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Abstract

Ribbon Concordances and Representation Varieties

by

James P Dix

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Ian Agol, Chair

The central motivation of this dissertation is a question of Gordon asking if an infinite
descending chain of ribbon concordances K0 ≥ K1 ≥ . . . is eventually constant. Restricting
to the case when these knots are hyperbolic, we approach this problem by studying relations
between the SL2C representation varieties of ribbon concordant knots. We first rule out one
potential approach by giving examples of ribbon concordances that do not induce surjections
on representation varieties or character varieties. Then we provide two sufficient conditions
on the Ki for Gordon’s question to have a positive answer. The first condition is if the Ki

satisfy a conjecture of Chinburg, Reid, and Stover. Using the theory of deformations of cone
manifolds, we show prove this conjecture in the case that a knot admits a Euclidean cone
structure with cone angle α ≤ π. The second condition is when a faithful representation and
a reducible representation lie on the same component of the chararcter variety. This result
is shown by making use of homology with local coefficients. In particular, these conditions
show that any descending chain of 2-bridge hyperbolic knots is eventually constant.
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Chapter 1

Introduction

The aim of this dissertation is to understand the relation between SL2C representation
varieties and ribbon concordances of knots. We begin by introducing both of these main
concepts.

Representation varieties of homomorphisms from discrete groups to Lie groups are inter-
esting for a wide assortment of reasons, with many geometric and topological applications.
A major reason for their importance is the fact that Hom(π1(X), G) for a Lie group G
parametrizes the space of flat principal G-bundles over X marked with a fixed base point
b and an identification of the fiber over b with G[36, Proposition 3.6.15]. Furthermore, re-
moving the dependence on a choice of identification of fiber amounts to taking the quotient
Hom(π1(X), G)/G.

Flat SU(2) bundles are of central importance in gauge theory, but particularly important
to 3-dimensional topology are flat SL2C and PSL2C bundles. Thurston showed that a (G,X)
geometric structure (G,X) on a manifold M induces a flat principal G bundle, and that de-
forming this bundle gives a corresponding deformation of the geometric structure. In fact, in
many cases the space of (G,X) structures is locally homeomorphic to Hom(π1(X), G)/G [17].
This makes Hom(π1(X),PSL2C) and the space of lifts Hom(π1(X), SL2C) very important to
geometry. For example, Thurston’s hyperbolic Dehn surgery theorem [35] and the proof of
geometrization of orbifolds [7] both rely on understanding the local behavior of deformations
of hyperbolic structures by understanding the PSL2C character varieties. Also, much of this
dissertation relies on work by Porti about understanding what the existence of spherical and
euclidean structures on a knot complement reveals about Hom(π1(S

3\K), SL2C)
Outside of geometric structures representation varieties have relevance as knot invariants.

The gauge theory aspects of SU(2) representations were used by Kronheimer and Mrowka
[23] to find non-cyclic representations of knot groups to SU(2) for any nontrivial knot. Since
SU(2) ⊂ SL2C, this immediately implies both the SU(2) and SL2C representation variety
can detect the unknot.

The equations defining a representation variety Hom(Γ, G) are elegantly simple to de-
scribe, needing only a presentation of discrete group Γ. However, being such a powerful
invariant, it is inevitably difficult to work with concretely: it’s very computationally inten-
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sive to determine if two varieties are isomorphic. The A-polynomial of a knot AK(L,M) by
[6] is one way to capture much of the information of the representation variety in a simpler
object. Roughly, it records which representations in Hom(Z2, SL2C) arise from restricting
representations of the knot complement to the peripheral elements µ, λ. In fact, Kronheimer
and Mrowka’s work mentioned earlier can be used to show that the A-polynomial also detects
the unknot [12],[2].

The study of the central object of this dissertation, ribbon concordances, was initiated
by Gordon [18] in 1981. Defined as a concordance between two knots K0 and K1 with only
critical points of degree 0 and 1, this operation, is denoted K0 ≤ K1 and amounts to taking
K0 and attaching a collection of disjoint unknots to it via band sum. Intuitively the knot
K1 is more complex than K0 but formalizing and proving this idea has proven to be highly
non-trivial and a fruitful area of research.

There are many knot invariants found to become more complicated when going from K0

to K1. In Gordon’s original paper he shows in a sense that the knot group of K1 is more
complicated than K0, since π1(S

3\K0) is shown to be a subset of a quotient of π1(S
3\K0).

Other knot invariants which become more complicated include:

1. The Alexander polynomial [15]

2. Heegard Floer homology, Khovanov homology, and other flavors of gauge-theoretic
invariants [39],[24], [10]

3. Character varieties and their tangent spaces for G compact [10]

The last item merits more discussion; much of this dissertation revolves around G =
SL2C, a non-compact Lie group. While Daemi et al. found that representation varieties for
G compact should increase in dimension, no such result is known for G = SL2C. Daemi’s
work relied on surjective of maps between the character varieties, but that is shown in
Section 3.2 to not always hold true outside G compact.

Despite all of these invariants behaving nicely with respect to ribbon concordances, it’s
still a mysterious operation. Only within the past few years did Agol [1] prove that ribbon
concordance is a partial order using the aforementioned surjectivity of representation varieties
for G compact.

Together with Agol’s paper, one of the main inspirations for this dissertation is the
following open question from Gordon’s original paper: If K0 ≥ K1 ≥ . . . is an infinite
sequence of ribbon concordances, is there some n for which Kn = Km for all m ≥ n?

The results of this dissertation all revolve around trying to prove this in one way or
another for the specific case of hyperbolic knots. Theorem 3.3.3 is a partial proof of a
conjecture of Chinburg et al. [4] which would imply Gordon’s conjecture for hyperbolic knots.
Meanwhile, Theorem 4.2.10 implies a proof in the case that for each Ki, the component of
the character variety Hom(π1(S

3\Ki), SL2C) containing the discrete faithful representation
also contains a reducible representation.
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Chapter 2

Basic Definitions and Properties

2.1 Ribbon Concordances

The following definition and properties are from Gordon’s original paper defining ribbon
concordances [18].

Definition 2.1.1. A ribbon concordance C between two knots K1,K0, denoted K1 ≥C K0

is an annular concordance C smoothly and properly embedded in S3 × [0, 1] between K0 at
t = 0 and K1 at t = 1 such that the projection p : C → [0, 1] is a smooth Morse function of
C with critical points of index only 0 or 1.

We denote S3\Ki as Yi, denote (S
3 × [0, 1])\C as W , and the inclusion maps as ιi : Yi →

W .
Diagramatically, a ribbon concordance going upwards appears starting with a diagram

of K0, adding k trivial unlinked components, and attaching k bands so that the resulting
diagram is a diagram of K1. In reverse, this looks like attaching k bands to K1 so that the
resulting diagram is K0 and k unlinked unknots, then removing these extra components.

K0 K0 with unknots and bands K1

Figure 2.1

Corresponding to these diagrams moving upwards or downwards are associated handle
decompositions: W can be constructed from Y0×[0, 1] by attaching a 1-handle corresponding
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to each added unknot component and attaching a 2-handle corresponding to each band
attachment. W can also be constructed from Y1×[0, 1] by attaching a 2-handle corresponding
to each band attached, then a 3-handle corresponding to each removed unknot component.

By attaching 1 and 2-handles to Y0 × [0, 1] to get W , we can explicitly write

π1(W ) = (π1(Y0) ∗ ⟨b1, . . . , bk⟩)/⟨s1, . . . sk⟩

Figure 2.2: Finding the relators of Figure 2.1

The presentation of π1(W ) can be derived from the ribbon concordance diagram: the
new generators bi correspond to the meridians of the k unknot components added, and each
relator si comes from a loop following the band attaching the ith unknot component to K0,
containing the two arcs which are being banded together. A priori a band could attach two
unknot components to each other, but we can isotope C to slide the bands over each other
so they all attach to K0.

Since the ith band will connect the ith unknot toK0, si will be of the form µim
−1
i wheremi

is a meridian of the ith band and µi is a meridian of K0. Since Y0 is a knot complement it has
Wirtinger presentation π1(Y0) = ⟨a1, . . . , an|r1, . . . rn−1⟩ with the generators ai corresponding
to meridians. Then since all meridians on the same link component are conjugate, for any
choice of j ≤ n there are words wi ∈ ⟨a1 . . . an, b1, . . . , bk⟩ such that si = w−1

i biwia
−1
j . In the

end we have
π1(W ) = ⟨a1, . . . , an, b1, . . . , bk|r1, . . . , rn−1, s1, . . . , sk⟩

Proposition 2.1.2 ([18]). The maps ιi : Yi ↪→ W induce isomorphisms on H∗, an inclusion
π1(Y0) ↪→ π1(W ) and a surjection π1(Y1) ↠ π1(W ).

We now study representation varieties of knots and how they interact with ribbon con-
cordances

Definition 2.1.3. For any word r ∈ Fn = ⟨a1, . . . , an⟩ and complex linear algebraic group
G, define the word map wr : G

n → G such that wr takes in (g1, . . . , gn) ∈ Gn, replaces each
ai in r with the corresponding gi, and evaluates the product. For any finitely generated γ =
⟨a1, . . . , an|r1, . . .⟩ define the representation variety RG(Γ) to be {g⃗ ∈ Gn|wr1(g⃗) = Id, . . .}.

Because the wri are algebraic morphisms, RG(Γ) has the structure of an algebraic set.
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Remark 2.1.4. We can also consider a real linear algebraic group G, in which case RG(Γ)
has the structure of a real algebraic variety.

An element g⃗ ∈ RG(Γ) defines a homomorphism ρ : Γ → G by sending ai 7→ gi and by
the definition of RG(Γ) this assignment will send any ri 7→ Id. Similarly, ρ : Γ → G gives
a point (ρ(a1), . . . , ρ(an)) ∈ RG(Γ). These operations are inverses, thus RG(Γ) is the set
Hom(Γ, G) with an algebraic structure.

The algebraic structure of RG(Γ) is known to be invariant under change of presentation
and hence is an invariant of Γ [26]. Furthermore, RG is a contravariant functor from the
category of groups to the category of algebraic varieties: any f : Γ1 → Γ2 induces a morphism
RG(f) : RG(Γ2) → RG(Γ1) sending ρ 7→ ρ ◦ f .

G acts on RG(Γ) by conjugation: for any ρ ∈ Hom(Γ, G) and g ∈ G, gρg−1 is also in
Hom(Γ, G). Taking the GIT quotient by this action gives another space which is an invariant
of Γ.

Definition 2.1.5. The character variety XG(Γ) is the GIT quotient RG(Γ)//G.

It follows from geometric invariant theory that in the case ofG a reductive group,XG(Γ) is
an affine variety[38]. In particular when G = SL2C, the point a representation ρ ∈ RSL2C(Γ)
maps to is determined by its character χρ = tr ◦ ρ, hence the name character variety. The
algebraic structure can be explicitly described: the polynomial functions on XSL2C(Γ) can be
generated by the functions τγi(ρ) = χρ(γi) for a finite set of γi ∈ Γ [34]. This means XSL2C(Γ)
is exactly the set of characters of representations ρ : Γ → SL2C, together with an algebraic
structure. Like RG, XG is also a contravariant functor. In the case that the elements of XG

are characters of representations χρ, then for any homomorphism f : Γ1 → Γ2, XG(f) is
given as χρ 7→ χρ◦f .

Remark 2.1.6. An important note is that XSL2C(Γ) is not simply the orbit space for the
action of SL2C on RSL2C(Γ): while it is true for irreducible representations that χρ = χρ′ if
and only if ρ and ρ′ are conjugate [9, Proposition 1.5.2], for reducible representations this is
not the case. In particular any non-abelian reducible representation ρ has a corresponding
abelian representation ρ′ such that χρ = χρ′ . Up to conjugation, ρ is an upper triangular
representation, and ρ′ is the exact same representation except with all top right entries set
to 0.

We are interested in the representation varieties of knots and the morphisms induced
on them by ribbon concordances. Fix the notation RG(Y ) = RG(π1(Y )) and XG(Y ) =
XG(π(Y )) for Y a topological space, and furthermore RG(K) = RG(S

3\K) and XG(K) =
XG(S

3\K) for K a knot. We do the same notation for ribbon concordances C: RG(C) =
RG(S

3 × [0, 1]\C) and XG(C) = XG(S
3 × [0, 1]\C). For f : A → B a continuous map of

topological spaces we denote RG(f) = RG(f∗) and XG(f) = XG(f∗) where f∗ is the induced
map on fundamental groups.

For a ribbon concordance K1 ≥C K0, ι1∗ : π1(Y1) → π1(W ) being surjective means
RG(W ) can be cut out from RG(Y1) by asserting the additional relators given by ker ι1.
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Therefore RG(ι1) : RG(W ) → RG(Y1) is the inclusion map of the closed algebraic set
RG(W ) ⊂ RG(Y1).

One would hope the injective map ι0 would induce a surjection in RG(ι0), but the story is
more complicated. When only considering varieties of representations to compact groups like
SU(2) and SO(n), RG(ι0) is indeed surjective [10, Proposition 2.1]. It’s natural to ask if the
same holds true for SL2C representation varieties. To approach this question, we introduce
the following definition.

Definition 2.1.7. Given presentations π1(Y0) = ⟨a1, . . . , an|r1, . . . , rn−1⟩ and π1(W ) =
⟨a1, . . . , an, b1, . . . , bk|r1, . . . , rn−1, s1, . . . , sk⟩, define FW,Y0 = ⟨a1, . . . , an, b1, . . . , bk|s1, . . . , sk⟩
and define ιF as the map Fn → FW,Y0 sending the i-th generator of Fn to ai.

ιF is an inclusion since Fn is residually finite so the argument of [18, Lemma 3.1] applies.
Together these maps give the commutative diagram

FW,Y0 π1(W )

Fn π1(Y0)

ιF ι0

π1(W ) is a quotient of FW,Y0 , which means RG(W ) is a closed subvariety of RG(FW,Y0).
In fact, RG(W ) is exactly RG(ιF )

−1(RG(Y0)). In other words, the following diagram is a
pullback diagram.

RG(FW,Y0) RG(W )

Gn RG(Y0)

RG(ιF ) RG(ι0)

Note that FW,Y0 is not an invariant of the pair (W,Y0); it depends on the presentations
of π1(W ) and π1(Y0).

The local behaviour of RG(FW,Y0) can tell us a lot about the image of the map RG(ι0).

For instance by Lemma 2.1.8 RG(FW,Y0) satisfies the implicit function theorem at I⃗d ∈ Gn+k.
That is to say, the last k coordinates of RG(FW,Y0) ⊂ Gn+k can be written as analytic function

of the first n coordinates in a neighborhood of I⃗d ∈ Gn using the standard topology on Gn.
Because RG(ιF ) is an algebraic morphism and is surjective on a standard open neighbor-

hood of I⃗d, if G is an irreducible algebraic variety such as SL2C then RG(ιF ) : RG(FW,Y0) →
Gn is a dominant morphism. In a sense this means for “most” possible RG(Y0) ⊂ Gn,
R(W ) → R(Y0) will be dominant. Note that this doesn’t guarantee RG(ι0) is surjective or
even dominant. The next section gives an explicit example of when RG(ι0) is not surjective.

For the statement of Lemma 2.1.8 given a fixed g⃗ ∈ Gn we need to define a representation
ρg⃗ of the free group Fn = ⟨a1, . . . , an⟩ such that ρg⃗ : Fn → G sends ai 7→ gi. This is the same
construction used to give the equivalence between Gn = RG(Fn) and Hom(Fn, G). We also
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fix the notation that Ad : G → End g sends g 7→ (v 7→ gvg−1), and define the corresponding
ring homomorphisms ρg⃗ : Z[Fn] → Z[G] and Ad : Z[G] → End g by extending our original
functions linearly.

Lemma 2.1.8. For a word x in the free group Fn = ⟨a1, . . . , an⟩, the partial derivative of

wx at a point h⃗ ∈ Gn is given by

∂wx

∂gi

∣∣∣
h⃗
= Ad(ρh⃗(

∂x

∂ai
)) ∈ End g

where ∂x
∂ai

∈ Z[Fn] is the Fox derivative.

Proof. Here all the tangent spaces of the respective lie groups are associated with their
lie algebras by right multiplication. Writing out x = aϵ1j1 . . . a

ϵm
jm

where ϵj = ±1 gives us
wx(g⃗) = gϵ1j1 . . . g

ϵm
jm
. We wish to perturb gi by v ∈ g and see how it changes wx(g⃗). This

means replacing each gi by evgi, and seeing how it perturbs the whole product. By the
product rule, we can individually perturb each instance of gi and sum up the all the different
induced perturbations of wx. For each k such that jk = i and ϵk = 1 we can write wx(g⃗) as
zkgiz

′
k, where zk = gϵ1j1 . . . g

ϵk−1

jk−1
and z′k = g

ϵk+1

jk+1
. . . gϵmjm . Then perturbing the gi in the middle

by v gives
zke

vgiz
′
k = eAd(zk)(v)zkgiz

′
k = eAd(zk)(v)wx

Similarly, if instead ϵk = −1 then the product is

zkg
−1
i e−vz′k = e−Ad(zkg

−1
i )(v)zkg

−1
i z′k = e−Ad(zkg

−1
i )(v)wx

We can see that the word v is conjugated by is exactly the corresponding summand from
computing the Fox derivative ∂x

∂ai
, except with each ai replaced by the corresponding gi which

is exactly the action of ρg⃗. Since the total vector wx is perturbed by is∑
jk=1,ϵk=1

Ad(zk)(v) +
∑

jk=1,ϵk=1

−Ad(zkg
−1
i )(v)

we get all the terms arising from the Fox derivative ∂x
∂gi

, and the result follows.

We remark that the idea of using Fox derivatives to understand tangent spaces of repre-
sentation varieties appears in [27].

Corollary 2.1.9. If FW,Y0 has presentation FW,Y0 = ⟨a1, . . . , an, b1, . . . , bk|s1, . . . , sk⟩, then on

a standard open set of RG(FW,Y0) ⊂ Gn+k around the trivial representation I⃗d the coordinates
g1, . . . , gn are analytic functions of the coordinates gn+1, . . . , gn+k.

Proof. Define the function w⃗ : Gn+k → Gk sending g⃗ 7→ (ws1 , . . . , wsk). Then RG(FW,Y0)

is defined as w⃗−1(I⃗d), and the proof is complete if we can show w⃗ satisfies the hypotheses

of the implicit function theorem at g⃗ = I⃗d. This means we need to compute the Jacobian
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matrix Ji,j =
∂wsi

∂gn+j
. By Lemma 2.1.8 we shall use the Fox derivatives ∂si

∂bj
. Recall that the si

are of the form si = w−1
i biwiaki , so that

∂si
∂bj

= −w−1
i

∂wi

∂bj
+ w−1

i δi,j + w−1
i bi

∂wi

∂bj
+ w−1

i biwi
∂aki
∂bj

The rightmost term in the sum is 0, meanwhile all the coefficients become Id when evaluating
at the identity representation, so Lemma 2.1.8 tells us after cancellation that

∂wsi

∂gm+j

∣∣∣
I⃗d
= Ad(δi,j Id) = δi,j Id

It follows that w⃗ satisifies the hypotheses of the implicit function theorem, and in fact the
analytic implicit function theorem, since w⃗ is a polynomial function.
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Chapter 3

Chains of Ribbon Concordances

3.1 Surjectivity of RG(ι0)

In the original ribbon concordance paper, Gordon asked the following:

Conjecture 3.1.1 ([18]). If K1 ≥ K2 . . ., does there exist some m such that Kn = Km for
all n ≥ m?

Agol’s proof [1] of the partial ordering property of ribbon concordances can be viewed
as a proof of this property for the repeating sequence K1 ≥ K2 ≥ K1 ≥ . . .. A natural
question is if it is possible to extend these techniques to an arbitrary descending chain of
ribbon concordances.

To begin, we need the following part of the proof of [1, Theorem 1.2]

Lemma 3.1.2 ([1]). If K1 ≥ K0 is a ribbon concordance such that the induced surjection
π1(Y1) ↠ π1(W ) is an isomorphism, then K1 = K0

Proposition 3.1.3. Suppose K0 ≥C0 K1 . . . is an infinite sequence of ribbon concordances.
For any fixed n > 0 there is an m such that for all l ≥ m,RSO(n)(Kl) = RSO(n)(Wl)

Proof. Define Si,0 = RSO(n)(Wi) ⊂ RSO(n)(Ki) and denote ϕi : RSO(n)(Wi) ↠ RSO(n)(Ki+1).
Then we can inductively define Si,j+1 = ϕ−1

i (Si+1,j) and it follows from induction that
Si,j+1 ⊂ Si,j. We also know Si,1 = Si,0 if and only if RSO(n)(Wi+1) = RSO(n)(Ki+1), and
for j > 0 we know that Si,j+1 = Si,j if and only if Si+1,j = Si+1,j−1.

Bringing this all together, this shows that Si,j+1 = Si,j if and only if RSO(n)(Wi+j+1) =
RSO(n)(Ki+j+1). Thus a sequence of ribbon concordances with infinitely many i such that
RSO(n)(Wi) ̸= RSO(n)(Ki) would induce an infinite descending sequence of algebraic sets,
violating the Noetherian property of RSO(n)(K0).

The exact same technique can be used to show this for SU(2) representation varieties,
and for character varieties instead of representation varieties.



CHAPTER 3. CHAINS OF RIBBON CONCORDANCES 10

Corollary 3.1.4. Suppose K0 ≥C0 K1 . . . is an infinite sequence of ribbon concordances.
There must exist an m such that for all l ≥ m,XSU(2)(Kl) = XSU(2)(Wl)

The issue with using using Proposition 3.1.3 to prove Gordon’s question is that value
of m can depend on the value of n, and a priori m can increase unboundedly as n grows.
This means for a given chain of ribbon concordances there might not be any j for which all
ribbon concordances after j induce isomorphisms on all RSO(n), which is needed to apply the
methods of [1].

The appeal of working with hyperbolic knots is that knowing of RSL2C(Ki) = RSL2C(Ci)
is enough. More precisely,

Lemma 3.1.5. Given a ribbon concordance K1 ≥ K0, if RSL2C(W ) ⊂ RSL2C(Y1) contains
a faithful representation of π1(Y1) then the induced surjection ι∗ : π1(Y1) ↠ π1(W ) is an
isomorphism.

Proof. If ρ ∈ RSL2C(W ) is a faithful representation of Y1 then it is a representation ρ :
π1(Y1) → SL2C for which all elements of ker ι1∗ are sent to Id. But since ρ is faithful, ker ι1∗
is trivial.

However, since SL2C is not compact we cannot guarantee the mapRSL2C(W ) → RSL2C(Y0)
is a surjection. In fact, Example 3.2.2 gives a non-surjective example. This means the tech-
nique of Proposition 3.1.3 cannot be applied to a descending sequence of hyperbolic knots.

Despite this difficulty, if a conjecture of Chinburg, Reid, and Stover [4] were true, we
would still be able to prove Conjecture 3.1.1. To begin, we need to define the canonical
component of a hyperbolic knot.

Definition 3.1.6. For a hyperbolic knot K, a canonical component C of X(S3\K) is defined
as an irreducible component of X(S3\K) such that pX(C) contains the character of a discrete
faithful representation ρ0.

Recall that an irreducible subset of an algebraic set is a Zariski closed subset that is not
the union of two nonempty Zariski closed subsets. An irreducible component is an irreducible
set that is not a proper subset of any other irreducible set. Any algebraic subset of affine
space can be decomposed as a finite union of irreducible components.

Conjecture 3.1.7 ([4]). For any hyperbolic knot K, the canonical component C ⊂ XK

contains a real curve of characters of SU(2) representations.

Proposition 3.1.8. Assuming that every canonical component contains a curve of SU(2)
representations, Conjecture 3.1.1 is true for hyperbolic knots.

Proof. By Proposition 3.1.3, there is some m for which XSU(2)(Yl) = XSU(2)(Wl) for all
l ≥ m. Let C be a canonical component of XSU(2)(Yl). By an argument of Thurston [9,
Proposition 3.2.1], C is one-dimensional and by hypothesis contains a real curve of characters
of SU(2) representations. This real curve is infinte and therefore Zariski dense in C. Since
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XSL2C(Wl) is a Zariski closed subset of XSL2C(Yl) which must contain all characters of SU(2)
representations, XSL2C(Wl) therefore contains all of C. It therefore contains the character of
a faithful representation of π1(Yl), so Kl = Kl+1 = . . .

3.2 Non-surjectivity of R(ι0)

Remark 3.2.1. For the rest of this thesis R(Γ) and X(Γ) will refer to RSL2C(Γ) and
XSL2C(Γ).

Consider the presentation of the trefoil knot K0 = 31 π1(Y0) = ⟨a, b|abab−1a−1b−1⟩ and a
ribbon concordance corresponding to the presentation

π1(W ) = ⟨a, b, h1, h2|abab−1a−1b−1, h2h1h
−1
2 a−1, h−1

1 h2h1b
−1⟩

Note that this ribbon concordance is exactly the one in fig. 2.1, and its relators follow
from 2.2.

Example 3.2.2. The representation ρ0 ∈ R(K0) given by

ρ0(a) =

(
ζ12 0
0 ζ−1

12

)
, ρ0(b) =

(
ζ12 1
0 ζ−1

12

)
is not in the image of R(ι0) : R(W ) → R(Y0)

Proof. If one wished, this could be proven by plugging the relevant equations into a computer
algebra system. We will instead proceed by a method which can be generalized more easily.

We can understand the map R(ι0) by understanding the map R(ιF ) : R(ΓW,Y0) → R(F2),
since R(ΓW,Y0)|W = R(ι0). Using the presentations for π1(W ) and π1(Y0) given above,
ΓW,Y0 = ⟨a, b, h1, h2|h2h1h

−1
2 a−1, h−1

1 h2h1b
−1⟩, which simplifies to ⟨h1, h2⟩. Then ιF : ⟨a, b⟩ →

⟨h1, h2⟩ sends a 7→ h2h1h
−1
2 and b 7→ h−1

1 h2h1.
To keep dimensions as low as possible, let’s analyze the character variety map

X(⟨h1, h2⟩) → X(⟨a, b⟩)

As originally shown by Fricke and Klein [16], X(⟨a, b⟩) ∼= C[τa, τb, τab−1 ] and X(⟨h1, h2⟩) ∼=
C[τh1 , τh2 , τh1h

−1
2
].

Because a and b are conjugate in π1(Y0), τa and τb will be equal on all characters in X(Y0)
so X(Y0) lies inside the subvariety V ⊂ C[τa, τb, τab−1 ] cut out by the equation τa − τb = 0.
This means X(Y0) ⊂ V ∼= C[τa, τab−1 ].

The function τa − τb pulls back by X(ιF ) to become τh2h1h
−1
2

− τh−1
1 h−1

2 h1
= τh1 − τh2 ,

therefore V ′ = X(ιF )
−1(V ) is cut out by τh1 − τh2 = 0. Since V ′ ∼= C[τh1 , τh1h

−1
2
], we have

reduced the problem to studying the map X(ιF )|V ′ : C[τh1 , τh1h
−1
2
] → C[τa, τab−1 ].
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Computing this map means writing the pullbacks

τa 7→ τh2h1h
−1
2
, τab−1 7→ τh2h1h

−1
2 h−1

1 h−1
2 h1

in terms of τh1 and τh1h2 . .This is possible to do using the standard trace relations for
matrices in SL2C

1. tr(MN) = tr(NM)

2. tr(M) tr(N) = tr(MN) + tr(MN−1)

3. tr(M−1) = tr(M)

For brevity, label x = τh1 = τh2 , label y = τh1h
−1
2
, and label p = τh1h2 . Immediately by

conjugation we get τa pulls back to x. Meanwhile,

τh2h1h
−1
2 h−1

1 h−1
2 h1

= τh1h2h1h
−1
2 h−1

1 h−1
2

= τh1h2h1τh−1
2 h−1

1 h−1
2

− τ(h1h2)3

= τh1h2h1τh2h1h2 − (τ(h1h2)2p− p)

= (px− x)(px− x)− ((p2 − 2)p− p)

= (p− 1)2x2 − (p3 − 3p)

Since p = τh1h2 = x2 − y, we can substitute this in for p and simplify, yielding

τh2h1h
−1
2 h−1

1 h−1
2 h1

= (y − 2)(x2 − y − 1)2 + 2

which means that X(ιF )|V ′(x, y) = (x, (y − 2)(x2 − y − 1)2 + 2).
We can use this to find which characters (x, y) can map to the character of our chosen

representation χρ0 = (ζ12+ζ−1
12 , 2) = (

√
3, 2) by solving (x, (y−2)(x2−y−1)2+2) = (

√
3, 2).

This system of equations immediately yields x2 = 3, so after substitution we must solve for
y such that (y − 2)(3 − y − 1) = 0, which only occurs when y = 2. This means any
such ρ ∈ R(⟨h1, h2⟩) such that R(ι0)(ρ) = ρ0 must have tr ρ(h1) = tr ρ(h2) =

√
3 and

tr ρ(h1h
−1
2 ) = 2

The curve y = 2 is exactly the curve of characters of reducible representations, and by
the proof of [9, Proposition 1.5.5] any representation ρ having the character of a reducible
representation must also be reducible.

Therefore ρ ∈ R(ι0)
−1(ρ0) must fix a subspace W of C2. ρ0(a) = ρ(h1h1h

−1
1 ) and ρ0(b) =

ρ(h−1
2 h2h1) would then also have to fix W , implying that the only subspace ρ can fix is

C[( 1
0 )]. Thus ρ must be of the form

ρ(h1) =

(
ζ12 λ
0 ζ−1

12

)
, ρ(h2) =

(
ζ12 µ
0 ζ−1

12

)
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If this is the case then

ρ(h2h1h
−1
2 ) =

(
ζ12 λζ212 + µ(1− ζ212)
0 ζ−1

12

)
, ρ(h−1

1 h2h1) =

(
ζ12 λ(1− ζ−2

12 ) + µζ−2
12

0 ζ−1
12

)
Since ζ212 − 1 + ζ−2

12 = 0, these two matrices are the same. Hence there is no ρ mapping
to ρ0.

Despite R(ι0) not being surjective, X(ι0) still is. This is because the mapX(ιF )|V ′(x, y) =
(x, (y− 2)(x2 − y− 1)2 +2) is clearly surjective: solving (x, (y− 2)(x2 − y− 1)2 +2) = (a, b)
amounts to solving (y − 2)(a2 − y − 1) + 2 = b, and the left hand side is a non-constant
polynomial.

Example 3.2.3. The ribbon concordance of the previous example has R(ι0) a dominant
map.

Proof. To see this, note that for any irreducible ρ ∈ R(Y0), χρ being in the image of X(ι0)
means that there is some ρ′ ∈ R(Y0) with χρ′ = χρ and ρ′ in the image of R(ι0). Because χρ

is the character of an irreducible representation, ρ and ρ′ having the same character means
they are conjugate representations. Since R(ι0) is equivariant with respect to conjugation
by SL2C, ρ is also in the image of R(ι0).

All abelian representations are also in the image of R(ι0) since both π1(W ) and π1(Y0)
have abelianization Z, and ι0∗ induces an isomorphism on these abelianizations. Thus the
only representations which might not be in the image of R(ι0) are the metabelian represen-
tations, i.e. the nonabelian reducible representations.

[3] and [11] found that a metabelian representation ρ of the knot group of K exists with
ρ(µ) having eigenvalues λ, λ−1 exists if and only if λ2 is a root of the Alexander polynomial
∆K(t). In our case, ∆31(t) = 1− t+ t2 is the 6th cyclotomic polynomial.

[20, Theorem 1.1] shows that at these metabelian representations ρλ, if λ
2 is a simple

root of ∆K(t) then ρλ belongs to an irreducible component V ⊂ R(Y0) containing irreducible
representations. All the roots of ∆31(t) are simple, meaning any metabelian representation
lies on such a V . Since the set of irreducible representations is open and every irreducible
representation is in the image of R(ι0), V is contained in the closure of the image of R(ι0),
and R(ι0) is therefore dominant.

Despite X(ι0) being surjective, we can modify our previous example to create another
example where the induced map on character varieties X(ι0) : X(W ) → X(K0) is not
surjective.

Example 3.2.4. Taking the connect sum of the previous example with the figure-eight knot
gives a ribbon concordance where X(ι0) : X(W ) → X(K0) is not surjective.
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Proof. The knot 41 has knot group ⟨c, d|wcw−1d−1⟩ where w = cd−1c−1d. The knot group
of K0 = 31#41 is then

π1(Y0) =
(
π1(S

3\31) ∗ π1(S
3\41)

)
/⟨bc−1⟩

The corresponding representation variety R(Y0) is the subspace of

R(π1(S
3\31))×R(π1(S

3\41))

corresponding to points (ρ1, ρ2) such that ρ1(b) = ρ2(c). Any point in R(Y0) with ρ1 = ρ0
the representation used in the previous example cannot be in the image of R(W ). We can
find ρ2 such that

ρ2(c) = ρ0(b) =

(
ζ12 1
0 ζ−1

12

)
by analyzing the character variety of 41.

Since the figure eight knot is 2-bridge, just like in the previous example the character
variety lies in C[τc, τcd−1 ]. Labeling x = τc, y = τcd−1 , [30] computes the character variety to be
cut out by the equation (y−2)(y2−(x2−1)y+x2−1) = 0. Asserting that x = ζ12+ζ−1

12 =
√
3,

the equation becomes (y − 2)(y2 − 2y + 2), which has roots 2, 1 + i and 1 − i. This means
(
√
3, 1+ i) is a point of the character variety of 41, and since all the reducible representations

satisfy y = 1, this means there exists an irreducible representation ρirr ∈ R(S3\41) with
tr ρirr(c) =

√
3. After conjugating by an appropriate matrix, we can assume

ρirr(c) =

(
ζ12 1
0 ζ−1

12

)
This means (ρ0, ρirr) ∈ R(Y0) and must be irreducible since ρirr is irreducible. By Re-

mark 2.1.6, any (ρ1, ρ2) ∈ R(Y0) with the same character is conjugate to (ρ0, ρirr) and
therefore also is not in the image of R(W ). This means χ(ρ0,ρirr) cannot be in the image of
X(W ).

3.3 SU(2) representations of Euclidean knots

In this section we will find a real curve of characters of SU(2) representations on the canonical
component of hyperbolic knots which admit a Euclidean cone structure, partially resolving
Conjecture 3.1.7.

To discuss this result, we recall the definition of a cone manifold used in [7].

Definition 3.3.1. A 3-dimensional cone manifold M is a 3-manifold admitting a PL trian-
gulation and a metric on M such that each simplex is isometric to a geodesic simplex with
constant curvature K.



CHAPTER 3. CHAINS OF RIBBON CONCORDANCES 15

Such a cone manifold will be locally isometric to the space of constant curvature K every-
where except a singular locus ΣM , which is a subgraph of the 1-skeleton of the triangulation
of M . Each edge of ΣM can be labeled with its cone angle, which the sum of the dihedral
angles of the simplices meeting at the edge. This cone angle can only change at vertices of
ΣM where more than two edges of ΣM meet.

We will make use of the fact that M\ΣM has a (possibly incomplete) geometric structure
and thus a holonomy representation π1(M\ΣM) → Isom(XK) where XK is H3,E3 or S3

depending on the curvature K.
In the case of a hyperbolic cone structure, we have a representation to PSL2C. By the

isomorphism PSL2C ∼= SO3C, PSL2C is a complex linear algebraic group and thus we can
define a representation variety RPSL2C(Γ)[19, Section 2.2].

The double cover p : SL2C → PSL2C means there are corresponding maps pR : R(Γ) →
RPSL2C(Γ) and pX : X(Γ) → XPSL2C(Γ). In the case that Γ is a knot group, [19, Remark 4.3,
Example 4.6] notes that X(Γ) → XPSL2C(Γ) is a branched covering map. In particular this
implies that the image of any irreducible component in X(Γ) is an irreducible component of
XPSL2C(Γ).

Any two ρ, ρ′ ∈ R(Γ) with pR(ρ) = pR(ρ
′) must differ by a homomorphism ϕ : Γ →

Z/2Z and the group of such homomorphisms H1(Γ,Z/2Z) acts on R(Γ) and X(Γ), acting
transitively on any fiber of pR or pX over a point. In the case that Γ is a knot group,
H1(Γ,Z/2Z) ∼= Z/2Z, and [19, Proposition 4.2] shows that XPSL2C(Γ) is isomorphic to the
GIT quotient X(Γ)//(Z/2Z).

We require one more preliminary fact before proving Theorem 3.3.3

Lemma 3.3.2. If any canonical component contains a curve of SU(2) representation, then
all canonical components do.

Proof. The group SU(2) is closed under complex conjugation and under multiplication by
−1. Therefore the Z/2Z × Z/2Z action on X(S3\K) will send the character of an SU(2)
representation to another character of an SU(2) representation.

Theorem 3.3.3. Let K be a hyperbolic knot in S3. If S3 admits a Euclidean cone structure
with cone angle α ≤ π then any canonical component of X(K) contains a real curve of
characters of SU(2) representations.

Proof. The holonomy of a Euclidean cone structure gives a representation π1(S
3\K) →

Isom+(E3) to the group of orientation-preserving isometries of Euclidean space. By [8,

Proposition 2.1] we can lift such a representation to the double cover Ĩsom+(E3). This
group has the structure of a semidirect product R3⋊SU(2), with rotational component map

ROT : Ĩsom
+
(E3) → SU(2). Define ρE : π1(S

3\K) → SU(2) as the composition of ROT
with a lift of the holonomy.

[31, Lemma 6.2] says that if the Euclidean structure on (S3, K) has cone angle not a
multiple of 2π and χρE is a smooth point of X(S3\K), then a real curve of characters of
representations into SU(2) passes through χρE .
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Since the cone angle α ≤ π then χρE is guaranteed to be a smooth point by [33, Propo-
sition 4.3]. Using this result requires an additional condition that the cone manifold is not
“almost product”, but this is true by [33, Lemma 2.1], [31, Lemma 9.1], and the fact that
K being hyperbolic means it cannot be a torus knot.

We now need to show that χρE lies on a canonical component. In the proof of [31,
Theorem A], Porti finds a family of χt ∈ X(π1(S

3\K)), t ∈ (0, ϵ) of characters of lifted
holonomies (mapping to SL2C) of hyperbolic cone structures on (S3, K) which approach χρE

as t → 0 and whose cone angles approach α from below.
There must be some some χτ close enough to χρE that it lies on the same irreducible

component of X(S3\K), and for such a χτ , the main theorem of [22] gives a continuous
path of characters of holonomies of hyperbolic cone structures in XPSL2C(S

3\K) with de-
creasing cone angle from pX(χτ ) to χρ0 , the character corresponding to a discrete faithful
representation. The local rigidity of Hodgson-Kerchoff [21, Theorem 4.7] implies that all the
characters this path passes through are smooth points, and hence this path never leaves its
original irreducible component. This shows that pX(χρE) and χρ0 lie on the same component
of XPSL2C(S

3\K).
Since X(S3\K) is a branched cover of XPSL2C(S

3\K), any irreducible component V ⊂
X(S3\K) containing χτ must project by pX to cover an irreducible component

V ′ ⊂ XPSL2C(S
3\K)

containing pX(χτ ). Since pX(χτ ) is a smooth point, there is only one such V ′, and it contains
χρ0 .

Therefore the irreducible component of X(S3\K) containing χρE and χτ also contains a
lift of χρ0 and by Lemma 3.3.2 this means every canonical component contains a real curve
of SU(2) representations.

Candidates for such knots are hyperbolic knots whose branched double cover does not
admit a hyperbolic structure. In particular these are the 2-bridge and Montesinos knots. The
double cover of S3 branched over a Montesinos knot is Seifert fibered, but not necessarily
Euclidean[28]. 2-bridge knots, however do admit a Euclidean cone structure.

Corollary 3.3.4. Any hyperbolic 2-bridge knot admits a real curve of characters of SU(2)
representations on its canonical component. Consequently, any infinite descending chain of
hyperbolic 2-bridge knots K0 ≥ K1 ≥ . . . must be eventually constant.

Proof. By the introductory discussion of [32], any hyperbolic 2-bridge knot admits admits a
Euclidean cone structure with cone angle α < π, so we can apply Theorem 3.3.3. Because
these knots satisfy Conjecture 3.1.7, by Proposition 3.1.8 any infinite descending sequence
will be eventually constant.
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Chapter 4

Twisted Homology of Ribbon
Concordances

4.1 Homology with local coefficients

The following definition of cellular (co)homology with local coefficients is from [37]
For X a CW complex with universal cover X̃, we can lift the CW structure to X̃. Then

the cellular chain complex C∗(X̃) has a left π1(X) action arising from the deck transforma-
tions of X̃, making C∗(X̃) a left Z[π1(X)] module.

A basis can be found for C∗(X̃) by choosing a lift of each cell in X, and this can be
done in such a way that the boundary map ∂ : C2(X̃) → C1(X̃) can be computed via Fox
calculus. More specifically, if X has a 0-skeleton consisting of a single point, then the 1−cells
{a1, . . .} of X form a generating set of π1(X). Meanwhile for the 2−cells {b1, . . . , } of X,
each bi has a corresponding word ri in the free group ⟨a1, . . .⟩ which gives its attaching map.
It’s possible to choose lifts ã1, . . . and b̃1, . . . in X̃such that

∂b̃i =
∑
j

∂ri
∂aj

ãj

where ∂ri
∂aj

∈ Z[π1(X)] is the Fox derivative.

Given a left or right Z[π1(X)] moduleM , we seek to takeM⊗C∗(X̃) and Hom(C∗(X̃),M)
as our chain and cochain complexes to compute homology and cohomology respectively.
However, M ⊗Z[π1(X)] C∗(X̃) is only defined if M is a right Z[π1(X)] module and similarly

HomZ[π1(X)](C∗(X̃),M) is only defined if M is a left Z[π1(X)] module. The solution is
to define M to be the same abelian group as M , but with inverted action by π1(x), i.e.
m ·new g := g−1 ·old m.

Definition 4.1.1. Given a chain complex A∗ admitting a left-Z[π1(X)] action, define

C∗(A∗;M) := M ⊗Z[π1(X)] A∗, C
∗(A∗;M) := HomZ[π1(X)](A∗,M)
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. Alternatively, if M is a right Z[π1(X)] module C∗(A∗;M) and C∗(A∗;M) can be defined
in the same way with M appearing in the cochain definition instead.

This allows us to define homology with twisted coefficients H∗(X;M) by setting A∗ =
C∗(X̃). Likewise, we can define relative homology with twisted coefficients for a CW pair
(X, Y ) by setting A∗ = C∗(X̃)/C∗(p

−1(Y0), where p : X̃ → X is the universal covering map.

4.2 Relative homology in local coefficients and ribbon

concordances

In this section we will study the relative homology groups of a ribbon concordance in order
to find points where R(W ) → R(Y0) is locally surjective.

We wish to understand when the conditions for the implicit function theorem are satisfied.
Given a representation ρ : Γ → SL2C, we define Adρ sl2C as the left Z[Γ] module defined by
the action γ · v = Adρ(γ)(v).

Proposition 4.2.1. Given a representation ρ ∈ R(W ), the cochain map

∂∗ : C1(W,Y0; Adρ sl2C) → C2(W,Y0; Adρ sl2C)

has a matrix presentation given by the expression in Lemma 2.1.8

∂wsi

∂gj

∣∣∣
h⃗
for 1 ≤ i ≤ k, n+ 1 ≤ j ≤ n+ k

where h⃗ is the point in R(W ) ⊂ (SL2C)n+k corresponding to ρ.

Proof. W can be built from Y0 × [0, 1] by attaching k 1-handles and k 2-handles: a 1-handle
for each new generator hi and a 2-handle for each new relator si in the presentation

π1(W ) = ⟨a1, . . . , an, b1, . . . , bk|r1, . . . , rn−1, s1, . . . , sk⟩

This construction lets us write (W,Y0) as a CW pair, and this can be used to compute
the relative (co)homology in twisted coefficients H∗(W,Y0) by taking the universal cover
p : W̃ → W and writing the cellular chain complex C∗(W̃ )/C∗(p

−1(Y0)) as a left-Z[π1(W )]-
module.

What results is a chain complex of the form

0
⊕

k Z[π1(W )]
⊕

k Z[π1(W )] 0∂

The basis elements {b̃1, . . . , b̃k} of C1 are lifts of the 1-cells attached to Y0 corresponding
to the new generators bi. Likewise, the basis elements {s̃1, . . . , s̃k} of C2 correspond to
lifts of the 2-cells attached according to the new relators si in the presentation of π1(W ).
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Then the map ∂ is given by ∂s̃i =
∑k

j=1
∂si
∂bj

b̃j where ∂si
∂bj

∈ Z[π1(W )], thus the matrix for ∂

corresponding to our chosen bases is

(∂)ij =
∂sj
∂bi

To find the twisted cohomology, we construct the cochain complex

Ci = HomZ[π1(W )](Ci, sl2C)

where sl2C is a left Z[π1(W )] module via the Adρ action u 7→ ρ(γ)uρ(γ)−1, giving the chain
complex

0 C3k C3k 0
∂∗

For an fij ∈ C1 sending b̃i to ej a basis vector of sl2C and sending all other b̃m to 0, and
for any 1 ≤ l ≤ k we have

(∂∗f)(s̃l) = (f ◦ ∂)(s̃l) = f

(
∂sl
∂bi

b̃j

)
= Adρ(

∂sl

∂b̃i
)(ej)

This is exactly the expression in Lemma 2.1.8, hence the result follows.

Corollary 4.2.2. H1(W,Y0; Adρ sl2C) = 0 if and only if R(FW,Y0) ⊂ (SL2C)n+k satisfies the
hypotheses of the implicit function theorem at ρ to be written implicitly in terms of the last
k entries of (SL2C)n+k.

Proof. By the previous proposition, ∂∗ is full rank and H1(W,Y0; Adρ sl2C) = 0 exactly when
the Jacobian matrix used in the implicit function theorem is full rank.

Note that while R(FW,Y0) depends on group presentations, H1(W,Y0; Adρ) does not. This
fact lends itself to the following definition:

Definition 4.2.3. Define a representation ρ ∈ R(W ) to be an implicit point of R(W ) when
H1(W,Y0; Adρ sl2C) = 0. By the implicit function theorem, R(ι0) is locally a homeomor-
phism near ρ in the standard topology.

We now restrict to the case of ρ ∈ R(W ) being a diagonal representation. Any diagonal
representation ρ is determined by ρ(µ) =

(
λ 0
0 λ−1

)
, the matrix the meridian µ is sent to.

Since conjugating a 2 × 2 matrix by this diagonal matrix does nothing to the top left
and bottom right entries and multiplies the other two entries by λ2 or λ−2, the adjoint
representation Adρ sl2C decomposes as the direct sum C⊕Cλ2 ⊕Cλ−2 , where the C with no
subscript denotes the trivial representation on C and Cλ2 denotes the representation on C
on which the meridian acts on the left by multiplication by λ2.
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Since cohomology in local coefficients splits along direct sums, if we want to understand
H1(W,Y0; Adρ sl2C) we need to understand for which values of x is H1(W,Y0;Cx) ̸= 0. We
would like to consider homology instead of cohomology for the purposes of using the Alexan-
der polynomial. Given the earlier discussion, switching between homology and cohomology
can be confusing for the left-module Cx, since the left action is also a right action, so we
denote C′

x as Cx with the exact same action treated as a right action. Thus Cx = C′
1/x

Lemma 4.2.4. For any x ∈ C∗, H1(W,Y0;Cx) ∼= H1(W,Y0;C1/x)

Proof. This follows from the fact that the matrices of ∂∗ : C1(W,Y0;Cx) → C2(W,Y0;Cx)
and Id⊗∂ : C2(W,Y0;C1/x) → C1(W,Y0;C1/x) as maps of C-vector spaces are adjoint. To
see this, let ϕ : π1(W ) → Z be the homomorphism sending the meridian µ 7→ 1, and for any
x ∈ C∗ define xϕ : Z[π1(W )] → C as the ring homomorphism which sends any g ∈ π1(W ) to
xϕ(g).

Then our usual Z[π1(W )]-bases {s̃1, . . . , s̃k} of C2(W̃ )/C2(p
−1(Y0)) and {b̃1, . . . , b̃k} of

C1(W̃ )/C1(p
−1(Y0)) induce C-bases {1⊗s̃1, . . . , 1⊗s̃k} on C2(W,Y0;C1/x), {1⊗ b̃1, . . . , 1⊗ b̃k}

on C1(W,Y0;C1/x), {u1, . . . , uk} on C2(W,Y0;Cx), and {v1, . . . , vk} on C1(W,Y0;Cx).
As before,

∂∗(vi) =
∑
j

xϕ(
∂sj
∂hi

)uj

Meanwhile, since Ci(W,Y0;C1/x) = C1/x⊗(C2(W̃ )/C2(p
−1(Y0))) = C′

x⊗(C2(W̃ )/C2(p
−1(Y0)))

we have

(Id⊗∂)(1⊗ s̃i) = 1⊗ (
∑
j

∂si
∂bj

b̃j) =
∑
j

(
xϕ(

∂si
∂bj

)⊗ b̃j

)
From these two computations it follows that the corresponding matrices are adjoint,

therefore rank ∂∗ = rank Id⊗∂ and thus dimH1(W,Y0;Cx) = dimH1(W,Y0;C1/x) = k −
rank ∂∗

The matrix M(x) defined by Mij(x) = xϕ( ∂si
∂bj

) represents the linear transformation

Id⊗∂ : C2(W,Y0;C1/x) → C1(W,Y0;C1/x) and is therefore a presentation matrix for the
C-module H1(W,Y0;C1/x). Since Mij(x) is square, H1(W,Y0;C1/x) = 0 if and only if
detM(x) ̸= 0.

We can study the values of x for which this occurs by replacing x with the formal variable
t, in which case M(t) is a matrix with entries in Z[t, t−1]. In fact, M(t) itself is a presentation
matrix for H1(W,Y0;Z[t, t−1]) = 0, where Z[t, t−1] is a (Z[t, t−1],Z[π1(W )]) bimodule, with
left and right actions given by q(t) · p(t) · g = q(t)p(t)tϕ(g).

We now recall the definition of the Alexander polynomial.

Definition 4.2.5. Given a finitely generated Z[t, t−1] module A, the Alexander polynomial
∆(t) is the gcd of the first Fitting ideal of the torsion submodule TA. Denote ∆W,Y0(t) to be
the Alexander polynomial of H1(W,Y0;Z[t, t−1]), and similarly denote ∆Yi

(t) as Alexander
polynomial of H1(Yi;Z[t, t−1]).
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Note that this definition only defines ∆W (t) up to multiplication by a unit of Z[t, t−1].
We need the following collection of facts from [14, Proposition 3.2] and [5, Propositions 2.10,
2.11]

Lemma 4.2.6. 1. Since Q(t) is a flat module over Z[t, t−1], for any chain complex C of
Z[t, t−1] modules the following sequence is exact

0 THi(C) Hi(C) Hi(C ⊗Q(t))

2. Hi(W,Y0;Q(t)) = 0 for all i, so all Hi(W,Y0;Z[t, t−1]) are torsion.

Proposition 4.2.7. The zeroes of ∆W,Y0(t) for t ∈ C∗ are exactly the values of x for which
H1(W,Y0;C1/x) ̸= 0

Proof. By Lemma 4.2.6, H1(W,Y0;Z[t, t−1]) is torsion. Therefore M(t) is a presentation
matrix for the torsion part TH1(W,Y0;Z[t, t−1]), and as a square matrix, its determinant is
∆W,Y0(t). As stated prior, H1(W,Y0;C1/x) = 0 if and only if detM(x) ̸= 0.

Corollary 4.2.8. A diagonal representation ρ ∈ R(W ) sending µ 7→
(
x 0
0 x−1

)
is an implicit

point if and only if ∆W,Y0(x
2) ̸= 0 ̸= ∆W,Y0(x

−2)

Proof. Since ρ is diagonal,

H1(W,Y0; Adρ sl2C) ∼= H1(W,Y0;C)⊕H1(W,Y0;Cx−2)⊕H1(W,Y0;Cx2)

. The first summand is just singular homology and is always 0, while the next two are 0 if
and only if ∆W,Y0(x

2) ̸= 0 ̸= ∆W,Y0(x
−2).

Proposition 4.2.9. ∆W,Y0(t)∆Y0(t) = ∆W (t)

Proof. The long exact sequence for relative homology of the pair (W,Y0) yields

H2(W,Y0;Z[t, t−1]) H1(Y0;Z[t, t−1]) H1(W ;Z[t, t−1])

H1(W,Y0;Z[t, t−1]) H0(Y0;Z[t, t−1]) H0(W ;Z[t, t−1])

The first map is the zero map since the second map is an injection by [14, Proposition 3.4],
and the last map can be seen to be an isomorphism between H0(W ;Z[t, t−1]) = H0(W ) ∼= Z
and H0(Y0;Z[t, t−1]) = H0(Y 0) ∼= Z where W and Y 0 are infinite cyclic covers. Thus, the
second to last map must be the zero map and the 2nd, 3rd, and 4th terms lie in a short
exact sequence.
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0 TH1(Y0;Z[t, t−1]) TH1(W ;Z[t, t−1]) TH1(W,Y0;Z[t, t−1]) 0

[5, Proposition 2.11] shows that for X = Y0, Y1, or W , we have H1(X;Q(t)) = 0 and thus
H1(X;Z[t, t−1]) is torsion. This fact together with Lemma 4.2.6, means that our short exact
sequence is in fact a short exact sequence of torsion modules.

By [25, Proposition 5], the Alexander polynomials of these torsion modules satisfy ∆W (t) =
∆W,Y0(t) ·∆Y0(t)

Note that [14] already established that ∆Y0(t)|∆W (t) and ∆W (t)|∆Y1(t), Proposition 4.2.9
simply gives more information about the quotient ∆W (t)/∆Y0(t).

All of the results of this section come together to give the following result,

Theorem 4.2.10. If ∆W (t) = ∆Y0(t) then any diagonal representation ρ ∈ R(W ) is an
implicit point. In particular, this occurs when ∆Y0(t) = ∆Y1(t).

Proof. By Proposition 4.2.9 we know ∆W,Y0 = 1. Then by Corollary 4.2.8, all diagonal
representations are implicit points

4.3 Sequences of ribbon concordances

Let’s now analyze how the results of the previous section can be used to study infinite
sequences of ribbon concordances. Let Cdiag(X) ⊂ R(X) for X = Yi or W be the curve of
diagonal representations, parameterized by ρ(µ)1,1 the upper left entry of ρ(µ). Note that
Cdiag(Y1) = Cdiag(W ) and R(ι0) maps Cdiag(W ) isomorphically to Cdiag(Y0), and both maps
preserve ρ(µ)1,1.

Proposition 4.3.1. If an irreducible component V of R(Y0) intersects Cdiag(Y0) at ρ(µ)1,1 =
x and ∆W,Y0(x),∆W,Y0(x

−1) ̸= 0 then R(W ) contains an irreducible component V ′ which
intersects Cdiag(W ) at ρ(µ)1,1 = x and maps dominantly to V .

Proof. Let ρ ∈ Cdiag(Y0) be the point of intersection with V , and let ρ′ ∈ Cdiag(W ) be its lift.
By our assumption that ∆W,Y0(x),∆W,Y0(x

−1) ̸= 0, ρ′ is an implicit point. This means some
open subset U of V in the standard topology contains ρ and lifts to U ′ ⊂ R(W ) containing
ρ′. The irreducible component V ′ of R(W ) containing U ′ then contains U in its image, and
since U is Zariski dense in V , V ′ maps dominantly to V .

Since V ′ is locally homeomorphic to V , dimV ′ = dimV . If we define Sdiag(X) for
X = Yi or W to be the set of irreducible components of R(X) which intersect Sdiag(X), and
we define dimSdiag(X) as the multiset of dimensions of components of Sdiag(X), then we
have the following corollary.

Corollary 4.3.2. If ∆W,Y0(t) = 1 then dimSdiag(Y1) ≥ dimSdiag(W ) ≥ dimSdiag(Y0) where
≥ is the lexicographic ordering.
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Proof. This follow from the previous proposition and the fact that Sdiag(W ) ⊂ Sdiag(Y1).

Proposition 4.3.3. Given an infinite descending sequence of ribbon concordances K0 ≥C0

K1 . . ., there is some m for which if i ≥ m then Sdiag(Ki) = Sdiag(Ci).

Proof. Since ∆Kl+1
|∆Kl

for all l, there is some n for which ∆Ki+1
= ∆Ki

for all i ≥ n.
Then ∆Ci,Ki+1

(t) = 1, giving an infinite descending chain of multisets dimSdiag(Kn) ≥
dimSdiag(Cn) ≥ dimSdiag(Kn+1) ≥ . . .. Such a sequence must eventually become constant,
meaning there is some m for which j ≥ m means dimSdiag(Kj) = dimSdiag(Cj). But since
Sdiag(Cj) is a closed subset of Sdiag(Kj), this means Sdiag(Cj) = Sdiag(Kj).

In other words, for any infinite descending chain of ribbon concordances, eventually R(Ci)
will contain all the components of R(Ki) which contain diagonal representations.

If we would like similar results on character varieties, we should note that the character
map χ sends Cdiag to Xred, the set of characters of reducible representations. We need to
understand the behavior of components of the character variety which intersect Xred. For
any irreducible component V of the character variety, there is a corresponding irreducible
component V ′ of the representation variety whose image under χ is V . If V intersects Xred

then V ′ contains a reducible representation. In fact, it must contain a diagonal representation
by the following lemma.

Lemma 4.3.4. If an irreducible component V of a representation variety R(Γ) contains a
reducible representation, it must also contain a diagonal representation.

Proof. Any automorphism of R(Γ) must map irreducible components to irreducible compo-
nents. Therefore the conjugation action of SL2C on R(Γ) induces a homomorphism SL2C to
Sym(S), the group of permutations of the finite set S of irreducible components. However,
SL2C is a connected lie group and has no nontrivial continuous homomorphism to a discrete
group. Therefore for any ρ ∈ R(G) belonging to an irreducible component V and for any
M ∈ SL2C, it follows that MρM−1 must also belong to V .

If ρ ∈ V is reducible then it is conjugate to an upper triangular representation ρ′. Let
M(t) =

(
t 0
0 t−1

)
, so that M(t)ρ′M(t)−1 approaches a diagonal representation as t → 0. Since

V is a closed set, it must contain this limiting diagonal representation.

Together with Proposition 4.3.3, this implies the following corollary

Corollary 4.3.5. Given an infinite descending sequence of ribbon concordances K0 ≥C0

K1 . . ., there is some m for which if i ≥ m then for all irreducible components of V ⊂ X(Ki)
intersecting Xred(Ki), it is also true that V ⊂ X(Ci).

Combining this result with Lemma 3.1.5 yields

Corollary 4.3.6. For any infinite descending sequence of concordances K1 ≥ K2 . . ., if each
Ki is hyperbolic with canonical component intersecting the curve of abelian characters then
there is some n for which Km = Kn if m ≥ n.
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Any two-bridge knot almost certaintly satisfies this condition on the canonical compo-
nent: as shown in Section 3.2, the character varietes of two-bridge knots are plane curves,
so therefore the canonical curve generically interescts the curve of characters of reducible
reprentations. In particular, the figre-eight knot satisfies this. As for non two-bridge knots,
the same logic should suggest a canonical component is unlikely to contain a reducible char-
acter, but the author is unaware of any enumeration of hyperbolic knots which do or do not
contain reducible characters.
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Chapter 5

Future Work

Recall the pullback diagram

R(FW,Y0) R(W )

(SL2C)n R(Y0)

R(ιF ) R(ι0)

and the fact that the left map is dominant by Corollary 2.1.9.
The image A = R(ιF )(RW,Y0) of a polynomial map must be a union of locally closed sets

in the Zariski topology by Chevally’s theorem, which means the complement Ac is as well.
Because R(ιF ) is dominant, Ac must be a union of open subsets of closed subsets of (SL2C)n
with codimension at least 1. Generically, the components of π1(Y0) should intersect Ac

transversely, which would imply R(ι0) is dominant. However, there is no obvious guarantee
that this is the case for all possible ribbon concordances.

Question 5.0.1. Is R(ι0) dominant on each component of R(Y0)?

For example, despite having R(ι0) not surjective, all the examples of Section 3.2 have
R(ι0) dominant,

Let’s analyze a specific case that could arise if R(ι0) is not dominant.

Lemma 5.0.2. If S is an irreducible component of R(FW,Y0) such that pS := R(ιF )|S is
dominant, and if V is an irreducible component of R(Y0) such that pS(S)∩ V is not Zariski
dense but is nonempty, then for any ρ ∈ pS(S) ∩ V , p−1

S (ρ) has dimension at least 1.

Proof. The generalized Principal Ideal Theorem [13, Theorem 0.2] says that the codimension
of p−1

S (V ) as a subset of S is less than or equal to the codimension of V as a subset of (SL2C)n.
Since dimS ≥ dim(SL2C)n by the dominance of pS, this implies dim p−1

S (V ) ≥ dimV .
However, since the closure of pS(S) ∩ V is a proper closed subset of V by hypothesis, then
dim pS(S) ∩ V < dim p−1

S (V ).
This implies any point in ρ ∈ pS(S) ∩ V has fiber p−1

S (ρ) of dimension at least 1.
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For such an ρ ∈ R(Y0), there must exist a curve Cρ ⊂ p−1
S (ρ) ⊂ R(W ). If ρ is irreducible,

then any ρ′ ∈ Cρ is also irreducible. The characters of Cρ must then project to a curve
in X(W ), because if not, they would all have the same character, implying they are all
conjugate. However, since R(ι0) is equivariant, thiis would give a family of g ∈ SL2C fixing
ρ. However, the only g ∈ SL2C fixing an irreducible representation are ± Id [30, Proposition
1.1.3].

Having a curve of characters in X(W ) lying over a fixed character χρ ∈ X(Y0) has
interesting implications which should be explored further: By the machinery of [9], such
a curve induces a nontrivial splitting of π1(W ) as a graph of groups such that π1(Y0) lies
in one of the vertex groups. Thus pulls back to a splitting of π1(Y1), and would induce a
corresponding system of incompressible surfaces in Y1. It would be interesting to understand
what such a system of surfaces says about the topology of the ribbon concordance.

The second possible outcome under the hypotheses of Lemma 5.0.2 is that ρ is reducible.
But section 4.3 shows that ρ must be an element of a component containing a diagonal
representation, and that if Y0 is late enough in the sequence of ribbon concordances, such
components are mapped to dominantly since all diagonal representations are implicit points.

Finally, the most mysterious case is what happens if pS(S) ∩ V = ∅. One possible
approach is to compactify S in the style of [29], and see what it means to map ideal points
of S to V . This approach seems less powerful than getting a curve in X(W ) mapping to ρ,
since it’s not obvious how an action of RY,W0 on an R−tree will be useful.

Another potential area of research is with Azumaya algebras. In [4, Theorem 1.8], Chin-
burg, Reid, and Stover give number-theoretic conditions for the canonical component C of
a hyperbolic knot to admit a real curve of characters SU(2) representations. However, one
of their hypotheses is a condition on the Alexander polynomial ∆K(t) to ensure that the
reducible characters of C are smooth points. In the context of using this result to study an
infinite descending chain of ribbon concordances, Corollary 4.3.6 applies exactly in the case
that infinitely many of the knots have canonical components with reducible representations.
The remaining question is therefore

Question 5.0.3. What can be said about an infinite descending sequence of hyperbolic knots
K0 ≥ K1 . . . which all satisfy the hypotheses of [4, Theorem 1.8]?

Finally, the fact Theorem 3.3.3 doesn’t necessarily apply to all hyperbolic Montesinos
knots begs further investigation. The general idea of Theorem 3.3.3 is to find a family of
hyperbolic cone manifolds on S3 with singular locus K and cone angle α ∈ [0, α0) and take
their holonomies to get a path in the canonical component C. When α0 corresponded to the
cone angle of a Euclidean cone manifold, this gave a path that ended on a curve of SU(2)
representations.

Cooper, Hodgson, and Kerchoff’s proof of the orbifold theorem [7] studies exactly this
setup, and concludes that if the hyperbolic cone manifolds terminate at α0 < π, then there
is a Euclidean cone manifold with cone angle α0. If α0 = π however, a much wider range of
geometries can occur.
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Because the branched double cover of a Montesinos knot is Seifert fibered [28], it admits
1 of 6 possible geometries which then induces a geometry on S3 with singular locus K and
cone angle π.

Question 5.0.4. What can we say about the canonical component C of a hyperbolic Mon-
tesinos knot based on its geometric cone structure at cone angle α = π?

The recurring theme of this dissertation is that canonical components containing SU(2)
representations or reducible representations behave well with respect to infinite chains of
ribbon concordances. It would be interesting to see which of these can be inferred from the
various geometric cone structures.
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