UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Efficient formulation of the stochastic simulation algorithm for chemically reacting systems

Permalink
https://escholarship.org/uc/item/27i1s730

Journal
Journal of Chemical Physics, 121(9)

ISSN
0021-9606

Authors

Cao, Y
Li, H
Petzold, L

Publication Date
2004-09-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/27j1s73p
https://escholarship.org
http://www.cdlib.org/

Efficient Formulation of the Stochastic Simulation
Algorithm for Chemically Reacting Systems *

Yang Cao T Hong Li * Linda Petzold ¥
June 8, 2004

Abstract

In this paper we examine the different formulations of Gillespie’s stochastic simulation
algorithm (SSA) [J. Phys. Chem., 81:2340, (1977)] with respect to computational efficiency,
and propose an optimization to improve the efficiency of the direct method. Based on careful
timing studies and an analysis of the time-consuming operations, we conclude that for most
practical problems the optimized direct method is the most efficient formulation of SSA. This
is in contrast to the widely held belief that Gibson and Bruck’s next reaction method [J. Phys.
Chem. A, 104:1876, (2000)] is the best way to implement the SSA for large systems. Our

analysis explains the source of the discrepancy.

*This work was supported by the California Institute of Technology under DARPA Award No. F30602-
01-2-0558, by the U. S. Department of Energy under DOE award No. DE-FG03-00ER25430, by the National
Science Foundation under NSF award CTS-0205584, and by the Institute for Collaborative Biotechnologies
through grant DAAD19-03-D-0004 from the U. S. Army Research Office.

tDepartment of Computer Science, University of California Santa Barbara. CA 93106. email:
ycao@cs.ucsb.edu.

iDepartment of Electrical and Computer Engineering, University of California Santa Barbara, Santa
Barbara, CA 93106. hongli@engineering.ucsb.edu

$Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA 93106.
petzold@engineering.ucsb.edu

1 Introduction

The time evolution of a spatially homogeneous system of chemically reacting molecules is
traditionally calculated by solving a set of coupled ordinary differential equations. This
method is based on the deterministic formulation of chemical kinetics, in which the reaction
constants are viewed as "rates” and the species concentrations are represented by continuous
functions of time. Although the deterministic formulation is adequate in most cases, it does
not reflect the stochastic nature of the system, which has been shown to be important in
many biological systems. In particular, when there are some species with very few copy num-
bers in living cells, including DNA and important regulatory molecules, stochastic effects
may account for cell to cell variation and play crucial roles in biological processes.! Nu-
merical methods which can capture the correct stochasticity of the system are then needed.
Gillespie’s stochastic simulation algorithm (SSA)*% is a numerical simulation procedure that
is essentially exact for spatially homogeneous or well stirred chemical systems. The SSA is
considered exact because it is rigorously based on the same microphysical principles that
underly the chemical master equation (CME). There are also inexact stochastic simulation
algorithms®” that generate approximate trajectories. Our interest in this paper is only in
exact methods.

The SSA is a Monte Carlo type method. With the SSA, one may approximate any
variable of interest by generating many trajectories and observing the statistics of the values
of the variable. Since many trajectories are needed to obtain a reasonable approximation, the
efficiency of the SSA is of critical importance. Gillespie developed two different but equivalent
formulations of the SSA: the Direct Method (DM) and the First Reaction Method (FRM).
A third formulation of the SSA was given by the Next Reaction Method (NRM) of Gibson
and Bruck.® The NRM can be viewed as an extension of the FRM, but it is much more
efficient than the latter. Based on a count of arithmetic operations, it is widely believed to
be more efficient than the Direct Method for large systems.®

In this paper we present a detailed analysis of the computational costs of the three formu-
lations: DM, FRM and NRM, focusing on the differences between the DM and the NRM. In
our experiments with different biochemical models, we have observed that even with the best
data structure, the NRM is less efficient than the DM except for a very specialized class of
problems. A similar observation has also been reported by Markus Schwehm:? ”A profiling
of the algorithm (NRM) has revealed that the simulator engine spends most of its execution
time for maintaining the priority queue of the tentative reaction times.” Our analysis ex-
plains these observations. Based on the analysis, and motivated by an idea used in NRM,
we propose a strategy to improve the efficiency of the Direct Method. The new Optimized
Direct Method (ODM) is, to the best of our knowledge, the most efficient formulation of the
SSA.

This paper is organized as follows. In Section 2 we briefly review the SSA and its three
different formulations, and outline a model of the heat shock response of E. Coli that will
be used in our numerical experiments. Section 3 presents a detailed timing study for the
DM and the NRM, based on the numerical results of three test problems. Section 4 gives a
computational cost analysis and comparison for DM and NRM. In Section 5, we introduce
the ODM and present some numerical results which illustrate its efficiency.

2 Background

In this section we briefly review the three formulations of SSA: Direct, First Reaction and
Next Reaction, and describe the Heat Shock Response (HSR) model that will be used in
some of the numerical experiments.

2.1 Stochastic Simulation Algorithm

Suppose the system involves N molecular species {Si, ..., Sy}, represented by the state
vector X (t) = (X1(t), ..., Xn(t)), where X;(¢) is the number of molecules of species S; at
time t. M reaction channels {Ry, ..., Ry} are involved in the system. Assume the system is
well-stirred and in thermal equilibrium. The dynamics of reaction channel R; is characterized
by the propensity function a; and by the state change vector v; = (v, ...,vn;): a;(x)dt gives
the probability that, given X (¢) = z, one R, reaction will occur in the next infinitesimal
time interval [t,t + dt), and v;; gives the change in the population of S; induced by one R;
reaction.
The dynamics of the system obeys the chemical master equation (CME)*5

M
OP (. 020 10) _ S0 (o — 1) Pla — v, thao o) — a3(@)P(a tlaorto)], (1)
ot 2

where the function P(x,t|zq,ty) denotes the probability that X (¢) will be z, given that
X(ty) = o. The CME is hard to solve both theoretically and numerically except for very
simple systems. In practice, simulation methods are used. The SSA*® is a well-known
stochastic simulation method which is rigorously equivalent to the CME. Starting from the
initial states, the SSA simulates the trajectory by repeatedly answering the following two
questions and updating the states:

e When (time 7) will the next reaction fire?

e Which (reaction channel index p) reaction will fire next?

The distributions of 7 and p are formulated to answer the two questions. Let
M
a0(X) = a;(X). (2)
7=1

The time 7, given X (t) = z, that the reaction will fire at ¢+, is the exponentially distributed
random variable with mean —

ao(z)
P(7 = 5) = ao(z) exp(—ao(z)s), (3)
and the index p of that firing reaction is the integer random variable with probability
NI
Ply=1q)= 21", 4
(n=17) = @ (4)

In each step, the SSA generates random numbers and calculates 7 and p according to the
probability distributions (3) and (4). Three different but stochastically equivalent formula-
tions for SSA are proposed as follows.

2.2 Direct Method

On each step, the Direct Method generates two random numbers 7, and 7o in U(0,1) (the
set of uniformly distributed random numbers in the interval (0,1)). The time for the next
reaction to occur is given by ¢ + 7, where 7 is given by

r=aw = () ®)

The index p of the occurring reaction is given by the smallest integer satisfying

Z a; (t) > TaQy (t) (6)

The system states are updated by X (¢ + 7) = X(¢) + v,. Then the simulation proceeds to
the next occurring time.

Algorithm Direct Method
1. Initialization (Set the initial numbers of molecules. Set t = 0).
2. Calculate the propensity functions a;, (i =1, ..., M) and ay from (2).
3. Generate two random numbers vy and o in U(0,1).
4. Calculate T according to (5).

5. Search for p as the smallest integer satisfying (6).

R

Update the states of the species to reflect execution of reaction . Sett «t+ 7.
7. Go to step 2.

2.3 First Reaction Method

The First Reaction method generates a 7, for each reaction channel Rj according to

= —log <i> k=1, M), (7)

ak () Tk
where rq,...,rp are M statistically independent samplings of U(0,1). Then 7 and p are
chosen as

7 =min{r, ..., Tar }, (8)
and
p = the index of min{rm, ..., 7a}. 9)

Algorithm First Reaction Method

1. Initialization (Set the initial numbers of molecules. Set t = 0).
2. Calculate the propensity functions a;, (i =1, ..., M).

3. Generate M independent random numbers from U(0,1).

4. Generate the time 7;, (i =1, ..., M) according to (7).

5. Find 7 and p according to (8) and (9).

6. Update the states of the species to reflect execution of reaction pu. Sett < t+ 7.
7. Go to step 2.

The Direct and the First Reaction methods are fully equivalent to each other®® although
they look different. The random pairs (7,) generated by both methods follow the same
distribution. The First Reaction Method discards M — 1 unused reaction times in (8). Thus
it is much less efficient than the Direct Method.

2.4 Next Reaction Method

Gibson and Bruck® cleverly transformed the First Reaction Method into an equivalent but
more efficient new scheme. The Next Reaction method is significantly faster than the First
Reaction method. It is widely believed® to be more efficient than the Direct method when
the system involves many species and loosely coupled reaction channels.

The Next Reaction method can be viewed as an extension of the First Reaction method
in which the M — 1 unused reaction times (8) are suitably modified for reuse. Clever data
storage structures are employed to efficiently find 7 and p. The following algorithm describes
the Next Reaction method (see reference® for details).

Algorithm Next Reaction Method
1. Inttialize:
(a) set initial numbers of molecules, set t <— 0, generate a dependency graph G
(b) calculate the propensity functions a;, for all i;
(c) for each i, generate a putative time 7;, according to an exponential distribution with
parameter a;;
(d) store the 7; values in an indexed priority queue P .

2. Let p1 be the reaction whose putative time 7, stored in the P, is least. Set T < 7.

3. Update the states of the species to reflect execution of reaction . Sett < 7.
4. For each edge (u,) in the dependency graph G

(a) update ay;

(b) if a« # u, set

To £ (aa,old/aa,new)(Ta - t) +t. (10)

(c) if o = u, generate a random number r and compute 1, according to an equation

similar to (5)

1 1
Ty = log (—) + . (11)
r

o (t)

(d) replace the old 1, value in P with the new value.
5. Go to step 2.

Two data structures are used in this method:

e The dependency graph defined in reference® is a data structure that tells precisely which

a; should change when a given reaction is executed. Each reaction channel is denoted as
a node in the graph. A directed edge connects R; to R; if and only if the execution of
R; affects the reactants in R;. One can use the dependency graph to recalculate only the
minimal number of propensity functions in step 4.

e The indexed priority queue (also known as a heap tree in computer science) consists of
a tree structure of ordered pairs of the form (i, 7;), where i is the reaction channel index
and 7; is the corresponding time when the next R; reaction is expected to occur, and
an index structure whose ith element points to the position in the tree which contains
(,7;). In the tree, each parent has a smaller 7 than either of its children. Note that the
minimum 7 always stays in the top node and the order is only wvertical. In each step,
the update changes the value of the node and then bubbles it up or down according to
its value to obtain the new priority queue. Theoretically, this procedure takes at most
log(M) operations. In practice, usually there are a few reactions that occur much more
frequently. Thus, the actual update takes less than log(M) operations.

We note that it takes some CPU time to maintain the two data structures. For a small
system, this cost dominates the simulation. For a large system, the cost of maintaining the
data structures may be relatively smaller compared with the savings.

The argument for the advantage of the NRM over the DM is based primarily on two
observations: First, in each step, the NRM generates only one uniform random number
while the Direct Method requires two. Second, the search for the index u of the next reaction
channel takes O(M) time for the Direct Method, while the corresponding cost for the Next
Reaction method is on the update of the indexed priority queue which is O(log(M)).

6

2.5 Heat Shock Response Model

In this paper we use a model of the heat shock response (HSR) of E. Coli!®!! as an example
problem to test the different SSA formulations. The HSR system describes the mechanism of
how the bacteria E. Coli responds to a temperature increase. When exposed to temperatures
high enough to induce the denaturing (unfolding) of its constituent proteins, the E. Coli bac-
terium derives some measure of protection from an elaborate heat shock response mechanism.
One of several important components of this mechanism is the heat shock sigma factor, oss.
Elevated temperatures in the bacterium cause o33 to be produced through transcription and
translation at a very rapid rate. A free o3, molecule can bind to RNA polymerase (RNAP),
and the resultant complex 032:RNAP initiates the transcription of genes that encode a variety
of chaperone enzymes. These chaperons take care of denatured proteins, either by refolding
them or else by degrading them so that they will not cause problems by aggregating. But
a newly produced o3, molecule is usually much more likely to be promptly sequestered by
DNAK, one of those chaperone enzymes, an occurrence that precludes its binding to RNAP.
The details of the deterministic model for the HSR system can be found in Ref.!® and a
stochastic version was discussed in Ref.!! In our stochastic model, 28 species participate in
61 chemical reactions.

3 Timing Studies for Direct Method and Next Reac-

tion Method

Since the FRM is obviously much less efficient than the other two formulations, we will
concentrate on an analysis of DM and NRM. Both DM and NRM need to calculate the
propensities, generate random numbers, find the next occurring time 7 and channel index p
and update the system states. The major difference between them is the way they generate
7 and p. To generate 7, the Direct Method computes a random number 7 and sums all
the propensities to obtain ag. Then 7 is obtained from (5). The Next Reaction Method
generates a set of 7,’s. For the just-fired reaction channel, it generates a random number
to calculate the 7, from (11) (step 4(c) in the NRM algorithm). For the other reaction
channels, it calculates 7, according to (10) (step 4(b)). To obtain p, the Direct Method
generates another random number ry and searches for p satisfying (6). The Next Reaction
Method directly takes the index of the root node in the tree structure as y. But it needs to
update the nodes in the heap to maintain the order of the indexed priority queue. Table 1
shows the major differences between the two methods.

The cost for the Direct Method in Table 1 consists of five items: the cost C), for calculating
all the M propensities, the cost C,, for calculating the summation ag of all the propensities,
the cost 2 * Cpqng for generating two random numbers, the cost C, for calculating 7 from (5)
and the cost C; for searching the index p. We can express it as

CDM =2x Crand + Cao + C»r + Cs + Cp + Cresta (12)

where Cpjs denotes the average cost of the Direct Method and C,.,; denotes all the other
costs that both the DM and NRM methods have to spend.
The cost for the Next Reaction Method can be similarly formulated as

CVNRM = Crand + CT + Cp’ + Ca + Cheap + Cg + Crest7 (13)

where Cyras denotes the average cost of the Next Reaction Method, C); denotes the cost for
calculating the propensities changed by the last reaction, C, denotes the cost to compute
T from (10), Cheqp denotes the cost to update and maintain the heap tree, and C, denotes
the extra cost for the dependency graph in the calculation of the propensities. C). and Cl.cs
have the same meaning as in (12). Note that although the formula (11) is different from (5),
the computational costs of them are almost the same. Thus we can use C; in (13).

NRM has an advantage when the system is of large size and loosely-coupled, or in other
words, if the firing of one reaction does not affect many other reactions. Gibson and Bruck®
did not specify how loosely-coupled the system should be to show the advantage of NRM.
For the practical problems we have tried, NRM is usually less efficient than DM. In the
following we present the timing results when applying DM and NRM to three test problems.
One is the heat shock model described in Section 2.5. The other two examples are designed
to illustrate the potential advantage of NRM. The simulations were performed on a 1.4Ghz
Pentium IV Linux workstation.

Example 3.1 The HSR model
In the simulation of the HSR model, the average simulation time for the DM is 86.8
seconds per SSA simulation. The average simulation time for the NRM 1is 170./ seconds.

We list the detailed time costs for one simulation in Table 2.

For the HSR model, the cost to maintain the data structure in NRM is large (60%).
Thus this example does not show the advantage of NRM. Unfortunately for many practical
problems, the data structure cost is very large when applying NRM. The following two test
models were constructed to illustrate the situation where NRM is most advantageous.

Example 3.2 Linear Chain System

This model contains M chain reactions with M + 1 species as follows:

51—)82—)...—)Sn, (14)

where n = M + 1. The propensity functions are uniform: a;(X) = c¢X;, where ¢ = 1. The

initial state is x1(0) = 10,000, z;(0) = 0, i = 2,...,601. We take M = 600, and the final

time T = 30.

For this model, each reaction channel affects at most two reaction channels. Compared
with the total number of reactions, this system is very loosely-coupled. Thus the NRM should
have a great advantage over DM. In our simulations, the average simulation time for DM
was 2.13 seconds, while the average simulation time for NRM was 1.07 seconds. The CPU
time for NRM is about half of that of the DM. Table 3 shows the detailed CPU costs for one
simulation. Because now the cost for updating the heap tree is reduced, the cost percentage

due to the data structure is not as bad as in the HSR model.

Example 3.3 A Totally Independent System

This model contains 600 independent decaying processes as follows:
Si—)m, i=1,...,n, (15)

where n = 600. The propensity functions are uniform: a;(X) = c¢X;, where ¢ = 1. The
initial states are z;(0) = 1,000 fori=1,...,600. The final time T = 30.

For this model, each reaction channel affects itself only. It is the most loosely-coupled
system possible. In our simulations, the average simulation time for DM was 5.39 seconds,
while the average simulation time for NRM was 2.63 seconds. Again, NRM is faster than

DM. Table 4 shows the detailed CPU costs for each part.

4 Computational Cost Analysis for the Direct Method

and the Next Reaction Method

In this section we present a detailed analysis of the computational costs of DM and NRM
which explains the results of our timing studies. We begin by introducing the following

9

definitions.

4.1 Definitions

Definition 4.1 Average Search Depth S is the average number of operations it takes to

obtain p according to equation (6) in the Direct Method.

Obviously, S varies depending on the problem. For each step in the Direct Method, the search
procedure is actually the summation of a; (see (6)). To find p, p ADDs and COMPARESs
are needed. The search depth in each step is exactly the index of the firing reaction. Thus
in practice, we use the following formula to measure S

> ik
Zi ki
where k; is the number of firing times of the ith reaction during a simulation.
In theory, if the firing times k; are of the same magnitude for all the reaction channels, the
average search depth S of the DM is about % But in practice the firing times for different

reaction channels have a multiscale property. For many systems, a very few reactions fire
much more frequently than others. S is different from % for those systems.

Definition 4.2 Average Weighted Degree D is the average degree for the dependency
graph of a system. It is also the average number of reactions affected by one occurring

reaction.

The Next Reaction Method generates the dependency graph before it simulates a system. It
is easy to calculate the degree of each node (reaction channel) in the graph. Thus in practice,
the average weighted degree can be measured by

D= %dkk (17)

where d; is the degree for the ith node, or in other words, the number of reactions affected
by the ith reaction, and k; is the number of times the ith reaction fires during a simulation.

Definition 4.3 Update Depth U is the average number of operations needed to update

the heap tree for the changed 1,’s in the NRM.

10

There are two major steps in the update of the heap tree. First, we need to update the
7, for the affected reactions. Second, we need to move the nodes in the heap to maintain
the priority order. In each step, if d reactions are affected by the firing reaction channel, at
least d operations need to be done to update the corresponding 7’s. To maintain the priority
order of the heap tree, at most log(M) moves are needed for each node. Thus we have the
following inequality

D < U < Dlog(M). (18)

In practice, because of the multiscale nature of the system, some reactions fire much more
frequently than others. Those reaction channels stay around the root of the heap array.
Thus very few moves are needed for each step. U is much less than Dlog(M) and is close to
D.

For the test models in Section 3, in the simulation of the HSR model (Example 3.1),
M =61, S = 26.3 (before the optimization described later), D = 8.79 and U = 10.33. In the
simulation of the linear model (Example 3.2), M = 600, S = 16, D = 2 and U = 2.001. For
Example 3.3, M =600, S =300, D =1 and U = 5.15.

4.2 Cost Analysis and Comparison

It is widely believed that NRM should perform better than DM for a system of large size.
The reasoning is based on an analysis® of the costs of the computational operations listed
in Section 3. For the random number generator, DM always has one extra cost C,4,q. For
the computation of the propensities, DM needs to calculate M propensities, whereas NRM
calculates only the changed ones (about D propensities). For the other terms, C,, consists
of M additions and C; consists of O(M) additions and compares, while C, and Cheqp are
of magnitude O(log M). Thus when the system has a large number of reactions, NRM
might have less cost. But this analysis considers only the magnitude of the computational
operations. It does not count the extra costs due to the data structure in Cheqp, Cy. In
practice, we have observed that DM is generally more efficient than NRM. Although one
can argue that this is because the system size is not large enough to show the benefit of the
NRM yet, only for the very loosely coupled problems Examples 3.2 and 3.3 did we begin to
observe a relatively large savings. We believe that a fully optimized implementation of the
DM can be more efficient than the NRM. There are two reasons for this. First, the original
DM was not optimized for large systems. Second, the simple operation analysis in Gibson
and Bruck® does not take into account all the components of the CPU cost. In this section
we focus on the second point, that is, we extend the cost analysis to take into account costs
such as maintenance of the data structure. Optimization of the DM for large systems will
be discussed in the next section.
From (12) and (13), we can formulate the difference between the cost of DM and NRM
as follows
C1DM - C'NRM = Crand + Cl + C'2 - Ch,eapa (19)

where C; = C,, + Cs — Cy and Cy = C, — Cy — Cy. In the following we discuss the details
for each term.

11

For the random number generation, the NRM reduces the corresponding cost to half that
of the DM. We note that the cost of generating a uniform random number is computationally
small, and it does not increase with M. When M increases, C,.,q is almost negligible. In
our simulation of the HSR model with the Direct Method, C,4,4 accounts for 5% of the total
CPU time. We expect an even lower percentage for C,,q when the system size becomes
larger. Thus this saving is not critical.

The cost C,, consists of M ADD operations. We formulate it as

Coo = MCapp. (20)

The cost C, depends linearly on the average weighted search depth S. The major operations
are ADD and COMPARE. Thus it can be written as

Cs =~ S(Capp + Ccomp)- (21)

The cost C, depends linearly on the average weighted depth D — 1 (C, does not count the
case when a =). Each update of 7, consists of one MULTIPLY and one DIVIDE operation.
We can express this as

Ca =~ (]D) -]-)(CMULT + CDIV). (22)

We note that the costs for MULTIPLY and DIVIDE are usually much larger than the costs
for ADD and COMPARE.

The cost C), is based on the calculation of M propensities, while C’;, requires the calculation
of only D propensities. The cost C, is definitely larger than that of C,. But to distinguish
which reactions are affected by the firing reaction, the directed graph is needed. Thus we
have to also take the extra cost C, into account. In each step, we need to visit the dependency
graph D times to obtain all the affected reactions. Thus C, is of order O(D).

The cost Cheqp for updating the heap data structure depends linearly on the average
updating depth U. The operations in the update include changing values in an affected
node, swapping nodes to maintain the order, etc. We denote it by Cy. Then we have

Ch,eap = UCH (23)

Remark 4.1 Although the costs Cy, Cy and Cheqp are of O(D) or at most O(Dlog(M)), the
corresponding constants are different. For example, comparing C and Cy, the MULTIPLY
and DIVIDE in C, cost much more than the ADD and COMPARE in C;. Thus although
Cs is of order O(M), practically Cy is less than Cy. In the maintenance of the heap tree,
accessing the data costs much more than that in DM. Thus even for the same computational
operation, due to the data structure cost, the CPU cost is significantly different. This is the
reason Why Cheqp 15 S0 large in the HSR model.

5 Optimized Direct Method (ODM)

According to the analysis in Section 4, for a large system the bottleneck for DM is the costs
Cq, and C,, which are of magnitude O(M), and the cost Cs, which is of magnitude O(S).
In this section we propose two optimizations to reduce these costs.

12

First, to reduce the cost C; in the Direct Method, we note that in a large system, the
reactions will undoubtedly be multiscale. Some reactions fire much more frequently than
others. For example, in the HSR model, the six most frequent reactions fire about 95% of
the total times, while the twelve most frequent reactions fire about 99% of the total times.'?
By utilizing this multiscale property, we can optimize the Direct Method implementation by
making S very small. From (16), the order of the indexes of the reaction channels affects the
search depth S. By reindexing the reaction channels so that

ki > kj, for 7 < 7, (24)

we can obtain an optimized value of S which we denote by S*. The optimized search depth S*
yields an optimized cost Cs. To obtain an optimized index, we sort the index of the reactions
in decreasing order based on how often they fire. But before we really run a simulation, we
do not have a quantitative knowledge of k;’s. Thus the ODM requires one or a few pre-
simulations to determine the scale of the k;’'s. We denote k; as the number (or the mean
value if there are multiple pre-simulations) of firing times for each reaction channel from the
pre-simulations. We reindex the reaction channels such that

ki > kj, for 7 < J. (25)

Then we can use the new group of indexes to run the many simulations needed to generate
an ensemble of the system. After this reindexing, usually the new search depth will be much
smaller than a non-optimized one. For a system with multiscale reactions, S* will be much
smaller than M /2.

For the HSR model, this optimization method yields S* = 3.37. The average simulation
time is reduced to 76.5 seconds, which is 11.87% more efficient than the DM with the original
index (S = 26.2, average simulation time is 86.8 seconds). In the worst case (with indexes
in the opposite order), S = 58.6 and the average simulation time is 102.2 seconds. Thus the
optimized DM is 25.15% more efficient than the worst case. Table 5 shows the detailed CPU
costs after we optimized the index.

Second, in the case of D << M, we can apply an idea from the development of NRM to
DM. To reduce the costs C,, and C,, we recalculate the propensities only for those reaction
channels affected by the last reaction. Thus, only D propensities are needed for recalculating
in Cp,. But an extra cost must be paid for accessing the directed graph. With this change,
Cp = Cp + (. For the same reason, we can modify ay by subtracting old values and adding
new values. Then C,, will consist of approximately D operations rather than A, resulting
in Cyy +Cp, = DCupp + Cp + Cy. The costs C,, and C, are now O(D) instead of O(M).
In this strategy, we need the directed graph G introduced in NRM. But there is no need to
maintain an expensive heap tree. Note that the extra data structure cost Cy is still large for
many practical models. Thus the second optimization step should be applied only when D
is much less than M.

For Example 3.2, D << M. After we make use of the second optimization step, the
average time for one simulation reduces to 0.86 seconds, which is much less than the CPU
time of the original DM, and also less than that of NRM. The detailed timings for the
optimized DM are listed in Table 6.

For Example 3.3, D << M. After the second step, the average time for one simulation
reduces to 3.72 seconds, which is less than that of the original DM, but more than that of

13

the NRM. The reason is that here S = M/2. The cost C is still large in this case. The
detailed timings for the optimized DM are listed in Table 7.

With the two optimization steps, the Optimized Direct Method (ODM) is more efficient
than the original DM. In the two extreme cases Example 3.2 and 3.3, ODM is close to NRM.
Table 8 lists the operation comparison for DM, NRM and ODM. The only situation that
ODM is less efficient than NRM is when D << M and S* ~ M/2. In a practical code, we
can evaluate D, U and S and compare it with M. We note that in practice, large systems
usually always have the multiscale nature which makes S* << M/2. Thus ODM is almost
always preferred.

6 Further Discussion

6.1 The Cost Comparison with Different Scales of M

To study how the CPU cost varies with the scale of the problem, we modified M in Example
3.2 and compared the CPU time for DM, NRM and ODM. The results are shown in Figure
1. We can see that when M is small, the CPU time for DM and NRM are close. When
M is larger, NRM performs better. For all M, the CPU times of ODM are smaller than
those of NRM. But it seems that the CPU times for all methods increase linearly when M
increases. This is because for this simple model, when M increases, the total number of
reactions increases. The total CPU cost is the product of the average cost and the total
number of reactions. The reason why SSA is slow is due to the total number of simulation
steps. Thus we could expect a large savings if we could reduce the total number of simulation
steps. We address this in a forthcoming paper.'?

6.2 Spatially Inhomogeneous System

SSA is based on the assumption of a spatially homogeneous system. However, by discretizing
the space into cells and introducing variables associated to the population of the species in
each cell, SSA can also be applied to spatially inhomogeneous systems. With that configu-
ration, for each cell reactions occur only in its own cell or with its neighbours. This feature
makes the discretized spatially inhomogeneous system a good example of a loosely-coupled
system. The Optimized Direct Method will have a great advantage for these systems. A the-
oretical discussion of the spatially inhomogeneous system will be a topic of future research.
Here we only construct a simple example to show the efficiency of the optimization.

Example 6.1 Spatially Inhomogeneous Example

This example was discussed by Shnerb!® to show the difference between the continuous

14

deterministic approach and the discrete stochastic approach. Two species A and B spread
over a square area and move randomly with a certain diffusion coefficient. Two types of
reactions are involved. The species B decay with a constant rate p and divides with rate
A when it meets the catalyst A. To numerically simulate this system, the square area is
discretized as a 10 by 10 grid. To each grid cell (labeled by (i,7)), we assign variables A;

for species A and B; ; for species B. The reactions are listed as follows

Diffusion of A: Aij — Aix1 i1, if (1 £1,75£1) is within the area,
Diffusion of B: B;j — Bii1,j11, if (1 £1,75£1) is within the area, (26)
Decay of B: B;; — 0,

Division of B: B+ A, —2B,; +A;

The diffusion rate for both A and B is p = 0.2. The decay rate for B is 1. The division rate
when B meets A is set to A\ = 2.8. The initial states are set so that each cell contains one

species B and there is one species A in the whole area.

1, i=10,j =10,
Bi,j == 1, Ai,j == (27)

0, else.

The simulation time interval is [0,100]. When the population of B blows up, the simulation
will be very slow. Thus we terminate the simulation when the total population of B exceeds
10,000. The corresponding state is called ”survival of B”. If all B species die, the simulation
s also terminated and the corresponding state is called ”extinction of B”. With the above
configuration, the species B has probability around 30% to survive, while a classical deter-
mianistic differential equation method will always predict extinction. We applied the three SSA
formulations to this example. Since the species states have a big variation, the CPU cost for
a single simulation has a large fluctuation, depending on whether the final state is survival

15

or extinction. But for a large number of simulations, the CPU time is stable. We measured
the CPU time for 10* simulations. The corresponding CPU time for the original DM was
2045 seconds, the CPU time for NRM was 770 seconds and the CPU time for ODM was
406 seconds. We expect an even larger difference for a finer grid. This example shows that
the ODM is much preferred for discretized spatially inhomogeneous systems. The detailed

timings for the three formulations of SSA are listed in Table 9.

7 Conclusion

Gillespie’s stochastic simulation algorithm (SSA) is in widespread use for the stochastic
simulation of chemically reacting systems, consuming a great many CPU cycles. In this paper
we studied the different formulations of SSA: Direct Method (DM), First Reaction Method
(FRM) and Next Reaction Method (NRM). We found that for all but a very specialized class
of problems, DM is most efficient. This is in contrast to the widely held belief that NRM
is most efficient. Our timing studies reveal that the NRM is spending a substantial fraction
of its time on maintaining the data structure. The original operation count for the NRM?
considered computational operations only; hence it did not include these costs. We have
presented a more comprehensive operation count which explains the observed results and
suggests some further optimizations that can be applied to the DM. After applying these
optimizations, the Optimized Direct Method (ODM) now appears to be the most efficient
formulation for the vast majority of problems.

Acknowledgements
We would like to thank Dan Gillespie and an anonymous referee for their advice.

List of Captions

Figure 1: CPU time of DM (plot with ’0” and solid line), NRM (plot with +’ and dashed
line) and ODM (plot with "*’ and dotted line) vs. the number of reactions M for the linear
chain Example 3.2.

References

1" A. Arkin, J. Ross and H. McAdams. Genetics, 149, 1998.

2 M. Elowitz, A. Levine, E. Siggia and P. Swain. Science, 297, 2002.

16

McAdams, A. Arkin. Proc. Natl. Acad. Sci. USA, 94, 1997.

o =

. Gillespie. J. Comput. Phys., 22, 1976.

.

. Gillespie. J. Phys. Chem., 81, 1977.
Morton-Firth and D. Bray. J. Theor. Biol., 192, 1998.

o o

. Gillespie. J. Chem. Phys., 115, 2001.
. Gibson and J. Bruck. J. Phys. Chem. A, 104, 2000.

. Schwehm. Poster in German Conference on Bioinformatics, 2001.

o= =

10

Kurata, H. El-Samad, T. Yi, M. Khammash and J. Doyle. Proceedings of the 40th
IEEE Conference on Decision and Control, 2001.

' H. Kurata, M. Khammash and J. Doyle. 3rd International Conference on Systems Biology,

2002.

12Y. Cao, L. Petzold and D. Gillespie. Multiscale stochastic simulation algorithm with

stochastic partial equilibrium assumption for chemically reacting systems. In preparation.

13 N. Shnerb, Y. Louzoun, E. Bettelheim, S. Solomon. Proc. Natl. Acad. Sci. USA, 97, 2000.

17

List of Tables:

Direct Method Nezxt Reaction Method

1. Generate random number r1 and 79 1. Generate random number r

2. Calculate M propensities 2. Calculate propensities changed by last reaction
3. Calculate the summation ag of all propensities | 3. Calculate 7, with (11)

4. Calculate T with (5) 4. Calculate the other Tos (a0 # p) with (10)

5. Search for p according to (6) 5. Update the heap data structure

Table 1: Comparison of operations in DM and NRM.

DM Cao Cs Cp 2% Crand Cr CupdateX Crest

CPU cost (seconds) | 15.48 14.98 11.71 4.09 6.45 7.36 9.30
Percentage 22.24% | 21.52% | 16.82% 5.88% 9.27% | 10.57% | 13.36%

NRM Cheap Ca Cp’ + C’g Crand C’T CupdateX Crest

CPU cost (seconds) | 99.16 | 23.34 19.34 1.7 6.36 7.89 6.42
Percentage 60.0% | 14.12% | 11.7% 1.05% | 3.85% | 4.77% | 3.89%

Table 2: CPU costs of DM and NRM for the HSR model.

DM Cao Cs Cp 2% Cmnd C’T CupdateX Crest
CPU cost 0.66 0.05 0.56 0.03 0.03 0.65 0.05
Percentage | 32.54% | 2.46% | 27.50% 1.45% | 1.63% | 31.86% | 2.56%

NRM Cheap Ca Cp’ + Cg C’rand C’T CupdateX Crest
CPU cost 0.17 0.03 0.03 0.02 0.03 0.81 0.05
Percentage | 14.8% | 2.61% | 2.61% 1L.U% | 2.61% | 70.43% | 4.35%

Table 3: CPU costs of DM and NRM for the linear model (14).

18

DM Cao Cs Cp 2% Crand CT CupdateX Crest
CPU cost 1.26 1.27 1.07 0.03 0.03 1.67 0.06
Percentage | 23.38% | 23.56% | 19.85% 0.56% | 0.56% | 30.98% | 1.11%
NRM Cheap Ca Cp’ + Cg Crand CT CupdateX Crest
CPU cost 0.27 0 0.12 0.03 0.07 1.64 0.19
Percentage | 10.7% 0% 4.-1% 1.19% | 2.77% | 64.82% | 1.51%

Table 4: The CPU costs of DM and NRM for the totally independent model (15).

ODM Cao C s Cp 2 % Crand CT CupdateX Crest
CPU cost (seconds) | 15.27 | 4.21 9.27 6.23 6.90 7.97 12.13
Percentage 24.64% | 6.79% | 14.96% | 10.05% | 11.18% | 12.86% | 19.57%

Table 5: CPU costs of the Optimized Direct Method for the HSR model

ODM Cao + Cp Cs 2 * Crand CT CupdateX Crest
CPU cost 0.02 0.05 0.03 0.02 0.67 0.06
Percentage 2.35% | 5.88% | 38.53% | 2.35% | 718.82% | 1.06%

Table 6: CPU costs of the Optimized Direct Method for the linear model (14).

ODM Cao + Cp Cs 2 % C’r‘and CT CupdateX Crest
CPU cost 0.20 1.42 0.08 0.06 1.88 0.08
Percentage | 5.38% | 38.17% | 2.16% | 1.61% | 50.54% | 2.15%

Table 7: CPU costs of the Optimized Direct Method for the totally independent model (15).

Cao Cp C extra data structure cost
DM O(M) | O(M) | O(S) = O(M) no
ODM | when D << M | O(D) | O(D) O(S¥) directed graph
else O(M) | O(M) O(S*) no
Ca Cy Cheap extra data structure cost
NRM oD) | OD) | O(U) = O(D) | directed graph and heap tree
Table 8: Operation count comparison for DM, NRM and ODM.
DM Cao Cs Cp 2 % C’rand CT CupdateX Crest
CPU cost 581.38 786.51 353.82 19.25 17.80 129.20 157.68
Percentage | 28.42% | 38.45% | 17.830% 0.94% | 0.87% | 6.32% 7.71%
NRM Cheap Ca Cp’ + Cg Crand CT CupdateX Crest
CPU cost 331.5) 86.37 58.68 10.21 17.28 | 119.08 | 145.91
Percentage | 43.05% | 11.22% 7.62% 1.33% 2.24% | 15,45% | 18.94%
ODM Cao + Cp Cs 2% Crand C’T CupdateX Crest
CPU cost 64.83 48.75 17.18 18.84 115.28 144.45
Percentage | 16.03% | 10.82% 4.24% | 4.66% | 28.51% | 35.72%

Table 9: The detailed CPU costs of 10* similations for DM, NRM and ODM for the spatially

inhomogeneous example.

19

CPU Time

220

200

180

160

140

120

100

80

60

40

20
0

CPU Time vs. M for the simple linear model

200

300

Figure 1:

20

400

500

600

