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Bohdan Monastyrskyy2, Andras Fiser1,*

1Department of Systems and Computational Biology, and Department of Biochemistry, Albert 
Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

2Genome Center, University of California, Davis, 451 Health Sciences Dr., Davis CA 95616-8816, 
USA

Abstract

The accuracy of sequence-based tertiary contact predictions was assessed in a blind prediction 

experiment at the CASP13 meeting. After four years of significant improvements in prediction 

accuracy, another dramatic advance has taken place since CASP12 was held two years ago. The 

precision of predicting the top L/5 contacts in the free modeling category, where L is the 

corresponding length of the protein in residues, has exceeded 70%. As a comparison, the best-

performing group at CASP12 with a 47% precision would have finished below the top 1/3 of the 

CASP13 groups. Extensively trained deep neural network approaches dominate the top performing 

algorithms, which appear to efficiently integrate information on co-evolving residues and 

interacting fragments or possibly utilize memories of sequence similarities and sometimes can 

deliver accurate results even in the absence of virtually any target specific evolutionary 

information. If the current performance is evaluated by F-score on L contacts, it stands around 

24% right now, which, despite the tremendous impact and advance in improving its utility for 

structure modeling, also suggests that there is much room left for further improvement.
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Introduction

The Critical Assessment of Structure Prediction (CASP) meetings started in 1994 and have 

continued biannually ever since, with the latest meeting, CASP13, held in 20181. In advance 

of the meeting, the participating groups make blind predictions for a number of protein 

structures, complexes, or contacts, and these predictions are assessed on recently-solved 

experimental structures that are kept confidential during the competition. As early as the 

second CASP meeting in 19962,3, contact predictions were made and assessed4–13. In 

general, protein structures are very well packed14, with densities comparable to molecular 

crystals, in which all the hydrogen bond donor and acceptor groups are satisfied15. Soon 

after the first three-dimensional protein structures were solved, initial observations about 
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compensatory mutations that preserve the tight packing and extensive network of 

interactions were published, for instance in the case of the well-studied ribonuclease, as 

early as 196816. Over time, more and more protein sequences became available17, which in 

the 1990s prompted attempts to use sequence information to predict compensatory mutations 

that could serve as restraints for tertiary structure modeling18,19. At the time, the low 

accuracy of contact predictions had limited success in assisting protein structure modeling at 

CASP11,20,21 but was successfully employed in specific applications, such as folding small 

proteins22, improving statistical pair potentials23, selecting models in fold recognition 

studies24, predicting the disulfide bond connectivity in Cys-rich proteins from 

sequences25,26 or identifying residues that participate in long range interactions in 

general27,28. Arguably, the two bottlenecks for contact prediction methods were the lack of 

informative sequence profiles (the limited size of sequence databases) and the insufficiently 

sensitive algorithms to establish these correlations. The use of mutual-information-based 

techniques improved the accuracy of these approaches29–32, but did not address the problem 

of effectively separating the noise that is attributed to higher-order transitive correlations 

from indirectly interacting residues29–34. A significant advance took place when various 

approaches focused on addressing the transitivity problem in residue contact signals, such as 

the direct coupling analysis35–39, sparse inverse covariance methods38,40 and network 

decomposition approaches41,42. The algorithmic advances, together with the simultaneous 

explosion of sequence database sizes, set the stage for a renaissance in contact prediction. 

After a long hiatus, in 2014 at the CASP11 meeting the first reports and signs of advance 

appeared in the accuracy of contact prediction5, these were followed by a nearly doubling in 

the precision of prediction accuracy at CASP124 in 2016. After 2010, when first papers on 

correlated mutations were published, a number of refinements took place, such as combining 

a set of non-overlapping contact predictions in a consensus approach and especially the 

application of various supervised deep neural network based approaches43, further 

improving the accuracy of contact prediction techniques44–53.

In this work, we assess performance of the state-of-the-art of contact prediction methods in 

2018 at CASP13. We explore three general questions concerning contact predictions. First, 

which are the most advanced methods currently available? Second, how much progress took 

place compared to previous CASP meetings? Third, what are the promising directions and 

major bottlenecks for future development?

Materials and Methods

Targets and participating groups

In CASP13, 32 targets were assessed in the contact prediction category, and 46 groups 

submitted predictions. One target had only medium range contacts, therefore when 

discussing long-range contacts only we analyzed 31 targets. In general, there was robust 

participation: 37 out of the 46 groups submitted 31 or 32 predictions, and, except for one 

group, every group submitted at least 24. We provide detailed information about the groups 

and level of their participation in Table S1 of Supplementary material.

All targets analyzed here belong to the free modeling (FM) category, where the assumption 

is that no suitable template exist in structure databases. The size of the targets ranged 
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between 76 and 431 residues. Given the composition of secondary structures, the classes of 

protein targets were close to equally balanced between all-alpha, all-beta and alpha/beta 

classes.

Definition of contacts

A pair of residues is defined to be in contact when the distance between their Cβ atoms (Cα 
in case of glycine) is smaller than 8.0 Å. Contacts were also grouped according to their 

sequence separation into short, medium, long, and extra-long categories, defined as pairs of 

residues separated by 6–11, 12–23, 24+, and 50+ residues, respectively.

Submission of contact predictions assigned a probability score P [0;1] to each contact 

reflecting confidence in the prediction.

Evaluation measures

Prediction performance was measured with F-score and precision considering various 

subsets of contacts: the top 10, top L/5, top L/2, top L (where L is the length of the protein 

sequence) and all contacts submitted. The F-score is defined as the harmonic mean of 

precision and recall:

F = 2 ⋅ precision ⋅ recall
precision + recall

, where precision and recall are calculated as: precision = TP/(TP + FP); recall = TP/(TP + 

FN)) from the observed true positive (TP), false positive (FP) and false negative cases (FN). 

To assess accuracy of contact prediction for ranking of groups, we transformed per-target 

raw accuracy scores into z-scores. After the original z-scores were calculated, outliers that 

scored two standard deviations or more below the average (i.e. z-score < −2) were excluded, 

and the standard scores were re-calculated based on the mean and standard deviation of the 

outlier-free model set. All models that scored below the average were assigned z-scores of 0. 

If a group did not submit predictions on a target, its per-target z-score was also set to zero. 

The cumulative rank of a group is assigned based on the sum of its per-target z-scores.

Jaccard plots

The Jaccard distance was used to analyze the similarity of predicted contacts between pairs 

of groups. The Jaccard distance (dj) between two sets of contacts, A and B is calculated as:

dj = A ∪ B − A ∩ B
A ∪ B

The Jaccard distance ranges from 0 (identical sets) to 1 (sets with nothing in common).

Entropy calculations

Entropy calculations were performed as described before to estimate the dispersion of 

predicted contacts4,48,54. Entropy Score (ES) is calculated as a relative drop of the entropy 
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due to geometric constraints imposed by the correctly predicted contacts on the protein 

shape with respect to the entropy of an extended state without any constraints:

ES = 100 * E 0 − E C
E 0

Where E(C) and E(0) stand for entropy of the protein with and without constraints, 

respectively. The entropies, E(C) or E(0) are obtained as the average value of Shannon’s 

information entropy calculated for residue-residue distances under the assumption of a 

uniform probability distribution:

E C =
∑i, i > j

N log  Ui j − Li j
N * N − 1 /2

Where N is the number of residues in the protein, Lij and Uij are the lower and upper bound 

distances between residues i and j, respectively. Lij was 3.2 Å for all pairs while the value of 

Uij was 8.0 Å for contacts or for non-contacts it is the diameter of gyration, DG55,

DG = 5.54 * N0.34

Results

Ranking of group performances

Performance at CASP is evaluated by either summing up scores from a selected measure of 

accuracy or averaging them over submitted targets. Since 24 out of 46 groups submitted less 

than the maximum 32 predictions, summing up scores would penalize most groups, 

therefore we focused on measures of averages. An important aspect of our evaluation is to 

put in context the results of current CASP13 with those of previous CASPs. Previous 

meetings concentrated on evaluating the top L/5 long-range contacts (where L is the 

sequence length), and for consistency we followed this tradition. As soon as one defines a 

fixed list of contacts to evaluate, it will limit the ability of any measure to fully account for 

specifics, such as the variable difficulty of each case presented by the size of protein, or its 

topology. For instance, all else being equal (e.g. the information content of input sequence 

homologs) a larger protein is expected to have a larger number of long contacts per residue 

and as such presents an easier task to identify a shortlist of top N contacts. Similarly, 

different topologies will influence how many contacts a given target has. To illustrate these 

points, we plotted the number of contacts per residue versus the target length for CASP13 

targets (Fig. S1). Medium range contacts are prevalent among sequentially neighboring 

structural elements and average number of such contacts is relatively constant over different 

protein lengths, however depending on protein topology even among similar-sized proteins 

there is a strong variability between 0.15 to 1.5 contacts per residue. In case of long-range 

contacts, besides the topology dependent variability, a clear trend appears as the average 

number of contacts per residue increases with protein size, as expected, presenting a range of 

contacts per residue between 0.4 and 3.3 (Fig S1). As such, different targets represent 

different levels of difficulty and when only a subset of targets is submitted the variability of 
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the average will increase. We show two measures in Fig. 1., averages of Precision and F-

score over submitted predictions (Fig. 1.). This is in order to illustrate that alternative 

measures return virtually the same ranking, especially among the top ranked groups 

(identical order), and to provide an opportunity for the reader to focus on his or her preferred 

measure. Precision is an easy to understand measure but its drawback is that on a small list 

of L/5 contacts it can be unusually optimistic: for almost 1/3 of targets (10 out of 31) a 

perfect precision of 1.00 is achieved, and usually by a large number of groups. A second 

drawback of precision is that it does not reflect the difficulty of prediction in terms of 

variable number of contacts per residue among targets. Between two targets, the one with a 

smaller number of contacts per residue presents a more difficult prediction challenge as a 

successful selection of L/5 contacts is to be made from a smaller set of contacts. F-score has 

a drawback that it has a narrower (compared to the precision) scale on a short list of L/5 

contacts, with the highest F-score of 0.54 in CASP13. The advantage of F-score is that it 

considers the total number of native contacts in its recall calculation and therefore there will 

be higher F-scores obtained for more difficult targets. For instance, the 1/3 of targets that 

show uniformly a perfect precision of 1.0 for L/5 contacts have variable F-scores, reflecting 

to some extent the difficulty of these targets, for instance, that larger (easier) targets, with 

more contacts per residues have smaller F-scores, as it is easier to predict the top L/5 

contacts right. Group 191, which submitted only one prediction, had a significant 

discrepancy between its rankings by F-score and precision (Fig. 1). This is because the 

group happened to predict an easier target, a large protein with high number of contacts; the 

group achieved high precision in the top L/5 set of contacts, while the F-score reflects that 

the recall of the prediction is very low.

As traditional at most previous CASPs, we also perform ranking of groups according to the 

sum of their z-scores. Z-score based ranking is relatively convoluted, as we described in the 

Methods section. The resulting z-scores are either averaged or summed up. In contrast to the 

previous averages of scores discussion, we show a sum of z-score ranking in Fig. 2. Z-scored 

based ranking of top groups is similar to the rankings according to the average F-score or 

precision, thus confirming their robustness.

When considering three types of contacts independently (short, medium and long range), the 

long-range contacts are predicted with a lower accuracy over the spectrum of all groups, 

while medium and short range contacts are predicted with higher, nearly indistinguishable 

accuracy from one other (Fig. S2.)

We also explored the effect of confidence scores on ranking by calculating the Area Under 

the Precision-Recall Curves (AUC_PR) considering the entire list of submitted contacts, 

which ranges between 10 and 63,741. Figure S3 shows that groups that are better in 

predicting contacts according to precision or F-scores also excel in assigning confidence 

scores to their contact predictions. Overall, the AUC_PR-based ranking of groups is similar 

over the spectrum to the previous rankings, and identical among the top 5 groups.

Impact of contact prediction accuracy on the accuracy of structure model

In recent years, the significant advances in the free modeling category have been widely 

attributed to the improvements in contact prediction. Establishing a direct correlation 
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between the ranking of groups in contact prediction and in structure modeling is difficult 

because many groups do not submit contact predictions separately; also, some groups submit 

a variety of alternative contact predictions with different group assignments and it is not 

trivial to correlate this with the groups that submitted tertiary models. However, considering 

a small subset of cases when the same group submitted both structure models and contact 

predictions, one can see both a strong correlation between accuracies and some significant 

inconsistencies in isolated cases. In these inconsistent cases, either a very good ranking is 

achieved in structure modeling (e.g. group 089 ranked 3 in FM) despite the rather average 

performance in contact prediction (group 089 ranked 20th in contact prediction), or the 

opposite, a highly-ranked contact prediction (e.g. group 164 ranked 7th) corresponds to 

rather average performance in structure modeling (group 164 ranked 46th in structure 

modeling). This suggests that it is equally important to accurately capture contacts and to 

effectively incorporate this information in tertiary structure modeling.

Consistency of contacts predicted by different methods

We also explored if different participating methods have tendencies to capture the same set 

of contacts, in other words, if some more trivial contacts, or “low hanging fruits” are being 

captured systematically by a variety of approaches. This was investigated by calculating a 

Jaccard distance of the predicted contacts between all pairs of groups (Fig. 3). Interestingly, 

different methods captured quite different sets of contacts. The very few similar sets (blue 

and green colors on the heatmap) turned out to be alternative submissions from the same 

research group, such as 032 and 323, 106 and 352, and 475 and 154. The Jaccard distance 

plot shown for illustration considers the top L/5 sets of contacts, but this plot does not 

change for the top L/2, or top L sets of contacts either. Change only happens when all 

contacts are considered, but that is due to the dominance of a very large number of false 

positive predictions among various methods. The Jaccard distance plot analysis suggests that 

a range of alternative sets of contacts can be captured and used efficiently for accurate 

structure prediction.

Improvement in contact prediction over previous CASP meetings

Previous CASP meetings tracked the improvement in contact prediction by the accuracy 

(precision) of the top L/5 long-range contacts. After many years of stagnating performance 

that fluctuated around 20%, the first promising sign of improvement came at CASP11 where 

the performance increased to 26.7% (Fig. 4.). However, the real breakthrough happened 

between CASP11 and CASP12, where the top-performing groups nearly doubled the 

accuracy to 47.1%. At CASP13, an unexpectedly strong additional improvement took place 

and accuracies reached the 70% level. To put the improvements into a practical context, the 

single best-performing group at CASP12 (with a precision of 47%) would not have reached 

in the top 37% of groups in CASP13, and the top performer in CASP11 would have placed 

in the bottom 20% of CASP13 participants. This not only emphasizes the dramatic coming-

of-age moment that contact prediction has experienced during the last 2–4 years, but also 

illustrates that the entire spectrum of performance across all groups has had a broad shift to 

much higher accuracies, rather than the improvements being due to specific techniques 

employed by only a few top-performing groups.
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Target difficulty in CASP13

In order to carry out a meaningful comparison of prediction results in different CASPs, we 

want to rule out the possibility that the change in the prediction accuracy can be attributed to 

the change in target difficulty. This possibility can be excluded upfront by the fact that we 

provided evaluation on the FM targets only, where by definition no trivial homologues exist 

in the databases. A more quantitative comparison demonstrates that difficulty of FM targets 

in the previous two CASPs is indeed very similar as judged by the coverage and sequence 

similarity of targets to the single best template. The coverage and sequence identities are 

61.5% and 62%, and 12.2% and 10.6% for CASP12 and CASP13, respectively. Another 

aspect of target difficulty is the availability of sequence homologs. We have compared the 

distributions of effective sequence depths of targets during the last three CASPs in all 

possible pair comparisons using Kolmogorov-Smirnov statistical test and none of the 

comparisons came out as statistically significantly different (Fig. S4.)

Reliance on sequence profiles

Individual articles in the same special issue of Proteins from the top performers dissect the 

main drivers of their performances56,57. We have explored a few generic issues that are 

likely to influence the results. One of them is the extent of sequence profiles that is used to 

identify correlated positions. We have searched each target sequence using PSI-BLAST58 or 

HHBlits59. PSI-BLAST was run against UNIREF90 for two iterations at an E-value of 

<10−3 and requiring a minimum of 60% sequence coverage on the target. HHBlits59 was run 

against uniclust30 with parameters “-id 90 -cov 60 -n 3 -e 1E-3”. These searches are similar 

or identical to those applied since CASP11 for the same purpose. Resulting hits were 

normalized by sequence length and the higher number of hits from the two alternative 

searches (PSI-Blast and HHblits) was accepted for effective sequence depth (Neff of 

sequences) calculation (Fig. 5). A surprisingly large number of targets have very few hits, 

for instance, 6 targets have single-digit sequence hits, 3 of these have zero or one. When the 

effective numbers of sequences are normalized by the length of the targets (Fig. 4B), 20 out 

of the 31 targets have less than 1.0 normalized Neff, and 9 have less than 0.25. We also 

explored the impact of expanding the search with the large metagenomics databases. Once 

those are also searched the number of sequence hits increases in most cases, but these have 

little impact on the profiles as it usually increases already rich sequence profiles, while the 

poorly-covered targets remain unchanged (e.g. T0955-D1, T0989-D2, T0991-D1, T0998-

D1, T1008-D1, where green and red dots overlap or nearly overlap.)

We also correlated the depth of the sequence profile (normalized number of effective 

sequences) with the accuracy (using F-score, considering L number of long-range contacts – 

Fig 5)). We considered the best contact prediction for a given target made by any group as 

the representative. Some targets with very little or essentially non-existent sequence 

information have a surprisingly high contact prediction accuracy. In general, about half of 

the targets have normalized Neff less than 1; nevertheless, some of these produced very 

accurate contact predictions, up to F-scores of 40%.
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Correlation between contact prediction and protein size

The correlation between protein size and accuracy of contact prediction for the entire set of 

targets was r = 0.32, which suggests some low-level correlation; however, only four targets 

were above 300 residues and their contacts were predicted with average or above-average 

accuracy of 0.21–0.47 F-score values. After removing the largest four targets the rest of the 

27 targets show no correlation (r = 0.11).

Correlation between contact prediction accuracy and types of connected secondary 
structures

We analyzed the accuracy of contact prediction with respect to the types of secondary 

structures connected. Secondary structures were identified from the known experimental 

structures using the DSSP program60. First, we identified the native contacts in the known 

structures of the target proteins according to CASP definitions (within 8 Å of Cβ atoms of 

interacting residues.). Then, we compared the normalized counts of native to predicted 

contacts (Fig. 6, left y-axis, blue and red bars). Compared to the native contacts, the fraction 

of predictions between regular secondary structures with translational symmetry (between β-

strands, α-helices, and between α-helices and β-strands) are predicted with higher 

frequency, compared to the fraction of contacts that involved at least one residue from a coil 

structure (coil-coil contacts and contacts between a coil and either an α-helix or β-strand). 

When looking at the accuracy of these predictions (Fig. 7, right y-axis and white bars), the 

contacts involving regular secondary structures are captured with markedly higher accuracy, 

especially in the case of contacts between the same regular secondary structures, whether 

they are β-strands or α-helices (F-scores 68.46(β-β), 54.46(α-α), 41.41(β-α) vs 38.06(coil-

coil), 40.06(coil-β/α)). Since almost half of the contacts involve at least one residue from a 

coil structure, improving contact prediction in these segments would have a substantial 

impact. The lower accuracy of contact prediction is probably connected to the higher 

sequential variability of these segments, which provide less unambiguous co-evolutionary 

signal. These segments are also more difficult to structurally classify for neural networks 

when likely interaction patterns are established.

Entropy of contacts

We calculated the entropy of contacts, in other words how dispersed the predicted contacts 

are along the sequence. The Entropy Score reflects the relative drop of the entropy due to 

geometric constraints imposed by the correctly predicted contacts on the protein shape with 

respect to the entropy of an extended state without any constraints. Contact prediction with 

high entropy can be either right or wrong. However, high accuracy predictions require high 

entropy (Fig. 8). This is somewhat expected as a high-accuracy prediction must include a 

variety of interaction hubs in the protein structure. An unbiased analysis of the relation 

between the entropy and accuracy of contacts is also complicated by the fact that algorithms 

often select contacts deliberately in an balanced manner along the sequence. The overall 

correlation between accuracy and entropy score considering L contacts and predictions for 

all targets by all groups is 0.43. We also explored this correlation considering the single best 

prediction for each target (Fig. 8B, blue dots), r=0.46, and by contrast picking a poorly 
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performing prediction, with a relative rank of 30 (out of 44 groups) (Fig.8, red dots.), r=0.41. 

The correlations are nearly indistinguishable.

Discussion

A typical contact prediction scenario is shown in Fig. 9. Two alternative predictions are 

compared for the same target, one of which is more accurate than the other (upper panel F-

score = 0.64; lower panel F-score = 0.15). The correct predictions are marked blue in the 

distance maps. Out of the four major contact hubs in the target, the more accurate prediction 

captures three quite well, and makes no incorrect predictions (no red color). The less 

accurate prediction captures at most one interaction hub (missing most of the native contacts 

in three hubs, in green), and makes a strong incorrect prediction (in red) that would probably 

mislead subsequent modeling efforts. The corresponding structural features of interacting 

residue hubs are marked in the ribbon model with yellow circles, and the model shows the 

most accurate FM model obtained for this target, T0953s1d1, with a GDT_TS score of 

54.48. In Fig. 4, we discussed the recent impressive advances in terms of precision of 

contact predictions, which reached just above 70% for long-range contacts at CASP13. 

However, precision values on a small number of contacts (L/5 in Fig. 4) can be overly 

optimistic. We used this evaluation because this has been done historically and therefore 

gives a clear comparison to performances at earlier meetings. However, if we assess the 

accuracy of contacts in terms of F-score and consider top L contacts (instead of just L/5), 

results worsen significantly. Even if we consider the single best prediction out of all the 

groups for each of the 32 targets, we get an overall average F-score of 0.24 (the highest 

single F-score achieved by any group and any target is 0.76 in this set). A recent work 

estimated that random residue-based prediction results in an average F-score of 

approximately 0.1261, with a very sharp normal distribution. Therefore, although an average 

F-score of 0.24 is certainly statistically significant, it is also clear that there is much room to 

further improve contact predictions. Contact prediction made a dramatic impact on the 

accuracy of the FM category modeling, but still about half of FM targets were not modelled 

correctly at CASP13. Considering the single best performing group, the average accuracy of 

FM models increased from an average of GDT_TS=41 in CASP12 to 56 in CASP1362. All 

of this suggests that at least a gradual additional improvement in the accuracy of contact 

predictions can still be anticipated.

We also discussed the interesting phenomenon that some targets had outstanding prediction 

accuracies (with F-scores close to 0.4) despite the fact that no apparent sequence profile 

could be established and, as such, no useful evolutionary information could be extracted. All 

the top performing groups used deep neural networks for contact prediction. While sequence 

inputs can be used to predict correlated positions for contacts, neural networks can directly 

use input sequences to infer corresponding fragments and assembly of fragments, or 

possibly infer memories of sequence similarity utilizing the extensive supervised training of 

NNs with sequence profiles56. While it is not possible to definitely establish that this is what 

is happening without access to the particular approaches, we hypothesize that a strong 

synergy exists between prediction of fragments, their assemblies and contacts. The ability of 

convoluted neural network to predict structures and their corresponding contacts even in the 

near complete absence of useful evolutionary information has been reported by a number of 
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groups recently. For instance, Zhang et al. (also one of the top performing groups at CASP13 

and contributing an article in this issue), reported predicitions63, where protein profiles had 

low effective sequence depth but high contact prediction accuracy. In the same article the 

authors used an extreme case simulation when the neural network was fed with a single 

sequence. Despite the assumption that the input coupling matrix is random63, 11 out of 158 

cases still achieved a very high F-score > 0.5, among a number of other reasonable 

predictions. Similar observations were made in another recent article by Jones et al.44,. 

While more sequences have a positive impact on the accuracy of contact prediction in 

general, the deep residual neural networks have the ability to learn the underlying contact 

patterns from limited coevolutionary information; the latter is important for structural 

modeling hard protein targets lacking homologous sequences or having very shallow 

alignments44. While contact prediction is a strong driver of improvements in tertiary 

modeling, it also has been established years ago that the protein structure universe has 

saturated on the level of supersecondary structure motifs64,65, and since about the year 2000 

all the new folds can be derived from a combination of a handful of supersecondary structure 

motifs that were observed earlier66. It is therefore plausible that the advance in the FM 

modeling category and, indirectly, in the accuracy of contact prediction is due to an effective 

integration of the saturating structural information and our improved ability to correctly 

organize these motifs with predicted contacts using deep neural networks.

In this work, as in previous CASPs, we have presented different analyses of contact 

prediction accuracy. In early CASPs, where the number of targets was small and the 

predictions were usually poor, the different choice of evaluations often changed the ranking 

of groups, due the lack of statistical significance of differences67. Recently, contact 

predictions have seen strong advances and results are currently fairly robust irrespective of 

the choice of measures. As we discussed in detail, in most of these evaluations assessors 

subjectively selected usually short, fixed set of contacts for evaluation. Instead, in the future, 

we recommend to consider a larger set of contacts, whose length is equal to the actual 

number of contacts in the target structure. This can have several advantages. First, it would 

alleviate the need for a subjective definition of contact lists and focus the evaluation on what 

in fact is ultimately intended to be achieved i.e. predicting all contacts in a protein structure. 

Second, when the length of the contact list equals to the total number of contacts in the 

target structure, precision and F-score are equal, because precision and recall are the same. 

This simplifies the choice of scores used in this paper to a single one. Third, evaluating 

predictions on the target-specific number of native contacts in a given structure explicitly 

takes into account differences in the numbers of contacts per residue for different targets, a 

desired scoring feature. Finally, the overarching goal that contact predictions will be 

evaluated on the full set of native contacts might motivate groups to submit reasonable 

amount of contact predictions, unlike the current situation when the number of predicted 

contacts per target range between 10 and 63741.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Ranking of group performance on contact prediction at CASP13 considering the top L/5 

long-range contacts. The x-axis lists the groups participating at CASP13, the left y-axis and 

blue bars show average F-scores over submitted targets (between 1 and 31), while the right y 

-axis and green bars show the average precision of prediction. Group 191 predicted only one 

target. Statistics on the number of predicted targets by all groups is provided in 

Supplementary Table S1.
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Figure 2. 
Ranking of group performance using sums of z-scores calculated from the per-target 

distributions of F-scores. Peforrmance is calculated on long range contacts and the set of top 

L/5 contacts.
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Figure 3. 
Jaccard distance plot of contact predictions comparing the top L/5 contacts of participating 

groups (listed on the left vertical panel). Identical sets of contacts are marked in blue (close 

to Jaccard distance of 0), while entirely non-overlapping sets are in red (close to Jaccard 

distance of 1) colors. The left panel displays a similarity histogram of the group predictions.
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Figure 4. 
Improvement of contact prediction over CASP10-CASP13 meetings. Average precision of 

long-range contact prediction accuracies is shown considering the top L/5 contacts. X-axis 

lists CASP participating groups, ordered by performance, y-axis is the average precision of a 

given group over all targets. Colors identify the different CASP meetings.
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Figure 5. 
Relationship between the length of target sequence and the number of non-redundant 

sequence hits (sequence profile depth). Sequence profiles were established by either 

searching the UniProt database (red) or expanding the search into metagenomics data 

(green). Panel (A) shows the number of sequence hits as a function of protein length, while 

panel (B) shows the protein length normalized by the number of sequence hits. Both panels 

show logarithmic scale to emphasize the low number of hits.
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Figure 6. 
Relationship between the number of target-length-normalized non-redundant number of hits 

(sequence profile depth) and the accuracy of contact prediction (F-score). The results of for 

L long-range contacts are shown for each target.
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Figure 7. 
Success of contact prediction as a function of connected secondary structures. The x-axis 

shows the types of secondary structures connected. The left y-axis shows the normalized 

frequency of contacts: the blue columns represent contacts observed in structures, while red 

columns refer to the predicted contacts in the same category. The right y-axis shows the 

accuracy of contact prediction in each category using F-score measure, and the 

corresponding columns are white with black edges.
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Figure 8. 
Entropy of contact. Entropy of contact is shown as a function of accuracy (F-score) for L 

contacts, for (A) all targets submitted by all groups, and for (B) single most accurate 

prediction for each target (blue) and the prediction ranked 30 out of the 44 participating 

groups for each target (red).
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Figure 9. 
Contact maps are shown for the same target (T0953s1d1), upper and lower maps refer to a 

highly accurate (F-score 0.64) and inaccurate (F-score=0.15) predictions. Green, blue and 

red colors in contact maps refer to correct, missed and incorrect contact predictions. The 

hubs of interactions are visualized on the ribbon models with yellow circles marking the 

networks of contacting areas. Blue and green ribbon models refer to the model built on the 

upper contact map (GDT_TS scores of 54.48) and the experimental structure.
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