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Autism 2

Neuroimaging in autism spectrum disorder: brain structure 
and function across the lifespan
Christine Ecker, Susan Y Bookheimer, Declan G M Murphy

Over the past decade, in-vivo MRI studies have provided many invaluable insights into the neural substrates 
underlying autism spectrum disorder (ASD), which is now known to be associated with neurodevelopmental 
variations in brain anatomy, functioning, and connectivity. These systems-level features of ASD pathology seem to 
develop diff erentially across the human lifespan so that the cortical abnormalities that occur in children with ASD 
diff er from those noted at other stages of life. Thus, investigation of the brain in ASD poses particular methodological 
challenges, which must be addressed to enable the comparison of results across studies. Novel analytical approaches 
are also being developed to facilitate the translation of fi ndings from the research to the clinical setting. In the future, 
the insights provided by human neuroimaging studies could contribute to biomarker development for ASD and other 
neurodevelopmental disorders, and to new approaches to diagnosis and treatment.

Introduction
Autism spectrum disorder (ASD) is a lifelong neuro-
developmental disorder that develops in early childhood. 
It is diagnosed on the basis of a combination of behavioural 
observations and clinical interviews that assess defi cits in 
social communication, social reciprocity, and repetitive 
and stereotyped behaviours and interests.1 These core 
symptoms of ASD typically manifest from around age 
2 years and are accompanied by developmental diff erences 
in brain anatomy, functioning, and connectivity that aff ect 
behaviour across the lifespan. The causes of ASD are 
complex and include genetic and environmental risk 
factors.2 For instance, on the genetic level alone, more 
than 100 genetic and genomic loci have been implicated in 
autism.3 However, the ways in which these risk factors 
lead to the biological diff erences underpinning ASD or 
whether they could provide crucial clues to help in the 
development of new treatments is unknown.

In this Series paper, we review insights into atypical 
brain development across the human lifespan in ASD, 
and respective neurodevelopmental diff erences in brain 
anatomy, functioning, and connectivity within the neural 
systems that underlie specifi c autistic symptoms. Various 
neuroimaging techniques can been used to investigate the 
brain in vivo (eg, PET and magnetoencephalography), but 
most studies of the brain in ASD have used MRI, which 
provides the basis for our review. We discuss the potential 
for translation of in-vivo neuroimaging fi ndings from the 
research to the clinical setting. In particular, we focus on 
the clinical utility of multivariate pattern classifi cation 
approaches, which are becoming increasingly popular for 
the analysis of complex biological data to make clinically 
relevant predictions (eg, diagnostic category or clinical 
outcome). Despite the promise of such approaches, 
studies investigating the biomarker potential of neuro-
imaging measures for ASD have, so far, been confi ned to 
the research setting, and how well these approaches might 
work in the real-world clinical setting remains unknown.

Atypical brain development
Early brain development
Findings from several structural MRI studies have 
shown that toddlers with ASD (age 2–4 years) have, on 
average, a larger brain volume than typically developing 
children (ie, those without a medical or psychiatric 
diagnosis).4–6 However, this increased brain volume 
seems to disappear around the age of 6–8 years, when 
growth curves intersect;5 after this, no substantial 
increases in total brain volume commonly occur.7 These 
fi ndings, and others, contributed to the notion that the 
neurodevelopmental trajectory of brain maturation is 
atypical in ASD and includes a period of early overgrowth 
followed by arrested growth and possibly a decrease in 
brain volume at older ages.7 Moreover, the altered 
neurodevelopmental trajectory of the brain in ASD 
seems to vary across diff erent brain regions, with the 
frontal and temporal lobes being aff ected more than the 
parietal and occipital lobes.6 This fi nding suggests that 
the temporal and regional sequence of typical early brain 
development (ie, from back to front)8 is perturbed in 
ASD. However, others have also reported generalised 
enlargements throughout the cerebral cortex in children 
with ASD between age 18 months and 35 months,9 which 
will not only aff ect the structure of isolated brain regions, 
but also lead to diff erences in brain anatomy and 
connectivity on a systems level.10 Some of the systems-
level abnormalities in an early-onset disorder such as 
ASD will probably diff er from those found in disorders 
that are usually present later in life (eg, schizophrenia). 
However, the stage in brain development during which 
the fi rst diff erences in brain anatomy and connectivity 
associated with ASD occur is poorly understood.

Findings from several longitudinal MRI studies of 
infants at high familial risk of developing ASD (eg, 
siblings of aff ected individuals) suggest that diff erences 
in the brain can already be seen in the fi rst 2 years of life. 
For example, Schumann and colleagues11 reported brain 
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enlargement in 2·5-year-olds with ASD, which was 
accompanied by an abnormally increased growth rate of 
the cortex. A general cerebral enlargement in ASD was 
also noted by Hazlett and colleagues12 at this age; 
however, by contrast, this enlargement was not associated 
with an increased growth rate. Hence, there is compelling 
evidence that individuals with ASD have an early 
enlargement of the brain that is already visible at around 
age 2 years.

Whether this enlargement represents an ongoing 
accelerated growth of the cortex or is the end result of 
previous diff erences in brain growth remains unclear. 
Moreover, the pathological process that underpins 
diff erences in brain volume is unclear, although recent 
progress has been made. For instance, Hazlett and 
colleagues12 did not identify an increase in cortical 
thickness and so argued that the increase in brain volume 
in ASD must be driven by an increase in brain surface 
area before the age of 2 years. The distinction between 
cortical thickness and surface area is important because 
both measurements are related to distinct aspects of 
cortical neuropathology and represent diff erent features 
of the cortical architecture.

In terms of phylogeny, cortical thickness and surface 
area are now widely believed to be determined by 
diff erent types of progenitor cells, which divide in the 
ventricular zone to produce glial cells and neurons. 
Cortical thickness has been related to intermediate 
progenitor cells,13 which divide symmetrically at basal 
positions of the ventricular surface. These progenitor 
cells only produce neurons,14,15 which then migrate along 
radial glial fi bres to form ontogenetic columns arranged 
as radial units. According to the radial unit hypothesis,16 
cortical thickness is determined by the neuronal output 
from each radial unit amplifi ed by intermediate 
progenitor cells and, therefore, is related to the number 
of neurons produced in each unit. By contrast, cortical 
surface area has been associated mainly with radial unit 
progenitor cells, which divide at the apical ventricular 
surface. The early proliferation of radial unit progenitor 
cells leads to an increase in the number of proliferation 
units, which in turn increases the number of ontogenetic 
columns, resulting in increased surface area.13 The 
fi nding of early enlargement of the brain in ASD, caused 
by an accelerated expansion of cortical surface area but 
not cortical thickness,12 is hence of importance because it 
points towards specifi c genetic and neurobiological 
mechanisms that might be impaired in ASD, and 
highlights the need for the development of novel 
neuroimaging measurements that off er a higher degree 
of specifi city with regard to particular underlying 
mechanisms.

Figure 1 shows the chronological progression of MRI 
measurements from volumetric features4,17–19 to surface-
based geometric measurements10,20–23 of brain anatomy 
and diff usion tensor imaging measurements of structural 
brain connectivity.24 These fi ndings support suggestions 

that the accelerated expansion of the cortical surface and 
a potential pathological change in the number or size of 
cortical neurons or minicolumns in ASD25,26 leads to the 
brain being connected diff erently;27 for example, as 
evident in early white matter diff erences in ASD.28 Thus, 
atypical development of the cortical grey matter in ASD 
is likely to be linked to abnormal maturation of the 
cortical white matter, and multimodal neuroimaging 
studies examining the relation between the development 
of cortical grey matter and white matter will be a crucial 
next step in the identifi cation of the mechanisms that 
drive perturbed brain maturation in ASD.

Findings from several recent studies have shown the 
importance of considering wider contextual issues when 
interpreting reports of early brain overgrowth in ASD. 
For example, in 2013, Raznahan and colleagues29 
suggested that the well-replicated fi nding of a signifi cant 
increase in head circumference in ASD—which 
accompanies the increase in total brain volume—might 
in fact be a result of a bias in population norms rather 
than a replicable pattern of dysregulated growth.29 Future 
investigations into population norms will also be 
important when considering the large phenotypic 
diversity of the brain in ASD, which can only be reliably 
interpreted in the context of the wide neuroanatomical 
diversity within the general population.30 Evidence also 
suggests that early brain overgrowth in ASD is not 
restricted to the brain exclusively, but that early 
generalised patterns of physical (ie, somatic) overgrowth 
occur in ASD, particularly in boys.31,32 Thus, dynamic 
changes in population norms and factors responsible for 
both neural and non-neural tissue development should 
be considered to provide a more comprehensive 
assessment of atypical brain development in ASD.

Neural systems underlying autistic symptoms and traits 
The components of the neural systems that probably 
underlie ASD are well established and most likely 
incorporate the frontotemporal and frontoparietal regions, 
amygdala–hippocampal complex, cerebellum, basal 
ganglia, and anterior and posterior cingulate regions.33 
Moreover, these core regions have been suggested to 
mediate specifi c clinical symptoms. For example, 
abnormalities in (1) Broca’s area and Wernicke’s area have 
been associated with social communication and language 
defi cits;34 (2) frontotemporal regions and the amygdala 
have been related to abnormalities in socio-emotional 
processing;35,36 and (3) the orbitofrontal cortex and the 
caudate nucleus (ie, frontostriatal system) might mediate 
repetitive and stereotyped behaviours.37 Findings from a 
voxel-based morphometry study38 suggest that the neuro-
anatomy of ASD is also modulated by sex, and might be 
related to gender diff erences in neurocognitive profi les.39 
Moreover, although abnormalities in these brain regions 
seem to be common in ASD, evidence suggests that the 
diff erences in these regions are not specifi c to the disorder. 
For example, neuroimaging evidence suggests that the 
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caudate nucleus is enlarged in ASD,40 and that this 
enlargement is associated with the severity of repetitive 
and stereotyped behaviours.41 The amygdala is also 
signifi cantly enlarged in children with ASD compared 
with typically developing children.42 However, enlargement 
of the basal ganglia has also been noted in individuals 
with obsessive–compulsive disorder without a comorbid 
diagnosis of ASD,43 and increased total amygdala volume 
has been reported in children with general anxiety 
disorders.44 Finally, frontal lobe abnormalities, which are a 
hallmark of ASD, have also been found in other 
neurodevelopmental disorders such as schizophrenia.45 
These fi ndings suggest that phenotypic similarities in 
brain anatomy between ASD and other psychiatric 
disorders might be related to similarities in their respective 

clinical phenotypes. However, future research is needed to 
establish the extent and origins of such shared neuro-
anatomical variation, and to establish whether there are 
common or distinct genetic and molecular mechanisms 
for similar symptoms across disorders.

Neurodevelopment across the human lifespan
Less is known about neurodevelopment during 
adolescence and adulthood in ASD. Although early brain 
development in ASD seems to be dominated by an 
accelerated increase in volume of the frontal and 
temporal lobes,46 brain development after early 
adolescence seems to be dominated by an accelerated 
age-related decline in total brain volume47 and its two 
constituents (ie, cortical thickness and surface area). For 

Figure 1: Progression of structural MRI measurements over time as applied to autism spectrum disorder
Imaging measurements are becoming increasingly more specifi c with regard to particular underlying neural mechanisms, which will help to further disentangle diff erent aspects of the cortical 
pathology of autism spectrum disorder in the future. Improvements in the specifi city of imaging measurements will also increase their translatability across disciplines (eg, combining imaging and 
genetic studies). Panel A reproduced from Courchesne,4 by permission of Nature Publishing Group. Panel B reproduced from Herbert and colleagues,17 by permission of Oxford University Press. 
Panel C reproduced from Schumann and colleagues,18 by permission of the Society for Neuroscience. Panel D reproduced from Waiter and colleagues,19 by permission of Elsevier. Panel E reproduced 
from Nordahl and colleagues,20 by permission of the Society for Neuroscience. Panel F reproduced from Pugliese and colleagues,24 by permission of Elsevier. Panel G reproduced from Hyde and 
colleagues.21 Panel H reproduced from Ecker and colleagues,22 by permission of the American Medical Association. Panel I reproduced from Wallace and colleagues, by permission of Oxford University 
Press.23 Panel J reproduced from Ecker and colleagues,10 by permission of the National Academy of Sciences of the USA.
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example, accelerated cortical thinning in various brain 
regions in ASD has been reported in several cross-
sectional MRI studies,48 and has been confi rmed in a 
large longitudinal study of individuals aged 3–39 years.49 
Additionally, measurements of surface area decline more 
rapidly with age in individuals with ASD than in those 
without ASD both at the global (ie, total surface area)50 
and the local (ie, vertex wise)51 levels. These fi ndings also 
highlight the importance of accounting for the diff erent 
neurodevelopmental stages when comparing individuals 
with ASD with typically developing controls because the 
rate of cortical development is not linear across the 
human lifespan, and precocious or delayed maturation 
in a group of individuals could lead to a substantial 
positive diff erence at one age and a substantial negative 
diff erence at another age.48 For example, the amygdala is 
enlarged in toddlers and children with ASD, whereas no 
signifi cant diff erences have been reported in adolescents 
with the disorder.18,52 Thus, general eff ects of age and age-
by-group interactions need to be accounted for in the 
statistical model when examining neuroanatomical 
variations across the human lifespan. However, overall, 
fi ndings from neuroimaging studies suggest that atypical 
cortical development in ASD occurs in distinct stages 
that are dominated by an accelerated expansion of the 
cortical surface during childhood, and there is initial 
evidence that this expansion is followed by an acceleration 
in cortical thinning during adolescence and adulthood. If 
correct, these fi ndings suggest that individuals with ASD 
might be at risk for accelerated cortical decline in later 
life. Hence, in the future, large normative datasets 
characterising the developmental timecourse of diff erent 
morphometric features in diff erent brain regions will be 
needed to fully characterise the cortical ontogeny of ASD. 
Moreover, in addition to investigating volumetric 
features of brain anatomy, examination of diff erences in 
geometric features (eg, cortical folding) in ASD will also 
be important.

Atypical cortical gyrifi cation
If we accept that in ASD the brain undergoes a stage of 
accelerated expansion during childhood,12 we can also 
expect the brain to diff er in geometry from those without 
ASD. As the cortex expands, it eventually needs to fold to 
fi t an increasing brain surface into the fi nite space of the 
skull. Consequently, the brain in ASD would be expected 
to show an increase in cortical folding.12 The investigation 
of cortical folding would also allow us to better defi ne the 
causative mechanisms associated with ASD. For example, 
axonal white matter fi bres might exert a pulling force on 
the overlying neocortex, and so might modulate cortical 
folding extrinsically via mechanical tension.53 Alternatively, 
cortical folding might be mediated by developmental 
changes intrinsic to the cortical sheet (ie, within the 
cortical grey matter). For instance, the formation of 
cortical gyri has been linked to an accelerated expansion of 
the outer cortical layers relative to the deeper layers54 and 

to the microstructural complexity of the associated grey 
matter determined by dendritic arborisation, synapto-
genesis, and the alignment of neurons in space.55 In other 
words, studies of cortical folding allow us to better defi ne 
the cellular and microstructural processes underpinning 
diff erences in brain development, and in particular those 
of relevance to ASD.

Atypical cortical gyrifi cation in the brain of individuals 
with ASD has been reported in several MRI studies, 
most of which involved manual assessments of the 
cortical surface. For example, a signifi cantly higher 
incidence of cortical malformations have been reported 
in patients with ASD compared with healthy controls, 
including (1)  polymicrogyria (too many small folds, 
thought to arise from atypical prenatal brain 
maturation); (2) schizencephaly (clefts lined within the 
cortical grey matter); and (3) macrogyria (increased size 
of gyri).56 Evidence also suggests that some sulci (eg, the 
Sylvian fi ssure) seem to be further along the principal 
axes of the brain in children with ASD than in those 
without ASD,57 and that there is signifi cantly increased 
gyrifi cation of the frontal lobe in children and 
adolescents with ASD.58 These early neuroimaging 
studies are supported by investigations using automated 
techniques that provide measurements for gyrifi cation 
in a spatially unbiased fashion. For example, an in-
creasing number of studies have investigated brain 
morphology using a measurement known as the local 
gyrifi cation index—a local variant of the classic two-
dimensional gyrifi cation index.59 The local gyrifi cation 
index at a given point on the cortical surface represents 
the amount of cortex buried within the sulcal folds and 
is computed as the ratio between the surface of a circular 
patch on the outer, smooth surface of the brain and the 
surface of the corresponding patch on the pial (ie, grey 
matter) surface (fi gure 2A).60,62 In males with ASD 
compared with typically developing male controls aged 
12–23 years, the local gyrifi cation index is increased in 
bilateral posterior brain regions (fi gure 2B).23 The local 
gyrifi cation index is signifi cantly reduced in the left 
supramarginal gyrus in males aged 8–40 years63 and in 
the right inferior frontal and medial parieto-occipital 
cortices in children with ASD (fi gure 2C).61

Although these divergent fi ndings can be partially 
explained by diff erences in sample size, participant 
demographics, and analytical techniques (eg, size of 
smoothing kernel), evidence also suggests that the 
particular pattern of cortical gyrifi cation is variable 
across individuals—even in normative populations—
and that both genetic and non-genetic factors contribute 
to patterns of cortical folding.64 For instance, Kates and 
colleagues65 directly examined the amount of con-
cordance in gyrifi cation index in monozygotic twin 
pairs in which one twin had a diagnosis of ASD and in 
typically developing unrelated controls. They reported a 
high level of discordance in cortical folding within ASD 
twin pairs across most lobular regions of the cortex, but 
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both children with ASD and their co-twins exhibited 
increased parietal lobe cortical folding compared with 
controls.65 Thus, although patterns of cortical folding 
might be suggestive of an atypical neurodevelopmental 
trajectory driven by various genetic and molecular 
processes, environmental factors and experience-
dependent mechanisms also probably modulate cortical 
morpho metry, and perhaps especially cortical folding. 
This fi nding is in contrast to conventional measurements 
of brain anatomy (eg, total or regional brain volume), 
which are highly concordant between twins, and might 
thus be largely genetically determined.66 Hence, future 
studies of the genetic and environmental factors that 
aff ect brain development in ASD will probably need to 
include measurements of cortical geometry in addition 
to those of volume. The examination of geometric 
features of the brain is of increasing importance in view 
of uncertainty about the heritability of ASD. For 
example, although in a traditional twin study the 
heritability of ASD (ie, proportion of liability attributable 
to genetic factors) was estimated at about 90%,67 fi ndings 
from a 2011 study2 suggested that susceptibility to ASD 
has moderate genetic heritability (38%), with a large 
proportion of variance in liability explained by shared 
environmental factors (58%). Thus, to elucidate the 
contribution of genetic and non-genetic factors to 
brain development in ASD, various cortical features, 
including shape characteristics of the brain, should 
be examined to account for the large amount of 
phenotypic inter-individual variability typically noted in 
the brain in ASD.

Neural activation and functional connectivity
In view of the abnormal development of grey and white 
matter in autism, aff ected brain regions will inevitably be 
unable to generate connections that give rise to fully 
eff ective functional networks. Early functional MRI 
(fMRI) investigations focused exclusively on region-
specifi c diff erences in the magnitude of activation. 
Because fMRI studies use diff erent activation paradigms 
and task parameters, often in cohorts with diff erent ages 
and levels of severity, results vary markedly. Results from 
face processing studies provide a stark example of the 
profound eff ects that minor task diff erences will produce; 
for example, early studies examining neural responses to 
emotional faces initially showed reduced activation in 
face-specifi c perceptual regions68–70 in addition to limbic 
areas, particularly the amygdala.71,72 However, further 
examination showed that activation diff erences between 
typically developing individuals and those with ASD 
were strongly aff ected by experimental factors such as 
gaze direction73 and face familiarity.74 Nonetheless, 
consistent diff erences in brain activation occur in regions 
that also show structural abnormalities, as highlighted in 
several recent reviews.75–77 Findings from many studies 
have shown decreased activation in regions comprising 
the social brain network during tasks related to emotional 
processing or social cognition, including the amygdala, 
temporal–parietal junction, insula, and inferior frontal 
cortex;71,78–84 in frontostriatal circuitry in response to 
cognitive control tasks and repetitive behaviours;75,85–88 in 
language circuitry during communication tasks;89–91 and 
in reward circuitry.92–95 By contrast, abnormal increases in 

Figure 2: Cortical gyrifi cation in autism spectrum disorder
(A) The local gyrifi cation index allows quantifi cation of gyrifi cation at each vertex on the cortical surface. Reproduced from Mietchen and Gaser.60 (B, C) In autism spectrum disorder (ASD), locally 
increased gyrifi cation (B; reproduced from Wallace and colleagues,23 by permission of Oxford University Press) and decreased gyrifi cation (C; reproduced from Schaer and colleagues)61 have been 
reported. The numbers in (C) correspond to four clusters of reduced local gyrifi cation index in a group of children and adolescents with ASD compared with controls after correcting for multiple 
comparisons.
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activation are found in response to irritants and direct 
gaze.96,97 Taken together, these fi ndings strongly support a 
link between regional structural brain abnormalities and 
functional sequelae, including both regional brain 
activation and phenotypic presentation.

In other studies, neural activity has been examined at the 
network level, focusing on brain connectivity either during 
task performance or in the resting state (panel; fi gures 3 
and 4).99–101 In most fMRI studies in people with autism, 
functional connectivity during task performance—
measured by examining the correlation of fMRI activation 
changes between brain regions in typically developing 
participants versus those with ASD—is decreased. Such 
studies have typically included only high-functioning older 
participants. By contrast, resting-state fMRI examines 
spontaneous fl uctuations in brain activity, measuring 
diff erences in the correlation between regions in well-
defi ned functional networks. These studies have yielded 
mixed results, and there remains substantial controversy 
regarding the nature of connectivity impairment in autism, 
with researchers arguing in favour of under-connectivity,102 

over-connectivity,103,104 or unique patterns of both under-
connectivity and over-connectivity depending on the brain 
region.105 Among the reasons for diff erences between 
studies are diff erences in the severity of ASD and, in fMRI 
activation studies, variable task choices, such as the choice 
of the smoothing fi lter or template. Choices in subtle 
aspects of image processing can also aff ect results.106 
Furthermore, fi ndings from a 2013 review suggested that 
connectivity results are aff ected by the age of the population 
studied.107 Thus, the nature and direction of connectivity 
diff erences in ASD might change across the lifespan.

Applications of graph theoretical approaches in ASD
Graph theoretical approaches can be used to identify new 
ways to describe the nature of both local and global 
network function, and can be applied to structurally or 
functionally defi ned networks; these approaches are also 
increasingly used to investigate connectivity impairments 
in ASD. These techniques describe properties of network 
dynamics that make up well-integrated biological 
systems and include metrics such as (1) modularity, 

Panel: Network analysis of brain connectivity

Resting-state functional MRI (fMRI) takes advantage of 
spontaneous low-frequency fl uctuations in cerebral blood fl ow 
to measure correlations within and between brain regions.98 
Resting-state fMRI studies have identifi ed networks of brain 
areas with similar levels of spontaneous activity at rest—such as 
sensorimotor, visual, and auditory systems; a language 
network, attention networks, and the default mode network; 
and a series of regions including the precuneus, medial frontal 
cortex, and hippocampus—that tend to show cerebral blood 
fl ow decreases during cognitive performance, but with relative 
increases at rest. Nodes in these networks can be identifi ed in 
several ways—for example, by using a priori anatomical regions 
of interest or functional masks derived from previous studies of 
resting-state activity identifi ed by independent components 
analysis. Graph theory analyses use all identifi ed nodes and 
enter them into a correlation matrix. The data entering the 
correlation matrix can come from any modality, such as cortical 
thickness from structural MRI, fractional anisotropy from 
diff usion tensor imaging, temporal correlation coeffi  cients from 
spontaneous fl uctuations in resting-state fMRI, or activation in 
task-based fMRI. Graph analyses can be used to examine 
correlations within and between networks, and a wide range of 
metrics, some of which are interdependent, describe the 
properties of the networks derived from the correlation 
matrices. Figure 3 details a typical analysis pathway to derive a 
connectivity matrix from resting-state fMRI.99 From this basic 
structure, several aspects of the resulting networks can be 
examined, including the extent to which specifi c regions form a 
correlated matrix that is separate from others (modularity); the 
number of connections needed to travel from one node to 
another (effi  ciency); and the extent to which specifi c nodes 
form hubs. Figure 4A shows the network structure of fi ve 

modules derived from a resting-state fMRI study.100 The 
investigators optimised this analysis to identify functional 
modules by fi nding the best structure that maximally separated 
modules from one another while maximising correlations 
within nodes. The modules were consistent with combined 
somatosensory and auditory, attention, visual, default mode, 
and limbic, paralimbic, and subcortical networks. This pattern 
shows the hallmarks of a typical biological network: (1) there are 
distinct modules in which regions within the modules are highly 
connected to each other, and nodes within each module are 
locally effi  cient (there are direct paths from one node to 
another); and (2) the modules are distinctly segregated from 
one another, and there are few connections between the 
modules, so that the connections are clearly segregated. As a 
general rule, more paths would be needed for a node in one 
module to reach a node in another. A few regions seem to be 
hubs, connecting to several diff erent modules. Only a few 
characteristics of a well-formed biological network enable 
specialisation of function, communication, and integration of 
information across networks that is effi  cient, non-random, and 
well organised. In the largest resting-state study in autism 
spectrum disorder (ASD) so far101—a multisite study combining 
images from 703 children and adolescents (360 with ASD and 
403 with normal development)—widespread reductions in 
connectivity were reported among children with autism, 
spanning unimodal, heteromodal, primary somatosensory, and 
limbic and paralimbic cortices, whereas those with ASD had 
increased connectivity between a small set of nodes primarily in 
subcortical regions (fi gure 4B). This pattern of results supports a 
model of abnormal neurodevelopmental trajectories in ASD 
while providing a background for understanding various 
cognitive processing defi cits.
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which shows the extent to which clusters of regions are 
associated with one another and are segregated from 
other modules; (2) local effi  ciency, which describes how 
effi  ciently local regions can communicate together; and 
(3) global effi  ciency, which refers to how densely regions 
across the brain are connected to one another.108

Network analysis during resting-state fMRI in ASD has 
yielded controversial results, mainly because some 
crucial metrics, including local versus global effi  ciency, 
are sensitive to motion artifacts.109 Because children with 
ASD diff er from typically developing children in their 
ability to self-regulate behaviour, increased motion in 
patients compared with controls could introduce a 
systematic bias, with apparent diff erences in functional 
connectivity resulting from motion artifacts. Similar 
confounds occur in diff usion tensor imaging studies.110 
In a recent study of a small sample of individuals with 
ASD, no global and only slight local diff erences in 
functional connectivity were noted when head motion 
was carefully eliminated by scrubbing or removing 
images aff ected by motion from the data.111

However, fi ndings from most studies have continued to 
support the broad notion that, overall, individuals with 
ASD have poorer connectivity in regions spanning long 
distances in the brain than do typical controls, whereas 
connectivity seems to be increased in local circuits.92,112–114 
Furthermore, important properties of network connectivity 
seem to be altered in ASD; for example, the development 
of domain-specifi c function modules is reduced.115,116 
Although local connectivity within central hubs or rich 
clubs (ie, high-degree nodes that are more densely 
connected among themselves than nodes of a lower 
degree) seems to be increased,117 the hub organisation is 
altered across the brain.118 Taken together, fi ndings from 
functional activation and functional connectivity studies 

suggest that, in children with autism, widespread patterns 
of developmental disconnection aff ect information 
processing at both the local and global levels; furthermore, 
the specifi c patterns of connectivity abnormalities relate to 
the severity of the autism phenotype.

Genetic risk factors for ASD and their association with 
measures of brain activation and connectivity
Findings from recent studies have linked genetic risk for 
autism to diff erences in functional brain activation and 
connectivity. Broadly, these imaging–genetics studies 
examined syndromes that carry a high risk for autism, 
such as fragile X, 15qdup, 22q11.2 deletion, and 
Angelman’s syndrome, or investigated specifi c candidate 
risk genes more broadly in the population. Because 
patients with syndromic autism more commonly have 
marked cognitive dysfunction than do neurotypical 
controls, few fMRI studies have included these populations 
because of their reduced ability to actively participate and 
engage in tasks within the constrained fMRI environment. 
A few exceptions have been studies of fragile X119–121 and 
22q11.2 deletion syndrome.122,123 Although results vary, in 
general, comparisons of syndromic autism versus controls 
yield similar results to those of ASD versus controls with 
regard to reduced connectivity, brain overgrowth, and 
abnormal functional activation, although a few consistent 
diff erences, particularly enlarged caudate volumes and 
caudate connectivity, seem to be specifi c to these 
syndromes.

Unlike studies of syndromic autism, the common poly-
morphism approach is used to examine the eff ects of 
autism risk genes independent of diagnosis, and thus has 
fewer confounds with variables such as impaired 
cognition. In several studies, associations have been 
reported between autism risk genes and brain connectivity. 

A

B

C D E F

Figure 3: Steps involved in deriving network structure from resting-state functional MRI data
The network nodes are defi ned as anatomical regions of interest (A and B); they are applied to the time series of a resting-state functional MRI study collected for 
about 8 min. The derived time series from each node (C) is entered into a connectivity matrix (D), in which the strengths of the correlations are depicted as a colour 
code. This matrix is thresholded by applying a statistical threshold or cutoff  (E) and the correlation strength between each thresholded pair is depicted graphically (F). 
Thus, nodes in the matrix represent regions of interest; edges are the relations between nodes. Reproduced from Wang and colleagues.99
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For instance, the gene CNTNAP2, which confers risk for 
selective language impairment and for the language 
phenotype in autism,124 is associated with abnormal 
structural and functional connectivity,125,126 and specifi cally 
a pattern of increased short-range and decreased long-
range connectivity.92 Variations in oxytocin receptor genes, 
which confer a risk for autism, have been associated with 
diff erences in both amygdala volume127 and functional 

connectivity of the hypothalamus.128 Similarly, the MET 
promoter variant—another autism risk gene—is related 
to both increased functional activation and decreased 
functional connectivity in neural networks associated 
with the processing of facial aff ect.115 Taken together, 
studies that have examined the relation between genes 
associated with autism and brain structure and function 
support a model of abnormal developmental connectivity 
that leads to both reduced functional activation and 
decreased development of functional connections, 
particularly in long-range pathways; these diff erences 
occur in individuals who carry autism risk genes but who 
do not have autism.

Recent use of network analysis of gene expression 
profi les in tissue from patients with autism taken at post 
mortem129 suggest the potential to better link genes and 
brain development in autism. Because network analysis 
is independent of modality, these techniques off er the 
potential to combine functional and structural imaging 
results, providing a comprehensive and potentially 
integrative model linking anatomical abnormalities to 
functional and phenotypic outcomes.

MRI-driven biomarker development
Typical brain development occurs as a dynamic yet 
ordered sequence of temporally distinct regional events,8 
which, if perturbed, would not only aff ect the development 
of isolated brain regions, but also lead to diff erences in 
brain anatomy and connectivity at the systems level.130,131 
Thus, multivariate approaches that off er high exploratory 
power by taking advantage of the correlated structure 
(ie, covariations) in a large and potentially complex (ie, 
multimodal) set of variables are particularly well suited to 
the investigation of the complex cortical pathology of 
ASD. Moreover, some multivariate techniques also enable 
researchers to make clinically relevant predictions. In the 
context of MRI, these techniques have been described as 
brain-decoding methods,132 and they belong to a wider 
group of techniques known collectively as machine 
learning or multivariate pattern classifi cation. The basic 
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Figure 4: Modular architecture of functional networks and functional 
connectivity in autism spectrum disorder
(A) Modular architecture of functional networks in the human brain. This 
analysis was optimised to partition the network data to maximise modularity 
by identifying clusters of regions that best separated from other modules and 
were well integrated within modules. Grey lines represent within-module 
connections and black lines are connections between modules. Module I 
contains regions consistent with the somatosensory and auditory networks. 
Module II contains predominantly visual regions. Module III best resembles an 
attention network. Module IV resembles the default mode network. Module V 
contains limbic, paralimbic, and subcortical systems. Reproduced from He and 
colleagues.100 (B) Group diff erences in intrinsic functional connectivity between 
individuals with autism spectrum disorder (ASD) and typical controls. The upper 
panel shows the intrinsic functional connections (blue lines) that were 
signifi cantly weaker in ASD compared with typical controls. The lower panel 
shows the intrinsic functional connections that were signifi cantly stronger in 
ASD compared with typical controls (red lines). Results were corrected for 
multiple comparisons using a false discovery rate at p<0·05. Reproduced from 
Di Martino and colleagues,101 by permission of Nature Publishing Group.
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idea of machine learning is to train a computer algorithm 
to identify a complex pattern of data that can then be 
applied to new individuals to make a prediction. Training 
usually occurs in a well-characterised sample by fi nding a 
boundary, or hyperplane, that best discriminates between 
diff erent classes (eg, patients and controls). Once the 
classifi er is trained, it can then be used to predict group 
membership of a new test example (eg, a new individual 
with unknown group membership; fi gure 5). A key 
feature of pattern classifi cation is its potential to detect 
global, complex, and potentially multimodal patterns of 
abnormalities that cannot be effi  ciently identifi ed with 
univariate methods. This aspect makes machine-learning 
approaches particularly suited to the search for autism 
biomarkers for case identifi cation, patient stratifi cation, 
or for the prediction of clinical outcomes.

Diagnostic methods for ASD and their limitations
At present, diagnosis of ASD is based on behavioural 
fi ndings, clinical interviews, or both, and does not 
include the use of biomarkers. Although behavioural 
diagnosis of ASD is advantageous in the clinical setting 

because it can accommodate all variations of the autism 
spectrum regardless of their cause, it is insuffi  cient to 
separate potentially diff erent biological subgroups or 
strata of patients that would be expected to respond well 
to a particular treatment. Evidence suggests that there is 
a large amount of genetic, phenotypic, and clinical 
heterogeneity among individuals with ASD. For example, 
preliminary evidence suggests that about 30% of people 
with ASD might have hyperserotonaemia133 and thus are 
likely to respond well to drugs that modulate the 
serotonergic system, whereas about 70% do not, which 
could also explain the low treatment response to 
serotonergic drugs in large-scale clinical trials. Thus, 
ASD probably cannot be treated with a one-size-fi ts-all 
approach; treatment needs to be more personalised and 
individually tailored.134

Also, diagnosis of ASD on the basis of behavioural 
fi ndings can be problematic, particularly in adult 
populations. At present, ASD is diagnosed with the help 
of two assessment instruments: the Autism Diagnostic 
Interview–Revised (ADI-R)135 and the Autism Diagnostic 
Observation Schedule (ADOS).136 The ADI-R is a semi-

Figure 5: Multivariate pattern classifi cation
(A) In the training phase, the model is initially trained on a well-characterised sample of biological data to derive discriminative patterns of features that maximally 
separate the groups. (B) In the testing phase, these patterns can then be applied to predict group membership of a new dataset. The separating hyperplanes are 
described by a learning weight vector, w, which shows the contribution of each voxel to the overall discrimination, and an off set, b.
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standardised interview typically done with parents of 
individuals with ASD and assesses the severity of 
autistic symptoms at the age of 4–5 years, which 
qualifi es for a diagnosis of childhood autism. The ADOS 
is a semi-structured assessment designed for use with 
the individual to be diagnosed and assesses the severity 
of present autistic symptoms. Thus, the use of either 
the ADI-R or the ADOS can be problematic for diagnosis 
of ASD in adult populations because (1) ADI-R 
assessments rely on the availability and reliability of an 
informant to give retrospective accounts of past autistic 
symptoms, which, in some cases, occurred many years 
ago; and (2) symptoms assessed in adult samples are 
often masked by coping strategies developed across the 
lifespan, and might have been alleviated by treatments 
and interventions. Thus, the availability of biomarkers 
that could assist behavioural diagnosis would be invaluable, 
particularly in cases in which behavioural accounts are 
insuffi  cient to make a reliable diagnosis of ASD. 

Applications of multivariate pattern classifi cation
An increasing number of studies are using multivariate 
pattern classifi cation techniques in the research setting 
to separate individuals with ASD from typically 
developing controls (ie, for case identifi cation), and 
proof-of-concept studies were originally done in adult 
samples. For example, Ecker and colleagues137 explored 
the diagnostic value of whole-brain structural MRI scans 
measuring regional grey and white matter volume for 
ASD using a common variant of machine learning, the 
support vector machine (SVM). In this sample, the SVM 
correctly classifi ed individuals with ASD and controls 
into their respective diagnostic category on the basis of 
their neuroanatomy with about 80% accuracy. In addition 
to the binary classifi cation, the SVM provided a test 
margin for each participant, showing the level of 
confi dence with which a new individual could be 
classifi ed.137 The test margins were also positively 
associated with the severity of autistic symptoms, thus 
suggesting that the SVM could be used to capture ASD 
along a continuum that is also apparent in its 
neuroanatomical imprint. These original observations, 
which provided initial proof of concept, are supported by 
fi ndings from several other neuroimaging studies with 
similar levels of classifi cation accuracy in younger age 
groups,138 females with ASD,139 and autism-related 
disorders,140 and with various anatomical and functional 
measurements.141 Therefore, in cases in which diagnostic 
data for behavioural assessments are insuffi  cient for a 
diagnosis of ASD, biomarkers might provide additional 
valuable information that could aid the expert clinical 
assessment of ASD.

Recent advances in analytical techniques now also make 
possible the prediction of quantitative outcomes, rather 
than simple binary categories (eg, patients vs controls, or 
responders vs non-responders). For instance, in 2013, Sato 
and colleagues142 used support vector regression to predict 

the severity of autistic symptoms as measured with the 
ADOS using inter-regional correlations of cortical 
thickness measurements in a sample of individuals with 
ASD. The implementation of such quantitative (ie, 
dimensional) approaches in machine learning is crucial 
for the development of ASD biomarkers, which should act 
as a quantitative measure of a biological mechanism 
rather than simply testing for the existence or absence of a 
pathological phenotype. Moreover, ASD is a complex 
disorder with many causes and comorbid conditions, and 
a large amount of variability in the type and severity of 
systems expressed by diff erent individuals. Thus, ASD is 
unlikely to be linked to a single biomarker (eg, an 
individual gene or brain region). Instead, ASD biomarkers 
are probably complex and multivariate, incorporating data 
from diff erent biological processes as well as diff erent 
measures for similar aspects of neurobiology. However, 
although the effi  ciencies of diff erent data types have been 
compared with each other (eg, imaging vs genetics),143 no-
one has yet managed to meaningfully combine data across 
disciplines to assess their predictive value for ASD.

Although pattern-classifi cation approaches hold pro-
mise for various clinical applications in ASD, several 
crucial issues must be addressed before these methods 
can be used in clinical practice, and to justify the 
increased costs of clinical MRI relative to the behavioural 
diagnosis. Most importantly, the extent to which 
automated classifi ers can be used to generalise to the 
real-world clinical setting, in which clinicians are 
confronted with many psychiatric populations in 
addition to individuals with ASD and typically developing 
controls, remains to be established. In the future, 
identifi cation of the clinical validity of these models 
using testing data from independent samples (ie, 
independent of the training set) that were acquired in 
the real-world clinical setting will be important. 
Furthermore, establishment of their clinical specifi city 
will be crucial—ie, although the established methods 
might be successful in distinguishing individuals with 
ASD from typically developing controls, they might not 
be able to distinguish ASD from the various related 
comorbid conditions (eg, attention defi cit hyperactivity 
disorder [ADHD], obsessive–compulsive disorder, or 
emotional disorders).144 Pre liminary evidence suggests 
that the clinical specifi city of a classifi er increases with 
its overall accuracy. For instance, Ecker and colleagues145 
showed that a classifi er that is highly accurate for ASD 
did not allocate individuals with ADHD to the diagnostic 
category for cases but to the category of typically 
developing controls, whereas a classifi er that did no 
better than random for individuals with ASD also 
randomly allocated individuals with ADHD to the two 
available categories (ie, ASD and control groups). This 
fi nding suggests that a classifi er with high accuracy for 
ASD is also expected to be highly specifi c for the 
disorder. Finally, several technical limitations will have 
to be overcome before making automated approaches 
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more widely available. For various reasons, including 
hardware-related eff ects such as radiofrequency coil 
sensitivity and electronic amplifi er gains, conventional 
structural MRI scans are not compatible across sites. 
Hence, a classifi er that is highly accurate for ASD at one 
scanning site might not necessarily be highly accurate 
for classifying ASD at another site. This issue is also a 
problem for functional neuroimaging data acquired 
at several sites or on diff erent scanner platforms.146,147 
Thus, the standardisation of multi variate classifi cation 
approaches across sites or platforms at the level of data 
acquisition or image analysis, or both, will substantially 
contribute to the generalisability and availability of 
MRI-assisted classifi ers for ASD in the future.

Conclusions
Over the past two decades, neuroimaging studies have 
provided many important insights into the pathological 
changes that occur in the brain in ASD in vivo. Most 
importantly, they have shown that ASD is accompanied 
by an atypical trajectory of brain maturation, which gives 
rise to diff erences in neuroanatomy, functioning, and 
connectivity within the wider neural systems that 
probably mediate autistic symptoms and traits. However, 
the development of the brain in ASD is complex and is 
mediated by many genetic and environmental factors, 
and their interactions. Hence, in the future, establish-
ment of the specifi c environmental risk factors that 
contribute to ASD susceptibility in addition to genetic 
variations will be crucial. Moreover, investigation of the 
neurobiological and clinical phenotype of ASD compared 
with various neurodevelopmental disorders will be 
important to delineate the shared versus distinct 
molecular mechanisms that might be used to identify 
novel treatment targets, or to develop stratifi cation 
instruments that can defi ne more biologically meaning-
ful subgroups within clinically and biologically hetero-
geneous disorders. Although substantial progress has 
been made in the development of animal models and 
cellular assays, neuroimaging approaches remain one of 

the few techniques that allow us to directly examine the 
brain in vivo, and will probably facilitate the development 
of a more personalised, individually tailored approach to 
the treatment of ASD.
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