
UCSF
UC San Francisco Previously Published Works

Title
Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study 
of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B)

Permalink
https://escholarship.org/uc/item/27h7z2wc

Authors
Spanos, Marina
Chandrasekhar, Tara
Kim, Soo-Jeong
et al.

Publication Date
2020-11-01

DOI
10.1016/j.cct.2020.106103

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27h7z2wc
https://escholarship.org/uc/item/27h7z2wc#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Rationale, Design, and Methods of the Autism Centers of 
Excellence (ACE) Network Study of Oxytocin in Autism to 
improve Reciprocal Social Behaviors (SOARS-B)

Marina Spanos1, Tara Chandrasekhar1, Soo-Jeong Kim2, Robert M. Hamer3, Bryan H. 
King4, Christopher J. McDougle5, Kevin B. Sanders6, Simon G. Gregory7,8, Alexander 
Kolevzon9, Jeremy Veenstra-VanderWeele10, Linmarie Sikich1

1.Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral 
Sciences, Duke University, Durham, NC 2.Seattle Children’s Autism Center, Department of 
Psychiatry and Behavioral Sciences, University of Washington; Seattle, WA 3.Departments of 
Psychiatry and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC; 
posthumously 4.Department of Psychiatry and Weill Institute for Neurosciences, University of 
California San Francisco; UCSF Benioff Children’s Hospitals, San Francisco, CA 5.Lurie Center for 
Autism, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, 
Boston MA 6.Neuroscience Product Development, F. Hoffmann-La Roche, Basel, Switzerland 
7.Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 
8.Department of Neurology, Duke University School of Medicine, Durham, NC 9.Seaver Autism 
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Abstract

Objective—To describe the rationale, design, and methods of the Autism Centers of Excellence 

(ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B).

Method—This phase 2 clinical trial was designed to evaluate the use of intranasal oxytocin 

treatment to improve social difficulties in individuals with autism spectrum disorder (ASD). In 

total, 290 participants ages 3 to 17 years with a DSM-5 diagnosis of ASD were enrolled to receive 

24 weeks of treatment with either oxytocin or a matched placebo. Participants were subsequently 

treated with open-label oxytocin for 24 additional weeks. Post-treatment assessments were done 4 

weeks after treatment discontinuation. Plasma oxytocin and oxytocin receptor gene (OXTR) 

methylation level were measured at baseline, week 8, 24 and 36 to explore potential relationships 

between these biomarkers and treatment response.
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Results—This report describes the rationale, design, and methods of the SOARS-B clinical trial.

Conclusions—There is a tremendous unmet need for effective pharmacological treatment 

options that target the core symptoms of ASD. Several studies support the hypothesis that 

intranasal oxytocin could improve social orienting and the salience of social rewards in ASD, 

thereby enhancing reciprocal social behaviors. However, due to conflicting results from a number 

of pilot studies on the prosocial effects of exogenous oxytocin, this hypothesis remains 

controversial and inconclusive. SOARS-B is the best powered study to date to address this 

hypothesis and promises to improve our understanding of the safety and efficacy of intranasal 

oxytocin in the treatment of social deficits in children with ASD.

Keywords
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INTRODUCTION

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition with 

core symptoms of persistent challenges in socialization and communication, and restricted, 

repetitive patterns of behavior or interests (1). These symptoms manifest early and are found 

throughout development, as evidenced by impairments in joint attention and social orienting 

across auditory and visual modalities (2–5).

ASD appears to be related, at least in part, to impairments in social processing and social 

motivation (6–9). Youth with ASD show slower processing of social versus nonsocial stimuli 

and the rate inversely correlates with the magnitude of social impairments (3). Individuals 

with ASD appear to experience reduced rewards from interpersonal interactions relative to 

other activities. They fail to activate the ventral striatum, the center of the brain’s reward 

circuit, in response to social rewards; whereas high levels of activation are evoked by social 

rewards in typically developing children (10). Further, when presented with social stimuli, 

children with ASD show reduced activity in the prefrontal cortex, which assesses the relative 

value of a reward (11). The extent of this reduction also correlates with the severity of social 

and communication impairments in children with ASD (2, 12).

There is an increasing interest in developing pharmacologic treatments to modulate the 

biological mechanisms of social behavior and motivation. Current FDA-approved 

medications treat irritability associated with ASD, but there are no approved 

pharmacological treatments for the core social symptoms of ASD. To that end, the 

neuropeptide oxytocin is of particular interest given its role in the brain’s social reward 

circuit. For example, oxytocin increases the amount of dopamine released from the ventral 

tegmental area to the ventral striatum, amygdala and hippocampus, key components for 

eliciting feelings of social reward. In animal models, including primates, oxytocin has been 

demonstrated to increase social approach, social recognition, social memory, and generosity, 

while reducing stress responses (13–15). Similarly in humans, exogenous oxytocin has been 

shown to increase gaze to eye regions, social cognition, social memory, positive 

communication, empathy, perceptions of trustworthiness, and cooperation within one’s own 

group (16–31). Allelic variants in the oxytocin receptor gene (OXTR) have also been 
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correlated with infant attachment, social auditory processing, empathy, and prosocial 

decision-making (32–34)).

The role of the oxytocin system in social function across species has led multiple groups to 

investigate whether it may contribute to ASD risk, with suggestive but inconclusive results. 

Multiple genetic variants in the oxytocin signaling system have been associated with ASD 

relative to typically developing controls, while others have been associated with cognition or 

functioning within ASD; although none of these findings have reached genome-wide 

significance (32, 35–45). Modestly greater (~20-40%) OXTR methylation relative to 

controls has been reported in two small, independent ASD samples (46). Reduced plasma 

oxytocin in individuals with ASD have been reported in a few studies but not in others, with 

little consistency across studies(45–53).

METHODS

Study Rationale

Interest in the oxytocin system in ASD has extended to experimental paradigms testing its 

impact in either laboratory or real-world settings. Multiple studies have shown that single-

dose administration of intranasal oxytocin, in comparison to placebo, impacts social 

behavior in ASD, particularly on tasks that index social attention/motivation (39, 56, 57) or 

social cognition (29, 58). These results are supported by functional magnetic resonance 

imaging studies showing differential brain response to social stimuli following intranasal 

oxytocin administration (58–61); however, these observations have been inconsistent 

between all studies (62). Repeated administration of intranasal oxytocin has now been 

investigated in several small randomized, controlled trials, with sample sizes ranging from 

13-53 individuals with ASD per treatment group. Individual studies have reported benefit for 

social function (63–65) or social attention/cognition (66, 67); whereas meta-analyses suggest 

no significant benefit for social function or social cognition (68–70) despite a limited ability 

to draw conclusions due to differing study designs, including oxytocin formulation, 

participant age, duration of treatment, primary outcome measure, and statistical analysis.

Building off of previous biomarker and experimental results, we developed a working model 

(Figure 1) for the potential therapeutic role of intranasal oxytocin in ASD based on the 

impairments in social orienting and social reward in ASD and oxytocin’s role in social 

orienting and social motivation across species. We propose that the pathophysiology of ASD 

fundamentally alters social orienting and decrease the relative value ascribed to social 

rewards, resulting in limited social motivation. Reduced social motivation leads to a cycle of 

reduced social opportunities, reduced learning from social feedback, reduced skills and 

functional abilities, and worsening of ASD’s core social communication symptoms, which 

further reduces social motivation. In our working model, intranasal oxytocin could improve 

social motivation to promote a competing cycle of increased social engagement and social 

learning, thereby improving social communication deficits in ASD.

Based on this working model, we developed the Study of Oxytocin in Autism to improve 

Reciprocal Social Behaviors (SOARS-B) Network to test the chronic neurobehavioral 

effects of intranasal oxytocin on fundamental impairments in reciprocal social behaviors and 
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to identify factors that may differentially influence response to oxytocin treatment in ASD. 

Our central hypothesis is that intranasal oxytocin, given over a sustained period of time, will 

improve core social communication impairments in ASD, thereby enhancing reciprocal 

social behaviors. Sustained improvements in social motivation and social reciprocity are 

expected to facilitate communication and learning and ultimately improve functioning. We 

designed SOARS-B to harness a well-powered (n = 290), randomized, placebo-controlled 

design with a sustained (24-week), flexible-dose intranasal oxytocin treatment in children 

from 3- to 17-years-old with ASD, allowing us to examine clinical and biological factors 

that may predict or enhance response.

Design

SOARS-B is a randomized, double-blind, parallel-group, placebo-controlled trial of 

sustained flexible dose intranasal oxytocin treatment in 3- to 17-year-old children with ASD. 

As depicted in Figure 2, eligible participants were randomized to oxytocin or placebo for a 

24-week double blind phase, followed by a 24-week open-label extension phase in which all 

participants received intranasal oxytocin.

Primary Outcome Measure

Our primary hypothesis was focused on improvements in social behavior, but previous 

pharmacologic studies have failed to demonstrate any changes in this core symptom domain 

in their efforts to develop novel treatments for ASD. Our choice of primary outcome 

measure was therefore shaped by the expert consensus recommendations of the workgroup 

on social communication outcome measures empaneled by Autism Speaks (71). The 

workgroup concluded that no measures were broadly appropriate for use in clinical trials 

without conditions (71). They judged that six measures were “appropriate with conditions,” 

with the Aberrant Behavior Checklist (ABC) Lethargy / Social Withdrawal subscale (ABC-

LSW) (72, 73) being judged as having “the most data to support its use in clinical trials in 

ASD.” (71) Notably, the ABC-LSW subscale is a brief, caregiver-reported measure of real-

world social behavior with excellent internal consistency, reliability, and validity (71). 

However, it does not assess finegrained aspects of social communication, such as the quality 

of social initiations or reciprocal response to non-verbal cues. Based on publications 

subsequent to this consensus panel (74, 75), we made the decision to focus our primary 

analysis on a modified ABC subscale in which 3 items corresponding to absence of 

movement (lethargy) were eliminated (3, Sluggish; 32, Stays in one place; and 53, Inactive) 

to avoid potential confounding with sedating effects of medication or items that are not 

directly related to social function (75). The validation study done in 1893 children from the 

Autism Treatment Network found each of these items had factor loading values below 0.6, 

lower than all but one of the other items (43, Does not communicate, factor loading of .54)

(76). We will refer to the modified subscale, comprising 13 items rated from 0-3, as the ABC 

Social Withdrawal subscale (ABC-SW). A sensitivity analysis is planned to assess the 

complete ABC-LSW subscale if a significant effect is observed on the modified ABC-SW 

subscale.
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Sample Size and Statistical Power

We used a mixed longitudinal model for our primary analyses. Since some aspects of the 

model, such as covariance structure, were unknown, we performed the power and sample 

size calculations using a more conservative, simplified model that corresponded to a two-

group t-test on change scores. SOARS-B was powered to independently evaluate the efficacy 

of intranasal oxytocin in youth with ASD who were either capable or incapable of verbally 

fluent speech.

Standard deviations of change scores for the ABC-LSW range from 5 to 9 in several large 

ASD intervention trials (77–82). We considered a between-group difference of 5 points in 

ABC-SW change scores to be clinically meaningful. In our power calculations, we used 

conservative estimates of 9 points for the SD of ABC-SW change and 5 points for between 

group differences in ABC-SW changes (representing a differential improvement on ~1/3 of 

the items). To achieve 90% power with an alpha of 0.05 on the ABC-SW, we required 71 

participants in each treatment group within the two strata. Thus, our total required sample 

size to separately evaluate the ABC-SW separately in non-intellectual disability (ID) and ID 

strata was 284. A sample size of 300 allowed for a 5% attrition between the randomization 

and the first post-randomization visits. In March 2016, the study team reduced the estimated 

attrition rate to 1% based on the actual attrition rates observed during in the study, which led 

to a final sample size of 290. The primary analysis included all participants, which resulted 

in a much greater power than would have been the case for analyses in separate strata.

Participants

Individuals aged 3- to 17-years-old with ASD were recruited from clinical programs, 

research registries, and community referrals at each site. Most of the participants were in 

outpatient clinical care at the time of referral. The inclusion and exclusion criteria are 

described in Table 1. Notably, we did not include a minimum score threshold on any of the 

primary or secondary outcome measures as part of our inclusion criteria due to a desire to 

avoid inflated effects in the placebo group due to regression to the mean. Since impaired 

reciprocal social communication is an ASD diagnostic criterion, a minimum score threshold 

that excluded potential participants would also, by definition, be excluding youth with 

clinically meaningful impairment.

Study Procedures and Assessments

Participants were assessed at week 4, 8, 16, 20, and 24 during the double-blind phase and 

week 28, 36, and 48 during the open-label phase (Figure 2, Supplemental Table 1 for a 

schedule of procedures). Symptom assessment, side effect monitoring, and parent 

questionnaires occurred at each visit, with laboratory monitoring, electrocardiogram, and 

functional assessments scheduled during the course of the study. The following includes a 

description of diagnostic and outcome measures, safety monitoring, and biomarkers 

completed during the course of the study.
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Diagnostic Measures

Autism Diagnostic Observation Schedule-2 (ADOS-2): The ADOS-2 is a semi-

structured assessment used to assess and diagnose individuals suspected of having autism. It 

is applicable to individuals of varying ages, developmental levels, and language skills (from 

no speech to verbally fluent). A research reliable rater administered one of the four modules 

depending on the expressive language level and chronological age of the study participant. 

The rater used observations of social and communication behaviors during the appropriate 

module to assist with a clinical diagnosis of ASD.

Autism Diagnostic Interview-Revised (ADI-R): The ADI-R is a semi-structured, 

investigator-based interview for caregivers of children and adults who are suspected to have 

a diagnosis of autism. A research reliable rater completed the ADI-R at the screening visit at 

the discretion of the study physician.

DSM-5 Checklist: The diagnostic criteria of ASD were assessed according to DSM-5 

criteria by the study physician at the screening visit.

Mullen Scales of Early Learning: The Mullen Scales of Early learning (85) was 

administered for nonverbal study participants or children younger than 5 years 9 mo 

assessed with the ADOS Module 1 or 2. The Visual reception, fine motor, expressive 

language and receptive language scales were administered.

Stanford Binet Intelligence Scales 5th edition: The Stanford-Binet intelligence scale 

(86) is a standardized test that assesses intelligence and cognitive abilities in children and 

adults aged two to 85+ years. The Stanford-Binet Scale tests intelligence across four areas: 

verbal reasoning, quantitative reasoning, abstract/visual reasoning, and short-term memory. 

The areas are covered by 15 subtests, including vocabulary, comprehension, verbal 

absurdities, pattern analysis, matrices, paper folding and cutting, copying, quantitative, 

number series, equation building, memory for sentences, memory for digits, memory for 

objects, and bead memory. The abbreviated IQ (ABIQ) was used for this study and includes 

non-verbal fluid reasoning and verbal knowledge subtests.

Outcome Measures

Aberrant Behavior Checklist (ABC): The 58-item caregiver rated ABC focuses on 

problem behaviors in five subdomains: irritability, lethargy/social withdrawal, stereotypic 

behavior, hyperactivity/noncompliance, and inappropriate speech (72, 73). The study 

primary outcome, the ABC-SW score, was calculated by removing questions 3, 32, and 53, 

(which all assess reduced physical movement), from the ABC-lethargy/social withdrawal 

subscale and summing the remaining questions.

Social Responsiveness Scale-2: This 65-item, caregiver-rated scale measures the 

severity of autism spectrum symptoms as they occur in natural social settings (87). The 

SRS-2 provides an assessment of a child’s social impairments, including social awareness, 

social information processing, capacity for reciprocal social communication, social anxiety/

avoidance, and autistic preoccupations and traits. It is appropriate for use with children aged 
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2.5 to 18 years. The SRS-2 measures impairment on a quantitative scale across a wide 

severity range, which is consistent with recent research indicating that autism is best 

conceptualized as a spectrum condition.

Pervasive Developmental Disorders Behavior Inventory (PDDBI-Screening 
Version) -—The PDDBI-SV is a caregiver rated measure that examines both adaptive and 

maladaptive behaviors related to social behavior in ASD (88).

Caregiver Strain Questionnaire (CSQ): The CSQ assesses family stress and has been 

tested with caregivers of children with ASD (89).

Vineland Adaptive Behavior Scales (2nd edition, Parent/Caregiver Rating 
Form, VABS-II-PCRF (90)): The VABS-II-PCRF is completed by a parent or caregiver in 

a questionnaire format and is organized around four Behavior Domains: communication, 

daily living skills, socialization, and motor skills. For the purposes of this study, we did not 

assess the maladaptive behavior domain of the VABS-II-PCRF.

Child and Adolescent Symptom Inventory-Progress Monitor-Parent Form 
(CASI-PM-P): This is a 29-item caregiver rating scale that evaluates symptom change for 

common psychiatric disorders in children and adolescents (91). The parent form can be used 

for a global rating of anxiety, ADHD, behavioral disorders, and depression.

Clinical Global Impression of Severity (CGI-S) and Clinical Global Impression 
of Improvement (CGI-I): These are 7-point Likert scale ratings that are completed by a 

study clinician (92), which allows for a general rating of ASD symptom severity and change 

over time.

Reading the Mind in the Eves Test (RMET): This test evaluates a participant’s ability 

to identify the emotional state from four choices based upon expressive pictures of the upper 

face, primarily with a focus on the eyes and eyebrows (93, 94). Due to the verbal demands of 

the test, the RMET was only utilized for children and adolescents in the verbally fluent 

stratum (see below).

Safety Monitoring

Electrocardiogram (ECG): A 12 lead ECG was obtained on all participants at screening 

and week 24 and the reading was confirmed by a pediatric cardiologist.

Laboratory assessments: Non-fasting blood chemistries, liver enzymes, urinalysis, and 

urine pregnancy (in pubertal females) were obtained at screening, week 24 and week 36. 

Labs could be repeated at study physician discretion at week 48. A certified laboratory 

conducted the blood and urine analysis.

Suicidality Assessment: Suicidality was assessed by a study physician at each study 

visit._ The study physician utilized clinical judgment to determine if the study participant 

understood the concept of death and suicide and asked participants standardized questions 

about passive death wish, suicidal ideation, suicidal behaviors, and self-injury at each visit. 
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The caregiver was also asked about each item and if this was a significant change in severity 

of frequency from the participant’s baseline. The study physician determined whether self-

injurious behaviors were stereotypic or were not considered stereotypic.

Systematic Longitudinal Adverse Events Scale (SLAES): This measure was 

adapted from the Safety Monitoring Uniform Report Form [95,96] and allowed for 

continuous monitoring of adverse events from the initial visit. Medical and behavioral 

conditions were assessed at each visit and those that were present at screening and/or 

baseline were considered treatment-emergent if their severity increased significantly after 

the participant had taken at least one dose of the study treatment. Treatment-emergent 

adverse events were tracked and considered in the adverse event safety analysis. Severity of 

adverse events were categorized as mild, moderate, severe, life-threatening, or resulting in 

death, and the treating physician indicated if the adverse event was related or unrelated to 

study drug. Suicidal ideation or behaviors, and self-injurious behaviors were summarized at 

each time point, as well as if these represented a significant change in frequency or severity 

from the child’s baseline level of functioning.

Vital Signs: Vital signs including heart rate, sitting blood pressure, and temperature were 

collected at each study visit.

Biomarkers

Oxytocin levels: Plasma and salivary oxytocin levels were assayed at weeks 0, 8, 24, and 

36 using standard radioimmunoassays to describe potential relationships between baseline 

levels and treatment response.

Genetic markers: Methylation and mRNA expression studies were completed at weeks 0, 

8, 24, and 36.

Serotonin levels: Serum serotonin levels were measured from whole blood samples at 

weeks 0, 8, 24, and 36.

Randomization

Participants eligible for this study were stratified by verbal fluency. To harness an easily 

operationalized measure, we used capacity to perform ADOS module 3 or 4 as an indication 

of verbal fluency in the social context. Participants were further stratified by age (three age 

groups) using a centralized, randomization scheme with permuted blocks of 4 or 6. The 

unblinded statistician generated a randomization plan for each of the 6 strata, using a 

permuted block algorithm with randomly selected block sizes of 2 and 4, using SAS. A 

randomization form was used to assign participants to the appropriate stratum. The database 

randomly assigned the treatment, generated an ID number, and sent an email to the 

appropriate site’s research pharmacy. Enrollment within the two verbal fluency strata was 

monitored to ensure at least 142 participants in each. Participants were further stratified by 

age so that at least 21% of the participants within each stratum fell into each of the specified 

age groups 3-6, 7-11, 12-17 years to fully assess the potential moderating effects of age.
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Interrater Reliability

Before the study was initiated, the investigators and site raters established interrater 

reliability for the ADOS-2, ADI-R, Stanford Binet, Mullen Scales of Early Learning, the 

CGI-I and CGI-S scales. ADOS-2 and ADI-R raters were trained by each site’s 

independently reliable raters, completing a double-scored administration for at least one 

form of each scale, and observation on up to six administrations. The ADOS-2 and ADI-R 

raters reached 80% and 90% reliability, respectively. Consensus discussions occurred with a 

supervising psychologist. Cases were presented at investigator telephone conferences to 

address questions about ratings, diagnosis, and adverse events.

Medication Administration

Intranasal oxytocin was formulated for the study by the lead site and contained the synthetic 

oxytocin peptide in a formulation that was concentrated so that a higher dose could be 

administered with fewer insufflations, since only a limited volume can be sprayed into the 

nasal cavity. The matched placebo solution was the same formulation but did not include the 

synthetic oxytocin and was packaged in an indistinguishable amber nasal administration 

bottle. Detailed administration instructions were provided to the parent and the child to 

ensure that the drug was properly administered. Medication adherence was assessed by 

review of parent-completed medication diary.

The initial titration to the target dose was performed from baseline to week 8 and followed 

the suggested dosing schedule shown in Table 2. Dosing began at 8 or 0 (placebo) IU in the 

AM at week 0. The dose was increased to 8/0 IU twice daily (BID) at week 2. Dose was 

then increased by 8/0 IU twice daily (BID) at weeks 4 and 8. The dose could be reduced by 

8/0 IU once or twice a day any time between week 2 and achievement of the target dose at 

the clinician’s discretion, whether due to a clinically significant adverse event, poor 

tolerability of dosing, parent request, or CGI-I of 6 (much worse) or 7 (very much worse). 

The dose was not subsequently increased without reassessing the participant. Dosage was 

increased by 8/0 IU 1-2 x/day between scheduled visits in order to achieve the target dose of 

24/0 IU twice daily or 48/0 IU total daily dose as close to the week 8 visit as possible. All 

dosing reductions were discussed with the site PI within 2 business days and reported to the 

lead site for discussion with treating site PIs. If the target dose was maintained for at least 7 

weeks, the dose could be increased by only 8/0 IU 2x/day or 16/0 IU total daily dose. Thus, 

at week 16, the maximal possible dose was 32/0 IU BID or 64/0 IU total daily dose. At week 

20, the dose could also be increased again by only 8/0 IU 2x/day or 16/0 IU total daily dose. 

If there had been no prior increase at week 16, then the week 20 dose could be increased to 

32/0 IU BID or 64/0 IU total daily dose. If the dose had been increased at week 16, then the 

week 20 dose could be increased to 40/0 IU BID or 80/0 IU total daily dose. Increases were 

not required and only made with the agreement of the parent, child, and clinician in 

instances where the CGI-I was not a 1 and there was no evidence of clinically significant 

adverse events.

Every effort was made to achieve the target daily dose of 48 IU unless a child was unable to 

tolerate it. Table 3 shows the suggested dosing titration schedule to reach target dose. Dose 

titration was flexible and could not proceed more rapidly than stated below, but it could 
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proceed more slowly based on clinician judgment. At week 24 participants began the open-

label dosing schedule.

Mandatory dose reductions were in place for any of the following events: the clinician 

judged an adverse event (AE) to require immediate reduction, the CGI-I score was 6 (much 

worse) or 7 (very much worse), or if the two consecutive CGI-I scores at in-person visits 

were worse than the preceding two CGI-I scores and the treating clinician was comfortable 

with the decrease. Optional dose reductions occurred in the blinded phase by 8 IU once or 

twice daily due to a clinically significant adverse event, poor tolerability of dosing, or parent 

request. Dose increases above the target dose of 48 IU per day occurred if there was no 

evidence of clinically significant AEs, and parents and clinician were in agreement. During 

the follow-up phase, the oxytocin was tapered off over the course of 1-3 weeks. The down 

titration schedule depended on the total daily dose (TDD) at week 48. Participants receiving 

72 IU TDD at week 48 were tapered off over the course of 3 weeks, participants receiving 

48 IU TDD took 2 weeks, and participants on 24 IU TDD stopped after 1 week.

Administration of oxytocin could be interrupted on rare occasions due to other clinical 

conditions that temporarily prevent nasal administration (i.e., nasal injury or temporary 

severe nasal congestion), poor compliance with administration directions, or significant 

adverse events or acute worsening of symptoms or functioning. The treating clinician could 

restart treatment at the same or a lower dose after assessment of the participant.

Concurrent Medications and Therapies

Children with ASD are likely to be on concurrent medications, such as risperidone for 

irritability, divalproex for co-occurring seizure disorder, or methylphenidate for Attention 

Deficit/Hyperactivity Disorder (ADHD) symptoms. Thus, we felt that it was reasonable to 

allow concomitant medications in order to best represent a real-world sample. When 

SOARS-B began, serotonin reuptake inhibitors were not permitted due to concern that they 

might mask an anxiolytic effect of oxytocin, and potential participants were tapered off these 

medications prior to randomization. These guidelines changed in version 5.0 of the protocol 

(2015), in response to concerns with recruitment and the generalizability of the sample.

All concomitant medications were recorded at each visit. Medications that were used as 

needed (PRN) were not recorded unless they were taken for a period of 2 weeks or more and 

were taken more than 57% of the time, unless the clinician felt there was a valid reason to 

document them. All changes to the participants’ medications from baseline were recorded.

Concurrent allied health therapies were recorded at each visit, including speech or 

occupational therapy, applied behavior analysis, psychotherapy, and social skills therapy. No 

changes in therapies were permitted within the 2 months prior to randomization.

Human Subjects Protections

SOARS-B was reviewed and approved by the institutional review board at each site. Written 

parental consent and participant assent (when clinically appropriate) was obtained for all of 

the participants. The UNC Tracs Data Safety Monitoring Board (DSMB) reviewed the safety 

data throughout the study.
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Study Modifications

Several protocol modifications were instituted based on clinical and/or regulatory changes 

during the course of the study. See Supplemental Table 1 for a summary of protocol 

changes.

DISCUSSION

As a phase 2 study, SOARS-B was designed be an adequately powered test of the hypothesis 

that sustained administration of intranasal oxytocin improves social function in ASD, while 

evaluating its safety and tolerability. Prior trials have been underpowered, and, while 

individual studies have suggested that intranasal oxytocin may benefit social function (63–

67), meta-analyses have found no significant benefit across studies (68–70). The variability 

in these studies makes it difficult to draw conclusions, including differences in dose or 

duration of treatment as well as participant characteristics, such as age or cognitive function. 

To address this in SOARS-B, we used an extended period of dosing to allow for detection of 

both potential early- or late-emerging benefits from intranasal oxytocin. While we targeted 

24 IU twice daily as the most commonly used dose in previous studies, we also used flexible 

dosing to allow for selection of the most efficacious and well-tolerated dose, including 

allowing clinicians and caregivers/participants to increase beyond the target dose in the later 

portions of the trial. In this way, we are prepared to evaluate response at different time points 

or dose levels, thereby informing future studies.

Given the variability in prior studies and our desire provide a comprehensive evaluation of 

intranasal oxytocin as a potential treatment, we included a diverse population of both 

children and adolescents. We defined strata by both age and communication ability, allowing 

us to capture the full spectrum within ASD. Beyond establishing a generalizable population, 

we aimed to generate a well-powered primary analysis as well as adequate power to explore 

key subpopulations, which has not previously been possible in prior studies of intranasal 

oxytocin. Young children were included in SOARS-B because they could potentially 

demonstrate significantly greater functional improvements than older children as a result of 

greater brain plasticity. Children and adolescents of all functioning levels were included in 

SOARS-B to ensure that those with lower communication ability are not neglected in studies 

of novel treatments that could have a disproportionately large impact on those who are most 

affected. We also chose to be inclusive at the level of concomitant treatments, including both 

behavioral and medical treatments. Between 30-60% of children with ASD are prescribed a 

psychotropic medication (95, 96). To avoid excluding this large proportion of individuals 

with ASD from our analyses, we chose to include participants that were taking these 

medications, which also improves our generalizability. Instead, we will perform secondary 

post-hoc analyses of various clinical and biological factors that might typically be excluded 

(e.g. concomitant medication treatment) will be performed instead. Using these approaches 

will let us provide the greatest amount of clinically relevant information regarding sustained 

intranasal oxytocin treatment and do so in an expeditious manner.

The absence of any definitive evidence that current treatments, whether behavioral or 

medical, improve social function in ASD makes it difficult to identify outcome measures 

that are sufficiently sensitive to detect changes in social behavior. We selected the ABD-SW 
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subscale as the primary outcome measure based on consensus recommendations as 

previously described (71). This measure also has the advantage of being validated for 

individuals with and without ID, an important consideration in our broad, generalizable 

population (71). As appropriate for a phase 2 study, however, we included multiple 

secondary outcome measures to evaluate whether a different measure might be a better 

indicator of change in reciprocal social behavior with intranasal oxytocin. While we would 

have preferred to include additional direct assessment measures of social cognition and 

function, budgetary constraints prevented extensive video monitoring or eye tracking. The 

Reading the Mind in the Eyes Test allowed an assessment of social cognition in the stratum 

of children with high communication ability but was not well-suited to those who required 

ADOS-2 modules 1 or 2.

As in any phase 2 study, priority was also given to identifying potential safety signals in this 

large population. To date, adverse event monitoring in pediatric trials of oxytocin have used 

a variety of methods, which is a prevalent issue across pediatric clinical trials in general 

(97). The SOARS-B trial therefore moved to standardize AE monitoring by using a 

prospective systematic (body systems approach) elicitation of adverse events using the 

Systematic Longitudinal Adverse Events Scale (SLAES), complemented by both physical 

exam and monitoring of safety labs and ECG over the course of the trial. We also used the 

clinical global impression of improvement assessment to flag participants whose behavior 

appeared to be worsening over the course of treatment with oxytocin or placebo, regardless 

of whether this corresponded to a specific adverse event. This trial will be the largest and 

most generalizable pediatric cohort using systematically elicited AEs assessed during 

sustained oxytocin treatment.

In conclusion, SOARS-B was designed to meet the tremendous unmet need for accessible 

treatments that address core symptoms of ASD and are safe for sustained use. Several lines 

of evidence support the hypothesis that intranasal oxytocin could partially reverse the early 

pathophysiologic alterations in social orienting and the salience of social rewards present in 

ASD, thereby enhancing reciprocal social behaviors. The SOARS-B study will improve our 

understanding of the safety and efficacy of intranasal oxytocin in the treatment of reciprocal 

social behaviors in children with ASD. Regardless of the outcome, the results will 

significantly impact the care of people with ASD by definitively testing a very promising 

translational treatment strategy in a highly generalizable sample. The potential for subgroup 

and moderator analyses in this large sample may also help guide the therapeutic 

implementation of intranasal oxytocin to individuals that can benefit the most from it. 

Finally, future genetic and molecular studies of samples collected from the SOARS-B 

participants could enhance our understanding of the biological mechanisms that affect 

endogenous oxytocin signaling in ASD and identify new therapeutic targets to augment its 

prosocial effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Model of ASD Social Symptom Pathophysiology & Proposed Mechanism of Oxytocin 

Treatment
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Figure 2: SOARS-B Study Design
*indicates safety labs and genetic sample taken. Primary outcome assessed at bolded time 

points.
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TABLE 1.

SOARS-B Inclusion and Exclusion Criteria

Inclusion Criteria

 3 years 0 months to 17 years 11 months at the time of randomization

 Meet DSM-5 [1] criteria for autism spectrum disorder

 Have a clinical diagnosis of ASD confirmed either using the Autism Diagnostic Observation

 Scale-2 (ADOS-2)(83) or the Autism Diagnostic Interview-Revised(84). For participants who did not meet criteria on either but still had a 
clinical diagnosis of ASD, the Steering Committee (SC) was required to review and approve inclusion.

 Have a guardian who is able to provide informed consent

 If cognitively able, participant must provide informed assent/consent

 Exclusion Criteria

 A known diagnosis of Rett Syndrome or Childhood Disintegrative Disorder or have marked sensory impairment such as deafness or 
blindness.

 Active cardiovascular disease or renal disease that is not controlled by medication

 Pregnancy, lactation, or refuse to practice contraception if sexually active

 Changes in allied health therapies, behavioral, or educational interventions within the two months prior to randomization other than those 
associated with school holidays

 Changes in psychiatric medications within 4 weeks of randomization

 Previous treatment with chronic intranasal oxytocin (daily dosing more than 1 month)

 Caretakers who are unable to speak English, be consistently present at visits to report on symptoms, or are otherwise judged as unable to 
comply with the protocol by the data collection site team

 Active seizures within the 6 months preceding screening or baseline. (This exclusion criterion was added during the study after a participant 
died from a seizure during the posttreatment period.
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TABLE 2:

Dose Titration Schedules (Dose = Total IU/day)

Week 0 Week 2 Week 4 Week 8 Week 16 Week 20 Week 24 Week 28 Week 36

8/0 IU 16/0 IU 32/0 IU 48/0 IU 64/0 IU 80/0 IU 24 IU 48 IU 72 IU
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