Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
KINETIC EQUATIONS FOR LONGITUDINAL STOCHASTIC COOLING

Permalink
https://escholarship.org/uc/item/27n369v1|

Author
Bisognano, J.

Publication Date
1980-07-01

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/27n369v1
https://escholarship.org
http://www.cdlib.org/

LBEL-10753

{ONF - RO6)YE

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA
[ Accelerator & Fusion

Research Division
MASTER

Preseated at the XIth International Conierence
on High Energy Accelerators, CERN, Geneva,
Switzerland, July 7-11, 1980

KINETIC EQUATIONS FOR LONGITUDINAL
STOCHASTIC COOLING

J. Bisognano

July 1980

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48

METESUTIOE &F THid CISUMENT +3 URLIBITER



LBL 10753

KINETIC EQUATIONS FOR LONGITUDIHAL STOCHASTIC rOOLING

J. Bisognano
Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

July 1980

This work was supported by The Otfice of Inertial Fusion
of the U. S. Department of Energy under Contract W-7405-Eng-48.



CINETIC EQUATIONS FOR STOCHASTIC cooLInG™)

J J. disognano
Lawrence E.reeley Luboratory, Berikeley, CA, USA

ABSTRACT

A kinetic eguation approach o stochastic cooling 15 presented.
fquations for gae and two particle distributivs functions are
derived from the principle of conservation of the nurver of
ensemble systems. The violation of Liouville's theorem 3s
expressed by certain self-interaction tevms. The tw-gparticle
distribution desCribes Schottky noise and feedback ef.2¢ts and s
analyzed by techniques af the Lenard-Balescu equatisn for
plasmas. The resuiting expression for the one particle
distribut.on is of the form of a Fokker-?lanck mrquation. The
suppression of Schottky signals for arpitrary machine mpewance
15 discussed in terms of perlicle correiat.ons.

1. INTRODYLTION

Tre nntiun of mixing In stochastic coaling describes potn Lhe eftects of tne
narrowing of Schottcy signals »ith dwinishing frequency spread and the feedback
introduced by previous correct\ons” to the emittance. Trese i1sswes are botn
manmifestations ¢! correlations in the cooled variable developing between the beam
particles. In a plasma physics context, the details of two-particle correlatigns are

2)

thereom, these results are nct directl; applicable to Sstochastic cooling where he

described by the Lenard-Balescu equation. Saince it is derived from Liourtlle's
feedbaCh system introduces dissipation. However, starting from first pranciples,
equations can be obtained whith are amenable to the techmiques develoged in Lne
Lenard-Balescu analysis.

2. KINETIL EQUATT NS FUR A NOB-CTuyw JLLIAN SYSTEN
Counsider the 2X-gimensional eansemele gistridution Dl:l,. Pre cces Qo 2"
H

descrining 4 one Jimensional system of X particles, normalizec 1o unity integral.
Conservation of tne number of ensemble systems is expressed by
>

20 - 5 N

>
= o+ V2 ud = U i,

where = (c‘ll. ';l‘ P &“. 5“)3). if the system dynamics are descrided by
Mamilton's equations, then {1} reduces to the cordition of incompressinle fluig flow
{Liouville's thegrem), with "¥acting on D alane. For a stochastic cooling systea,

{ignoring amplifier noise), the dynamics are not Hamitonian, but are of the form

dp
= %: 5 gy, 950 P;) 2}
= Qipy) i2)
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As in the Liouvillian case, equation {1) may still be integrated over 2(K-1}, 2(%-2).
etc. variables to yield equations far cne, two, etc. -particle distribution functions.
There is an 1nfinite hierarchy of equations; in particular, tne two-porticle equalion
contains the three-particle distribution. For plasmas with long renge forces, the
assumptior. iS made Lhat n-particle correlation effects vanish as the (n-1} power of tne
ratio of interaction energ; to thermal energy. For stochastic cooling syslems tne
corresponding ratio 15 of the scrength of tne Correclion Lo frequency $Predd. Decompase
the two-particle distribution into

fo= £ {ap Py 1) f (9, Pys U} + g (Q)s Py Qs Pyy t) '

where f is the one-particle distribution and g descrives all two-particle correlations.
Then, on integrating (1) over 2(N-1) and 2{N-2) variables and dropping all teres of tne
order of three-particle correlations, we have

af aft ) af ‘ap* « g . e
Trek L3 dg'dp'6 (q. q*. '} f {a*, p*, 1}

=-ni faa'dp's ta, 9 0 9 {0, B 0%, P t)
[%5 (6la. @, B} f {q, P. mJ i
and

2 L2 39 L2 39 v . g o
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th %g;fdﬂ'dD'G (a0 @'4 '} £ {2, p*s 1) =

af fdp G e « g
—N——a,,l dq'ap*G (q). @'y ) g {6, Py @° P° 1)

at . . . . )
‘“Tp; UQTURTS {8y Q' k) 9 LT P G Ppa L)

3
T [G (90 G50 Py} T L@y by, t) € {ap Dy l)]

%92 [G {ays 91 py) T lag, pyy 1) F (a,, Py, t)] (6)

Tre cooling of phase-space appears in the bracketed term of equatton (5). To the
order of the approximation no equivalent self-interaction term is found 1n equation (6),
and ‘t is formally identical to the Lenard-Balescu equation. The last tera on the left
hand side of {5) is a Vlasov-like expression which vanisnes for stocnastic cooling
systems. The first term on the right hand side of {5) describes Schottky signal ang
feedoack effects. For cquation (6), the last two terms On tne rignt hand side arg the
direct effect of other beam oarticles; i.e., the Schottky signals. Tne first two teres
on the right hand side describe the suppression of both the coherent C00ling rate and
Schottky noise through feedback. The q terms on the left hand sige effe"t mixing througn



frequency spread. Similar results foliow for two dimensfonal systems and can be applied
to transverse cooling. Amplifier noise may be added with the appea-ance of the usual
noise term in (5) and an additional term in (6) describing feedback of the noise signal
through the beam.

2. MOMENTUM COOLING
We “ake as our variables the azimuythal angle e and x = (E - Eol. and we model the
equations of motion by

in(e -o.j

i ZZG(‘)E " tn

where G is the system lrdnsfer fynction and Go = 0. We also assuce that f fs
independent of e, and gia,, Xx,, 6., x,, t} 15 & fuactivn of @, - @,, 1,,

1 I e T2 i 2 1
ang x?; that is,

oo id{a,-a,}
N ) . 179
g {o, 4y X0 wps U] = Zq( (2050 U @ 8
.
Tne funtlion g, describes signal sc-7-ess1on in the ,th Sc ottky band. Inserting (8}
into {6} yields

P P [ul - u?} 9; (xl. 5 t) =

3
- “ [G (x ) f (l]. L) f (xz, \,] - 3_x; {G-l(l]) i (xl. c)t (lz. l)]

- N 3—'—] ax* 5 {x') g_otx;y, 2%y 1)

- R :—i; dx” [ (x*) 9 (x.‘, x', t} {(9:
Equation {9) may be solved by standard Laplace transform technigues developed n Lne
Lenar 1-Balescu analyslsd) under ynder the assumplion tnat the relaxation time for 5 :s
fast o the scale of variations of € {Schottky signal suppression is fast comparea Lo
cooling times), That 15, we solve {9) with f assumed constant. [nserting the <olution
of (9) into (5) yields

6 {x)f(x,t) ’B w) |2
af ]z 3 e af
al"Lzax[ ©_ (%) ] T [h, ' l £3 BT '] o)
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where
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and w{x) is the anguiar revolution freguency corresponoing to ‘.5)



This result is of the form of a Fokker-Planck equation with one derivattirve acting on
f a\oneﬁ' 7). The first term on the right hand side is the coherent cooling of a
particle's energy error; the ¢, factor describes the feedback of the coherent signal
through the beam. The second term contains the effects of the beam signal, including
again feeuback, The form of interaction {7+ s directly applicable to the Palmer metnod
of momentum cnoling, where the weigniing funition an(-: derives from position
measurements in 4 transverse pifxud ang tne eiellrenlC garl 1s essentially constant over
a Schottky band. For the filter metnoc, i~ aniip gnergy information 15 oblained through
variation of the electronic gain witn frequency, the ¢ fdctors are modified, «ith the
corresponding G"(x) oulside tne integration 1n {11}, If amplifier notse P 1s included

there will be an additional term on the rignt aang sige:
2

Tl (3) 3 2]

3. SCHOTTKY SIGNAL SUPPRELSIUN
The Ilh Schottky signal at frequency .w(x) 15 propurtiondal to

f(x) * ReJ’F g g {x, x) a3}
resolution

where the integral is over the resolution of the analyzing device. Since the correction
function is highly peaked near x = x*, this integral ¥s wel approximated oy

Re fd.' g0 X (l ]|2 - 1) f{x} {14)
¢

With well-centered notches ana cooling, I:,l > 1 and a negative correlation exists
corresponding to the average energy error being corrected toward ze-o. The resulting

Schottky signal 1s moai1fied to

,c( {15;

The factor £, -2 describes Schottky signal suppression and is a direcl consequence

o

of equation (6). This equation remains valid for space charge and wal)} effects (since 1t
is indepandent of the cooling self-interaction term) with tie appropriate impedance
substituted for G. In fact, where dissipative effects of the impcdance are negligible,
Liouville's theorem holds, and the original derivation of Lenard and Balescu is
applicable. The solution of (6), or equivalently (9) will determir: associated ¢ and

% which describe correlations due to the impedance. For spac: charge forces, ¢

5| > 1 below trausition and Schottky signals are suppressed. This effect is most
pronounced in situations of small frequency spread, as has been observed in electron

cooling experiments.
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