UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Recognition Model with Narrow and Broad Extension Fields

Permalink
https://escholarship.org/uc/item/27n4v711

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Authors
Kalocsai, Peter
Biederman, Irving

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/27n4v71r
https://escholarship.org
http://www.cdlib.org/

Recognition Model with Narrow and Broad Extension Fields
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Abstract

A recognition model which defines a measure of shape
similarity on the direct output of multiscale and
multiorientation Gabor filters does not manifest qualitative
aspects of human object recognition of contour-deleted
images in that: a) it recognizes recoverable and
nonrecoverable contour-deleted images equally well
whereas humans recognize recoverable images much better,
b) it distinguishes complementary feature-deleted images
whereas humans do not. Adding some of the known
connectivity pattern of the primary visual cortex to the
model in the form of extension fields (connections between
collinear and curvilinear units) among filters increased the
overall recognition performance of the model and: a)
boosted the recognition rate of the recoverable images far
more than the nonrecoverable ones, b) increased the
similarity of complementary feature-deleted images, but
not part-deleted ones, more closely corresponding to
human psychophysical results. Interestingly, performance
was approximately equivalent for narrow (+15°) and broad
(£90°) extension ficlds.

Introduction

A task that both biological and artificial vision systems
have to solve is to recover boundaries of objects from many
times imperfect, noisy input. The Gestalt grouping
principles of co-curvilinearity, proximity, constancy of
curvature can help recovering meaningful information under
these circumstances. There is considerable evidence from
neuroscience (e. g. Gilbert & Wiesel, 1989) and
psychophysics (e. g. Field et al., 1993) that these grouping
principles are built into the mammalian visual system in the
form of connectivity patterns among processing units.
There is both anatomical and physiological evidence that
cells with approximately collinear orientation are
interconnected mainly by excitatory connections (Gilbert &
Wiesel, 1989). Psychophysical results seem to suggest a
broader field of connections between not only collinear
units, but also curvilinear ones (Field et al. 1993). For
either the narrow or the broad fields, the excitatory
connections reveal smoothly decreasing strength with
increasing distance and curvature differences (Field et al.
1993; Gilbert, 1992, Polat & Sagi, 1994). There is also
evidence for facilitation (increase in sensitivity for detecting
Gabor patches) when local and global orientations are 90
degrees offset (the virtual line connecting two segments is
perpendicular to their orientation) which is not modeled here.
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The smoothly decaying excitatory field around an oriented
segment is referred to as an extension field in this paper.
The terms 'association field' or 'stochastic completion field'
can be found in the literature to refer to similar constructs.
These terms are generally applied to fields considered to
manifest broad tuning. The term ‘horizontal connections'
has been employed to refer to the more narrowly tuned
excitatory connections documented for neural units. To
compare the effects of both narrow (collinear) and broad
(collinear and curvilinear) connectivity patterns among
processing units we decided to implement two versions of
the extension field: a narrow and a broad one. In the absence
of precise neurophysiological data for the strength of
connections between collinear and curvilinear units we
choose the algorithmic definition of narrow and broad
extension fields to be an excitatory gradient +/-15 and +/-90
degrees respectively centered on an oriented segment.

The goal of the present study was to investigate the
consequences of adding extension fields to a recognition
model that computed shape similarity based on
representations of V1 hypercolumn activity. Specifically,
we studied whether the extension fields would increase the
resemblance of the recognition performance of the model to
that shown by humans.

Brief comparison with previous work

Several previous computer vision models have used
extension field type algorithms to guide the grouping
process (Grossberg & Mingolla, 1985; Sha'ashua &
Ullman, 1988; Parent & Zucker, 1989; Heitger & von der
Heydt, 1993; Guy & Medioni, 1996; Williams & Jacobs,
1996). The main contribution in the present effort is the
implementation of such a scheme on a biologically
plausible multiscale and multiorientation filter
representation, roughly similar to that of a lattice of VI
hypercolumns. This representation allowed a measure of
shape similarity based on the combined activity produced by
both the input image and the grouping process (although
this does not necessarily mean that grouping results in
activity that is indistinguishable from that produced by the
original image). The previously cited efforts did not result
in a measure of shape similarity.

Other differences distinguishing the present effort from
prior ones was that the latter studies used only one scale as
opposed to our multiscale approach. Since our test images
were line-drawings, only one scale size--chosen to be the
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width (frequency) of the lines--could have very well been
used, but a multiscale representation better resembles the
sampling properties of biological vision systems. Many of
the studies in the grouping literature (e. g., Parent &
Zucker, 1989; Sha'ashua & Ullman, 1988) used an itcrative
relaxation algorithm as opposed to the more biologically
plausible one-pass operation which was implemented here.
An additional feature of the current study is that it directly
compared the recognition performance of a grouping model
to that of humans on a large number of test images, which
is relatively rare in the literature. In the following we will
describe two experiments on object recognition and compare
human data to the performance of our baseline model.

Human experimental results and comparison of
performance with a baseline model

In a psychophysical experiment (Biederman, 1987) equal
amount of contour was deleted from line drawings in such a
way that the parts were either recoverable or nonrecoverable
as illustrated in Figure 1. Subjects were able to recognize
recoverable versions, but not nonrecoverable ones. A model
(Lades et. al., 1993) based on the direct output of a number
of columns of multiscale and multiorientation Gabor filters
(each column is roughly analogous to the simple cells in a
V1 hypercolumn) was tested on the same images (this
recognition system was originally developed for face
recognition and it has achieved high accuracy in recognizing
faces from several face databases and continues to be a
success as a commercial application on the access control
market (Konen, 1995)). The model recognized the
nonrecoverable images as well as the recoverable ones, a
result that does not correspond to human data (see results
later).

In another task, subjects named briefly presented contour-
deleted images (Biederman and Cooper, 1991). For each
image, two sets of complementary pairs were created by
deleting every other vertex and edge from each simple part in
the first set (feature-deleted) and by deleting approximately
half the components from each image in the second set (part-
deleted) (Figure 2). If the members of the complementary
feature-deleted pair or the part-deleted pair were superimposed
they would provide an intact image without any overlap in
contour.

Members of a complementary feature-deleted image pair
(Figure 2. left) were equivalent to each other for human
subjects as tested with the priming paradigm (Biederman and
Cooper, 1991), but not for the model since the similarity of
members of a pair was markedly lower than similarity of
one of the images from the pair to itself. Part-deleted
complementary images (Figure 2. right) were not equivalent
neither to humans nor to the model.

Figures 3 and 4 give a visual illustration of the activation
fields (the responses of the individual kernels in the model to
an image) created by convolving an image with the
differently oriented and scaled kernels in the baseline model
(the intact and recoverable 'boat' images are used as
examples). In the visual representation the activation values
of the model are normalized to integer values between 0-255
for 8-bit graphical display.
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Figure 1. Examples of intact (left), recoverable (middle) and
nonrecoverable (right) test images (Biederman, 1987).
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Figure 2. Examples of feature-deleted complementary image
pairs (left) and part-deleted complementary image pairs
(right). Each member contains approximately half the parts
of the object.

Additions to the baseline model

The extension field is essentially a probability
directional vector-field describing the contribution of a single
unit-length edge element to its neighborhood in terms of
direction and strength (Guy & Medioni, 1996). In other
words, it describes the preferred direction and the probability
of existence of every point in space to share a curve with the
original segment. The field direction at a given point in
space is chosen to be tangent to the osculating circle passing
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Figure 3. Activation fields of the baseline model to the
intact 'boat’ image. The three rows represent the three scale
sizes used in the experiment. The first column shows the 2D
picture of the Gabor kernels at the three different scales.
From the second to the second to last column the normalized
activations of the differently oriented kernels to the intact
'‘boat’ image are displayed starting with horizontal
orientation and incrementing by 22.5 degrees. The last
column shows the normalized cumulative activation of the
three different scales at all orientations.
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Figure 4. Activation fields of the baseline model to the
recoverable 'boat' image. The three rows represent the three
scale sizes used in the experiment. The first column shows
the 2D picture of the Gabor kemels at the three different
scales. From the second to the second to last column the
normalized activations of the differently oriented kernels to
the recoverable 'boat' image are displayed starting with
horizontal orientation and incrementing by 22.5 degrees. The
last column shows the normalized cumulative activation of
the three different scales at all orientations.

through the edge element and that point, while its strength
is proportional to the radius of that circle (Figure 5.). Also,
the strength decays with distance from the origin (the edge
segment). The decay of extension field strength is set to be
Gaussian for both the proximity and curvature constraints:

2
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where x is the distance along the circular arc and p is the

curvature of the given arc. Recently, Williams and Jacobs
(1996) described a very similar type of prior probability
distribution of boundary completion based on computing the
probability that a particle following a random walk will pass
through a given position and orientation on a path joining
two edge segments.

From each end of an edge segment, an extension field
expanded to define a triangular area as shown in Fig. 6. The
maximum orientation difference spanned by the broad
extension field was £90°, which were at the 45" boundaries
of the extension field (Figure 6). Beyond those values, the
Gaussians for orientation were set to zero so the broad

extension fields had zero values above and below the main
diagonals, as illustrated in Fig. 6. The narrow extension
field is a subset of the broad extension field in that it uses
the same direction and strength fields except that the
excitation area is limited to £15° orientation difference. The
absence of grouping activity in the regions outside of the
extension field merely means that additional information is
needed to reconstruct curves between such pairs.

The extension fields were incorporated into the baseline
model by allowing a field to operate on each of the 24
activation fields created by convolving the 24 kernels with
an image. Because there were 8 orientations for the
activation fields there were also 8 orientations for the
extension fields. The additional excitation as provided by the
extension field was distributed to the activation fields in
such a manner that only the corresponding orientations of
the activation fields and extension fields were convolved:

(EFWII,%,)= [ EF (X, F)WI (R)d’x = EF_*WI_ (2)

where / gives the orientation of both the extension and
activation fields. For the broad extension field model the
activation fields not only get excitation from the extension
field with the same orientation, but also from all the other
orientations. For computational ease the excitation fields
were divided into 8 subregions based on orientation and only
the corresponding range of orientations were applied to an
activation field with a given orientation. For the broad
extension field model the overall excitation applied to an
activation field is then given by summing up the excitation
coming from: (a) the extension field with the preferred
orientation of the given activation field and (b) the excitation
from all the other extension fields. In the narrow extension
field model the activation field with a given orientation was
only convolved with the excitation field having the same
orientation.

Chosen orientation is
» tangent to circle

Osculating circle
Paint in space

Unit edge at origin

Figure 5. Field direction for every point in space is chosen
to be the tangent to the osculating circle passing through the
edge segment and the given point.
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Figure 6. Left panel: The brightness coded directional map
of the broad extension fields given a horizontal edge element
in the middle. Within the butterfly shaped extension fields,
black refers to horizontal and white to vertical orientations.
The regions above and below the edge element have no
assigned orientation and are shown in black to clearly
deliniate the +45° boundaries of the extension field. Right
panel: The strength map of the extension field for locations
and directions shown in the left figure. Strength declines
with increasing orientation differences and distance from the
edge element. There is no strength assigned above and
below the diagonals (right).

Figure 7 shows the activation fields created by convolving
an image with the differently oriented and scaled kernels
(altogether 24 kernels were used) and with the narrowly
tuned extension field (again the ‘boat' recoverable images is
used as an example). Again, for the visual representation
the activation values of the model are normalized to integer
values between 0-255 for 8-bit graphical display.
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Figure 7. Activation fields produced by narrowly tuned
extension fields for the recoverable 'boat’ image (the model
with broad extension fields gave similar results). The three
rows represent the three scale sizes used in the experiment.
The first column shows the 2D picture of the Gabor kernels
at the three different scales. From the second to the second
to last column the normalized activations of the differently
oriented kernels to the recoverable 'boat' image are displayed
starting with horizontal orientation and incrementing by
22.5 degrees. The last column shows the normalized
cumulative activation of the three different scales at all
orientations.
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Figure 8 provides a direct visual comparison of the
workings of the three different model types. The top row
displays three versions of the 'boat' image from the set:
intact, recoverable and nonrecoverable in left, middle and
right columns respectively. Below the 3 x 9 blocks of
images show the cumulative activation patterns induced by
the three images in the three examined models: baseline,
with narrowly tuned extension fields, with broadly tuned
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extension fields (from top nine image to bottom nine). In
each of the three nine image blocks the first row represents
the cumulative activation patterns of the kernels at the
highest scale and at all 8 orientations. The second row
represents the cumulative response at the highest and
medium scale and the last row shows the ‘total' of the
activation for all scales and all orientations as well
(similarly to the last columns of Figures 3, 4 and 7). This
visualization of model activation also shows that for the
second and third block of nine images (model with narrow
and broad extension fields) the activation patterns for intact
and recoverable images are much more similar than for the
baseline model (first block of nine images).

Simulations

In the recoverable-nonrecoverable experiment the
similarity of 36 intact images with the recoverable and
nonrecoverable versions (altogether 108 images) was
calculated and compared to each other.

In the feature-deleted vs. part-deleted experiment the
similarity of the feature-deleted complementary image pair
was compared to the similarity of the part deleted
complementary image pair for 18 images (altogether 72
used).

Result of the simulations

The results of the simulations are displayed on Figures 9
and 10. The addition of narrowly tuned extension fields
between similarly oriented kernels increased the similarity of
both the recoverable and nonrecoverable versions to the
original intact image, although it increased the similarity of
the recoverable version more. Whereas for the baseline
model there was no difference between the similarity of
recoverable and nonrecoverable images r(35) = .64, p = .52
the addition of narrow extension fields significantly increased
the difference between the similarity of recoverable and
nonrecoverable types compared with the original images
#(35) = 4.8, p < .001. The addition of broad extension fields
further improved similarity for recoverable images, but did
not improve similarity for the nonrecoverable ones compared
to the narrow extension fields. Consequently, the broad
extension field model further increased the difference between
the similarity of recoverable and nonrecoverable images
compared with the intact versions #(35) = 9.09, p < .001.

The addition of narrow and broad extension fields
significantly increased the similarity of feature-deleted
complementary images pairs, but did not improve the
similarity of the part-deleted pairs. The similarity of two
complementary feature-deleted images was already
significantly higher than of two complementary part-deleted
ones #(17) = 3.04, p < .01, but the addition of horizontal
connections further improved this difference #(17) = 8.54, p
< .001, just as did the addition of extension fields 1(17) =
9.12, p < .001. The fact that similarity did not improve for
part-deleted image pairs was expected considering that there
was no any global knowledge provided that could relate the
two different part structures in the pair to each other.
However, the significant increase of similarity for the
feature-deleted pairs was not an obvious outcome of the



simulation. The addition of the broad extension field did not
improve similarity for feature-deleted images compared to
the narrow extension fields, which might be due to the large
number of man-made objects in the stimuli set with mostly
straight contours.
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Figure 8. The top row displays the intact, recoverable and
nonrecoverable versions of an image respectively. The3x 9
block of images below the top row display the activation
patterns of the three model types (Baseline, Narrow
Extension Fields, and Broad Extension Fields) to these

images. The first row in each three blocks represents the
cumulative activation of the highest frequency kernels at all
eight orientations to the three images. The second row in
each three blocks shows the cumulative activation of the
highest and medium frequency kernels at all orientations.
Finally, the third row in each blocks represents the
cumulative activation of all three kernel sizes at all
orientations (all 24 kernels).
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Figure 9. Average similarity values for matching the
original intact images with the recoverable and
nonrecoverable versions in the three model types.
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Figure 10. Average similarity values for matching
complementary feature-deleted pairs and complementary part-
deleted pairs in the three model types.

Conclusions

The addition of extension fields to a baseline model of
object recognition that operates on the output of multiscale
and multiorientation Gabor filters improves its overall
recognition performance (at minimum for the given set of
images) and brings its performance significantly and
qualitatively closer to that of human object recognition.

Interestingly, adding broad extension fields to the original
model did not improve its performance significantly beyond
the improvement already achieved by narrow extension
fields.

An obvious direction for future development of the model
is to incorporate inhibition and endstopping into the
connectivity pattern, both well known characteristics of
biological low level vision systems. We might mention
though that even without these additions the model's
performance could significantly be improved just based on
the addition of excitatory connections. The extension field
model is currently being tested on 8-bit gray-scale images.

368



Acknowledgements

The authors wish to express their appreciation for the
significant contributions of Prof. Christoph von der
Malsburg, Prof. Gerard Medioni, Gideon Guy and Mi-Sucen
Lee in this research. This research was supported by grants
ONR NO00014-95-1-1108 and ARO (NVESD) grant
DAAH04-94-G-0065.

References

Biederman, 1. (1987). Recognition-by-components: A theory
of human image understanding. Psychological Review,
94, 115-147.

Biederman, 1. & Cooper, E. E. (1991). Priming contour-
deleted images: Evidence for  intermediate
representations in visual object recognition. Cognitive
Psychology, 23, 393-419,

Field, D. )., Hayes, A. & Hess, R. F. (1993). Contour
Integration by the Human Visual System: Evidence for
a Local Association Field. Vision Research, 33(2), 173-
193.

Gilbert, C. D. & Wiesel, T. N. (1989). Columnar
Specificity of Intrinsic Horizontal and Corticocortical
Connections in Cat Visual Cortex. The Journal of
Neuroscience, 9(7), 2432- 2442.

Grossberg, S. & Mingolla, E. (1985). Neural Dynamics of
Perceptual Grouping: Textures, Boundaries, and
Emergent Segmentations. Perception and
Psychophysics,38, 141-171.

Guy, G. & Medioni G. (1996). Inferring Global Perceptual
Contours from Local Features.  International Journal of
Computer Vision, 20(1/2), 113-133.

Heitger, F. & von der Heydt, R. (1993). A Computational
Model of Neural Contour  Processing: Figure-Ground
Segregation and Illusory Contours. In Proceedings of the
Iccv, 32-40.

Konen, W. (1995). ZN-Face: A system for access control
using automated face recognition. In Proceedings of the
International Workshop on Automated Face- and Gesture-
Recognition,  18-23.

Lades, M., Vortbriiggen, J. C., Buhmann, J., Lange, J., von
der Malsburg, C., Wiirtz, R. P. & Konen, W. (1993).
Distortion Invariant Object Recognition in the Dynamic
Link Architecture. /[EEE Transactions on Computers, 42,
300-311.

Parent, P. & Zucker, S. W. (1989). Trace Inference,
Curvature Consistency, and Curve  Detection, [EEE
Trans. PAMI, 11(8), 823-839.

Polat, U. & Sagi, D. (1994). The Architecture of Perceptual
Spatial Interactions. Vision Research, 34(1), 73-78.

Sha'ashua, A. & Ullman, S. Structural saliency: the
detection of globally salient structures using a  locally
connected network. In Proceedings of the ICCV, 321-327.

Williams, L. R. & Jacobs, D. W. (1995). Stochastic
Completion Fields: A Neural Model of  Illusory
Contour Shape and Salience. In Proceedings of ICCV.

369



	cogsci_1997_364-369



