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Abstract

Heuristics are simple, effective cognitive processes that de-
liberately ignore parts of information relevant to decision-
making. Ecological rationality, as an essential part of the
Adaptive Toolbox research program on heuristics, investi-
gates the environmental conditions under which simple heuris-
tics would outperform complex models of decision-making,
thereby providing support for the surprising less-is-more ef-
fect. In this work, we present a new research program, dubbed
formal science of heuristics (FSH), that nicely complements
the ecological rationality research, developing it into a much
richer research program. Concretely, FSH sets to (i) mathe-
matically delineate the broadest class of environmental condi-
tions under which a heuristic is fully optimal, and (ii) formally
investigate how deviations from those conditions would lead
to degradation of performance, thereby allowing for a mathe-
matically rigorous characterization of their robustness. As an
instantiation of the FSH research program, we present several
analytical results aiming to delineate the mildest conditions
granting the optimality of a well-known heuristic: Take The
Best. We conclude by discussing the implications that pursuit
of FSH could have on the science of heuristics.

Keywords: Ecological rationality; one-reason heuristics; for-
mal science of heuristics; Take The Best heuristic

1 Introduction
Heuristics—simple, effective cognitive processes that de-
liberately ignore parts of information relevant to decision-
making—are assumed to underpin much of human judg-
ment and decision-making (e.g., Gigerenzer & Selten, 2001;
Mousavi, Gigerenzer, & Kheirandish, 2016), and are widely
considered to be sub-optimal, attaining higher speed at the
expense of lower accuracy (e.g., Payne et al., 1993; Shah &
Oppenheimer, 2008; Evans and Over, 2010).

Challenging the latter mindset, the influential ecological
rationality research program (as part of the Adaptive Tool-
box theory) maintains that heuristic are well-matched to the
environment they are adopted in (Todd & Gigerenzer, 2007),
and seeks to investigates the environmental conditions un-
der which heuristics would outperform complex models of
decision-making, giving rise to the surprising less-is-more
effect: when less information or computation leads to more
accurate judgments than more information or computation
(Gigerenzer & Gaissmaier, 2011).

Despite great successes, ecological rationality work has
predominantly focused on simulation-based demonstrations
of simple heuristics outperforming complex strategies (e.g.,
Gigerenzer et al., 2008, Gigerenzer & Todd, 1999, Todd &
Gigerenzer, 2000, Hoffrage & Reimer, 2004; Gigerenzer &
Goldstein, 1996), directing comparatively little effort (but

see, e.g., Martignon & Hoffrage, 2002, Hogarth & Karelaia,
2006) toward establishing a mathematically-rigorous charac-
terization of the environmental conditions underpinning the
less-is-more effect — Todd and Gigerenzer (2007) explicitly
call for developing such deep theoretical accounts.

In this work, we present a new research program, dubbed
formal science of heuristics (FSH), that nicely complements
the ecological rationality research, developing it into a richer
research program, and, additionally, permitting mathemati-
cians and computer scientists to make important contributions
to the science of heuristics.

Concretely, FSH pursues the following two objectives. (1)
FSH seeks to mathematically delineate the broadest class of
environmental conditions under which a heuristic is fully op-
timal (i.e., using the standard terminology of computer sci-
ence, the environmental conditions under which a heuristic
serves as a correct algorithm w.r.t. the objective of interest, or,
equivalently, an approximation algorithm with an approxima-
tion ratio of one). (2) FSH aims to formally investigate how
deviations from optimality conditions would lead to degrada-
tion of performance, thereby allowing for a mathematically
rigorous characterization of a heuristic’s robustness. As such,
to provide strongest theoretical support for the robustness of a
heuristic, FSH aims to analytically provide the mildest techni-
cal conditions granting the optimality of a heuristic. Accord-
ing to the Adaptive Toolbox theory, robustness is predomi-
nantly responsible for the less-is-more effect, and plays a cen-
tral role in the success of fast-and-frugal heuristics in every-
day life decisions (e.g., Gigerenzer & Todd, 1999; Gigerenzer
& Gaissmaier, 2011).

With regard to objective (2) mentioned above, one
of the mildest technical conditions worth considering is
distribution-free performance guarantees, widely studied in
statistical learning theory and machine learning (e.g., Valiant,
1984; Kearns, Vazirani, & Vazirani, 1994). As is often the
case, a decision-maker lacks (at least partially) the knowledge
of the regularities of their environment, and, therefore, is not
fully informed as to how information relevant to a decision-
making task of interest is distributed. Distribution-free re-
sults, as the term suggests, establish performance guarantees
that hold true regardless of the probability distribution gov-
erning a decision-making task (e.g., the distribution of at-
tributes in a multi-alternative decision-making task). As such,
distribution-free results provide strong robustness guarantees
while demanding minimal environmental knowledge on the
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part of the decision-maker, thus playing an integral role in the
FSH research program.

We should note that establishing distribution-free perfor-
mance guarantees for a heuristic does not imply that: (1)
the decision-maker is inattentive to their environment, nor
that (2) the decision-maker is not trying to select a heuris-
tic well-matched to the environment — experimental evi-
dence clearly suggests otherwise (e.g., Rieskamp & Otto,
2006; Hoffart, Rieskamp, & Dutilh, 2018; Payne, Bettman,
& Johnson, 1988; Bröder, 2003; Pachur, Todd, Gigerenzer,
Schooler, & Goldstein, 2011). On the contrary, establishing
distribution-free performance guarantees on a heuristic en-
sures that that heuristic is well-matched to the environment,
even when the decision-maker’s knowledge of the environ-
ment is imperfect—a psychologically plausible assumption.

This work is organized as follows. We begin by presenting
an overview of a well-known heuristic: Take The Best (TTB).
As an instantiation of FSH, we then establish several ana-
lytical results, including strong distribution-free performance
guarantees, for TTB. Finally, we conclude by discussing the
implications that pursuit of FSH could have on the science of
heuristics.

2 Take The Best: An Overview
Take The Best (TTB; Tversky, 1969, Gigerenzer, Hoffrage,
& Kleinbölting, 1991) belongs to the class of one-reason
decision-making heuristics which base decisions on only one
attribute value. In its classic form, TTB is concerned with
the task of predicting which of two objects, each possessing
several binary-valued attributes, has a higher value on a given
criterion, e.g., which of two cities has a higher population, or,
which of two cookies would be more delicious.

The machinery of TTB is quite simple: Starting with
the attribute having the highest validity, make pairwise-
comparisons between the attribute values of the two objects;
as soon as the first discriminating attribute is encountered
(i.e., the attribute on which the two objects differ), announce
the object attaining the highest attribute value on the discrimi-
nating attribute to be the winning object. TTB visits attributes
in a descending order of their validities. If no discriminating
attribute is ever encountered, TTB selects the winning object
uniformly at random.1 In TTB, the validity vi of the ith at-
tribute is given by (Gigerenzer et al., 2008):

vi :,
Ri

Ri +Wi
,

where Ri,Wi are the number of correct and incorrect infer-
ences based on the ith attribute alone, respectively.

The efficacy of TTB receives strong empirical support from
a wide range of economic, demographic, environmental, and
other prediction tasks (e.g., Gigerenzer et al., 2008; Czer-
linski, Gigerenzer, & Goldstein, 1999; Chater, Oaksford,

1Without loss of generality, we assume that the decision-maker
initially recognizes all the objects which s/he has to choose from.
Accordingly, the use of recognition heuristic (Gigerenzer et al.,
2008), as the first step of TTB, is implicitly considered in our work.

Nakisa, & Redington, 2003). For example, on the task of
predicting which of two cities has a higher homeless rate,
TTB achieves better prediction accuracy than several com-
petitors, including multiple regression model (Gigerenzer et
al., 2008). More strikingly, Czerlinski, Gigerenzer, and Gold-
stein (1999) empirically showed that, across 20 real-world
prediction problems, on average TTB obtains the best pre-
diction accuracy when competing with several prominent al-
ternatives, including multiple regression and tallying heuris-
tic. Relatedly, on the same 20 real-world prediction problems,
Gigerenzer et al. (2008) empirically show that the predictive
accuracy of TTB came, on average, within three percentage
points of a complex Bayesian network model. More broadly,
when environments are moderately unpredictable and learn-
ing samples are small, as with many social and economic sit-
uations, TTB tends to make inferences as accurately as or
better than multiple regression and neural networks (Chater,
Oaksford, Nakisa, & Redington, 2003).

To provide direct experimental evidence for TTB as a psy-
chological model, Bröder and his colleagues (Bröder 2000;
Bröder and Schiffer 2003) conducted 20 studies, conclud-
ing that TTB is used under a number of conditions such as
when information is costly and the variability of the validity
of the attributes is high. Furthermore, Bröder and Gaissmaier
(2007) and Nosofsky and Bergert (2007) showed that TTB
predicts response times better than weighted additive and ex-
emplar models.

Previous work assessing the prediction accuracy of TTB
has mainly focused on computer simulations, with some work
establishing analytical results formally supporting the effi-
cacy of TTB (e.g., Martignon & Hoffrage, 2002; Hogarth &
Karelaia, 2005, 2006; Baucells, Carrasco, & Hogarth, 2008).

Pursuing the research program proposed by FSH, and con-
trary to past analytical work, in this work we consider a
much broader class of problems involving nonlinear objec-
tive functions (Definitions 1-4) with interactions between at-
tributes being also accounted for (Definition 2). For the
broad class of problems discussed above, we formally estab-
lish conditions granting the optimality of TTB when dealing
with both non-binary, discrete attribute values (Propositions
3, 5, and 6) and continuous attribute values (Proposition 4).
We also analytically investigate a broad class of prediction
problems—involving both structured (Definition 3) and un-
structured noise (Definition 4)—for which only probabilistic
guarantees can be provided. Additionally, and in sharp con-
trast to past analytical work, we provide strong distribution-
free guarantees on TTB for several classes of prediction prob-
lems (Propositions 5, 6, and 8).

3 Instantiating FSH: The Case of TTB
As an instantiation of FSH, in this section we establish sev-
eral analytical results, including strong distribution-free per-
formance guarantees, for TTB.

Before we proceed further, let us formally delineate an ob-
jective function which characterizes a broad class of decision-
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making problems.
Definition 1. (Objective function) Let O1,O2, . . . ,ON de-

note the set of N objects a decision-maker should choose
from. Let also Oi j ∈ {0,1} denote the value of the jth at-
tribute of object Oi where 1 ≤ j ≤ M, and wk denote the
weight corresponding to the kth attribute, Ak. Finally, let
ψ(·) be an arbitrary monotonically-increasing function (i.e.,
∀x : d

dx ψ(x) > 0). Then, the winning object Oi? is the one
whose index i? satisfies the following objective function:

i? :, argmax
i

ψ(
M

∑
j=1

w jOi j). (1)

Therefore, in the case of having only two objects O1,O2 to
choose from, the optimal decision rule is given by:

ψ(
M

∑
j=1

w jO1 j)
O2

Q
O1

ψ(
M

∑
j=1

w jO2 j), (2)

where A
O2

Q
O1

B denotes the following: choose O1 if A > B;

choose O2 if A<B; and choose uniformly at random between
O1,O2 if A = B. �

It is worth noting that in Eqs. (1-2), ψ can be any
monotonically-increasing function, e.g., ψ(x) = ex,ψ(x) =
2x + log(x).

Proposition 1. (Sufficient condition for optimality) If
there exists a k ∈N such that ∀p < k, ∀i, j ∈ {1, . . . ,N}Oip =
O jp and wk > ∑i>k wi, then the following holds true:

∃ j ∈ {1, . . . ,N} ∀i 6= j O jk > Oik⇒ Oi? := O j. (3)

Importantly, Proposition 1 establishes a condition granting
basing decision on only one attribute while preserving opti-
mality with respect to the objective given in (1). As such,
Proposition 1 provides a firm rational basis for the possi-
bility of one-reason decision-making for the broad class of
decision-making problems characterized in Definition 1.

Next, Proposition 2 establishes a condition granting the op-
timality of TTB (when choosing between an arbitrary num-
ber of objects) with respect to the objective given in (1).

Proposition 2. (Generalizing TTB to N-object predic-
tion tasks) Let O1,O2, . . . ,ON denote the set of N objects
a decision-maker is to choose from. Let also wk denote the
weight corresponding to the kth attribute (see Definition 1),
and vk denote the validity of the kth attribute. If ∀k wk = vk

and ∃r ∈ R>2 s.t. ∀k vk ≤ (
1
r
)vk−1, then TTB is an optimal

strategy for the class of decision-making problems character-
ized in Definition 1. �

In the N-object setting (as in Proposition 2), TTB works
as follows: Starting with the attribute having the highest va-
lidity, compare attribute values across the N objects; as soon
as the first discriminating attribute is encountered (i.e., the
attribute on which at least two objects differ), exclude from
consideration those objects faring worse on the discriminat-
ing attribute; announce the object surviving this elimination

process to be the winning object. TTB visits attributes in a
descending order of their validities. If no discriminating at-
tribute is ever encountered, TTB selects the winning object
uniformly at random.

Proposition 3. (Multi-level attribute values) Let
O1,O2, . . . ,ON denote the set of N objects a decision-maker
is to choose from, with each object having M attributes. Let
also Oi j ∈ {0,1, · · · ,θ} denote the value of the jth attribute of
object Oi where 1≤ j ≤M. Finally, let wk denote the weight
corresponding to the kth attribute (see Definition 1), and vk
denote the validity of the kth attribute. If ∀k wk = vk, and

∃r > 1+θ s.t. ∀k vk ≤ (
1
r
)vk−1, then TTB is an optimal strat-

egy for the class of decision-making problems characterized
in Definition 1. �

In simple terms, Proposition 3 analytically establishes a
conditions granting the optimality of TTB (when generalized
to the setting of N objects, each with discrete, multi-level at-
tribute values) with respect to the objective given in (1).

Proposition 4. (Continuous attribute values) Let ∀i ∈
{0,1}, Oi denote the two objects a decision-maker should
choose from, with each object having M attributes. Let also
Oi j ∈ R denote the value of the jth attribute of object Oi. Fi-
nally, let wk denote the weight corresponding to the kth at-
tribute (see Definition 1), and vk denote the validity of the kth

attribute. Assuming that k∗ denotes the index of the discrim-
inating attribute on which TTB halts, and |O1k∗ −O2k∗ | ≤ δ,
the following statement holds true: If ∀k wk = vk, and ∀i, j ∈
{1, . . . ,M} Oi j ≤ U, and ∃r > 1+

U
δ

s.t. ∀k vk ≤ (
1
r
)vk−1,

then TTB is an optimal strategy for the class of decision-
making problems characterized in Definition 1.

Proposition 4 analytically establishes a conditions granting
the optimality of TTB (when choosing between two objects,
each with continuous attribute values) with respect to the ob-
jective given in (1).

Following the line of research proposed by FSH, next we
present our first distribution-free guarantee for TTB.

Proposition 5. (Distribution-free guarantee) Let
O1,O2, . . . ,ON denote the set of N objects a decision-maker
is to choose from, with each object having M attributes. Let
also Oi j ∈ {0,1, · · · ,θ} denote the value of the jth attribute

of object Oi, where {Oi j}i, j
d
v P with P denoting a joint

probability distributions over the set of all attribute values
{Oi j}i, j. Finally, let wk denote the weight corresponding to
the kth attribute (see Definition 1), and vk denote the validity
of the kth attribute. Then, for any joint probability distribu-
tion P the following statement holds true: If ∀k wk = vk, and

∃r > 1+θ s.t. ∀k vk ≤ (
1
r
)vk−1, then TTB is an optimal strat-

egy for the class of decision-making problems characterized
in Definition 1. �

Proposition 5 analytically establishes a condition ensuring
the optimality of TTB (when generalized to the setting of N
objects, each with discrete, multi-level attribute values) with
respect to the objective given in (1), in a strong distribution-
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free manner. It is crucial to note that the optimality guarantee
given in Proposition 5 holds true for any joint distribution P
on the set of all attribute values.

Next, in Definition 2, we formally characterize a broad
class of prediction problems wherein interactions between at-
tribute values are also accounted for.

Definition 2. (Objective function) Let O1,O2, . . . ,ON de-
note the set of N objects a decision-maker should choose
from, and Oi j ∈ {0,1, · · · ,θ} denote the value of the jth at-
tribute of object Oi where 1 ≤ j ≤ M. Additionally, let wk
denote the weight corresponding to the kth attribute, and rpq
denote the weight quantifying the amount of interaction be-
tween the pth and the qth attributes. Finally, let χ(·) be an ar-
bitrary monotonically-increasing function (i.e., ∀x : d

dx χ(x)>
0). Then, the winning object Oi? is the one whose index i?

satisfies the following objective function:

i? :, argmax
i

χ(
M

∑
j=1

w jOi j +∑
p,q
p 6=q

rpqOipOiq). (4)

Proposition 6. (Distribution-free guarantee) Consider
the class of prediction problems formally characterized in
Definition 2. Let also P denote a joint probability dis-
tributions over the set of all attribute values {Oi j}i, j, i.e.,

{Oi j}i, j
d
v P. Then, for any joint probability distribu-

tion P the following statement holds true: If ∀k wk = vk,
and ∃R ∈ R s.t. ∀p,q ∈ {1, · · · ,M} rpq < R, and ∃r > 1+

θ s.t. ∀k r−1
r− (θ+1)

(M
2

)
θ2R ≤ vk ≤ (

1
r
)vk−1, then TTB is an

optimal strategy for the class of decision-making problems
characterized in Definition 2. �

In simple terms, Proposition 6 formally establishes a
distribution-free result granting the optimality of TTB (when
generalized to the N-object setting, each with discrete, multi-
level attribute values) with respect to the broad class of pre-
diction problems characterized in Definition 2 (with interac-
tions between attributes also accounted for).

Next, Definition 3 formally characterizes a broad class of
predictions problems under the noisy-world setting wherein
the noise component contaminating the prediction problem
has a particular structured form: Gaussian distribution.

Definition 3. (Objective function) Let ∀i ∈ {0,1}, Oi de-
note the two objects a decision-maker should choose from,
and Oi j ∈ {0,1} denote the value of the jth attribute of object
Oi where 1 ≤ j ≤M. Additionally, let wk denote the weight
corresponding to the kth attribute, and Ci denote the score the
object Oi attains on the criterion of interest to the prediction
task (e.g., the population of a city, if the prediction task is
to predict which of two cities has a higher population). Fi-
nally, let χ(·) be an arbitrary monotonically-increasing func-
tion (i.e., ∀x : d

dx χ(x)> 0). Then, consider the class of predic-
tion problems satisfying the following:

Ci :, χ(
M

∑
j=1

w jOi j)+ ε, ε
d∼N (0,σ2). (5)

Proposition 7. (Noise-level-independent probabilistic
guarantee) Consider the class of prediction problems for-
mally characterized in Definition 3. Then, for any noise vari-
ance σ2 > 0, the following statement holds true: If ∀k wk = vk,

and ∃r ∈ R>2 s.t. ∀k vk ≤ (
1
r
)vk−1, then the probability with

which TTB correctly selects the superior object is ≥ 0.5.
Proposition 7 formally establishes the following important

result for the inherently-noisy world characterized in Defini-
tion 4: For any noise level σ2, TTB dominates the selection-
purely-by-chance strategy which select the winning object
uniformly at random. This result importantly demonstrates
that, independent of noise level σ2, the adoption of TTB (in-
stead of the selection-purely-by-chance strategy) is rationally
justified for the inherently-noisy, class of prediction problems
formally characterized in Definition 3.

Definition 4 below formally characterizes a broad class of
predictions problems, once again, under the noisy-world set-
ting; this time, however, the noise component contaminating
the prediction problem has an unstructured form.

Definition 4. (Probabilistic guarantee) Let ∀i ∈ {0,1},
Oi denote the two objects a decision-maker should choose
from. Let also Oi j ∈{0,1} denote the value of the jth attribute
of object Oi, wk denote the weight corresponding to the kth

attribute, and Ci denote the score the object Oi attains on the
criterion of interest to the prediction task (e.g., the population
of a city, if the prediction task is to predict which of two cities
has a higher population). Finally, let φ(·) be a monotonically-
increasing function (i.e., ∀x : d

dx φ(x)> 0). Then, consider the
class of prediction problems satisfying the following:

P(C1 >C2|φ(
M

∑
j=1

w jO1 j)> φ(
M

∑
j=1

w jO2 j)≥ 1−η, 0 < η� 1.

Proposition 8. (Distribution-free guarantee) Consider
the class of prediction problems formally characterized in
Definition 4. Let also P denote a joint probability dis-
tributions over the set of all attribute values {Oi j}i, j, i.e.,

{Oi j}i, j
d
v P. Then, for any joint probability distribution

P the following statement holds true: If ∀k wk = vk, and

∃r ∈R>2 s.t. ∀k vk ≤ (
1
r
)vk−1, then the probability with which

TTB mistakenly selects the inferior object is less than η,
where 0 < η� 1. �

Proposition 8 establishes a distribution-free condition suf-
ficient to grant that the probability of TTB erring in a predic-
tion task belonging to the class of problems characterized in
Definition 4 is minuscule.

4 General Discussion
In this work, we presented a research program, dubbed for-
mal science of heuristics (FSH), that nicely complements the
influential ecological rationality research program (Todd &
Gigerenzer, 2007), developing it into a much analytically-
richer scientific endeavor. By pursuing its two stated goals
(see Introduction section), FSH seeks to (i) mathematically
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delineate the key premise ecological rationality rests on—that
heuristics are well-matched to the environments in which they
are adopted (Todd & Gigerenzer, 2007)—and (ii) establish
the strongest analytical results supporting this premise. After
all, to rigorously and thoroughly answer whether a heuristic
is well-matched to its environment, we need to formally char-
acterize the broadest class of environments for which that
heuristic performs (near) optimally, and experimentally in-
vestigate how often people use that heuristic in such environ-
ments.

Instantiating FSH with the well-known Take The Best
(TTB) heuristic, and contrary to past analytical work, in
this work we considered a much broader class of predic-
tion problems involving nonlinear objective functions (Def-
initions 1-4) with interactions between attributes also being
accounted for (Definition 2). For the classes discussed above,
we formally established conditions granting the optimality of
TTB when dealing with both non-binary, discrete attribute
values (Propositions 3, 5, and 6) and continuous attribute
values (Proposition 4). We also analytically investigated a
broad class of prediction problems—involving both struc-
tured (Definition 3) and unstructured noise (Definition 4)—
for which only probabilistic guarantees can be provided. Ad-
ditionally, and in sharp contrast to past analytical work, we
also provided distribution-free guarantees on TTB for several
classes of prediction problems (Propositions 5–6, and 8).

Our work also serves as a potential template for how FSH
could be pursued: For a given heuristic, formally characterize
the class of decision-making problems with respect to which
the performance of the heuristic is to be analytically inves-
tigated, followed by analytical results rigorously delineating
the extent to which that heuristic is performing (near) opti-
mally for that class. A generic approach would be to start
with a narrow class (containing a set of restricted problems)
for which a heuristic is performing (near) optimally; and then
gradually expand that class into a larger one and see if previ-
ously established performance guarantees still hold (or to es-
tablish new performance guarantees, in case they fail to hold).
A similar approach has been widely and productively used in
theoretical computer science and computational complexity
theory, e.g., through formally introducing many complexity
classes, with one class serving as a relaxation of another.

Our particular focus on TTB in this work was only meant to
showcase how the mindset advocated by FSH could be pur-
sued in the case of a given heuristic—in our case, the Take
The Best (TTB) heuristic. Ultimately, a serious investiga-
tion of FSH should lead to having mathematically rigorous
answers to the two stated goals of FSH for every experimen-
tally well-documented heuristic that people use, e.g., the Tal-
lying heuristic (Gigerenzer & Gaissmaier, 2011), the Priority
heuristic (Katsikopoulos & Gigerenzer, 2008), the Recogni-
tion heuristic (Gigerenzer & Gaissmaier, 2011), and the Min-
imalist heuristic (Gigerenzer et al., 2008). By now, a large
number of heuristics are documented in the literature, many
of which still lack an adequate characterization of the en-

vironmental conditions under which they are (near) optimal
and/or how deviations from those conditions would lead to
performance degradation. Thus, future work following FSH
should address this analytical shortcoming.

Rieskamp and Otto (2006) show that people are sensitive
to the distribution of cues in an environment, appropriately
applying either TTB or a weighted additive mechanism, de-
pending on which will be more accurate. However, how peo-
ple are able to determine which type of environment they
are in has largely remained an open question. Establishing
distribution-free guarantees, as advocated by FSH, sheds new
light on this open question, by formally demonstrating that
a heuristic may well yield adequate performance despite the
decision-maker’s possibly incomplete (or, in the worst case,
erroneous) assumptions about her environmental conditions,
thereby liberating her from having a thorough understand-
ing of her environment—a more psychologically plausible
assumption. For example, Proposition 5 establishes a condi-
tion granting the optimality of TTB (with respect to the class
of problems characterized in Definition 1) that holds true for
any joint probability distribution P on the set of attribute val-
ues. This result has an important implication: Even if the
decision-maker makes wrong assumptions about the true un-
derlying distribution P governing the set of attribute values,
adopting TTB still remains to be the optimal strategy (for the
class of problems characterized in Definition 1). Crucially,
the latter statement remains valid regardless of how wrong
the decision-maker’s assumptions about P are.

We must note, however, that the present work (and pur-
suit of FSH, in general) does not address the recent conun-
drum raised by Otworowska et al. (2018) regarding the com-
putational intractability of the Adaptive Toolbox theory. As
Otworowska et al. (2018) analytically demonstrate, there ex-
ists no efficient (i.e., polynomial-time) process that can adapt
toolboxes to be ecologically rational for all possible environ-
ments. A resolution of this complexity-theoretic conundrum
might be attained by restricting the class of environments un-
der consideration, based on the psychologically plausible as-
sumption that the range of environments humans have to deal
with is undoubtedly vast, but not arbitrary.

Pursuit of FSH would have important implications for ex-
perimental wok on heuristics: Every analytical result (how-
ever general it may be) is established under a particular set
of assumptions the validity of which needs to be experimen-
tally confirmed. Experimental work should therefore inves-
tigate the empirical validity of such assumptions. Likewise,
an empirical disconfirmation of an assumption on which an
analytical result rests should call for the development of new
empirically-grounded formal results. Accordingly, pursuit of
FSH yields new experimental work, and, conversely, those
experimental findings guide the development of new analyti-
cal results—a synergetic scientific endeavor.

Finally, pursuit of FSH allows mathematicians and theo-
retical computer scientists to make important contributions
to the science of heuristics by developing a mathematically-
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rigorous foundation for the effectiveness of heuristics in ev-
eryday life decisions. As such, we hope that FSH paves the
way for having a highly interdisciplinary research program on
heuristics wherein analytical and experimental studies, hand
in hand, deepen our understanding of the effectiveness of the
heuristics we live by. We see our work as a step toward that.

Investigations into human judgment and decision-making
have led to the discovery of a multitude of cognitive biases
and fallacies, with new ones continually emerging, leading to
a state of affairs which can be characterized as the cognitive
fallacy zoo! Recently, we have formally presented a princi-
pled way to bring order to this zoo (Nobandegani, Campoli, &
Shultz, 2019). The work presented here, together with recent
formal advances on bringing systematic order to the cognitive
fallacy zoo (Nobandegani, Campoli, & Shultz, 2019), suggest
a fresh formal approach to pursuing the heuristics-and-biases
research program: an approach which aims to lay the formal
foundations of the “unreasonable” effectiveness of the heuris-
tics we live by, and to bring mathematically-rigorous system-
atic order to the cognitive biases ensued by those heuristics.
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