits
Infectivity and Prematurely Exposes Epitopes on Env That Are Targets of Adaptive Immunity

CD4 is a dimeric type I transmembrane glycoprotein that is palmitoylated and associates with
lipid rafts. CD4 is the primary receptor for HIV-1 and interacts with virion-associated Env to initiate
infection of target cells [62], but in cells producing the virus it has the potential to inhibit virion-release
and infectivity and to induce the exposure of epitopes on Env that render infected cells more susceptible
to immune surveillance [32,63–65]. Env consists of two glycosylated subunits, gp120 and gp41, that are
produced from cleavage of the precursor protein gp160 by Furin and Furin-like proteases within the
Golgi [66,67]. Mature Env is a trimer consisting of three pairs of gp120/gp41; it localizes to virions and
the plasma membrane [68,69]. gp120 is extracellular and binds CD4 and the HIV coreceptor (CCR5
or CXCR4) [70,71]. gp41 is a transmembrane protein that anchors the Env complex in the membrane
and enables fusion of virions with target cells [72]. If unopposed by Vpu in the ER, CD4 can form
complexes with gp160, blocking the processing of gp160 to gp120 and gp41 required for infectivity [73].

By reducing the level of CD4 at the plasma membrane, Nef and Vpu prevent deleterious
consequences of CD4 on viral production, infectivity, and immune surveillance. Re-infection of
already infected cells is prevented, which can trigger cell-death by apoptosis and presumably decrease
virion-yield [74]. If unopposed by Vpu and Nef, CD4 inhibits virion-release by binding Env at
the plasma membrane, and it accumulates in virions, reducing infectivity [63,64,75]. Prevention of
CD4-Env interactions by Vpu and Nef also provides a defense against a key component of cell-mediated
immunity: Antibody-dependent cellular cytotoxicity (ADCC). ADCC results from the lysis of infected
cells by natural killer (NK) cells and other effector cells that recognize the Fc region of antibodies
bound to the cell-surface [76,77]. Env is the only viral-specific antigen exposed on the cell-surface.
If Env encounters CD4 in the infected, virion-producer cell, then conformational changes expose
epitopes on Env that are otherwise only briefly exposed on virions during the infection of target
cells. This epitope-exposure renders the infected cell recognizable by a wider range of antibodies,
enhancing immune surveillance by ADCC [32,65,78]. ADCC has been proposed as the mechanism
underlying the modest protective effect observed in the RV144 Thai HIV-1 vaccine trial, so these
effects are potentially significant in vivo [79,80]. In addition to sensitizing infected cells to ADCC,
the conformational changes in Env induced by CD4 sensitize Env to SERINC5; this is particularly
striking for Envs that are relatively resistant to neutralization by antibodies and form relatively “closed”
trimers, which comprise the majority of wild type, patient-derived proteins [81].



Cells 2019, 8, 1020 6 of 27

3. Vpu, Nef, and the Cell Biologic Mechanisms behind Their Modulation of
Membrane-Protein Trafficking

3.1. Vpu: Protein Topology, Key Interactive Surfaces and Partners (Cullin1 E3 Ubiquitin Ligase; Clathrin
Adaptor Protein (AP) Complexes), Subcellular Localization, and Cellular Protein Targets

Vpu is a small, type-I transmembrane protein expressed coordinately with the viral Env protein
from a bicistronic mRNA [82]. Vpu consists of a minimal lumenal (extracellular) domain, a single
transmembrane helical domain, and a relatively small cytoplasmic domain (Figure 2). The cytoplasmic
domain, when unbound by any cellular partner, contains two α-helices connected by an acidic
linker region. Vpu was often depicted with its N-terminal cytoplasmic helix along the membrane,
but more recent data suggest instead that the more C-terminal cytoplasmic helix lies along the lipid
bilayer [83], perhaps inserting its C-terminus into the lipid using residues such as tryptophan [84].
Vpu can oligomerize, forming an ion channel, but the functional relevance of this is unclear [85,86].
The acidic linker region between the two cytoplasmic helices of Vpu contains two serines that are
phosphorylated by casein kinase II [87,88]. This phosphoserine-acidic cluster (or PSAC) supports the
interaction of Vpu with two distinct cellular complexes that act as co-factors: A β-TrCP containing,
cullin-1-based E3 ubiquitin ligase complex [89], and the medium (µ) subunits of the hetero-tetrameric
clathrin adaptor complexes AP-1 and AP-2 [90,91]. Vpu also contains within the C-terminal region
of its cytoplasmic domains an acidic leucine-based motif that directs the interaction of Vpu with
AP-1 via a mechanism distinct from the PSAC-µ interaction, using different AP subunits (γ and σ1;
see below, Figure 6) [30,92]. The reason for this bimodal interaction of Vpu with clathrin adaptors
is unclear, but in principle it could relate to the modulation of different target cellular proteins.
Functionally, the recruitment of the cullin-1-E3 ligase by Vpu results in the ubiquitination of cellular
targets such as CD4 and BST-2, stimulating their degradation in proteasomes or lysosomes [29,89,93,94].
The recruitment of clathrin AP complexes presumably supports endocytosis and post-endocytic sorting
of Vpu and its bound targets to lysosomes. But how are cellular targets identified by Vpu? Perhaps
surprisingly, many of the interactions of Vpu with cellular targets seem based on interactions mediated
by the proteins’ transmembrane domains (TMDs). This is best characterized in the case of BST-2
and Vpu: an anti-parallel interaction occurs between an alanine-face of Vpu’s TMD helix and a
face of BST-2’s TMD helix that displays bulky hydrophobic side chains (Figure 4) [27]. How this
seemingly bland face of the Vpu TMD specifically selects cellular targets such as NTB-A [10], PVR [95],
and CCR7 [96] in addition to BST-2 is an open question [97], but modulation of these proteins
requires the primary sequence of the Vpu TMD. In contrast, the modulation of CD1d by Vpu does
not [98,99], and the modulation of HLA-C by Vpu requires bulky hydrophobic residues in the TMD
rather than the alanines [9,100]. As a Vpu-target, CD4 seems to be an exception, with sequences
in both the transmembrane and cytoplasmic domains of both proteins important for a functional
interaction [101–103]. Vpu is distributed throughout cellular membranes including the ER, Golgi and
trans-Golgi network (TGN), plasma membrane, and endosomes [104]. While concentrated at steady
state in juxta-nuclear endosomes including the TGN [105], Vpu doubtless circulates throughput these
membrane systems, facilitating interaction with its cellular targets. A list of these targets is shown
in Table 1.
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Table 1. Partial Summary of Plasma Membrane Proteins Modulated by HIV-1 Vpu and Nef.

Downregulation/Degradation Binding

Modulated by Cellular Adaptor Utilized by Vpu
or Nef Counteraction Mechanism Domains or Residues Required Domains or Residues Required

Host PM
Protein Biological Function Nef Vpu AP-1 AP-2 SCFb-TrCP Proteasomal

Degradation
Lysosomal

Degradation
Endosomal

Sequestration Nef Vpu Nef Vpu Reference(s)
(PMID#)

BST-2
(CD317)

ISG: Traps enveloped
viral particles on

plasma membrane
3 3 3 3 3 3 N/A

TM
(A10,A14,18,W22),
S52,56; 59ExxxLV

N/A TM
(A10,A14,18,W22)

18200009;
18342597

CCR5
(CD195)

Chemokine receptor:
inflammatory

response
3 3 3

G2; 62EEEE;
PxxP Unknown N/A 15854903;

26178998

CCR7
(CD197)

Homing receptor:
recruitment of

immune cells to
lymphoid tissues

3 3 N/A TM (A10, A14,
A18, W22) N/A Unknown 24910430

CD1d APC: Present lipid
antigens to NKT cells 3 3 3 Unknown CD (APW76)

cladeB

15916790;
16385629;
20530791;
25872908

CD28
TCR complex:
co-stimulation,

activation
3 3 3

LL165;
DD175 59ExxxLV; S52,56 DD175 S52,56 29329537

CD4
TCR co-receptor: T

cell activation; HIV-1
Env receptor

3 3 3 3 3 3

G2; 57WL;
G95; G96;
L97; R106;

L110;
160ExxxLL;

174DD

TM; L63; V68;
S52, 56

57WL, G95,
G96,L97,

R106, L110
TM; CD 3118220;

1433512

CD62L Leukocyte adhesion
and signaling 3 3 3 Unknown Unknown Unknown Unknown 25822027

CXCR4
(CD184)

Chemokine receptor:
inflammatory

response
3 3

62EEEE;
PxxP Unknown N/A 16928758

ICAM-1
(CD54)

Leukocyte adhesion;
NK cell activation 3 3 3 N/A TM (A10,A14,

A18); S52,56
TM (A10,A14,

A18) 28148794

MHC-I

Induction of
Adaptive Immunity

(CD8+ T cells):
Antigen presentation

to APCs

3

HLA-A/B
3

HLA-C 3 3

W13; R17;
R19; M20;
62EEEE;

P78; W113;
Y120; D123

TM (LE5; L16;
L18 in WITO)

Tri-molecular
complex with

AP-1 (W13,
M20, 62EEEE,

P78, D123)

Unknown

8612235;
9450757;

22705789;
27173934
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Table 1. Cont.

Downregulation/Degradation Binding

Modulated by Cellular Adaptor Utilized by Vpu
or Nef Counteraction Mechanism Domains or Residues Required Domains or Residues Required

Host PM
Protein Biological Function Nef Vpu AP-1 AP-2 SCFb-TrCP Proteasomal

Degradation
Lysosomal

Degradation
Endosomal

Sequestration Nef Vpu Nef Vpu Reference(s)
(PMID#)

MHC-II

Induction of
Adaptive Immunity

(CD4+ T cells):
Antigen presentation

to APCs

3

62EEEE;
P75; P78;

LL164,165
N/A N/A 11593029

NKG2D-L

Activation receptor:
induction of NK cell
mediated cytotoxicity
and cytokine release

3 G2 N/A N/A 17170457;
19424050

NTB-A
(CD352)

Co-activation
receptor: induction
of NK cell mediated

cytotoxicity and
cytokine release

3 3 N/A TM (A18) N/A TM 21075351

PVR
(CD155)

Activation receptor:
induction of NK cell
mediated cytotoxicity
and cytokine release

3 3 3 3

72PxxPxxP;
62EEEE;

F191

TM (A10,A14,
A18), S52,56 Unknown TM (A10,A14,

A18)
22301152;
25113908

SERINC3/5
Phospholipid

biosynthesis; Reduce
retroviral infectivity

3 3 3 3

G2; CAW57;
D123;
LL165;
ED175

I109; L112;
W115; F121

26416734;
29514909;
27681140

SNAT1
Immunometabolism
(amino acid - alanine

- transporter)
3 3 3 S52,56; TM (W22) Unknown 26439863

Tetraspanins Membrane
organization 3 3 3 Variable S52,56; TM

(partial) Unknown Unknown 25275127;
25568205

CD99

PM T cell receptor:
Regulator of focal
adhesions, cell-cell

junctions

3 N/A Unknown Unknown Unknown 29490283

PLP2 Membrane
trafficking 3 N/A Unknown Unknown Unknown 29490283

TIM-1
(CD365)

T-cell activation,
cellular proliferation,
apoptosis, immune

tolerance

3 3 3
G2; D123,

LL165 N/A Unknown Unknown 30842281

AP-1/2: Adaptor Protein 1/2; APC: Antigen Presenting Cell; ISG: Interferon Stimulated Gene; NK: Natural Killer; NKT: Natural Killer T cell; PM: Plasma Membrane; PMID: PubMed
identifier number; TM: Transmembrane domain; CD: cytoplasmic domain; SCFb-TrCP: Skp1/Cullin1/F-box ubiquitin ligase complex containing b-TrCP; PxxP: polyproline region; WITO:
Vpu derived from primary transmitted founder HIV-1 clone; HLA: human leukocyte antigen.
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3.2. Nef: Protein Topology, Key Interactive Surfaces and Partners (AP Complexes), Subcellular Localization,
and Cellular Protein Targets

Nef is a small peripheral membrane protein expressed early during the viral replication cycle,
before the viral enzymes and structural proteins including Env. Nef, like Vpu, acts as an adaptor to
recruit cellular membrane trafficking machinery to its targets (Figure 2). Nef associates with membranes
via N-terminal myristoylation [16]. The N-terminus of Nef is itself relatively unstructured, although
it contains a short α-helix and folds back onto the Nef-core in one crystal structure [106]. The Nef
core is formed by a polyproline helix that binds the SH3-domains of certain Src-family kinases (Lck
and Hck); two antiparallel helixes that at one end complete the SH3-binding domain and at the other
end form a hydrophobic pocket (discussed further below); and four anti-parallel β-strands [107].
A C-terminal loop extends from the β-strand network; this loop is disordered unless Nef is bound
to a clathrin AP complex, such as AP-2. When bound to AP-2, the loop becomes structured, and a
canonical acidic leucine-based AP-binding motif within it interacts with the α and σ2 subunits (Figure
6) [108]. This leucine-based motif is essential for the Nef-mediated modulation of CD4 and the SERINC
proteins [6,109], but it is dispensable for the modulation of class I MHC [110]. Only in the case of class
I MHC has the interaction of Nef with its target been fully elucidated (Figure 5) [106]. The cytoplasmic
domain of the class I α chain is sandwiched between Nef and the µ subunit of AP-1 (µ1), held along the
Nef polyproline helix by several electrostatic and hydrogen bonding interactions involving both Nef
and µ1. Moreover, the cytoplasmic domain of MHC-I acts as if it contains a canonical tyrosine-based
µ-binding motif, inserting a tyrosine residue into the tyrosine-binding pocket on µ1. This interaction
is essential to formation of the complex, and it explains why HLA-A and -B are modulated by Nef,
whereas HLA-C, which lacks the key tyrosine, is not [111,112]. Thus, Nef facilitates an interaction of
the MHC-I cytoplasmic domain with AP-1. In contrast, how CD4 interacts with Nef and AP complexes
is an open question. Remarkably, the cytoplasmic domain of CD4 itself contains a leucine-based motif,
and when serine residues upstream of the leucines are phosphorylated (for example, following T cell
activation), the CD4 leucine-motif interacts with the same binding site in AP-2 that the Nef leucine-motif
utilizes [113]. Presuming that the Nef leucine motif occupies this site during CD4-modulation, where
does CD4 bind? One possibility is a hydrophobic patch that could form when the N-terminus of Nef
folds back upon the core [114]. Another is the unfilled hydrophobic pocket between the Nef α-helices
noted above. Notably, the residues within the cytoplasmic domain of CD4 and in the cytoplasmic loop
of SERINC5 required for modulation by Nef are hydrophobic, suggesting that a hydrophobic interface
on Nef binds these and possibly other cellular targets. Complicating the identification of such a binding
site is the finding that Nef dimerizes via an interface whose residues are largely hydrophobic and are
important for function [115]. Like Vpu, Nef is found throughout cellular membrane systems including
juxta-nuclear endosomes and the plasma membrane. Its ability to interact with multiple members
of the AP complex family of clathrin adaptors (AP-1, -2, and -3) [116,117] indicates involvement in
endocytic and post-endocytic sorting events that lead to depletion of host proteins from the plasma
membrane and their degradation in lysosomes. A list of Nef-targets is shown in Table 1.
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membrane protein. It associates with membranes via N-terminal myristoylation (myr). The N-
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binding site for the cytoplasmic domain of CD4 (yellow, transparent ellipse). The acidic cluster (4E) 
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Figure 2. The viral proteins Vpu and Nef. Vpu (left) is a small, type-I transmembrane protein.
The transmembrane (TM) α-helix displays an alanine-face, which interacts with the transmembrane
helices of some of Vpu’s cellular targets. The cytoplasmic domain, when not bound to any cellular
partner, contains two α-helices; between them is a DSGxxS motif. When the serines are phosphorylated
(P in yellow circle), this motif supports binding to β-TrCP, linking Vpu to a multi-subunit E3 ubiquitin
ligase, and to the µ subunits of AP-1 and AP-2, linking Vpu to clathrin. The LIER sequence supports
binding to β-TrCP. The ExxxLV sequence supports a second mode of binding to the clathrin adaptor
AP-1 (see Figure 6). Tryptophan residues (W) anchor the TM domain, and in some clades of HIV-1 attach
the C-terminus to the lipid bilayer. Nef (right) is a small, peripheral membrane protein. It associates
with membranes via N-terminal myristoylation (myr). The N-terminus of Nef (up to the PxxP region)
is conformationally flexible; the schematic shown represents a putative conformation associated with
the modulation of CD4, in which helix1 (H1) including residues W57 and L58 (not indicated) interacts
with helix3 (H3). This interaction forms a potential binding site for the cytoplasmic domain of CD4
(yellow, transparent ellipse). The acidic cluster (4E) supports binding to the µ subunit of AP-1 and is
required for the modulation of class I MHC, as is the PxxP region (see Figure 5). In addition to forming
the binding pocket for the cytoplasmic domain of the MHC-I α-chain, the PxxP region forms a binding
region for the SH3 domains of Src-family kinases that contribute to the modulation of MHC-I [118].
The Nef “core” contains two α-helices (H2 and H3) and a network of β-stands (β1–β4). The “upper”
aspect of the cleft between helices H2 and H3 forms part of the SH3-binding domain, whereas the
“lower” aspect forms an unfilled hydrophobic pocket (yellow, transparent ellipse). This pocket is an
alternative binding site for the cytoplasmic domain of CD4; it could bind the ICL4 of SERINC5; or it
could participate in binding the AP complexes. The ExxxLL motif of Nef is within a loop that emerges
from the β-stand network. This motif binds in a canonical manner to the σ and large specific subunits
of AP-1 and AP-2 (see Figure 6 for the interaction with AP-2). The ExxxLL motif is required for the
modulation of CD4 and SERINC5 but not for the modulation of MHC-I.

3.3. The Cellular Pathways Co-Opted by Vpu and Nef

Nef and Vpu co-opt membrane trafficking and degradative processes to counteract their cellular
targets (summarized in Figure 3).
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Figure 3. Cell biologic schematic of protein quality control and membrane trafficking pathways
co-opted by Vpu and/or Nef. Vpu and Nef, their targets—CD4, SERINC5, and BST-2—and their
co-factors—the SCF-E3 ubiquitin ligase, clathrin, AP-1, AP-2, Dynamin, HRS, ALIX, and β-COP—are
indicated. Complexes of Vpu with CD4 or BST-2, and Nef with CD4 or SERINC5, are shown. Arrows
indicate direction of transport. CCP: clathrin-coated pit; PM: plasma membrane; Ub, ubiquitin. Details
of the illustrated pathways are in the text.

3.3.1. ERAD: Co-Opted by Vpu to Degrade CD4

ERAD (endoplasmic reticulum (ER)-associated protein degradation) is a quality-control mechanism
that targets misfolded proteins in the ER for ubiquitination, translocation to the cytoplasm,
and degradation by the proteasome. Vpu interacts with newly synthesized CD4 in the ER and targets it
to an ERAD-like pathway [119]. Vpu retains CD4 in the ER through transmembrane domain interactions;
this requires the membrane anchoring tryptophan in Vpu discussed above [120]. Vpu also interacts with
the cytoplasmic domain of CD4 via α-helices in each of the proteins’ cytoplasmic domains [102,121,122].
Vpu simultaneously interacts with β-TrCP, a substrate adaptor for a Skp1-Cullin-1-F-box-containing
(SCF) E3 ubiquitin ligase complex [89]. β-TrCP recognizes the DSGxxS phosphoserine-acidic cluster
(PSAC) motif in Vpu. This motif is also known as a “phosphodegron” due to the presence of similar
sequences in cellular proteins that interact with β-TrCP and are ultimately ubiquitinated and degraded.
By recruiting this E3 ligase complex to CD4, Vpu induces poly-ubiquitination of the CD4 cytoplasmic
domain on lysine, serine, and threonine residues [94]. The poly-ubiquitinated CD4 is recognized
by the VCP-UFD1L-NPL4 dislocase complex, a late stage component of the ERAD pathway, which
mediates the extraction of CD4 from the ER membrane to the cytosol and subsequent proteasomal
degradation [94].

3.3.2. Endocytosis: Co-Opted by Nef to Remove CD4 and SERINCs from the Plasma Membrane

Nef co-opts clathrin-mediated endocytosis and the adaptor protein AP-2 to target CD4 and
SERINC5 away from the plasma membrane to late endosomes and ultimately to lysosomal
degradation [6,117,123,124]. The structural bases of these effects are reviewed below; they are
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incompletely defined but presumably involve a ternary complex between Nef, AP-2, and cytoplasmic
regions of CD4 or SERINC5. The rate of internalization of CD4 and SERINC5 from the plasma membrane
is stimulated by Nef [124,125], and this depends on clathrin, AP-2, and AP-2 associated proteins such
as Eps15 [117,123]. The net result is depletion of these proteins from the plasma membrane.

3.3.3. Endo-Lysosomal Degradation

Pathways and Cofactors Co-Opted by Vpu to Degrade BST-2 (Ubiquitination, ESCRT- and
AP-Complexes)

Clathrin adaptors and ESCRT (endosomal sorting complexes required for transport) complexes,
among other membrane coat proteins and complexes, mediate protein sorting and vesicular
trafficking steps required to deliver membrane proteins to lysosomes for degradation. Vpu-mediated
endo-lysosomal degradation of BST-2 illustrates the challenge of integrating these processes into a
compelling mechanistic model. The removal of BST-2 from the cell surface and the net degradation of
BST-2 by Vpu involves, to various degrees, clathrin, AP complexes (AP-1 and AP-2), the β-TrCP/SCF
ubiquitin ligase complex, and the ESCRT-0 complex component Hrs, a ubiquitin binding protein and
monomeric clathrin adaptor [90,91,93,126,127]. As noted above, the cytoplasmic domains of Vpu and
BST-2 contain linear motifs that bind AP complexes, and the cytoplasmic domain of BST-2 contains
potential ubiquitin acceptor sites. Plausibly, the AP-binding motif in BST-2 supports constitutive
endocytosis so that BST-2 reaches early, sorting endosomes.

At that junction, Vpu would recruit the β-TrCP/SCF ubiquitin ligase complex, inducing
ubiquitination of BST-2 and causing it to interact with Hrs. This would divert BST-2 from a pathway of
recycling to the plasma membrane and to a pathway of ESCRT-mediated degradation. What roles
would the AP binding motifs in Vpu play in this scenario? They could support the trafficking
of Vpu itself, or as discussed below, they could increase the affinity or change the specificity of
BST-2’s interactions with AP complexes when Vpu and BST-2 are bound to each other. On the other
hand, AP complex interactions might be sufficient for the net removal of BST-2 from the cell surface:
The β-TrCP/SCF ubiquitin ligase complex does not seem required for this effect of Vpu [91,128,129].

Pathways and Cofactors Co-Opted by Nef to Degrade CD4 (AP1γ2, ALIX, β-COP)

Similarly to Vpu, Nef co-opts endosomal sorting machinery to degrade CD4 following endocytosis.
Specific proteins and complexes co-opted by Nef include AP1γ2, an isoform of AP-1 [130]; β-COP,
a component of COPI coats [131,132], and ALIX, an ESCRT-related protein that supports the budding
of membrane into the lumen of multi-vesicular bodies [133]. Exactly how these cofactors and pathways
work together to support Nef activity remains incompletely defined.

3.3.4. TGN-Retention and Block to Recycling

Vpu and Nef each seem to block the recycling of their targets to the plasma membrane [98,134–136].
As noted above in the case of Vpu, this effect could be a consequence of the diversion of targets at
the sorting endosome to degradation-pathways at the expense of recycling-pathways. In the case of
Vpu, newly synthesized BST-2 is also partly retained in the TGN [135,137]. The mechanism of this
Vpu-mediated block to trafficking along the biosynthetic/exocytic pathway is unknown.

3.3.5. Movement within Domains of the Plasma Membrane

Vpu displaces BST-2 from virion-assembly sites within the plane of the plasma membrane [84,138].
This contributes to its activity in counteracting virion-entrapment by BST-2. It also frees BST-2 to
interact with ILT-7, as noted above [40]. The displacement effect does not require the PSAC motif of
Vpu, but it does involve C-terminal residues, including the leucine-based AP binding motif [84,138,139].
Exactly which domains of the plasma membrane are involved is unknown; one possibility is the
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Vpu moves BST-2 from lipid rafts [140]—sites of HIV-1 budding—into clathrin-coated membrane
domains [141], perhaps as a first step in endocytosis.

4. The Structural Basis of These Cell Biologic Effects: The Interactions of Vpu and Nef with
Targets and Co-Factors

4.1. Nef and Vpu with CD4

As noted above, the interaction of Env with CD4 has deleterious effects on virion production,
infectivity, and immune surveillance, all of which are mitigated by Nef and Vpu. Vpu removes
CD4 from the ER, ultimately leading to degradation of CD4 via the proteasome. Nef induces the
endocytosis of CD4, ultimately leading to degradation of CD4 via the lysosome (see above). Together,
these processes prevent Env from encountering CD4 either within the biosynthetic pathway or at
the plasma membrane. Vpu and Nef recognize CD4 differently. Nef recognizes the cytoplasmic
domain of CD4, which is partly α-helical and contains the key sequence SQIKRLL [142]. When the
serine is phosphorylated, this sequence behaves as if it were an acidic leucine-based motif and binds
the AP-2 clathrin adaptor, causing the endocytosis of CD4. Nef stimulates the endocytosis of CD4
independently of this serine [143]. Nonetheless, endocytosis mediated by Nef requires the isoleucine
and leucine residues in the SDIKRLL sequence [125]. These residues presumably bind a hydrophobic
region on Nef. As noted above, candidate regions for the interacting surface on Nef for CD4 include a
hydrophobic patch formed when the Nef N-terminus folds back upon the Nef-core and a hydrophobic
crevice formed between the two anti-parallel helices of the Nef-core [114,144]. Unlike Nef, Vpu seems
to interact at least partly with the transmembrane domain of CD4, an interaction that requires the
membrane anchoring tryptophan in the Vpu transmembrane domain described above [120]. In addition
to the interaction between their transmembrane domains, the cytoplasmic domain of CD4 interacts
directly with the cytoplasmic domain of Vpu [101–103]. The helical nature of the CD4 cytoplasmic
domain seems required [101]. The specific residues needed within the helix are ill-defined, but the
isoleucine and leucine residues required for recognition by Nef are dispensable. Notwithstanding
all of this information, the precise structural bases of the CD4/Nef and CD4/Vpu interactions remain
unsolved problems.

4.2. Vpu with BST-2

The interaction between Vpu and its target BST-2 is mediated by the TMDs of the two proteins.
The interaction between these two α-helices occurs in an anti-parallel orientation and involves an
“alanine face” of Vpu that is well conserved among pandemic (Group M) HIV-1 isolates (Figure 4) [27].
The alanines of Vpu fit into ridges formed by bulky, hydrophobic residues in the TMD of BST-2; e.g.,
L37 of BST-2 seems to fit into the crevice between A14 and A18 of Vpu. An invariant tryptophan
residue in Vpu is also critical for this interaction; this residue probably contributes by inserting its side
chain within the apolar/polar interface at the cytoplasmic face of the membrane and positioning Vpu
correctly within the lipid bilayer. Certain differences in the TMD of non-human primate BST-2 relative
to the human protein render HIV-1 Vpu inactive as a simian BST-2 antagonist [145]; these differences
change the tilt angle of the BST-2 TMD in the membrane in a manner that disrupts its interaction with
Vpu [27].
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Figure 4. Structural interface between Vpu and BST-2. The Vpu and BST-2 transmembrane helices
are shown in an antiparallel orientation. On the Vpu-side, the interface consists of an alanine-face
(A10-A14-A18) followed by a membrane-anchoring tryptophan (W22), which likely inserts its side chain
among the lipid head groups on the cytoplasmic side of the bilayer. On the BST-2-side, hydrophobic
residues (L41-L37-I34) project their side chains toward the alanine-face of Vpu.

4.3. Vpu with β-TrCP

As noted above, Vpu binds β-TrCP, an F-box protein and substrate-adaptor for an SCF
(Skp1-cullin-F-box) multi-subunit E3 ubiquitin ligase complex [89]. Recruitment of this E3 ligase
complex by Vpu induces the ubiquitination of targets such as CD4 and BST-2. β-TrCP binds Vpu via
its C-terminal domain, which contains WD repeats that form a β-propeller [146]. Vpu binds to β-TrCP
via its DpSGxxpS motif (“pS” indicates a phosphoserine). As noted above, variations of this motif
are found in cellular proteins that are substrates of the β-TrCP/SCF E3 ligase, including β-catenin.
While a high resolution structural depiction of the interaction between Vpu and β-TrCP is not available,
it might be partially modeled by homology with the crystal structure of the WD repeat region of
β-TrCP bound to a β-catenin peptide [146]. According to NMR data, phosphorylation of the serines
in the DSGxxS sequence enables electrostatic and hydrogen bonding interactions between Vpu and
β-TrCP [147]. Vpu residues located upstream of the DpSGxxpS sequence (sequence LIER) also support
the binding of Vpu to β-TrCP.

4.4. Nef and Vpu with Clathrin AP-Complexes

Nef and Vpu re-route cellular proteins by forming ternary complexes with the endosomal
trafficking machinery. To co-opt that machinery, they display typical protein sorting motifs that mimic
those in cellular proteins. They also take advantage of sorting motifs when present in their cellular
targets. Both Nef and Vpu interact directly with members of the family of hetero-tetrameric clathrin
adaptor protein (AP) complexes. These complexes link transmembrane protein cargoes to clathrin.
They mediate intracellular membrane trafficking between the trans-Golgi-network (TGN), endosomes,
lysosomes, and the plasma membrane [148,149]. Each AP complex consists of four different subunits:
For AP-1 these are γ, β1, µ1, and σ1; and for AP-2, they are α, β2, µ2, and σ2 [150–153]. The AP
complexes bind short-linear motifs such as YxxΦ (tyrosine-based motifs) and [DE]xxxL[LI] (acidic
leucine-based motifs) in the cytoplasmic domains of their cargos [152]. YxxΦ motifs bind to µ subunits,
whereas [DE]xxxL[LI] motifs bind primarily to σ subunits with contributions to the binding site from
adjacent subunits (α in AP-2 and γ in AP-1). Acidic clusters (often containing phosphoserines—PSAC
motifs) in the cytoplasmic domains of cargo proteins also bind the µ subunits, whose surfaces are
basic [106,154,155]. Nef, Vpu, and their targets utilize all of these mechanisms to bind AP complexes.
Both viral proteins can either interact with µ subunits via their acidic clusters (not shown here for Vpu
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but see Figure 5C for Nef), or they can interact via their acidic-leucine based motifs with the α/σ2 or
γ/σ1 hemi-complexes (Figure 6A–E) [30,90,106,108,113,154]. Why these different modes of interaction
with AP complexes? In the case of Nef, the different modes relate to the modulation of different targets.
To modulate MHC-I, Nef interacts via its acidic cluster (plus other sequences) with µ1. In contrast,
to modulate CD4, Nef interacts via its acidic leucine-motif with α-σ2. Whether this principle of
“different modes for different targets” applies to Vpu remains to be determined. How Vpu and Nef
take advantage of sequences in their different targets also seems target-specific. To link MHC-I to
AP-1, Nef enables the tyrosine in the sequence YSQA in the MHC-I α chain to use the tyrosine-binding
pocket on µ1, even though that sequence lacks a critical hydrophobic residue at the Y+3 position [106].
Nef accomplishes this by forming a ternary interaction interface involving itself, the cytoplasmic
domain of MHC-I, and µ1 (Figure 5). In contrast, to link BST-2 to AP-1, Vpu allows the cytoplasmic
domain of BST-2 to bind to µ1 via its YxxΦ sequence, while binding to the σ1-γ subunits of AP-1 via
its ExxxLV sequence (Figure 6D–E) [30]. Thus, the interaction between the TMDs of Vpu and BST-2
(reviewed above) brings together the interaction of each protein’s cytoplasmic domains with AP-1,
presumably increasing the net affinity and altering the trafficking pathway of the protein-complex.
CD4 and Nef exemplify yet another mechanism. Both Nef and CD4 contain leucine-based motifs,
and each can bind similarly to the α-σ2 subunits of AP-2 [108,113]. To bind AP-2 on its own, serines
in the cytoplasmic loop of CD4 must be phosphorylated, providing a negative charge upstream of
the leucines in the sequence SQIKRLL. This enables the sequence to behave as if it were an acidic
leucine-based motif. In contrast to CD4, Nef binds AP-2 constitutively: The C-terminal loop (residues
149–179) of Nef contains an acidic leucine-motif required for modulation of CD4, and this motif and
the entire loop become well-ordered when bound to α-σ2 (Figure 6A–C). Although modulation by Nef
does not require the serine in the SQIKRLL of CD4, it does require the isoleucine and leucine residues.
These observations lead to a “connector” model in which the cytoplasmic domain of CD4 binds Nef,
presumably via a hydrophobic interaction, while Nef binds AP-2. Exactly how CD4 and Nef interact,
as discussed above, remains uncertain.
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Figure 5. Structural interface between Nef, the MHC-I α chain cytoplasmic domain (CD), and the
medium subunit of AP-1 (µ1). (A) Crystal structure of the ternary complex of Nef-MHC-I-αCD-µ1
(PDB:4EN2). Nef is shown in green; MHC-I-αCD is shown in magenta; and µ1 is shown in cyan.
The membrane-proximal end of MHC-I-αCD containing the YSQA sequence and the acidic cluster of
Nef are indicated. (B) Interaction of MHC-I-αCD YSQA sequence with the tyrosine-binding pocket
residues (R201, D174, R410) of µ1 is shown; and the ternary interaction of D327 of MHC-I-αCD with
Nef D123 and µ1 basic residues R225, R393 is also shown. (C) Interaction of Nef’s acidic cluster
(62-EEEE-65) with µ1-basic residues (K274, K298, K302, R303).
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Figure 6. Structural interfaces between Nef and AP-2 (A–C) and Vpu, BST-2, and AP-1 (D–F). (A) Crystal
structure of Nef bound to a hemi-complex of AP-2 containing two of the four AP subunits, α and σ2
(PDB: 4NEE). α is shown in yellow; σ2 is shown in magenta; and Nef is shown in green. (B) Interaction
of Nef’s acidic leucine motif with α-σ2. Nef L164 and L165 interact with σ2 (magenta); Nef E160
interacts with R15 of σ2 (magenta) and R21 of α (yellow); Nef E154 interacts with R10 and R61 of
σ2 (magenta). (C) Interaction of Nef distal C-terminal loop (173-178) with α- σ2. Nef M173 interacts
with R60 of σ2 (magenta); Nef E177 interacts with R341 of α; and Nef R178 interacts with E342 of
α (yellow). (D) Crystal structure of the Vpu/BST2/AP-1 complex (PDB: 4P6Z). All four subunits of
the AP-1 complex are shown. Vpu (black) and the BST2 cytoplasmic domain (blue) are shown by
spheres; only a small portion of the Vpu cytoplasmic domain is resolved. AP-1 subunits are colored: σ1
(magenta), γ (orange), β1 (green), and µ1 (cyan). (E) Interaction of Vpu’s acidic leucine motif with
γ-σ1. Vpu residues are shown in black sticks and labeled; the key residues are E62, L66, and V67.
This interaction is analogous to that of the Nef acidic leucine motif with α-σ2 shown in panel B. R15 of
γ is shown by orange stick. (F) Interaction of the BST-2 cytplasmic domain with the medium subunit of
AP-1 (µ1). BST-2’s tyrosine motif—Y6xY8xxV—binds in a pocket of µ1. BST-2-Y8 interacts with D174
and R410 of µ1, the canonical binding site for tyrosines within YxxΦ motifs.

5. What Else Is Known about “Global” Modulation of the Plasma Membrane by the Virus and
What Is the Significance of These Cellular Targets?

5.1. Downregulated Proteins

Many proteins antagonized by Vpu and Nef have been identified, mostly by non-systematic
approaches (Table 1). These include CD4, MHC-I, BST-2, and SERINC5 as described above, as well as
homing receptors (CCR7, CD62L), co-receptors required for viral entry (CCR5, CXCR4), cell surface
proteins associated with NK/NKT or T cell activation (NTB-A, PVR, CD1d, NKG2D, CD28, TIM-1) and
adhesion molecules (ICAM-1). Most of these are restriction factors or immuno-receptors plausibly
linked to viral replication or immune evasion. What “global” discovery approaches have been used
to identify new targets of Nef and Vpu, and what has been learned from them? A screening study
of cell surface molecules using available antibodies to over 100 proteins found that more than 30%
were modulated by Nef, and most of those were also modulated by Vpu, including members of
the tetraspanin family [156]. An unbiased, systems-level approach combining plasma membrane
enrichment (cell surface biotinylation) with quantitative mass-spectrometry provided a comprehensive
catalogue of how HIV-1 remodels the T cell surface [157]. Over 100 plasma membrane proteins were
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identified as depleted from the plasma membrane by HIV-1 infection, including well-known targets
of Vpu and Nef (CD4, BST-2, SERINC3, and SERINC5) as well as, among others, SNAT1, an alanine
transporter targeted by Vpu. Depletion of this transporter from the plasma membrane inhibits cell
division and consequently T cell activation, but how this benefits a virus that replicates best in activated
cells is unclear. Given the large number of proteins modulated by Vpu and Nef, the questions of
whether some of them are incidental or “off”-targets, or whether some are modulated as part of a
complex with other proteins, remain open.

5.2. Significance

One approach to address significance in screening assays is to bias the search in favor of proteins
with a high predetermined likelihood of biological importance, for example, interferon stimulated gene
products (ISGs). A relatively high-throughput platform (Global Arrayed Protein Stability Analysis;
GAPSA) was used to search for ISG products that are degraded by Vpu [158]. Using a cDNA library
composed of over 400 ISGs, new Vpu degradation targets including the transmembrane proteins CD99
and PLP2 were identified. CD99 was also identified as a Vpu-target in an independent quantitative
proteomic study of plasma membrane proteins modulated by Vpu (along with ICAM-1 and -3) [159].
Both CD99 and PLP, when ectopically expressed, inhibited virion-infectivity in a manner partially
rescued by Vpu [158].

Another approach to assessing the significance of the cellular targets of Vpu and Nef is genetic.
Viral pathogens appear to be major drivers of evolutionary change in the human proteome [160].
Genetic evidence of an evolutionary arms race between hosts and their viruses—positive selection
detected by high ratios of synonymous to non-synonymous mutations among the coding sequences
of primate or mammalian genes—has been found for most antiviral restriction factors, including
BST-2, SAMHD1, APOBEC3G, and TRIM5α [145,161–164]. Presumably, the viral proteins that interact
with these factors drive this diversity. Table 1 shows several examples of functional redundancy
between Vpu and Nef in the case of HIV-1 and human proteins. But not shown is the striking
manner in which the activities of Vpu and Nef have toggled back and forth across primate evolution
when simian immunodeficiency viruses (SIVs) and their host orthologous genes encoding BST-2 are
considered. Most SIVs use Nef rather than Vpu to antagonize BST-2 [165,166]. Moreover, SIV Nef
cannot antagonize human BST-2, nor can HIV-1 Vpu antagonize simian BST-2. These specificities map
to regions of BST-2 that are under positive selection, specifically the TMD required for the interaction
with Vpu and the cytoplasmic domain required for antagonism by Nef [145,162]. As noted above,
the SERINC proteins differ from BST-2 and most others restriction factors in that they do not show
genetic evidence of an ongoing arms race with pathogens at the gene-level, despite their biological
interaction with Nef proteins of HIVs and SIVs [51]. Nonetheless, a few codons within SERINC3
and SERINC5 appear to be under positive selection. In SERINC3, two of these residues are serines
that are part of an acidic cluster able to direct binding to the µ subunits of the clathrin adaptors AP-1
and AP-2 [154]. These residues coordinately toggle between serine, asparagine, and glycine across
mammalian evolution, suggesting that their ability to bind clathrin adaptors varies. This suggests that
analysis of genetic selection can identify not only protein–protein interfaces between restriction factors
and their targets or antagonists but also the interfaces between restriction factors and the cellular
co-factors that support antagonist-activity.

Why serinc3 and serinc5 do not show evidence of an evolutionary arms race at the gene-level,
despite their broad antiretroviral activity, which includes genetically distant retroviruses of different
species (HIV-1 and SIVs of primates, murine leukemia virus of mice, and equine infectious anemia
virus of horses, all of which encode SERINC antagonists), remains to be determined.

Finally, the extent to which the analysis of genetic selection might be applied to high-depth
proteomic studies to winnow out bystander or off-target effects and enable focus on the “real” restriction
factors antagonized by Vpu and Nef is an open question. For example, are tetraspanins [167,168];
Tim proteins, which inhibit virion release by binding phosphatidylserine and are counteracted by
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Nef [169]; or amino acid transporters under positive selection [157]? Answering these questions
requires attention to the specific codons of the protein and whether those under positive selection
are consistent with the mechanisms of antagonism described above. For example, human CD4 is
under positive selection at the gene-level, but none of the individual codons under selection are in the
transmembrane or cytoplasmic domains of the protein [170], the regions that support modulation by
Vpu and Nef.

6. Conclusions

Modulation of the protein content of the plasma membrane is a key aspect of how HIV-1 adapts
the host environment to its needs. The importance of this modulation is underscored by the virus’s
dedication of two of its nine genes (vpu and nef ) to this purpose. The consequences for the virus
are multiple: Protection of the infected cell from cellular immunity by down-regulation of class I
MHC and of specific receptors for natural killer cells, counteraction of the cell-intrinsic restriction
factors BST-2 and SERINC5, and avoidance of the deleterious consequences of CD4-Env interaction in
the virus-producer cell. The Vpu and Nef proteins have many differences including their timing of
expression, membrane-topology, and modes of interaction with their cellular targets. Yet, they share
common targets (particularly CD4) as well as some mechanisms of action (modulation of the specificity
of clathrin adaptors to target cellular proteins toward lysosomal degradation). While certain mechanistic
aspects of Vpu- and Nef-activity are well known, others remain to be elaborated, in particular the
structure of key interfaces between these viral proteins and their cellular targets and cofactors.
The plasma membrane-associated restriction factors reviewed in depth here, BST-2 and SERINC5,
are only two of the many cellular proteins whose residence on the plasma membrane is affected by
Vpu or Nef. Sorting out the roles of these additional plasma membrane proteins, in particular defining
the extent to which their modulation contributes to viral fitness, is a current challenge to the field.
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