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Abstract 

A robust empirical regularity in decision making is that the 
negative consequences of an option (i.e., losses) often have a 
stronger impact on people’s behavior than the positive 
consequences (i.e., gains). One common explanation for such a 
gain-loss asymmetry is loss aversion. To model loss aversion in 
risky decisions, prospect theory (Kahneman & Tversky, 1979) 
assumes a kinked value function (which translates objective 
consequences into subjective utilities), with a steeper curvature 
for losses than for gains. We highlight, however, that the 
prospect theory framework offers many alternative ways to 
model gain-loss asymmetries (e.g., via the weighting function, 
which translates objective probabilities into subjective decision 
weights; or via the choice rule). Our goal is to systematically 
test these alternative models against each other. In a reanalysis 
of data by Glöckner and Pachur (2012), we show that people’s 
risky decisions are best accounted for by a version of prospect 
theory that has a more elevated weighting function for losses 
than for gains but the same value function for both domains. 
These results contradict the common assumption that a kinked 
value function is necessary to model risky choices and point to 
the neglected role of people’s differential probability weighting 
in the gain and loss domains. 

Keywords: cognitive modeling; loss aversion; risky choice; 
prospect theory; probability weighting 

Introduction 

For many of our decisions we are unable to tell with 

certainty what consequence the decision will have—for 

instance, when deciding between different medications that 

potentially lead to some side effects. Ideally, we have 

knowledge of the nature of the possible consequences as 

well as some inkling of the chances that the consequences 

will occur, but our decisions must necessarily remain in the 

“twilight of probability” (Locke, 1690/2004). Elaborating 

how such risky decisions are made (and how they should be 

made) has engaged decision scientists at least since 

Bernoulli’s (1738/1954) seminal work on subjective utility.  

One of the most influential and successful modeling 

frameworks of risky decision making is prospect theory 

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). 

A prominent feature of prospect theory is the assumption 

that the subjective disutility of a negative outcome is higher 

than the subjective utility of a positive outcome of the same 

size. In other words, prospect theory assumes an asymmetry 

between gains and losses in its value function, which 

translates objective outcomes into subjective magnitudes. 

This assumption of loss aversion can explain, for instance, 

that people dislike gambles in which one has a 50% chance 

to win a particular amount of money and a 50% can to lose 

the same amount. Similarly, loss aversion is invoked to 

account for the endowment effect—the phenomenon that 

people evaluate an object higher in a buyer perspective than 

in a seller perspective (e.g., Pachur & Scheibehenne, 2012; 

for a general overview of gain-loss asymmetries, see Peeters 

& Czapinski, 1990). 

However, the way prospect theory—more specifically, its 

mathematical formulation in cumulative prospect theory 

(CPT; Tversky & Kahneman, 1992)—is usually 

implemented allows for asymmetries in the evaluation of 

positive and negative prospects to be represented also in 

other ways than via the value function. For instance, the 

parameters of CPT’s weighting function, which translates 

objective probabilities into subjective decision weights, are 

typically estimated separately for the gain and the loss 

domain (e.g., Gonzalez & Wu, 1999). Furthermore, it has 

been argued that choice sensitivity (i.e., how accurately 

choices between two alternatives reflect their subjective 

valuations) differs between options involving losses and 

those involving gains only (Yechiam & Hochman, 2013a).  

Crucially, these possible representations of gain-loss 

asymmetries within CPT have never been directly pitted 

against each other in a model-comparison analysis (Linhart 

& Zucchini, 1986), where the descriptive power of a model 

is evaluated in light of its complexity (but see Harless & 

Camerer, 1994; Stott, 2006). Conducting such a model 

comparison is our goal in this paper. To that end, we use 

CPT to model data collected by Glöckner and Pachur 

(2012), where 64 participants were asked to make choices 

between 138 two-outcome monetary gamble problems.
1
 

Fitting different implementations of CPT to this data also 

allows us to test specific predictions of how a gain-loss 

asymmetry should be reflected in specific parameter 

patterns, such as choice sensitivity (Yechiam & Hochman, 

2013a) or probability sensitivity (Wu & Markle, 2008). Next 

we provide a detailed description of CPT’s parameter 

                                                           
1 In Glöckner and Pachur (2012) each participant made choices 

between 138 gamble problems at two separate sessions (separated 

by one week). Here we analyze the data from the first session.  
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framework, which we then use to formalize different ways 

to represent gain-loss asymmetries in risky decision making.  

Cumulative Prospect Theory 

According to CPT, the possible consequences of a risky 

option are perceived as gains or losses relative to a reference 

point. The overall subjective value V of an option with 

outcomes xm > … ≥ x1 > 0 > y1 > … > yn and corresponding 

probabilities pm ... p1 and q1 ... qn is given by: 
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where v is a value function satisfying v(0) = 0; π
+
 and π

–
 are 

decision weights for gains and losses, respectively, which 

result from a rank-dependent transformation of the 

outcomes’ probabilities. The decision weights are defined 

as: 

,  (2) 

with w
+
 and w

- 
being the probability weighting function for 

gains and losses, respectively (see below). The weight for 

each positive outcome represents the marginal contribution 

of the outcome’s probability to the total probability of 

obtaining a better outcome; the weight for each negative 

outcome represents the marginal contribution of the 

outcome’s probability of obtaining a worse outcome. 

Several functional forms of the value and weighting 

functions have been proposed (see Stott, 2006, for an 

overview). In our analyses, we use the power value function 

suggested by Tversky and Kahneman (1992), which is 

defined as  
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For α and β usually values smaller than 1 are found, 

yielding a concave value function for gains and a convex 

value function for losses. The parameter λ reflects the 

relative sensitivity to losses versus gains and is often found 

to be larger than 1, indicating loss aversion.  

The weighting function has an inverse S-shaped 

curvature, indicating overweighting of unlikely events (i.e., 

those with a small probability) and underweighting of likely 

events (i.e., those with a moderate to high probability). Here 

we use a two-parameter weighting function originally 

proposed by Goldstein and Einhorn (1987), which separates 

the curvature of the function from its elevation (cf. 

Gonzalez & Wu, 1999): 
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γ
+
 and γ

-
 (both < 1) govern the curvature of the weighting 

function in the gain and loss domains, respectively, and 

indicate the sensitivity to probabilities. The parameters δ+
 

and δ- 
(both > 0) govern the elevation of the weighting 

function for gains and losses, respectively, and can be 

interpreted as the attractiveness of gambling. In other words, 

δ+
 and δ- 

also indicate a person’s risk attitude, with higher 

(lower) values on δ+
 (δ-

) for higher risk aversion in gains 

(losses). 

In addition to these core components of CPT, a choice 

rule is required when applying CPT to model binary choice. 

To derive the predicted probability of CPT that a gamble A 

is preferred over a gamble B we used an exponential version 

of Luce’s choice rule: 
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where ϕ is a choice sensitivity parameter, indicating how 

sensitively the predicted choice probability reacts to 

differences in the valuation of gambles A and B. A higher ϕ 

indicates more deterministic behavior; with ϕ = 0, choices 

are random.  

Modeling Gain-Loss Asymmetries 

As described in the previous section, the common approach 

to accommodate an asymmetric evaluation of positive and 

negative prospects is to assume a kinked utility function, for 

instance produced by λ > 1 (see also Usher & McClelland, 

2004; Ahn, Busemeyer, Wagenmakers, & Stout, 2008). 

Note, however, that observed choices are modeled based on 

three intertwined components, a value function, a weighting 

function, and a choice rule, all of which could, in principle, 

represent an asymmetry between gains and losses. In the 

following, we describe how gain-loss asymmetries could be 

modeled within each these components.  

Utility Accounts 

The formalization of CPT’s value function allows for two 

ways to represent a gain-loss asymmetry.  

Differential weighting of losses and gains Tversky and 

Kahneman’s (1992) original version of CPT accommodates 

a gain-loss asymmetry using the loss aversion parameter λ, 

with λ > 1 leading to a stronger impact of losses (relative to 

gains). As can be seen from Equation 3, the effect of λ is to 

multiplicatively magnify the utility of losses relative to the 

utility of gains, implying greater sensitivity to losses.  

Differences in outcome sensitivity In many applications of 

CPT the exponent of the value function is estimated 

separately for gains and losses (cf. Fox & Poldrack, 2008). 

If the latter (i.e., β in Equation 3) is higher than the former 

(i.e., α in Equation 3), this could also lead to a kinked utility 

function, and thus a gain-loss asymmetry. Note that this 

pattern has been observed in studies that included pure gain 

and pure loss gambles (e.g., Abdellaoui, Vossmann, & 

Weber, 2005). 

Probability Weighting Accounts 

Equation 1 shows that according to CPT—as in other 

models in the expectation tradition—the evaluation of an 
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option closely ties the outcomes to their probabilities, as 

both are combined multiplicatively. Therefore, an apparent 

gain-loss asymmetry in the choices might also be 

represented by assuming differences between gains and 

losses in probability weighting (Zank, 2010; see also 

Birnbaum, 2008). Existing studies that have estimated the 

weighting function separately for gains and losses show that 

doing so indeed partly absorbs a gain-loss asymmetry (and 

might decrease the estimated value of λ). In particular, the 

elevation is commonly found to be higher for losses than for 

gains (for an overview, see Fox & Poldrack, 2008). 

Nevertheless, it is currently unclear to what extent 

estimating different weighting functions for losses and gains 

interacts with the estimation of the λ parameter and whether 

the increased model flexibility gained by adding more 

parameters actually leads to better predictive performance.  

Differences in probability sensitivity Wu and Markle 

(2008) highlighted that an asymmetry might not necessarily 

exist between gains and losses, but between problems with 

mixed gambles and problems with single-domain gambles 

(i.e., those that offer either only gains or only losses). They 

found support for a version of CPT that allows probability 

sensitivity to differ between mixed and single-domain 

problems, with a lower probability sensitivity for mixed 

gambles than for single-domain problems. Moreover, Wu 

and Markle showed that this version of CPT can account for 

violations of gain-loss separability (that the evaluation of 

outcomes and their respective probabilities is done 

separately for the gain and the loss domains, as shown in 

Equation 1), which is a fundamental assumption in Tversky 

and Kahneman’s (1992) original description of CPT.  

Choice Sensitivity Account 

A radically different explanation for an asymmetry between 

the gain and the loss domain was proposed by Yechiam and 

Hochman (2013a). They argued that the somewhat 

inconsistent manifestation of loss aversion in risky choice 

studies might be due to the fact that processing information 

about potential losses increases the amount of attention 

allocated to the task at hand. According to Yechiam and 

Hochman, this should be reflected in a higher choice-

sensitivity parameter in problems involving losses (i.e., 

pure-loss gambles and mixed gambles) as compared to 

problems involving gains only. In a task in which 

participants responded to sequentially learned risks and 

using a reinforcement model, Yechiam and Hochman 

(2013b) found support for this hypothesis; to our 

knowledge, it has not been tested in the context of 

description-based tasks and using CPT as modeling 

framework. 

Which Model Provides The Best Account? 

Several investigations have challenged the utility account of 

gain-loss asymmetries (e.g., Schmidt & Traub, 2002; 

Yechiam & Hochman, 2013a). However, one problem of 

these studies is that they focused on specific items and are 

thus silent with regard to the importance of the elements of 

utility accounts (e.g., the loss aversion parameter) for CPT’s 

ability to describe risky choices more generally.  

For a more general test, one needs to compare different 

CPT implementations (representing alternative accounts of 

gain-loss asymmetries) and to determine which fares best in 

trading off model fit and model complexity (Myung, 2000). 

Such a modeling analysis also allows us to test 

hypotheses concerning specific parameter patterns predicted 

by some of these accounts. For instance, according to the 

choice-sensitivity account by Yechiam and Hochman 

(2013a) choice sensitivity should be higher in tasks 

involving losses than in tasks involving gains only. This 

hypothesis has not been tested directly in the context of 

description-based tasks. 

A second hypothesized parameter pattern follows from 

the probability weighting account proposed by Wu and 

Markle (2008), according to which the probability 

sensitivity (i.e. the curvature of the weighting function) is 

lower for mixed gambles than for single-domain gambles. 

Wu and Markle found support for this pattern using Tversky 

and Kahneman’s (1992) one-parameter weighting function; 

one limitation of this function is, however, that curvature 

and elevation are confounded. Whether the hypothesized 

parameter pattern also emerges when using a function that 

allows to disentangle curvature and elevation (e.g., using the 

two-parameter weighting function described in Equation 4) 

has not yet been tested.  

Modeling Approach 

To evaluate the different accounts of gain-loss asymmetries 

described above, we tested a total of 10 different 

implementations of CPT in their ability to describe people’s 

risky choices. The implementations, which are summarized 

in Table 1, differ in terms of whether a gain-loss asymmetry 

is represented in the value function, the weighting function, 

or the choice rule.  

 

Table 1: Versions of CPT tested. 
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CPTnola α γ   δ λ=1 ϕ 4 

CPTl α γ   δ λ ϕ 5 

CPTab α β γ       δ λ=1 ϕ 5 

CPTgd α   γ+    γ- δ+     δ- λ ϕ 7 

CPTd α γ δ+     δ- λ ϕ 6 

CPTdfixl α γ δ+     δ- λ=1 ϕ 5 

CPTg α  γ+    γ-   δ λ ϕ 6 

CPTgfixl α  γ+    γ-   δ λ=1 ϕ 5 

CPTphila α γ   δ λ=1      ϕ+    ϕ±/- 5 

CPTgsm α     γ+˅-  γ±   δ λ ϕ 5 

 

CPTl can be considered as the standard implementation of 

CPT. It assumes the same exponent in the value function 
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(Equation 3) for gains and losses (i.e., α = β), but allows for 

a gain-loss asymmetry by having λ as a free parameter. CPTl 

uses one common set of curvature (γ) and (δ) elevation 

parameters across the gain and loss domains. In a restricted 

version of CPTl, CPTnola, λ is set to 1 and thus assumes no 

gain-loss asymmetry. CPTnola will serve as a benchmark 

model. CPTab also sets λ to 1 but allows the exponents of the 

value function to differ between gains (α) and losses (β). 

CPTgd is the model with the largest number of free 

parameters: it allows for differences between gains and 

losses both in curvature (γ
+
 and γ

-
) and elevation (δ

+
 and δ

-
) 

of the weighting function. The restricted versions CPTd and 

CPTdfixl allow a gain-loss asymmetry in the elevation only, 

thus assuming a single curvature parameter for gains and 

losses (γ
+
 = γ

-
); in CPTdfixl λ is set to 1. CPTg and CPTgfixl 

allow a gain-loss asymmetry in the curvature of the 

weighting function only, thus assuming a single elevation 

parameter (δ
+
 = δ

-
); for CPTgfixl λ is set to 1. 

The two remaining models, CPTphila and CPTgsm 

implement the proposals by Yechiam and Hochman (2013a) 

and Wu and Markle (2008), respectively. CPTphila assumes a 

gain-loss asymmetry neither in the value function (i.e., λ = 

1) nor in the weighting function (γ
+
 = γ

-
 and δ

+
 = δ

-
); 

instead, it allows for separate choice sensitivity parameters 

in gambles involving losses (ϕ±/-) and gambles involving 

gains only (ϕ
+
). CPTgsm assumes no gain-loss asymmetry in 

the value function, but allows for different curvatures of the 

weighting function for single-domain gambles (γ
+˅-

) than for 

mixed gambles (γ±). 

The models were fitted to individual participants using 

the maximum-likelihood method. In order to avoid local 

minima, the optimization algorithm was supplemented with 

an initial grid search (considering up to 80,000 value 

combinations of the entire parameter space, with all 

parameters partitioned similarly).  

To evaluate the models, we relied on the Bayesian 

Information Criterion (BIC), which penalizes a model as a 

function of its number of free parameters (Schwarz, 1978). 

The BIC of a given model is given by: 

 

��� = −2 log( �(�| ��)) + log(�)�,	      (6) 

 

with d denoting the data, N the number of data points (i.e., 

the number of gamble problems), and k the number of free 

parameters in the model. BIC is an approximation of the 

Bayes Factor (Kass & Raftery, 1995), providing a 

theoretically-principled framework for model comparison 

that takes into account goodness of fit as well as model 

complexity (e.g., Myung, 2000). A lower BIC indicates a 

better model fit.  

Data We applied the different CPT implementations to 

model individual data in Glöckner and Pachur (2012).
2
 In 

                                                           
2 Note that while Glöckner and Pachur also compared some 

implementations of CPT, they neither tested Wu and Markle’s 

(2008) sensitivity account, nor Yechiam and Hochman’s (2013a) 

choice sensitivity account. More importantly, they also neither 

considered implementations of CPT in which only some of the 

this study, 63 participants (25 male, mean age 24.7 years) 

indicated their preferences between 138 two-outcome 

monetary gamble problems that contained 70 pure gain, 30 

pure loss, and 38 mixed gambles, all drawn from sets of 

gamble problems used in previously published studies (see 

Glöckner & Pachur for details). The outcomes of the 

gambles ranged from -1000 € to 1200 €. At the completion 

of each session, one of the chosen gambles was picked 

randomly, played out and the participant received an 

additional payment proportional to the resulting outcome.  

Results 

Is there a Gain-Loss Asymmetry in the Value 

Function? 

For the standard version of CPT, CPTl, which allows for a 

gain-loss asymmetry only through the loss aversion 

parameter, the median (across participants) best-fitting value 

of the λ parameter was substantially larger than 1, λ = 1.40. 

71.9% of the participants had a λ larger than 1. Moreover, 

CPTl showed a considerably better fit than CPTnola, which 

does not allow for an asymmetry between gains and losses 

(median BIC: 158.34 vs. 160.23). These results thus provide 

evidence for a gain-loss asymmetry in the data.  

Is choice sensitivity higher in gambles involving losses? 

As previously stated, Yechiam and Hochman (2013a) argue 

that due to differences in attention, choice sensitivity should 

be higher when the gambles include a potential loss. We 

tested this prediction by modeling the data with CPTphila, 

which allows for a gain-loss asymmetry in choice sensitivity 

only. As it turned out, there was no evidence for Yechiam 

and Hochman’s hypothesis; in fact, we find the opposite 

pattern, with a higher choice-sensitivity parameter for gains 

than for losses, median values ϕ
+
 = 0.18 and ϕ

±/-
 = 0.09, 

Wilcoxon test: W = 2,609, p = .0008 (two-tailed). This 

pattern of results was found for 58 of the 64 participants 

(91%).  

Is probability sensitivity lower in mixed gambles? 

Consistent with Wu and Markle’s (2008) hypothesis, the 

estimates for γ obtained with CPTgsm indicated a lower 

probability sensitivity for mixed gambles than for single-

domain gambles, median values γ+˅- = 0.58 and γ± = 0.86, 

Wilcoxon test: W = 2,928, p = .0001 (two-tailed). Forty-

eight out of 64 participants (75%) showed this pattern. 

To summarize, these analyses indicate that people’s 

choices reflect an asymmetry between gains and losses. Of 

two proposals concerning the specific nature of such 

asymmetries, we found support for only one, namely Wu 

and Markle’s (2008) hypothesis that probability sensitivity 

is reduced in mixed as compared to single-domain gamble 

problems. Yechiam and Hochman’s (2013a) proposal of a 

higher choice sensitivity for gambles involving losses was 

not supported (in fact, we found the opposite pattern). Next, 

we turn to the question of how well the different 

                                                                                                  
parameters of the weighting function were estimated separately for 

gains and losses, nor implementations with a fixed λ parameter.  
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implementations of CPT summarized in Table 1 can account 

for people’s choices. For instance, even if there is support 

for Wu and Markle’s (2008) hypothesis of a lower 

probability sensitivity in mixed (as compared to single-

domain) gambles, does an implementation of CPT allowing 

for this pattern (i.e., CPTgsm) also perform well in terms of 

BIC? 

Model Comparison 

Figure 1 shows the median (across participants) BICs for 

each of the CPT implementations. As can be seen, the best-

performing model is CPTdfixl, which allows for gain-loss 

asymmetries in the elevation of the probability weighting 

function but sets λ = 1. Figure 2 shows the probability 

weighting function of CPTdfixl, based on the median best-

fitting parameter values. The figure shows that this model 

represents a gain-loss asymmetry by having a more elevated 

weighting function for losses than for gains, δ
-
 = 1.69, δ

+
 = 

0.63. Like models implementing the utility account, CPTdfixl 

gives more weight to losses than to gains, but does this via 

the decision weights resulting from the weighting function 

rather than via the value function. CPTdfixl not only achieved 

the best performance in terms of the median BIC, but also 

the overwhelming majority of individual participants 

(54.7%) were best accounted for by this model.
3
  

 

 
 

Figure 1: Performance of the different versions of CPT, as 

indicated by the median BIC (across participants) 

Discussion  

One of the fundamental assumptions in prospect theory is 

that negative prospects receive more weight in people’s 

evaluations of risky alternatives than positive prospects. In 

general, our analyses provide support for this assumption by 

                                                           
3 The second-best model in terms of selection frequency was 

CPTnola, which best accounted for 17.2% of the individual 

participants. Interestingly, the second-best performing model in 

terms of the median BIC, CPTd, best accounted for only 4.7% of 

the participants. 

finding evidence for a gain-loss asymmetry. However, we 

pointed out that the parametric menagerie of CPT can, in 

principle, represent gain-loss asymmetries in many different 

ways, such as via outcome sensitivity, probability 

sensitivity, the elevation of the weighting function, and 

choice sensitivity. Crucially, our analyses showed that a 

model that assumes a gain-loss difference in the elevation of 

the weighting function and a symmetric value function 

provided the best account of people’s choices. The common 

assumption of a kinked utility function thus does not seem 

to be necessary. Other proposed implementations of CPT, 

such as one that attributes gain-loss asymmetries to 

differences in the choice rule (Yechiam & Hochman, 2013a) 

or one that replaces the assumption of strict gain-loss 

separability by allowing for differences in probability 

sensitivity between single-domain and mixed gambles (Wu 

& Markle, 2008), were also clearly outperformed.  

 

 
 

Figure 2: Shapes of the separate probability weighting 

functions for gains and losses of CPTdfixl, the best 

performing model, when using the median best-fitting 

parameter estimates. The weighting functions differ only in 

terms of their elevation, which is higher for losses than for 

gains. 

 

Our results seem to challenge the approach taken in 

previous tests of prospect theory that have focused on 

specific and individual gamble problems. For instance, 

using problems specifically designed to test gain-loss 

separability, Wu and Markle (2008) found evidence for a 

superiority of a version of CPT that allowed for different 

probability sensitivity in single-domain than in mixed 

gamble problems. By contrast, in the data set used here, 

where the gamble problems were not constructed to test 

specific assumptions of CPT (instead many of the gambles 

had been randomly generated; see Glöckner & Pachur, 

2012, for details), Wu and Markle’s modified version of 

CPT performed rather poorly (Figure 1). The results of our 

model comparison thus suggest that model developments 

based on focused tests may sometimes sacrifice a model’s 
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ability to account for choices more generally for its ability 

to account for idiosyncratic cases.  

What does the superiority of the version of CPT with a 

more elevated probability weighting for losses than for 

gains (Figure 2) mean psychologically? The cognitive 

underpinnings of probability weighting are still rather little 

understood. This has led some researchers (e.g., Brooks & 

Zank, 2005; Zank, 2010) to focus more on what can be 

called “behavioral gain-loss asymmetries”, that is, specific 

choice patterns that follow from gain-loss asymmetries on 

the value and/or probability weighting functions. 

These open questions notwithstanding, our results suggest 

that if one’s goal is to predict how people will decide 

between risky alternatives, modeling gain-loss asymmetries 

in terms of differences in probability weighting rather than 

utility weighting promises to be a more successful approach. 

Our conclusions thus resonate well with Prelec’s (2000) 

assessment that “probability nonlinearity will eventually be 

recognized as a more important determinant of risk attitudes 

than money nonlinearity.” (p. 89) 
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