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ABSTRACT OF THE THESIS

Policy Optimization for Long-Term Fairness in Decision Systems

by

Eric Yang Yu

Master of Science in Computer Science

University of California San Diego, 2024

Professor Sicun Gao, Chair

Long-term fairness is an important factor of consideration in designing and deploying

learning-based decision systems in high-stake decision-making contexts. Recent work has

proposed the use of Markov Decision Processes (MDPs) to formulate decision-making with

long-term fairness requirements in dynamically changing environments, and demonstrated major

challenges in directly deploying heuristic and rule-based policies that worked well in static

environments. We show that policy optimization methods from deep reinforcement learning can

be used to find strictly better decision policies that can often achieve both higher overall utility

and less violation of the fairness requirements, compared to previously-known strategies. In

particular, we propose new methods for imposing fairness requirements in policy optimization

vii



by regularizing the advantage evaluation of different actions. Our proposed methods make it

easy to impose fairness constraints without reward engineering or sacrificing training efficiency.

We perform detailed analyses in three established case studies, including attention allocation in

incident monitoring, bank loan approval, and vaccine distribution in population networks.
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Chapter 1

Long-Term Fairness in Decision Systems

1.1 Introduction

Learning-based algorithmic decision systems are increasingly used in high-stake decision-

making contexts. A critical factor of consideration in their design and deployment is to ensure

fairness and avoid disparate impacts on the marginalized populations [25]. Although many

approaches have been developed to study and ensure fairness in algorithmic decision systems

[25, 13], most of the literature studies fair decision-making in a one-shot context, meaning they

make the decision that maximizes fairness in a static setting. This approach fails to explicitly

address how decisions made in the present may affect the future status and behaviors of targeted

groups, which in turn can form a feedback loop that negatively impacts the effectiveness and

fairness of the decision-making strategies. In other words, the implications associated with

long-term fairness, or fairness evaluated over a time horizon rather than in a single time step, are

largely under-studied.

The long-term impact of such decision systems has recently been explored through

explicit modeling of the dynamics and feedback effects in the interactions between the decision-

makers and the targeted populations [16, 28, 36, 24, 14]. In particular, the recent work of [16] has

demonstrated, with concrete simulation examples, how long-term fairness can not be analyzed in

closed forms, but requires the use of more computational analysis tools based on simulations.

They proposed to formulate such long-term dynamics and the interaction between the decision-
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making and the environment in the framework of Markov Decision Processes (MDPs). This

formulation and the corresponding simulation environments make it possible to take advantage

of recent advances in deep reinforcement learning (RL) for finding new decision-making policies

that can achieve both better overall utility and fairness, compared to manually designed heuristic

and rule-based strategies.

One challenge of directly using RL-based methods for learning decision-making policies,

however, is that the goal of decision systems in the high-stake decision-making context is often

inherently multi-objective. On one hand, from a utilitarian perspective, an effective policy should

try to maximize the overall expected utility of the decisions for all targeted groups. On the

other hand, constraints such as the fairness requirements should be explicitly enforced to prevent

biased policies that negatively treat certain groups in temporary or historically disadvantageous

situations. Since the standard RL framework for policy optimization only optimizes a policy with

respect to a monolithic reward function, it can be difficult to enforce these fairness requirements

during training. An intuitive approach for enforcing fairness in standard RL is to define a

penalty term in the objective function that captures the magnitude of violation of the fairness

requirements by the policy. However, this approach would require the RL user to define the

trade-off between the utilitarian objective and the fairness objective, typically as weights on

each objective. This requirement of reward engineering can make it hard to justify the policies

obtained by the RL algorithms, because one can question whether the predefined weights have

introduced problematic assumptions and trade-offs between the objectives in the first place.

The monolithic reward definitions may also incentivize the learning agent to perform reward

hacking [29], or adopt undesirable behaviors that exploit the wrong trade-off between the

different objectives, such as conservatively accumulating incremental rewards without achieving

the overall goal just to avoid the penalty of violating constraints.

One approach for addressing such problems is the framework of Constrained Markov

Decision Processes (CMDPs) [2], which allows the RL user to explicitly declare rewards

and constraints and use RL algorithms such as Constrained Policy Optimization (CPO) [1] to
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simultaneously maximize reward and minimize constraint violation over time. However, the

CMDP formulation only requires the learning algorithms to lower the expectation of constraint

violation asymptotically, i.e. achieving constraint-abiding policies in a probabilistic sense if

training time is allowed to be infinitely long, and can not ensure fairness for policies trained in

practice. Moreover, in comparison to standard policy optimization methods such as Proximal

Policy Optimization (PPO) [31], algorithms for CMDPs can take significantly longer, and the

policies obtained after finite training periods may still have high constraint-violation rates and

poor performance.

We propose new methods for enforcing long-term fairness properties in decision systems

by taking a constrained RL approach. At a high level, we enforce fairness requirements at

the policy gradient level during policy optimization with minimal additional computational

overhead. By enforcing fairness constraints through advantage regularization rather than at

the objective level, we avoid reward engineering or hacking on the decision problems and aim

to algorithmically optimize the trade-off between utility and fairness. At the same time, the

proposed learning algorithms can train the decision policies much more efficiently than existing

CMDP methods. Finally, the simplicity of our approach enables easy integration with off-the-

shelf policy optimization algorithms in RL. Our methods are inspired by Lyapunov stability

methods for improving stability in control systems [19, 30, 23, 4, 7, 6]. We show that fairness

properties can be handled in a similar framework with our specific design of the constraint

regularization terms. In sum, our main contributions are as follows:

• We show that RL approaches are effective for designing policies that can achieve long-

term fairness, where existing heuristic and rule-based approaches do not perform well [16].

Specifically, we demonstrate that policy optimization methods can find strictly better decision

policies that achieve higher overall utility and violate less of the fairness requirements than

previously-known strategies.

•We propose novel methods for imposing fairness requirements in standard policy optimization

procedures by regularizing the advantage evaluation during the policy gradient steps. This
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approach uses control-theoretic frameworks to enforce fairness constraints and avoids reward

engineering issues in the decision-making context [16].

We evaluate our approaches in several established case studies using the simulation

environments [16, 3], such as incident monitoring, bank loan approval, and vaccine distribution

for infectious diseases in population networks. We find that the proposed policy optimization

with advantage regularization is able to find policies that perform better than previously-known

strategies, both in achieving higher overall utility and lower violation of the fairness requirements

in all the case study environments.

1.2 Related Work

Long-term Fairness in Algorithmic Decision-Making.

The work in [16] is the first to formulate long-term fairness problems in decision systems

as Markov Decision Processes (MDPs). The simulation environments proposed in the work

allow us to consider the agent design problem in ways that are to other RL problems such as

robot control. Others have also shown that long-term fairness is nontrivial, and analyzing it in the

context of a static scenario can be harmful because it contradicts fairness objectives optimized

in static settings [21, 22, 26]. For example, [21, 26] find that providing a direct subsidy for a

disadvantaged group with the purpose of improving some institutional utility actually widens

the gap between advantaged and disadvantaged groups over time, which further shows that

long-term fairness is difficult to achieve. There have been a growing number of studies on

fairness in the long-term with various algorithmic approaches [28, 36, 24, 14]. [24] proposes a

graph-based algorithm to improve fairness in recommendations for items and suppliers. They

relate fairness to breaking the perpetuation of bias in the interactions between users and items.

[14] proposes the use of causal directed acyclic graphs (DAGs) as a paradigm for studying

fairness in dynamical systems. They argue that causal reasoning can help improve the fairness

of off-policy learning, and if the underlying environment dynamics are known, causal DAGs

can be used as simulators for the models in training. [36] provides a framework for studying
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long-term fairness and finds that static fairness constraints can either promote fairness or increase

disparity between advantaged and disadvantaged groups in dynamical systems. [17] studies how

to maintain long-term fairness on item exposure for the task of splitting items into groups by

recommendation, using a modified Constrained Policy Optimization (CPO) procedure [1]. [9]

introduces the fairness notion of return parity, a measure of the similarity in expected returns

across different demographic groups, and provides an algorithm for minimizing this disparity.

Several recent works have also considered fairness-like constraints in deep reinforcement

learning in various different contexts. [8] designs fairness optimized actor-critic algorithms in

deep reinforcement learning. They enforce fairness by multiplicatively adjusting the reward

for fairness utility optimization in standard actor-critic reinforcement learning. The work of

[32] studied multi-dimensional reward functions for MDPs motivated by fairness and equality

constraints, and performed theoretical analysis on the approximation error with respect to the

optimal average reward. Our focus is on proposing a practical algorithm for making fair decisions

in the dynamic environments formulated in [16] and show that policy optimization through

advantage regularization can find the neural network policies that significantly outperform

previously known strategies in the dynamic setting.

Policy Optimization under Constraints.

The most widely-adopted formulation of RL with a set of constraints is constrained

Markov Decision Processes (CMDPs) [2, 35]. Safety constraints are incorporated by augmenting

the standard MDP framework with constraints over expectations of auxiliary costs. When models

are known in discrete tabular settings, a CMDP is solvable using linear programming (LP) [2].

However, results are limited for model-free scenarios where model dynamics are unknown, and

for large-scale or even continuous state action spaces [1, 11, 35]. More importantly, both objective

and constraint in high-dimensional CMDP settings, where high-capacity function approximators

are adopted, are non-convex. Recent methods in solving CMDPs in continuous spaces can be

divided into two categories, in terms of ways to incorporate constraints. In soft constrained
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RL, it is a common practice to apply Lagrangian method with learnable Lagrangian multipliers

and solve the converted unconstrained saddle-point optimization problem using policy-based

methods [5, 10, 33]. Such Lagrangian methods achieve overall safety when policies converge

asymptotically, nevertheless allowing possible violations during training. On the contrary,

hard-constrained RL aims to learn safe policies throughout training. Representative works

include Constrained Policy Optimization (CPO) based on trust region [1], surrogate algorithms

with stepwise [15] and super-martingale [27] surrogate constraints, as well as Lyapunov-based

approaches [11, 12]

1.3 Acknowledgements

Chapter 1 is published in full in [34] in the Conference on Neural Information Processing

Systems (NeurIPS) 2022. The thesis author, Eric Yang Yu, is also the first author of [34].
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Chapter 2

Policy Optimization with Advantage Regu-
larization

In long-term fairness studies [16], fairness is evaluated over a time horizon where

the agent interacts with the environment, and the environment can change in response to the

interactions. Simulations following the MDP framework is one way to analyze fairness over time

and systematically come up with strategies for maximizing fairness in the long-term rather than

in a single step. MDPs naturally incorporate the idea that actions made in the present can have

accumulating consequences on the environment over time. Long-term fairness is evaluated with

metrics that describe the consequences made by an agent’s policy on the different subgroups in

an environment over time. These metrics are computed at each step of the MDP, and include

data collected from the past time steps.

2.1 Preliminaries

Formally, an MDP is defined as M = ⟨S ,A , f ,r,γ⟩ with the following components. S

denotes the state space, and A the action space. The transition function f : S ×S ×A → [0,1]

determines the probability f (s′|s,a) of transitioning into state s′ from state s after taking action

a. We consider general forms of reward functions r : S ×A ×S → R defined over transitions.

We write πθ to denote a stochastic policy πθ : S ×A → [0,1] parameterized by θ . The goal of

policy optimization is to maximize the expected γ-discounted cumulative return
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J(θ) = Es0,a0,...

[
∞

∑
t=0

γ
tr(st ,at ,st+1)

]
. (2.1)

Policy optimization methods estimate the policy gradient and use stochastic gradi-

ent ascent to directly improve policy performance. A standard gradient estimator is to use

∇θ logπθ (at |st)Ât , where πθ is a stochastic policy and Ât estimates the advantage that represents

the difference between the Q value of an action compared with the expected value of a state, to

indicate whether an action should be taken more frequently in the future. The gradient steps

will move the distribution over actions in the right direction accordingly. The expectation is

estimated by the empirical average over finite batch of samples. The proximal policy optimization

algorithm (PPO) [31] applies clipping to the objective function to remove incentives for the

policy to change dramatically, using:

JCLIP(θ)← Ê
[
min

(
Rt(θ)Ât ,clip(Rt(θ),1− ε,1+ ε)Ât

)]
, (2.2)

where Rt(θ) = πθ (at |st)/πθold(at |st) and ε is a hyperparameter. The clipping ensures the gradient

steps do not overshoot in the policy parameter space in each policy update.

2.2 Fairness Constraint Advantage Regularization

We modify the PPO algorithm to be fairness-constrained during policy optimization in

the following way. First, in addition to the original MDP with only the overall utility as reward

function r, we declare a separate fairness metric ∆ : S→ R≥ as a function of the state, where

smaller ∆-value indicate better satisfaction of the fairness constraints. We then task the PPO

algorithm to learn a decision policy to maximize the expected discounted future return J, while

regulating the advantage term to decrease ∆-value in each step. Suppose fairness at a particular

time step can be modeled by the fairness constraint metric ∆(st). We minimize this term by

8



Algorithm 1. Policy Optimization with Constraint Advantage Regularization (POCAR)
1: Initialize policy network πθ and value function network Vφ

2: for k = 1,2 . . . do
3: Initialize replay buffer B as /0
4: for episode = 1, . . . ,E do
5: for t = 1,2 . . . ,T do
6: Sample at ∼ πθ (at |st)
7: Sample st+1 ∼ f (st+1|st ,at)
8: Compute ∆t ≡ ∆(st) and ∆t+1 ≡ ∆(st+1)
9: B← B∪{st ,at ,rt ,st+1,∆t ,∆t+1}

10: end for
11: end for
12: for each policy gradient step do
13: Sample mini-batch {st ,at ,rt ,st+1,∆t ,∆t+1}N from B
14: Compute advantages Â(st ,at) (using any advantage approximation method) based on Vφk

15: Âβ (st ,at)← β0Â(st ,at)+β1min(0,−∆t +ω)+β2

{
min(0,∆t −∆t+1) if ∆t > ω

0 otherwise
16: Rt(θ)← πθ (st ,at)/πθk(st ,at)
17: JCLIP(θ ,β )← Ê

[
min

(
Rt(θ)Âβ (st ,at),clip(Rt(θ),1− ε,1+ ε) Âβ (st,at)

)]
18: θ ← θ +αθ ∇θ JCLIP(θ ,β )
19: φ ← φ +αφ ∇φ Ê

[
(Vφ (st)−G(st))

2
]

▷ G(st)← ∑
T
i=0 γ irt+i

20: end for
21: end for

modifying the advantage function in PPO to:

Âβ (st ,at) = β0Â(st ,at)+β1min(0,−∆(st)+ω)+β2


min(0,∆(st)−∆(st+1)) if ∆(st)> ω

0 otherwise
(2.3)

where Â(st ,at) is the original PPO advantage. The two terms added to the original advantage

estimator are designed as follows.

• The value-thresholding term min(0,−∆(st)+ω) penalizes the advantage value for (st ,at) if

the fairness metric ∆(st) is too high. That is, if it is higher than some threshold ω , then this term

evaluates to a negative value. On the other hand, if ∆(st) is already less than ω , then the term

evaluates to zero, and does not affect the advantage value. On a high level, this term transforms

the advantage landscape by adding a region of attraction around some equilibrium point, which

9



specifies a tolerable violation of ∆.

• The decrease-in-violation term min(0,∆(st)−∆(st+1)) is activated when the value of ∆(st)

is larger than the tolerable threshold ω . When that is the case, this term penalizes the overall

advantage if the degree of fairness violation does not decrease in the transition from st to st+1.

If either the violation is decreasing or is less than ω , then this term does not affect the overall

advantage. The decrease-in-violation term imposes the soft requirement of negative-definiteness

of Lie derivatives in the standard Lyapunov conditions. Here we use the the finite difference of

∆(st)−∆(st+1) to measure the dynamics of the fairness metric over time.

For both of the advantage regularization terms, the hyperparameters ω,β0,β1, and β2

are positive numbers that can be tuned. The design of these terms uses the idea of Lyapunov

stability [19], which is a powerful framework in control theory for stabilization problems such as

reducing the error signal, which can be used to model the violation of the fairness requirement

over time.

The full pseudocode for policy optimization with advantage regularization is shown in

Algorithm 1. At each iteration of the policy update loop (Lines 2-21), we sample trajectories

from the system f , and compute the fairness constraint ∆(st) and ∆(st+1) (Line 8) to save into

buffer B alongside state st , action at , reward st , and next state st+1 (Line 9). In each policy update

step, we modify the advantage function to include the two additional fairness regularization

terms as described above.

2.3 Connection with Lyapunov Methods for Stabilization
Control

In the proposed methods, we are essentially considering the problem of ensuring long-

term fairness as a control problem: the goal is to obtain a control policy to regulate the entire

system to improve its satisfaction of the fairness properties over time. Consequently, we are

implicitly using control-theoretic methods from the Lyapunov stability framework [19, 6, 30,

10



23, 4] in our approach, because long-term fairness is essentially about stability properties: we

wish to control the system such that the violation of fairness reduces over time, and ideally gets

controlled to be under a certain threshold. This connection makes it possible to use Lyapunov

methods to derive the regularization terms.

2.4 Acknowledgements

Chapter 2 is published in full in [34] in the Conference on Neural Information Processing

Systems (NeurIPS) 2022. The thesis author, Eric Yang Yu, is also the first author of [34].
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Chapter 3

Experiments

We evaluate the proposed approaches in three case studies as proposed in [16, 3], in-

cluding attention allocation for incident monitoring, credit approval for lending, and disease

control in population networks. In all environments, we compare the performance of policies

found by the proposed methods with known human-designed policies, or strategies designed by

humans that do not involve any learning-based algorithmic design. We also compare different

ways of imposing the fairness constraints in the policy optimization procedures, as well as the

Constrained Policy Optimization (CPO) [1] approach, to evaluate the effectiveness of advantage

regularization techniques.

First, we broadly define several common agents across the experiments. The greedy

baseline agent, as the name suggests, is a human-designed policy that maximizes for some

objective without any fairness constraints. The CPO agent is a closely-related RL baseline for us

to compare our advantage regularization approach with. For our proposed method, we evaluate

three variations of PPO-based policy optimization: Greedy PPO (G-PPO) greedily maximizes

the objective without any fairness constraints, Reward-Only Fairness Constrained PPO (R-PPO)

is fairness constrained only at the reward level by adding some variation of −max(0,∆t−ω) to

the reward function where ω thresholds the fairness constraint, and Advantage Regularization

PPO (A-PPO) is fairness constrained only at the policy gradient level by applying Equation 2.3

to PPO during training. Going forward, we will be referring to these three PPO variations and
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their definitions by their short-hand notations (G-PPO, R-PPO and A-PPO) for all experiments.

3.1 Case Study: Attention Allocation for Incident Monitor-
ing

We first consider the problem of attention allocation in a dynamic setting, formulated as

an MDP in [16]. In this problem, an agent is tasked with discovering incidents across several

sites, and does not have a large enough attention span to cover all incidents occurring at any

given moment. The site incident rates increase or decrease proportional to the allocated site

attention, making the environment dynamic. We find that training an RL agent in this environment

outperforms the human-designed policy in both utility and fairness over time. Moreover, we

modified the environment to be harder, where the previously known policies perform significantly

worse. We show that policy optimization with advantage regularization continues to work well

in the harder environments as well.

Environment.

Let akt be the discrete attention allocated toward site k at time t, and Rkt be the incident

rate. At each time step, the agent assigns N discrete units of attention across K sites. The

number of incidents occurred at each site is sampled ykt ∼ Poisson(Rkt) and number of incidents

discovered at each site is ŷkt := min(akt ,ykt). The incident rates change proportional to the

attention allocated to each site: if ak,t = 0, then Rk,t+1 = Rk,t +d, otherwise Rk,t+1 = Rk,t−d ·ak,t ,

where d is the parameter that controls how dynamic the environment is. The reward function

promotes incident discovery and penalizes for incidents missed. It is defined r(st) = ζ0 ∑k ŷkt−

ζ1 ∑k(ykt− ŷkt), where ζ is a vector of reward weights.

Fairness Constraint.

The fairness metric to be minimized is:

∆(st) := maxk,k′

∣∣∣∣ ∑t ŷkt

∑t ykt +1
− ∑t ŷk′t

∑t yk′t +1

∣∣∣∣. (3.1)

13



which measures the maximum difference in the ratios between total incidents discovered

and total incidents occurred across all sites.

Agents.

Our baseline agents include the CPO agent and the purely greedy agent [16], which

discovers the most incidents and is considered the most fair out of all agents as evaluated in [16].

The purely greedy agent approximates each site’s incident rate and sequentially allocates each

unit of attention to the site that has the highest probability of inciting an incident to occur. We

compare these baselines with the G-PPO, R-PPO, and A-PPO variations defined above.

Results.

Figure 3.1. The agent reward over time, average incident rate across all sites over time, and delta
summary evaluated over 10 trials for the base and harder attention allocation environments. All
policy optimization algorithms, including the CPO agent, outperform the purely greedy agent
in both reward and fairness. In the harder environment, the purely greedy policy collapses in
performance, and we observe how advantage regularization can be a robust form of imposing
fairness.

We begin our experiments with first evaluating on the base attention allocation environ-

ment, where d = 0.1, N = 6, and k = 5. We observe more interesting results by evaluating on

the harder attention allocation environment, i.e. changing k = 10.
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In the base attention allocation environment in Figure 3.1, every PPO variation outper-

forms the baseline purely greedy agent in terms of reward over time. G-PPO does not perform as

well as R-PPO or A-PPO, which is expected because the evaluation metric includes the fairness

constraint term. Although A-PPO also does not have a fairness term in the objective, having

advantage regularization in this setting allows A-PPO to perform just as well as R-PPO. In terms

of fairness, we observe that G-PPO is the least fair agent as expected. Although the purely greedy

agent does become the most fair agent at the end of the trajectory, R-PPO and A-PPO are more

consistent in how fair they are on average over the entire trajectory. We observe that the CPO

agent does not perform well on the base environment, because its incident rates get pushed to 0

early on in the trajectory in Figure 3.1.

To analyze why PPO outperforms the purely greedy agent in reward and fairness, we

need to interpret their behaviors in Figure 3.1. Here, we observe that the average incident rate

for the purely greedy agent is much higher than that of the PPO agent, so it will miss more

incidents. The purely greedy agent’s incident rate also has the highest standard deviation, which

is consistent with the greedy agent’s behavior of focusing all its attention on each site sequentially.

By reducing the incident rate of a single site at a time but increasing the incident rates at all other

sites, the purely greedy agent pushes the incident rates across sites to oscillate. After becoming

well-trained, the PPO agents find that refining control on the incident rates across sites in this

range allow the agents to maximize on the objective while being consistently fair.

Since any attention placed on a site means the site’s incident rate goes down, it is possible

to push all site incident rates to 0 if K ≥N. However, what happens if we modify the environment

such that N < K and the agent is unable to decrease the incident rates across all sites at once?

After evaluating on this harder environment, our results become more interesting.

In the second row of Figure 3.1 A-PPO now performs significantly better than R-PPO,

both of which achieve higher rewards over time than G-PPO. The CPO agent also does very well,

and actually exceeds A-PPO in reward over time in the beginning of the trajectory. However,

the purely greedy policy collapses in performance. To understand the cause of the baseline
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failing, we look at Figure 3.1. We see that the average incident rate in the purely greedy agent’s

evaluation shoots up uncontrollably. This is a stark contrast from its evaluation on the base

environment, and reveals how this policy may be sensitive to slight changes in the problem

setup. The PPO agents remain relatively consistent in their strategy, and still push the incident

rates to a range in which they can exert a more refined control on the sites. In terms of fairness,

incorporating advantage regularization allows A-PPO to be more fair than R-PPO as observed in

Figure 3.1. Purely greedy agent, despite collapsing in performance, is more fair than the R-PPO

and G-PPO. The CPO agent is also very fair, and actually matches performance with A-PPO.

This tells us that our A-PPO is at least as good as the CPO agent, and can be a very favorable

alternative considering how theoretically it takes longer to train the CPO agent. In fact, in this

experiment we found that empirically our PPO agent trained 2-3x faster on average than the CPO

agent.

We find that in this experiment, decision policies obtained from policy optimization meth-

ods clearly outperform the human-designed policies in both reward and fairness. Incorporating

advantage regularization for fairness performs better than only having a fairness term in the

reward. Advantage regularization also appears to be more robust since in a harder environment,

A-PPO is able to perform the best.

3.2 Case Study: Credit Approval for Lending

Next, we consider credit approval for lending in a dynamic setting [16]. In this envi-

ronment, the agent plays the role of the bank and is tasked with deciding whether to accept or

reject loan requests from a pool of applicants. These decisions affect the underlying population

distribution for future time steps. In our experiments, we find that PPO agents are able to perform

well without the oracle access to the underlying environment, with performance on par with the

baseline strategies that need to make use of such ground-truth information. A-PPO is still the

best policy optimization approach, though the gap between A-PPO and R-PPO is smaller than

16



the previous example because the task is simpler.

Environment.

The agent is presented a stream of loan applicants, each with a discrete credit score

C ∈ {1,2, ...,Cmax} and some group membership variable g ∈ {1,2}. Group 2 is considered

disadvantaged compared to Group 1 with a lower mean of the initial credit score compared to

Group 2. Applicants are uniformly sampled from these two groups. The environment dynamics

change in response to the bank decision (accept or reject) and applicant decision (repay or

default). If a loan request is accepted, the probability that an applicant pays the bank back is

given by the underlying deterministic function of credit score η(C). The higher the applicant

credit score, the more likely they are to pay the bank back. The reward function encourages

high bank profits and is defined r(st) = ζ0(Bt+1−Bt) where B represents the bank’s total cash

reserve.

Fairness Constraint.

The fairness constraint is defined as ∆(st) = maxg,g′|TPRgt−TPRg′t |, where TPRg is the

true positive rate TP
TP+FN for group g. TP is the number of true positives corresponding to when

the agent accepts a loan request and the loan is repaid, and FN is the number of false negatives

corresponding to when the agent rejects a loan request and the applicant would have repaid.

Agents.

We have two baseline policies following the human-designed lending policies in [16].

Our first baseline agent is the greedy policy that attempts to maximize bank profits. The second

baseline agent is the equality of opportunity (EO) agent [20], which maximizes bank profits with

the constraint of equalizing the TPRs between the two groups. We note that to simplify the task,

[16] gives the EO agent oracle access to the underlying distribution of credit scores amongst

both groups and the exact repayment probabilities function η . We later show that RL is able

to achieve similar, if not better, performance compared with the EO agent even without access

17



to the underlying environment information. We also include the CPO agent as our secondary

fairness-constrained deep RL baseline.

The PPO agent observation is the applicant data consisting of their credit score C and

group membership variable g. The action is a binary decision for whether to accept or reject

an applicant’s loan request. Like in the attention allocation environment, we evaluate the three

previously defined PPO variations (G-PPO, R-PPO, A-PPO), but for added stability during

training, we apply a min-max normalization to each term in Equation 2.3 for A-PPO before

performing their weighted sum.

Results.

Figure 3.2. The bank cash over time, loans over time, and delta plots from evaluating on the
lending experiment for 10 trials. We note that in this experiment, the PPO variations make more
profits on average than the baseline algorithms. Although the EO policy is the most fair and
makes a big profit over time, the A-PPO still out-earns the EO policy and is able to maintain a
competitive level of fairness without having oracle access to underlying environment information.
The CPO agent is one of the most fair agents, but fails to profit.

We run experiments with Cmax = 7. From Figure 3.2, it is interesting to see that all the

fairness constrained agents except CPO make a bigger profit than the fairness unconstrained

agents like G-PPO and greedy. To understand this trend, we look at the average number of loans

made across groups by each agent in Figure 3.2. We see that the profit an agent makes roughly

correlates to how many loans they give out on average. This makes sense since an agent cannot

make money unless it gives out loans, and the agents that give out more loans can be interpret as

more willing to take risks for higher rewards.
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3.3 Case Study: Infectious Disease Control in Population
Networks

In our third experiment, we analyze the precision disease control problem [3]. In this

problem, the agent’s task is to vaccinate individuals within a social network to minimize the

spread of a disease. In this experiment, we observe that the PPO variations still outperform the

human-designed policies in both utility and overall fairness. Integrating advantage regularization

appears to have an equal effect as constraining fairness at the reward level only, which we analyze

later. The CPO agent fails to perform well on this environment.

Environment.

A social network N is composed of individuals V connected with edges E. Each individ-

ual has one of three health states defined by {S, I,R} for susceptible, infected, and recovered.

The health of the network is then characterized by vector H ∈ {S, I,R}|V |. At the beginning of

a trajectory, a random individual in N gets infected. For each time step, the infection spreads

from an infected individual to a susceptible individual v under pv
S→I = 1− (1− τ)#I(v,N), where

τ ∈ [0,1] is the probability of spreading and #I(v,N) is the number of infected neighbors of

susceptible individual v in N. Then, probability of recovery is given by pI→R = ρ . At each

time step, the agent is able to allocate one vaccine to give to an individual. Any individual can

receive an unrestricted number of vaccinations, but vaccinating an individual will only have an

effect if they are in the susceptible state. Vaccinations do not roll over over time steps, but the

agent is able to choose not to vaccinate anyone at a time step. The reward function promotes the

healthiness of a population and is given r(st) = ζ0 · (∑
|V |
i=1 1(Hit ̸= I))/|V |.

We define the notion of a community in N by applying the Girvan-Newman algorithm

[18] on the graph. This community detection algorithm progressively removes edges from the

graph by betweenness, which is the number of shortest paths between two nodes that travel

through an edge. We apply this algorithm once to obtain two communities (visualized in the

Appendix).
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Fairness Constraint.

The fairness constraint is defined as

∆(st) = maxc,c′

∣∣∣∣∑t vaccinations givenct

∑t newly infectedct +1
− ∑t vaccinations givenc′t

∑t newly infectedc′t +1

∣∣∣∣, (3.2)

where c is a community. This fairness constraint is inspired by that from the attention allocation

problem, and focuses on minimizing the differences in the ratio of vaccinations to newly infected

individuals over time across communities.

Agents.

The PPO agent observation is the health states H of the network. The action is a number

{1,2, ..., |V |}∪{∅} where ∅ corresponds to not vaccinating anyone. We again use the three

previously defined PPO agents (G-PPO, R-PPO, A-PPO). Similar to the previous case study,

a min-max normalization is applied to each term in Equation 2.3 for A-PPO. We define two

variations of the human-designed policies in [16]. First, the random baseline will randomly

select a susceptible individual to vaccinate, and if there are no more susceptible individuals, then

it will try to vaccinate someone randomly in the graph regardless of status. We also define the

max neighbor (denoted as ”Max”) baseline that will vaccinate susceptible individuals sorted by

number of neighbors in the graph, and do the same for non-susceptible individuals if there are no

more susceptible individuals in the graph.

Results.

We run experiments on the Karate Club graph for 20 time steps per trajectory with

τ = 0.5 and ρ = 0.005. We set the initially infected individual to be the most connected node

in the graph for the most interesting results, and impose a burn-in period where the infection is

allowed to freely spread for one time step.

As seen in Figure 3.3, the PPO agents again outperform the baseline agents in reward and

fairness. A-PPO and R-PPO both collect an equal amount of rewards, with R-PPO being slightly
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Figure 3.3. The reward over time and delta plots generated by evaluating on the precision disease
control environment for 200 trials. We observe that all PPO policies outperform the baseline
policies, with both A-PPO and R-PPO being equally the most fair.

more favorable. The G-PPO and max agents’ rewards fall off as they fail to satisfy the fairness

evaluation objective over time. We observe that the random agent begins with a lower reward,

but increases over time, which can be explained by the fairness analysis next. The CPO agent is

observed to actually perform the worst in terms of utility. In Figure 3.3, A-PPO and R-PPO are

also the most fair, as they both quickly drive the fairness constraint toward zero over time. The

random agent is the next fairest agent, which can be explained by the fact that the random agent

does not discriminate between groups when deciding who to vaccinate next. The G-PPO and

max agents actually increase linearly in delta over time, which also makes sense since neither

agent is constrained for fairness. Although CPO did not perform well in reward, it is actually

one of the most fair agents evaluated here.

This experiment provides an additional insight into how RL agents can outperform

human-designed policies. Here, we observe that A-PPO and R-PPO outperform all other agents

in terms of reward and fairness. Although advantage regularization appears to not have any

significant improvement over fairness constraining at the reward level, this experiment still

serves as an example for how our approach can perform at least as well as reward-only fairness

constraining, and how it can be more robust of a procedure than CPO.
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Chapter 4

Conclusion

We proposed new methods to design fairness-constrained decision-based neural control

policies in long-term fairness problems. We augmented our approach with advantage regulariza-

tion by formulating fairness as a stability property within policy optimization. We demonstrated

the benefits of these methods in several dynamic environments for long-term fairness. Future

work includes extending this framework to other policy optimization algorithms and investigating

how our approach can be extended with stricter fairness-constrained methods.

We remark that our approach only guarantees optimality under the definitions of the

objective and the fairness constraints, and the optimal way to minimize this constraint does not

necessarily correspond to the most socially acceptable way to solve long-term fairness problems.

Thus, fairness obtained through our proposed methods is limited to the design formulation of the

long-term fairness problem. Consequently, it is vital to correctly formulate the objectives and

fairness requirements while being aware of how the fairness requirements imposed on the policy

may induce unexpected and potentially unfair behaviors from a different perspective.
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