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Aim: Genomically matched trials in primary brain tumors (PBTs) require recent tumor sequencing. We eval-
uated whether circulating tumor DNA (ctDNA) could facilitate genomic interrogation in these patients.
Methods: Data from 419 PBT patients tested clinically with a ctDNA NGS panel at a CLIA-certified labora-
tory were analyzed. Results: A total of 211 patients (50%) had ≥1 somatic alteration detected. Detection
was highest in meningioma (59%) and gliobastoma (55%). Single nucleotide variants were detected in
61 genes, with amplifications detected in ERBB2, MET, EGFR and others. Conclusion: Contrary to previous
studies with very low yields, we found half of PBT patients had detectable ctDNA with genomically tar-
getable off-label or clinical trial options for almost 50%. For those PBT patients with detectable ctDNA,
plasma cfDNA genomic analysis is a clinically viable option for identifying genomically driven therapy
options.

First draft submitted: 6 December 2018; Accepted for publication: 7 February 2019; Published online:
11 March 2019

Keywords: cell-free DNA • ctDNA • genomic profiling • glioblastoma • Guardant360 • liquid biopsy • personalized
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Glioblastoma multiforme (GBM), a type of glioma, is the most aggressive type of primary brain tumor (PBT),
with limited therapy options and a median survival of 12–15 months [1]. Comprehensive molecular profiling of
PBTs can inform more detailed biological classification beyond traditional histopathology [2,3]. Development of
therapies directed at molecular targets in gliomas and other PBTs is underway and holds promise as an improvement
over current standard therapies [3–5]. However, trials of genomically matched therapies for brain tumors require
next-generation sequencing (NGS) of a recent tissue sample, thus limiting progress; tissue requirements also limit
the ability to identify and track mutation clonality and clonal evolution of tumors [6–8] and may miss important
heterogeneous genomic events [9]. Additionally, recurrent glioblastomas are rapidly growing tumors, and obtaining
a biopsy in order to complete molecular profiling is a time-consuming step.

Genomic profiling utilizing tissue samples obtained from invasive biopsy may not always be clinically feasible and
is not without risk of morbidity or mortality [10,11]. Additionally, tissue biopsies may be found to have insufficient
quantity or quality of material for NGS profiling. Even when tissue sampling is feasible and sufficient for genomic
analysis, tissue-based NGS may fail to capture a complete picture of the cancer’s genetic profile due to intra- and
inter-tumor heterogeneity [8,12–15].

Recently, assays analyzing cell-free DNA (cfDNA) have become commercially available. These tests present an
opportunity to genomically profiled patients’ tumors through a plasma sample without the need for an invasive
tissue biopsy. cfDNA contains fragments of circulating tumor DNA (ctDNA) released into circulation through
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apoptosis and/or active DNA release [16,17]. Given the short 2-h half-life of plasma cfDNA fragments in circulation
and the ability to capture heterogeneity across multiple areas of a tumor, this technology provides an opportunity
to assess cancer genomic signatures in real-time [18–20].

A prior study of plasma ctDNA yield across a variety of solid tumor types identified ctDNA alterations in less
than 10% of patients with glioma [21]. The authors hypothesized that the blood–brain barrier is a physical obstacle
preventing ctDNA from reaching peripheral circulation, suggesting limited clinical utility of such technology in
this cancer type. A recent study utilizing a comprehensive ctDNA analysis yielded a 51% cfDNA detection rate in
patients with advanced primary glioblastoma [22] suggesting that ctDNA detection rate in primary brain tumors
may vary by assay performance and/or histopathology and grade. We sought to evaluate the ability of a highly
sensitive and specific cfDNA NGS assay to identify genomic alterations in patients with GBM and other PBTs,
to further characterize ctDNA yield by histopathologic features, and to begin to explore the spectrum of genomic
alterations identified in cfDNA in this clinically tested patient population.

Patients & methods
From October 2014 through to December 2017, 665 samples from 419 consecutive patients with PBTs had clinical
samples tested in real time with the Guardant360 R© cfDNA digital sequencing (NGS) assay (Guardant Health, CA,
USA); whole blood was collected in Streck tubes, sent to the laboratory and processed as previously described [22–

24]. Cases were retrospectively identified via query of the Guardant360 de-identified database of clinical orders for
patients with a diagnosis of GBM or other PBTs as indicated on the test request form completed by the ordering
provider. 93 patients had more than one cfDNA test result available, as multiple blood draws were performed
for tests ordered clinically at multiple timepoints. Analysis was completed under a Quorum Review Institutional
Review Board protocol for deidentified and limited datasets which waived the need for individual patient informed
consent.

The Guardant360 assay is a laboratory test commercially available for all advanced solid tumors; therefore,
the genes interrogated by this assay were not specifically selected with primary brain cancers in mind but rather
encompass genomic alterations commonly observed across the spectrum of advanced cancer. The assay composition
was expanded over the course of the study. 65 samples were analyzed with the original 54-gene version including
comprehensive sequencing analysis of all exons in 18 genes, critical exon (those known to harbor somatic mutations)
sequencing analysis of 36 genes and copy number amplification (CNA) analysis of three genes (EGFR, ERBB2,
MET). An additional 199 samples were evaluated with an expanded 68-gene panel, 219 with a further expanded
70-gene panel and 182 with a 73-gene panel, each including additional exons sequenced, CNAs and select fusion
events assessed (Supplementary Figures 1–4). Of note, reported alterations include only those which can be assessed
through NGS of fragmented cfDNA; for example, the EGFR vIII mutation, large deletions including 1p,19q and
epigenetic alterations including MGMT methylation, were not detectable alterations in any of these assay versions.

Single nucleotide variants (SNVs), fusions and insertions/deletions (indels) were reported quantitatively as the
variant allele fraction (VAF) in cfDNA. CNAs were reported as absolute copy number of the target gene in plasma.
The reportable range for SNVs, indels, fusions and CNA on the current 73-gene Guardant360 assay is ≥0.04%,
≥0.02%, ≥0.04% and ≥2.12 copies in plasma, respectively [23,24].

Results
The average patient age at the time of first blood collection was 52 years (range 3–88) and 62% were male.
Histopathological subtypes included GBM, astrocytoma, oligoastrocytoma, oligodendroglioma, glioma (not oth-
erwise specified [NOS]), medulloblastoma, meningioma and ependymoma (Table 1), with GBM being the most
commonly reported diagnosis in the cohort (53%). Tumor types were classified for this study in accordance with
the 2016 World Health Organization Classification of Tumors of the Central Nervous System [25].

Overall, somatic alterations were detected in 302 samples (45.4%). When accounting for serial testing, somatic
alterations were detected in at least one sample per unique patient in 211 patients (50.4%). Of samples with at least
one alteration, the median VAF was 0.33% (range 0.05–41.01%) with an average of 2.14 (range 1–29) alterations
identified per sample (Table 2) [22].

Out of the better represented histologic subtypes in this cohort (n ≥ 15 samples), cfDNA alterations were
detected most frequently in patients with meningiomas (59%), followed by GBM (55%), glioma NOS (49%),
anaplastic astrocytoma (43%), oligodendroglioma NOS (33%) and astrocytoma NOS (19%), as shown in Figure 1.
As would be expected, cfDNA alteration detection rate increased with increasing grade in patients with astrocytic
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Table 1. Patient demographics and histologic subtypes for the 419 unique patients in this cohort.
Number of patients Percentage of cohort

Histopathology

Astrocytic and oligodendroglial tumors

– Astrocytoma, anaplastic 21 5.0%

– Astrocytoma, diffuse 2 0.5%

– Astrocytoma, pilocytic 4 1.0%

– Astrocytoma NOS 16 3.8%

– Glioblastoma 222 53.0%

– Oligoastrocytoma NOS 6 1.4%

– Oligodendroglioma, anaplastic 3 0.7%

– Oligodendroglioma NOS 15 3.6%

– Glioma NOS 81 19.3%

Neuronal and mixed neuronal-glial tumors

– Ganglioglioma 1 0.2%

Ependymal tumors

– Ependymoma, anaplastic 1 0.2%

– Subependymoma 2 0.5%

– Ependymoma NOS 5 1.2%

Embryonal tumors

– Medulloblastoma NOS 6 1.4%

Meningiomas

– Meningioma NOS 34 8.1%

Grade

Astrocytic and oligodendroglial tumors

– Grade 1 5 1.4%

– Grade 2 25 6.8%

– Grade 3 35 9.5%

– Grade 4 222 60.0%

– Grade unknown 83 22.4%

Meningiomas

– Grade 1 4 1.4%

– Grade 2 6 1.4%

– Grade 3 1 5.3%

– Grade unknown 23 5.5%

Gender

– Males 259 62%

– Females 160 38%

Age: average (range), years 52 (3–88)

Table 2. Median circulating tumor DNA concentration and average number of alterations detected among samples with
cell-free DNA detected obtained from patients with primary brain cancer and among all commercial samples
(pan-cancer) previously reported.

Primary brain series (n = 302 samples) Guardant360 all cancers (n = 17,628 samples)

Median VAF (range) 0.33% (0.05–41.01%) 0.4% (0.03–97.3%)

Median number of alterations detected per sample
(range)

2.14 (1–29) 4.2 (1–166)

Samples from patients with primary brain cancer have lower ctDNA variant allele fraction and fewer alterations than patients with nonbrain solid tumor malignancies.
VAF: Variant allele fraction.
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Figure 1. Alteration detection rate by subtype. ctDNA alteration detection rate per patient stratified by histologic subtype. Alteration
detection rates for histologic subtype groups with n < 15 not pictured: ganglioglioma, n = 1 (100%); astrocytoma, diffuse, n = 1 (50%);
oligoastrocytoma NOS, n = 6 (50%); subependymoma, n = 2 (50%); ependymoma NOS, n = 5 (40%); oligodendroglioma, anaplastic, n = 3
(33%); astrocytoma, pilocytic, n = 4 (25%); medulloblastoma NOS, n = 6 (17%); ependymoma, anaplastic, n = 1 (0%).

and oligodendroglial tumors (AOT): from 20 to 28% to 40 to 55% for AOT Grades 1–4, respectively (Figure 2;
p = 0.014). Given the relatively small number of samples with known grades in other histologic groups, this trend
was difficult to assess in additional tumor types.

Across all 211 patients with alterations detected at any timepoint, 550 somatic alterations were detected in 61
unique genes (Figure 3A), most frequently in TP53. Excluding variants of uncertain significance (VUS, 49% of
identified variants) and synonymous alterations (18% of identified variants), characterized point mutations were
most commonly seen in TP53 (n = 79) followed by JAK2 (n = 10), NF1 (n = 7), EGFR (n = 7), BRAF (n = 6),
IDH1 (n = 5), NRAS (n = 5), GNAS (n = 5) and ATM (n = 4). Focusing on GBM, the most commonly altered
genes were similar to the overall analysis (Figure 3B), as expected given its strong representation within the total
patient cohort.

Multiple alterations potentially relevant to therapeutic targets were identified in several of these commonly
altered genes. Recurrent characterized point mutations were detected in IDH1 (R132H/C/S/G), all identified
within the AOT subgroup. The identified characterized BRAF point mutations included V600E, an activating
mutation common in melanoma and other cancer types (observed in two patients); N581S, an activating mutation
in the protein kinase domain (observed in two patients); Q257R, an activating mutation in the cysteine-rich
domain of conserved region 1; and R354*, an inactivating mutation predicted to result in loss of the protein kinase
domain. All BRAF alterations were observed within the AOT subgroup as well.

Characterized BRCA1 mutations identified were Q380* in a patient with GBM and R1835* in a patient with
glioma NOS, expected to result in loss of both BRCT domains and a portion of the C-terminal BRCT domain,
respectively. Both of these alterations were observed at VAFs <1%, consistent with somatic, rather than germline,
origin. EGFR characterized point mutations detected were E142*, S177*, A289V (observed in two patients),
R309* and R831H; these mutations occur in multiple domains including extracellular and protein kinase domains,
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Figure 2. Alteration detection rate by grade: astrocytic and oligodendroglial tumors. ctDNA alteration detection rate per patient
stratified by grade, when known. Histologic subtypes included in this cohort include astrocytoma (anaplastic, diffuse, pilocytic and NOS),
glioblastoma, oligoastrocytoma NOS, oligodendroglioma (anaplastic and NOS) and glioma NOS.
ctDNA: Circulating tumor DNA; NOS: Not otherwise specified.

and include both activating and inactivating mutations. These characterized EGFR mutations were observed
primarily, but not exclusively, in the AOT subgroup (one inactivating mutation in a patient with meningioma
NOS). Characterized point mutations in ATM in this cohort included K342* in a patient with meningioma NOS,
R3008H (observed in two patients with GBM), and R3012* in a patient with meningioma NOS, all inactivating
mutations.

Common activating mutations in NRAS were observed in the AOT subgroup only, including G12D, G13R,
Q61K and Q61R. Point mutations were identified throughout the TP53 gene across the cohort, including patients
with AOT, meningioma and medulloblastoma; inactivating mutations were detected in nonrecurrent locations in
the NF1 gene, primarily in AOT but also in meningioma (Figure 4) [26]. Characterized TP53 mutations were most
commonly observed in patients with Grade 4 tumors (n = 56, 5, 2, 2 and 18 in Grades 4, 3, 2, 1 and unknown,
respectively); this may be related to inherent biology or the increased detection rate observed in higher grade tumors,
or some combination of the two.

CNAs were observed in ERBB2/HER2 (4), MET (2), KIT (2), BRAF (1), EGFR (1), CCND1 (1), CCND2 (1),
CDK6 (1) and PDGFRA (1). The majority of these CNAs were identified in patients with GBM, as well as two in
patients with glioma NOS and one in a patient with ependymoma NOS. Most CNAs were observed at low levels,
consistent with the low overall VAF observed in most cases within the cohort.

Among patients with alterations detected, almost 50% (n = 101) had a potentially therapeutically targetable
genomic alteration identified; 53 (25%) had an off-label treatment option identified and 98 (46%) had clinical trial
options identified based on the genetic alterations observed, based on annotations in accordance with the published
guidelines [27].

future science group 10.2217/cns-2018-0015
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SNV: Single nucleotide variant.
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Figure 4. Characterized alterations identified across select genes. Locations of identified characterized alterations
across the (A) TP53 and (B) NF1 genes shown in lollipop plots.

Discussion
Contrary to other cfDNA studies which postulated that ctDNA would not cross the blood–brain barrier to reach
systemic circulation, we found that half of the patients with primary brain tumors had detectable cfDNA alterations
with 48.9% of these having a potentially genomically targetable alteration identified.

Among patients with GBM, who comprised just over half of this cohort, ctDNA alterations were detected 55% of
the time. This suggests that cfDNA analysis for GBM genomic profiling may be appropriate to consider prior to an
invasive biopsy (performed solely to obtain tissue for genomic testing) and in patients for whom an invasive biopsy
is not feasible or who decline. Alterations were detected even more frequently in patients with meningioma, which
is consistent with the absence of the blood–brain barrier present in other subtypes of primary brain cancer [28].

With an average VAF of 0.33% and a minimum VAF of 0.05% in this cohort, this study underscores the
importance of utilizing a cfDNA assay with high sensitivity for detection of low-level alterations. As seen in Table 2,
the number of alterations and cfDNA VAF were both lower in this primary brain tumor cohort compared with
a cohort of all solid tumors undergoing this cfDNA assay. The mechanisms that influence the release of tumor
DNA into the bloodstream are not entirely understood, and it is possible that the blood–brain barrier may limit
the amount of ctDNA able to enter peripheral circulation from a primary brain tumor. The low VAFs observed in
this study suggest that technical assay performance is of particular importance when selecting a commercial cfDNA
platform for clinical use in this patient population in order to increase the likelihood of identifying these low-level
alterations.

This study demonstrates a higher ctDNA alteration yield in patients with primary brain tumors than previously
reported. Additionally, one quarter of samples had a ctDNA alteration detected that suggested eligibility for an
off-label targeted therapy regimen. Almost half of patients had a ctDNA alteration detected that suggested eligiblity
for a targeted therapy clinical trial. This study suggests that the identification of genomic alterations in the cfDNA
of patients with primary brain tumors is feasible. This is promising for the continued development and execution of
clinical trials of targeted therapies in this patient population, as the ease, convenience and safety of plasma cfDNA
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sampling has the potential to make genomic profiling a possibility when tissue is unavailable or unobtainable in
the setting of advanced PBT.

Some of the alterations identified in this patient cohort do show potential for molecular targeted therapeutics,
including BRAF/IDH1/IDH2 mutations, ERBB2/MET/EGFR/PDGFRA amplifications and mutations in DNA
damage repair genes. For example, at the time of submission, trials using targeted therapies related to genes and
pathways described in detail above (e.g., inhibition of RAF/MEK, EGFR and PARP, among others) were available
in PBTs. The option to detect these and other genomic alterations through cfDNA analysis may improve access to
clinical trials investigating the use of these agents in the setting of primary brain tumors.

As described above, the exploratory analysis presented here utilizes data from an assay commercially available
across solid tumor types. Therefore, it is promising that the yield of clinically relevant genomic alterations using a
liquid biopsy approach could be even higher from an assay specifically designed with PBTs in mind. However, this
may introduce practical challenges, for example, the difficulty of implementing parallel epigenomic and RNA-based
methodologies to assess methylation and splice variants, respectively. Additionally, the evolution of personalized
medicine has seen multiple pancancer approval for drugs targeting specific biomarkers (e.g., pembrolizumab for
MSI-high tumors, larotrectinib for tumors with NTRK fusions) and continued success applying targeted therapies
from one cancer type to another (e.g., anti-HER2 therapy common in breast cancer showing efficacy in colorectal
cancer, BRAF/MEK inhibition common in melanoma showing efficacy in lung adenocarcinoma). Trends such as
these may support a broader, less PBT-specific approach to include identification of potential basket or umbrella
drug trial targets. There has also been promising work done assessing cfDNA from cerebrospinal fluid [29,30], though
this sample collection is still more invasive compared with peripheral blood draw. Future studies investigating ideal
liquid biopsy assay composition and sample type may be warranted to further explore these questions [20].

It is important to note an underlying limitation of this study. As the cohort was based on samples submitted to a
commercial laboratory, clinical information (including pathologic confirmation of diagnosis, or timing of cfDNA
collection in relation to therapy regimen) was not available for all patients. Sample collection may have occurred
at various clinical time points (e.g., baseline vs stable disease vs progression) which may have affected ctDNA
alteration detection rates and VAF. The likelihood of identifying genomic alterations shed by the tumor in plasma
cfDNA is highest prior to treatment and at times of progressive disease, rather than when patients are clinically
stable or in active treatment when ctDNA release into the blood is suppressed. However, these clinical details are
not available for this cohort from a commercial laboratory, as this information is not required for clinical testing.

This preliminary analysis was intended to focus on overall detection rate of ctDNA in patients with PBTs
using an available retrospective dataset, and a breakdown by specific molecular alterations would result in too
small of numbers to draw meaningful formal correlative conclusions in this preliminary descriptive analysis. An
in-depth exploration of the specific alteration landscape would be best conducted in a cohort with samples collected
at consistent and clinically appropriate timepoints (baseline active disease and/or progression) to maximize the
likelihood of capturing the tumors’ genomic signatures through cfDNA. However, the preliminary spectrum of
mutated genes in this cfDNA cohort is similar to that of published data from The Cancer Genome Atlas (TCGA)
genomic analysis of tissue, including TP53, NF1, IDH1 and EGFR [31,32].

As this data is from clinical cfDNA analysis performed by a commercial laboratory that does not require detailed
clinical data to order testing, genomic profiling results of corresponding tumor tissue for patients who may have
had this analysis were not available for comparison in this patient cohort. Any potential discordance may be due to
the disease stage, treatment history and clinical status of the patients in the current cfDNA cohort. TCGA recruited
patients without any prior therapies, while the current cohort enrolled patients who may have been treatment-naive
or previously treated. It is known that the spectrum of mutations observed in treatment-naive versus previously
treated tumors differs due to tumor evolution following treatment. Other discrepancies in the results of the two
cohorts may be related to sequencing coverage of the cfDNA assay (Supplementary Figures 1–4). For example,
the cfDNA assay cannot assess for large deletions, including EGFR vIII, and the detection of amplifications in
cfDNA analysis is dependent on the level of ctDNA shed being high enough to distinguish CNAs from the vast
quantities of germline cfDNA with normal copy number. Additionally, due to the ability of the cfDNA test to
capture genomic heterogeneity across disease burden discordance may be due to detection of alterations that were
not observed in tumor tissue testing from a single site biopsy.

A future study of tissue plasma alteration concordance in which paired samples are collected contemporaneously
at clinically relevant timepoints per published concordance study criteria [33] would be valuable, though perhaps

future science group 10.2217/cns-2018-0015
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would be limited by the clinical feasibility of collecting tumor tissue at the time of advanced stage disease when
plasma cfDNA analysis is clinically indicated.

The cfDNA assay utilized in this study attempts to report only alterations of somatic origin. However, discrimi-
nation between alterations of germline versus somatic origin becomes challenging in cases with high tumor burden
and/or chromosomal instability [34]. It is also not possible to rule out hematopoietic origin of alterations through
sequencing of cfDNA alone [35], and some alterations, like JAK2 V617F, occur more frequently in myeloproliferative
neoplasms than in solid tumors. Therefore, similar to tissue-only testing [36,37], tumor-derived origin of alterations
identified by NGS of cfDNA cannot be confirmed with certainty.

Conclusion
We believe this is the first analysis to interrogate and present plasma ctDNA yield in a cohort of patients with primary
brain cancers by histopathologic subtype. Our findings demonstrate a higher ctDNA detection rate than previously
reported, particularly among some specific subtypes of primary brain tumors, and will hopefully reinvigorate future
clinical research in this area to more deeply explore the role and potential of cfDNA analysis in PBTs. Additionally,
cfDNA analysis results identified either a genomically targetable off-label or clinical trial option for almost 50% of
samples with cfDNA alterations detected. These results demonstrate that while not all patients with primary brain
cancers have detectable alterations by such testing, plasma cfDNA analysis is a viable and safe clinical option to
obtain actionable somatic genomic information for some patients with primary brain cancers which may potentially
guide clinical therapeutic decision-making.

Summary points

• Glioblastoma and other primary brain tumors (PBTs) can be aggressive with limited therapeutic options.

• They can be difficult to biopsy, limiting the ability to interrogate genomic alterations in the tumor.

• This has challenged the development of and enrollment into genomically matched clinical trials in PBT oncology.

• Cell-free circulating tumor DNA (ctDNA) has shown utility as a biopsy-free alternative for comprehensive genomic
profiling in advanced solid tumors, though published small PBT cohorts have suggested low detection rates.

• To investigate ctDNA yield in PBTs, we analyzed the genomic results from over 400 patients with PBTs undergoing
ctDNA NGS analysis with a highly sensitive and specific clinical assay.

• Genomic alterations in ctDNA, including single nucleotide variants and gene amplifications, were identified in
half of these patients, a much higher yield than previously reported.

• Genomic alterations identified had matched off-label and clinical trial options for almost 50% of patients with
detectable ctDNA.

• This study suggests promise in a biopsy-free option to interrogate genomic signatures and evolution in PBTs,
which may provide an avenue to further progress in genomically matched clinical trials.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:
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