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UKZIll EQUATIONS fJft STOCHASTIC COOUHG** 

J J. Bisognano 

Lawrence E-rue ley Laboratory, Berkeley, CA. USA 

ABSTRACT 
A kinetic equation approach to stochastic cooling is presented. 
equations for one and two par t i c le d is t r ibu ter * functions are 
oerwed from the pr inciple of conservation of the mr^er of 
ensemble systems. The v io la t ion of L iouvf t le 's theorem is 
expressed by certa in se l f - in terac t ion tev*s. The tto-fr a r t i c l e 
d is t r ibut ion describe'. Schottfcy noise and feedback e f fec ts and is 
analysed by techniques, of the Lenard-ftalescu equalten for 
plasmas. The result ing expression for the one p a n i c l e 
distribut<on is of the form of a Fokker-Planck equation. Ihe 
suppression of Scnotuy signals for arb i t rary aacnine impedance 
is discuss^o in tenas of par t ic le correial .ons. 

I. JHTRQUULTlUh 
Tee nntiun of mning in stochastic tooling describes DOtn the ef fects 0< trie 

narrowing of Schottty signals * i t h diminishing frequency spread and the feedback 

introduced by previous corrections ' to the eai t tance. Jrese Issues are both 
manifestations c? correlat ions in the cooled variable developing between \nv bem 

par t ic les . In a plasma physics content, the de ta i ls of two-part ic le correlations art 
described by the Lenard-Balescu equation. ' Since i t is derived from t i o u v i l l e ' s 
thereom, these results are net d i rec t ly appl'cable to stochastic cooling -here the 
feedback system introduces dissipat ion. However, s tar t ing f r c * f i r s t pr inc ip les , 
equations can be obtained which are amenable to the techniques developed ir. me 
Lenard-Balescu analysis. 

?. K I N U U LCfUAThltiS Fttf A HOW-LIUUH I I I ! AH SYSTEM 
Consider t^e 2'J-cinensionai ensem&le d is t r ibut ion D (q , , p, q . D * 

describing J n»e Jinensional system of K p a r t i c l e s , normalized to unity in tegra l . 
Conservation of t*>i! number of ensemble systems is expressed by 

at 

where u = (a,, p., ..., q , P n) . If the systea dynamics are described by 
Hamilton's equations, then (1) reduces to the condition of incompressible fluia flow 
(Liouville's theorem), with V^cting on D alone. For a stochastic cooling system, 
(ignoring amplifier noise), the dynaraics are not Hami itonian, but are of the form 

dp dp, \"" 
~ = £-* G (q , q * P ) 

d ^ 
dt Q (P;l 

*r Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48. 



As in the L iouv i l l i an case, equation (1 ) may s t i l l be integrated over 2 [ K - I } , 2 ( » - ? ) . 
e t c . variables to y ie ld equations for cne, two, e t c . -pa r t i c le d is t r ibut ion functions. 
There is an i n f i n i t e hierarchy of equations; in par t icu lar , tne lao -par t ic le equal ion 
contains the t h r e e - p a r t i c l e d is t r ibu t ion . For plasmas with long range forces, the 
assumption is made that n-part ic le correlat ion ef fects vanish as tne ln -1 ) power of t n * 
r a t i o of i n t e r a c t i o n energy to thermal energy. For stochastic cooling systems w e 
corresponding r a t i o is of the e..rengin of tne correction io frequency spreao. Deconpose 
the t w o - p a r t i c l e d i s t r i b u t i o n into 

t? * f (q , p , , t> f ( q 2 , p ? , t ) • g ( q , , p , , q ? , P 2 , I ] , , 

where f is tie one-particle distribution and g describes all two-particle correlations-
Then, on integrating {]) over ?(N-1J and ?(N-?) variables and dropping all terms of tm 

order of three-part tt le correlations, we have ' 

If * 6 15 * '' Ip"/" < l q' < , p" c (q' q'' p , ) f tq'' p"' U 

= * U JP / d q ' d p ' G lt*» "'• °' J q <n« P. Q". P \ U 

-[ip ( M q' q- p ) f (q- P' l , ) j 
and 

|1 (,,. p,. V p ?. U • q, ** * 5 ^ > N | ^ / * 1 - » ' G lq,. »". P'l ' («\ P \ t) 

* " l p " / < 1 , ' d p ' G < V '''• P' 1 f '''•• "'• t J * 

- N | j - /dq'dp'G (q,, q', p') q (q?, p ?, q', p", t) 
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"tfc/ Jq'Uu'u (q?. 

^ [G (q,- <1?. P 2 ) ^ lQ,. P r t) f ( q r p 2, tjj 

^ [ G ( q 2 . q,, Pj) f (q,. p p t) f (q£, p ?, t}j (6) 

Tre cooling of phase-space appears in the bracketed term of equation [S)- To tne 
order of the approximation no equivalent self-interaction term is found in equation i6j, 
and ;t is formally identical to the Lenard-Balescu equation. The la$t tera on tne left 
hand side of (5) ib a Vlasov-like expression which vanishes for stocnast«c cooling 
systems. The first term on the right hand side of (5) describes Schottky signal and 
feedoack effects. For equation (6), the last two terms on tne right hand side are tne 
direct effect of other beam oarticles; i.e., the Schottky signals. Tne first two teres 
on the right hand side describe the suppression of both the coherent cooling rate and 
Schottky noise through feedback. The q terms on the left hand side effect mixing througn 



frequency spread. Similar results follow for two diaensional systems and can be applied 
to transverse cooling. Amplifier noise «ay be added with the appe«-ance of the usual 
noise term in (5) and an additional tern in (6) describing feedback of the noise signal 
through the beam. 

?. HQHEftTUH COOLIHG 
we *.ake as our variables the azirauthal angle o and * •* (E - E ). and we "©del tne 

equations of motion by 

dx- >n(» -e.) 

J n 
where G is the system transfer function and C » 0. Ue also assue«* that f is 
independent of ©, and qi*,, «,, ©., *.,, tl ts a function of ». - « ? , •.., 
dDCl x • that is, 

9 (8|. « ?. .,, - ?, tj = 2 - g ( (*,. * r U e [8i 
' -OO 

The function g. describes signal si;--"-ession in the .th Sc ottky band. Inserting (8) 
into (6) yields 

* i< (u, - » j ) 9/ ( . , . x ? . t ) -
-¥77 [ G c"?» f (., . U f ( * ? , • ' ] -

l»' ) g_,(x ?. -• . K 

..^y... ,. ( «') g c (» , , » ' , t ) 

• " 

Z2 I 
(*,) f (*,. U f (« r 1)1 

Equation (9) may be solved by standard Laplace transform techniques deire'oped in tne 
Lcnor 1-Balestu analysis ' under undtr the assumption mat the relaxation time for 5 :s 
fast 01, the scale of variations of f (Schottky signal suppression is fast coflpareo to 
cooling times). That is, we solve (9) with f assumed constant. Inserting tne solution 
of (9) into (5} yields 

Tt * -L, »x [ c_ (x) J - IT I J7| Is I r~m » fJ j l , 0 

1 , 1 1.1/ „ n » if.,-.') 

where 

af (x' l 
dx' - i i -—i. 

ana ,j(x) is the angular revolution freouency corresponding to 



This result is of the form of a Fokker-Planck equation with one derivative acting on 
f alone * . The first term on the right hand side is the coherent cooling of a 
particle's energy error; the e E factor describes the feedback of the coherent signal 
through the beam. The second term contains the effects of the bea* signal, including 
again feedback. The form of interaction {7 • is directly applicable to the Palmer netnod 
of momentum cooling, where the weighting i^ncx ion G £«,' derives froo position 
measurements in a transverse picnup ana tie electronic gaii is essentially constant over 
a Schottky band. For the filter method, i- -«'Cf energy information is obtained through 
variation of the electronic gain witn frequency, tne c factors Are Modified. «rtlh the 
corresponding G (x) outside tne integration in (1M. ]f anplifier noise P is included 
there will be an additional term on the ngnt nand side: 

£*[•(*)' V * *] 
?. SCHOTTKy SIGNAL SUPPRt'jSlutl 

The i Schottky s ignal d l frequency . M ( K J is proportional to 

e J dx' g ( (*, f ( x ) • «ej „. H < v . . - , i l 3 J 

resolution 

where the integral is over the resolution of the analyzing device. Since the correction 
function is highly peaked near * = x*, tnis integral is weI approximated by 

s / < . . v . . . - > , , ( < , ) fU) IW) 

With well-centered noccnes ana cooling, k 1 > 1 and a negative correlation exists, 
corresponding to the average energy error being corrected toward ze-o. The resulting 
Schottky signal is modified to 

f(-<) 

The factor 
of equation (6). This equation remains valid for space charge and wall effects (since it 
is independent of the cooling self-interaction term) with tne appropriate inpedance 
substituted for G. In fact, where dissipative effects of the impedance are negligible, 
Liouville's theorem holds, and the original derivation of Lenard and Balescu is 
applicable. The solution of (6), or equivalently (9) will determine associated c and 
g, which describe correlations due to the impedance. For spac charge forces, 
|E I > 1 below transition and Schottky signals are suppressed. This effect is most 
pronounced in situations of small frequency spread, as has been observed in electron 
cooling experiments. ' 
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