Title

Properties of the A-Infinity Structure on Primitive Forms and its Cohomology

Permalink

https://escholarship.org/uc/item/27j165cq

Author

Gibson, Matthew

Publication Date

2019
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, IRVINE

Properties of the A_{∞}-Structure on Primitive Forms and its Cohomology DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
in Mathematics
by

Matthew Gibson

Dissertation Committee:
Professor Li-Sheng Tseng, Chair
Professor Vladimir Baranovsky
Professor Jeffrey Streets
(c) 2019 Matthew Gibson

TABLE OF CONTENTS

Page
LIST OF FIGURES iv
LIST OF TABLES v
CURRICULUM VITAE vi
ABSTRACT OF THE DISSERTATION vii
1 Symplectic and Cohomological Background 1
1.1 Introduction 1
1.2 Primitive Forms and $\mathfrak{s l}_{2}$-Representation 2
1.3 Primitive Differentials and Cohomology 5
1.4 Massey Products and A_{∞}-structure on $\mathcal{P}^{*}(M)$ 12
1.4.1 Classic Massey Products 12
1.4.2 $\quad A_{\infty}$-Algebras and Formality 13
1.4.3 $\quad A_{3}$-structure on $\mathcal{P}^{*}(M)$ 15
2 Fibered 3-Manifold Background 18
2.1 de Rham and Primitive Cohomologies 18
2.2 Mapping Class Groups 23
3 Homeomorphic 4-folds with Non-Isomorphic Primitive Cohomology 25
3.1 McMullen-Taubes Type 4-manifolds 25
3.1.1 Cohomological Analysis 27
3.2 Construction of Monodromies 30
3.3 Further Details on Fibration Construction 36
3.4 Another Example Using Graph Links 41
4 Examples of the m_{2}-Structure and Symplectic Massey Products 46
4.1 Ring Structure and Massey Products on $H^{*}(X)$ 46
4.2 Primitive Cohomology and Explicit Generators 50
4.3 Primitive Massey Products 52
4.3.1 Higher Primitive Massey Products 55
4.4 Sphere Bundle Perspective 58
4.5 Twisted Primitive Cohomology 68

Bibliography 73

LIST OF FIGURES

Page
$2.1 \quad \rho_{i}$ and τ_{i} paths on $\Sigma_{1,4}$ 24
3.1 Example 1 Marked Point Paths 32
$3.2 \quad C_{12}$ Path in Example 1 32
3.3 Diagram of generators taken from [1] 39
3.4 Diagram for b_{1} Expression 40
3.5 Diagram of $K^{(2 n)}$ 41
3.6 Paths $\ell_{E_{1}, 1}$ and $\ell_{E_{1}, 2}$ of $d_{E_{1}}$ 43

LIST OF TABLES

Page
3.1 Monodromies 27
3.2 Toroidal Example 1 Intersections 32
3.3 Toroidal Example 2 Intersections 35
4.1 $P H_{+}^{*}(X)$ Elements 52
$4.2 \quad P H_{-}^{*}(X)$ Elements 52
$4.3 \quad H^{1}(E) \wedge H^{1}(E) \rightarrow H^{2}(E)$ 63
$4.4 \quad H^{1}(E) \wedge H^{2}(E) \rightarrow H^{3}(E)$ 64
$4.5 \quad H^{1}(E) \wedge H^{3}(E) \rightarrow H^{4}(E)$ 64
$4.6 \quad H^{2}(E) \wedge H^{2}(E) \rightarrow H^{4}(E)$ 65

CURRICULUM VITAE

Matthew Gibson
EDUCATION
Doctor of Philosophy in Mathematics 2019University of California Irvine
Irvine, California
Bachelor of Science in Mathematics 2013
Denison University Granville, Ohio
TEACHING EXPERIENCETeaching Assistant2013-2019University of California Irvine Irvine, California

ABSTRACT OF THE DISSERTATION

Properties of the A_{∞}-Structure on Primitive Forms and its Cohomology
By

Matthew Gibson
Doctor of Philosophy in Mathematics
University of California, Irvine, 2019
Professor Li-Sheng Tseng, Chair

We study a symplectic cohomology, $P H_{ \pm}^{*}(X, \omega)$, defined on any symplectic manifold (X, ω), introduced by Tseng and Yau. As a main application, we analyze two different fibrations of a link complement M^{3} constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms ω_{1} and ω_{2} on $X=S^{1} \times M^{3}$, which can be distinguished by the dimension of the primitive cohomologies of differential forms. We provide a general algorithm for computing the monodromies of the fibrations explicitly, which are needed to determine the primitive cohomologies. We also investigate a similar phenomenon coming from fibrations of a class of graph links, whose primitive cohomology provides information about the fibration structure. We then study the A_{∞}-structure on the differential forms underlying $P H_{ \pm}^{*}(X, \omega)$. We use this A_{∞}-structure to generalize classic notions such as Massey products and twisted differentials. These tools capture more information on certain symplectic 4-manifolds compared to the DGA structure on $H^{*}(X)$.

Chapter 1

Symplectic and Cohomological Background

1.1 Introduction

In this chapter, we review the necessary basics in symplectic geometry and cohomology. We begin by introducing the $\mathfrak{s l}(2)$-representation on the space of differential forms on a symplectic manifold. The highest weight vectors under this representation form an important sub-algebra known as primitive forms. This algebra is used to construct a symplectic cohomology. We cover the construction of the differentials and properties of this algebra, investigating several examples. We end with a discussion of Massey products and A_{∞}-algebras. In particular, we recap the underlying A_{3}-structure on primitive forms given in [15]. This A_{3}-structure will be used in Chapter 4, when we introduce primitive Massey products.

1.2 Primitive Forms and $\mathfrak{s l}_{2}$-Representation

Let $\left(M^{2 n}, \omega, g\right)$ be a symplectic manifold. We define the following operators on $\Omega^{*}(M)$, its space of differential forms:

$$
\begin{aligned}
L & : \Omega^{k}(M) \rightarrow \Omega^{k+2}(M) \\
& A_{k} \mapsto \omega \wedge A_{k} \\
\Lambda & : \Omega^{k}(M) \rightarrow \Omega^{k-2}(M) \\
& A_{k} \mapsto \frac{1}{2}\left(\omega^{-1}\right)^{i j} \iota_{e_{i}} \iota_{e_{j}} A_{k} \\
H & : \Omega^{k}(M) \rightarrow \Omega^{k}(M) \\
& A_{k} \mapsto(n-k) A_{k}
\end{aligned}
$$

where $\left\{e_{i}\right\}$ is an orthonormal basis for $T^{*} M$ with respect to g. Here, Λ is the formal adjoint of L.

Proposition 1.2.1. $\Omega^{*}(M)$ is an $\mathfrak{s l}_{2}$-module with respect to the operators (L, Λ, H). That is, the following identities hold

$$
\begin{align*}
& {[H, \Lambda]=2 \Lambda} \tag{1.1}\\
& {[H, L]=-2 L,} \tag{1.2}\\
& {[\Lambda, L]=H} \tag{1.3}
\end{align*}
$$

Proof. Identities (1.1) and (1.2) follow easily from degree considerations. For equation (1.3), choose local Darboux coordinates $\left(p_{1}, \cdots, p_{n}, q_{1}, \cdots, q_{n}\right)$. It follows that $L=\sum_{k}\left(d p_{k} \wedge d q_{k}\right) \wedge$
and $\Lambda=\sum_{k} \iota \frac{\partial}{\partial q_{k}} \iota \frac{\partial}{\partial p_{k}}$. Using these formulas, and the interior product Leibniz rule, shows

$$
\begin{aligned}
\Lambda L & =\sum_{k, i} \iota \frac{\partial}{\partial q_{k}} \iota \frac{\partial}{\partial p_{k}} d p_{i} \wedge d q_{i} \wedge=\iota \frac{\partial}{\partial q_{k}}\left[\delta_{i k} d q_{i} \wedge+d p_{i} \wedge d q_{i} \wedge \iota \frac{\partial}{\partial p_{k}}\right] \\
& =\sum_{i, k} \delta_{i k} I-\delta_{i k} d p_{i} \wedge \iota \frac{\partial}{\partial p_{k}}-\delta_{i k} d q_{i} \wedge \iota \frac{\partial}{\partial q_{k}}+d p_{i} \wedge d q_{i} \wedge \iota \frac{\partial}{\partial q_{k}} \iota \frac{\partial}{\partial p_{k}} \\
& =L \Lambda+\sum_{k} I-d p_{k} \wedge \iota \frac{\partial}{\partial p_{k}}-d q_{k} \wedge \iota \frac{\partial}{\partial q_{k}} \\
\Longrightarrow[\Lambda, L] & =n I-\sum_{k} d p_{k} \wedge \iota \frac{\partial}{\partial p_{k}}+d q_{k} \wedge \iota \frac{\partial}{\partial q_{k}} .
\end{aligned}
$$

Now for an s-form A, write $A=\sum_{|I|+|J|=s} A_{I, J} d p_{I} \wedge d q_{J}$. Then

$$
\begin{aligned}
\sum_{k}\left(d p_{k} \wedge \iota \frac{\partial}{\partial p_{k}}+d q_{k} \wedge \iota \frac{\partial}{\partial q_{k}}\right) A & =\sum|I| A_{I, J} d p_{I} \wedge d q_{J}+|J| A_{I, J} d p_{I} \wedge d q_{J} \\
& =\sum(|I|+|J|) A_{I, J} d p_{I} \wedge d q_{J}=s A
\end{aligned}
$$

Combining the above computations yields $[\Lambda, L] A=(n-s) A=H(A)$, as required.

The $\mathfrak{s l}_{2}$-representation given in Proposition 1.2.1 leads to the following definition.

Definition 1.2.1. A k-form $(k \leq n) B_{k}$ is called primitive if $\Lambda B_{k}=0$.

We denote the space of all primitive forms on M by $\mathcal{P}^{*}(M)$. Standard representation theory applied to the $\mathfrak{s l}_{2}$-module $\Omega^{*}(M)$ gives the Lefschetz decomposition by primitive forms:

$$
\Omega^{k}(M)=\bigoplus_{p} L^{p} \mathcal{P}^{k-2 p}(M) .
$$

Hence, every k-form A_{k} admits a decomposition $A_{k}=B_{k}+\omega \wedge B_{k-2}+\omega^{2} \wedge B_{k-4}+\cdots$ where
each B_{i} is primitive. This expression furnishes two more operators

$$
\begin{aligned}
L^{-p}: & \Omega^{k}(M) \rightarrow \Omega^{k-2 p}(M) \\
& A_{k} \mapsto B_{k-2 p}+\omega \wedge B_{k-2 p-2}+\omega^{2} \wedge B_{k-2 p-4}+\cdots \\
\Pi^{p}: & \Omega^{k}(M) \rightarrow \Omega^{k}(M) \\
& A_{k} \mapsto B_{k}+\omega \wedge B_{k-2}+\cdots+\omega^{p} B_{k-2 p}
\end{aligned}
$$

Intuitively, L^{-p} removes ω^{p} from the decomposition of A_{k} and Π^{p} project onto the first $p+1$ factors. This primitive decomposition provides a useful characterization of $\mathcal{P}^{*}(M)$.

Proposition 1.2.2. Let $B_{k} \in \mathcal{P}^{k}(M)$. The following statements are equivalent:
(i) $\Lambda\left(B_{k}\right)=0$,
(ii) $L^{n-k+1} B_{k}=0$ and $L^{s}\left(B_{k}\right) \neq 0$ for $s<n-k+1$.

Proof. Using identity (1.3) of Proposition 1.2.1, and an easy induction argument, we have

$$
\begin{align*}
\Lambda L\left(B_{k}\right) & =L \Lambda\left(B_{k}\right)+(n-k) B_{k} \\
\Lambda L^{2}\left(B_{k}\right) & =L \Lambda\left(L B_{k}\right)+(n-k-2) L B_{k}=\left(L^{2} \Lambda+[2(n-k)-2] L\right) B_{k} \\
\Lambda L^{3}\left(B_{k}\right) & =\left(L^{2} \Lambda+[2(n-k)-6] L\right) L B_{k}=\left(L^{3} \Lambda+[3(n-k)-6] L^{2}\right) B_{k} \\
\quad & \\
\Lambda L^{p}\left(B_{k}\right) & =L^{p} \Lambda\left(B_{k}\right)+(p(n-k)-p(p-1)) L^{p-1} B_{k}=L^{p} \Lambda\left(B_{k}\right)+p(n-k+1-p) L^{p-1} B_{k} . \tag{1.4}
\end{align*}
$$

Now, suppose $\Lambda B_{k}=0$ and $L^{s}\left(B_{k}\right) \neq 0, L^{s+1}\left(B_{k}\right)=0$. Setting $p=s+1$, with our assumption on B_{k}, reduces the last equation in (1.4) to

$$
0=(s+1)(n-k-s) L^{s} B_{k} .
$$

Since $L^{s}\left(B_{k}\right) \neq 0$, this implies $s+1=n-k+1$, as desired.

For the other direction, expand $\Lambda B_{k}=B_{k-2}+\omega \wedge B_{k-4}+\cdots$. Using equation (1.4) with $p=n-k+1$ yields

$$
\begin{equation*}
0=L^{n-k+1}\left(\Lambda B_{k}\right)=L^{n-k+1} B_{k-2}+L^{n-k+2} B_{k-4}+\cdots+L^{n-k+i} B_{k-2 i}+\cdots \tag{1.5}
\end{equation*}
$$

We have already established above that $\Lambda\left(B_{k-2 i}\right)=0$ implies $L^{n-k+2 i+1} B_{k-2 i}=0$ and is non-zero for any smaller power. Consequently, the only way for Equation (1.5) to hold is if each $B_{i}=0$. Hence $\Lambda B_{k}=0$, completing the proof.

1.3 Primitive Differentials and Cohomology

Having established the existence of primitive forms, we now review the differential m_{1} on $\mathcal{P}^{*}(M)$. Its explicit definition will depend on the grading of the form in $\mathcal{P}^{*}(M)$. Given $A_{k} \in \Omega^{k}(M)$, we may expand $d A_{k}=B_{k+1}+\omega \wedge B_{k-1}+\omega^{2} \wedge B_{k-3}+\cdots=B_{k+1}+\omega \wedge\left(B_{k-1}+\right.$ $\left.\omega \wedge B_{k-3}+\cdots\right)$ and define operators

$$
\begin{aligned}
\partial_{+}: & \Omega^{k}(M) \rightarrow \Omega^{k+1}(M) \\
& A_{k} \mapsto B_{k+1} \\
\partial_{-}: & \Omega^{k}(M) \rightarrow \Omega^{k-1}(M) \\
& A_{k} \mapsto B_{k-1}+\omega \wedge B_{k-3}+\cdots
\end{aligned}
$$

If A_{k} is primitive, then

$$
\begin{aligned}
d L^{n-k+1} A_{k}=0 & =L^{n-k+1} d A_{k} \\
& =\omega^{n-k+1} \wedge B_{k+1}+\omega^{n-k+2} \wedge\left(B_{k-1}+\omega \wedge B_{k-3}+\cdots\right) \\
& =\omega^{n-k+3} \wedge B_{k-3}+\omega^{n-k+4} \wedge B_{k-5}+\cdots,
\end{aligned}
$$

and so by the Lefschetz decomposition, we have $d A_{k}=B_{k+1}+\omega \wedge B_{k-1}$. Thus when restricted to primitive forms, the above operators simplify to $\partial_{ \pm}: \mathcal{P}^{k}(M) \rightarrow \mathcal{P}^{k \pm 1}(M)$. By construction, note that in general $d=\partial_{+}+\omega \wedge \partial_{-}$. This observation, with the fact that $d^{2}=0$, leads to the following identities.

Proposition 1.3.1. The operators $\partial_{ \pm}$satisfy
(i) $\partial_{+}^{2}=0=\partial_{-}^{2}$
(ii) $L\left(\partial_{+} \partial_{-}+\partial_{-} \partial_{+}\right)=0$

Note that as a corollary of Proposition 1.3.1, $\partial_{ \pm}$are in fact differentials on $\mathcal{P}^{*}(M)$. These differentials fit together in one chain complex, but with two copies of $\mathcal{P}^{*}(M)$. To do so, we introduce another copy $\overline{\mathcal{P}}^{*}(M)$ with grading $\left|\overline{\mathcal{P}}^{k}(M)\right|=2 n-k+1$. Thus ∂_{+}and ∂_{-}increase the degree on $\mathcal{P}^{*}(M)$ and $\overline{\mathcal{P}}{ }^{*}(M)$, respectively. We connect the two complexes with $\partial_{+} \partial_{-}$ to obtain the chain complex

$$
\begin{aligned}
& 0 \longleftrightarrow \mathcal{P}^{0} \stackrel{\partial_{+}}{\longleftrightarrow} \mathcal{P}^{1} \stackrel{\partial_{+}}{\longleftrightarrow} \mathcal{P}^{2} \stackrel{\partial_{+}}{\longleftrightarrow} \cdots \stackrel{\partial_{+}}{\longleftrightarrow} \\
& \mathcal{P}^{n} \\
& 0 \longleftarrow \overline{\mathcal{P}}^{0} \stackrel{\partial_{-}}{\longleftarrow} \overline{\mathcal{P}}^{1} \stackrel{\partial_{-} \partial_{-}}{\longleftarrow} \overline{\mathcal{P}}^{2} \stackrel{\partial_{-}}{\longleftarrow} \cdots \stackrel{\partial_{-}}{\longleftarrow} \overline{\mathcal{P}}^{n}
\end{aligned}
$$

which satisfies $\left(\partial_{+} \partial_{-}\right) \circ \partial_{+}=0=\partial_{-} \circ\left(\partial_{+} \partial_{-}\right)$, by a careful application of Proposition 1.3.1. Its cohomologies, called the primitive cohomologies, are denoted by

$$
\begin{equation*}
P H_{+}^{k}(M, \omega)=\frac{\operatorname{ker}\left(\partial_{+}: \mathcal{P}^{k} \rightarrow \mathcal{P}^{k+1}\right)}{\operatorname{Im}\left(\partial_{+}: \mathcal{P}^{k-1} \rightarrow \mathcal{P}^{k}\right)}, \quad P H_{-}^{k}(M, \omega)=\frac{\operatorname{ker}\left(\partial_{-}: \overline{\mathcal{P}}^{k} \rightarrow \overline{\mathcal{P}}^{k-1}\right)}{\operatorname{Im}\left(\partial_{-}: \overline{\mathcal{P}}^{k+1} \rightarrow \overline{\mathcal{P}}^{k}\right)} \tag{1.6}
\end{equation*}
$$

for $k<n$ and

$$
\begin{equation*}
P H_{+}^{n}(M, \omega)=\frac{\operatorname{ker}\left(\partial_{+} \partial_{-}: \mathcal{P}^{n} \rightarrow \overline{\mathcal{P}}^{n}\right)}{\operatorname{Im}\left(\partial_{+}: \mathcal{P}^{n-1} \rightarrow \mathcal{P}^{n}\right)}, \quad P H_{-}^{n}(M, \omega)=\frac{\operatorname{ker}\left(\partial_{-}: \overline{\mathcal{P}}^{n} \rightarrow \overline{\mathcal{P}}^{n-1}\right)}{\operatorname{Im}\left(\partial_{+} \partial_{-}: \mathcal{P}^{n} \rightarrow \overline{\mathcal{P}}^{n}\right)} \tag{1.7}
\end{equation*}
$$

This notation will simply be abbreviated to $P H_{ \pm}^{*}(M)$ when the choice of symplectic structure is clear. We now consider some examples of $P H^{*}(M, \omega)$, which illustrate key differences
between de Rham and primitive cohomology.

Example 1.3.1. Let Σ_{g} be a closed surface of genus g with symplectic form ω_{Σ}. We note that in general, all 0 -forms and 1-forms are automatically primitive since $L^{n+1} A_{0}$ and $L^{n} A_{1}$ are $2 n+2$ and $2 n+1$ forms, respectively. Furthermore on 0 -forms, $\partial_{+} B_{0}=d B_{0}$. Thus the relevant chain complex is

$$
\begin{array}{r}
0 \longleftrightarrow \Omega^{0}\left(\Sigma_{g}\right) \stackrel{d}{\longleftrightarrow} \Omega^{1}\left(\Sigma_{g}\right) \\
\quad \downarrow_{+} \partial_{-} \\
0 \longleftarrow \bar{\Omega}^{0}\left(\Sigma_{g}\right) \stackrel{\partial_{-}}{\longleftarrow} \bar{\Omega}^{1}\left(\Sigma_{g}\right)
\end{array}
$$

It follows immediately that $P H_{+}^{0}\left(\Sigma_{g}\right)=\operatorname{ker}\left(d: \Omega^{0}\left(\Sigma_{g}\right) \rightarrow \Omega^{1}\left(\Sigma_{g}\right)\right)=H^{0}\left(\Sigma_{g}\right)$. Moving on to $P H_{+}^{1}\left(\Sigma_{g}\right)$, consider $B_{1} \in \operatorname{ker}\left(\partial_{+} \partial_{-}: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{1}\left(\Sigma_{g}\right)\right)$. Writing $d B_{1}=B_{0} \omega_{\Sigma}$, we have $\partial_{+} B_{0}=d B_{0}=0$ so that $B_{0} \in H^{0}\left(\Sigma_{g}\right)$. But this implies ω_{Σ} is exact unless $B_{0}=0$. Since Σ_{g} is compact, we conclude $d B_{1}=0$. Hence

$$
\operatorname{ker}\left(\partial_{+} \partial_{-}: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{1}\left(\Sigma_{g}\right)\right)=\operatorname{ker}\left(d: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{2}\left(\Sigma_{g}\right)\right)
$$

and so $P H_{+}^{1}\left(\Sigma_{g}\right)=H^{1}\left(\Sigma_{g}\right)$. Similar considerations show

$$
\begin{aligned}
P H_{-}^{1}\left(\Sigma_{g}\right) & =\frac{\operatorname{ker}\left(\partial_{-}: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{0}\left(\Sigma_{g}\right)\right)}{\operatorname{Im}\left(\partial_{+} \partial_{-}: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{1}\left(\Sigma_{g}\right)\right)} \\
& =\frac{\operatorname{ker}\left(d: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{2}\left(\Sigma_{g}\right)\right)}{\operatorname{Im}\left(d: \Omega^{0}\left(\Sigma_{g}\right) \rightarrow \Omega^{1}\left(\Sigma_{g}\right)\right)} \\
& =H^{1}\left(\Sigma_{g}\right)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
P H_{-}^{0}\left(\Sigma_{g}\right) & =\frac{\Omega^{0}\left(\Sigma_{g}\right)}{\operatorname{Im}\left(\partial_{-}: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{0}\left(\Sigma_{g}\right)\right)} \\
& =\frac{\Omega^{2}\left(\Sigma_{g}\right)}{\operatorname{Im}\left(d: \Omega^{1}\left(\Sigma_{g}\right) \rightarrow \Omega^{2}\left(\Sigma_{g}\right)\right)} \\
& =H^{2}\left(\Sigma_{g}\right) .
\end{aligned}
$$

We summarize the groups below:

$$
\begin{aligned}
& P H_{+}^{0}\left(\Sigma_{g}\right)=H^{0}\left(\Sigma_{g}\right), \quad P H_{+}^{1}\left(\Sigma_{g}\right)=H^{1}\left(\Sigma_{g}\right) \\
& P H_{-}^{1}\left(\Sigma_{g}\right)=H^{1}\left(\Sigma_{g}\right), \quad P H_{-}^{0}\left(\Sigma_{g}\right)=H^{2}\left(\Sigma_{g}\right) \cong H^{0}\left(\Sigma_{g}\right) .
\end{aligned}
$$

Hence in this case, the primitive cohomology is two copies of the de Rham cohomology, with grading given by $\left|P H_{+}^{k}\left(\Sigma_{g}\right)\right|=k,\left|P H_{-}^{k}\left(\Sigma_{g}\right)\right|=3-k$. We also note that this conclusion does not depend on the choice of symplectic form ω_{Σ}. The next example will show that this occurrence does not always happen.

As with de Rham cohomology, $P H^{*}(M, \omega)$ can become quite cumbersome to compute directly. Below, we provide a useful theorem from [15] which decomposes primitive cohomology in terms of kernels and cokernels of the Lefschetz maps, L. We omit the proof, but interested readers may consult [15] for details of the long-exact sequence. This theorem will be crucial in many computations moving forward.

Theorem 1.3.1 (Tsai, Tseng, Yau). Let $\left(M^{2 n}, \omega\right)$ be a symplectic manifold. For integers $k \leq n$, the following group isomorphisms hold:

$$
\begin{aligned}
& P H_{+}^{k}(M, \omega)=\operatorname{ker}\left(L: H^{k-1}(M) \rightarrow H^{k+1}(M)\right) \oplus \operatorname{coker}\left(L: H^{k-2}(M) \rightarrow H^{k}(M)\right), \\
& P H_{-}^{k}(M, \omega)=\operatorname{ker}\left(L: H^{2 n-k}(M) \rightarrow H^{2 n-k+2}(M)\right) \oplus \operatorname{coker}\left(L: H^{2 n-k-1}(M) \rightarrow H^{2 n-k+1}(M)\right) .
\end{aligned}
$$

Example 1.3.2. Let \mathbb{T}^{4} denote the 4 -torus and fix some symplectic form ω. Using Theorem
1.3.1, we know immediately

$$
\begin{array}{ll}
P H_{+}^{0}\left(\mathbb{T}^{4}, \omega\right)=H^{0}\left(\mathbb{T}^{4}\right), & P H_{-}^{0}\left(\mathbb{T}^{4}, \omega\right)=H^{4}\left(\mathbb{T}^{4}\right), \\
P H_{+}^{1}\left(\mathbb{T}^{4}, \omega\right)=H^{1}\left(\mathbb{T}^{4}\right), & P H_{-}^{1}\left(\mathbb{T}^{4}, \omega\right)=H^{3}\left(\mathbb{T}^{4}\right)
\end{array}
$$

Furthermore,

$$
\begin{aligned}
& P H_{+}^{2}\left(\mathbb{T}^{4}, \omega\right)=\operatorname{ker}\left(L: H^{1}\left(\mathbb{T}^{4}\right) \rightarrow H^{3}\left(\mathbb{T}^{4}\right)\right) \oplus \operatorname{coker}\left(L: H^{0}\left(\mathbb{T}^{4}\right) \rightarrow H^{2}\left(\mathbb{T}^{4}\right)\right), \\
& P H_{-}^{2}\left(\mathbb{T}^{4}, \omega\right)=\operatorname{ker}\left(L: H^{2}\left(\mathbb{T}^{4}\right) \rightarrow H^{4}\left(\mathbb{T}^{4}\right)\right) \oplus \operatorname{coker}\left(L: H^{1}\left(\mathbb{T}^{4}\right) \rightarrow H^{3}\left(\mathbb{T}^{4}\right)\right) .
\end{aligned}
$$

To get a more concrete representation, choose coordinates (x_{i}, y_{i}) and write $\omega=d x_{1} \wedge d y_{1}+$ $d x_{2} \wedge d y_{2}$. By the Kunneth formula it follows,

$$
\begin{aligned}
& H^{1}\left(\mathbb{T}^{4}\right)=\left\langle d x_{1}, d x_{2}, d y_{1}, d y_{2}\right\rangle \\
& H^{2}\left(\mathbb{T}^{4}\right)=\left\langle d x_{i} \wedge d x_{j}, d x_{i} \wedge d y_{j}, d y_{i} \wedge d y_{j}\right\rangle_{1 \leq i, j \leq 2} \\
& H^{3}\left(\mathbb{T}^{4}\right)=\left\langle d x_{i} \wedge d x_{j} \wedge d y_{k}, d x_{i} \wedge d y_{j} \wedge d y_{k}\right\rangle_{1 \leq i, j, k \leq 2} \\
& H^{4}\left(\mathbb{T}^{4}\right)=\left\langle\omega^{2}\right\rangle
\end{aligned}
$$

These formulas lead to the simplifications

$$
\begin{aligned}
& P H_{+}^{2}\left(\mathbb{T}^{4}, \omega\right)=H^{2}\left(\mathbb{T}^{4}\right) /\langle\omega\rangle \\
& P H_{-}^{2}\left(\mathbb{T}^{4}, \omega\right)=\operatorname{ker}\left(L: H^{2}\left(\mathbb{T}^{4}\right) \rightarrow H^{4}\left(\mathbb{T}^{4}\right)\right) \cong H^{2}\left(\mathbb{T}^{4}\right) /\langle\omega\rangle \\
& H^{2}\left(\mathbb{T}^{4}\right) /\langle\omega\rangle=\left\langle x_{1} \wedge x_{2}, y_{1} \wedge y_{2}, x_{1} \wedge y_{2}, x_{2} \wedge y_{1}, x_{1} \wedge y_{1}-x_{2} \wedge y_{2}\right\rangle .
\end{aligned}
$$

We note that all the elements of $P H^{*}\left(\mathbb{T}^{4}, \omega\right)$ are still d-closed, but are a proper subset of $H^{*}\left(\mathbb{T}^{4}\right)$. Furthermore, this example illustrates that an obvious Kunneth formula fails for primitive cohomology. If we write $\mathbb{T}^{4}=\Sigma_{1} \times \Sigma_{1}$, we would expect such a formula should
give

$$
P H_{+}^{2}\left(\mathbb{T}^{4}\right) \cong P H_{+}^{1}\left(\Sigma_{1}\right) \otimes P H_{+}^{1}\left(\Sigma_{1}\right) \oplus P H_{-}^{1}\left(\Sigma_{1}\right) \oplus P H_{-}^{1}\left(\Sigma_{1}\right)
$$

However, applying Example 1.3.1 gives

$$
\begin{aligned}
& P H_{ \pm}^{1}\left(\Sigma_{1}\right)=H^{1}\left(\Sigma_{1}\right)=\mathbb{R}^{2} \\
& \text { but } \\
& P H_{+}^{2}\left(\mathbb{T}^{4}\right)=H^{2}\left(\mathbb{T}^{4}\right) /\langle\omega\rangle \neq \mathbb{R}^{2} \otimes \mathbb{R}^{2} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}
\end{aligned}
$$

Example 1.3.3. We let X be the Kodaira-Thurston manifold $K T^{4}$, a classic example of a non-Kahler, symplectic manifold. X can be realized as \mathbb{R}^{4} under the identification $\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \sim\left(x_{1}+a, y_{1}+b, x_{2}+c, y_{2}+d-b x_{2}\right), a, b, c, d \in \mathbb{Z}$. One can also view X as S^{1} times a mapping torus, with monodromy given by a Dehn twist along the meridian of the 2-torus. We take the following basis of 1-forms:

$$
e_{1}=d x_{1}, \quad e_{2}=d x_{2}, \quad e_{3}=d x_{3}, \quad e_{4}=d x_{4}+x_{2} d x_{3}
$$

and define the symplectic form $\omega=e_{1} \wedge e_{2}+e_{3} \wedge e_{4}$. Using the Wang exact sequence (see Chapter 2) and the Kunneth formula, we can compute the de Rham cohomology to be

$$
\begin{aligned}
& H^{1}(X)=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \\
& H^{2}(X)=\left\langle e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{4}, e_{3} \wedge e_{4}\right\rangle, \\
& H^{3}(X)=\left\langle e_{1} \wedge e_{2} \wedge e_{4}, e_{1} \wedge e_{3} \wedge e_{4}, e_{2} \wedge e_{3} \wedge e_{4}\right\rangle \\
& H^{4}(X)=\left\langle\omega^{2}\right\rangle
\end{aligned}
$$

Finally, applying Theorem 1.3.1 yields,

$$
\begin{aligned}
& P H_{+}^{0}(X, \omega)=\mathbb{R}, \\
& P H_{+}^{1}(X, \omega)=H^{1}(X), \\
& P H_{+}^{2}(X, \omega)=H^{2}(X) /\langle\omega\rangle \oplus\left\langle e_{3}\right\rangle, \\
& P H_{-}^{2}(X, \omega)=\left\langle e_{1} \wedge e_{3}, e_{2} \wedge e_{4}, e_{1} \wedge e_{2}-e_{3} \wedge e_{4}\right\rangle \oplus\left\langle e_{1} \wedge e_{2} \wedge e_{4}\right\rangle, \\
& P H_{-}^{1}(X, \omega)=H^{3}(X), \\
& P H_{-}^{0}(X, \omega)=H^{4}(X) .
\end{aligned}
$$

In practice, one often must realize these isomorphisms in terms of explicit primitive forms of appropriate degree. We demonstrate the process on the e_{3} term appearing in $P H_{+}^{2}(X, \omega)$. Notice $\omega \wedge e_{3}=d\left(e_{4} \wedge e_{1}\right)$. We define $B_{2}=e_{4} \wedge e_{1}$, which indeed is a primitive 2-form since $\omega \wedge B_{2}=0$. Furthermore, $\partial_{-}\left(B_{2}\right)=e_{3}$ so that B_{2} is $\partial_{+} \partial_{-}$-closed. Thus e_{3} corresponds to the explicit form B_{2} in $P H_{+}^{2}(X)$. We point out that B_{2} is a NON d-closed element, showing $P H^{*}(X)$ and $H^{*}(X)$ truly differ. See [17] for more details on this manifold and its various cohomologies.

Example 1.3.4. As a final example, consider $\mathbb{C P}^{n}$ with any symplectic form ω. We may express its de Rham cohomology as $H^{2 k}\left(\mathbb{C P}^{n}\right)=\left\langle\omega^{k}\right\rangle$ and $H^{2 k+1}\left(\mathbb{C P}^{n}\right)=0$. It's easy to see L is an isomorphism on cohomology, so that each component of Theorem 1.3.1 is trivial. Hence,

$$
\begin{aligned}
& P H_{+}^{0}\left(\mathbb{C P}^{n}\right)=P H_{-}^{0}\left(\mathbb{C P}^{n}\right)=\mathbb{R} \\
& P H_{+}^{k}\left(\mathbb{C P}^{n}\right)=P H_{-}^{k}\left(\mathbb{C P}^{n}\right)=0, \quad 0<k \leq n .
\end{aligned}
$$

1.4 Massey Products and A_{∞}-structure on $\mathcal{P}^{*}(M)$

In this section, we review the construction of classic Massey products on de Rham cohomology in order to set conventions on the defining systems and signs. We then provide the definitions of A_{∞}-algebras and formality, motivated from the perspective of the DGA structure on differential forms. We end with a discussion of the A_{∞}-structure on $\mathcal{P}^{*}(M)$, whose explicit maps will be used in later chapters.

1.4.1 Classic Massey Products

For our purposes, we need only consider the Massey product $\left\langle a_{1}, \cdots, a_{k}\right\rangle$ where each $a_{i} \in$ $H^{1}(M)$. However, if needed, the below system can be generalized appropriately.

Definition 1.4.1. A defining system $\left(a_{i j}\right)$ for the k-fold Massey product is an uppertriangular collection of 1-forms satisfying the following properties:

1. $a_{i, j}=0$ for $i<j$,
2. $a_{i, i}$ is a representative of the cohomology class $\left[a_{i}\right]$,
3. $d a_{i, j}=\sum_{r=i}^{j-1} a_{i, r} \wedge a_{r+1, j},(i, j) \neq(1, k)$.

If such a defining system exists, the Massey product is the collection of all representatives given by $\sum_{r=1}^{k-1} a_{1, r} \wedge a_{r+1, k}$.

By abuse of notation, when clear, $\left\langle a_{1}, \cdots, a_{k}\right\rangle$ will be used to denote a specific representative. The above conditions intuitively measure the exactness of consecutive n-fold Massey products $(n<k)$. That is, $d a_{i, j}=\left\langle a_{i}, a_{i+1}, \cdots, a_{j}\right\rangle$.

This construction is best illustrated through the 3-point Massey product. This product requires closed 1-forms a_{1}, a_{2}, a_{3} such that $a_{1} \wedge a_{2}=d a_{12}$ and $a_{2} \wedge a_{3}=d a_{23}$. The defining
system is summarized by the following matrix

$$
\left(\begin{array}{ccc}
a_{1} & a_{12} & * \\
0 & a_{2} & a_{23} \\
0 & 0 & a_{3}
\end{array}\right)
$$

where the upper-right entry is the Massey product representative given by $a_{1} \wedge a_{23}+$ $a_{12} \wedge a_{3}$. Given another defining system $\left(a_{i j}^{\prime}\right)$ with $a_{i i}^{\prime}=a_{i}$, we have $d\left(a_{i j}-a_{i j}^{\prime}\right)=0$. Hence $a_{12}-a_{12}^{\prime}$ and $a_{23}-a_{23}^{\prime}$ descend to representatives in $H^{1}(M)$. It follows that the difference between the two Massey product representatives satisfies
$\left(a_{1} \wedge a_{23}+a_{12} \wedge a_{3}\right)-\left(a_{1} \wedge a_{23}^{\prime}+a_{12}^{\prime} \wedge a_{3}\right)=a_{1} \wedge\left(a_{23}-a_{23}^{\prime}\right)+\left(a_{12}-a_{12}^{\prime}\right) \wedge a_{3} \in\left\langle a_{1}\right\rangle \wedge H^{1}(M)+H^{1}(M) \wedge\left\langle a_{3}\right\rangle$.

Therefore, in the case of the 3-point Massey product, we can define the representative $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ to be an element in $H^{2}(M) /\left[\left\langle a_{1}\right\rangle \wedge H^{1}(M)+H^{1}(M) \wedge\left\langle a_{3}\right\rangle\right]$. In general, the higher ($k>3$) Massey products don't have such a quotient space.

For a concrete example of the 3-fold Massey product, we turn to the symplectic manifold in Ex 1.3.3.

Example 1.4.1 $\left(K T^{4}\right)$. The only elements in the kernel of the wedge product are e_{2} and e_{3}, given by $e_{2} \wedge e_{3}=d e_{4}$. Hence we may consider the product $\left\langle e_{3}, e_{2}, e_{3}\right\rangle$, where $a_{12}=-e_{4}$ and $a_{23}=e_{4}$. After considering the quotient, the above formulation gives a non-trivial representative $\left\langle e_{3}, e_{2}, e_{3}\right\rangle=2 e_{34}$. In particular, the Kodaira-Thurston manifold has a nonzero Massey product.

To see the importance of these products, we take a digression into A_{∞} algebras.

1.4.2 $\quad A_{\infty}$-Algebras and Formality

Given a differential graded algebra (DGA) (A, d, \cdot), the multiplication \cdot is assumed to be associative. A familiar example of a DGA is differential forms on a manifold, $\left(\Omega^{*}(M), d, \wedge\right)$.

The idea of an A_{∞}-algebra is to generalize this structure to the case where the multiplication is not associative, introducing higher maps to measure the failure. We give the formal definition below.

Definition 1.4.2 $\left(A_{\infty}\right.$-Algebra). An A_{∞}-algebra over a field k is a \mathbb{Z}-graded vector space

$$
A=\bigoplus_{p \in \mathbb{Z}} A^{p}
$$

with graded maps

$$
m_{k}: A^{\otimes k} \rightarrow A, \quad k \geq 1
$$

of degree $2-k$ satisfying

$$
\sum_{k=r+s+t}(-1)^{r+s t} m_{1+r+t}\left(\mathbf{1}^{\otimes r} \otimes m_{s} \otimes \mathbf{1}^{\otimes t}\right)=0 .
$$

To be clear, we use the Koszul sign rule, stating $(f \otimes g)(a \otimes b)=(-1)^{|g||a|} f(a) \otimes g(b)$. The first three maps are given by the defining equations

$$
\begin{aligned}
m_{1} m_{1}(a) & =0 \\
m_{1} m_{2}(a, b) & =m_{2}\left(m_{1}(a), b\right)+(-1)^{|a|} m_{2}\left(a, m_{1}(b)\right) \\
m_{2}\left(a, m_{2}(b, c)\right)-m_{2}\left(m_{2}(a, b), c\right) & =m_{1} m_{3}(a, b, c)+m_{3}\left(m_{1}(a), b, c\right) \\
+ & (-1)^{|a|} m_{3}\left(a, m_{1}(b), c\right)+(-1)^{|a|+|b|} m_{3}\left(a, b, m_{1}(c)\right) .
\end{aligned}
$$

The first equation says m_{1} is a differential, the second equation says m_{2} satisfies the Leibniz rule, and the last equation states that the associator of m_{2} is homotopic to 0 given by the differential of m_{3} in the morphism complex. In this thesis, we focus on A_{3}-algebras, $A_{\infty^{-}}$ algebras where $m_{k}=0$ for $k>3$. See [5] for a more in depth discussion of A_{∞}-algebras in general.

Given a $D G A\left(A, d, m_{2}\right)$, a theorem of Kadeishvili says there is a unique A_{∞}-structure
on $H^{*}(A)$ making A and $H^{*}(A)$ quasi-isomorphic as A_{∞}-algebras. We omit the precise definition, but informally, one may think of a quasi-isomorphism as a morphism of $A_{\infty^{-}}$ algebras inducing an isomorphism on cohomology. If this structure on the cohomology remains a $D G A$, then A is called formal.

Definition 1.4.3 (Formal). A $D G A\left(A, d, m_{2}\right)$ is called formal if the A_{∞}-structure on $H^{*}(A)$ making A and $H^{*}(A)$ quasi-isomorphic is still a $D G A$. A manifold M is called formal if $\left(\Omega^{*}(M), d, \wedge\right)$ is formal.

A folklore theorem states that a formal manifold M has all Massey products trivial on $H^{*}(M)$. Let $\left(m_{k}\right)$ denote the A_{∞}-model on $H^{*}(M)$. This fact follows from showing that when $\left\langle a_{1}, a_{2}, \cdots, a_{k}\right\rangle$ is defined, then a cohomology representative of it is given by $m_{k}\left(a_{1}, a_{2}, \cdots, a_{k}\right)$. Since $m_{k}=0$ for $k>2$, all 3-point and higher products must vanish. A famous paper of Deligne, Griffiths, Morgan, and Sullivan proves that every Kahler manifold is formal. Using this Massey product theorem shows that the Kodaira-Thurston manifold of Example 1.3.3 is NOT formal and therefore cannot be Kahler.

1.4.3 $\quad A_{3}$-structure on $\mathcal{P}^{*}(M)$

In [15], an A_{∞} structure $\left(m_{1}, \times, m_{3}\right)$ was introduced on $\mathcal{P}^{*}(M)$. We already saw the construction of m_{1} in Section 1.3. This differential is given by

$$
m_{1}\left(B_{k}\right)=\left\{\begin{array}{cc}
\partial_{+}\left(B_{k}\right), & 0 \leq k<n \\
-\partial_{+} \partial_{-}\left(B_{k}\right), & k=n \\
-\partial_{-}\left(B_{k}\right), & n+1 \leq k \leq 2 n+1
\end{array}\right.
$$

The addition of minus signs is to account for the Leibniz rule required on m_{2} in Definition 1.4.2. For the multiplication, we omit the derivation and simply give the formulas. Recall our grading on $\mathcal{P}^{*}(M)$ given by $\left|\mathcal{P}^{k}(M)\right|=k$ and $\left|\overline{\mathcal{P}}^{k}(M)\right|=2 n+1-k$ for $0 \leq k \leq n$.

Furthermore we introduce the map (see [15] for more motivation)

$$
\begin{gathered}
*_{r}: \Omega^{k}(M) \rightarrow \Omega^{k}(M) \\
A_{k} \mapsto L^{n-k} A_{k} .
\end{gathered}
$$

Then the product $\times: \mathcal{P}^{i}(M) \otimes \mathcal{P}^{j}(M) \rightarrow \mathcal{P}^{i+j}(M)$ is defined as

$$
\begin{align*}
& A_{j} \times A_{k}=\left\{\begin{array}{cc}
\Pi^{0}\left(A_{j} \wedge A_{k}\right), \\
\Pi^{0} *_{r}\left[-d L^{-1}\left(A_{j} \wedge A_{k}\right)+\left(L^{-1} d A_{j}\right) \wedge A_{k}+(-1)^{j} A_{j} \wedge\left(L^{-1} d A_{k}\right)\right], & j+k>n
\end{array}\right. \tag{1.8}\\
& A_{j} \times \bar{A}_{k}=(-1)^{j} *_{r}\left(A_{j} \wedge\left(*_{r} \bar{A}_{k}\right)\right), \tag{1.9}\\
& \overline{A_{j}} \times A_{k}=*_{r}\left(\left(*_{r} \bar{A}_{j}\right) \wedge A_{k}\right), \tag{1.10}\\
& \bar{A}_{j} \times \bar{A}_{k}=0 \tag{1.11}
\end{align*}
$$

Example 1.4.2. To demonstrate that \times is not associative we quickly revisit the KodairaThurston manifold. We compute,

$$
\begin{aligned}
\left(e_{1} \times e_{2}\right) \times e_{4} & =\frac{1}{2}\left(e_{1} \wedge e_{2}-e_{3} \wedge e_{4}\right) \times e_{4} \\
& =\Pi^{0} *_{r}\left[-\frac{1}{2} d L^{-1}\left(e_{1} \wedge e_{2} \wedge e_{4}\right)+\frac{1}{2}\left(e_{1} \wedge e_{2}-e_{3} \wedge e_{4}\right) \wedge L^{-1}\left(e_{2} \wedge e_{3}\right)\right] \\
& =-\frac{1}{2} e_{2} \wedge e_{3} \\
e_{1} \times\left(e_{2} \times e_{4}\right) & =e_{1} \times\left(e_{2} \wedge e_{4}\right)=\Pi^{0} *_{r}\left[-d L^{-1}\left(e_{1} \wedge e_{2} \wedge e_{4}\right)\right] \\
& =-e_{2} \wedge e_{3} .
\end{aligned}
$$

As it turns out, we need only introduce one higher map m_{3} to measure the failure of associativity. Again omitting details, we provide the formulas below. The m_{3} will only be
non-trivial on gradings (i, j, k) with $i, j, k<n$ and $i+j+k>n$. It is given by,

$$
m_{3}\left(A_{i}, A_{j}, A_{k}\right)=\left\{\begin{array}{cl}
0, & i+j+k<n+2 \\
\Pi^{0} *_{r}\left[A_{i} \wedge L^{-1}\left(A_{j} \wedge A_{k}\right)-L^{-1}\left(A_{i} \wedge A_{j}\right) \wedge A_{k}\right], & i+j+k \geq n+2
\end{array}\right.
$$

A quick check on Example 1.4.2 reveals

$$
\begin{aligned}
e_{1} \times\left(e_{2} \times e_{4}\right)-\left(e_{1} \times e_{2}\right) \times e_{4} & =-\frac{1}{2} e_{2} \wedge e_{3} \\
& =m_{3}\left(e_{1}, e_{2}, d e_{4}\right),
\end{aligned}
$$

as expected. This m_{3} map will reappear in Chapter 4 when we introduce primitive Massey products and investigate the structure on some symplectic 4-manifolds.

Chapter 2

Fibered 3-Manifold Background

In this chapter, we apply the theory from Chapter 1 to a symplectic 4-manifold associated to surface bundles. We consider different symplectic forms and determine its effect on the primitive cohomology. We conclude with the necessary theory of fibered 3-manifolds, discussing the mapping class group and its generators for a four-times punctured torus.

2.1 de Rham and Primitive Cohomologies

In this section, we briefly review the basics of the de Rham cohomology of surface bundles over a circle. We then apply primitive cohomology studied in Chapter 1 to a symplectic 4-manifold associated to surface bundles.

Let $\Sigma_{g, n}=\Sigma_{g}-\left\{y_{1}, \cdots, y_{n}\right\}$ be a Riemann surface of genus g with n points removed. When clear, the surface will simply be abbreviated by Σ. Moreover, when convenient, $P:=\left\{y_{1}, \cdots, y_{n}\right\}$ may be thought of as marked points. We endow Σ with a symplectic form ω_{Σ} and let $f: \Sigma \rightarrow \Sigma$ be any symplectic diffeomorphism preserving P setwise. Form the 3-dimensional mapping torus $Y_{f}=\Sigma \times[0,1] /(x, 1) \sim(f(x), 0)$. It follows that Y_{f} has a Σ-bundle structure over S^{1} with the projection given by $\pi: Y_{f} \rightarrow S^{1}, \pi([x, t])=t$. The associated map f is called the monodromy of the bundle and determines the de Rham
cohomology according to the Wang exact sequence

$$
\cdots \longrightarrow H^{0}(\Sigma) \longrightarrow H^{1}\left(Y_{f}\right) \longrightarrow H^{1}(\Sigma) \xrightarrow{f^{*}-1} H^{1}(\Sigma) \longrightarrow H^{2}\left(Y_{f}\right) \longrightarrow \cdots
$$

This sequence yields

$$
\begin{aligned}
& H^{0}\left(Y_{f}\right)=\mathbb{R} \\
& H^{1}\left(Y_{f}\right)=\operatorname{ker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right) \oplus\langle d \pi\rangle \\
& H^{2}\left(Y_{f}\right)=\langle d \pi\rangle \wedge \operatorname{coker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right) \\
& H^{3}\left(Y_{f}\right)=0
\end{aligned}
$$

where $d \pi=\pi^{*}(d \theta)$ is the pullback under π of the volume form on S^{1}.
Next we construct a symplectic manifold $X=S^{1} \times Y_{f}$ with symplectic form $\omega=d t \wedge$ $d \pi+\omega_{\Sigma}$. Here, $d t$ is the volume form on the second S^{1} factor and ω_{Σ} (by abuse of notation) is a global closed 2-form on Y_{f} which restricts to the symplectic form on each fiber. The Kunneth formula easily shows

$$
\begin{aligned}
& H^{0}(X)=\mathbb{R} \\
& H^{1}(X)=\langle d t, d \pi\rangle \oplus \operatorname{ker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right) \\
& H^{2}(X)=\langle d t \wedge d \pi\rangle \oplus d \pi \wedge \operatorname{coker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right) \oplus d t \wedge \operatorname{ker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right), \\
& H^{3}(X)=\langle d t \wedge d \pi\rangle \wedge \operatorname{coker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right) \\
& H^{4}(X)=0
\end{aligned}
$$

Let us first discuss the case where ω is chosen so that $[\omega]_{d R}=[d t \wedge d \pi]_{d R}$, the more general case will be treated at the end of the section. Applying Theorem 1.3.1 to the 4 -manifold
$X=S^{1} \times Y_{f}$, along with the computations from above, yields

$$
\begin{aligned}
& P H_{+}^{0}(X) \cong \mathbb{R} \\
& P H_{+}^{1}(X) \cong H^{1}(X) \\
& P H_{+}^{2}(X) \cong H^{2}(X) /\langle d t \wedge d \pi\rangle \oplus\langle d t, d \pi\rangle \oplus\left[\operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)\right] \\
& P H_{-}^{2}(X) \cong H^{2}(X) \oplus\left[\langle d t \wedge d \pi\rangle \wedge \operatorname{coker}\left(f^{*}-1\right)\right] /\left[\langle d t \wedge d \pi\rangle \wedge \operatorname{ker}\left(f^{*}-1\right)\right] \\
& P H_{-}^{1}(X) \cong H^{3}(X) \\
& P H_{-}^{0}(X) \cong 0
\end{aligned}
$$

Let b_{i} denote the Betti numbers of X and $p_{i}^{ \pm}(X, \omega)$ denote the dimensions of $P H_{ \pm}^{i}(X, \omega)$. When the choice of the underlying symplectic structure is clear, we simply write $p_{i}^{ \pm}$. Then,

$$
\begin{aligned}
& p_{0}^{+}=1 \\
& p_{1}^{+}=b_{1} \\
& p_{2}^{+}=b_{2}+1+\operatorname{dim}\left[\operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)\right] \\
& p_{2}^{-}=b_{2}+\operatorname{dim}\left[\operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)\right] \\
& p_{1}^{-}=b_{3} \\
& p_{0}^{-}=0
\end{aligned}
$$

where we have used the fact that $\operatorname{dim}\left[\operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)\right]$ and $\operatorname{dim}\left[\left(d t \wedge d \pi \wedge \operatorname{coker}\left(f^{*}-1\right)\right) /\left(d t \wedge d \pi \wedge \operatorname{ker}\left(f^{*}-1\right)\right)\right]$ are equal by realizing that both quantities count the number of Jordan blocks of $f^{*}-1$ of size strictly greater than 1 (see discussion below). We note that the primitive Euler characteristic $\chi_{p}(X)=\sum(-1)^{i} p_{i}^{+}-\sum(-1)^{i} p_{i}^{-}=$ $2-b_{1}+b_{3}$ is fixed under homeomorphism type. However, the primitive Betti numbers $p_{2}^{ \pm}$ may vary in general.

Let us explain how this dimension relates to the Jordan blocks of $f^{*}-1$. For brevity we write $\nu_{2}:=\operatorname{dim}\left[\operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)\right]$. Now if $\alpha \in \operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)$, then
$\left(f^{*}-1\right) \alpha=0$ and $\left(f^{*}-1\right) \beta=\alpha$ for some β. That is, α is an eigenvector in a Jordan chain of length at least 2. It follows that ν_{2} counts the number of Jordan blocks corresponding to eigenvalue $\lambda=1$ of size at least 2 . More generally there is a descending filtration of subgroups $P H_{+}^{2}(M) \supset J_{1}(M) \supset J_{2}(M) \supset \cdots$ where $J_{k}(M)=\operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)^{k}$. If $\alpha \in J_{k}(M)$, then it is the eigenvector in a Jordan chain of length at least $k+1$ given by $x_{1}=\alpha, x_{2}=\left(f^{*}-1\right)^{k-1} \beta, x_{3}=\left(f^{*}-1\right)^{k-2} \beta, \cdots, x_{k}=\left(f^{*}-1\right) \beta, x_{k+1}=\beta$. Thus the dimension of the filtered quotient J_{k-1} / J_{k} counts the number of Jordan blocks of size exactly k.

We now consider the case where $[\omega] \neq[d t \wedge d \pi]$. Let $i: \Sigma \hookrightarrow Y_{f}$ be the inclusion map of the fiber and choose $\tilde{\omega}_{f} \in \Omega^{2}\left(Y_{f}\right)$ such that $i^{*}\left(\tilde{\omega}_{f}\right)=\omega_{\Sigma}$. Furthermore, assume $\tilde{\omega}_{f}$ can be chosen so that $\left[\omega_{0}\right]:=\left[d t \wedge d \pi+\tilde{\omega}_{f}\right]=[d t \wedge d \pi]$. Then $P H^{*}\left(X, \omega_{0}\right)$ is given by the above computations. Given $\eta \in \Omega^{1}\left(Y_{f}\right)$ such that $d(\eta \wedge d \pi)=0$, we can define a new symplectic form, $\omega_{\eta}:=\omega_{0}+\eta \wedge d \pi=(d t+\eta) \wedge d \pi+\tilde{\omega}_{f}$. We wish to choose η so that $\left[\omega_{\eta}\right] \neq\left[\omega_{0}\right]$, which holds precisely when $[d \pi \wedge \eta] \in H^{2}\left(Y_{f}\right)$ is non-trivial. Choose a Jordan basis $\left\{x_{i, 0}\right\}_{i=1}^{k}$ for $\operatorname{ker}\left(f^{*}-1\right)$ and denote the corresponding Jordan chain of $x_{i, 0}$ by $\left\{x_{i, 0}, x_{i, 1}, \cdots, x_{i, n_{i}}\right\}$. Rearranging if necessary, we assume $n_{i}=0$ for $1 \leq i \leq s$. Thus $\left\{x_{i, 0}\right\}_{i=1}^{s}$ are the Jordan blocks of size exactly 1 . Then, we can write

$$
\begin{aligned}
& H^{1}\left(Y_{f}\right)=\langle d \pi\rangle \oplus\left\langle x_{i, 0}\right\rangle_{i=1}^{k}, \\
& H^{2}\left(Y_{f}\right)=\left\langle d \pi \wedge x_{i, n_{i}}\right\rangle_{i=1}^{k},
\end{aligned}
$$

and express $[d \pi \wedge \eta]=\sum_{i=1}^{k} \lambda_{i}\left[d \pi \wedge x_{i, n_{i}}\right]$. We may write $P H_{+}^{2}\left(X, \omega_{\eta}\right)=H^{2}(X) /\left\langle\left[\omega_{\eta}\right]\right\rangle \oplus K_{\eta}$ where $K_{\eta}=\operatorname{ker}\left(\omega_{\eta} \wedge: H^{1}(X) \rightarrow H^{3}(X)\right)$. Then

$$
\begin{aligned}
{\left[\omega_{\eta} \wedge d \pi\right] } & =[0] \\
{\left[\omega_{\eta} \wedge d t\right] } & =[\eta \wedge d \pi \wedge d t]=-[d t \wedge d \pi \wedge \eta] \\
{\left[\omega_{\eta} \wedge x_{i, 0}\right] } & =\left[d t \wedge d \pi \wedge x_{i, 0}\right]
\end{aligned}
$$

We see that $\left[\omega_{\eta} \wedge\left(\sum_{i=1}^{s} \lambda_{i} x_{i, 0}+d t\right)\right]=\left[d t \wedge d \pi \wedge \sum_{i=s+1}^{k} \lambda_{i} x_{i, n_{i}}\right]$, which is trivial if and only if $\eta \in \operatorname{ker}\left(f^{*}-1\right)$. Similarly, denote by $C_{\eta}=\operatorname{coker}\left(\omega_{\eta} \wedge: H^{1}(X) \rightarrow H^{3}(X)\right)$. The above computations show $C_{\eta} \cong\left\langle d t \wedge d \pi \wedge x_{i, n_{i}}\right\rangle_{i=s+1}^{k} /\langle d t \wedge d \pi \wedge \eta\rangle$. The quotient by the η term will be extraneous in the case that $\eta \in \operatorname{ker}\left(f^{*}-1\right)$. The groups $P H^{*}\left(X, \omega_{\eta}\right)$ are recorded below.

$$
\begin{aligned}
& P H_{+}^{0}\left(X, \omega_{\eta}\right) \cong H^{0}(X) \\
& P H_{+}^{1}\left(X, \omega_{\eta}\right) \cong H^{1}(X) \\
& P H_{+}^{2}\left(X, \omega_{\eta}\right) \cong H^{2}(X) /\left\langle\left[\omega_{\eta}\right]\right\rangle \oplus K_{\eta} \\
& P H_{-}^{2}\left(X, \omega_{\eta}\right) \cong H^{2}(X) \oplus C_{\eta} \\
& P H_{-}^{1}\left(X, \omega_{\eta}\right) \cong H^{3}(X) \\
& P H_{-}^{0}\left(X, \omega_{\eta}\right) \cong\langle 0\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
K_{\eta} \cong \begin{cases}\langle d \pi\rangle \oplus\left\langle x_{i, 0}\right\rangle_{i=s+1}^{k}, & \lambda_{i} \neq 0 \text { for some } i>s \\
\langle d \pi, d t+\eta\rangle \oplus\left\langle x_{i, 0}\right\rangle_{i=s+1}^{k}, & \lambda_{i}=0 \text { for all } i>s\end{cases} \\
C_{\eta} \cong \begin{cases}\left\langle d t \wedge d \pi \wedge x_{i, n_{i}}\right\rangle_{i=s+1}^{k} /\langle d t \wedge d \pi \wedge \eta\rangle, & \lambda_{i} \neq 0 \text { for some } i>s \\
\left\langle d t \wedge d \pi \wedge x_{i, n_{i}}\right\rangle_{i=s+1}^{k}, & \lambda_{i}=0 \text { for all } i>s\end{cases}
\end{aligned}
$$

Regardless of the class of η, we see $P H_{ \pm}^{k}\left(X, \omega_{\eta}\right)$ are isomorphic to de Rham cohomologies for $0 \leq k \leq 1$. Furthermore, in the case that η descends to a cohomology class $[\eta] \in H^{1}\left(Y_{f}\right)$, the above computations show $\operatorname{dim} P H^{*}\left(X, \omega_{\eta}\right)=\operatorname{dim} P H^{*}\left(X, \omega_{0}\right)$. Unless otherwise stated in the thesis, we assume $[\omega]=[d t \wedge d \pi]$.

2.2 Mapping Class Groups

In this section, we review some of the necessary topics from mapping class group theory. We focus mainly on the mapping class group of $\Sigma_{1,4}$, detailing a set of generators given in [1]. We wish to study the diffeomorphisms of $\Sigma_{g, n}$ up to an equivalence. We define the mapping class group, denoted by $\mathcal{M}\left(\Sigma_{g, n}\right)$, as the group of diffeomorphisms fixing P setwise, up to isotopies fixing P setwise. We define the pure mapping class group, $\mathcal{P} \mathcal{M}\left(\Sigma_{g, n}\right)$, as the subset of elements from $\mathcal{M}\left(\Sigma_{g, n}\right)$ fixing P pointwise. Since the majority of the next chapter takes place in $\mathcal{P} \mathcal{M}\left(\Sigma_{1,4}\right)$ we briefly discuss the diffeomorphisms generating this subgroup for the torus with four marked points. We define τ_{i} as the longitudinal curve which passes above $y_{1}, y_{2}, \cdots, y_{i-1}$, through y_{i}, and below y_{i+1}, \cdots, y_{n}. Denote by ρ_{i} the meridian curve passing through y_{i}.

From these curves we define homeomorphisms $\mathcal{P} \operatorname{ush}\left(\tau_{i}\right)$ and $\mathcal{P} \operatorname{ush}\left(\rho_{i}\right)$, called the pointpushing maps. These are classical maps in mapping class group theory. They may be loosely visualized as follows: $\mathcal{P} u s h\left(\tau_{i}\right)$ is the map which pushes the point x_{i} around the curve τ_{i}, "dragging" the rest of the surface $\Sigma_{1,4}$ with it. $\mathcal{P} u \operatorname{sh}\left(\rho_{i}\right)$ has a similar interpretation. In [1], Birman showed that the push maps generate the mapping class group:

$$
\mathcal{P M}\left(\Sigma_{1,4}\right)=\left\langle\mathcal{P} u \operatorname{sh}\left(\tau_{i}\right), \mathcal{P} \operatorname{ush}\left(\rho_{i}\right)\right\rangle, i=1,2,3,4
$$

It turns out that these maps can be realized in terms of Dehn twists along homology generators for $H_{1}\left(\Sigma_{1,4}\right)$. These explicit expressions are worked out in Section 3.3. (The curves ρ_{i} and τ_{i} are pictured in Figure 2.1, drawn on the square representing $\Sigma_{1,4}$.)

Another important subgroup of the mapping class group is the Torelli group, $\mathcal{I}(\Sigma)$, consisting of diffeomorphisms acting trivially on (co)homology. Thus,

$$
\mathcal{I}(\Sigma)=\left\{f \in \mathcal{M}(\Sigma): 1=f^{*}: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right\}
$$

Figure 2.1: ρ_{i} and τ_{i} paths on $\Sigma_{1,4}$

Calculations in Section 2.1 show that if $f \in \mathcal{I}(\Sigma)$ then $H^{*}\left(S^{1} \times Y_{f}\right)=H^{*}\left(T^{2} \times \Sigma\right)$ and $P H^{*}\left(S^{1} \times Y_{f}\right)=P H^{*}\left(T^{2} \times \Sigma\right)$ as groups. Thus two Torelli-bundles cannot be distinguished from their primitive cohomology groups alone. However, by the same reasoning, $f \in \mathcal{I}$ and $g \notin \mathcal{I}$ can always be distinguished by the dimension of the cohomology groups.

Chapter 3

Homeomorphic 4-folds with

Non-Isomorphic Primitive Cohomology

We analyze two classes of fibered 3 -manifolds and study the effect of different symplectic structures on the primitive cohomology of the associated symplectic 4-fold. The first class of examples comes from fibrations given in [7] and [20]. Studying the primitive cohomologies of these fibrations requires knowledge of the monodromies explicitly. We provide a detailed algorithm for constructing monodromies coming from fibrations of the type in [7]. Using these calculations, we show a pair of inequivalent symplectic structures are distinguished by their primitive cohomologies. The second class of examples arise from a graph link provided in [19]. In this class, the primitive cohomology provides information about the fibration structure of the graph link.

3.1 McMullen-Taubes Type 4-manifolds

In this section, we will discuss different presentations of a 3-manifold, the complement of a link in S^{3}, as fibration with fiber a punctured torus or sphere. All the torus fiber examples will induce symplectic structures with identical primitive cohomologies but the sphere fibration will be shown to give primitive cohomology of different dimension.

We quickly review the examples constructed in [7] and [20]. In [7], McMullen and Taubes considered a 3-manifold M which is a link complement $S^{3} \backslash K$. Here, K is the Borromean rings $K_{1} \cup K_{2} \cup K_{3}$ plus K_{4}, the axis of symmetry of the rings. By performing 0 -surgery along the Borromean rings we obtain a presentation of M as $\mathbb{T}^{3} \backslash L$ where:

- $L \subset \mathbb{T}^{3}$ is a union of four disjoint, closed geodesics $L_{1}, L_{2}, L_{3}, L_{4}$,
- $H_{1}\left(\mathbb{T}^{3}\right)=\left\langle L_{1}, L_{2} . L_{3}\right\rangle$,
- $L_{4}=L_{1}+L_{2}+L_{3}$.

The fiber of M is the 2-torus with four punctures coming from the L_{i}. The different fibration structures are captured by the Thurston ball. In [7], this ball is computed as the dual of the Newton polytope of the Alexander polynomial. Endow the ball with coordinates $\phi=(x, y, z, t)$ as in [7]. Then, the Thurston unit ball has 16 top-dimensional faces (each fibered) coming in 8 pairs under the symmetry $(\phi,-\phi)$. Furthermore, restricting to faces that are dual to those vertices of the Newton polytope with no t-component, we get 14 faces, that come in two types; quadrilateral and triangular. It is shown in [7] that there exist a pair of inequivalent symplectic forms on a 4-manifold coming from different fibrations of $\mathbb{T}^{3} \backslash L$. These fibrations correspond to points lying on two distinct types of faces. In [20], it is shown that the remaining pair of $16-14=2$ faces (with a non-zero t-component) yield a third symplectic structure which is inequivalent to the two found by McMullen and Taubes.

We will investigate the monodromy of the fibration given in [20], in which it is observed that M admits a fibration with fiber the four-punctured 2-sphere. Table 3.1 summarizes the conclusions of the examples to follow. Determining these monodromy formulas explicitly is a crucial step in computing the dimension of $P H_{ \pm}^{2}(X, \omega)$.

The first example is the fibration with fiber $\Sigma_{0,4}$, hence 'spherical' type. The other two examples are of 'toroidal' type with fiber $\Sigma_{1,4}$. In the spherical example, the given projection vector is the cohomology class in $H^{1}\left(M^{3}\right)$ corresponding to a point on the Thurston ball. The projection vectors of the 'toroidal' type examples refer to the vector used in its fiber

Table 3.1: Monodromies

Type of Face	Projection Vector v_{1}	Monodromy
Spherical	$(0,0,0,1)$	$\sigma_{1}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}$
Toroidal	$(-1,-1,1)$	$\tau_{3}^{-1} \tau_{2}^{-1} \tau_{1}^{-1} \rho_{1}^{-1} \rho_{2}^{-1} \tau_{1}^{-1} \rho_{2} \tau_{4}^{-1} \rho_{4}^{-1} \tau_{3}^{-1}$
Toroidal	$(-1,1,1)$	$\rho_{2}^{-1} \tau_{1} \rho_{2}^{-1} \tau_{1}^{-1} \tau_{4}^{-1} \rho_{3}^{-2} \tau_{2}^{-1} \rho_{4}^{-1} \rho_{1}^{-1}$

bundle construction and not the point on the Thurston ball. These details are elaborated on in Section3.3. For notational simplicity, in Table 3.1, $\mathcal{P} u s h\left(\rho_{i}\right)$ and $\mathcal{P} u s h\left(\tau_{i}\right)$ are abbreviated to ρ_{i} and τ_{i}, respectively.

Spherical Example. In this Example, we take the fibration from [20] obtained by performing 0-surgery along the K_{4} axis. The fiber is the 2-sphere punctured four-times, with monodromy given by the braid word corresponding to the Borromean rings. Let σ_{i} denote the half-Dehn twist which switches marked points i and $i+1$. This homeomorphism can be viewed similar to the push map, where we "push" the surface through the arc connecting the i th and $(i+1)$ th points. As a braid it is the element which passes the i th string over the $(i+1)$ th string. Under this identification, the monodromy is given by

$$
\sigma_{1}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}
$$

The derivation of the toroidal type monodromies is much more involved. We carefully work out these formulas in the next section. For now, we take the monodromies from Table 3.1 as true and examine their cohomological implications.

3.1.1 Cohomological Analysis

Let f denote any monodromy coming with the four-punctured torus fiber $\Sigma_{1,4}$. Similarly, denote by g the monodromy with fiber four-punctured 2 -sphere $\Sigma_{0,4}$. By choosing any of the monodromy f we can compute its action on $H^{1}\left(\Sigma_{1,4}\right)$ (either by hand or with the help of software) to conclude that $\operatorname{dim} \operatorname{ker}\left(f^{*}-1\right)=b_{1}\left(Y_{f}\right)-1=3$ in both cases. Let $X_{f}=S^{1} \times Y_{f}$
and $X_{g}=S^{1} \times Y_{g}$. By the previous discussions, these manifolds are diffeomorphic, and we will compute the primitive cohomology of the symplectic structures naturally associated to the fibrations, determined by the monodromy f and g.

With respect to the ordering $\left(a_{0}, a_{1}, a_{2}, a_{3}, b_{0}\right)$ of basis vectors for $H^{1}\left(\Sigma_{1,4}\right)$, computation shows the action on $H^{1}\left(\Sigma_{1,4}\right)$ is given by

$$
f^{*}-1=\left(\begin{array}{ccccc}
-1 & -1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & -1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad J=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

for all f. Here J is the Jordan matrix for $f^{*}-1$. We note it has two blocks of size 2 and one of size 1. It follows that

$$
\begin{aligned}
& \operatorname{ker}\left(f^{*}-1\right)=\langle(1,0,0,-1,0),(0,1,0,-1,0),(0,0,1,-1,0)\rangle \\
& \operatorname{Im}\left(f^{*}-1\right)=\langle(-1,0,1,0,0),(1,-1,1,-1,0)\rangle
\end{aligned}
$$

A quick check shows

$$
\left(f^{*}-1\right)(-1,0,1,0,0)=0=\left(f^{*}-1\right)(1,-1,1,-1,0) .
$$

Hence we conclude

$$
\operatorname{dim} \operatorname{ker}\left(f^{*}-1\right) \cap \operatorname{Im}\left(f^{*}-1\right)=\operatorname{dim} \operatorname{Im}\left(f^{*}-1\right)=2 .
$$

Notice this dimension agrees with the number of blocks from J of size at least 2. Computa-
tions from Section 2 show

$$
p_{2}^{+}\left(X_{f}, \omega_{\eta}\right)= \begin{cases}9, & \lambda_{i} \neq 0 \text { for some } i>s \\ 10, & \lambda_{i}=0 \text { for all } i>s\end{cases}
$$

We now turn to X_{g}. Since X_{f} is diffeomorphic to X_{g}, we must have

$$
b_{1}\left(X_{f}\right)=b_{1}\left(X_{g}\right) \Longrightarrow \operatorname{dim} \operatorname{ker}\left(g^{*}-1\right)=\operatorname{dim} \operatorname{ker}\left(f^{*}-1\right)=3 .
$$

Moreover using the formula $\chi\left(\Sigma_{g, n}\right)=2-2 g-n$, it follows $\chi\left(\Sigma_{0,4}\right)=-2=1-b_{1}\left(\Sigma_{0,4}\right)$, and so $b_{1}\left(\Sigma_{0,4}\right)=3$. But by Rank-Nullity, $3=3+\operatorname{dim} \operatorname{Im}\left(g^{*}-1\right)$, from which it follows $\operatorname{dim} \operatorname{ker}\left(g^{*}-1\right) \cap \operatorname{Im}\left(g^{*}-1\right)=0$. Thus $p_{2}^{+}\left(X_{g}, \omega_{\eta}\right)=b_{2}\left(X_{g}\right)+1=8 \neq p_{2}^{+}\left(X_{f}, \omega_{\eta}\right)$.

We point out that from the Jordan form of the f, these monodromies are not Torelli elements of $\mathcal{M}\left(\Sigma_{1,4}\right)$. However by dimension considerations, we saw $\operatorname{dim} \operatorname{Im}\left(g^{*}-1\right)=0$ and so g is a Torelli element of $\mathcal{M}\left(\Sigma_{0,4}\right)$. Moreover even though each f, f^{\prime} coming from fiber $\Sigma_{1,4}$ are not Torelli, $f^{*}=f^{\prime *}$ and so it follows that $f^{\prime} f^{-1}$ is a Torelli element.

These calculations give the following theorem.

Theorem 3.1.1. There exist fibrations Y_{f} and Y_{g} of the 3-manifold M with inequivalent associated symplectic 4-manifolds $\left(X_{f}, \omega_{1}\right),\left(X_{g}, \omega_{2}\right)$, which can be distinguished by primitive cohomologies. In particular,

$$
p_{2}^{+}\left(X_{f}, \omega_{1}\right) \neq p_{2}^{+}\left(X_{g}, \omega_{2}\right)
$$

To establish Theorem 3.1.1, it only remains to verify the toroidal type monodromies in Table 3.1.

3.2 Construction of Monodromies

In this section, we provide details for the construction of the toroidal mondromies in Table 3.1. Section 3.3 gives an even more specific outline of the procedure that follows. In the examples to come, we take different bases $v_{1}=\left(a_{1}, a_{2}, a_{3}\right), v_{2}=(1,1,0), v_{3}=(0,1,1)$ and fiber along v_{1} so that the fiber at time t looks like $\Sigma_{t, 4}=t v_{1}+\left\langle v_{2}, v_{3}\right\rangle$ with marked points

$$
\begin{aligned}
& y_{1}(t)=(-4 \epsilon, 3 \epsilon)+\left(a_{3}-a_{2},-a_{3}\right) t, \\
& y_{2}(t)=(-\epsilon, 2 \epsilon)+\left(-a_{1}, a_{1}-a_{2}\right) t, \\
& y_{3}(t)=(0,0)+\left(a_{3}-a_{2}, a_{1}-a_{2}\right) t, \\
& y_{4}(t)=(\epsilon,-3 \epsilon)+\left(-a_{1},-a_{3}\right) t .
\end{aligned}
$$

Here, ϵ is some small fixed constant used to shift the coordinate axes away from the origin. The vector v_{1} is the projection vector given in column 2 of Table 3.1. The general idea is as follows,

1. Using the paths of the punctures y_{i}, find relative locations to determine if y_{i} passes above or below y_{j}.
2. Express $\mathcal{P} u s h\left(y_{i}(t)\right)$ of the y_{i} path in terms of generators $\mathcal{P} u \operatorname{sh}\left(\rho_{i}\right), \mathcal{P} u \operatorname{sh}\left(\tau_{i}\right)$.
3. Calculate the intersection points of punctures $\left(y_{i}(t), y_{j}(t)\right)$ at times $\left(t_{i}, t_{j}\right)$. If $t_{i}>t_{j}$ then y_{i} crosses over y_{j}. If $t_{i}<t_{j}$ then y_{j} crosses over y_{i}.
4. Use the crossings information to determine the order of $\mathcal{P} u s h\left(y_{i}(t)\right)$ maps in the final monodromy.

The procedure is best demonstrated through examples. As before, we drop the push notation so that $\mathcal{P} u s h\left(\rho_{2}\right) \mathcal{P} u s h\left(\tau_{1}\right)^{-1} \mathcal{P} u s h\left(\tau_{3}\right)$ is simply denoted by $\rho_{2} \tau_{1}^{-1} \tau_{3}$. We also use function notation right to left so that the previous word indicates y_{3} travels along τ_{3} then y_{1}
along the inverse of τ_{1} then finally y_{2} along ρ_{2}. Homeomorphism type of the below examples was confirmed with SnapPea ([2]).

Toroidal Example 1. $v_{1}=(-1,-1,1)$
The paths of the corresponding marked points are

$$
\begin{aligned}
& y_{1}(t)=(-4 \epsilon, 3 \epsilon)+(2,-1) t, \\
& y_{2}(t)=(-\epsilon, 2 \epsilon)+(1,0) t, \\
& y_{3}(t)=(0,0)+(2,0) t, \\
& y_{4}(t)=(\epsilon,-3 \epsilon)+(1,-1) t .
\end{aligned}
$$

Thus y_{2} and y_{3} travel in a parallel horizontal direction. y_{1} and y_{4} travel downwards and to the right and so will intersect both y_{2} and y_{3}. We first find these intersection times. We illustrate the process for y_{1} and y_{3} and summarize the other points in Table 3.2. We need times t_{1} and t_{3} so that $y_{1}\left(t_{1}\right)=y_{3}\left(t_{3}\right)$. In other words, we seek a solution to the system

$$
\begin{array}{r}
-4 \epsilon+2 t_{1}=2 t_{3} \\
3 \epsilon-t_{1}=0
\end{array}
$$

which gives $\left(t_{1}, t_{3}\right)=\left(3 \epsilon, \epsilon+\frac{n}{2}\right), n=0,1$. Hence y_{1} and y_{3} intersect twice. The first time y_{1} passes over y_{3}. Then at $t_{3}=\epsilon+\frac{1}{2}, y_{3}$ crosses y_{1}. At $t_{2}=\frac{5}{8} \epsilon+\frac{1}{2}, y_{2}$ passes over y_{1}. Similarly solving the corresponding system for y_{2} and y_{3} yields $\left(t_{2}, t_{3}\right)=\left(\frac{2}{3} \epsilon+\frac{n}{2}, 1-\frac{1}{3} \epsilon\right), n=0,1$. Both y_{2} times occur before y_{3}, hence we conclude y_{3} passes over y_{2} twice. The remaining points of intersection are given in Table 3.2. The times specified are the later of the two crossing times and the points have been listed in order of intersection occurrence, from first to last.

Pictured in Figure 3.1 are the paths of the y_{i} drawn in the plane (up to identification),

Table 3.2: Toroidal Example 1 Intersections

Points	Time	Crossing
$\left(y_{1}, y_{3}\right)$	3ϵ	y_{1} over y_{3}
$\left(y_{1}, y_{3}\right)$	$\epsilon+\frac{1}{2}$	y_{3} over y_{1}
$\left(y_{2}, y_{4}\right)$	$1-3 \epsilon$	y_{2} over y_{4}
$\left(y_{3}, y_{4}\right)$	$1-3 \epsilon$	y_{4} over y_{3}
$\left(y_{1}, y_{2}\right)$	$1-\epsilon$	y_{2} over y_{1}
$\left(y_{1}, y_{4}\right)$	$1-\epsilon$	y_{1} over y_{4}
$\left(y_{3}, y_{4}\right)$	$1-\epsilon$	y_{3} over y_{4}

where we have decomposed the "diagonal" paths of y_{1} and y_{4} into a combination of basis curves ρ_{i} and τ_{i}. To find the path of y_{1}, for example, we must use its velocity vector $(2,-1)$ as well as the relative locations of y_{1} with respect to the start points of y_{2}, y_{3}, and y_{4}. Given that point y_{2} starts at $(-\epsilon, 2 \epsilon)$, we have $y_{1}\left(\frac{3}{2} \epsilon\right)=\left(-\epsilon, \frac{3}{2} \epsilon\right)$ and so y_{1} travels 'below' the y_{2} start point. Similar computations show y_{1} travels above both the y_{3} and y_{4} start points. As illustrated in Figure 3.1, the velocity vector $(2,-1)$ suggests y_{1} has a path given by $\tau_{1}^{-1} \rho_{1}^{-1} \tau_{1}^{-1}$. However the diagonal path homotopic to this combination will not preserve the condition that y_{1} travels below the y_{2} start point. To remedy this situation, we must begin the y_{1} monodromy with the loop C_{12}. This curve travels counterclockwise from y_{1}, enclosing y_{2}. Figure 3.2 illustrates the $\tau_{1}^{-1} C_{12}$ portion of the monodromy.

Figure 3.1: Example 1 Marked Point Paths

y_{4} is the only other diagonal path. We can easily check that it travels above the y_{1},
Figure 3.2: C_{12} Path in Example 1

y_{2}, and y_{3} start points. Hence its path is simply given by $\tau_{4}^{-1} \rho_{4}^{-1}$, indicated by the $(1,-1)$ velocity vector.

Summarizing, the monodromies of the punctures are given by

$$
\begin{aligned}
& y_{1}(t): \tau_{1}^{-1} \rho_{1}^{-1} \tau_{1}^{-1} C_{12}=\tau_{1}^{-1} \rho_{1}^{-1} \rho_{2}^{-1} \tau_{1}^{-1} \rho_{2}, \\
& y_{2}(t): \tau_{2}^{-1}, \\
& y_{3}(t): \tau_{3}^{-2}, \\
& y_{4}(t): \tau_{4}^{-1} \rho_{4}^{-1} .
\end{aligned}
$$

Now, we must determine the order of these individual monodromies in the final map. Using the above formulas, it's clear $y_{2}(t)$ and $y_{3}(t)$ are parallel so their relative order to each other in the final monodromy doesn't matter. From Table 1, we see every other point crosses over y_{3} first, but then y_{3} crosses over y_{1} and y_{4} again later. Thus we should put one τ_{3}^{-1} at the beginning of the monodromy and the other τ_{3}^{-1} at the end. Next, both y_{1} and y_{2} cross over y_{4} so the y_{4} term should come next.

It only remains to determine the order of y_{1} and y_{2}, which is given by Table 1 as y_{1} then y_{2}. Therefore our monodromy has the formula $y_{3} \circ y_{2} \circ y_{1} \circ y_{4} \circ y_{3}$, where the first and last y_{3} terms are each a τ_{3}^{-1}. This ordering gives 10 possible crossings, but y_{2} and y_{3} are parallel and y_{3} appears twice. Hence the number reduces to $10-3=7$, matching the occurrences in Table 3.2.

Piecing all the arguments together shows the final monodromy is isotopic to

$$
\tau_{3}^{-1} \tau_{2}^{-1}\left(\tau_{1}^{-1} \rho_{1}^{-1} \tau_{1}^{-1} C_{12}\right) \tau_{4}^{-1} \rho_{4}^{-1} \tau_{3}^{-1}=\tau_{3}^{-1} \tau_{2}^{-1}\left(\tau_{1}^{-1} \rho_{1}^{-1} \rho_{2}^{-1} \tau_{1}^{-1} \rho_{2}\right) \tau_{4}^{-1} \rho_{4}^{-1} \tau_{3}^{-1}
$$

Toroidal Example 2. $v_{1}=(-1,1,1)$

The paths of the punctures are given by

$$
\begin{aligned}
& y_{1}(t)=(-4 \epsilon, 3 \epsilon)+(0,-1) t, \\
& y_{2}(t)=(-\epsilon, 2 \epsilon)+(1,-2) t, \\
& y_{3}(t)=(0,0)+(0,-2) t, \\
& y_{4}(t)=(\epsilon,-3 \epsilon)+(1,-1) t .
\end{aligned}
$$

Implementing the techniques from the previous example, we obtain the intersections in Table 3.3. There is only one non-trivial diagonal path, given by y_{2}. Evaluating this path at the appropriate times yields

$$
\begin{aligned}
y_{2}(-3 \epsilon) & =(-4 \epsilon, 8 \epsilon), \\
y_{2}(\epsilon) & =(0,0), \\
y_{2}(2 \epsilon) & =(\epsilon,-2 \epsilon) .
\end{aligned}
$$

We see that y_{2} travels above y_{1} and y_{4} start points and through y_{3} at the origin. We note at $t=\epsilon, y_{3}(\epsilon)=(0,-2 \epsilon)$ has traveled away from the origin and so $y_{2}(t)$ and $y_{3}(t)$ do not actually collide. Thus, in between $\rho_{2}^{-1} \rho_{2}^{-1} \tau_{2}^{-1}$, we must insert a loop traveling counterclockwise starting at y_{2} and enclosing y_{1}. It turns out this curve is also homotopic to C_{12} (see [1] for more discussion). By drawing a diagram similar to Figure 3.1 one can see the correct placement should be $\rho_{2}^{-1} C_{12} \rho_{2}^{-1} \tau_{2}^{-1}$. The paths of the other points are straightforward, given by

$$
\begin{aligned}
& y_{1}: \rho_{1}^{-1} \\
& y_{2}: \rho_{2}^{-1} C_{12} \rho_{2}^{-1} \tau_{2}^{-1}=\rho_{2}^{-1} \tau_{1} \rho_{2}^{-1} \tau_{1}^{-1} \tau_{2}^{-1}, \\
& y_{3}: \rho_{3}^{-2} \\
& y_{4}: \tau_{4}^{-1} \rho_{4}^{-1}
\end{aligned}
$$

The ordering for this example is similar to that of Example 1; this time we need to split both of the paths y_{2} and y_{4} into two parts each. Notice from the individual monodromies that y_{1} and y_{3} are parallel so their relative order doesn't matter. We proceed by considering the remaining interactions separately. Since y_{1} passes under for all its crossings, it appears first. Then y_{3} over y_{2} and y_{2} over y_{4} suggests the ordering $y_{3} \circ y_{2} \circ y_{4}$. However, we need y_{4} to cross over y_{3} and this current arrangement does the opposite. Hence we must split the y_{4} monodromy into two components: $y_{4} \circ y_{3} \circ y_{2} \circ y_{4}$. Finally, if we leave y_{2} together, we will have both y_{4} and y_{2} crossing over one another at different times. Consequently, we also split y_{2} for the ultimate ordering given by $y_{2} \circ y_{4} \circ y_{3} \circ y_{2} \circ y_{4} \circ y_{1}$. The final monodromy pieces together as

$$
y_{2} \circ \tau_{4}^{-1} \circ \rho_{3}^{-2} \circ y_{2} \circ \rho_{4}^{-1} \circ \rho_{1}^{-1} .
$$

To reiterate, we are required to separate y_{2} such that the τ_{4}^{-1} does not intersect the first term. This obstruction suggests the first y_{2} part is τ_{2}^{-1} and the second term is the remaining $\rho_{2}^{-1} C_{12} \rho_{2}^{-1}$. This construction yields the desired map

$$
\rho_{2}^{-1} C_{12} \rho_{2}^{-1} \tau_{4}^{-1} \rho_{3}^{-2} \tau_{2}^{-1} \rho_{4}^{-1} \rho_{1}^{-1}
$$

Table 3.3: Toroidal Example 2 Intersections

Points	Time	Crossing
$\left(y_{2}, y_{4}\right)$	3ϵ	y_{2} over y_{4}
$\left(y_{2}, y_{3}\right)$	$\frac{1}{2}$	y_{3} over y_{2}
$\left(y_{1}, y_{4}\right)$	$1-5 \epsilon$	y_{4} over y_{1}
$\left(y_{1}, y_{2}\right)$	$1-3 \epsilon$	y_{2} over y_{1}
$\left(y_{3}, y_{4}\right)$	$1-\epsilon$	y_{4} over y_{3}

3.3 Further Details on Fibration Construction

We now provide the details of setting up the fibration structure and converting monodromies appropriately so that they can be entered into SnapPea ([2]). Let \mathbb{T}^{3} denote the 3 -torus. We view it as the cube $[0,1]^{3}$ under the identification $(x, y, z) \sim(x+p, y+q, z+r)$ for integers p, q, r. The axes i, j, k and their sum $i+j+k$ form four lines in the cube $L_{1}, L_{2}, L_{3}, L_{4}$, respectively. By choosing different bases $\left(v_{1}, v_{2}, v_{3}\right)$ for the cube and displacing the four lines we may fiber $\mathbb{T}^{3}-\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ in different ways as follows. First we shift the four lines from the origin by

$$
\begin{aligned}
& L_{1}=(x,-\epsilon, 3 \epsilon), \\
& L_{2}=(\epsilon, y,-3 \epsilon), \\
& L_{3}=(-\epsilon, \epsilon, z), \\
& L_{4}=(x=y=z) .
\end{aligned}
$$

Next we choose a basis $v_{1}=\left(a_{1}, a_{2}, a_{3}\right), v_{2}=(1,1,0), v_{3}=(0,1,1)$. Initially v_{1} may be any vector which gives a non-zero determinant, specifically, $a_{1}-a_{2}+a_{3} \neq 0$. For brevity, let us denote $A:=\operatorname{det}\left(v_{1}, v_{2}, v_{3}\right)=a_{1}-a_{2}+a_{3}$. Choosing to fiber along v_{1}, each fiber has the form $\Sigma_{t}=t v_{1}+\alpha v_{2}+\beta v_{3}$ for $t \in[0,1] . \Sigma_{t}$ is \mathbb{T}^{2} with four punctures denoted $x_{1}(t), x_{2}(t), x_{3}(t), x_{4}(t)$ coming from the respective lines L_{i}. To verify that each line L_{i}
intersects the fiber exactly once we must solve the following system of equations:

$$
\begin{aligned}
& L_{1}:\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{\alpha}{\beta}=\binom{-\epsilon-t a_{2}}{3 \epsilon-t a_{3}}, \\
& L_{2}:\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\alpha}{\beta}=\binom{\epsilon-t a_{1}}{-3 \epsilon-t a_{3}}, \\
& L_{3}:\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{\alpha}{\beta}=\binom{-\epsilon-t a_{1}}{\epsilon-t a_{2}}, \\
& L_{4}:\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right)\binom{\alpha}{\beta}=\binom{t\left(a_{2}-a_{1}\right)}{t\left(a_{3}-a_{1}\right)} .
\end{aligned}
$$

Solving these systems for the (α, β) coordinates of the marked points $x_{i}(t)$ yields

$$
\begin{aligned}
& x_{1}(t)=(-4 \epsilon, 3 \epsilon)+\left(a_{3}-a_{2},-a_{3}\right) t, \\
& x_{2}(t)=(\epsilon,-3 \epsilon)+\left(-a_{1},-a_{3}\right) t, \\
& x_{3}(t)=(-\epsilon, 2 \epsilon)+\left(-a_{1}, a_{1}-a_{2}\right) t, \\
& x_{4}(t)=(0,0)+\left(a_{3}-a_{2}, a_{1}-a_{2}\right) t .
\end{aligned}
$$

To align with the notation of [1], we relabel the points with respect to their first coordinate position, in increasing order, as $y_{1}(t)=x_{1}(t), y_{2}(t)=x_{3}(t), y_{3}(t)=x_{4}(t), y_{4}(t)=x_{2}(t)$.

Under this new setting the formulas for the points become

$$
\begin{aligned}
& y_{1}(t)=(-4 \epsilon, 3 \epsilon)+\left(a_{3}-a_{2},-a_{3}\right) t, \\
& y_{2}(t)=(-\epsilon, 2 \epsilon)+\left(-a_{1}, a_{1}-a_{2}\right) t, \\
& y_{3}(t)=(0,0)+\left(a_{3}-a_{2}, a_{1}-a_{2}\right) t, \\
& y_{4}(t)=(\epsilon,-3 \epsilon)+\left(-a_{1},-a_{3}\right) t .
\end{aligned}
$$

Next we verify that none of the $y_{i}(t)$ intersect for any value of t. Notice y_{2} and y_{3} have the same second component in the t variable but differ by the ϵ-term constant so they will never intersect. We can apply a similar argument to the pairs $\left(y_{1}, y_{3}\right),\left(y_{1}, y_{4}\right)$, and $\left(y_{2}, y_{4}\right)$. Lastly, by considering the (separate) systems of equations $y_{1}(t)=y_{2}(t)$ and $y_{3}(t)=y_{4}(t)$, one can easily see no solutions exist.

Let $\Sigma_{1,4}$ be the 2 -torus with four punctures and $\operatorname{Mod}\left(\Sigma_{1,4}\right)$ its mapping class group (which fixes the punctures setwise). Furthermore let $\mathcal{P} \operatorname{Mod}\left(\Sigma_{1,4}\right)$ denote the pure mapping class group, the set of mapping class elements fixing the punctures pointwise. We set

$$
\begin{equation*}
H_{1}(\Sigma)=\left\langle a_{0}, a_{1}, a_{2}, a_{3}, b_{0}\right\rangle \tag{3.1}
\end{equation*}
$$

where a_{i} is the homology curve between punctures i and $i+1$ for $i>0$ and a_{0} is between marked point 1 and 4. b_{0} is the homology longitudinal curve, not enclosing any punctures. These curves have algebraic intersection numbers $a_{i} \cdot a_{j}=0$ for $i \neq j$ and $a_{i} \cdot b_{0}=1$. [1] introduces the following elements (pictured below) and show Dehn twists along them generate the pure mapping class group. In our setting we have $\mathcal{P} \operatorname{Mod}\left(\Sigma_{1,4}\right)=\left\langle\mathcal{P} u s h\left(\rho_{i}\right), \mathcal{P} u s h\left(\tau_{i}\right)\right\rangle$, $1 \leq i \leq 4$. Here, $\mathcal{P} u s h(\gamma)$ is the point pushing map along γ. We also summarize some of
the important relations to be used later:

$$
\begin{aligned}
& {\left[\tau_{i}, \tau_{j}\right]=\left[\rho_{i}, \rho_{j}\right]=1} \\
& A_{i j}=\rho_{i} \tau_{j}^{-1} \rho_{i}^{-1} \tau_{j}, \quad C_{i j}=\tau_{i} \rho_{j}^{-1} \tau_{i}^{-1} \rho_{j}
\end{aligned}
$$

for $1 \leq i<j<k \leq 4$.

For a more in depth discussion and outline of a proof for these identities, see [1]. We note

Figure 3.3: Diagram of generators taken from [1]
that the formulas here differ slightly from [1] as our choice of orientation is not the same. Moreover, we use functional composition, (right to left) as opposed to algebraic. In order to use SnapPea ([2]), we need to express $\mathcal{P} u \operatorname{sh}\left(\rho_{i}\right)$ and $\mathcal{P} u s h\left(\tau_{i}\right)$ in terms of Dehn twists along the curves in (3.1). The trick is to use the following fact (4.7 proven in [4]), which states

Fact. Let α be a simple loop in a surface S representing an element of $\pi_{1}(S, x)$, Then $\mathcal{P} u s h([\alpha])=T_{a} T_{b}^{-1}$, where a and b are isotopy classes of the simple closed curves in $S-x$ obtained by pushing α off itself to the left and right, respectively.

That is, we take an annular neighborhood of α bounded by curves a and b and then take the product of their Dehn and inverse Dehn twists, respectively. From this construction, we
can immediately obtain that

$$
\begin{equation*}
\mathcal{P} \operatorname{ush}\left(\rho_{i}\right)=T_{a_{i-1}} T_{a_{i}}^{-1} . \tag{3.2}
\end{equation*}
$$

For the τ_{i} curves we need to find an annular boundary to work with. We introduce the longitudinal homology curves b_{i}, which enclose the punctures $1,2, \cdots, i[$ "over" $1,2, \cdots, i$ and "under" $i+1, \cdots, 4]$. Thus b_{0} agrees with the previous homology generator introduced, b_{1} passes over puncture 1 and misses $2,3,4$, and so on. The point of introducing these curves is that now τ_{i} has an annular neighborhood bounded by b_{i-1} and b_{i}. By consulting the diagrams to determine proper orientation it follows that

$$
\begin{equation*}
\mathcal{P} u s h\left(\tau_{i}\right)=T_{b_{i}} T_{b_{i-1}}^{-1} . \tag{3.3}
\end{equation*}
$$

Next we need to convert Equation 3.3 into Dehn twists only involving the homology generators given in 3.1. First we observe that we may express $\left[b_{i}\right]=\left[a_{0}\right]+\left[b_{0}\right]-\left[a_{i}\right]$, which can be verified by constructing the fundamental square for the torus with the relevant curves. An example diagram in Figure 3.4 is given for the $\left[b_{1}\right]$ case. One can straightforwardly check

Figure 3.4: Diagram for b_{1} Expression
that $T_{a_{i}} T_{b_{0}}\left(\left[a_{0}\right]\right)=\left[a_{0}\right]+\left[b_{0}\right]-\left[a_{i}\right]=\left[b_{i}\right]$. Fact 3.7 in [4] states $T_{f(a)}=f T_{a} f^{-1}$, which we can apply to our situation by setting $a=a_{0}$ and $f=T_{a_{i}} T_{b_{0}}$. This fact then yields

$$
\begin{equation*}
T_{b_{i}}=T_{a_{i}} T_{b_{0}} T_{a_{0}} T_{b_{0}}^{-1} T_{a_{i}}^{-1} \tag{3.4}
\end{equation*}
$$

Finally, substituting formula 3.4 into equation 3.3 leads to our desired expression

$$
\begin{equation*}
\mathcal{P} u s h\left(\tau_{i}\right)=T_{a_{i-1}} T_{b_{0}} T_{a_{0}}^{-1} T_{b_{0}}^{-1} T_{a_{i-1}}^{-1} T_{a_{i}} T_{b_{0}} T_{a_{0}} T_{b_{0}}^{-1} T_{a_{i}}^{-1} . \tag{3.5}
\end{equation*}
$$

3.4 Another Example Using Graph Links

Here, we give another example of fibrations of a 3-manifold giving inequivalent symplectic structures on its associated (symplectic) 4-manifold $S^{1} \times Y_{f}$. Let $M^{(2 n)}=S^{3} \backslash K^{(2 n)}$, where $K^{(2 n)}$ is the graph link pictured in Figure 3.5 below. The details of this diagram are given in [19], where the third author showed the existence of $n+1$ inequivalent symplectic structures coming from different fibrations of $M^{(2 n)}$. A fibration of $M^{(2 n)}$ is given by a choice of

Figure 3.5: Diagram of $K^{(2 n)}$
$\left.\left(m_{1}, m_{2}\right) \in H^{1}\left(S^{3} \backslash K^{(2 n)}\right), \mathbb{Z}\right) \cong \mathbb{Z}^{2}$ satisfying the equations

$$
3^{i} m_{1}+3^{2 n-i+1} m_{2} \neq 0, \text { for all } 1 \leq i \leq 2 n
$$

Details for such a fibration (and graph link theory in general) are worked out in [3]. In particular, let h denote the monodromy and h_{*} the induced map on homology of the fiber. [3, Theorem 13.6] shows there is an integer q such that $\left(h_{*}^{q}-1\right)^{2}=0$. Thus the Jordan decomposition of h_{*} only has blocks of size 1 or 2 . Furthermore, with the same q, [3] computes the characteristic polynomial of $\left.h_{*}\right|_{\operatorname{Im}\left(h_{*}^{q}-1\right)}$, denoted $\Delta^{\prime}(t)$. It turns out that the roots of $\Delta^{\prime}(t)$ correspond to the eigenvalues of h_{*} with size 2 Jordan blocks. Moreover the multiplicity of each root λ_{i} in $\Delta^{\prime}(t)$ gives the number of size 2 blocks for λ_{i}.

We first introduce some notation which will be used in the definition of $\Delta^{\prime}(t)$. Fix a fibration $\left(m_{1}, m_{2}\right)$. Let $\mathcal{E}=\left\{E_{1}, \cdots, E_{2 n-1}\right\}$ be the set of edges connecting the white nodes in Figure 3.5. Specifically, edge E_{i} connects nodes labeled H_{i} and H_{i+1}. For each $E_{i} \in \mathcal{E}$, we define an integer $d_{E_{i}}$ as follows. Take the path in $K^{(2 n)}$ from the arrowhead of K_{1} to halfway through edge E_{i} (passing through nodes $H_{1}, H_{2}, \cdots, H_{i}$). Let $\ell_{E_{i}, 1}$ denote the product of all weights on edges not contained in the path but are adjacent to vertices in the path. Similarly we can take the path from the arrowhead of K_{2} to halfway through edge E_{i} and define $\ell_{E_{i}, 2}$ analogously. Set

$$
d_{E_{i}}=\operatorname{gcd}\left(m_{1} \ell_{E_{i}, 1}, m_{2} \ell_{E_{i}, 2}\right)
$$

Using Figure 3.5 as reference, we can easily compute that $\ell_{E_{i}, 1}=3^{i}$ and $\ell_{E_{i}, 2}=3^{2 n-i}$. This simplifies the formula for d_{E} to

$$
\begin{equation*}
d_{E_{i}}=\operatorname{gcd}\left(3^{i} m_{1}, 3^{2 n-i} m_{2}\right) . \tag{3.6}
\end{equation*}
$$

For each vertex H_{i}, we define an integer $d_{V_{i}}$ by the formula

$$
d_{V_{i}}=\left\{\begin{array}{cc}
\operatorname{gcd}\left(d_{E_{i-1}}, d_{E_{i}}\right), & 1<i<2 n \tag{3.7}\\
\operatorname{gcd}\left(m_{1}, d_{E_{1}}\right), & i=1 \\
\operatorname{gcd}\left(m_{2}, d_{E_{2 n-1}}\right), & i=2 n
\end{array}\right.
$$

With these definitions in place, the (restricted) characteristic polynomial takes the form

$$
\Delta^{\prime}(t)=\left(t^{d}-1\right) \prod_{i=1}^{2 n-1}\left(t^{d_{E_{i}}}-1\right) / \prod_{i=1}^{2 n}\left(t^{d_{V_{i}}}-1\right)
$$

where $d=\operatorname{gcd}\left(m_{1}, m_{2}\right)$. To obtain a more concrete equation, we analyze several fibrations of $K^{(4)}$. Figure 3.6 demonstrates how $d_{E_{1}}=\operatorname{gcd}\left(3 m_{1}, 3^{3} m_{2}\right)$ is calculated. In particular, define $X^{(4)}=S^{1} \times M^{(4)}$ and let $\operatorname{deg} \Delta^{\prime}(t)$ denote the degree of the restricted characteristic polynomial $\Delta^{\prime}(t)$. Since $\operatorname{deg} \Delta^{\prime}(t)$ is the number of Jordan blocks of size 2, which equals the

Figure 3.6: Paths $\ell_{E_{1}, 1}$ and $\ell_{E_{1}, 2}$ of $d_{E_{1}}$
number of blocks of size at least 2, it follows

$$
\begin{aligned}
& p_{2}^{+}=b_{2}\left(X^{(4)}\right)+1+\operatorname{deg} \Delta^{\prime}(t), \\
& p_{2}^{-}=b_{2}\left(X^{(4)}\right)+\operatorname{deg} \Delta^{\prime}(t) .
\end{aligned}
$$

In the case of a fibration represented by coprime $\left(m_{1}, m_{2}\right)$, there are two possibilities: 3 divides exactly one of m_{1} or m_{2}, or 3 neither divides m_{1} nor m_{2}. It turns out p_{2}^{+}can distinguish these two possibilities and in the first case provides information about the power of 3 dividing m_{1} or m_{2}. We give the exact statement below.

Theorem 3.4.1. Let $\left(m_{1}, m_{2}\right)$ be coprime, representing a fibration of $M^{(4)}$. By reversing the roles of m_{1} and m_{2} if necessary, we write $m_{1}=3^{k} q$ with $\operatorname{gcd}(q, 3)=1$ and assume $\operatorname{gcd}\left(3, m_{2}\right)=1$. It follows that

$$
p_{2}^{+}=\left\{\begin{array}{cc}
b_{2}\left(X^{(4)}\right)+9, & k=0 \\
b_{2}\left(X^{(4)}\right)+7, & k=1 \\
b_{2}\left(X^{(4)}\right)+19, & k=2 \\
b_{2}\left(X^{(4)}\right)+1, & k \geq 3
\end{array}\right.
$$

Proof. We proceed by cases, treating $k=0$ and $k>0$ separately.
Case 3.4.1. $(k>0)$

Using formulas (3.6) and (3.7) we compute

$$
\begin{aligned}
& d_{E_{1}}=\operatorname{gcd}\left(3^{k+1} q, 3^{3} s\right)=\min \left(3^{k+1}, 3^{3}\right), \\
& d_{E_{2}}=\operatorname{gcd}\left(3^{k+2} q, 3^{2} s\right)=3^{2}, \\
& d_{E_{3}}=\operatorname{gcd}\left(3^{3+k} q, 3 s\right)=3 \\
& d_{V_{1}}=\operatorname{gcd}\left(3^{k} q, \min \left(3^{k+1}, 3^{3}\right)\right)=\min \left(3^{k}, 3^{3}\right), \\
& d_{V_{2}}=\operatorname{gcd}\left(\min \left(3^{k+1}, 3^{3}\right), 3^{2}\right)=\min \left(3^{k+1}, 3^{2}\right)=3^{2}, \\
& d_{V_{3}}=\operatorname{gcd}\left(3^{2}, 3\right)=3, \\
& d_{V_{4}}=\operatorname{gcd}(s, 3)=1 .
\end{aligned}
$$

from which it follows

$$
\begin{aligned}
\Delta^{\prime}(t) & =\frac{(t-1)\left(t^{3}-1\right)\left(t^{9}-1\right)\left(t^{\min \left(3^{k+1}, 3^{3}\right)}-1\right)}{(t-1)\left(t^{3}-1\right)\left(t^{\min \left(3^{k}, 3^{3}\right)}-1\right)\left(t^{9}-1\right)} \\
& =\frac{t^{3^{2} \min \left(3^{k-1}, 3\right)}-1}{t^{3 \min \left(3^{k-1}, 3^{2}\right)}-1} \\
& =\left\{\begin{array}{cc}
t^{6}+t^{3}+1, & k=1 \\
t^{18}+t^{9}+1, & k=2 \\
1, & k \geq 3
\end{array}\right.
\end{aligned}
$$

Case 3.4.2. $\operatorname{gcd}\left(m_{1}, m_{2}\right)=\operatorname{gcd}\left(m_{1}, 3\right)=\operatorname{gcd}\left(m_{2}, 3\right)=1$. Applying a similar analysis as in

Case 1 shows

$$
\begin{aligned}
& d_{E_{1}}=\operatorname{gcd}\left(3,3^{3}\right)=3, \\
& d_{E_{2}}=\operatorname{gcd}\left(3^{2}, 3^{2}\right)=3^{2}, \\
& d_{E_{3}}=\operatorname{gcd}\left(3^{3}, 3\right)=3, \\
& d_{V_{1}}=\operatorname{gcd}\left(m_{1}, 3\right)=1, \\
& d_{V_{2}}=\operatorname{gcd}\left(3,3^{2}\right)=3, \\
& d_{V_{3}}=\operatorname{gcd}\left(3^{2}, 3\right)=3, \\
& d_{V_{4}}=\operatorname{gcd}\left(3, m_{2}\right)=1,
\end{aligned}
$$

$$
\begin{aligned}
\Delta^{\prime}(t) & =\frac{(t-1)\left(t^{3}-1\right)^{2}\left(t^{9}-1\right)}{(t-1)^{2}\left(t^{3}-1\right)^{2}} \\
& =\frac{t^{9}-1}{t-1}=\left(t^{2}+t+1\right)\left(t^{6}+t^{3}+1\right)
\end{aligned}
$$

Using the formula for p_{2}^{+}and $\operatorname{deg} \Delta^{\prime}(t)$ for each k from the above cases produces the claimed dimensions.

We conclude with some remarks. Theorem 3.4.1 uses $K^{(4)}$ as a matter of explicitness for factoring $\Delta(t)$ and $\Delta^{\prime}(t)$. One could also consider other $K^{(2 n)}$ to reach similar conclusions.

Chapter 4

Examples of the m_{2}-Structure and Symplectic Massey Products

In this chapter, we analyze the A_{3}-structure on primitive forms of $X=S^{1} \times Y_{f}$ for a mapping torus Y_{f}. We compute the ring structure of $H^{*}(X)$ and work out some classical Massey products. Then, we move on to $P H^{*}(X, \omega)$ and show how its product reveals information about the Jordan blocks of the monodromy $f^{*}-1$. We also construct a 3 -fold and 4 -fold symplectic Massey product. Unless otherwise stated, in this chapter, we reserve the notation X for the 4-manifold $S^{1} \times Y_{f}$ and M for a general symplectic manifold.

4.1 Ring Structure and Massey Products on $H^{*}(X)$

We begin this section by calculating $\wedge: H^{*}(X) \times H^{*}(X) \rightarrow H^{*}(X)$ explicitly. For convenience, we restate the de Rham cohomology of X below. Note, if the fiber of Y_{f} is closed then $H^{3}\left(Y_{f}\right)=\left\langle d t \wedge d \pi \wedge \omega_{\Sigma}\right\rangle$. Otherwise, $H^{3}\left(Y_{f}\right)=0$. We keep the same notation as before,
where $x_{i, 0} \in \operatorname{ker}\left(f^{*}-1\right)$ is in a Jordan block of size $n_{i}+1$.

$$
\begin{aligned}
& H^{1}(X)=\left\langle d t, d \pi, x_{i, 0}\right\rangle_{i=1}^{k} \\
& H^{2}(X)=\left\langle d \pi \wedge x_{i, n_{i}}\right\rangle_{i=1}^{k} \oplus\left\langle d t \wedge d \pi, d t \wedge x_{i, 0}\right\rangle_{i=1}^{k} \\
& H^{3}(X)=\left\langle d t \wedge d \pi \wedge x_{i, n_{i}}\right\rangle_{i=1}^{k} \oplus H^{3}\left(Y_{f}\right) \\
& H^{4}(X)=\langle d t\rangle \wedge H^{3}\left(Y_{f}\right)
\end{aligned}
$$

Below we give some of the important (non-zero) entries of the ring structure on $H^{*}(X)$.

$$
\underline{H^{1}(X) \wedge H^{1}(X) \rightarrow H^{2}(X)}:
$$

$H^{1}(X)$	$H^{1}(X)$	$H^{2}(X)$
dt	$d \pi$	$d t \wedge d \pi$
	$x_{i, 0}$	$d t \wedge x_{i, 0}$
$x_{i, 0}$	$x_{j, 0}$	$d \pi \wedge F\left(x_{i, 0}, x_{j, 0}\right)$
$d \pi$	$x_{i, 0}$	$d \pi \wedge x_{i, 0}$,
	$n_{i}=0$	
		0,
$n_{i}>0$		

where $F: \Omega^{1}\left(Y_{f}\right) \otimes \Omega^{1}\left(Y_{f}\right) \rightarrow \Omega^{1}\left(Y_{f}\right)$ is the map determined by the wedge product on Y_{f}. One possible trivial product from the table above is given by $d \pi$ with an element $x_{i, 0}$ in a Jordan block of size greater than one. This combination will lead to an important Massey product determining the size of the block that $x_{i, 0}$ comes from.
$H^{1}(X) \wedge H^{2}(X) \rightarrow H^{3}(X):$

$H^{1}(X)$	$H^{2}(X)$	$H^{3}(X)$
$d t$	$d \pi \wedge x_{i, n_{i}}$	$d t \wedge d \pi \wedge x_{i, n_{i}}$
$d \pi$	$d t \wedge x_{i, 0}$	$-d t \wedge d \pi \wedge x_{i, 0}, \quad n_{i}=0$
		$0, \quad n_{i}>0$
$x_{i, 0}$	$d t \wedge x_{j, 0}$	$-d t \wedge d \pi \wedge F\left(x_{i, 0}, x_{j, 0}\right)$

We see that the standard product on $H^{*}(X)$ can tell if a Jordan block is of size 1 or greater than 1, but in the latter case does not provide any more information on the size. For this further refinement, we turn to a more specialized product.

Suppose x_{0} is in a Jordan block $\mathcal{J}=\left\{x_{0}, x_{1}, \cdots, x_{\ell}\right\}$. As elements of $H^{1}\left(Y_{f}\right)$, the $\left(x_{k}\right)$ satisfy the formula (see [15])

$$
\begin{equation*}
d x_{k}=d \pi \wedge \sum_{j=1}^{k} \frac{(-1)^{j+1}}{j} x_{k-j}, \quad k=0,1, \cdots, \ell . \tag{4.1}
\end{equation*}
$$

For concreteness, let us consider the case where $\ell=2$. Then $\left\langle d \pi, d \pi, x_{0}\right\rangle$ is defined since $d \pi \wedge d \pi=0$ and $d \pi \wedge x_{0}=d x_{1}$. Using this defining system yields $d \pi \wedge x_{1}$ as a representative for this 3-point Massey product. However this (and any other) representative is trivial in $H^{2}(X)$ since the formula $d x_{2}=d \pi \wedge\left(x_{1}-\frac{1}{2} x_{0}\right)$ implies $d \pi \wedge x_{1}=d\left(x_{2}+\frac{1}{2} x_{1}\right)$. Hence, we can turn to the 4 -point Massey $\left\langle d \pi, d \pi, d \pi, x_{i, 0}\right\rangle$ since $\langle d \pi, d \pi, d \pi\rangle=0$ and $\left\langle d \pi, d \pi, x_{0}\right\rangle=d\left(x_{2}+\frac{1}{2} x_{1}\right)$ are both trivial. Computing this product gives a representative cohomologous to $d \pi \wedge x_{2}$ which is non-trivial in $H^{2}(X)$ since x_{2} corresponds to the last vector in the Jordan basis. Thus it took a Massey product with three $d \pi$ terms to achieve a non-trivial representative. This motivating example leads to the following proposition.

Proposition 4.1.1. For a general Jordan block of length $\ell+1$, the Massey product $\left\langle d \pi, \cdots, d \pi, x_{i, 0}\right\rangle$ with the first $\ell+1$ terms consisting of all $d \pi$, is defined. Furthermore, it has a (non-trivial) representative $\left[d \pi \wedge x_{\ell}\right]$.

Proof. A defining system $\left(a_{i j}\right)$ will be quite sparse since any $(n<\ell+1)$-fold Massey product not including the last term $\left(x_{0}\right)$ will look like $\langle d \pi, \cdots, d \pi\rangle$ and so has representative 0 . Specifically, this means $a_{i, j}=0$ for $1 \leq i \neq j<\ell+2$. The only non-zero terms will be the diagonal ones and $a_{i, \ell+2}$ which satisfy $d a_{i, \ell+2}=\left\langle d \pi, d \pi, \cdots, d \pi, x_{0}\right\rangle$, the $(\ell+3-i)$-fold Massey product with $(\ell+2-i) d \pi$ terms. At this point, our defining system looks like,

$$
\left[\begin{array}{ccccc}
d \pi & 0 & \ldots & 0 & * \\
0 & d \pi & \ldots & 0 & a_{2, \ell+2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & d \pi & a_{\ell+1, \ell+2} \\
0 & 0 & \ldots & 0 & x_{0}
\end{array}\right]
$$

We work backwards, using equation (4.1), to compute the $a_{i, \ell+2}$ by the defining equations,

$$
\begin{aligned}
& d a_{\ell+1, \ell+2}=d \pi \wedge x_{0}=d x_{1} \\
& d a_{\ell, \ell+2}=\left\langle d \pi, d \pi, x_{0}\right\rangle=d \pi \wedge x_{1}=d\left(x_{2}+\frac{1}{2} x_{1}\right) \\
& d a_{\ell-1, \ell+2}=\left\langle d \pi, d \pi, d \pi, x_{0}\right\rangle=d \pi \wedge x_{2}=d\left(x_{3}+\frac{1}{2} x_{2}-\frac{1}{12} x_{1}\right) \\
& \vdots \\
& d a_{2, \ell+2}=\left\langle d \pi, d \pi, \cdots, d \pi, x_{0}\right\rangle=d \pi \wedge x_{\ell-1}=d\left(x_{\ell}+\frac{1}{2} x_{\ell-1}-\frac{1}{12} x_{\ell-2}+\frac{3}{8} x_{\ell-3}+\cdots\right)
\end{aligned}
$$

Plugging this system into the Massey product formula yields,

$$
\begin{aligned}
\left\langle d \pi, d \pi, \cdots, d \pi, x_{0}\right\rangle & =\left[a_{11} \wedge a_{2, \ell+2}+a_{12} \wedge a_{3, \ell+2}+\cdots a_{1, \ell+1} \wedge a_{\ell+2, \ell+2}\right] \\
& =\left[d \pi \wedge\left(x_{\ell}+\frac{1}{2} x_{\ell-1}-\frac{1}{12} x_{\ell-2}+\frac{3}{8} x_{\ell-3}+\cdots\right)\right] \\
& =\left[d \pi \wedge x_{\ell}\right]+\left[d \pi \wedge\left(\frac{1}{2} x_{\ell-1}-\frac{1}{12} x_{\ell-2}+\frac{3}{8} x_{\ell-3}+\cdots\right)\right] \\
& =\left[d \pi \wedge x_{\ell}\right]
\end{aligned}
$$

where the last equality follows from the fact that $d \pi \wedge x_{k}$ is exact for all $0<k<\ell$.

Remark 4.1.1. After completing this proposition, the author later found a more general argument made by Pajitnov, where certain Massey products are computed to count lengths of Jordan blocks from cohomology and twisted cohomology. See [9] and [10] for such detail.

4.2 Primitive Cohomology and Explicit Generators

Next, we explore the product m_{2} on $P H^{*}(X, \omega)$, where $X=S^{1} \times Y_{f}$ and $\omega=d t \wedge d \phi+d \alpha$. To do so, we first construct explicit primitive forms that represent the isomorphisms in Theorem 1.3.1. From this point on, we use the notation consistent with [15]. Let each $\left[\gamma_{i, 0}\right] \in \operatorname{ker}\left(f^{*}-1: H^{1}(\Sigma) \rightarrow H^{1}(\Sigma)\right) \subset P H^{1}(X)$ be in a Jordan block $\left\{\gamma_{i, 0}, \gamma_{i, 1}, \cdots, \gamma_{i, \ell_{i}}\right\}$. Then, there is some function $g_{i, 0}$ on Σ such that $f^{*}\left(\gamma_{i, 0}\right)=\gamma_{i, 0}+d g_{i, 0}$. Let χ be a cutoff function on a neighborhood of $[0,1]$ which is 0 near 0 and 1 near 1 . Define the 1 -form on $\tilde{\gamma}_{i, 0} \in \Omega^{*}(\Sigma \times[0,1])$ by

$$
\tilde{\gamma}_{i, 0}(x, t)=\gamma_{i, 0}(x)+d\left(\chi(t) g_{i, 0}(x)\right)=\gamma_{i, 0}(x)+\chi(t) d g_{i, 0}(x)+\chi^{\prime}(t) g_{i, 0}(x) d t .
$$

Then $f^{*}\left(\tilde{\gamma}_{i, 0}\right)=\gamma_{i, 0}(x)+d g_{i, 0}(x)+\chi(t) f^{*}\left(d g_{i, 0}(x)\right)+\chi^{\prime}(t) f^{*}\left(g_{i, 0}(x)\right) d t$. Let $N_{0}=(-\epsilon, \epsilon)$ and $N_{1}=(1-\epsilon, 1+\epsilon)$ be small neighborhoods of 0 and 1 , respectively. It follows that

$$
\left.f^{*}\left(\tilde{\gamma}_{i, 0}\right)\right|_{t \in N_{0}}=\gamma_{i, 0}(x)+d g_{i, 0}(x)=\left.\tilde{\gamma}_{i, 0}(x)\right|_{t \in N_{1}}
$$

and so $\tilde{\gamma}_{i, 0}$ descends to a global one-form on Y_{f}. We still denote by $\tilde{\gamma}_{i, 0}$ this one-form but use the coordinate $d \phi$ instead of $d t$. In a similar manner, we can construct global forms $\tilde{\gamma}_{i, k}$ for each $k=1,2, \cdots, \ell_{i}$ (of course, these won't be d-closed, in general). Consult [15] for this construction.

Letting $k=\operatorname{dim} \operatorname{ker}\left(f^{*}-1\right)$, we have $P H_{1}^{+}(X)=\left\langle d t, d \phi, \tilde{\gamma}_{1,0}, \cdots, \tilde{\gamma}_{k, 0}\right\rangle$ for each $\gamma_{i, 0} \in$ $\operatorname{ker}\left(f^{*}-1\right)$. Moving on to $P H_{+}^{2}(X)$, we have one-forms $\langle d t, d \phi\rangle$ which need primitive two-
form representatives which are $\partial_{+} \partial_{-}$-closed. Since $\left[\omega_{\Sigma}\right] \in H^{2}\left(Y_{f}\right)$ is trivial, there is some $\alpha \in \Omega^{1}\left(Y_{f}\right)$ such that $\omega_{\Sigma}=d \alpha$. Consider the element $d \phi \wedge \alpha$. Then $\omega \wedge(d \phi \wedge \alpha)=$ $\omega_{\Sigma} \wedge d \phi \wedge \alpha=0$, since it is a 4-form on Y_{f}. Moreover $d(d \phi \wedge \alpha)=-d \phi \wedge \omega_{\Sigma}=-d \phi \wedge \omega$. Therefore $\partial_{-}(d \phi \wedge \alpha)=-d \phi$ and it follows that $\partial_{+} \partial_{-}(d \phi \wedge \alpha)=-\partial_{+}(d \phi)=0$. Thus $d \phi$ corresponds to the explicit primitive element $d \phi \wedge \alpha$ in $P H_{+}^{2}(X)$.

We claim $d t$ corresponds to the element $d t \wedge \alpha-\frac{1}{2} \omega \wedge \Lambda(d t \wedge \alpha)$. To see this element is primitive, recall the $\mathfrak{s l}(2)$ identity $[\Lambda, L]=H$. Hence for a 0 -form B_{0},

$$
\Lambda\left(\omega \wedge B_{0}\right)-\omega \wedge \Lambda\left(B_{0}\right)=\Lambda\left(\omega \wedge B_{0}\right)=2 B_{0} .
$$

In particular $\Lambda(\omega)=2$. Similarly, for a 1-form B_{1},

$$
\Lambda\left(\omega \wedge B_{1}\right)-\omega \wedge \Lambda\left(B_{1}\right)=\Lambda\left(\omega \wedge B_{1}\right)=B_{1} .
$$

It now follows immediately that $\Lambda\left(d t \wedge \alpha-\frac{1}{2} \omega \wedge \Lambda(d t \wedge \alpha)\right)=\Lambda(d t \wedge \alpha)-\Lambda(d t \wedge \alpha)=0$ and so indeed the described element is primitive. It remains to show this element is $\partial_{+} \partial_{-}$-closed. To do so, we use the fact that $\partial_{+} \partial_{-}$acting on primitive 2 -forms takes the form $d \Lambda d$ (see [18] for a proof). Thus

$$
\begin{aligned}
d B_{2} & :=d\left(d t \wedge \alpha-\frac{1}{2} \omega \wedge \Lambda(d t \wedge \alpha)\right) \\
& =-d t \wedge d \alpha-\frac{1}{2} \omega \wedge d \Lambda(d t \wedge \alpha) \\
& =\omega \wedge\left(-d t-\frac{1}{2} d \Lambda(d t \wedge \alpha)\right) \\
\Lambda d B_{2} & =-d t-\frac{1}{2} d \Lambda(d t \wedge \alpha),
\end{aligned}
$$

and taking d of the expression in the last equality clearly results in 0 .
We summarize the generators in the table below. For the elements listed, but not discussed above, we refer the reader to [15].

Table 4.1: $P H_{+}^{*}(X)$ Elements

k	$\operatorname{dim} P H_{+}^{k}(X)$	Generators for $P H_{+}^{k}(X)$
0	1	1
1	$b_{1}(X)$	$d t, d \phi, \tilde{\gamma}_{i, 0}, i=1, \cdots, k$
2	$1+b_{2}(X)+\nu_{2}(X)$	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}, \ell_{i}+1$ size of corresponding Jordan block,
		$d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)$,
		$d \phi \wedge \alpha$,
		$d t \wedge \alpha-\frac{1}{2} \omega \wedge \Lambda(d t \wedge \alpha)$,
		$\tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}-d\left(\chi^{\prime} \mu_{i, 1}+\chi^{\prime}(\phi-1) \mu_{i, 0}\right)$.

Table 4.2: $P H_{-}^{*}(X)$ Elements

k	$\operatorname{dim} P H_{-}^{k}(X)$	Generators for $P H_{-}^{k}(X)$
0	0	\emptyset
1	$b_{3}(X)$	$\tilde{\gamma}_{i, \ell_{i}}$
2	$b_{2}(X)+\nu_{2}(X)$	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}$,
		$d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)$,
	$d t \wedge d \phi-\omega_{\Sigma}$,	
		$d \phi \wedge \sum_{j=1}^{\ell_{k}} \frac{(-1)^{j+1}}{j} \tilde{\gamma}_{k, \ell_{k}-j}$, for each $\ell_{k}>0$.

4.3 Primitive Massey Products

Fix a symplectic manifold (M, ω). We introduce a Massey product on $P H^{*}(M, \omega)$, denoted $\langle\cdot, \cdot, \cdot\rangle_{s}$. Motivated by the classic framework, suppose we have m_{1}-closed primitive forms a_{1}, a_{2}, a_{3} such that

$$
\begin{align*}
& a_{1} \times a_{2}=m_{1}\left(a_{12}\right), \tag{4.2}\\
& a_{2} \times a_{3}=m_{1}\left(a_{23}\right) . \tag{4.3}
\end{align*}
$$

If we attempt to mimic the classic Massey product by $a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}$, unfortunately we have

$$
m_{1}\left(a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}\right)=\left(a_{1} \times a_{2}\right) \times a_{3}-a_{1} \times\left(a_{2} \times a_{3}\right) \neq 0 .
$$

But by the A_{∞}-relations, we know this associator term equals $-m_{1} m_{3}\left(a_{1}, a_{2}, a_{3}\right)$ (since the a_{i} are m_{1}-closed). Thus we can add a correction term, leading to the following definition.

Definition 4.3.1 (primitive Massey product). Let a_{1}, a_{2}, a_{3} be m_{1}-closed primitive forms of degrees k_{1}, k_{2}, k_{3}, satisfying equations (4.2) and (4.3). The degree -1 primitive Massey product is given by

$$
\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}=a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right) .
$$

As in the de Rham cohomology case, this product will have indeterminacy and therefore be a subset of elements in $P H^{k_{1}+k_{2}+k_{3}-1}(M)$. Like before, we can choose a representative in the quotient $P H^{k_{1}+k_{2}+k_{3}-1}(M) /\left(a_{1} \times P H^{k_{2}+k_{3}-1}+P H^{k_{1}+k_{2}-1} \times a_{3}\right)$. Moreover, the definition of $\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}$ only depends on the primitive cohomology classes $\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right]$.

Proposition 4.3.1. The primitive Massey product $\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}$ is independent of each cohomology representative of $\left[a_{i}\right]$.

Proof. By linearity of the product, it suffices to verify the three cases

1. $\left\langle a_{1}+m_{1} B, a_{2}, a_{3}\right\rangle_{s}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}$,
2. $\left\langle a_{1}, a_{2}+m_{1} B, a_{3}\right\rangle_{s}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}$,
3. $\left\langle a_{1}, a_{2}, a_{3}+m_{1} B\right\rangle_{s}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}$,
where B is a primitive form of appropriate degree. For 1., suppose we have

$$
a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right) \in\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s} .
$$

Then $\left(a_{1}+m_{1} B\right) \times a_{2}=m_{1}\left(a_{12}+B \times a_{2}\right)$ and it follows that

$$
\begin{align*}
& \left(a_{12}+B \times a_{2}\right) \times a_{3}-(-1)^{\left|a_{1}\right|}\left(a_{1}+m_{1} B\right) \times a_{23}+m_{3}\left(a_{1}+m_{1} B, a_{2}, a_{3}\right) \tag{4.4}\\
& =\left(a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right)\right) \tag{4.5}\\
& +\left(B \times a_{2}\right) \times a_{3}-(-1)^{\left|a_{1}\right|} m_{1} B \times a_{23}+m_{3}\left(m_{1} B, a_{2}, a_{3}\right) \tag{4.6}
\end{align*}
$$

is a representative of $\left\langle a_{1}+m_{1} B, a_{2}, a_{3}\right\rangle_{s}$. Using the Leibniz rule on m_{1} we have that

$$
m_{1}\left(B \times a_{23}\right)=m_{1} B \times a_{23}+(-1)^{\left|a_{1}\right|-1} B \times\left(a_{2} \times a_{3}\right)
$$

and so equation (4.6) becomes,

$$
\begin{aligned}
& \left(B \times a_{2}\right) \times a_{3}-B \times\left(a_{2} \times a_{3}\right)-(-1)^{\left|a_{1}\right|} m_{1}\left(B \times a_{23}\right)+m_{3}\left(m_{1} B, a_{2}, a_{3}\right) \\
& =-m_{1} m_{3}\left(B, a_{2}, a_{3}\right)-m_{3}\left(m_{1} B, a_{2}, a_{3}\right)-(-1)^{\left|a_{1}\right|} m_{1}\left(B \times a_{23}\right)+m_{3}\left(m_{1} B, a_{2}, a_{3}\right) \\
& =-m_{1}\left[m_{3}\left(B, a_{2}, a_{3}\right)+(-1)^{\left|a_{1}\right|} B \times a_{23}\right] .
\end{aligned}
$$

The second equality follows from the m_{3}-relation and the fact that the a_{i} are m_{1}-closed. This shows $\left\langle a_{1}, a_{2}, a_{3}\right\rangle \subseteq\left\langle a_{1}+m_{1} B, a_{2}, a_{3}\right\rangle$, since varying a_{1} by an m_{1}-exact term only changes the representative by an m_{1}-exact term. By reversibility of the argument, we see the other inclusion follows similarly.

For 2., again suppose $a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right) \in\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s}$. Then

$$
\begin{aligned}
& a_{1} \times\left(a_{2}+m_{1} B\right)=m_{1}\left(a_{12}+(-1)^{\left|a_{1}\right|} a_{1} \times B\right), \\
& \left(a_{2}+m_{1} B\right) \times a_{3}=m_{1}\left(a_{23}+B \times a_{3}\right) .
\end{aligned}
$$

This construction yields

$$
\begin{align*}
& \left(a_{12}+(-1)^{\left|a_{1}\right|} a_{1} \times B\right) \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times\left(a_{23}+B \times a_{3}\right)+m_{3}\left(a_{1}, a_{2}+m_{1} B, a_{3}\right) \tag{4.7}\\
& =\left(a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right)\right) \tag{4.8}\\
& +(-1)^{\left|a_{1}\right|}\left(a_{1} \times B\right) \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times\left(B \times a_{3}\right)+m_{3}\left(a_{1}, m_{1} B, a_{3}\right) \tag{4.9}
\end{align*}
$$

as a representative of $\left\langle a_{1}, a_{2}+m_{1} B, a_{3}\right\rangle_{s}$. Using the fact that a_{1} and a_{3} are m_{1}-closed, the $m_{3^{-}}$relation on $a_{1} \otimes B \otimes a_{3}$ says that

$$
a_{1} \times\left(B \times a_{3}\right)-\left(a_{1} \times B\right) \times a_{3}=m_{1} m_{3}\left(a_{1}, B, a_{3}\right)+(-1)^{\left|a_{1}\right|} m_{3}\left(a_{1}, m_{1} B, a_{3}\right) .
$$

Applying this equality to term (4.9), we obtain

$$
\begin{aligned}
& =-m_{1} m_{3}\left(a_{1}, B, a_{3}\right)-m_{3}\left(a_{1}, m_{1} B, a_{3}\right)+m_{3}\left(a_{1}, m_{1} B, a_{3}\right) \\
& =-m_{1} m_{3}\left(a_{1}, B, a_{3}\right)
\end{aligned}
$$

This establishes the inclusion $\left\langle a_{1}, a_{2}, a_{3}\right\rangle_{s} \subseteq\left\langle a_{1}, a_{2}+m_{1} B, a_{3}\right\rangle$ and the reverse follows from symmetry. Finally, 3. follows the same argument as in case 1., after taking into account our sign convention.

4.3.1 Higher Primitive Massey Products

Next, we extend the 3 -fold primitive Massey product to a 4 -fold product. To do so, however, requires some additional setup compared to the 3 -fold product. Like in the previous case,
let $\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right],\left[a_{4}\right] \in P H^{*}(M, \omega)$ such that

$$
\begin{align*}
& a_{1} \times a_{2}=m_{1} a_{12}, \tag{4.10}\\
& a_{2} \times a_{3}=m_{1} a_{23}, \tag{4.11}\\
& a_{3} \times a_{4}=m_{1} a_{34} \tag{4.12}
\end{align*}
$$

for some choice of representatives $a_{1}, a_{2}, a_{3}, a_{4}$ and a_{12}, a_{23}, a_{34}. Additionally, we will require that the two 3 -fold products $\left\langle\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right]\right\rangle_{s}$ and $\left\langle\left[a_{2}\right],\left[a_{3}\right],\left[a_{4}\right]\right\rangle_{s}$ contain the cohomology element 0 in a compatible way. That is, choose representatives

$$
\begin{align*}
& x=a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right), \tag{4.13}\\
& y=a_{23} \times a_{4}-(-1)^{\left|a_{2}\right|} a_{2} \times a_{34}+m_{3}\left(a_{2}, a_{3}, a_{4}\right), \tag{4.14}
\end{align*}
$$

of $\left\langle\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right]\right\rangle_{s}$ and $\left\langle\left[a_{2}\right],\left[a_{3}\right],\left[a_{4}\right]\right\rangle_{s}$, respectively. We define $\left(\left\langle\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right]\right\rangle_{s},\left\langle\left[a_{2}\right],\left[a_{3}\right],\left[a_{4}\right]\right\rangle_{s}\right)$ to be the tuple of cohomology elements $([x],[y])$ that can be constructed in this way. The point is that the Massey product representatives in this set come from the same elements $a_{i j}$. Then our second requirement, the simultaneous vanishing of triple Massey products, is given by the exactness of equations (4.13) and (4.14). Thus, there also exist forms c_{123} and c_{234} so that

$$
\begin{align*}
& x=m_{1} c_{123}, \tag{4.15}\\
& y=m_{1} c_{234} . \tag{4.16}
\end{align*}
$$

The forms $a_{i j}$ and $c_{i j k}$ provide the defining system for the 4 -fold Massey product introduced below.

Definition 4.3.2. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{12}, a_{23}, a_{34}, c_{123}, c_{234}$ be chosen to satisfy equations (4.10)(4.16). We define the 4 -fold primitive Massey product $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle_{s}$ to be the set of all
representatives of the form
$z=c_{123} \times a_{4}-(-1)^{\left|a_{12}\right|} a_{12} \times a_{34}+a_{1} \times c_{234}+m_{3}\left(a_{12}, a_{3}, a_{4}\right)-(-1)^{\left|a_{1}\right|} m_{3}\left(a_{1}, a_{23}, a_{4}\right)+(-1)^{\left|a_{1}\right|+\left|a_{2}\right|} m_{3}\left(a_{1}, a_{2}, a_{34}\right)$.

Proposition 4.3.2. The Massey product introduced in Definition 4.3.2 is m_{1}-closed, and so descends to a representative in $P H^{*}(M, \omega)$.

Proof. To prove this claim, we investigate m_{1} of the two parts of z separately; the terms involving m_{3}, and those not. We begin by calculating m_{1} of the first three terms of z in Definition 4.3.2,

$$
\begin{align*}
& m_{1}\left(c_{123} \times a_{4}-(-1)^{\left|a_{12}\right|} a_{12} \times a_{34}+a_{1} \times c_{234}\right) \\
= & \left(a_{12} \times a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \times a_{23}+m_{3}\left(a_{1}, a_{2}, a_{3}\right)\right) \times a_{4} \\
& -(-1)^{\left|a_{12}\right|}\left(a_{1} \times a_{2}\right) \times a_{34}-a_{12} \times\left(a_{3} \times a_{4}\right) \\
& +(-1)^{\left|a_{1}\right|} a_{1} \times\left(a_{23} \times a_{4}-(-1)^{\left|a_{2}\right|} a_{2} \times a_{34}+m_{3}\left(a_{2}, a_{3}, a_{4}\right)\right) \\
= & \left(\left(a_{12} \times a_{3}\right) \times a_{4}-a_{12} \times\left(a_{3} \times a_{4}\right)\right) \tag{4.17}\\
& +(-1)^{\left|a_{1}\right|}\left(a_{1} \times\left(a_{23} \times a_{4}\right)-\left(a_{1} \times a_{23}\right) \times a_{4}\right) \tag{4.18}\\
& +(-1)^{\left|a_{1}\right|+\left|a_{2}\right|}\left(\left(a_{1} \times a_{2}\right) \times a_{34}-a_{1} \times\left(a_{2} \times a_{34}\right)\right) \tag{4.19}\\
& +m_{3}\left(a_{1}, a_{2}, a_{3}\right) \times a_{4}+(-1)^{\left|a_{1}\right|} a_{1} \times m_{3}\left(a_{2}, a_{3}, a_{4}\right) . \tag{4.20}
\end{align*}
$$

Using the m_{3}-relation, we can transform each of the terms in lines (4.17)-(4.19) into expres-
sions involving m_{1} and m_{3} to get

$$
\begin{aligned}
& -m_{1} m_{3}\left(a_{12}, a_{3}, a_{4}\right)-m_{3}\left(a_{1} \times a_{2}, a_{3}, a_{4}\right) \\
& -(-1)^{\left|a_{1}\right|+\left|a_{2}\right|} m_{1} m_{3}\left(a_{1}, a_{2}, a_{34}\right)-m_{3}\left(a_{1}, a_{2}, a_{3} \times a_{4}\right) \\
& +(-1)^{\left|a_{1}\right|} m_{1} m_{3}\left(a_{1}, a_{23}, a_{4}\right)+m_{3}\left(a_{1}, a_{2} \times a_{3}, a_{4}\right) \\
& +m_{3}\left(a_{1}, a_{2}, a_{3}\right) \times a_{4}+(-1)^{\left|a_{1}\right|} a_{1} \times m_{3}\left(a_{2}, a_{3}, a_{4}\right) .
\end{aligned}
$$

Now, adding m_{1} of the remaining three terms in z to the above sum leaves only

$$
\begin{aligned}
& -m_{3}\left(a_{1} \times a_{2}, a_{3}, a_{4}\right)-m_{3}\left(a_{1}, a_{2}, a_{3} \times a_{4}\right)+m_{3}\left(a_{1}, a_{2} \times a_{3}, a_{4}\right) \\
& +m_{3}\left(a_{1}, a_{2}, a_{3}\right) \times a_{4}+(-1)^{\left|a_{1}\right|} a_{1} \times m_{3}\left(a_{2}, a_{3}, a_{4}\right) .
\end{aligned}
$$

However, using the fact that $m_{4}=0$ and the a_{i} are m_{1}-closed, the above expression is precisely the m_{4}-relation equaling zero. Thus, z is closed under m_{1} and defines a class in $P H^{*}(M, \omega)$.

We note that, with some work, one can generalize the methods of sections 4.3 to primitive Massey products of any length. Moreover, we remark that the calculations in this section are not unique to $P H^{*}(M)$, and in fact extend to any A_{3}-algebra.

4.4 Sphere Bundle Perspective

In [13], Tanaka and Tseng show the existence of a circle bundle E over any symplectic manifold (M, ω) such that $\left(\Omega^{*}(E), d, \wedge\right)$ is quasi-isomorphic to $\left(\mathcal{P}^{*}(M), m_{1}, m_{2}, m_{3}\right)$. Consequently, $H^{*}(E) \cong P H^{*}(M)$. Moreover, the provide an explicit quasi-isomorphism $\left(f_{n}\right): \Omega^{*}(E) \rightarrow \mathcal{P}^{*}(M)$ with $f_{i}=0$ for $i \geq 3$. We won't go into the details, but the
important properties of the $\left(f_{1}, f_{2}\right)$ are

$$
\begin{align*}
& f_{1}(d A)=m_{1} f_{1}(A) \tag{4.21}\\
& f_{1}(a \wedge b)=f_{1}(a) \times f_{1}(b)+m_{1} f_{2}(a, b)+f_{2}(d a, b)+(-1)^{|a|} f_{2}(a, d b) \tag{4.22}\\
& f_{2}(a \wedge b, c)-f_{2}(a, b \wedge c)=m_{3}\left(f_{1}(a), f_{1}(b), f_{1}(c)\right)+(-1)^{|a|} f_{1}(a) \times f_{2}(b, c)-f_{2}(a, b) \times f_{1}(c) \tag{4.23}
\end{align*}
$$

In particular, when a and b are d-closed, identity 4.22 implies $\left[f_{1}(a \wedge b)\right]=\left[f_{1}(a) \times f_{1}(b)\right]$, so that to study the product structure on $\operatorname{PH}^{*}(M, \omega)$, it suffices to evaluate the (usual) wedge product on $H^{*}(E)$. Furthermore, f_{1} also preserves Massey products, so that a Massey product on $H^{*}(E)$ is sent to a (primitive) Massey product on $P H^{*}(M, \omega)$. We prove this statement before proceeding.

Lemma 4.4.1. Let $\left\langle\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right]\right\rangle \in H^{*}(E)$. Then $f_{1}\left(\left\langle\left[a_{1}\right],\left[a_{2}\right],\left[a_{3}\right]\right\rangle\right) \in\left\langle\left[f_{1}\left(a_{1}\right)\right],\left[f_{1}\left(a_{2}\right)\right],\left[f_{1}\left(a_{3}\right)\right]\right\rangle_{s}$.

Proof. Suppose $a_{1} \wedge a_{2}=d a_{12}$ and $a_{2} \wedge a_{3}=d a_{23}$. Applying identities (4.21) and (4.22) to these equations yield

$$
\begin{aligned}
m_{1} f_{1}\left(a_{12}\right) & =f_{1}\left(a_{1}\right) \times f_{1}\left(a_{2}\right)+m_{1} f_{2}\left(a_{1}, a_{2}\right), \\
m_{1} f_{1}\left(a_{23}\right) & =f_{1}\left(a_{2}\right) \times f_{1}\left(a_{3}\right)+m_{1} f_{2}\left(a_{2}, a_{3}\right), \\
\Longrightarrow f_{1}\left(a_{1}\right) \times f_{1}\left(a_{2}\right) & =m_{1}\left(f_{1}\left(a_{12}\right)-f_{2}\left(a_{1}, a_{2}\right)\right), \\
f_{1}\left(a_{2}\right) \times f_{1}\left(a_{3}\right) & =m_{1}\left(f_{1}\left(a_{23}\right)-f_{2}\left(a_{2}, a_{3}\right)\right) .
\end{aligned}
$$

Then using the appropriate identities (4.21)-(4.23), a representative of $\left\langle f_{1}\left(a_{1}\right), f_{1}\left(a_{2}\right), f_{1}\left(a_{3}\right)\right\rangle_{s}$
is given by

$$
\begin{aligned}
& \left(f_{1}\left(a_{12}\right)-f_{2}\left(a_{1}, a_{2}\right)\right) \times f_{1}\left(a_{3}\right)-(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times\left(f_{1}\left(a_{23}\right)-f_{2}\left(a_{2}, a_{3}\right)\right)+m_{3}\left(f_{1}\left(a_{1}\right), f_{1}\left(a_{2}\right), f_{1}\left(a_{3}\right)\right) \\
= & f_{1}\left(a_{12}\right) \times f_{1}\left(a_{3}\right)-(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{1}\left(a_{23}\right)+m_{3}\left(f_{1}\left(a_{1}\right), f_{1}\left(a_{2}\right), f_{1}\left(a_{3}\right)\right) \\
& -f_{2}\left(a_{1}, a_{2}\right) \times f_{1}\left(a_{3}\right)+(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{2}\left(a_{2}, a_{3}\right) \\
= & f_{1}\left(a_{12}\right) \times f_{1}\left(a_{3}\right)-(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{1}\left(a_{23}\right)+f_{2}\left(a_{1} \wedge a_{2}, a_{3}\right)-f_{2}\left(a_{1}, a_{2} \wedge a_{3}\right) \\
& -(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{2}\left(a_{2}, a_{3}\right)+f_{2}\left(a_{1}, a_{2}\right) \times f_{1}\left(a_{3}\right)-f_{2}\left(a_{1}, a_{2}\right) \times f_{1}\left(a_{3}\right)+(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{2}\left(a_{2}, a_{3}\right) \\
= & f_{1}\left(a_{12}\right) \times f_{1}\left(a_{3}\right)-(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{1}\left(a_{23}\right)+f_{2}\left(a_{1} \wedge a_{2}, a_{3}\right)-f_{2}\left(a_{1}, a_{2} \wedge a_{3}\right) .
\end{aligned}
$$

On the other hand, using identity (4.22),

$$
\begin{aligned}
& f_{1}\left(a_{12} \wedge a_{3}-(-1)^{\left|a_{1}\right|} a_{1} \wedge a_{23}\right) \\
= & f_{1}\left(a_{12}\right) \times f_{1}\left(a_{3}\right)+m_{1} f_{2}\left(a_{12}, a_{3}\right)+f_{2}\left(a_{1} \wedge a_{2}, a_{3}\right)-(-1)^{\left|a_{1}\right|} f_{1}\left(a_{1}\right) \times f_{1}\left(a_{23}\right) \\
& -(-1)^{\left|a_{1}\right|} m_{1} f_{2}\left(a_{1}, a_{23}\right)-f_{2}\left(a_{1}, a_{2} \wedge a_{3}\right) .
\end{aligned}
$$

Thus, the two representatives of $f_{1}\left(\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right)$ and $\left\langle f_{1}\left(a_{1}\right), f_{1}\left(a_{2}\right), f_{1}\left(a_{3}\right)\right\rangle_{s}$ only differ by an m_{1}-exact term and so are equal in $P H^{*}(M, \omega)$.

With the necessary propositions established, we can (justifiably) move forward in computing the product and Massey structures on $P H^{*}(X, \omega)$ through the aid of $H^{*}(E)$. We let θ denote the connection 1-form on E, which satisfies the property $d \theta=\omega$.

We summarize the de Rham cohomology of E^{5} for $X=S^{1} \times Y_{f}$ with an open fiber. As explained above, these groups are isomorphic to $P H^{*}(X)$ and so the generators below should be reminiscent of those given in Section 4.2

k	Generators for $H^{k}(E)$
0	1
1	$d t, d \phi, \tilde{\gamma}_{i, 0}$
2	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}, d t \wedge \tilde{\gamma}_{i, 0}, d \phi \wedge(\theta-\alpha), d t \wedge(\theta-\alpha)$, $\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}$
3	$\begin{aligned} & d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta,\left(d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)\right) \wedge \theta, d t \wedge d \phi \wedge(\theta-\alpha), \\ & \theta \wedge d \tilde{\gamma}_{i, \ell_{i}} \end{aligned}$
4	$d t \wedge d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta$
5	\emptyset

Next, we compute the wedge product structure on $H^{*}(E)$ for most of the non-trivial pairings. Before beginning, we cover some useful observations in the computations to follow.

Lemma 4.4.2. The following identities hold in $H^{*}(E)$ for $X=S^{1} \times Y_{f}$,

$$
\begin{align*}
& {\left[\theta \wedge d \tilde{\gamma}_{i, k}\right]= \begin{cases}0, & k<\ell_{i} \\
{\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, k}\right],} & k=\ell_{i}\end{cases} } \tag{4.24}\\
& {\left[d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge(\theta-\alpha)\right]=\left[d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta\right]} \tag{4.25}
\end{align*}
$$

Proof. We begin with observation (4.24). First, notice

$$
d\left(\theta \wedge \tilde{\gamma}_{i, k}\right)=\omega \wedge \tilde{\gamma}_{i, k}-\theta \wedge d \tilde{\gamma}_{i, k},
$$

which implies

$$
\left[\omega \wedge \tilde{\gamma}_{i, k}\right]=\left[\theta \wedge d \tilde{\gamma}_{i, k}\right] .
$$

Furthermore,

$$
\begin{aligned}
\omega_{\Sigma} \wedge \tilde{\gamma}_{i, k} & =\omega_{\Sigma} \wedge\left(\sum_{j=0}^{k} f_{j}(\phi) \gamma_{i, k-j}+f_{j}(\phi-1)\left(\chi d g_{i, k-j}+g_{i, k-j} \chi^{\prime} d \phi\right)\right) \\
& =\sum_{j=0}^{k} \chi^{\prime} f_{j}(\phi-1) g_{i, k-j} d \phi \wedge \omega_{\Sigma} \\
& =\sum_{j=0}^{k} d\left(\chi^{\prime} f(\phi-1) \mu_{i, k-j} \wedge d \phi\right):=d U_{i, k}, \\
& U_{i, k}=\sum_{j=0}^{k} \chi^{\prime} f(\phi-1) \mu_{i, k-j} \wedge d \phi
\end{aligned}
$$

Combining the above two computations shows $\left[\theta \wedge d \tilde{\gamma}_{i, k}\right]=\left[\omega \wedge \tilde{\gamma}_{i, k}\right]=\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, k}\right]$. Moreover, if $k<\ell_{i}, d \phi \wedge \tilde{\gamma}_{i, k}$ is d-exact. In particular, for a Jordan block of size at least three $\left\{\gamma_{i, 0}, \gamma_{i, 1}, \gamma_{i, 2}, \cdots\right\}$ we have

$$
\begin{aligned}
& d t \wedge d \phi \wedge \tilde{\gamma}_{i, 0}=d\left(-d t \wedge \tilde{\gamma}_{i, 1}\right) \\
& d t \wedge d \phi \wedge \tilde{\gamma}_{i, 1}=d\left(-d t \wedge\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right)\right)
\end{aligned}
$$

Turning to (4.25), we expand

$$
\begin{aligned}
& d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge(\theta-\alpha)-d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta=d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \alpha \\
& =d \phi \wedge\left(\sum_{j=0}^{\ell_{i}} f_{j}(\phi) \gamma_{\ell_{i}-j}+f_{j}(\phi-1) \chi(\phi) d g_{i, \ell_{i}-j}\right) \wedge \alpha \\
& =d \phi \wedge \sum_{j=0}^{\ell_{i}} f_{j}(\phi) d A_{\ell_{i}-j}+f_{j}(\phi-1) \chi(\phi) d B_{i, \ell_{i}-j} \\
& =d\left(-d \phi \wedge \sum_{j=0}^{\ell_{i}} f_{j}(\phi) A_{\ell_{i}-j}+f_{j}(\phi-1) \chi(\phi) B_{i, \ell_{i}-j}\right)
\end{aligned}
$$

where in the third line we have used the fact that $\alpha \wedge \gamma_{i, k}$ and $\alpha \wedge d g_{i, k}$ are exact in $\Omega^{2}(\Sigma)$.

Theorem 4.4.1. For the symplectic manifold $X=S^{1} \times Y_{f}$ with open fiber and symplectic
form $\omega=d t \wedge d \phi+d \alpha$, the m_{2}-structure on $P H^{*}(X, \omega)$ is summarized in Tables 4.3-4.6 below, in terms of the wedge product on $H^{*}(E)$.

$H^{1}(E)$	$H^{1}(E)$	$H^{2}(E)$
$d t$	$d t$	$[0]$
	$d \phi$	$[0]$
	$\tilde{\gamma}_{i, 0}$	$d t \wedge \tilde{\gamma}_{i, 0}$
	$d \phi$	$[0]$
	$\tilde{\gamma}_{i, 0}$	$\begin{cases}{\left[d \phi \wedge \tilde{\gamma}_{i, 0}\right],} & \ell_{i}=0 \\ {[0],} & \ell_{i}>0\end{cases}$
$\tilde{\gamma}_{i, 0}$	$\tilde{\gamma}_{j, 0}$	$\left[d \phi \wedge F\left(\gamma_{i, 0}, \gamma_{j, 0}\right)\right]$

Table 4.3: $H^{1}(E) \wedge H^{1}(E) \rightarrow H^{2}(E)$

$H^{1}(E)$	$H^{2}(E)$	$H^{3}(E)$
$d t$	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}$	$\theta \wedge d \tilde{\gamma}_{i, \ell_{i}}$
	$d t \wedge \tilde{\gamma}_{i, 0}$	[0]
	$d \phi \wedge(\theta-\alpha)$	$d t \wedge d \phi \wedge(\theta-\alpha)$
	$d t \wedge(\theta-\alpha)$	[0]
	$\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}$	$-\left[\left(d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)\right) \wedge \theta\right]$
$d \phi$	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}$	[0]
	$d t \wedge \tilde{\gamma}_{i, 0}$	[0]
	$d \phi \wedge(\theta-\alpha)$	[0]
	$d t \wedge(\theta-\alpha)$	$-[d t \wedge d \phi \wedge(\theta-\alpha)]$
	$\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}$	$\begin{cases}-\left[2 \theta \wedge d \tilde{\gamma}_{i, 1}\right], & \ell_{i}=1 \\ {[0],} & \ell_{i}>1\end{cases}$
	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}$	[0]
	$d t \wedge \tilde{\gamma}_{j, 0}$	[0]

$d \phi \wedge(\theta-\alpha)$		
	$\begin{cases}-\left[d \phi \wedge \tilde{\gamma}_{i, 0} \wedge(\theta-\alpha)\right], & \ell_{i}=0 \\ -\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 1}\right], & \ell_{i}=1 \\ {[0],} & \\ & d t \wedge(\theta-\alpha)\end{cases}$	$-\left[\left(d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)\right) \wedge \theta\right]$

Table 4.4: $H^{1}(E) \wedge H^{2}(E) \rightarrow H^{3}(E)$

$H^{1}(E)$	$H^{3}(E)$	$H^{4}(E)$
$d t$	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta$	$\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta\right]$
	$\left(d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)\right) \wedge \theta$	[0]
	$d t \wedge d \phi \wedge(\theta-\alpha)$	[0]
	$\theta \wedge d \tilde{\gamma}_{i, \ell_{i}}$	[0]
$d \phi$	$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}} \wedge \theta$	[0]
	$\left(d t \wedge \tilde{\gamma}_{i, 0}-d\left(\chi^{\prime} \mu_{i, 0}\right)\right) \wedge \theta$	$\left\{\begin{array}{cc}-\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 0} \wedge \theta\right], & \ell_{i}=0 \\ {[0],} & \ell_{i}>0\end{array}\right.$
	$d t \wedge d \phi \wedge(\theta-\alpha)$	[0]
	$\theta \wedge d \tilde{\gamma}_{i, \ell_{i}}$	[0]
$\tilde{\gamma}_{i, 0}$	$d \phi \wedge \tilde{\gamma}_{j, \ell_{j}} \wedge \theta$	[0]
	$\left(d t \wedge \tilde{\gamma}_{j, 0}-d\left(\chi^{\prime} \mu_{j, 0}\right)\right) \wedge \theta$	$-\left[d t \wedge d \phi \wedge \tilde{f}\left(\gamma_{i, 0}, \gamma_{j, 0}\right) \wedge \theta\right]$
	$d t \wedge d \phi \wedge(\theta-\alpha)$	$\left\{\begin{array}{cc}{\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 0} \wedge \theta\right],} & \ell_{i}=0 \\ {[0],} & \ell_{i}>0\end{array}\right.$
	$\theta \wedge d \tilde{\gamma}_{j, \ell_{j}}$	[0]

Table 4.5: $H^{1}(E) \wedge H^{3}(E) \rightarrow H^{4}(E)$

$H^{2}(E)$	$H^{2}(E)$	$H^{4}(E)$
$d \phi \wedge \tilde{\gamma}_{i, \ell_{i}}$	$d \phi \wedge \tilde{\gamma}_{j, \ell_{j}}$	[0]
	$d t \wedge \tilde{\gamma}_{j, 0}$	[0]

	$d \phi \wedge(\theta-\alpha)$	[0]
	$d t \wedge(\theta-\alpha)$	$\left[d t \wedge d \phi \wedge \tilde{\gamma}_{j, \ell_{j}} \wedge \theta\right]$
	$\theta \wedge \tilde{\gamma}_{j, 0}+d t \wedge \tilde{\gamma}_{j, 1}+\chi^{\prime} d \phi \wedge \mu_{j, 0}$	[0]
$d t \wedge \tilde{\gamma}_{i, 0}$	$d t \wedge \tilde{\gamma}_{j, 0}$	[0]
	$d \phi \wedge(\theta-\alpha)$	$\left\{\begin{array}{cc}-\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 0} \wedge \theta\right], & \ell_{i}=0 \\ {[0],} & \ell_{i}>0\end{array}\right.$
	$d t \wedge(\theta-\alpha)$	[0]
	$\theta \wedge \tilde{\gamma}_{j, 0}+d t \wedge \tilde{\gamma}_{j, 1}+\chi^{\prime} d \phi \wedge \mu_{j, 0}$	$-\left[d t \wedge d \phi \wedge f\left(\gamma_{i, 0}, \gamma_{j, 0}\right) \wedge \theta\right]$
$d \phi \wedge(\theta-\alpha)$	$d \phi \wedge(\theta-\alpha)$	[0]
	$d t \wedge(\theta-\alpha)$	[0]
	$\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}$	$\left\{\begin{array}{cc}{\left[-d t \wedge d \phi \wedge \tilde{\gamma}_{i, 1} \wedge \theta\right],} & \ell_{i}=1 \\ {[0],} & \ell_{i}>1\end{array}\right.$
$d t \wedge(\theta-\alpha)$	$d t \wedge(\theta-\alpha)$	[0]
	$\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}$	[0]

Table 4.6: $H^{2}(E) \wedge H^{2}(E) \rightarrow H^{4}(E)$

Proof. Many of these computations are quite long and tedious. We provide the proof of only a few below.

$$
\tilde{\gamma}_{i, 0} \wedge\left(d \phi \wedge \tilde{\gamma}_{j, \ell_{j}} \wedge \theta\right)=[0]:
$$

Using Lemma 4.4.2,

$$
\begin{aligned}
\tilde{\gamma}_{i, 0} \wedge\left(d \phi \wedge \tilde{\gamma}_{j, \ell_{j}} \wedge \theta\right) & =-d \phi \wedge \tilde{\gamma}_{i, 0} \wedge \tilde{\gamma}_{j, \ell_{j}} \wedge \theta \\
& =d\left(d \phi \wedge \theta \wedge \sum_{k=0}^{\ell_{j}} f_{k}(\phi) A_{i, j, k}-f_{k}(\phi-1) \chi g_{j, \ell_{j}-k} \gamma_{i, 0}+f_{k}(\phi) \chi g_{i, 0} \gamma_{j, \ell_{j}}\right)
\end{aligned}
$$

where the last equality follows since

$$
\begin{aligned}
& \quad \omega \wedge d \phi \wedge \sum_{k=0}^{\ell_{j}} f_{k}(\phi) A_{i, j, k}-f_{k}(\phi-1) \chi g_{j, \ell_{j}-k} \gamma_{i, 0}+f_{k}(\phi) \chi g_{i, 0} \gamma_{j, \ell_{j}}=0 \\
& \frac{d t \wedge(\theta-\alpha) \wedge\left(\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}\right)=[0]:}{} \\
& d t \wedge(\theta-\alpha) \wedge\left(\theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge \tilde{\gamma}_{i, 1}+\chi^{\prime} d \phi \wedge \mu_{i, 0}\right)=-d t \wedge \alpha \wedge \theta \wedge \tilde{\gamma}_{i, 0}+d t \wedge(\theta-\alpha) \wedge \chi^{\prime} d \phi \wedge \mu_{i, 0} \\
& =-d t \wedge \alpha \wedge \theta \wedge \tilde{\gamma}_{i, 0}+d\left(\chi d t \wedge(\theta-\alpha) \wedge \mu_{i, 0}\right)-\chi g_{i, 0} d t \wedge(\theta-\alpha) \wedge d \alpha \\
& =d\left(\chi d t \wedge(\theta-\alpha) \wedge \mu_{i, 0}\right)-d t \wedge\left(\alpha \wedge \theta \wedge \tilde{\gamma}_{i, 0}+\chi g_{i, 0} \theta \wedge d \alpha\right) \\
& =d\left(\chi d t \wedge(\theta-\alpha) \wedge \mu_{i, 0}\right)-d t \wedge\left(\alpha \wedge \theta \wedge \tilde{\gamma}_{i, 0}+d\left(\chi g_{i, 0}\right) \wedge \theta \wedge \alpha+\chi g_{i, 0} d t \wedge d \phi \wedge \alpha-d\left(\chi g_{i, 0} \theta \wedge \alpha\right)\right) \\
& =d\left(\chi d t \wedge(\theta-\alpha) \wedge \mu_{i, 0}-\chi g_{i, 0} d t \wedge \theta \wedge \alpha\right)-d t \wedge\left(\alpha \wedge \theta \wedge \tilde{\gamma}_{i, 0}+d\left(\chi g_{i, 0}\right) \wedge \theta \wedge \alpha\right) \\
& =d\left(\chi d t \wedge(\theta-\alpha) \wedge \mu_{i, 0}-\chi g_{i, 0} d t \wedge \theta \wedge \alpha\right)-d t \wedge \alpha \wedge \theta \wedge \gamma_{i, 0} \\
& =d\left(\chi d t \wedge(\theta-\alpha) \wedge \mu_{i, 0}-\chi g_{i, 0} d t \wedge \theta \wedge \alpha-d t \wedge A_{i} \wedge \theta\right),
\end{aligned}
$$

where we have written $\alpha \wedge \tilde{\gamma}_{i, 0}=d A_{i}$.

$$
\underline{\tilde{\gamma}_{i, 0} \wedge d \phi} \wedge(\theta-\alpha):
$$

We note that if $\ell_{i}=0$ then by Lemma 4.4.2, $H^{3}(E)$ contains the non-trivial element

$$
\left[d \phi \wedge \tilde{\gamma}_{i, 0} \wedge \theta\right]=\left[d \phi \wedge \tilde{\gamma}_{i, 0} \wedge(\theta-\alpha)\right] .
$$

Otherwise, if $\ell_{i} \geq 1$, again Lemma 4.4.2 gives us

$$
\left[\tilde{\gamma}_{i, 0} \wedge d \phi \wedge(\theta-\alpha)\right]=\left[\tilde{\gamma}_{i, 0} \wedge d \phi \wedge \theta\right]=-\left[d \phi \wedge \tilde{\gamma}_{i, 0} \wedge \theta\right]=-\left[d \tilde{\gamma}_{i, 1} \wedge \theta\right]
$$

By considering whether $\ell_{i}=1$ or $\ell_{i}>1$ on the above equality, the result follows.

By recalling $\ell_{i}=0$ is Jordan block of size $1, \ell_{i}=1$ is a Jordan block of size 2 , and $\ell_{i}>1$ is a Jordan block of size at least 3, we obtain the following important corollary.

Corollary 4.4.1. Let $X=S^{1} \times Y_{f}$ and $\omega=d t \wedge d \phi+d \alpha$. The m_{2}-structure \times on $P H^{2}(X, \omega)$ can determine whether the Jordan blocks of $f^{*}-1$ are of size 1,2, or at least 3.

We remark that, in terms of Jordan block size, the structure on $P H^{*}(X, \omega)$ is 'one step ahead' of the structure on $H^{*}(X)$; the dimension of $P H^{*}(X)$ determines size 2 blocks whereas the wedge product on $H^{*}(X)$ does so. Similarly, the \times product on $P H^{*}(X)$ determines size 3 or greater Jordan blocks whereas Massey products on $H^{*}(X)$ are needed for such conclusions. Following this line of reasoning, we can also show that a block size of exactly 3 is determined by a 3-fold Massey product on $H^{*}(E)$. By Lemma 4.4.1, this 3-fold product corresponds to a 3 -fold primitive product on $P H^{*}(X)$. To determine such a block size on $H^{*}(X)$ would require a 4 -fold Massey product.

Proposition 4.4.1. If $\ell_{i}=3$, then $\left\langle d \phi, \tilde{\gamma}_{i, 0}, d \phi \wedge(\theta-\alpha)\right\rangle=-3\left[\theta \wedge d \tilde{\gamma}_{i, 2}\right] \neq 0$.

Proof. We may write $d \phi \wedge \tilde{\gamma}_{i, 0}=d \tilde{\gamma}_{i, 1}$. Moreover,

$$
\begin{aligned}
d\left(\tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)\right) & =d \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)-\tilde{\gamma}_{i, 1} \wedge d t \wedge d \phi \\
& =d \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)-d t \wedge\left(d \phi \wedge \tilde{\gamma}_{i, 1}\right) \\
& =d \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)+d\left(d t \wedge\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right)\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\tilde{\gamma}_{i, 0} \wedge d \phi \wedge(\theta-\alpha)=-d \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)=d\left(d t \wedge\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right)-\tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)\right) . \tag{4.26}
\end{equation*}
$$

Therefore, a representative of $\left\langle d \phi, \tilde{\gamma}_{i, 0}, d \phi \wedge(\theta-\alpha)\right\rangle$ is given by

$$
\begin{aligned}
& {\left[d \phi \wedge d t \wedge\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right)-d \phi \wedge \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)+\tilde{\gamma}_{i, 1} \wedge d \phi \wedge(\theta-\alpha)\right]} \\
& =\left[-d t \wedge d \phi \wedge \tilde{\gamma}_{i, 2}-\frac{1}{2} d t \wedge d \phi \wedge \tilde{\gamma}_{i, 1}-2 d \phi \wedge \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)\right] \\
& =\left[-d t \wedge d \phi \wedge \tilde{\gamma}_{i, 2}-2 d\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right) \wedge(\theta-\alpha)+\frac{1}{2} d\left(d t \wedge\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right)\right)\right] \\
& =-\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 2}+2 d\left(\tilde{\gamma}_{i, 2}+\frac{1}{2} \tilde{\gamma}_{i, 1}\right) \wedge(\theta-\alpha)\right] \\
& =-\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 2}+2 d\left(\tilde{\gamma}_{i, 2}\right) \wedge(\theta-\alpha)\right]
\end{aligned}
$$

where the last equality follows from the previous calculation, in equation (4.26), showing $d \tilde{\gamma}_{i, 1} \wedge(\theta-\alpha)$ is exact. To finish, we use the fact that $d \tilde{\gamma}_{i, 2} \wedge \alpha$ is exact and apply Lemma 4.4.2 to the last line above, to yield the Massey product representative

$$
-\left[d t \wedge d \phi \wedge \tilde{\gamma}_{i, 2}+2 d\left(\tilde{\gamma}_{i, 2}\right) \wedge(\theta-\alpha)\right]=-3\left[\theta \wedge d \tilde{\gamma}_{i, 2}\right] .
$$

4.5 Twisted Primitive Cohomology

Recall that given a manifold M and its D.G.A. of differential forms, $\left(\Omega^{*}(M), d, \wedge\right)$ we may define a new twisted map $\tilde{d}=d+\alpha \wedge: \Omega^{*}(M) \rightarrow \Omega^{*+1}(M) \oplus \Omega^{*+k}(M)$, for a fixed $\alpha \in \Omega^{k}(M)$. It is natural to ask, when is \tilde{d} also a differential? We must ensure $(\tilde{d})^{2}=0$. If we require α is of odd degree then $(\tilde{d})^{2}=0$ precisely when $d \alpha=0$. Indeed,

$$
\begin{aligned}
(\tilde{d})^{2} & =d^{2}+d(\alpha \wedge)+\alpha \wedge d+\alpha \wedge(\alpha \wedge) \\
& =d \alpha \wedge+(-1)^{|\alpha|} \alpha \wedge d+\alpha \wedge d+\alpha \wedge(\alpha \wedge) \\
& =d \alpha \wedge-\alpha \wedge d+\alpha \wedge d+(\alpha \wedge \alpha) \wedge \\
& =d \alpha \wedge=0 \Longleftrightarrow d \alpha=0
\end{aligned}
$$

Consequently, if α is such that \tilde{d} is again a differential we define the twisted de Rham cohomology $H^{*}(M, \tilde{d})=H^{*}\left(\Omega^{*}(M), \tilde{d}\right)$. Using this situation as motivation, we wish to define a twisted primitive differential and cohomology. However, unlike above, m_{2} is no longer associative and so our twisted differential will have to involve all the maps m_{1}, m_{2}, m_{3}. The following conditions involving α and the (m_{i}) will guarantee the map squares to zero.

Proposition 4.5.1. Let $\alpha \in \mathcal{P}^{k}(M)$ be of odd degree and m_{1}-closed. Define

$$
\tilde{m}_{1}=m_{1}+m_{2}(\alpha \otimes \mathbf{1})-m_{3}(\alpha \otimes \alpha \otimes \mathbf{1})
$$

Then $\left(\tilde{m}_{1}\right)^{2}=0$.
Proof. To compute $\left(\tilde{m}_{1}\right)^{2}$, we recall the following A_{∞}-identities, simplified to our algebra $\left(P^{*}(M), m_{1}, \times, m_{3}\right)$.

$$
\begin{aligned}
& \text { [Leibniz Rule] } m_{1} m_{2}=m_{2}\left(m_{1} \otimes \mathbf{1}+\mathbf{1} \otimes m_{1}\right) \\
& \text { [} m_{3} \text { Identity] } m_{2}\left(\mathbf{1} \otimes m_{2}-m_{2} \otimes \mathbf{1}\right)=m_{1} m_{3}+m_{3}\left(m_{1} \otimes \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes m_{1} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes m_{1}\right), \\
& {\left[m_{4} \text { Identity] } m_{3}\left(\mathbf{1}^{\otimes 2} \otimes m_{2}\right)-m_{3}\left(\mathbf{1} \otimes m_{2} \otimes \mathbf{1}\right)-m_{2}\left(\mathbf{1} \otimes m_{3}\right)+m_{3}\left(m_{2} \otimes \mathbf{1}^{\otimes 2}\right)-m_{2}\left(m_{3} \otimes \mathbf{1}\right)=0,\right.} \\
& {\left[m_{5} \text { Identity] } m_{3}\left(\mathbf{1}^{\otimes 2} \otimes m_{3}\right)+m_{3}\left(\mathbf{1} \otimes m_{3} \otimes \mathbf{1}\right)-m_{3}\left(m_{3} \otimes \mathbf{1}^{\otimes 2}\right)=0\right.}
\end{aligned}
$$

Moreover in the $\mathcal{P}^{*}\left(M^{2 n}\right) A_{\infty}$-algebra, for α an odd element we claim $m_{2}(\alpha, \alpha)=0=$ $m_{3}(\alpha, \alpha, \alpha)$. The first equality follows immediately from the graded commutativity of m_{2} combined with the fact $|\alpha|$ is odd. For the second equality, we apply the definition of m_{3} directly:

$$
m_{3}(\alpha, \alpha, \alpha)=\left\{\begin{array}{cl}
0, & 3|\alpha|<n+2 \\
\Pi^{0} *_{r}\left[\alpha \wedge L^{-1}(\alpha \wedge \alpha)-L^{-1}(\alpha \wedge \alpha) \wedge \alpha\right], & 3|\alpha| \geq n+2
\end{array}\right.
$$

By graded commutativity of the wedge product and the fact that $|\alpha|$ is odd, this quantity will always vanish. Using these two properties as well as the A_{∞}-identities listed above, we
compute:

$$
\begin{aligned}
\left(\tilde{m}_{1}\right)^{2} & =m_{1}^{2}+m_{1} m_{2}(\alpha \otimes \mathbf{1})-m_{1} m_{3}(\alpha \otimes \alpha \otimes \mathbf{1})+m_{2}\left(\alpha \otimes m_{1}\right)+m_{2}\left(\alpha \otimes m_{2}(\alpha \otimes \mathbf{1})\right) \\
& -m_{2}\left(\alpha \otimes m_{3}(\alpha \otimes \alpha \otimes \mathbf{1})\right)-m_{3}\left(\alpha \otimes \alpha \otimes m_{1}\right)-m_{3}\left(\alpha \otimes \alpha \otimes m_{2}(\alpha \otimes \mathbf{1})\right) \\
& +m_{3}\left(\alpha \otimes \alpha \otimes m_{3}(\alpha \otimes \alpha \otimes \mathbf{1})\right) \\
= & m_{2}\left(m_{1} \alpha \otimes \mathbf{1}\right)+(-1)^{|\alpha|} m_{2}\left(\alpha \otimes m_{1}\right)+m_{2}\left(\alpha \otimes m_{1}\right)+m_{3}\left(\left(m_{1} \alpha\right) \otimes \alpha \otimes \mathbf{1}\right) \\
& +(-1)^{|\alpha|} m_{3}\left(\alpha \otimes\left(m_{1} \alpha\right) \otimes \mathbf{1}\right)+m_{2}\left(m_{2}(\alpha \otimes \alpha) \otimes \mathbf{1}\right)-m_{3}\left(\alpha \otimes m_{2}(\alpha \otimes \alpha) \otimes \mathbf{1}\right) \\
& -(-1)^{|\alpha|} m_{2}\left(\alpha \otimes m_{3}(\alpha \otimes \alpha \otimes \mathbf{1})\right)+m_{3}\left(m_{2}(\alpha \otimes \alpha) \otimes \alpha \otimes \mathbf{1}\right)-m_{2}\left(m_{3}(\alpha \otimes \alpha \otimes \alpha) \otimes \mathbf{1}\right) \\
& -m_{2}\left(\alpha \otimes m_{3}(\alpha \otimes \alpha \otimes \mathbf{1})\right)+m_{3}\left(m_{3}(\alpha \otimes \alpha \otimes \alpha) \otimes \alpha \otimes \mathbf{1}\right) \\
& -(-1)^{|\alpha|} m_{3}\left(\alpha \otimes m_{3}(\alpha \otimes \alpha \otimes \alpha) \otimes \mathbf{1}\right) . \\
= & m_{2}\left(\left(m_{1} \alpha\right) \otimes \mathbf{1}\right)+m_{3}\left(\left(m_{1} \alpha\right) \otimes \alpha \otimes \mathbf{1}\right)-m_{3}\left(\alpha \otimes\left(m_{1} \alpha\right) \otimes \mathbf{1}\right)=0 .
\end{aligned}
$$

Definition 4.5.1. Let $\alpha \in P^{*}(M)$ satisfy the conditions of Proposition 4.5.1. We define the twisted primitive cohomology $P H^{*}\left(M, \tilde{m}_{1}\right):=H^{*}\left(\mathcal{P}^{*}(M), \tilde{m}_{1}\right)$.

If $\alpha \in P H_{+}^{1}(M)$ then it follows that $\alpha \in H^{1}(M)$ as well. Hence both $P H^{*}\left(M, \tilde{m}_{1}\right)$ and $H^{*}(M, \tilde{d})$ are defined and one may wonder if there is a relationship between the two. Thus we construct twisted versions of L and Π^{0}. For $\alpha \in P H_{+}^{1}(M)$ define

$$
\begin{gathered}
L_{\alpha}: H^{*}(M, \tilde{d}) \rightarrow H^{*}(M, \tilde{d}) \\
{\left[A_{k}\right] \mapsto\left[\omega \wedge A_{k}\right]}
\end{gathered}
$$

This map is well-defined since $\tilde{d} A_{k}=0=d A_{k}+\alpha \wedge A_{k}$ and so

$$
\begin{aligned}
\tilde{d}\left(\omega \wedge A_{k}\right) & =d\left(\omega \wedge A_{k}\right)+\alpha \wedge\left(\omega \wedge A_{k}\right) \\
& =\omega \wedge d A_{K}+\omega \wedge\left(\alpha \wedge A_{K}\right) \\
& =\omega \wedge\left(d A_{k}+\alpha \wedge A_{k}\right) \\
& =\omega \wedge \tilde{d} A_{k}=0
\end{aligned}
$$

Proposition 4.5.2. The map $\Pi^{0}: H^{k}(M, \tilde{d}) \rightarrow P H_{+}^{k}\left(M, \tilde{m}_{1}\right)$ given by $\Pi^{0}\left(\left[A_{k}\right]\right)=\left[\Pi^{0}\left(A_{k}\right)\right]$ is well-defined for all $k \leq n$.

Proof. Let A_{k} be \tilde{d}-closed and $A_{k}=B_{k}+\omega \wedge B_{k-2}+\omega^{2} \wedge B_{k-4}+\cdots$ denote its Lefschetz decomposition. We must show B_{k} is $\tilde{m_{1}}$-closed. Consider first the case of $k<n$.

$$
\begin{aligned}
\tilde{m}_{1} B_{k} & =\partial_{+} B_{k}+\Pi^{0}\left(\alpha \wedge B_{k}\right) \\
d A_{k} & =\partial_{+} B_{K}+\omega \wedge\left(\partial_{-} B_{k}+d B_{k-2}+\cdots\right), \\
\alpha \wedge A_{k} & =\alpha \wedge B_{k}+\omega \wedge\left(\alpha \wedge B_{k-2}+\cdots\right), \\
\tilde{d} A_{k} & =0 \Longrightarrow \partial_{+}\left(B_{k}\right)+\Pi^{0}\left(\alpha \wedge B_{k}\right)=0=\tilde{m}_{1} B_{k}
\end{aligned}
$$

Finally, we handle the case $k=n$.

$$
\begin{align*}
& \tilde{m}_{1} B_{n}=-\partial_{+} \partial_{-} B_{n}-\Pi^{0}\left[d L^{-1}\left(\alpha \wedge B_{n}\right)+\alpha \wedge L^{-1}\left(d B_{n}\right)+\alpha \wedge L^{-1}\left(\alpha \wedge B_{n}\right)\right] \tag{4.27}\\
& d A_{n}+\alpha \wedge A_{n}=0=\alpha \wedge A_{n}+\omega \wedge\left(\partial_{-} B_{n}+\partial_{+} B_{n-2}\right)+\omega^{2} \wedge\left(\partial_{-} B_{n-2}+\partial_{+} B_{n-4}\right)+\cdots \tag{4.28}
\end{align*}
$$

Focusing on equation (4.28), we expand $\alpha \wedge A_{n}=\alpha \wedge B_{n}+\omega \wedge\left(\alpha \wedge B_{n-2}\right)+\cdots$. Write $\alpha \wedge B_{n}=\omega \wedge B_{n-1}^{\prime}+\omega^{2} \wedge B_{n-3}^{\prime}+\cdots$. Then by primitivity conditions on B_{n} and B_{i}^{\prime} it follows that $\omega \wedge\left(\alpha \wedge B_{n}\right)=0=\omega^{3} \wedge B_{n-3}^{\prime}+\omega^{4} \wedge B_{n-5}^{\prime}+\cdots$. Thus we conclude $\alpha \wedge B_{n}=\omega \wedge B_{n-1}^{\prime}=\omega \wedge L^{-1}\left(\alpha \wedge B_{n}\right)$. This observation allows us to rewrite equation (4.28)
as

$$
0=\omega \wedge\left(\partial_{-} B_{n}+\partial_{+} B_{n-2}+L^{-1}\left(\alpha \wedge B_{n}\right)+\Pi^{0}\left(\alpha \wedge B_{n-2}\right)\right)+\cdots
$$

and so

$$
\partial_{-} B_{n}+\partial_{+} B_{n-2}+L^{-1}\left(\alpha \wedge B_{n}\right)+\Pi^{0}\left(\alpha \wedge B_{n-2}\right)=0
$$

Taking ∂_{+}of this equation shows $\partial_{+} \partial_{-} B_{n}+\partial_{+} L^{-1}\left(\alpha \wedge B_{n}\right)+\partial_{+} \Pi^{0}\left(\alpha \wedge B_{n-2}\right)=0$. Moreover, by degree considerations and the Leibniz rule for m_{2}, we have

$$
\partial_{+} \Pi^{0}\left(\alpha \wedge B_{n-2}\right)=\partial_{+}\left(\alpha \times B_{n-2}\right)=-\alpha \times \partial_{+} B_{n-2}
$$

Hence,

$$
\begin{aligned}
-\partial_{+} \partial_{-} B_{n} & =\partial_{+} L^{-1}\left(\alpha \wedge B_{n}\right)-\alpha \times \partial_{+} B_{n-2} \\
\partial_{+} B_{n-2} & =-\left(\partial_{-} B_{n}+L^{-1}\left(\alpha \wedge B_{n}\right)+\alpha \times B_{n-2}\right)
\end{aligned}
$$

Plugging these into equation (4.27) yields

$$
\begin{aligned}
\tilde{m}_{1} B_{n} & =\partial_{+} L^{-1}\left(\alpha \wedge B_{n}\right)-\alpha \times \partial_{+} B_{n-2}-\Pi^{0}\left[d L^{-1}\left(\alpha \wedge B_{n}\right)+\alpha \wedge L^{-1}\left(d B_{n}\right)+\alpha \wedge L^{-1}\left(\alpha \wedge B_{n}\right)\right] \\
& =-\alpha \times \partial_{+} B_{n-2}-\Pi^{0}\left[\alpha \wedge L^{-1}\left(d B_{n}\right)+\alpha \wedge L^{-1}\left(\alpha \wedge B_{n}\right)\right] \\
& =-\Pi^{0}\left[\alpha \wedge \partial_{+} B_{n-2}+\alpha \wedge \partial_{-} B_{n}+\alpha \wedge L^{-1}\left(\alpha \wedge B_{n}\right)\right] \\
& =-\Pi^{0}\left[-\alpha \wedge\left(\partial_{-} B_{n}+L^{-1}\left(\alpha \wedge B_{n}\right)+\alpha \times B_{n-2}\right)+\alpha \wedge \partial_{-} B_{n}+\alpha \wedge L^{-1}\left(\alpha \wedge B_{n}\right)\right] \\
& =\Pi^{0}\left(\alpha \wedge\left(\alpha \times B_{n}\right)\right)=\alpha \times\left(\alpha \times B_{n}\right)=0,
\end{aligned}
$$

where the second to last equality follows from the fact that by degree considerations, $\alpha \times$ $\left(\alpha \times B_{n}\right)=(\alpha \times \alpha) \times B_{n}=0$.

Bibliography

[1] Joan S. Birman. On braid groups. Comm. Pure Appl. Math., 22:41-72, 1969.
[2] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks. SnapPy, a computer program for studying the geometry and topology of 3-manifolds. Available at http://snappy.computop.org.
[3] David Eisenbud and Walter Neumann. Three-dimensional link theory and invariants of plane curve singularities, volume 110 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.
[4] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.
[5] Bernhard Keller. Introduction to A-infinity algebras and modules. Homology Homotopy Appl., 3(1):1-35, 2001.
[6] Claude LeBrun. Diffeomorphisms, symplectic forms and Kodaira fibrations. Geom. Topol., 4:451-456, 2000.
[7] Curtis T. McMullen and Clifford H. Taubes. 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations. Math. Res. Lett., 6(5-6):681-696, 1999.
[8] Walter D. Neumann. Splicing algebraic links. In Complex analytic singularities, volume 8 of Adv. Stud. Pure Math., pages 349-361. North-Holland, Amsterdam, 1987.
[9] Andrei Pajitnov. Massey products in mapping tori. Eur. J. Math., 3(1):34-42, 2017.
[10] Andrei Pajitnov. Twisted monodromy homomorphisms and Massey products. Topology Appl., 255:15-31, 2019.
[11] Yongbin Ruan. Symplectic topology on algebraic 3-folds. J. Differential Geom., 39(1):215-227, 1994.
[12] Ivan Smith. On moduli spaces of symplectic forms. Math. Res. Lett., 7(5-6):779-788, 2000.
[13] Hiro Lee Tanaka and Li-Sheng Tseng. Odd sphere bundles, symplectic manifolds, and their intersection theory. Camb. J. Math., 6(3):213-266, 2018.
[14] William P. Thurston. Some simple examples of symplectic manifolds. Proc. Amer. Math. Soc., 55(2):467-468, 1976.
[15] Chung-Jun Tsai, Li-Sheng Tseng, and Shing-Tung Yau. Cohomology and Hodge theory on symplectic manifolds: III. J. Differential Geom., 103(1):83-143, 2016.
[16] Li-Sheng Tseng and Lihan Wang. Symplectic boundary conditions and cohomology. arXiv preprint arXiv:1710.03741, 2017.
[17] Li-Sheng Tseng and Shing-Tung Yau. Cohomology and Hodge theory on symplectic manifolds: I. J. Differential Geom., 91(3):383-416, 2012.
[18] Li-Sheng Tseng and Shing-Tung Yau. Cohomology and Hodge theory on symplectic manifolds: II. J. Differential Geom., 91(3):417-443, 2012.
[19] Stefano Vidussi. Homotopy K3's with several symplectic structures. Geom. Topol., 5:267-285, 2001.
[20] Stefano Vidussi. Smooth structure of some symplectic surfaces. Michigan Math. J., 49(2):325-330, 2001.

