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ARTICLE

Genome-wide DNA methylation is predictive of
outcome in juvenile myelomonocytic leukemia
Elliot Stieglitz 1,2, Tali Mazor3, Adam B. Olshen2,4, Huimin Geng5, Laura C. Gelston1, Jon Akutagawa1,

Daniel B. Lipka 6,7,8, Christoph Plass6,9, Christian Flotho9,10, Farid F. Chehab11, Benjamin S. Braun1,2,

Joseph F. Costello3 & Mignon L. Loh1,2

Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative disorder of childhood

caused by mutations in the Ras pathway. Outcomes in JMML vary markedly from sponta-

neous resolution to rapid relapse after hematopoietic stem cell transplantation. Here, we

hypothesized that DNA methylation patterns would help predict disease outcome and

therefore performed genome-wide DNA methylation profiling in a cohort of 39 patients.

Unsupervised hierarchical clustering identifies three clusters of patients. Importantly, these

clusters differ significantly in terms of 4-year event-free survival, with the lowest methylation

cluster having the highest rates of survival. These findings were validated in an independent

cohort of 40 patients. Notably, all but one of 14 patients experiencing spontaneous resolution

cluster together and closer to 22 healthy controls than to other JMML cases. Thus, we show

that DNA methylation patterns in JMML are predictive of outcome and can identify the

patients most likely to experience spontaneous resolution.
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Juvenile myelomonocytic leukemia (JMML) is a rare and
aggressive myeloproliferative disease of childhood associated
with heterogeneous outcomes1, 2. JMML is initiated by

mutations in Ras pathway genes that lead to hyperactive Ras
signaling3. Several recent reports have identified secondary
mutations in epigenetic-regulating genes, including members of
the polycomb repressor complex 2 (PRC2), whose presence cor-
relates with higher rates of relapse4–6. In addition, SETBP1 is
mutated in up to 30% of patients as a secondary event, and we
previously showed that subclonal mutations in SETBP1 at diag-
nosis are associated with poor outcome7.

Spontaneous resolution of JMML with minimal to no traditional
chemotherapy or hematopoietic stem cell transplantation (HSCT) is
rare but has been reported8. Although this phenomenon is more
common in patients with germline syndromes such as Noonan9 and
CBL syndrome10, it has also been seen in a handful of patients with
somatic NRAS and KRAS mutations8 that are typically less than one
year of age and have high platelet counts. Interestingly, spontaneous
resolution does not commonly occur in patients with Neurofi-
bromatosis type I, a common congenital condition with a high
incidence of JMML. In general, robust biomarkers to predict
spontaneous resolution are still lacking.

We know that patients with identical somatic Ras pathway
mutations have divergent outcomes5, 6. We hypothesized that either

the cell in which genetic mutations arise or potentially non-genetic
changes such as DNA methylation could explain differences in
outcome11. Considering that DNA methylation has a critical role in
the differentiation of normal fetal and adult hematopoietic stem
cells12–14, we suspected that leukemogenesis in JMML is in part
determined by alterations in the JMML methylome, and that such
differences may predict outcome. Importantly, prior reports
investigating the role of DNA methylation in this leukemia were
limited to a handful of candidate genes previously shown to be
altered in other myeloid malignancies15, 16. We therefore sought an
unbiased, genome-wide approach to define the DNA methylome of
newly diagnosed JMML patients and then evaluated whether a
specific DNA methylation signature was capable of predicting
outcome with a particular emphasis on identifying patients who
experienced spontaneous resolution.

In this study, we generated genome-wide DNA methylation data
in a discovery cohort of 39 patients with JMML and validated our
findings in an independent cohort of 40 additional patients. We
found that JMML patients cluster into three subgroups that were
independently predictive of outcome based on their methylomes.
The low methylation subgroup was associated with high rates of
survival and spontaneous resolution, whereas the high methylation
subgroup was associated with dismal survival. These data suggest
that DNA methylation can be used to predict outcome in JMML.
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Fig. 1 Unsupervised clustering reveals three distinct clusters of DNA methylation in patients with JMML. Thirty-nine patients who underwent Illumina 450k
analysis are included. Patients are displayed on the X axis and the 1527 most variable CpG sites (top 0.5% ranked by standard deviation) are displayed on
the Y axis. The three most significant patient characteristics in univariable analysis are presented at the top of the figure. HgB F fetal hemoglobin, SR
spontaneous resolution, EFS event-free survival, β beta value, N/A not available
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Results
Genetic mutations are present in putative HSCs. We sorted
samples from four patients to determine whether the presence or
absence of Ras driver mutations in putative hematopoietic stem
cells could explain the phenomenon of spontaneous resolution.
Individual patient samples were sorted into early hematopoietic
stem cells, multipotent progenitors, and common myeloid pro-
genitors. The Ras pathway mutation was present in each com-
partment in all four patients including the two patients that went
on to experience spontaneous resolution (Supplementary
Table 1). We therefore pursued the alternative theory that DNA
methylation influences outcome.

Pilot study reveals minimal variation in DNA methylation. We
first sought to quantify the differences in both mutational burden
and DNA methylation in CD14+ and unselected mononuclear
cell DNA. CD14+ cells would be most likely to be enriched with a
leukemic signature due to the monocytic nature of the disease. To
determine the allelic fraction of somatic Ras pathway mutations
in different cell lineages we performed deep sequencing of indi-
vidual mutations in CD3+, CD14+, CD19+, and CD34+ com-
partments and observed nearly identical allelic fractions in CD14+

cells compared to unselected mononuclear cell DNA (Supple-
mentary Table 2). All four cell lineages were found to harbor the
Ras pathway mutation with varying allelic fractions, although
lymphoid cells including CD3+ and CD19+ populations had the
lowest mutational burden (Supplementary Table 2). We next
performed enhanced reduced representation bisulfite sequencing
(eRRBS) on CD14+ and unselected mononuclear cell DNA from
the same three JMML patients as well as three age-appropriate
healthy controls. DNA from unselected mononuclear cells and
CD14+ cells from each subject had very similar DNA methylation
levels (concordance correlation coefficient range: 0.98 for each
subject) (Supplementary Fig. 1a, b). In an unsupervised clustering
analysis, CD14+ samples also clustered with the unselected
mononuclear cell sample from the same subject as opposed to
CD14+ samples from other subjects (Supplementary Fig. 1c). We
therefore used unselected mononuclear cell DNA for all ensuing
experiments.

JMML patients have three distinct clusters of methylation. We
next generated Illumina 450k methylation data for a discovery
cohort of 39 well-characterized JMML patients using unselected
mononuclear cell DNA (Supplementary Table 3). We performed
an unsupervised clustering analysis based on the 1527 most
variably methylated CpG sites. We observed an inverse rela-
tionship between 4-year event-free survival (EFS) and the degree
of DNA methylation (Fig. 1). For patients in the cluster with the
lowest levels of DNA methylation in the selected 1527 most
variable CpG sites, the proportion of patients having an event at 4
years was 6% (1/15; 95% confidence interval (CI), 2%-32%). This
compared to 45% (5/11; CI: 17–77%) for patients in the cluster of
intermediate levels of methylation and 61% (8/13; CI: 32–86%)
for those patients with the highest level of methylation (Supple-
mentary Fig. 2). The proportion of patients with events differed
significantly by cluster (P = 0.0039).

Secondary mutations are associated with hypermethylation.
Several groups have recently demonstrated that secondary
mutations are associated with a worse prognosis in JMML4–6. We
observed that all patients who had a secondary mutation present
at diagnosis were classified in either the intermediate or high
methylation cluster. The secondary genetic mutations occurred in
genes affecting DNA methylation (ASXL1, DNMT3A) as well as
Ras pathway genes (NRAS, NF1), spliceosome members (ZRSR2),

transcription factors (SH2B3, GATA2), and SETBP1 (Supple-
mentary Table 4).

Methylation status is predictive of outcome. In univariable
regression analyses (Table 1), the characteristics that reached
significance at the 0.05 level for 4-year EFS were age at diagnosis
of ≥12 months (OR = 9, CI = 1.93–66.41, P = 0.0040), somatic
mutations >1 (OR = 13.2, CI = 2.86–79.13, P = 0.0007) elevated
fetal hemoglobin (OR = 5.13, CI = 1.232-27.33, P = 0.024), and
methylation cluster (P = 0.0039). Furthermore, when a multi-
variable regression model was applied using the three variables
with a univariable P< 0.01 (methylation cluster group, somatic
mutations, and age), the methylation cluster grouping retained
statistical significance for 4-year EFS (P = 0.032) (Supplementary
Table 5). The number of somatic mutations was also significant
(P = 0.018), whereas age was not (P = 0.12).

Independent cohort validates prognostic value of methylation.
We next sought to evaluate our findings in an independent cohort
of patients. We obtained Illumina 450k data from 40 JMML
patients treated in the EWOG-MDS consortium, all of whom met
the international criteria for JMML3, were negative for Noonan
syndrome, had 4-year EFS data available, and did not experience
treatment related mortality. Thirty-three patients underwent
HSCT and the remaining seven patients experienced spontaneous
resolution without HSCT (Supplementary Table 6). Hierarchical
clustering of these samples using the set of 1527 CpG sites defined
in our discovery cohort revealed a similar pattern of three clus-
ters, varying from low to intermediate to high methylation levels
(Fig. 2). Moreover, all seven patients in the EWOG-MDS cohort
that experienced spontaneous resolution clustered together in the
lowest methylation cluster.

We classified the validation cohort into methylation groups
based on data from the discovery cohort. Specifically, we assigned
each validation patient as low, intermediate or high, based on the
shortest distance to the corresponding discovery cohort cluster
centroid. The proportion of patients classified to the low
methylation cluster having an event at 4 years was 8% (1/12;

Table 1 Univariable regression analysis

Univariable analysis EFS from date of diagnosis

N OR 95% CI P-value

Age at diagnosis (months) 0.004
≤12 months 17 1
>12 months 22 9 1.93–66.41

Methylation cluster 0.0039a

Low 15 1
Intermediate 11 11.67 1.48–250.68
High 13 22.4 3.05–474.51

Somatic mutations at diagnosis 0.0007
≤1 27 1
>1 12 13.2 2.86–79.13

HbF at diagnosis 0.024
Not elevated for age 17 1
Elevated for age 21 5.13 1.23–27.33

Platelet count at diagnosis ×109 0.29
≤50 17 1
>50 20 0.48 0.12–1.84

Somatic PTPN11 mutation 0.1
No 26 1
Yes 13 3.17 0.80–13.39

Gender 0.97
Male 28 1
Female 11 1.029 0.22–4.32
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CI: 0–38%). This compared to 36% (4/11; CI: 11–69%) for
patients classified to the cluster of intermediate levels of
methylation and 76% (13/17; CI: 50–93%) for those patients
classified to the highest level of methylation. The proportion of
patients with events differed significantly by cluster (P = 0.0008)
(Fig. 2).

Methylation changes are consistent across tissue types. Tissue
sources for DNA in our discovery and validation cohorts included
mononuclear cells or granulocytes derived from bone marrow
(n = 27), peripheral blood (n = 39), and spleen (n = 13). Tissue
source did not appear to influence the clustering designation of
low, intermediate or high (Supplementary Fig. 3). A Fisher’s exact
test relating tissue source and cluster membership had a P-value
of 0.45.

Spontaneous remitters cluster with healthy controls. We then
compared our combined cohort of 79 JMML patients with 22

healthy, age-appropriate controls analyzed on the Illumina 450k
platform using peripheral blood mononuclear cell DNA. Notably,
using the same set of 1527 CpG sites defined by the discovery
cohort, 27/79 JMML patients clustered more closely to the 22
healthy controls than the other JMML cases (Fig. 3). Of these 27
patients, 14 (52%) experienced spontaneous resolution and only
two (7%) experienced an event within 4 years.

Identification of a methylation signature to predict outcome.
In preparation for implementing a clinical test we sought to
identify the fewest number of CpG probes that would be neces-
sary to recapitulate the low, intermediate and high methylation
clusters from our discovery cohort. For this purpose, we used the
discovery cohort to rank probes and the cluster call of the vali-
dation cohort to assess accuracy. Disagreements with the calls
based on all 1527 probes were considered errors. With 50 or
greater probes, the number of errors went down to either 0 or 1
(Supplementary Fig. 4).

4−year EFS

SR

Cluster prediction

PTPN11

NRAS

NF1

KRAS

CBL
10

52
14

18
64

28
20

60
21

44
21

14
38

28
12

28
65

17
73

14
10

75
30

66
24

56
28

19
57

53
14

02
51

99
88

9
14

02
11

15
78

18
93

63
15

30
38

63
07

16
37

35
14

13
02

46
45

16
11

12
62

65
18

50
28

45
87

61
62

53
77

16
39

46
17

83
94

17
52

09
54

17
12

60
0

17
86

12
55

13
42

33
16

75
50

16
33

65
19

10
48

11
20

29
15

38
43

High

Cluster prediction

Low

Intermediate

β value

0 1

Mutation present
SR

4-year EFS

Event

No event

Yes

No
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and the same 1527 most variable CpG sites from the unsupervised discovery cohort analysis are displayed on the Y axis. Patients are assigned a cluster
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Impact of DNA methylation signature on expression. We
examined the interplay between altered DNA methylation in the
most variable 1527 CpG probes and gene expression. To perform
this analysis, we utilized the subset of those 1527 CpG sites that
were in gene promoters to generate a list of differentially
methylated genes and performed unsupervised clustering based
on the expression of those genes. The samples did not cluster into
the previously identified low, intermediate, and high methylation
classes (Supplementary Fig. 5).

Pathway analysis reveals enrichment in the Ras/MAPK path-
way. We next carried out supervised analyses using the combined
discovery and validation cohorts to identify CpG sites that dif-
fered between the 32 patients who experienced events and the 47
patients who did not. We identified 10,545 significantly differ-
entially methylated CpG sites. To focus on those CpG sites most
likely to change gene expression, we retained only those CpG sites
that were in gene promoters, yielding a list of 3419 genes (Sup-
plementary Fig. 6). KEGG pathway analysis of these same genes
revealed an enrichment in several pathways known to be relevant
in initiating JMML, including MAPK, PI3K-AKT, and Ras sig-
naling, implicating these variably methylated CpG sites in leu-
kemogenesis (Supplementary Table 7).

We next sought to use an empirical approach to identify CpG
sites that were most likely to influence changes in gene
expression. We analyzed RNA-Seq files of eight patients from
our discovery cohort and performed a supervised analysis to
identify the most variably expressed genes that differed between
patients who experienced events within 4 years compared to those
who did not. We then looked at the overlapping genes from the
supervised analyses using both the DNA methylation and RNA-
Seq data and identified 43 unique genes. KEGG pathway analysis
identified transcriptional misregulation in cancer, Ras signaling
pathway, and pathways in cancer as the top three results
(Supplementary Table 8).

Discussion
JMML is an aggressive myeloproliferative disorder predominantly
affecting infants and toddlers. It is considered one of the purest
forms of a Ras-driven leukemia with ~95% of patients harboring
at least one mutation in the Ras pathway. Several groups have
now reported that secondary genetic mutations within and out-
side of the canonically defined Ras pathway are present in roughly
a third of patients and that these mutations are associated with a
worse prognosis4–6. Even with this knowledge, identifying
patients in need of more intensive therapy at diagnosis is still a
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Fig. 3 Patients experiencing spontaneous resolution cluster closer to healthy age-appropriate controls. Twenty-two healthy, age-appropriate controls were
analyzed together with the 79 JMML patients from the combined discovery and validation cohorts. Patients and controls are displayed on the X axis and
the same 1527 most variable CpG sites from the unsupervised discovery cohort analysis are displayed on the Y axis. HgB F fetal hemoglobin, SR
spontaneous resolution, EFS event-free survival, β beta value, N/A not applicable
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challenge for providers. Equally difficult is predicting the phe-
nomenon of spontaneous resolution frequently experienced by
patients with Noonan or CBL syndrome, and occasionally in
young patients with somatic NRAS and KRAS mutations.

One proposed model for understanding the divergent out-
comes in this disease centers around the putative initiating
hematopoietic cell in which the causative Ras mutations first
arise. We first hypothesized that patients who experience spon-
taneous resolution would have somatic mutations only in late,
committed progenitors as opposed to patients with aggressive
disease who possibly have mutations occurring in earlier stem
cells. For example, we have previously demonstrated that SETBP1
mutations occur in early progenitor cells including CD34
+/CD45RA−/CD90+ (putative HSCs)7. Here we show that
patients who experienced spontaneous resolution also had
somatic mutations in HSCs and thus the cell of origin in which
genetic mutations arise are unlikely to explain differences in
outcome. We therefore explored epigenetic changes, specifically
DNA methylation, as a possible explanation for divergent
outcomes.

Using our discovery cohort, we found that JMML patients
suffering from aggressive disease have a distinctly hypermethy-
lated DNA profile at the most variable CpG sites compared to
healthy controls in the same age range. In contrast, nearly half of
JMML patients clustered more closely with healthy controls who
were of a similar age range than with other patients suffering
from aggressive disease. All but one of these patients who
experienced spontaneous resolution clustered with healthy con-
trols and we thus propose that further developing this methyla-
tion signature into a Clinical Laboratory Improvement
Amendments/College of American Pathologist (CLIA/CAP)
approved assay could lead to the first biomarker capable of pre-
dicting a milder disease course not requiring HSCT. In pre-
paration for implementing a clinical assay, we have agreed to pool
all publicly available DNA methylation data in this disease and
develop a single sequencing-based assay across multiple con-
tinents. Of note, this pattern was consistent in bone marrow,
peripheral blood, and spleen, suggesting that a fundamental
mechanism underpins the DNA methylation signature in all of
the infiltrating cells involved in this disease.

Pathway analysis confirmed that the most variably methylated
CpG sites that were used in our supervised analysis were centered
on genes involved in development and Ras/MAPK/PI3K/AKT
signaling. However, after analyzing a small but representative
subset of our JMML patients at the gene expression level, we
believe that altered DNA methylation in JMML is functioning in
a more complex manner than simply altering expression of
associated genes. Recent work has demonstrated that patients
with more than one mutation in the Ras pathway have inferior
event-free survival compared to patients with only one Ras
pathway mutation6. Our analysis shows that patients with more
than one mutation tend to display hypermethylated DNA; how-
ever, the relationship between the two is not yet clear. In several
myeloid malignancies, alterations in DNA methylation are a
result of genetic mutations in epigenetic-regulating genes17.
Surprisingly, JMML patients with any secondary mutation
inclusive of those affecting genes in the Ras pathway, transcrip-
tion factors and the spliceosome machinery all have hyper-
methylated signatures, not just patients with secondary mutations
in genes directly affecting DNA methylation. We therefore
hypothesize that alterations in DNA methylation are an early
event in JMML and are permissive for the acquisition of sec-
ondary mutations and not vice versa.

Several important questions remain, including what initially
causes the hypermethylation seen in patients with JMML? Simi-
larly, how does a hypermethylated signature contribute to the

aggressive disease seen in these patients? In addition, what role if
any will hypomethylating agents have in this disease, and are they
capable of reversing the hypermethylated state observed at
diagnosis?.

This study highlights the utility of DNA methylation as a
potential biomarker that could be used in a combined risk stra-
tification algorithm along with clinical characteristics including
age, fetal hemoglobin, and number of somatic mutations at
diagnosis in future clinical trials. For JMML patients that are
classified into the lowest methylation group clinicians could now
consider careful observation or treatment with low intensity
regimens like azacytidine or 6-mercaptopurine. In contrast,
patients with the highest levels of methylation have unacceptably
poor outcomes even after HSCT, with 75% of these patients
experiencing relapse of their disease post-transplant. These
patients should receive novel treatments in the context of clinical
trials even at initial diagnosis.

In summary, our results show the potential of DNA methyla-
tion as a biomarker that can both identify patients who are
predicted to fail HSCT as well as those who are most likely to
experience spontaneous resolution and could be observed to
avoid the acute and late side effects of HSCT.

Methods
Patients. Thirty-nine distinct JMML patients comprising our discovery cohort had
samples available at diagnosis and were analyzed using the Illumina Infinium
HumanMethylation450 BeadChip platform. These patients were well-characterized
in terms of diagnostic variables, treatment delivered, and genetic mutation status
(Supplementary Table 9). Three separate JMML patients and three healthy controls
were included in a pilot eRRBS study (Supplementary Table 10) described below. A
validation cohort using 40 patients enrolled in the prospective 98 and 2006 trials
(www.clinicaltrials.gov: #NCT00047268, #NCT00662090) was provided by our
colleagues from the European Working Group of MDS and JMML in Childhood
(EWOG-MDS). The EWOG-MDS patients were treated on a single clinical trial
and had Illumina Infinium HumanMethylation450 BeadChip data available. Lastly,
HumanMethylation450 BeadChip data for peripheral blood mononuclear cells
from 22 healthy subjects (1–5 years of age) was obtained from a previously pub-
lished study18. Approval for these studies were obtained from the University of
California San Francisco (UCSF) Committee on Human Research. All participants/
guardians provided informed consent in accordance with the Declaration of
Helsinki.

eRRBS sample processing and library generation. Mononuclear cells were
obtained from bone marrow and peripheral blood from three JMML patients and
three controls after Ficoll separation. CD3, CD14, CD19, and CD34 positive cells
were selected using magnetic beads (Stemcell Technologies) and DNA was
extracted for each population. Deep sequencing (~1300X) of the initiating muta-
tion for each of the three JMML patients was then carried out in unselected
mononuclear cell, CD3+, CD14+, CD19+, and CD34+ populations. Unselected
mononuclear cell and CD14+ DNA from each of the six subjects was then subjected
to eRRBS by digesting with MspI followed by end-repair, A-tailing, and ligation of
methylated adapters. GC-rich fragments were selected and converted with bisulfite
prior to PCR amplification and sequencing19.

Analysis of eRRBS data. The amplified libraries were sequenced on an Illumina
Genome Analyzer II or HiSeq2000 per manufacturer’s recommended protocol for
50 bp single end read runs. Image capture, analysis and base calling was performed
using Illumina’s CASAVA 1.7. eRRBS sequencing data was aligned to whole
genome using the bismark alignment software20 with a maximum of two mis-
matches in a directional manner and only uniquely aligning reads were retained.
To call methylation score for a base position, we required that at least 10 reads
cover the position with a phred base quality of at least 20. Only CpG dinucleotides
that satisfy these coverage and quality criteria were retained for subsequent ana-
lysis. Percentage of bisulfite converted Cs (representing unmethylated Cs) and non-
converted Cs (representing methylated Cs) were recorded for each C position in a
CpG context. We retained methylation calls for all CpG sites with at least 10 reads
of coverage in all datasets (790,359 CpG sites). We then calculated the difference at
each CpG site between DNA from unselected and CD14+ cells for each patient, as
well as the concordance correlation coefficient between the two datasets. Unsu-
pervised hierarchical clustering was performed using the most variable CpG sites
(standard deviation >30 = 3277 CpG sites) using Ward’s method. Implementation
was through the hclust function in the stats R package.
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HumanMethylation450 bead array sample processing. DNA from JMML
patients was extracted using standard methods from bone marrow, splenic tissue or
peripheral blood mononuclear cells or granulocytes obtained at diagnosis. Genomic
DNA was bisulfite converted using the EZ DNA Methylation Kit (Zymo Research)
and processed on Infinium HumanMethylation450 bead arrays (Illumina Inc.)
according to the manufacturer’s protocol.

HumanMethylation450 bead array data processing. Raw data was processed
using the minfi R package21. In particular, the functions preprocessNoob, map-
toGenome, and ratioConvert were utilized in that order to produce methyla-
tion beta-values (β) and M-values for every probe and sample. Probes that mapped
to regions with known germline polymorphisms (Illumina supplementary SNP list
v1.2, downloaded 3 September, 2013), to multiple genomic loci22, or to either sex
chromosome, along with probes where the maximum p-value was greater than 0.01
for at least one sample, were filtered out. This left 289,731 probes for our primary
analysis. Any gene for which a probe was present within the promoter region (1.5
kb upstream to 1 kb downstream of TSS, Gencode v19 gene annotations) was
associated with that probe23.

Hierarchical clustering-based sample classification. The beta-values were
hierarchically clustered in both directions (samples and probes) utilizing an
unsupervised approach that used the Ward’s method. The clustering was limited to
probes with standard deviations greater than 0.25 across the discovery rate samples,
which resulted in 1527 probes being utilized. The validation cohort samples were
classified into one of three classes based on minimum distance to the centroid of
the discovery cohort clusters. Implementation was through the hclust function in
the stats R package.

Statistical analysis. Our primary endpoint was the binary variable 4-year event-
free survival. Only one patient had an event after 4 years, which led us to choose
this cutoff. We estimated survival curves using the Kaplan–Meier method. Logistic
regression was utilized to model the relationships between 4-year event-free sur-
vival and clinical and genomic variables and significance was based on the like-
lihood ratio test. The cutoff for significance was a P-value <0.05.

Differential methylation based on 4-year EFS. Differential methylation between
groups was estimated using the Limma method24 on the methylationM-values through
the limma R package. Testing was performed on every probe that was part of the
main analysis. Significance was defined as a P-value <0.05 and a difference in
average methylation between the two groups of at least 0.1.

CpG distillation for recapitulation of clusters. We used the discovery cohort to
rank probes and the cluster call of the validation cohort to assess accuracy. We
ranked probes from most typical to least typical on the discovery cohort, where the
determination of “typical” was based on the distance from the sample to the cen-
troid of the corresponding cluster summed over all samples. We made calls on the
validation cohort using 5 to 200 probes, adding the best probes 5 at a time, with
distance to the discovery cohort centroid as the basis of the call. Disagreements of
calls based only a subset of probes compared to all 1527 probes were considered
errors.

RNA-sequencing. Eight patients from our discovery cohort (Supplementary
Table 11) had RNA extracted, which was used to prepare mRNA libraries and
sequenced on the Illumina HiSeq platform, resulting in paired 50-nt reads;
resulting data were subjected to quality control25. Gene expression was quantified
for transcripts corresponding to GENCODE v12 genes using transcript per million
mapped reads (TPM) using an RSEM-based pipeline26. All analyses were per-
formed on the log base 2 of TPM + 1.

Differential gene expression based on 4-year EFS. Differential gene expression
between groups was estimated using the Limma method24. Testing was performed
on every gene that had non-zero counts. Significance was defined as a P-value
<0.05.

Hierarchical clustering based on RNA-Seq data. The most variable 1527 CpG
probes used to cluster patients in our methylation analysis were annotated to a
gene, based on the presence of the CpG site in the promoter of the gene (1500 bp
upstream of TSS to 1000 bp downstream of TSS). We only included genes with
high variability using a standard deviation cutoff of 2.5, which eliminated genes
with low read counts, resulting in the retention of 65 genes. We then clustered
patients based on their median centered expression values.

Pathway analysis. Pathway analysis was performed on the genes corresponding to
the probes identified as significant in the Limma analysis. For a gene to be included,
the probe had to be in a promoter region. KEGG analysis was performed using
KEGG Mapper (http://www.genome.jp/kegg/mapper.html).

Progenitor sorting. Previously cryopreserved bone marrow samples were thawed
and sorted into the following fractions as described27: Lin− (CD2, CD3, CD4, CD4,
CD7, CD8, CD10, CD11b, CD14, C19, CD20, CD56, CD235a), CD34+ CD38−

CD45RA−CD90+ (hematopoietic stem cells), Lin−CD34+ CD38− CD45RA−CD90−

(multipotent progenitors), Lin−CD34+ CD38+ CD45RA− CD90− (common mye-
loid progenitors), and Lin−CD34+ CD38+ CD45RA+ CD90−

(granulocyte–monocyte progenitors). Individual cells from a single compartment
were then pooled together and DNA was extracted from pooled cells and analyzed
by Sanger sequencing.

Data availability. The data used in this study are available for download from the
European Genome-phenome Archive (EGA) repository under accession
EGAS00001002700. All relevant data are available from the authors upon request.
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