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ABSTRACT OF THE DISSERTATION

Properties of the A∞-Structure on Primitive Forms and its Cohomology

By

Matthew Gibson

Doctor of Philosophy in Mathematics

University of California, Irvine, 2019

Professor Li-Sheng Tseng, Chair

We study a symplectic cohomology, PH∗±(X,ω), de�ned on any symplectic manifold (X,ω),

introduced by Tseng and Yau. As a main application, we analyze two di�erent �brations

of a link complement M3 constructed by McMullen-Taubes, and studied further by Vidussi.

These examples lead to inequivalent symplectic forms ω1 and ω2 on X = S1 ×M3, which

can be distinguished by the dimension of the primitive cohomologies of di�erential forms.

We provide a general algorithm for computing the monodromies of the �brations explicitly,

which are needed to determine the primitive cohomologies. We also investigate a similar

phenomenon coming from �brations of a class of graph links, whose primitive cohomology

provides information about the �bration structure. We then study the A∞-structure on

the di�erential forms underlying PH∗±(X,ω). We use this A∞-structure to generalize clas-

sic notions such as Massey products and twisted di�erentials. These tools capture more

information on certain symplectic 4-manifolds compared to the DGA structure on H∗(X).

vii



Chapter 1

Symplectic and Cohomological

Background

1.1 Introduction

In this chapter, we review the necessary basics in symplectic geometry and cohomology.

We begin by introducing the sl(2)-representation on the space of di�erential forms on a

symplectic manifold. The highest weight vectors under this representation form an impor-

tant sub-algebra known as primitive forms. This algebra is used to construct a symplectic

cohomology. We cover the construction of the di�erentials and properties of this algebra, in-

vestigating several examples. We end with a discussion of Massey products and A∞-algebras.

In particular, we recap the underlying A3-structure on primitive forms given in [15]. This

A3-structure will be used in Chapter 4, when we introduce primitive Massey products.
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1.2 Primitive Forms and sl2-Representation

Let (M2n, ω, g) be a symplectic manifold. We de�ne the following operators on Ω∗(M), its

space of di�erential forms:

L :Ωk(M)→ Ωk+2(M)

Ak 7→ ω ∧ Ak

Λ :Ωk(M)→ Ωk−2(M)

Ak 7→
1

2
(ω−1)ijιeiιejAk

H :Ωk(M)→ Ωk(M)

Ak 7→ (n− k)Ak

where {ei} is an orthonormal basis for T ∗M with respect to g. Here, Λ is the formal adjoint

of L.

Proposition 1.2.1. Ω∗(M) is an sl2-module with respect to the operators (L,Λ, H). That

is, the following identities hold

[H,Λ] = 2Λ, (1.1)

[H,L] = −2L, (1.2)

[Λ, L] = H. (1.3)

Proof. Identities (1.1) and (1.2) follow easily from degree considerations. For equation (1.3),

choose local Darboux coordinates (p1, · · · , pn, q1, · · · , qn). It follows that L =
∑

k(dpk∧dqk)∧
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and Λ =
∑

k ι ∂
∂qk

ι ∂
∂pk

. Using these formulas, and the interior product Leibniz rule, shows

ΛL =
∑
k,i

ι ∂
∂qk

ι ∂
∂pk

dpi ∧ dqi∧ = ι ∂
∂qk

[
δikdqi ∧+dpi ∧ dqi ∧ ι ∂

∂pk

]
=
∑
i,k

δikI − δikdpi ∧ ι ∂
∂pk

− δikdqi ∧ ι ∂
∂qk

+ dpi ∧ dqi ∧ ι ∂
∂qk

ι ∂
∂pk

= LΛ +
∑
k

I − dpk ∧ ι ∂
∂pk

− dqk ∧ ι ∂
∂qk

=⇒ [Λ, L] = nI −
∑
k

dpk ∧ ι ∂
∂pk

+ dqk ∧ ι ∂
∂qk

.

Now for an s-form A, write A =
∑
|I|+|J |=sAI,JdpI ∧ dqJ . Then

∑
k

(dpk ∧ ι ∂
∂pk

+ dqk ∧ ι ∂
∂qk

)A =
∑
|I|AI,JdpI ∧ dqJ + |J |AI,JdpI ∧ dqJ

=
∑

(|I|+ |J |)AI,JdpI ∧ dqJ = sA.

Combining the above computations yields [Λ, L]A = (n− s)A = H(A), as required.

The sl2-representation given in Proposition 1.2.1 leads to the following de�nition.

De�nition 1.2.1. A k-form (k ≤ n) Bk is called primitive if ΛBk = 0.

We denote the space of all primitive forms on M by P∗(M). Standard representation

theory applied to the sl2-module Ω∗(M) gives the Lefschetz decomposition by primitive forms:

Ωk(M) =
⊕
p

LpPk−2p(M).

Hence, every k-form Ak admits a decomposition Ak = Bk +ω∧Bk−2 +ω2∧Bk−4 + · · · where

3



each Bi is primitive. This expression furnishes two more operators

L−p : Ωk(M)→ Ωk−2p(M)

Ak 7→ Bk−2p + ω ∧Bk−2p−2 + ω2 ∧Bk−2p−4 + · · ·

Πp : Ωk(M)→ Ωk(M)

Ak 7→ Bk + ω ∧Bk−2 + · · ·+ ωpBk−2p

Intuitively, L−p removes ωp from the decomposition of Ak and Πp project onto the �rst p+ 1

factors. This primitive decomposition provides a useful characterization of P∗(M).

Proposition 1.2.2. Let Bk ∈ Pk(M). The following statements are equivalent:

(i) Λ(Bk) = 0,

(ii) Ln−k+1Bk = 0 and Ls(Bk) 6= 0 for s < n− k + 1.

Proof. Using identity (1.3) of Proposition 1.2.1, and an easy induction argument, we have

ΛL(Bk) = LΛ(Bk) + (n− k)Bk,

ΛL2(Bk) = LΛ(LBk) + (n− k − 2)LBk = (L2Λ + [2(n− k)− 2]L)Bk,

ΛL3(Bk) = (L2Λ + [2(n− k)− 6]L)LBk = (L3Λ + [3(n− k)− 6]L2)Bk

...

ΛLp(Bk) = LpΛ(Bk) + (p(n− k)− p(p− 1))Lp−1Bk = LpΛ(Bk) + p(n− k + 1− p)Lp−1Bk.

(1.4)

Now, suppose ΛBk = 0 and Ls(Bk) 6= 0, Ls+1(Bk) = 0. Setting p = s + 1, with our

assumption on Bk, reduces the last equation in (1.4) to

0 = (s+ 1)(n− k − s)LsBk.

Since Ls(Bk) 6= 0, this implies s+ 1 = n− k + 1, as desired.

4



For the other direction, expand ΛBk = Bk−2 + ω ∧ Bk−4 + · · · . Using equation (1.4) with

p = n− k + 1 yields

0 = Ln−k+1(ΛBk) = Ln−k+1Bk−2 + Ln−k+2Bk−4 + · · ·+ Ln−k+iBk−2i + · · · (1.5)

We have already established above that Λ(Bk−2i) = 0 implies Ln−k+2i+1Bk−2i = 0 and is

non-zero for any smaller power. Consequently, the only way for Equation (1.5) to hold is if

each Bi = 0. Hence ΛBk = 0, completing the proof.

1.3 Primitive Di�erentials and Cohomology

Having established the existence of primitive forms, we now review the di�erential m1 on

P∗(M). Its explicit de�nition will depend on the grading of the form in P∗(M). Given

Ak ∈ Ωk(M), we may expand dAk = Bk+1 +ω∧Bk−1 +ω2∧Bk−3 + · · · = Bk+1 +ω∧ (Bk−1 +

ω ∧Bk−3 + · · · ) and de�ne operators

∂+ : Ωk(M)→ Ωk+1(M)

Ak 7→ Bk+1

∂− : Ωk(M)→ Ωk−1(M)

Ak 7→ Bk−1 + ω ∧Bk−3 + · · ·

If Ak is primitive, then

dLn−k+1Ak = 0 = Ln−k+1dAk

= ωn−k+1 ∧Bk+1 + ωn−k+2 ∧ (Bk−1 + ω ∧Bk−3 + · · · )

= ωn−k+3 ∧Bk−3 + ωn−k+4 ∧Bk−5 + · · · ,

5



and so by the Lefschetz decomposition, we have dAk = Bk+1 + ω ∧ Bk−1. Thus when

restricted to primitive forms, the above operators simplify to ∂± : Pk(M) → Pk±1(M). By

construction, note that in general d = ∂+ + ω ∧ ∂−. This observation, with the fact that

d2 = 0, leads to the following identities.

Proposition 1.3.1. The operators ∂± satisfy

(i) ∂2
+ = 0 = ∂2

−

(ii) L(∂+∂− + ∂−∂+) = 0

Note that as a corollary of Proposition 1.3.1, ∂± are in fact di�erentials on P∗(M). These

di�erentials �t together in one chain complex, but with two copies of P∗(M). To do so, we

introduce another copy P̄∗(M) with grading
∣∣P̄k(M)

∣∣ = 2n−k+1. Thus ∂+ and ∂− increase

the degree on P∗(M) and P̄∗(M), respectively. We connect the two complexes with ∂+∂−

to obtain the chain complex

0 −−−→ P0 ∂+−−−→ P1 ∂+−−−→ P2 ∂+−−−→ · · · ∂+−−−→ Pny∂+∂−
0 ←−−− P̄0 ∂−←−−− P̄1 ∂−←−−− P̄2 ∂−←−−− · · · ∂−←−−− P̄n

which satis�es (∂+∂−) ◦ ∂+ = 0 = ∂− ◦ (∂+∂−), by a careful application of Proposition 1.3.1.

Its cohomologies, called the primitive cohomologies, are denoted by

PHk
+(M,ω) =

ker
(
∂+ : Pk → Pk+1

)
Im (∂+ : Pk−1 → Pk)

, PHk
−(M,ω) =

ker
(
∂− : P̄k → P̄k−1

)
Im
(
∂− : P̄k+1 → P̄k

) (1.6)

for k < n and

PHn
+(M,ω) =

ker
(
∂+∂− : Pn → P̄n

)
Im (∂+ : Pn−1 → Pn)

, PHn
−(M,ω) =

ker
(
∂− : P̄n → P̄n−1

)
Im
(
∂+∂− : Pn → P̄n

) (1.7)

This notation will simply be abbreviated to PH∗±(M) when the choice of symplectic structure

is clear. We now consider some examples of PH∗(M,ω), which illustrate key di�erences
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between de Rham and primitive cohomology.

Example 1.3.1. Let Σg be a closed surface of genus g with symplectic form ωΣ. We note

that in general, all 0-forms and 1-forms are automatically primitive since Ln+1A0 and LnA1

are 2n + 2 and 2n + 1 forms, respectively. Furthermore on 0-forms, ∂+B0 = dB0. Thus the

relevant chain complex is

0 −−−→ Ω0(Σg)
d−−−→ Ω1(Σg)y∂+∂−

0 ←−−− Ω̄0(Σg)
∂−←−−− Ω̄1(Σg)

It follows immediately that PH0
+(Σg) = ker (d : Ω0(Σg)→ Ω1(Σg)) = H0(Σg). Moving on

to PH1
+(Σg), consider B1 ∈ ker (∂+∂− : Ω1(Σg)→ Ω1(Σg)). Writing dB1 = B0ωΣ, we have

∂+B0 = dB0 = 0 so that B0 ∈ H0(Σg). But this implies ωΣ is exact unless B0 = 0. Since Σg

is compact, we conclude dB1 = 0. Hence

ker
(
∂+∂− : Ω1(Σg)→ Ω1(Σg)

)
= ker

(
d : Ω1(Σg)→ Ω2(Σg)

)
,

and so PH1
+(Σg) = H1(Σg). Similar considerations show

PH1
−(Σg) =

ker(∂− : Ω1(Σg)→ Ω0(Σg))

Im(∂+∂− : Ω1(Σg)→ Ω1(Σg))

=
ker(d : Ω1(Σg)→ Ω2(Σg))

Im(d : Ω0(Σg)→ Ω1(Σg))

= H1(Σg).
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Finally,

PH0
−(Σg) =

Ω0(Σg)

Im(∂− : Ω1(Σg)→ Ω0(Σg))

=
Ω2(Σg)

Im(d : Ω1(Σg)→ Ω2(Σg))

= H2(Σg).

We summarize the groups below:

PH0
+(Σg) = H0(Σg), PH1

+(Σg) = H1(Σg),

PH1
−(Σg) = H1(Σg), PH0

−(Σg) = H2(Σg) ∼= H0(Σg).

Hence in this case, the primitive cohomology is two copies of the de Rham cohomology,

with grading given by |PHk
+(Σg)| = k, |PHk

−(Σg)| = 3−k. We also note that this conclusion

does not depend on the choice of symplectic form ωΣ. The next example will show that this

occurrence does not always happen.

As with de Rham cohomology, PH∗(M,ω) can become quite cumbersome to compute

directly. Below, we provide a useful theorem from [15] which decomposes primitive coho-

mology in terms of kernels and cokernels of the Lefschetz maps, L. We omit the proof, but

interested readers may consult [15] for details of the long-exact sequence. This theorem will

be crucial in many computations moving forward.

Theorem 1.3.1 (Tsai, Tseng, Yau). Let (M2n, ω) be a symplectic manifold. For integers

k ≤ n, the following group isomorphisms hold:

PHk
+(M,ω) = ker

(
L : Hk−1(M)→ Hk+1(M)

)
⊕ coker

(
L : Hk−2(M)→ Hk(M)

)
,

PHk
−(M,ω) = ker

(
L : H2n−k(M)→ H2n−k+2(M)

)
⊕ coker

(
L : H2n−k−1(M)→ H2n−k+1(M)

)
.

Example 1.3.2. Let T4 denote the 4-torus and �x some symplectic form ω. Using Theorem

8



1.3.1, we know immediately

PH0
+(T4, ω) = H0(T4), PH0

−(T4, ω) = H4(T4),

PH1
+(T4, ω) = H1(T4), PH1

−(T4, ω) = H3(T4).

Furthermore,

PH2
+(T4, ω) = ker

(
L : H1(T4)→ H3(T4)

)
⊕ coker

(
L : H0(T4)→ H2(T4)

)
,

PH2
−(T4, ω) = ker

(
L : H2(T4)→ H4(T4)

)
⊕ coker

(
L : H1(T4)→ H3(T4)

)
.

To get a more concrete representation, choose coordinates (xi, yi) and write ω = dx1 ∧ dy1 +

dx2 ∧ dy2. By the Kunneth formula it follows,

H1(T4) = 〈dx1, dx2, dy1, dy2〉,

H2(T4) = 〈dxi ∧ dxj, dxi ∧ dyj, dyi ∧ dyj〉1≤i,j≤2,

H3(T4) = 〈dxi ∧ dxj ∧ dyk, dxi ∧ dyj ∧ dyk〉1≤i,j,k≤2,

H4(T4) = 〈ω2〉.

These formulas lead to the simpli�cations

PH2
+(T4, ω) = H2(T4)/〈ω〉,

PH2
−(T4, ω) = ker

(
L : H2(T4)→ H4(T4)

) ∼= H2(T4)/〈ω〉,

H2(T4)/〈ω〉 = 〈x1 ∧ x2, y1 ∧ y2, x1 ∧ y2, x2 ∧ y1, x1 ∧ y1 − x2 ∧ y2〉.

We note that all the elements of PH∗(T4, ω) are still d-closed, but are a proper subset of

H∗(T4). Furthermore, this example illustrates that an obvious Kunneth formula fails for

primitive cohomology. If we write T4 = Σ1 × Σ1, we would expect such a formula should

9



give

PH2
+(T4) ∼= PH1

+(Σ1)⊗ PH1
+(Σ1)⊕ PH1

−(Σ1)⊕ PH1
−(Σ1).

However, applying Example 1.3.1 gives

PH1
±(Σ1) = H1(Σ1) = R2,

but

PH2
+(T4) = H2(T4)/〈ω〉 6= R2 ⊗ R2 ⊕ R2 ⊕ R2.

Example 1.3.3. We let X be the Kodaira-Thurston manifold KT 4, a classic example

of a non-Kahler, symplectic manifold. X can be realized as R4 under the identi�cation

(x1, y1, x2, y2) ∼ (x1 + a, y1 + b, x2 + c, y2 + d− bx2), a, b, c, d ∈ Z. One can also view X as S1

times a mapping torus, with monodromy given by a Dehn twist along the meridian of the

2-torus. We take the following basis of 1-forms:

e1 = dx1, e2 = dx2, e3 = dx3, e4 = dx4 + x2dx3,

and de�ne the symplectic form ω = e1 ∧ e2 + e3 ∧ e4. Using the Wang exact sequence (see

Chapter 2) and the Kunneth formula, we can compute the de Rham cohomology to be

H1(X) = 〈e1, e2, e3〉,

H2(X) = 〈e1 ∧ e2, e1 ∧ e3, e2 ∧ e4, e3 ∧ e4〉,

H3(X) = 〈e1 ∧ e2 ∧ e4, e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4〉,

H4(X) = 〈ω2〉.

10



Finally, applying Theorem 1.3.1 yields,

PH0
+(X,ω) = R,

PH1
+(X,ω) = H1(X),

PH2
+(X,ω) = H2(X)/〈ω〉 ⊕ 〈e3〉,

PH2
−(X,ω) = 〈e1 ∧ e3, e2 ∧ e4, e1 ∧ e2 − e3 ∧ e4〉 ⊕ 〈e1 ∧ e2 ∧ e4〉,

PH1
−(X,ω) = H3(X),

PH0
−(X,ω) = H4(X).

In practice, one often must realize these isomorphisms in terms of explicit primitive forms

of appropriate degree. We demonstrate the process on the e3 term appearing in PH2
+(X,ω).

Notice ω ∧ e3 = d(e4 ∧ e1). We de�ne B2 = e4 ∧ e1, which indeed is a primitive 2-form since

ω ∧ B2 = 0. Furthermore, ∂−(B2) = e3 so that B2 is ∂+∂−-closed. Thus e3 corresponds to

the explicit form B2 in PH
2
+(X). We point out that B2 is a NON d-closed element, showing

PH∗(X) and H∗(X) truly di�er. See [17] for more details on this manifold and its various

cohomologies.

Example 1.3.4. As a �nal example, consider CPn with any symplectic form ω. We may

express its de Rham cohomology as H2k(CPn) = 〈ωk〉 and H2k+1(CPn) = 0. It's easy to

see L is an isomorphism on cohomology, so that each component of Theorem 1.3.1 is trivial.

Hence,

PH0
+(CPn) = PH0

−(CPn) = R,

PHk
+(CPn) = PHk

−(CPn) = 0, 0 < k ≤ n.
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1.4 Massey Products and A∞-structure on P∗(M)

In this section, we review the construction of classic Massey products on de Rham coho-

mology in order to set conventions on the de�ning systems and signs. We then provide the

de�nitions of A∞-algebras and formality, motivated from the perspective of the DGA struc-

ture on di�erential forms. We end with a discussion of the A∞-structure on P∗(M), whose

explicit maps will be used in later chapters.

1.4.1 Classic Massey Products

For our purposes, we need only consider the Massey product 〈a1, · · · , ak〉 where each ai ∈

H1(M). However, if needed, the below system can be generalized appropriately.

De�nition 1.4.1. A de�ning system (aij) for the k−fold Massey product is an upper-

triangular collection of 1-forms satisfying the following properties:

1. ai,j = 0 for i < j,

2. ai,i is a representative of the cohomology class [ai],

3. dai,j =

j−1∑
r=i

ai,r ∧ ar+1,j, (i, j) 6= (1, k).

If such a de�ning system exists, the Massey product is the collection of all representatives

given by
k−1∑
r=1

a1,r ∧ ar+1,k.

By abuse of notation, when clear, 〈a1, · · · , ak〉 will be used to denote a speci�c represen-

tative. The above conditions intuitively measure the exactness of consecutive n-fold Massey

products (n < k). That is, dai,j = 〈ai, ai+1, · · · , aj〉.

This construction is best illustrated through the 3-point Massey product. This product

requires closed 1-forms a1, a2, a3 such that a1 ∧ a2 = da12 and a2 ∧ a3 = da23. The de�ning
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system is summarized by the following matrix


a1 a12 ∗

0 a2 a23

0 0 a3

 ,

where the upper-right entry is the Massey product representative given by a1 ∧ a23 +

a12 ∧ a3. Given another de�ning system (a′ij) with a
′
ii = ai, we have d(aij − a′ij) = 0. Hence

a12 − a′12 and a23 − a′23 descend to representatives in H1(M). It follows that the di�erence

between the two Massey product representatives satis�es

(a1∧a23+a12∧a3)−(a1∧a′23+a′12∧a3) = a1∧(a23−a′23)+(a12−a′12)∧a3 ∈ 〈a1〉∧H1(M)+H1(M)∧〈a3〉.

Therefore, in the case of the 3-point Massey product, we can de�ne the representative

〈a1, a2, a3〉 to be an element in H2(M)/ [〈a1〉 ∧H1(M) +H1(M) ∧ 〈a3〉]. In general, the

higher (k > 3) Massey products don't have such a quotient space.

For a concrete example of the 3-fold Massey product, we turn to the symplectic manifold

in Ex 1.3.3.

Example 1.4.1 (KT 4). The only elements in the kernel of the wedge product are e2 and

e3, given by e2 ∧ e3 = de4. Hence we may consider the product 〈e3, e2, e3〉, where a12 = −e4

and a23 = e4. After considering the quotient, the above formulation gives a non-trivial

representative 〈e3, e2, e3〉 = 2e34. In particular, the Kodaira-Thurston manifold has a non-

zero Massey product.

To see the importance of these products, we take a digression into A∞ algebras.

1.4.2 A∞-Algebras and Formality

Given a di�erential graded algebra (DGA) (A, d, ·), the multiplication · is assumed to be

associative. A familiar example of a DGA is di�erential forms on a manifold, (Ω∗(M), d,∧).

13



The idea of an A∞-algebra is to generalize this structure to the case where the multiplication

is not associative, introducing higher maps to measure the failure. We give the formal

de�nition below.

De�nition 1.4.2 (A∞-Algebra). An A∞-algebra over a �eld k is a Z-graded vector space

A =
⊕
p∈Z

Ap

with graded maps

mk : A⊗k → A, k ≥ 1,

of degree 2− k satisfying

∑
k=r+s+t

(−1)r+stm1+r+t(1
⊗r ⊗ms ⊗ 1⊗t) = 0.

To be clear, we use the Koszul sign rule, stating (f ⊗ g)(a ⊗ b) = (−1)|g||a|f(a) ⊗ g(b).

The �rst three maps are given by the de�ning equations

m1m1(a) = 0,

m1m2(a, b) = m2(m1(a), b) + (−1)|a|m2(a,m1(b)),

m2(a,m2(b, c))−m2(m2(a, b), c) = m1m3(a, b, c) +m3(m1(a), b, c)

+(−1)|a|m3(a,m1(b), c) + (−1)|a|+|b|m3(a, b,m1(c)).

The �rst equation says m1 is a di�erential, the second equation says m2 satis�es the Leibniz

rule, and the last equation states that the associator of m2 is homotopic to 0 given by the

di�erential of m3 in the morphism complex. In this thesis, we focus on A3-algebras, A∞-

algebras where mk = 0 for k > 3. See [5] for a more in depth discussion of A∞-algebras in

general.

Given a DGA (A, d,m2), a theorem of Kadeishvili says there is a unique A∞-structure
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on H∗(A) making A and H∗(A) quasi-isomorphic as A∞-algebras. We omit the precise

de�nition, but informally, one may think of a quasi-isomorphism as a morphism of A∞-

algebras inducing an isomorphism on cohomology. If this structure on the cohomology

remains a DGA, then A is called formal.

De�nition 1.4.3 (Formal). A DGA (A, d,m2) is called formal if the A∞-structure on H
∗(A)

making A and H∗(A) quasi-isomorphic is still a DGA. A manifold M is called formal if

(Ω∗(M), d,∧) is formal.

A folklore theorem states that a formal manifold M has all Massey products trivial

on H∗(M). Let (mk) denote the A∞-model on H∗(M). This fact follows from showing

that when 〈a1, a2, · · · , ak〉 is de�ned, then a cohomology representative of it is given by

mk(a1, a2, · · · , ak). Since mk = 0 for k > 2, all 3-point and higher products must vanish. A

famous paper of Deligne, Gri�ths, Morgan, and Sullivan proves that every Kahler manifold

is formal. Using this Massey product theorem shows that the Kodaira-Thurston manifold of

Example 1.3.3 is NOT formal and therefore cannot be Kahler.

1.4.3 A3-structure on P∗(M)

In [15], an A∞ structure (m1,×,m3) was introduced on P∗(M). We already saw the con-

struction of m1 in Section 1.3. This di�erential is given by

m1(Bk) =


∂+(Bk), 0 ≤ k < n

−∂+∂−(Bk), k = n

−∂−(Bk), n+ 1 ≤ k ≤ 2n+ 1

The addition of minus signs is to account for the Leibniz rule required on m2 in De�nition

1.4.2. For the multiplication, we omit the derivation and simply give the formulas. Recall

our grading on P∗(M) given by |Pk(M)| = k and |Pk(M)| = 2n + 1 − k for 0 ≤ k ≤ n.
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Furthermore we introduce the map (see [15] for more motivation)

∗r :Ωk(M)→ Ωk(M)

Ak 7→ Ln−kAk.

Then the product × : P i(M)⊗ Pj(M)→ P i+j(M) is de�ned as

Aj × Ak =

 Π0(Aj ∧ Ak), j + k ≤ n

Π0 ∗r [−dL−1(Aj ∧ Ak) + (L−1dAj) ∧ Ak + (−1)jAj ∧ (L−1dAk)] , j + k > n

(1.8)

Aj × Ak = (−1)j ∗r (Aj ∧ (∗rAk)), (1.9)

Aj × Ak = ∗r((∗rAj) ∧ Ak), (1.10)

Aj × Ak = 0. (1.11)

Example 1.4.2. To demonstrate that × is not associative we quickly revisit the Kodaira-

Thurston manifold. We compute,

(e1 × e2)× e4 =
1

2
(e1 ∧ e2 − e3 ∧ e4)× e4

= Π0 ∗r
[
−1

2
dL−1(e1 ∧ e2 ∧ e4) +

1

2
(e1 ∧ e2 − e3 ∧ e4) ∧ L−1(e2 ∧ e3)

]
= −1

2
e2 ∧ e3,

e1 × (e2 × e4) = e1 × (e2 ∧ e4) = Π0 ∗r
[
−dL−1(e1 ∧ e2 ∧ e4)

]
= −e2 ∧ e3.

As it turns out, we need only introduce one higher map m3 to measure the failure of

associativity. Again omitting details, we provide the formulas below. The m3 will only be
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non-trivial on gradings (i, j, k) with i, j, k < n and i+ j + k > n. It is given by,

m3(Ai, Aj, Ak) =

 0, i+ j + k < n+ 2

Π0 ∗r [Ai ∧ L−1(Aj ∧ Ak)− L−1(Ai ∧ Aj) ∧ Ak] , i+ j + k ≥ n+ 2.

A quick check on Example 1.4.2 reveals

e1 × (e2 × e4)− (e1 × e2)× e4 = −1

2
e2 ∧ e3

= m3(e1, e2, de4),

as expected. This m3 map will reappear in Chapter 4 when we introduce primitive Massey

products and investigate the structure on some symplectic 4-manifolds.
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Chapter 2

Fibered 3-Manifold Background

In this chapter, we apply the theory from Chapter 1 to a symplectic 4-manifold associated to

surface bundles. We consider di�erent symplectic forms and determine its e�ect on the prim-

itive cohomology. We conclude with the necessary theory of �bered 3-manifolds, discussing

the mapping class group and its generators for a four-times punctured torus.

2.1 de Rham and Primitive Cohomologies

In this section, we brie�y review the basics of the de Rham cohomology of surface bundles

over a circle. We then apply primitive cohomology studied in Chapter 1 to a symplectic

4-manifold associated to surface bundles.

Let Σg,n = Σg − {y1, · · · , yn} be a Riemann surface of genus g with n points removed.

When clear, the surface will simply be abbreviated by Σ. Moreover, when convenient,

P := {y1, · · · , yn} may be thought of as marked points. We endow Σ with a symplectic

form ωΣ and let f : Σ → Σ be any symplectic di�eomorphism preserving P setwise. Form

the 3-dimensional mapping torus Yf = Σ × [0, 1]/(x, 1) ∼ (f(x), 0). It follows that Yf has

a Σ-bundle structure over S1 with the projection given by π : Yf → S1, π([x, t]) = t.

The associated map f is called the monodromy of the bundle and determines the de Rham
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cohomology according to the Wang exact sequence

· · · H0(Σ) H1(Yf ) H1(Σ) H1(Σ) H2(Yf ) · · ·f∗−1

This sequence yields

H0(Yf ) = R,

H1(Yf ) = ker(f ∗ − 1 : H1(Σ)→ H1(Σ))⊕ 〈dπ〉,

H2(Yf ) = 〈dπ〉 ∧ coker(f ∗ − 1 : H1(Σ)→ H1(Σ)),

H3(Yf ) = 0,

where dπ = π∗(dθ) is the pullback under π of the volume form on S1.

Next we construct a symplectic manifold X = S1 × Yf with symplectic form ω = dt ∧

dπ+ωΣ. Here, dt is the volume form on the second S1 factor and ωΣ (by abuse of notation)

is a global closed 2-form on Yf which restricts to the symplectic form on each �ber. The

Kunneth formula easily shows

H0(X) = R,

H1(X) = 〈dt, dπ〉 ⊕ ker(f ∗ − 1 : H1(Σ)→ H1(Σ)),

H2(X) = 〈dt ∧ dπ〉 ⊕ dπ ∧ coker(f ∗ − 1 : H1(Σ)→ H1(Σ))⊕ dt ∧ ker(f ∗ − 1 : H1(Σ)→ H1(Σ)),

H3(X) = 〈dt ∧ dπ〉 ∧ coker(f ∗ − 1 : H1(Σ)→ H1(Σ)),

H4(X) = 0.

Let us �rst discuss the case where ω is chosen so that [ω]dR = [dt∧dπ]dR, the more general

case will be treated at the end of the section. Applying Theorem 1.3.1 to the 4-manifold
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X = S1 × Yf , along with the computations from above, yields

PH0
+(X) ∼= R,

PH1
+(X) ∼= H1(X),

PH2
+(X) ∼= H2(X)/〈dt ∧ dπ〉 ⊕ 〈dt, dπ〉 ⊕ [ker(f ∗ − 1) ∩ Im(f ∗ − 1)],

PH2
−(X) ∼= H2(X)⊕ [〈dt ∧ dπ〉 ∧ coker(f ∗ − 1)] / [〈dt ∧ dπ〉 ∧ ker(f ∗ − 1)] ,

PH1
−(X) ∼= H3(X),

PH0
−(X) ∼= 0.

Let bi denote the Betti numbers of X and p±i (X,ω) denote the dimensions of PH i
±(X,ω).

When the choice of the underlying symplectic structure is clear, we simply write p±i . Then,

p+
0 = 1,

p+
1 = b1,

p+
2 = b2 + 1 + dim [ker(f ∗ − 1) ∩ Im(f ∗ − 1)] ,

p−2 = b2 + dim [ker(f ∗ − 1) ∩ Im(f ∗ − 1)] ,

p−1 = b3,

p−0 = 0,

where we have used the fact that dim [ker(f ∗ − 1) ∩ Im(f ∗ − 1)] and

dim [(dt ∧ dπ ∧ coker(f ∗ − 1))/(dt ∧ dπ ∧ ker(f ∗ − 1))] are equal by realizing that both quan-

tities count the number of Jordan blocks of f ∗−1 of size strictly greater than 1 (see discussion

below). We note that the primitive Euler characteristic χp(X) =
∑

(−1)ip+
i −

∑
(−1)ip−i =

2 − b1 + b3 is �xed under homeomorphism type. However, the primitive Betti numbers p±2

may vary in general.

Let us explain how this dimension relates to the Jordan blocks of f ∗ − 1. For brevity

we write ν2 := dim [ker(f ∗ − 1) ∩ Im(f ∗ − 1)]. Now if α ∈ ker(f ∗ − 1) ∩ Im(f ∗ − 1), then
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(f ∗ − 1)α = 0 and (f ∗ − 1)β = α for some β. That is, α is an eigenvector in a Jordan chain

of length at least 2. It follows that ν2 counts the number of Jordan blocks corresponding

to eigenvalue λ = 1 of size at least 2. More generally there is a descending �ltration of

subgroups PH2
+(M) ⊃ J1(M) ⊃ J2(M) ⊃ · · · where Jk(M) = ker(f ∗ − 1) ∩ Im(f ∗ − 1)k.

If α ∈ Jk(M), then it is the eigenvector in a Jordan chain of length at least k + 1 given by

x1 = α, x2 = (f ∗ − 1)k−1β, x3 = (f ∗ − 1)k−2β,· · · , xk = (f ∗ − 1)β, xk+1 = β. Thus the

dimension of the �ltered quotient Jk−1/Jk counts the number of Jordan blocks of size exactly

k.

We now consider the case where [ω] 6= [dt ∧ dπ]. Let i : Σ ↪−→ Yf be the inclusion map

of the �ber and choose ω̃f ∈ Ω2(Yf ) such that i∗(ω̃f ) = ωΣ. Furthermore, assume ω̃f can be

chosen so that [ω0] := [dt ∧ dπ + ω̃f ] = [dt ∧ dπ]. Then PH∗(X,ω0) is given by the above

computations. Given η ∈ Ω1(Yf ) such that d(η ∧ dπ) = 0, we can de�ne a new symplectic

form, ωη := ω0 + η ∧ dπ = (dt + η) ∧ dπ + ω̃f . We wish to choose η so that [ωη] 6= [ω0],

which holds precisely when [dπ ∧ η] ∈ H2(Yf ) is non-trivial. Choose a Jordan basis {xi,0}ki=1

for ker(f ∗ − 1) and denote the corresponding Jordan chain of xi,0 by {xi,0, xi,1, · · · , xi,ni
}.

Rearranging if necessary, we assume ni = 0 for 1 ≤ i ≤ s. Thus {xi,0}si=1 are the Jordan

blocks of size exactly 1. Then, we can write

H1(Yf ) = 〈dπ〉 ⊕ 〈xi,0〉ki=1,

H2(Yf ) = 〈dπ ∧ xi,ni
〉ki=1,

and express [dπ ∧ η] =
∑k

i=1 λi[dπ ∧ xi,ni
]. We may write PH2

+(X,ωη) = H2(X)/〈[ωη]〉 ⊕Kη

where Kη = ker(ωη∧ : H1(X)→ H3(X)). Then

[ωη ∧ dπ] = [0],

[ωη ∧ dt] = [η ∧ dπ ∧ dt] = −[dt ∧ dπ ∧ η],

[ωη ∧ xi,0] = [dt ∧ dπ ∧ xi,0].
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We see that [ωη ∧ (
∑s

i=1 λixi,0 + dt)] = [dt ∧ dπ ∧
∑k

i=s+1 λixi,ni
], which is trivial if and

only if η ∈ ker(f ∗−1). Similarly, denote by Cη = coker(ωη∧ : H1(X)→ H3(X)). The above

computations show Cη ∼= 〈dt∧dπ∧xi,ni
〉ki=s+1/〈dt∧dπ∧ η〉. The quotient by the η term will

be extraneous in the case that η ∈ ker(f ∗− 1). The groups PH∗(X,ωη) are recorded below.

PH0
+(X,ωη) ∼= H0(X),

PH1
+(X,ωη) ∼= H1(X),

PH2
+(X,ωη) ∼= H2(X)/〈[ωη]〉 ⊕Kη,

PH2
−(X,ωη) ∼= H2(X)⊕ Cη,

PH1
−(X,ωη) ∼= H3(X),

PH0
−(X,ωη) ∼= 〈0〉,

where

Kη
∼=


〈dπ〉 ⊕ 〈xi,0〉ki=s+1, λi 6= 0 for some i > s

〈dπ, dt+ η〉 ⊕ 〈xi,0〉ki=s+1, λi = 0 for all i > s

Cη ∼=


〈dt ∧ dπ ∧ xi,ni

〉ki=s+1/〈dt ∧ dπ ∧ η〉, λi 6= 0 for some i > s

〈dt ∧ dπ ∧ xi,ni
〉ki=s+1, λi = 0 for all i > s

Regardless of the class of η, we see PHk
±(X,ωη) are isomorphic to de Rham cohomologies

for 0 ≤ k ≤ 1. Furthermore, in the case that η descends to a cohomology class [η] ∈ H1(Yf ),

the above computations show dimPH∗(X,ωη) = dimPH∗(X,ω0). Unless otherwise stated

in the thesis, we assume [ω] = [dt ∧ dπ].
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2.2 Mapping Class Groups

In this section, we review some of the necessary topics from mapping class group theory. We

focus mainly on the mapping class group of Σ1,4, detailing a set of generators given in [1].

We wish to study the di�eomorphisms of Σg,n up to an equivalence. We de�ne the mapping

class group, denoted by M(Σg,n), as the group of di�eomorphisms �xing P setwise, up to

isotopies �xing P setwise. We de�ne the pure mapping class group, PM(Σg,n), as the subset

of elements fromM(Σg,n) �xing P pointwise. Since the majority of the next chapter takes

place in PM(Σ1,4) we brie�y discuss the di�eomorphisms generating this subgroup for the

torus with four marked points. We de�ne τi as the longitudinal curve which passes above

y1, y2, · · · , yi−1, through yi, and below yi+1, · · · , yn. Denote by ρi the meridian curve passing

through yi.

From these curves we de�ne homeomorphisms Push(τi) and Push(ρi), called the point-

pushing maps. These are classical maps in mapping class group theory. They may be loosely

visualized as follows: Push(τi) is the map which pushes the point xi around the curve τi,

�dragging� the rest of the surface Σ1,4 with it. Push(ρi) has a similar interpretation. In [1],

Birman showed that the push maps generate the mapping class group:

PM(Σ1,4) = 〈Push(τi),Push(ρi)〉, i = 1, 2, 3, 4.

It turns out that these maps can be realized in terms of Dehn twists along homology

generators for H1(Σ1,4). These explicit expressions are worked out in Section 3.3. (The

curves ρi and τi are pictured in Figure 2.1, drawn on the square representing Σ1,4.)

Another important subgroup of the mapping class group is the Torelli group, I(Σ),

consisting of di�eomorphisms acting trivially on (co)homology. Thus,

I(Σ) = {f ∈M(Σ) : 1 = f ∗ : H1(Σ)→ H1(Σ)}.
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Figure 2.1: ρi and τi paths on Σ1,4

ρ1ρ2 ρ3 ρ4

1 2 3
4

τ1
τ2
τ3
τ4

Calculations in Section 2.1 show that if f ∈ I(Σ) then H∗(S1 × Yf ) = H∗(T 2 × Σ) and

PH∗(S1× Yf ) = PH∗(T 2×Σ) as groups. Thus two Torelli-bundles cannot be distinguished

from their primitive cohomology groups alone. However, by the same reasoning, f ∈ I and

g 6∈ I can always be distinguished by the dimension of the cohomology groups.
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Chapter 3

Homeomorphic 4-folds with

Non-Isomorphic Primitive Cohomology

We analyze two classes of �bered 3-manifolds and study the e�ect of di�erent symplectic

structures on the primitive cohomology of the associated symplectic 4-fold. The �rst class of

examples comes from �brations given in [7] and [20]. Studying the primitive cohomologies

of these �brations requires knowledge of the monodromies explicitly. We provide a detailed

algorithm for constructing monodromies coming from �brations of the type in [7]. Using

these calculations, we show a pair of inequivalent symplectic structures are distinguished by

their primitive cohomologies. The second class of examples arise from a graph link provided

in [19]. In this class, the primitive cohomology provides information about the �bration

structure of the graph link.

3.1 McMullen-Taubes Type 4-manifolds

In this section, we will discuss di�erent presentations of a 3�manifold, the complement of a

link in S3, as �bration with �ber a punctured torus or sphere. All the torus �ber examples will

induce symplectic structures with identical primitive cohomologies but the sphere �bration

will be shown to give primitive cohomology of di�erent dimension.
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We quickly review the examples constructed in [7] and [20]. In [7], McMullen and Taubes

considered a 3-manifold M which is a link complement S3\K. Here, K is the Borromean

rings K1 ∪ K2 ∪ K3 plus K4, the axis of symmetry of the rings. By performing 0-surgery

along the Borromean rings we obtain a presentation of M as T3\L where:

• L ⊂ T3 is a union of four disjoint, closed geodesics L1, L2, L3, L4,

• H1(T3) = 〈L1, L2.L3〉,

• L4 = L1 + L2 + L3.

The �ber of M is the 2-torus with four punctures coming from the Li. The di�erent

�bration structures are captured by the Thurston ball. In [7], this ball is computed as the

dual of the Newton polytope of the Alexander polynomial. Endow the ball with coordinates

φ = (x, y, z, t) as in [7]. Then, the Thurston unit ball has 16 top�dimensional faces (each

�bered) coming in 8 pairs under the symmetry (φ,−φ). Furthermore, restricting to faces

that are dual to those vertices of the Newton polytope with no t�component, we get 14 faces,

that come in two types; quadrilateral and triangular. It is shown in [7] that there exist a pair

of inequivalent symplectic forms on a 4-manifold coming from di�erent �brations of T3\L.

These �brations correspond to points lying on two distinct types of faces. In [20], it is shown

that the remaining pair of 16 − 14 = 2 faces (with a non-zero t-component) yield a third

symplectic structure which is inequivalent to the two found by McMullen and Taubes.

We will investigate the monodromy of the �bration given in [20], in which it is observed

that M admits a �bration with �ber the four-punctured 2-sphere. Table 3.1 summarizes the

conclusions of the examples to follow. Determining these monodromy formulas explicitly is

a crucial step in computing the dimension of PH2
±(X,ω).

The �rst example is the �bration with �ber Σ0,4, hence `spherical' type. The other two

examples are of `toroidal' type with �ber Σ1,4. In the spherical example, the given projection

vector is the cohomology class in H1(M3) corresponding to a point on the Thurston ball.

The projection vectors of the `toroidal' type examples refer to the vector used in its �ber
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Table 3.1: Monodromies

Type of Face Projection Vector v1 Monodromy
Spherical (0,0,0,1) σ−1

1 σ2σ
−1
1 σ2σ

−1
1 σ2

Toroidal (−1,−1, 1) τ−1
3 τ−1

2 τ−1
1 ρ−1

1 ρ−1
2 τ−1

1 ρ2τ
−1
4 ρ−1

4 τ−1
3

Toroidal (−1, 1, 1) ρ−1
2 τ1ρ

−1
2 τ−1

1 τ−1
4 ρ−2

3 τ−1
2 ρ−1

4 ρ−1
1

bundle construction and not the point on the Thurston ball. These details are elaborated on

in Section3.3. For notational simplicity, in Table 3.1, Push(ρi) and Push(τi) are abbreviated

to ρi and τi, respectively.

Spherical Example. In this Example, we take the �bration from [20] obtained by per-

forming 0-surgery along the K4 axis. The �ber is the 2-sphere punctured four-times, with

monodromy given by the braid word corresponding to the Borromean rings. Let σi denote

the half-Dehn twist which switches marked points i and i+ 1. This homeomorphism can be

viewed similar to the push map, where we �push� the surface through the arc connecting the

ith and (i + 1)th points. As a braid it is the element which passes the ith string over the

(i+ 1)th string. Under this identi�cation, the monodromy is given by

σ−1
1 σ2σ

−1
1 σ2σ

−1
1 σ2.

The derivation of the toroidal type monodromies is much more involved. We carefully

work out these formulas in the next section. For now, we take the monodromies from Table

3.1 as true and examine their cohomological implications.

3.1.1 Cohomological Analysis

Let f denote any monodromy coming with the four�punctured torus �ber Σ1,4. Similarly,

denote by g the monodromy with �ber four�punctured 2-sphere Σ0,4. By choosing any of

the monodromy f we can compute its action on H1(Σ1,4) (either by hand or with the help of

software) to conclude that dim ker(f ∗− 1) = b1(Yf )− 1 = 3 in both cases. Let Xf = S1×Yf
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and Xg = S1 × Yg. By the previous discussions, these manifolds are di�eomorphic, and we

will compute the primitive cohomology of the symplectic structures naturally associated to

the �brations, determined by the monodromy f and g.

With respect to the ordering (a0, a1, a2, a3, b0) of basis vectors for H1(Σ1,4), computation

shows the action on H1(Σ1,4) is given by

f ∗ − 1 =



−1 −1 −1 −1 1

0 0 0 0 −1

1 1 1 1 1

0 0 0 0 −1

0 0 0 0 0


, J =



0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0


,

for all f . Here J is the Jordan matrix for f ∗ − 1. We note it has two blocks of size 2 and

one of size 1. It follows that

ker(f ∗ − 1) = 〈(1, 0, 0,−1, 0), (0, 1, 0,−1, 0), (0, 0, 1,−1, 0)〉,

Im(f ∗ − 1) = 〈(−1, 0, 1, 0, 0), (1,−1, 1,−1, 0)〉.

A quick check shows

(f ∗ − 1)(−1, 0, 1, 0, 0) = 0 = (f ∗ − 1)(1,−1, 1,−1, 0).

Hence we conclude

dim ker(f ∗ − 1) ∩ Im(f ∗ − 1) = dim Im(f ∗ − 1) = 2.

Notice this dimension agrees with the number of blocks from J of size at least 2. Computa-
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tions from Section 2 show

p+
2 (Xf , ωη) =


9, λi 6= 0 for some i > s

10, λi = 0 for all i > s

We now turn to Xg. Since Xf is di�eomorphic to Xg, we must have

b1(Xf ) = b1(Xg) =⇒ dim ker(g∗ − 1) = dim ker(f ∗ − 1) = 3.

Moreover using the formula χ(Σg,n) = 2 − 2g − n, it follows χ(Σ0,4) = −2 = 1 − b1(Σ0,4),

and so b1(Σ0,4) = 3. But by Rank-Nullity, 3 = 3 + dim Im(g∗ − 1), from which it follows

dim ker(g∗ − 1) ∩ Im(g∗ − 1) = 0. Thus p+
2 (Xg, ωη) = b2(Xg) + 1 = 8 6= p+

2 (Xf , ωη).

We point out that from the Jordan form of the f , these monodromies are not Torelli

elements ofM(Σ1,4). However by dimension considerations, we saw dim Im(g∗− 1) = 0 and

so g is a Torelli element of M(Σ0,4). Moreover even though each f , f ′ coming from �ber

Σ1,4 are not Torelli, f ∗ = f ′∗ and so it follows that f ′f−1 is a Torelli element.

These calculations give the following theorem.

Theorem 3.1.1. There exist �brations Yf and Yg of the 3-manifold M with inequivalent

associated symplectic 4-manifolds (Xf , ω1), (Xg, ω2), which can be distinguished by primitive

cohomologies. In particular,

p+
2 (Xf , ω1) 6= p+

2 (Xg, ω2).

To establish Theorem 3.1.1, it only remains to verify the toroidal type monodromies in

Table 3.1.
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3.2 Construction of Monodromies

In this section, we provide details for the construction of the toroidal mondromies in Table

3.1. Section 3.3 gives an even more speci�c outline of the procedure that follows. In the

examples to come, we take di�erent bases v1 = (a1, a2, a3), v2 = (1, 1, 0), v3 = (0, 1, 1) and

�ber along v1 so that the �ber at time t looks like Σt,4 = tv1 + 〈v2, v3〉 with marked points

y1(t) = (−4ε, 3ε) + (a3 − a2,−a3)t,

y2(t) = (−ε, 2ε) + (−a1, a1 − a2)t,

y3(t) = (0, 0) + (a3 − a2, a1 − a2)t,

y4(t) = (ε,−3ε) + (−a1,−a3)t.

Here, ε is some small �xed constant used to shift the coordinate axes away from the

origin. The vector v1 is the projection vector given in column 2 of Table 3.1. The general

idea is as follows,

1. Using the paths of the punctures yi, �nd relative locations to determine if yi passes

above or below yj.

2. Express Push(yi(t)) of the yi path in terms of generators Push(ρi), Push(τi).

3. Calculate the intersection points of punctures (yi(t), yj(t)) at times (ti, tj). If ti > tj

then yi crosses over yj. If ti < tj then yj crosses over yi.

4. Use the crossings information to determine the order of Push(yi(t)) maps in the �nal

monodromy.

The procedure is best demonstrated through examples. As before, we drop the push

notation so that Push(ρ2)Push(τ1)−1Push(τ3) is simply denoted by ρ2τ
−1
1 τ3. We also use

function notation right to left so that the previous word indicates y3 travels along τ3 then y1
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along the inverse of τ1 then �nally y2 along ρ2. Homeomorphism type of the below examples

was con�rmed with SnapPea ([2]).

Toroidal Example 1. v1 = (−1,−1, 1)

The paths of the corresponding marked points are

y1(t) = (−4ε, 3ε) + (2,−1)t,

y2(t) = (−ε, 2ε) + (1, 0)t,

y3(t) = (0, 0) + (2, 0)t,

y4(t) = (ε,−3ε) + (1,−1)t.

Thus y2 and y3 travel in a parallel horizontal direction. y1 and y4 travel downwards and

to the right and so will intersect both y2 and y3. We �rst �nd these intersection times. We

illustrate the process for y1 and y3 and summarize the other points in Table 3.2. We need

times t1 and t3 so that y1(t1) = y3(t3). In other words, we seek a solution to the system

−4ε+ 2t1 = 2t3,

3ε− t1 = 0,

which gives (t1, t3) = (3ε, ε+ n
2
), n = 0, 1. Hence y1 and y3 intersect twice. The �rst time y1

passes over y3. Then at t3 = ε+ 1
2
, y3 crosses y1. At t2 = 5

8
ε+ 1

2
, y2 passes over y1. Similarly

solving the corresponding system for y2 and y3 yields (t2, t3) = (2
3
ε + n

2
, 1 − 1

3
ε), n = 0, 1.

Both y2 times occur before y3, hence we conclude y3 passes over y2 twice. The remaining

points of intersection are given in Table 3.2. The times speci�ed are the later of the two

crossing times and the points have been listed in order of intersection occurrence, from �rst

to last.

Pictured in Figure 3.1 are the paths of the yi drawn in the plane (up to identi�cation),
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Table 3.2: Toroidal Example 1 Intersections

Points Time Crossing
(y1, y3) 3ε y1 over y3

(y1, y3) ε+ 1
2

y3 over y1

(y2, y4) 1− 3ε y2 over y4

(y3, y4) 1− 3ε y4 over y3

(y1, y2) 1− ε y2 over y1

(y1, y4) 1− ε y1 over y4

(y3, y4) 1− ε y3 over y4

where we have decomposed the �diagonal� paths of y1 and y4 into a combination of basis

curves ρi and τi. To �nd the path of y1, for example, we must use its velocity vector (2,−1)

as well as the relative locations of y1 with respect to the start points of y2, y3, and y4. Given

that point y2 starts at (−ε, 2ε), we have y1(3
2
ε) = (−ε, 3

2
ε) and so y1 travels `below' the y2

start point. Similar computations show y1 travels above both the y3 and y4 start points.

As illustrated in Figure 3.1, the velocity vector (2,−1) suggests y1 has a path given by

τ−1
1 ρ−1

1 τ−1
1 . However the diagonal path homotopic to this combination will not preserve the

condition that y1 travels below the y2 start point. To remedy this situation, we must begin

the y1 monodromy with the loop C12. This curve travels counterclockwise from y1, enclosing

y2. Figure 3.2 illustrates the τ−1
1 C12 portion of the monodromy.

Figure 3.1: Example 1 Marked Point Paths

1
2
3
4

y4 is the only other diagonal path. We can easily check that it travels above the y1,

Figure 3.2: C12 Path in Example 1

1
2

1
2
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y2, and y3 start points. Hence its path is simply given by τ−1
4 ρ−1

4 , indicated by the (1,−1)

velocity vector.

Summarizing, the monodromies of the punctures are given by

y1(t) : τ−1
1 ρ−1

1 τ−1
1 C12 = τ−1

1 ρ−1
1 ρ−1

2 τ−1
1 ρ2,

y2(t) : τ−1
2 ,

y3(t) : τ−2
3 ,

y4(t) : τ−1
4 ρ−1

4 .

Now, we must determine the order of these individual monodromies in the �nal map. Using

the above formulas, it's clear y2(t) and y3(t) are parallel so their relative order to each other

in the �nal monodromy doesn't matter. From Table 1, we see every other point crosses over

y3 �rst, but then y3 crosses over y1 and y4 again later. Thus we should put one τ−1
3 at the

beginning of the monodromy and the other τ−1
3 at the end. Next, both y1 and y2 cross over

y4 so the y4 term should come next.

It only remains to determine the order of y1 and y2, which is given by Table 1 as y1 then

y2. Therefore our monodromy has the formula y3 ◦ y2 ◦ y1 ◦ y4 ◦ y3, where the �rst and last

y3 terms are each a τ−1
3 . This ordering gives 10 possible crossings, but y2 and y3 are parallel

and y3 appears twice. Hence the number reduces to 10 − 3 = 7, matching the occurrences

in Table 3.2.

Piecing all the arguments together shows the �nal monodromy is isotopic to

τ−1
3 τ−1

2 (τ−1
1 ρ−1

1 τ−1
1 C12)τ−1

4 ρ−1
4 τ−1

3 = τ−1
3 τ−1

2 (τ−1
1 ρ−1

1 ρ−1
2 τ−1

1 ρ2)τ−1
4 ρ−1

4 τ−1
3 .

Toroidal Example 2. v1 = (−1, 1, 1)
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The paths of the punctures are given by

y1(t) = (−4ε, 3ε) + (0,−1)t,

y2(t) = (−ε, 2ε) + (1,−2)t,

y3(t) = (0, 0) + (0,−2)t,

y4(t) = (ε,−3ε) + (1,−1)t.

Implementing the techniques from the previous example, we obtain the intersections in Table

3.3. There is only one non-trivial diagonal path, given by y2. Evaluating this path at the

appropriate times yields

y2(−3ε) = (−4ε, 8ε),

y2(ε) = (0, 0),

y2(2ε) = (ε,−2ε).

We see that y2 travels above y1 and y4 start points and through y3 at the origin. We note

at t = ε, y3(ε) = (0,−2ε) has traveled away from the origin and so y2(t) and y3(t) do not

actually collide. Thus, in between ρ−1
2 ρ−1

2 τ−1
2 , we must insert a loop traveling counterclock-

wise starting at y2 and enclosing y1. It turns out this curve is also homotopic to C12 (see

[1] for more discussion). By drawing a diagram similar to Figure 3.1 one can see the correct

placement should be ρ−1
2 C12ρ

−1
2 τ−1

2 . The paths of the other points are straightforward, given

by

y1 : ρ−1
1 ,

y2 : ρ−1
2 C12ρ

−1
2 τ−1

2 = ρ−1
2 τ1ρ

−1
2 τ−1

1 τ−1
2 ,

y3 : ρ−2
3 ,

y4 : τ−1
4 ρ−1

4 .
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The ordering for this example is similar to that of Example 1; this time we need to split

both of the paths y2 and y4 into two parts each. Notice from the individual monodromies

that y1 and y3 are parallel so their relative order doesn't matter. We proceed by considering

the remaining interactions separately. Since y1 passes under for all its crossings, it appears

�rst. Then y3 over y2 and y2 over y4 suggests the ordering y3 ◦ y2 ◦ y4. However, we need y4

to cross over y3 and this current arrangement does the opposite. Hence we must split the y4

monodromy into two components: y4 ◦ y3 ◦ y2 ◦ y4. Finally, if we leave y2 together, we will

have both y4 and y2 crossing over one another at di�erent times. Consequently, we also split

y2 for the ultimate ordering given by y2 ◦ y4 ◦ y3 ◦ y2 ◦ y4 ◦ y1. The �nal monodromy pieces

together as

y2 ◦ τ−1
4 ◦ ρ−2

3 ◦ y2 ◦ ρ−1
4 ◦ ρ−1

1 .

To reiterate, we are required to separate y2 such that the τ−1
4 does not intersect the �rst

term. This obstruction suggests the �rst y2 part is τ
−1
2 and the second term is the remaining

ρ−1
2 C12ρ

−1
2 . This construction yields the desired map

ρ−1
2 C12ρ

−1
2 τ−1

4 ρ−2
3 τ−1

2 ρ−1
4 ρ−1

1 .

Table 3.3: Toroidal Example 2 Intersections

Points Time Crossing
(y2, y4) 3ε y2 over y4

(y2, y3) 1
2

y3 over y2

(y1, y4) 1− 5ε y4 over y1

(y1, y2) 1− 3ε y2 over y1

(y3, y4) 1− ε y4 over y3
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3.3 Further Details on Fibration Construction

We now provide the details of setting up the �bration structure and converting monodromies

appropriately so that they can be entered into SnapPea ([2]). Let T3 denote the 3-torus. We

view it as the cube [0, 1]3 under the identi�cation (x, y, z) ∼ (x+ p, y + q, z + r) for integers

p, q, r. The axes i, j, k and their sum i + j + k form four lines in the cube L1, L2, L3, L4,

respectively. By choosing di�erent bases (v1, v2, v3) for the cube and displacing the four lines

we may �ber T3 − {L1, L2, L3, L4} in di�erent ways as follows. First we shift the four lines

from the origin by

L1 = (x,−ε, 3ε),

L2 = (ε, y,−3ε),

L3 = (−ε, ε, z),

L4 = (x = y = z).

Next we choose a basis v1 = (a1, a2, a3), v2 = (1, 1, 0), v3 = (0, 1, 1). Initially v1 may be

any vector which gives a non-zero determinant, speci�cally, a1 − a2 + a3 6= 0. For brevity,

let us denote A := det(v1, v2, v3) = a1 − a2 + a3. Choosing to �ber along v1, each �ber

has the form Σt = tv1 + αv2 + βv3 for t ∈ [0, 1]. Σt is T2 with four punctures denoted

x1(t), x2(t), x3(t), x4(t) coming from the respective lines Li. To verify that each line Li
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intersects the �ber exactly once we must solve the following system of equations:

L1 :

1 1

0 1


α
β

 =

−ε− ta2

3ε− ta3

 ,

L2 :

1 0

0 1


α
β

 =

 ε− ta1

−3ε− ta3

 ,

L3 :

1 0

1 1


α
β

 =

−ε− ta1

ε− ta2

 ,

L4 :

0 −1

1 −1


α
β

 =

t(a2 − a1)

t(a3 − a1)

 .

Solving these systems for the (α, β) coordinates of the marked points xi(t) yields

x1(t) = (−4ε, 3ε) + (a3 − a2,−a3)t,

x2(t) = (ε,−3ε) + (−a1,−a3)t,

x3(t) = (−ε, 2ε) + (−a1, a1 − a2)t,

x4(t) = (0, 0) + (a3 − a2, a1 − a2)t.

To align with the notation of [1], we relabel the points with respect to their �rst coordinate

position, in increasing order, as y1(t) = x1(t), y2(t) = x3(t), y3(t) = x4(t), y4(t) = x2(t).
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Under this new setting the formulas for the points become

y1(t) = (−4ε, 3ε) + (a3 − a2,−a3)t,

y2(t) = (−ε, 2ε) + (−a1, a1 − a2)t,

y3(t) = (0, 0) + (a3 − a2, a1 − a2)t,

y4(t) = (ε,−3ε) + (−a1,−a3)t.

Next we verify that none of the yi(t) intersect for any value of t. Notice y2 and y3 have

the same second component in the t variable but di�er by the ε-term constant so they will

never intersect. We can apply a similar argument to the pairs (y1, y3), (y1, y4), and (y2, y4).

Lastly, by considering the (separate) systems of equations y1(t) = y2(t) and y3(t) = y4(t),

one can easily see no solutions exist.

Let Σ1,4 be the 2−torus with four punctures and Mod(Σ1,4) its mapping class group

(which �xes the punctures setwise). Furthermore let PMod(Σ1,4) denote the pure mapping

class group, the set of mapping class elements �xing the punctures pointwise. We set

H1(Σ) = 〈a0, a1, a2, a3, b0〉, (3.1)

where ai is the homology curve between punctures i and i + 1 for i > 0 and a0 is between

marked point 1 and 4. b0 is the homology longitudinal curve, not enclosing any punctures.

These curves have algebraic intersection numbers ai · aj = 0 for i 6= j and ai · b0 = 1. [1]

introduces the following elements (pictured below) and show Dehn twists along them generate

the pure mapping class group. In our setting we have PMod(Σ1,4) = 〈Push(ρi),Push(τi)〉,

1 ≤ i ≤ 4. Here, Push(γ) is the point pushing map along γ. We also summarize some of
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the important relations to be used later:

[τi, τj] = [ρi, ρj] = 1,

Aij = ρiτ
−1
j ρ−1

i τj, Cij = τiρ
−1
j τ−1

i ρj,

for 1 ≤ i < j < k ≤ 4.

For a more in depth discussion and outline of a proof for these identities, see [1]. We note

Figure 3.3: Diagram of generators taken from [1]

that the formulas here di�er slightly from [1] as our choice of orientation is not the same.

Moreover, we use functional composition, (right to left) as opposed to algebraic. In order to

use SnapPea ([2]), we need to express Push(ρi) and Push(τi) in terms of Dehn twists along

the curves in (3.1). The trick is to use the following fact (4.7 proven in [4]), which states

Fact. Let α be a simple loop in a surface S representing an element of π1(S, x), Then

Push([α]) = TaT
−1
b , where a and b are isotopy classes of the simple closed curves in S − x

obtained by pushing α o� itself to the left and right, respectively.

That is, we take an annular neighborhood of α bounded by curves a and b and then take

the product of their Dehn and inverse Dehn twists, respectively. From this construction, we
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can immediately obtain that

Push(ρi) = Tai−1
T−1
ai
. (3.2)

For the τi curves we need to �nd an annular boundary to work with. We introduce the

longitudinal homology curves bi, which enclose the punctures 1, 2, · · · , i [�over� 1, 2, · · · , i

and �under� i+ 1, · · · , 4]. Thus b0 agrees with the previous homology generator introduced,

b1 passes over puncture 1 and misses 2,3,4, and so on. The point of introducing these curves

is that now τi has an annular neighborhood bounded by bi−1 and bi. By consulting the

diagrams to determine proper orientation it follows that

Push(τi) = TbiT
−1
bi−1

. (3.3)

Next we need to convert Equation 3.3 into Dehn twists only involving the homology

generators given in 3.1. First we observe that we may express [bi] = [a0] + [b0]− [ai], which

can be veri�ed by constructing the fundamental square for the torus with the relevant curves.

An example diagram in Figure 3.4 is given for the [b1] case. One can straightforwardly check

b1

a0

b0

−a1

Figure 3.4: Diagram for b1 Expression

that TaiTb0([a0]) = [a0] + [b0] − [ai] = [bi]. Fact 3.7 in [4] states Tf(a) = fTaf
−1, which we

can apply to our situation by setting a = a0 and f = TaiTb0 . This fact then yields

Tbi = TaiTb0Ta0T
−1
b0
T−1
ai
. (3.4)
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Finally, substituting formula 3.4 into equation 3.3 leads to our desired expression

Push(τi) = Tai−1
Tb0T

−1
a0
T−1
b0
T−1
ai−1

TaiTb0Ta0T
−1
b0
T−1
ai
. (3.5)

3.4 Another Example Using Graph Links

Here, we give another example of �brations of a 3-manifold giving inequivalent symplectic

structures on its associated (symplectic) 4-manifold S1 × Yf . Let M (2n) = S3\K(2n), where

K(2n) is the graph link pictured in Figure 3.5 below. The details of this diagram are given in

[19], where the third author showed the existence of n+ 1 inequivalent symplectic structures

coming from di�erent �brations of M (2n). A �bration of M (2n) is given by a choice of

K1 K2

H1 H2 H3 H2n

S1 S2 S3 S2n

1 1 1 1 1

3 3 3 3

1 1 1

Figure 3.5: Diagram of K(2n)

(m1,m2) ∈ H1(S3\K(2n)),Z) ∼= Z2 satisfying the equations

3im1 + 32n−i+1m2 6= 0, for all 1 ≤ i ≤ 2n.

Details for such a �bration (and graph link theory in general) are worked out in [3]. In

particular, let h denote the monodromy and h∗ the induced map on homology of the �ber.

[3, Theorem 13.6] shows there is an integer q such that (hq∗ − 1)2 = 0. Thus the Jordan

decomposition of h∗ only has blocks of size 1 or 2. Furthermore, with the same q, [3]

computes the characteristic polynomial of h∗|Im(hq∗−1), denoted ∆′(t). It turns out that the

roots of ∆′(t) correspond to the eigenvalues of h∗ with size 2 Jordan blocks. Moreover the

multiplicity of each root λi in ∆′(t) gives the number of size 2 blocks for λi.
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We �rst introduce some notation which will be used in the de�nition of ∆′(t). Fix a

�bration (m1,m2). Let E = {E1, · · · , E2n−1} be the set of edges connecting the white nodes

in Figure 3.5. Speci�cally, edge Ei connects nodes labeled Hi and Hi+1. For each Ei ∈ E , we

de�ne an integer dEi
as follows. Take the path in K(2n) from the arrowhead of K1 to halfway

through edge Ei (passing through nodes H1, H2, · · · , Hi). Let `Ei,1 denote the product of all

weights on edges not contained in the path but are adjacent to vertices in the path. Similarly

we can take the path from the arrowhead of K2 to halfway through edge Ei and de�ne `Ei,2

analogously. Set

dEi
= gcd(m1`Ei,1,m2`Ei,2).

Using Figure 3.5 as reference, we can easily compute that `Ei,1 = 3i and `Ei,2 = 32n−i. This

simpli�es the formula for dE to

dEi
= gcd(3im1, 3

2n−im2). (3.6)

For each vertex Hi, we de�ne an integer dVi by the formula

dVi =


gcd(dEi−1

, dEi
), 1 < i < 2n

gcd(m1, dE1), i = 1

gcd(m2, dE2n−1), i = 2n

(3.7)

With these de�nitions in place, the (restricted) characteristic polynomial takes the form

∆′(t) = (td − 1)
2n−1∏
i=1

(tdEi − 1)/
2n∏
i=1

(tdVi − 1),

where d = gcd(m1,m2). To obtain a more concrete equation, we analyze several �brations

of K(4). Figure 3.6 demonstrates how dE1 = gcd(3m1, 3
3m2) is calculated. In particular,

de�ne X(4) = S1 ×M (4) and let deg ∆′(t) denote the degree of the restricted characteristic

polynomial ∆′(t). Since deg ∆′(t) is the number of Jordan blocks of size 2, which equals the

42



K1 K2

H1 H2 H3 H4

S1 S2 S3 S4

3 3 3 3

Figure 3.6: Paths `E1,1 and `E1,2 of dE1

number of blocks of size at least 2, it follows

p+
2 = b2(X(4)) + 1 + deg ∆′(t),

p−2 = b2(X(4)) + deg ∆′(t).

In the case of a �bration represented by coprime (m1,m2), there are two possibilities: 3

divides exactly one of m1 or m2, or 3 neither divides m1 nor m2. It turns out p+
2 can

distinguish these two possibilities and in the �rst case provides information about the power

of 3 dividing m1 or m2. We give the exact statement below.

Theorem 3.4.1. Let (m1,m2) be coprime, representing a �bration of M (4). By reversing

the roles of m1 and m2 if necessary, we write m1 = 3kq with gcd(q, 3) = 1 and assume

gcd(3,m2) = 1. It follows that

p+
2 =



b2(X(4)) + 9, k = 0

b2(X(4)) + 7, k = 1

b2(X(4)) + 19, k = 2

b2(X(4)) + 1, k ≥ 3

Proof. We proceed by cases, treating k = 0 and k > 0 separately.

Case 3.4.1. (k > 0)
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Using formulas (3.6) and (3.7) we compute

dE1 = gcd(3k+1q, 33s) = min(3k+1, 33),

dE2 = gcd(3k+2q, 32s) = 32,

dE3 = gcd(33+kq, 3s) = 3,

dV1 = gcd(3kq,min(3k+1, 33)) = min(3k, 33),

dV2 = gcd(min(3k+1, 33), 32) = min(3k+1, 32) = 32,

dV3 = gcd(32, 3) = 3,

dV4 = gcd(s, 3) = 1.

from which it follows

∆′(t) =
(t− 1)(t3 − 1)(t9 − 1)(tmin(3k+1,33) − 1)

(t− 1)(t3 − 1)(tmin(3k,33) − 1)(t9 − 1)

=
t3

2 min(3k−1,3) − 1

t3 min(3k−1,32) − 1

=


t6 + t3 + 1, k = 1

t18 + t9 + 1, k = 2

1, k ≥ 3

Case 3.4.2. gcd(m1,m2) = gcd(m1, 3) = gcd(m2, 3) = 1. Applying a similar analysis as in
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Case 1 shows

dE1 = gcd(3, 33) = 3,

dE2 = gcd(32, 32) = 32,

dE3 = gcd(33, 3) = 3,

dV1 = gcd(m1, 3) = 1,

dV2 = gcd(3, 32) = 3,

dV3 = gcd(32, 3) = 3,

dV4 = gcd(3,m2) = 1,

∆′(t) =
(t− 1)(t3 − 1)2(t9 − 1)

(t− 1)2(t3 − 1)2

=
t9 − 1

t− 1
= (t2 + t+ 1)(t6 + t3 + 1)

Using the formula for p+
2 and deg ∆′(t) for each k from the above cases produces the

claimed dimensions.

We conclude with some remarks. Theorem 3.4.1 uses K(4) as a matter of explicitness for

factoring ∆(t) and ∆′(t). One could also consider other K(2n) to reach similar conclusions.
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Chapter 4

Examples of the m2-Structure and

Symplectic Massey Products

In this chapter, we analyze the A3-structure on primitive forms of X = S1×Yf for a mapping

torus Yf . We compute the ring structure of H∗(X) and work out some classical Massey

products. Then, we move on to PH∗(X,ω) and show how its product reveals information

about the Jordan blocks of the monodromy f ∗ − 1. We also construct a 3-fold and 4-fold

symplectic Massey product. Unless otherwise stated, in this chapter, we reserve the notation

X for the 4-manifold S1 × Yf and M for a general symplectic manifold.

4.1 Ring Structure and Massey Products on H∗(X)

We begin this section by calculating ∧ : H∗(X) × H∗(X) → H∗(X) explicitly. For conve-

nience, we restate the de Rham cohomology of X below. Note, if the �ber of Yf is closed

then H3(Yf ) = 〈dt∧dπ∧ωΣ〉. Otherwise, H3(Yf ) = 0. We keep the same notation as before,
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where xi,0 ∈ ker(f ∗ − 1) is in a Jordan block of size ni + 1.

H1(X) = 〈dt, dπ, xi,0〉ki=1,

H2(X) = 〈dπ ∧ xi,ni
〉ki=1 ⊕ 〈dt ∧ dπ, dt ∧ xi,0〉ki=1,

H3(X) = 〈dt ∧ dπ ∧ xi,ni
〉ki=1 ⊕H3(Yf ),

H4(X) = 〈dt〉 ∧H3(Yf ).

Below we give some of the important (non-zero) entries of the ring structure on H∗(X).

H1(X) ∧H1(X)→ H2(X):

H1(X) H1(X) H2(X)

dt
dπ dt ∧ dπ

xi,0 dt ∧ xi,0

xi,0 xj,0 dπ ∧ F (xi,0, xj,0)

dπ xi,0
dπ ∧ xi,0, ni = 0

0, ni > 0

where F : Ω1(Yf ) ⊗ Ω1(Yf ) → Ω1(Yf ) is the map determined by the wedge product on Yf .

One possible trivial product from the table above is given by dπ with an element xi,0 in a

Jordan block of size greater than one. This combination will lead to an important Massey

product determining the size of the block that xi,0 comes from.
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H1(X) ∧H2(X)→ H3(X):

H1(X) H2(X) H3(X)

dt dπ ∧ xi,ni
dt ∧ dπ ∧ xi,ni

dπ dt ∧ xi,0
−dt ∧ dπ ∧ xi,0, ni = 0

0, ni > 0

xi,0 dt ∧ xj,0 −dt ∧ dπ ∧ F (xi,0, xj,0)

We see that the standard product on H∗(X) can tell if a Jordan block is of size 1 or

greater than 1, but in the latter case does not provide any more information on the size. For

this further re�nement, we turn to a more specialized product.

Suppose x0 is in a Jordan block J = {x0, x1, · · · , x`}. As elements of H1(Yf ), the (xk)

satisfy the formula (see [15])

dxk = dπ ∧
k∑
j=1

(−1)j+1

j
xk−j, k = 0, 1, · · · , `. (4.1)

For concreteness, let us consider the case where ` = 2. Then 〈dπ, dπ, x0〉 is de�ned since

dπ∧dπ = 0 and dπ∧x0 = dx1. Using this de�ning system yields dπ∧x1 as a representative for

this 3-point Massey product. However this (and any other) representative is trivial in H2(X)

since the formula dx2 = dπ ∧ (x1 − 1
2
x0) implies dπ ∧ x1 = d(x2 + 1

2
x1). Hence, we can turn

to the 4-point Massey 〈dπ, dπ, dπ, xi,0〉 since 〈dπ, dπ, dπ〉 = 0 and 〈dπ, dπ, x0〉 = d(x2 + 1
2
x1)

are both trivial. Computing this product gives a representative cohomologous to dπ ∧ x2

which is non-trivial in H2(X) since x2 corresponds to the last vector in the Jordan basis.

Thus it took a Massey product with three dπ terms to achieve a non-trivial representative.

This motivating example leads to the following proposition.

Proposition 4.1.1. For a general Jordan block of length `+1, the Massey product 〈dπ, · · · , dπ, xi,0〉

with the �rst `+ 1 terms consisting of all dπ, is de�ned. Furthermore, it has a (non-trivial)

representative [dπ ∧ x`].
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Proof. A de�ning system (aij) will be quite sparse since any (n < `+1)-fold Massey product

not including the last term (x0) will look like 〈dπ, · · · , dπ〉 and so has representative 0.

Speci�cally, this means ai,j = 0 for 1 ≤ i 6= j < ` + 2. The only non-zero terms will be

the diagonal ones and ai,`+2 which satisfy dai,`+2 = 〈dπ, dπ, · · · , dπ, x0〉, the (` + 3− i)-fold

Massey product with (`+ 2− i) dπ terms. At this point, our de�ning system looks like,



dπ 0 . . . 0 ∗

0 dπ . . . 0 a2,`+2

...
...

. . .
...

...

0 0 . . . dπ a`+1,`+2

0 0 . . . 0 x0


.

We work backwards, using equation (4.1), to compute the ai,`+2 by the de�ning equations,

da`+1,`+2 = dπ ∧ x0 = dx1,

da`,`+2 = 〈dπ, dπ, x0〉 = dπ ∧ x1 = d(x2 +
1

2
x1),

da`−1,`+2 = 〈dπ, dπ, dπ, x0〉 = dπ ∧ x2 = d(x3 +
1

2
x2 −

1

12
x1),

...

da2,`+2 = 〈dπ, dπ, · · · , dπ, x0〉 = dπ ∧ x`−1 = d(x` +
1

2
x`−1 −

1

12
x`−2 +

3

8
x`−3 + · · · ).

Plugging this system into the Massey product formula yields,

〈dπ, dπ, · · · , dπ, x0〉 = [a11 ∧ a2,`+2 + a12 ∧ a3,`+2 + · · · a1,`+1 ∧ a`+2,`+2]

= [dπ ∧ (x` +
1

2
x`−1 −

1

12
x`−2 +

3

8
x`−3 + · · · )]

= [dπ ∧ x`] + [dπ ∧ (
1

2
x`−1 −

1

12
x`−2 +

3

8
x`−3 + · · · )]

= [dπ ∧ x`],
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where the last equality follows from the fact that dπ ∧ xk is exact for all 0 < k < `.

Remark 4.1.1. After completing this proposition, the author later found a more general

argument made by Pajitnov, where certain Massey products are computed to count lengths

of Jordan blocks from cohomology and twisted cohomology. See [9] and [10] for such detail.

4.2 Primitive Cohomology and Explicit Generators

Next, we explore the product m2 on PH∗(X,ω), where X = S1 × Yf and ω = dt ∧ dφ+ dα.

To do so, we �rst construct explicit primitive forms that represent the isomorphisms in

Theorem 1.3.1. From this point on, we use the notation consistent with [15]. Let each

[γi,0] ∈ ker(f ∗ − 1 : H1(Σ) → H1(Σ)) ⊂ PH1(X) be in a Jordan block {γi,0, γi,1, · · · , γi,`i}.

Then, there is some function gi,0 on Σ such that f ∗(γi,0) = γi,0 + dgi,0. Let χ be a cuto�

function on a neighborhood of [0, 1] which is 0 near 0 and 1 near 1. De�ne the 1-form on

γ̃i,0 ∈ Ω∗(Σ× [0, 1]) by

γ̃i,0(x, t) = γi,0(x) + d(χ(t)gi,0(x)) = γi,0(x) + χ(t)dgi,0(x) + χ′(t)gi,0(x)dt.

Then f ∗(γ̃i,0) = γi,0(x) + dgi,0(x) +χ(t)f ∗(dgi,0(x)) +χ′(t)f ∗(gi,0(x))dt. Let N0 = (−ε, ε) and

N1 = (1− ε, 1 + ε) be small neighborhoods of 0 and 1, respectively. It follows that

f ∗(γ̃i,0)|t∈N0
= γi,0(x) + dgi,0(x) = γ̃i,0(x)|t∈N1

and so γ̃i,0 descends to a global one-form on Yf . We still denote by γ̃i,0 this one-form but

use the coordinate dφ instead of dt. In a similar manner, we can construct global forms γ̃i,k

for each k = 1, 2, · · · , `i (of course, these won't be d-closed, in general). Consult [15] for this

construction.

Letting k = dim ker(f ∗ − 1), we have PH+
1 (X) = 〈dt, dφ, γ̃1,0, · · · , γ̃k,0〉 for each γi,0 ∈

ker(f ∗ − 1). Moving on to PH2
+(X), we have one-forms 〈dt, dφ〉 which need primitive two-
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form representatives which are ∂+∂−-closed. Since [ωΣ] ∈ H2(Yf ) is trivial, there is some

α ∈ Ω1(Yf ) such that ωΣ = dα. Consider the element dφ ∧ α. Then ω ∧ (dφ ∧ α) =

ωΣ ∧ dφ ∧ α = 0, since it is a 4-form on Yf . Moreover d(dφ ∧ α) = −dφ ∧ ωΣ = −dφ ∧ ω.

Therefore ∂−(dφ ∧ α) = −dφ and it follows that ∂+∂−(dφ ∧ α) = −∂+(dφ) = 0. Thus dφ

corresponds to the explicit primitive element dφ ∧ α in PH2
+(X).

We claim dt corresponds to the element dt ∧ α − 1
2
ω ∧ Λ(dt ∧ α). To see this element is

primitive, recall the sl(2) identity [Λ, L] = H. Hence for a 0-form B0,

Λ(ω ∧B0)− ω ∧ Λ(B0) = Λ(ω ∧B0) = 2B0.

In particular Λ(ω) = 2. Similarly, for a 1-form B1,

Λ(ω ∧B1)− ω ∧ Λ(B1) = Λ(ω ∧B1) = B1.

It now follows immediately that Λ(dt∧α− 1
2
ω ∧Λ(dt∧α)) = Λ(dt∧α)−Λ(dt∧α) = 0 and

so indeed the described element is primitive. It remains to show this element is ∂+∂−-closed.

To do so, we use the fact that ∂+∂− acting on primitive 2-forms takes the form dΛd (see [18]

for a proof). Thus

dB2 := d(dt ∧ α− 1

2
ω ∧ Λ(dt ∧ α))

= −dt ∧ dα− 1

2
ω ∧ dΛ(dt ∧ α)

= ω ∧ (−dt− 1

2
dΛ(dt ∧ α))

ΛdB2 = −dt− 1

2
dΛ(dt ∧ α),

and taking d of the expression in the last equality clearly results in 0.

We summarize the generators in the table below. For the elements listed, but not dis-

cussed above, we refer the reader to [15].
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Table 4.1: PH∗+(X) Elements

k dim PHk
+(X) Generators for PHk

+(X)
0 1 1
1 b1(X) dt, dφ, γ̃i,0, i = 1, · · · , k
2 1 + b2(X) + ν2(X) dφ∧ γ̃i,`i , `i+1 size of corresponding Jordan block,

dt ∧ γ̃i,0 − d(χ′µi,0),
dφ ∧ α,
dt ∧ α− 1

2
ω ∧ Λ(dt ∧ α),

dt ∧ γ̃i,1 + χ′dφ ∧ µi,0 − d(χ′µi,1 + χ′(φ− 1)µi,0).

Table 4.2: PH∗−(X) Elements

k dim PHk
−(X) Generators for PHk

−(X)
0 0 ∅
1 b3(X) γ̃i,`i
2 b2(X) + ν2(X) dφ ∧ γ̃i,`i ,

dt ∧ γ̃i,0 − d(χ′µi,0),
dt ∧ dφ− ωΣ,

dφ ∧
∑`k

j=1
(−1)j+1

j
γ̃k,`k−j, for each `k > 0.

4.3 Primitive Massey Products

Fix a symplectic manifold (M,ω). We introduce a Massey product on PH∗(M,ω), denoted

〈·, ·, ·〉s. Motivated by the classic framework, suppose we have m1-closed primitive forms

a1, a2, a3 such that

a1 × a2 = m1(a12), (4.2)

a2 × a3 = m1(a23). (4.3)

If we attempt to mimic the classic Massey product by a12×a3−(−1)|a1|a1×a23, unfortunately

we have

m1(a12 × a3 − (−1)|a1|a1 × a23) = (a1 × a2)× a3 − a1 × (a2 × a3) 6= 0.
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But by the A∞-relations, we know this associator term equals −m1m3(a1, a2, a3) (since the

ai are m1-closed). Thus we can add a correction term, leading to the following de�nition.

De�nition 4.3.1 (primitive Massey product). Let a1, a2, a3 be m1-closed primitive forms

of degrees k1, k2, k3, satisfying equations (4.2) and (4.3). The degree −1 primitive Massey

product is given by

〈a1, a2, a3〉s = a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3).

As in the de Rham cohomology case, this product will have indeterminacy and therefore

be a subset of elements in PHk1+k2+k3−1(M). Like before, we can choose a representative in

the quotient PHk1+k2+k3−1(M)/(a1×PHk2+k3−1 +PHk1+k2−1×a3). Moreover, the de�nition

of 〈a1, a2, a3〉s only depends on the primitive cohomology classes [a1], [a2], [a3].

Proposition 4.3.1. The primitive Massey product 〈a1, a2, a3〉s is independent of each coho-

mology representative of [ai].

Proof. By linearity of the product, it su�ces to verify the three cases

1. 〈a1 +m1B, a2, a3〉s = 〈a1, a2, a3〉s,

2. 〈a1, a2 +m1B, a3〉s = 〈a1, a2, a3〉s,

3. 〈a1, a2, a3 +m1B〉s = 〈a1, a2, a3〉s,

where B is a primitive form of appropriate degree. For 1., suppose we have

a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3) ∈ 〈a1, a2, a3〉s.
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Then (a1 +m1B)× a2 = m1(a12 +B × a2) and it follows that

(a12 +B × a2)× a3 − (−1)|a1|(a1 +m1B)× a23 +m3(a1 +m1B, a2, a3) (4.4)

=
(
a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3)

)
(4.5)

+ (B × a2)× a3 − (−1)|a1|m1B × a23 +m3(m1B, a2, a3) (4.6)

is a representative of 〈a1 +m1B, a2, a3〉s. Using the Leibniz rule on m1 we have that

m1(B × a23) = m1B × a23 + (−1)|a1|−1B × (a2 × a3)

and so equation (4.6) becomes,

(B × a2)× a3 −B × (a2 × a3)− (−1)|a1|m1(B × a23) +m3(m1B, a2, a3)

= −m1m3(B, a2, a3)−m3(m1B, a2, a3)− (−1)|a1|m1(B × a23) +m3(m1B, a2, a3)

= −m1

[
m3(B, a2, a3) + (−1)|a1|B × a23

]
.

The second equality follows from the m3-relation and the fact that the ai are m1-closed. This

shows 〈a1, a2, a3〉 ⊆ 〈a1 + m1B, a2, a3〉, since varying a1 by an m1-exact term only changes

the representative by an m1-exact term. By reversibility of the argument, we see the other

inclusion follows similarly.

For 2., again suppose a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3) ∈ 〈a1, a2, a3〉s. Then

a1 × (a2 +m1B) = m1(a12 + (−1)|a1|a1 ×B),

(a2 +m1B)× a3 = m1(a23 +B × a3).
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This construction yields

(a12 + (−1)|a1|a1 ×B)× a3 − (−1)|a1|a1 × (a23 +B × a3) +m3(a1, a2 +m1B, a3)

(4.7)

= (a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3)) (4.8)

+ (−1)|a1|(a1 ×B)× a3 − (−1)|a1|a1 × (B × a3) +m3(a1,m1B, a3) (4.9)

as a representative of 〈a1, a2 + m1B, a3〉s. Using the fact that a1 and a3 are m1-closed, the

m3- relation on a1 ⊗B ⊗ a3 says that

a1 × (B × a3)− (a1 ×B)× a3 = m1m3(a1, B, a3) + (−1)|a1|m3(a1,m1B, a3).

Applying this equality to term (4.9), we obtain

= −m1m3(a1, B, a3)−m3(a1,m1B, a3) +m3(a1,m1B, a3)

= −m1m3(a1, B, a3).

This establishes the inclusion 〈a1, a2, a3〉s ⊆ 〈a1, a2 + m1B, a3〉 and the reverse follows from

symmetry. Finally, 3. follows the same argument as in case 1., after taking into account our

sign convention.

4.3.1 Higher Primitive Massey Products

Next, we extend the 3-fold primitive Massey product to a 4-fold product. To do so, however,

requires some additional setup compared to the 3-fold product. Like in the previous case,
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let [a1], [a2], [a3], [a4] ∈ PH∗(M,ω) such that

a1 × a2 = m1a12, (4.10)

a2 × a3 = m1a23, (4.11)

a3 × a4 = m1a34 (4.12)

for some choice of representatives a1, a2, a3, a4 and a12, a23, a34. Additionally, we will require

that the two 3-fold products 〈[a1], [a2], [a3]〉s and 〈[a2], [a3], [a4]〉s contain the cohomology

element 0 in a compatible way. That is, choose representatives

x = a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3), (4.13)

y = a23 × a4 − (−1)|a2|a2 × a34 +m3(a2, a3, a4), (4.14)

of 〈[a1], [a2], [a3]〉s and 〈[a2], [a3], [a4]〉s, respectively. We de�ne (〈[a1], [a2], [a3]〉s, 〈[a2], [a3], [a4]〉s)

to be the tuple of cohomology elements ([x], [y]) that can be constructed in this way. The

point is that the Massey product representatives in this set come from the same elements

aij. Then our second requirement, the simultaneous vanishing of triple Massey products, is

given by the exactness of equations (4.13) and (4.14). Thus, there also exist forms c123 and

c234 so that

x = m1c123, (4.15)

y = m1c234. (4.16)

The forms aij and cijk provide the de�ning system for the 4-fold Massey product introduced

below.

De�nition 4.3.2. Let a1, a2, a3, a4, a12, a23, a34, c123, c234 be chosen to satisfy equations (4.10)-

(4.16). We de�ne the 4-fold primitive Massey product 〈a1, a2, a3, a4〉s to be the set of all
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representatives of the form

z = c123×a4−(−1)|a12|a12×a34+a1×c234+m3(a12, a3, a4)−(−1)|a1|m3(a1, a23, a4)+(−1)|a1|+|a2|m3(a1, a2, a34).

Proposition 4.3.2. The Massey product introduced in De�nition 4.3.2 is m1-closed, and so

descends to a representative in PH∗(M,ω).

Proof. To prove this claim, we investigate m1 of the two parts of z separately; the terms

involving m3, and those not. We begin by calculating m1 of the �rst three terms of z in

De�nition 4.3.2,

m1(c123 × a4 − (−1)|a12|a12 × a34 + a1 × c234)

=(a12 × a3 − (−1)|a1|a1 × a23 +m3(a1, a2, a3))× a4

− (−1)|a12|(a1 × a2)× a34 − a12 × (a3 × a4)

+ (−1)|a1|a1 × (a23 × a4 − (−1)|a2|a2 × a34 +m3(a2, a3, a4))

= ((a12 × a3)× a4 − a12 × (a3 × a4)) (4.17)

+ (−1)|a1| (a1 × (a23 × a4)− (a1 × a23)× a4) (4.18)

+ (−1)|a1|+|a2| ((a1 × a2)× a34 − a1 × (a2 × a34)) (4.19)

+m3(a1, a2, a3)× a4 + (−1)|a1|a1 ×m3(a2, a3, a4). (4.20)

Using the m3-relation, we can transform each of the terms in lines (4.17)-(4.19) into expres-
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sions involving m1 and m3 to get

−m1m3(a12, a3, a4)−m3(a1 × a2, a3, a4)

− (−1)|a1|+|a2|m1m3(a1, a2, a34)−m3(a1, a2, a3 × a4)

+ (−1)|a1|m1m3(a1, a23, a4) +m3(a1, a2 × a3, a4)

+m3(a1, a2, a3)× a4 + (−1)|a1|a1 ×m3(a2, a3, a4).

Now, adding m1 of the remaining three terms in z to the above sum leaves only

−m3(a1 × a2, a3, a4)−m3(a1, a2, a3 × a4) +m3(a1, a2 × a3, a4)

+m3(a1, a2, a3)× a4 + (−1)|a1|a1 ×m3(a2, a3, a4).

However, using the fact that m4 = 0 and the ai are m1-closed, the above expression is

precisely the m4-relation equaling zero. Thus, z is closed under m1 and de�nes a class in

PH∗(M,ω).

We note that, with some work, one can generalize the methods of sections 4.3 to primitive

Massey products of any length. Moreover, we remark that the calculations in this section

are not unique to PH∗(M), and in fact extend to any A3-algebra.

4.4 Sphere Bundle Perspective

In [13], Tanaka and Tseng show the existence of a circle bundle E over any symplec-

tic manifold (M,ω) such that (Ω∗(E), d,∧) is quasi-isomorphic to (P∗(M),m1,m2,m3).

Consequently, H∗(E) ∼= PH∗(M). Moreover, the provide an explicit quasi-isomorphism

(fn) : Ω∗(E) → P∗(M) with fi = 0 for i ≥ 3. We won't go into the details, but the
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important properties of the (f1, f2) are

f1(dA) = m1f1(A), (4.21)

f1(a ∧ b) = f1(a)× f1(b) +m1f2(a, b) + f2(da, b) + (−1)|a|f2(a, db), (4.22)

f2(a ∧ b, c)− f2(a, b ∧ c) = m3(f1(a), f1(b), f1(c)) + (−1)|a|f1(a)× f2(b, c)− f2(a, b)× f1(c).

(4.23)

In particular, when a and b are d-closed, identity 4.22 implies [f1(a∧ b)] = [f1(a)× f1(b)], so

that to study the product structure on PH∗(M,ω), it su�ces to evaluate the (usual) wedge

product on H∗(E). Furthermore, f1 also preserves Massey products, so that a Massey

product on H∗(E) is sent to a (primitive) Massey product on PH∗(M,ω). We prove this

statement before proceeding.

Lemma 4.4.1. Let 〈[a1], [a2], [a3]〉 ∈ H∗(E). Then f1(〈[a1], [a2], [a3]〉) ∈ 〈[f1(a1)], [f1(a2)], [f1(a3)]〉s.

Proof. Suppose a1 ∧ a2 = da12 and a2 ∧ a3 = da23. Applying identities (4.21) and (4.22) to

these equations yield

m1f1(a12) = f1(a1)× f1(a2) +m1f2(a1, a2),

m1f1(a23) = f1(a2)× f1(a3) +m1f2(a2, a3),

=⇒ f1(a1)× f1(a2) = m1(f1(a12)− f2(a1, a2)),

f1(a2)× f1(a3) = m1(f1(a23)− f2(a2, a3)).

Then using the appropriate identities (4.21)-(4.23), a representative of 〈f1(a1), f1(a2), f1(a3)〉s

59



is given by

(f1(a12)− f2(a1, a2))× f1(a3)− (−1)|a1|f1(a1)× (f1(a23)− f2(a2, a3)) +m3(f1(a1), f1(a2), f1(a3))

=f1(a12)× f1(a3)− (−1)|a1|f1(a1)× f1(a23) +m3(f1(a1), f1(a2), f1(a3))

− f2(a1, a2)× f1(a3) + (−1)|a1|f1(a1)× f2(a2, a3)

=f1(a12)× f1(a3)− (−1)|a1|f1(a1)× f1(a23) + f2(a1 ∧ a2, a3)− f2(a1, a2 ∧ a3)

− (−1)|a1|f1(a1)× f2(a2, a3) + f2(a1, a2)× f1(a3)− f2(a1, a2)× f1(a3) + (−1)|a1|f1(a1)× f2(a2, a3)

=f1(a12)× f1(a3)− (−1)|a1|f1(a1)× f1(a23) + f2(a1 ∧ a2, a3)− f2(a1, a2 ∧ a3).

On the other hand, using identity (4.22),

f1(a12 ∧ a3 − (−1)|a1|a1 ∧ a23)

=f1(a12)× f1(a3) +m1f2(a12, a3) + f2(a1 ∧ a2, a3)− (−1)|a1|f1(a1)× f1(a23)

− (−1)|a1|m1f2(a1, a23)− f2(a1, a2 ∧ a3).

Thus, the two representatives of f1(〈a1, a2, a3〉) and 〈f1(a1), f1(a2), f1(a3)〉s only di�er by an

m1-exact term and so are equal in PH∗(M,ω).

With the necessary propositions established, we can (justi�ably) move forward in com-

puting the product and Massey structures on PH∗(X,ω) through the aid of H∗(E). We let

θ denote the connection 1-form on E, which satis�es the property dθ = ω.

We summarize the de Rham cohomology of E5 for X = S1 × Yf with an open �ber. As

explained above, these groups are isomorphic to PH∗(X) and so the generators below should

be reminiscent of those given in Section 4.2
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k Generators for Hk(E)

0 1

1 dt, dφ, γ̃i,0

2 dφ ∧ γ̃i,`i , dt ∧ γ̃i,0, dφ ∧ (θ − α), dt ∧ (θ − α),

θ ∧ γ̃i,0 + dt ∧ γ̃i,1 + χ′dφ ∧ µi,0

3 dφ∧γ̃i,`i∧θ, (dt∧γ̃i,0−d(χ′µi,0))∧θ, dt∧dφ∧(θ−α),

θ ∧ dγ̃i,`i

4 dt ∧ dφ ∧ γ̃i,`i ∧ θ

5 ∅

Next, we compute the wedge product structure on H∗(E) for most of the non-trivial

pairings. Before beginning, we cover some useful observations in the computations to follow.

Lemma 4.4.2. The following identities hold in H∗(E) for X = S1 × Yf ,

[θ ∧ dγ̃i,k] =

 0, k < `i

[dt ∧ dφ ∧ γ̃i,k] , k = `i

(4.24)

[dφ ∧ γ̃i,`i ∧ (θ − α)] = [dφ ∧ γ̃i,`i ∧ θ]. (4.25)

Proof. We begin with observation (4.24). First, notice

d(θ ∧ γ̃i,k) = ω ∧ γ̃i,k − θ ∧ dγ̃i,k,

which implies

[ω ∧ γ̃i,k] = [θ ∧ dγ̃i,k].
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Furthermore,

ωΣ ∧ γ̃i,k = ωΣ ∧

(
k∑
j=0

fj(φ)γi,k−j + fj(φ− 1)(χdgi,k−j + gi,k−jχ
′dφ)

)

=
k∑
j=0

χ′fj(φ− 1)gi,k−jdφ ∧ ωΣ

=
k∑
j=0

d(χ′f(φ− 1)µi,k−j ∧ dφ) := dUi,k,

Ui,k =
k∑
j=0

χ′f(φ− 1)µi,k−j ∧ dφ.

Combining the above two computations shows [θ ∧ dγ̃i,k] = [ω ∧ γ̃i,k] = [dt ∧ dφ ∧ γ̃i,k].

Moreover, if k < `i, dφ ∧ γ̃i,k is d−exact. In particular, for a Jordan block of size at least

three {γi,0, γi,1, γi,2, · · · } we have

dt ∧ dφ ∧ γ̃i,0 = d(−dt ∧ γ̃i,1),

dt ∧ dφ ∧ γ̃i,1 = d(−dt ∧ (γ̃i,2 +
1

2
γ̃i,1)).

Turning to (4.25), we expand

dφ ∧ γ̃i,`i ∧ (θ − α)− dφ ∧ γ̃i,`i ∧ θ = dφ ∧ γ̃i,`i ∧ α

= dφ ∧

(
`i∑
j=0

fj(φ)γ`i−j + fj(φ− 1)χ(φ)dgi,`i−j

)
∧ α

= dφ ∧
`i∑
j=0

fj(φ)dA`i−j + fj(φ− 1)χ(φ)dBi,`i−j

= d

(
−dφ ∧

`i∑
j=0

fj(φ)A`i−j + fj(φ− 1)χ(φ)Bi,`i−j

)
,

where in the third line we have used the fact that α∧γi,k and α∧dgi,k are exact in Ω2(Σ).

Theorem 4.4.1. For the symplectic manifold X = S1 × Yf with open �ber and symplectic

62



form ω = dt ∧ dφ + dα, the m2-structure on PH∗(X,ω) is summarized in Tables 4.3 - 4.6

below, in terms of the wedge product on H∗(E).

H1(E) H1(E) H2(E)

dt

dt [0]

dφ [0]

γ̃i,0 dt ∧ γ̃i,0

dφ
dφ [0]

γ̃i,0

 [dφ ∧ γ̃i,0] , `i = 0

[0] , `i > 0

γ̃i,0 γ̃j,0 [dφ ∧ F (γi,0, γj,0)]

Table 4.3: H1(E) ∧H1(E)→ H2(E)

H1(E) H2(E) H3(E)

dt

dφ ∧ γ̃i,`i θ ∧ dγ̃i,`i

dt ∧ γ̃i,0 [0]

dφ ∧ (θ − α) dt ∧ dφ ∧ (θ − α)

dt ∧ (θ − α) [0]

θ∧ γ̃i,0 +dt∧ γ̃i,1 +χ′dφ∧µi,0 −[(dt ∧ γ̃i,0 − d(χ′µi,0)) ∧ θ]

dφ

dφ ∧ γ̃i,`i [0]

dt ∧ γ̃i,0 [0]

dφ ∧ (θ − α) [0]

dt ∧ (θ − α) −[dt ∧ dφ ∧ (θ − α)]

θ∧ γ̃i,0 +dt∧ γ̃i,1 +χ′dφ∧µi,0

 − [2θ ∧ dγ̃i,1] , `i = 1

[0] , `i > 1

γ̃i,0

dφ ∧ γ̃i,`i [0]

dt ∧ γ̃j,0 [0]
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dφ ∧ (θ − α)


−[dφ ∧ γ̃i,0 ∧ (θ − α)], `i = 0

−[dt ∧ dφ ∧ γ̃i,1], `i = 1

[0] , `i > 1

dt ∧ (θ − α) −[(dt ∧ γ̃i,0 − d(χ′µi,0)) ∧ θ]

Table 4.4: H1(E) ∧H2(E)→ H3(E)

H1(E) H3(E) H4(E)

dt

dφ ∧ γ̃i,`i ∧ θ [dt ∧ dφ ∧ γ̃i,`i ∧ θ]

(dt ∧ γ̃i,0 − d(χ′µi,0)) ∧ θ [0]

dt ∧ dφ ∧ (θ − α) [0]

θ ∧ dγ̃i,`i [0]

dφ

dφ ∧ γ̃i,`i ∧ θ [0]

(dt ∧ γ̃i,0 − d(χ′µi,0)) ∧ θ

 −[dt ∧ dφ ∧ γ̃i,0 ∧ θ], `i = 0

[0] , `i > 0

dt ∧ dφ ∧ (θ − α) [0]

θ ∧ dγ̃i,`i [0]

γ̃i,0

dφ ∧ γ̃j,`j ∧ θ [0]

(dt ∧ γ̃j,0 − d(χ′µj,0)) ∧ θ −[dt ∧ dφ ∧ f̃(γi,0, γj,0) ∧ θ]

dt ∧ dφ ∧ (θ − α)

 [dt ∧ dφ ∧ γ̃i,0 ∧ θ], `i = 0

[0] , `i > 0

θ ∧ dγ̃j,`j [0]

Table 4.5: H1(E) ∧H3(E)→ H4(E)

H2(E) H2(E) H4(E)

dφ ∧ γ̃i,`i

dφ ∧ γ̃j,`j [0]

dt ∧ γ̃j,0 [0]
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dφ ∧ (θ − α) [0]

dt ∧ (θ − α) [dt ∧ dφ ∧ γ̃j,`j ∧ θ]

θ∧ γ̃j,0 +dt∧ γ̃j,1 +χ′dφ∧µj,0 [0]

dt ∧ γ̃i,0

dt ∧ γ̃j,0 [0]

dφ ∧ (θ − α)

 −[dt ∧ dφ ∧ γ̃i,0 ∧ θ], `i = 0

[0] , `i > 0

dt ∧ (θ − α) [0]

θ∧ γ̃j,0 +dt∧ γ̃j,1 +χ′dφ∧µj,0 −[dt ∧ dφ ∧ f(γi,0, γj,0) ∧ θ]

dφ ∧ (θ − α)
dφ ∧ (θ − α) [0]

dt ∧ (θ − α) [0]

θ∧ γ̃i,0 +dt∧ γ̃i,1 +χ′dφ∧µi,0

 [−dt ∧ dφ ∧ γ̃i,1 ∧ θ], `i = 1

[0] , `i > 1

dt ∧ (θ − α)
dt ∧ (θ − α) [0]

θ∧ γ̃i,0 +dt∧ γ̃i,1 +χ′dφ∧µi,0 [0]

Table 4.6: H2(E) ∧H2(E)→ H4(E)

Proof. Many of these computations are quite long and tedious. We provide the proof of only

a few below.

γ̃i,0 ∧ (dφ ∧ γ̃j,`j ∧ θ) = [0] :

Using Lemma 4.4.2,

γ̃i,0 ∧ (dφ ∧ γ̃j,`j ∧ θ) = −dφ ∧ γ̃i,0 ∧ γ̃j,`j ∧ θ

= d

dφ ∧ θ ∧ `j∑
k=0

fk(φ)Ai,j,k − fk(φ− 1)χgj,`j−kγi,0 + fk(φ)χgi,0γj,`j

 ,
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where the last equality follows since

ω ∧ dφ ∧
`j∑
k=0

fk(φ)Ai,j,k − fk(φ− 1)χgj,`j−kγi,0 + fk(φ)χgi,0γj,`j = 0.

dt ∧ (θ − α) ∧ (θ ∧ γ̃i,0 + dt ∧ γ̃i,1 + χ′dφ ∧ µi,0) = [0] :

dt ∧ (θ − α) ∧ (θ ∧ γ̃i,0 + dt ∧ γ̃i,1 + χ′dφ ∧ µi,0) = −dt ∧ α ∧ θ ∧ γ̃i,0 + dt ∧ (θ − α) ∧ χ′dφ ∧ µi,0

= −dt ∧ α ∧ θ ∧ γ̃i,0 + d(χdt ∧ (θ − α) ∧ µi,0)− χgi,0dt ∧ (θ − α) ∧ dα

= d(χdt ∧ (θ − α) ∧ µi,0)− dt ∧ (α ∧ θ ∧ γ̃i,0 + χgi,0θ ∧ dα)

= d(χdt ∧ (θ − α) ∧ µi,0)− dt ∧ (α ∧ θ ∧ γ̃i,0 + d(χgi,0) ∧ θ ∧ α + χgi,0dt ∧ dφ ∧ α− d(χgi,0θ ∧ α))

= d(χdt ∧ (θ − α) ∧ µi,0 − χgi,0dt ∧ θ ∧ α)− dt ∧ (α ∧ θ ∧ γ̃i,0 + d(χgi,0) ∧ θ ∧ α)

= d(χdt ∧ (θ − α) ∧ µi,0 − χgi,0dt ∧ θ ∧ α)− dt ∧ α ∧ θ ∧ γi,0

= d(χdt ∧ (θ − α) ∧ µi,0 − χgi,0dt ∧ θ ∧ α− dt ∧ Ai ∧ θ),

where we have written α ∧ γ̃i,0 = dAi.

γ̃i,0 ∧ dφ ∧ (θ − α) :

We note that if `i = 0 then by Lemma 4.4.2, H3(E) contains the non-trivial element

[dφ ∧ γ̃i,0 ∧ θ] = [dφ ∧ γ̃i,0 ∧ (θ − α)].

Otherwise, if `i ≥ 1, again Lemma 4.4.2 gives us

[γ̃i,0 ∧ dφ ∧ (θ − α)] = [γ̃i,0 ∧ dφ ∧ θ] = −[dφ ∧ γ̃i,0 ∧ θ] = −[dγ̃i,1 ∧ θ]
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By considering whether `i = 1 or `i > 1 on the above equality, the result follows.

By recalling `i = 0 is Jordan block of size 1, `i = 1 is a Jordan block of size 2, and `i > 1

is a Jordan block of size at least 3, we obtain the following important corollary.

Corollary 4.4.1. Let X = S1×Yf and ω = dt∧dφ+dα. The m2-structure × on PH2(X,ω)

can determine whether the Jordan blocks of f ∗ − 1 are of size 1,2, or at least 3.

We remark that, in terms of Jordan block size, the structure on PH∗(X,ω) is `one step

ahead' of the structure onH∗(X); the dimension of PH∗(X) determines size 2 blocks whereas

the wedge product on H∗(X) does so. Similarly, the × product on PH∗(X) determines size 3

or greater Jordan blocks whereas Massey products onH∗(X) are needed for such conclusions.

Following this line of reasoning, we can also show that a block size of exactly 3 is determined

by a 3-fold Massey product on H∗(E). By Lemma 4.4.1, this 3-fold product corresponds

to a 3-fold primitive product on PH∗(X). To determine such a block size on H∗(X) would

require a 4-fold Massey product.

Proposition 4.4.1. If `i = 3, then 〈dφ, γ̃i,0, dφ ∧ (θ − α)〉 = −3[θ ∧ dγ̃i,2] 6= 0.

Proof. We may write dφ ∧ γ̃i,0 = dγ̃i,1. Moreover,

d(γ̃i,1 ∧ (θ − α)) = dγ̃i,1 ∧ (θ − α)− γ̃i,1 ∧ dt ∧ dφ

= dγ̃i,1 ∧ (θ − α)− dt ∧ (dφ ∧ γ̃i,1)

= dγ̃i,1 ∧ (θ − α) + d(dt ∧ (γ̃i,2 +
1

2
γ̃i,1)).

Hence,

γ̃i,0 ∧ dφ ∧ (θ − α) = −dγ̃i,1 ∧ (θ − α) = d

(
dt ∧ (γ̃i,2 +

1

2
γ̃i,1)− γ̃i,1 ∧ (θ − α)

)
.

(4.26)
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Therefore, a representative of 〈dφ, γ̃i,0, dφ ∧ (θ − α)〉 is given by

[dφ ∧ dt ∧ (γ̃i,2 +
1

2
γ̃i,1)− dφ ∧ γ̃i,1 ∧ (θ − α) + γ̃i,1 ∧ dφ ∧ (θ − α)]

= [−dt ∧ dφ ∧ γ̃i,2 −
1

2
dt ∧ dφ ∧ γ̃i,1 − 2dφ ∧ γ̃i,1 ∧ (θ − α)]

= [−dt ∧ dφ ∧ γ̃i,2 − 2d(γ̃i,2 +
1

2
γ̃i,1) ∧ (θ − α) +

1

2
d(dt ∧ (γ̃i,2 +

1

2
γ̃i,1))]

= −[dt ∧ dφ ∧ γ̃i,2 + 2d(γ̃i,2 +
1

2
γ̃i,1) ∧ (θ − α)]

= −[dt ∧ dφ ∧ γ̃i,2 + 2d(γ̃i,2) ∧ (θ − α)],

where the last equality follows from the previous calculation, in equation (4.26), showing

dγ̃i,1 ∧ (θ − α) is exact. To �nish, we use the fact that dγ̃i,2 ∧ α is exact and apply Lemma

4.4.2 to the last line above, to yield the Massey product representative

−[dt ∧ dφ ∧ γ̃i,2 + 2d(γ̃i,2) ∧ (θ − α)] = −3[θ ∧ dγ̃i,2].

4.5 Twisted Primitive Cohomology

Recall that given a manifold M and its D.G.A. of di�erential forms, (Ω∗(M), d,∧) we may

de�ne a new twisted map d̃ = d+α∧ : Ω∗(M)→ Ω∗+1(M)⊕Ω∗+k(M), for a �xed α ∈ Ωk(M).

It is natural to ask, when is d̃ also a di�erential? We must ensure (d̃)2 = 0. If we require α

is of odd degree then (d̃)2 = 0 precisely when dα = 0. Indeed,

(d̃)2 = d2 + d(α∧) + α ∧ d+ α ∧ (α∧)

= dα ∧+(−1)|α|α ∧ d+ α ∧ d+ α ∧ (α∧)

= dα ∧ −α ∧ d+ α ∧ d+ (α ∧ α)∧

= dα∧ = 0 ⇐⇒ dα = 0.
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Consequently, if α is such that d̃ is again a di�erential we de�ne the twisted de Rham

cohomology H∗(M, d̃) = H∗(Ω∗(M), d̃). Using this situation as motivation, we wish to de�ne

a twisted primitive di�erential and cohomology. However, unlike above, m2 is no longer

associative and so our twisted di�erential will have to involve all the maps m1,m2,m3. The

following conditions involving α and the (mi) will guarantee the map squares to zero.

Proposition 4.5.1. Let α ∈ Pk(M) be of odd degree and m1-closed. De�ne

m̃1 = m1 +m2(α⊗ 1)−m3(α⊗ α⊗ 1).

Then (m̃1)2 = 0.

Proof. To compute (m̃1)2, we recall the following A∞-identities, simpli�ed to our algebra

(P ∗(M),m1,×,m3).

[Leibniz Rule] m1m2 = m2(m1 ⊗ 1 + 1⊗m1),

[m3 Identity] m2(1⊗m2 −m2 ⊗ 1) = m1m3 +m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1),

[m4 Identity] m3(1⊗2 ⊗m2)−m3(1⊗m2 ⊗ 1)−m2(1⊗m3) +m3(m2 ⊗ 1⊗2)−m2(m3 ⊗ 1) = 0,

[m5 Identity] m3(1⊗2 ⊗m3) +m3(1⊗m3 ⊗ 1)−m3(m3 ⊗ 1⊗2) = 0.

Moreover in the P∗(M2n) A∞-algebra, for α an odd element we claim m2(α, α) = 0 =

m3(α, α, α). The �rst equality follows immediately from the graded commutativity of m2

combined with the fact |α| is odd. For the second equality, we apply the de�nition of m3

directly:

m3(α, α, α) =

 0, 3|α| < n+ 2

Π0 ∗r [α ∧ L−1(α ∧ α)− L−1(α ∧ α) ∧ α] , 3|α| ≥ n+ 2

By graded commutativity of the wedge product and the fact that |α| is odd, this quantity

will always vanish. Using these two properties as well as the A∞-identities listed above, we
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compute:

(m̃1)2 = m2
1 +m1m2(α⊗ 1)−m1m3(α⊗ α⊗ 1) +m2(α⊗m1) +m2(α⊗m2(α⊗ 1))

−m2(α⊗m3(α⊗ α⊗ 1))−m3(α⊗ α⊗m1)−m3(α⊗ α⊗m2(α⊗ 1))

+m3(α⊗ α⊗m3(α⊗ α⊗ 1))

=m2(m1α⊗ 1) + (−1)|α|m2(α⊗m1) +m2(α⊗m1) +m3((m1α)⊗ α⊗ 1)

+ (−1)|α|m3(α⊗ (m1α)⊗ 1) +m2(m2(α⊗ α)⊗ 1)−m3(α⊗m2(α⊗ α)⊗ 1)

− (−1)|α|m2(α⊗m3(α⊗ α⊗ 1)) +m3(m2(α⊗ α)⊗ α⊗ 1)−m2(m3(α⊗ α⊗ α)⊗ 1)

−m2(α⊗m3(α⊗ α⊗ 1)) +m3(m3(α⊗ α⊗ α)⊗ α⊗ 1)

− (−1)|α|m3(α⊗m3(α⊗ α⊗ α)⊗ 1).

=m2((m1α)⊗ 1) +m3((m1α)⊗ α⊗ 1)−m3(α⊗ (m1α)⊗ 1) = 0.

De�nition 4.5.1. Let α ∈ P ∗(M) satisfy the conditions of Proposition 4.5.1. We de�ne the

twisted primitive cohomology PH∗(M, m̃1) := H∗(P∗(M), m̃1).

If α ∈ PH1
+(M) then it follows that α ∈ H1(M) as well. Hence both PH∗(M, m̃1) and

H∗(M, d̃) are de�ned and one may wonder if there is a relationship between the two. Thus

we construct twisted versions of L and Π0. For α ∈ PH1
+(M) de�ne

Lα :H∗(M, d̃)→ H∗(M, d̃)

[Ak] 7→ [ω ∧ Ak]
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This map is well-de�ned since d̃Ak = 0 = dAk + α ∧ Ak and so

d̃(ω ∧ Ak) = d(ω ∧ Ak) + α ∧ (ω ∧ Ak)

= ω ∧ dAK + ω ∧ (α ∧ AK)

= ω ∧ (dAk + α ∧ Ak)

= ω ∧ d̃Ak = 0.

Proposition 4.5.2. The map Π0 : Hk(M, d̃)→ PHk
+(M, m̃1) given by Π0([Ak]) = [Π0(Ak)]

is well-de�ned for all k ≤ n.

Proof. Let Ak be d̃-closed and Ak = Bk + ω ∧ Bk−2 + ω2 ∧ Bk−4 + · · · denote its Lefschetz

decomposition. We must show Bk is m̃1-closed. Consider �rst the case of k < n.

m̃1Bk = ∂+Bk + Π0(α ∧Bk),

dAk = ∂+BK + ω ∧ (∂−Bk + dBk−2 + · · · ),

α ∧ Ak = α ∧Bk + ω ∧ (α ∧Bk−2 + · · · ),

d̃Ak = 0 =⇒ ∂+(Bk) + Π0(α ∧Bk) = 0 = m̃1Bk

Finally, we handle the case k = n.

m̃1Bn = −∂+∂−Bn − Π0
[
dL−1(α ∧Bn) + α ∧ L−1(dBn) + α ∧ L−1(α ∧Bn)

]
(4.27)

dAn + α ∧ An = 0 = α ∧ An + ω ∧ (∂−Bn + ∂+Bn−2) + ω2 ∧ (∂−Bn−2 + ∂+Bn−4) + · · ·

(4.28)

Focusing on equation (4.28), we expand α ∧ An = α ∧ Bn + ω ∧ (α ∧ Bn−2) + · · · . Write

α ∧ Bn = ω ∧ B′n−1 + ω2 ∧ B′n−3 + · · · . Then by primitivity conditions on Bn and B′i

it follows that ω ∧ (α ∧ Bn) = 0 = ω3 ∧ B′n−3 + ω4 ∧ B′n−5 + · · · . Thus we conclude

α∧Bn = ω∧B′n−1 = ω∧L−1(α∧Bn). This observation allows us to rewrite equation (4.28)
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as

0 = ω ∧ (∂−Bn + ∂+Bn−2 + L−1(α ∧Bn) + Π0(α ∧Bn−2)) + · · ·

and so

∂−Bn + ∂+Bn−2 + L−1(α ∧Bn) + Π0(α ∧Bn−2) = 0.

Taking ∂+ of this equation shows ∂+∂−Bn+∂+L
−1(α∧Bn)+∂+Π0(α∧Bn−2) = 0. Moreover,

by degree considerations and the Leibniz rule for m2, we have

∂+Π0(α ∧Bn−2) = ∂+(α×Bn−2) = −α× ∂+Bn−2

Hence,

−∂+∂−Bn = ∂+L
−1(α ∧Bn)− α× ∂+Bn−2,

∂+Bn−2 = −(∂−Bn + L−1(α ∧Bn) + α×Bn−2).

Plugging these into equation (4.27) yields

m̃1Bn = ∂+L
−1(α ∧Bn)− α× ∂+Bn−2 − Π0

[
dL−1(α ∧Bn) + α ∧ L−1(dBn) + α ∧ L−1(α ∧Bn)

]
= −α× ∂+Bn−2 − Π0

[
α ∧ L−1(dBn) + α ∧ L−1(α ∧Bn)

]
= −Π0

[
α ∧ ∂+Bn−2 + α ∧ ∂−Bn + α ∧ L−1(α ∧Bn)

]
= −Π0

[
−α ∧ (∂−Bn + L−1(α ∧Bn) + α×Bn−2) + α ∧ ∂−Bn + α ∧ L−1(α ∧Bn)

]
= Π0(α ∧ (α×Bn)) = α× (α×Bn) = 0,

where the second to last equality follows from the fact that by degree considerations, α ×

(α×Bn) = (α× α)×Bn = 0.
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