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Summary

In shallow water flow and transport modeling, the monotonic upstream‐
centered scheme for conservation laws (MUSCL) is widely used to extend the
original Godunov scheme to second‐order accuracy. The most important step
in MUSCL‐type schemes is MUSCL reconstruction, which calculate‐
extrapolates the values of independent variables from the cell center to the 
edge. The monotonicity of the scheme is preserved with the help of slope 
limiters that prevent the occurrence of new extrema during reconstruction. 
On structured grids, the calculation of the slope is straightforward and 
usually based on a 2‐point stencil that uses the cell centers of the neighbor 
cell and the so‐called far‐neighbor cell of the edge under consideration. On 
unstructured grids, the correct choice for the upwind slope becomes 
nontrivial. In this work, 2 novel total variation diminishing schemes are 
developed based on different techniques for calculating the upwind slope 
and the downwind slope. An additional treatment that stabilizes the scheme 
is discussed. The proposed techniques are compared to 2 existing MUSCL 
reconstruction techniques, and a detailed discussion of the results is given. It
is shown that the proposed MUSCL reconstruction schemes obtain more 
accurate results with less numerical diffusion and higher efficiency.

1 INTRODUCTION

The monotonic upstream‐centered scheme for conservation laws (MUSCL)1 is
a well‐known approach to achieving higher‐order accuracy by data 
reconstruction. An overview of MUSCL‐type high‐order methods can be 
found, for example, in chapter 13.4 in the work of Toro.2(pp426‐440) MUSCL‐
type schemes are essentially an extension of the original Godunov scheme3 
with the following steps: (1) define the Riemann problems at cell interfaces 
using cell averages, (2) solve the Riemann problems to get the numerical 
flux, and (3) update the cell averages by summing up flux and source terms.4

In contrast, MUSCL‐type schemes replace cell averages by piecewise linear 
functions. Thus, step 1 of the Godunov scheme is replaced by the following: 



(1) extrapolate the cell averages (linearly) to cell interfaces in defining the 
Riemann problems (MUSCL reconstruction step). In order to avoid spurious 
oscillations, the slope of the extrapolation is limited by so‐called slope limiter
functions.5 Many slope limiter functions have been derived in the literature, 
and an overview can be found in the work of Hou et al6 and in classical 
textbooks such as those by Toro2 and LeVeque.7

For high‐order schemes to produce physical results, they have to be 
monotonic; otherwise, spurious oscillations may occur. Monotonicity of a 
numerical scheme can be deduced from a property called total variation that
is defined as the summation of differences between every 2 neighboring 
states over the whole domain at a fixed time. If the total variation does not 
increase in time, the scheme is said to be total variation diminishing (TVD), 
and the monotonicity of the scheme is ensured.2 Slope limiters limit the slope
of the MUSCL reconstruction such that it is ensured that no new extrema are 
created at the cell interfaces. As will be discussed in the following, the limiter
function depends on the slope of the upwind and downwind directions of the 
cell centers. The calculation of these slopes has significant influence on the 
accuracy of the scheme. Early TVD schemes were derived on structured 
grids and, when applied directly to unstructured meshes, give unsatisfactory 
results. The reason is that on structured grids, the slope calculation on the 
left and the right side is very straightforward as the direct neighbor cell and 
the so‐called far‐neighbor cell (the neighbor of the direct neighbor cell) can 
be used directly. In addition, the ratio of these slopes is a good indicator of 
stability because all points that contribute to the ratio are equidistant. In 
contrast, on unstructured meshes, the calculation of the points that 
contribute to the calculation of the slopes is not straightforward. Hence, the 
calculation of the slope itself poses a challenge. TVD MUSCL reconstruction 
techniques for unstructured meshes can be divided into monoslope and 
multislope methods.8 The monoslope method that is initially presented in the
work of Venkatakrishnan9 calculates a single vector of slope for the entire 
cell based on the 3 direct neighbors of the cell. In contrast, the multislope 
method calculates a slope for each edge based on a 3‐point stencil. The 
challenge of applying the multislope method to unstructured grids is that the
determination of the points of the stencil is nontrivial. In the literature, 
several multislope methods for unstructured grids can be found. For 
example, in the work of Darwish and Moukalled,10 a local slope based on a 2‐
point stencil is calculated without considering the far‐neighbor cell. In the 
work of Li and Liao,11 a 3‐point stencil is used, but instead of the far‐neighbor
cell, a “virtual” node is included. Motivated by these approaches, in the work
of Hou et al,6 a multislope method that calculates individual weights for 
slopes depending on the distance of the cell centers to the cell interface is 
derived. In the work of Hou et al,12 slopes are calculated based on points that
are located on a line normal to the cell interface. Based on the multislope 
method by Buffard and Clain,8 Hou et al13 proposed a more straightforward 



vector‐based multislope method, which obtains both robustness and 
accuracy.

In this work, 2 novel TVD MUSCL reconstruction techniques are investigated 
based on an additional condition for the TVD scheme, and a treatment for 
limiting the velocity at wet and dry interfaces is proposed for avoiding the 
instability caused by MUSCL schemes. The proposed schemes are compared 
with the multislope methods by Buffard and Clain8 and Hou et al.13 The 
schemes are compared in 5 computational test cases: (i) Thacker's planar 
rotation benchmark, (ii) a steady‐state oblique jump, (iii) a radial dam break, 
(iv) a 2‐dimensional (2D) Riemann problem, and (v) a Tsunami wave around 
a canonical island. In these benchmarks, the accuracy of the TVD method 
and their computational cost is compared.

2 GOVERNING EQUATIONS AND NUMERICAL MODEL

2.1 Shallow water equations

The 2D shallow water equations (SWEs) can be written in vector form as

 (1)

with vectors defined as

 (2)

 (3)

where t is time, x and y are the Cartesian coordinates, and q represents the 
variable vector consisting of h, qx, and qy that denote water depth, unit‐width
discharges in the x‐ and y‐directions, respectively. u and v are defined as 
depth‐averaged velocities in the x‐ and y‐directions, respectively; f and g are
the flux vectors in the x‐ and y‐directions, respectively; sis the source term 
that includes bed slope and friction contributions; z is the bed elevation; and 
cf is the bed roughness coefficient. Here, viscous, diffusive, and turbulent flux
terms are neglected.

2.2 Finite‐volume discretization of SWEs on unstructured grids

The SWEs in Equation 1 can be written in integral form as

 (4)



where Ω is an arbitrary control volume. Applying the Green‐Gauß theorem 
and replacing the boundary integral with a sum over all edges, Equation 4 
becomes

 (5)

wherein m is the number of edges, and  is the unit normal vector pointing in 
the outward normal direction of the boundary edge, l is the length of the 
edge, and F·n is the flux vector normal to the boundary and can be written as

 (6)

The value of q in cell i is updated using the 2‐stage explicit Runge‐Kutta 
scheme,(14-16) where the value at the next time level in cell i, , is updated by

 (7)

with

 (8)

where sn+1 is the friction source term and discretized in a splitting point 
implicit way17; the slope source term is calculated based on the slope flux 
calculation method from the work of Hou et al,18 which is added into the flux 
term ; and κ is a function to represent the updating process to a new time 
level in the considered cell. Δtn is the time step at the nth time level. For this 
work, the Courant‐Friedrichs‐Lewy condition is used for maintaining stability, 
ie,

 (9)

where Rn is the minimum distance from the cell center to the edge, and CFL 
is the Courant‐Friedrichs‐Lewy number. For explicit time‐marching 
algorithms, . In this work, CFL=0.5 is adopted.

2.3 MUSCL reconstruction

In order to obtain a second‐order accurate numerical scheme, Godunov's 
theorem3 can be circumvented by reconstructing the cell‐averaged values 
linearly using MUSCL reconstruction.1 MUSCL reconstruction is applied 
successfully for many physical problems (see, eg, other works(2, 8, 15, 16, 19-21)). 



The reconstruction from the cell center i to the cell interface (i,i+1), 
hereinafter also denoted by the subscript i+1/2, is calculated as

 (10)

as shown in Figure 1, where Δxi,i+1/2 and Δxi+1/2,i+1 are the distances from the 
cell center i to the edge and the cell center i+1 to the edge, respectively, ψ 
is the limiting coefficient of slope, and r is the slope ratio, which will be 
discussed in the following section.

Figure 1

One‐dimensional monotonic upstream‐centered scheme for conservation laws reconstruction

MUSCL reconstruction gives values at the left and right cell interfaces that 
can be used to construct a Riemann problem. The solution of the Riemann 
problem then yields the numerical flux in Equation 6.2 In this work, a Harten, 
Lax, and van Leer Riemann solver with the contact wave restored (HLLC)22 is 
used. The positivity‐preserving hydrostatic reconstruction by Audusse et al23 
is used to maintain a nonnegative water depth and correct reconstruction of 
the Riemann states, and the C‐property–preserving divergence form of the 
bed slope source term proposed by Hou et al18 is used; the source term 
treatment does not influence the well‐balanced property of any of the MUSCL
schemes.

3 MULTISLOPE MUSCL RECONSTRUCTION METHODS

In multislope MUSCL reconstruction methods, the slope for the MUSCL 
reconstruction in Equation 10 is calculated at each edge individually.

In the original multislope scheme (derived in the work of Roe24 for uniform 
grids), the edge value is calculated with a diffusive first‐order upwind value 
and an antidiffusive term as

 (11)

Here, r is the ratio of consecutive slopes,25 which can be calculated with a 3‐
point stencil that consists of 2 adjacent cells C and D and the far‐neighbor 
cell U located in the upstream direction. The ratio r becomes



 (12)

It is noted that due to the uniform grid assumption, the ratio   in 
Equation 10 is simplified to  in Equation 11.

In the literature, 2D MUSCL schemes on unstructured grids are mainly 
separated into 1‐dimensional (1D) gradient methods,(6, 10-12) 2D nodal 
evaluating methods,(26, 27) and vector manipulation methods.(8, 13) In this 
paper, 2D nodal evaluating methods and vector manipulation methods are 
compared with regard to efficiency, accuracy, and ease of implementation.

3.1 2D nodal evaluation methods

A straightforward approach to calculating the MUSCL slope on unstructured 
grids is to directly apply the classical TVD methods derived for 1D structured 
grids. Then, the upstream node U of the stencil can be calculated by 
extrapolating along a certain distance in the upstream direction. Darwish and
Moukalled10 noted that the difficulty of implementing MUSCL reconstructions 
on unstructured grids is in determining U. Based on prior work by Bruner and
Walters,28 Darwish and Moukalled10 proposed a MUSCL reconstruction 
method (Darwish's scheme) where r is defined as

 (13)

Here,   is the distance vector from the cell center of C to the cell center of
D. (▽q)C is the cell value gradient of cell C. In contrast to the calculation of r 
on uniform grids given in Equation 12, Darwish and Moukalled10 accounted 
for the nonuniform distance between the cell centers. Instead of determining
an additional point U, the value at node U is interpolated based on the 
gradient of cell C, as shown in Figure 2 (left). This is, in fact, a very local 
calculation of r. If the gradient in cell C does not represent the overall 
behavior of the variable, the calculated r differs significantly from a 3‐point 
stencil.



Figure 2

Three‐point stencil for Darwish and Moukalled10 (U is not taken into account), Li and Liao,11and Hou et 
al6 (left) and 3‐point stencil for Hou et al12 (right)

Li and Liao11 defined the stencil for calculating r using the cell centers of 2 
adjacent cells Cand D and constructed a virtual node U that is located in the 
upstream direction on the line connecting C and D, such that all nodes are 
equidistant (cf Figure 2, left). Ur is the cell center wherein node U is located. 
The value at U is interpolated based on the gradient of the cell containing 
U( ), ie,

 (14)

and Equation 12 becomes

 (15)

The method by Li and Liao11 contains more upstream information and is not 
as local as Darwish's scheme.

All of these TVD schemes neglect the interface position and the distance of 
the cell centers to the interface. Hou et al6 proposed a reconstruction (Hou's 
first scheme) that includes the interface position in the interpolation. It can 
be written as

 (16)

 (17)

Here, f denotes the interface, and dUC, dCD, dCf, and dDf are the distances from 
node U to C, from C to D, from C to the interface, and from D to the 
interface, respectively (cf Figure 2, left).



Hou et al12 noted that in most reconstruction techniques, the value at node U
is interpolated from the cell center using the gradient of the variable in the 
cell. Thus, the cell gradient has to be calculated first. It is then argued that in
advection‐dominated flows, the flux can be split into a component normal to 
the interface and a component tangential to the interface. The tangential 
component is transported by the normal component as a passive scalar. 
Therefore, instead of connecting the cell centers of the adjacent cell and 
locating the upstream node U on this line, Hou et al12 suggested drawing a 
line that goes normal to the interface, through the center of the interface, 
and locating all 3 nodes of the stencil on this line (cf Figure 2, right). C, D, 
and U are projections of the cell centers Cr, Dr, and Ur, respectively. Ur is 
determined as the nearest cell center around the vertex P1 of cell C to the 
line. The values at the points C, D, and U are not interpolated but shifted 
directly from the cell centers, ie, the value at node U is equal to the value at 
node Ur. Then, Equations 16 and 17 are used to reconstruct the values at the
interface.

3.2 Vector manipulation methods

Buffard and Clain8 developed an approach to construct the upwind and 
downwind slopes of edges in the considered cells by manipulating the 
geometric directional unit vector. Based on this approach, Hou et al13 
developed a more straightforward scheme for the calculation of the upwind 
and downwind slopes.

As shown in Figure 3, dimensional unit vectors are calculated as

 (18)

 (19)

M is the center of the edge,   and   are the unit directional vectors from 
the considered cell center to the edge center and the neighbor cell center, 
respectively. It can also be easily shown that the opposite direction of   will 
pass by the node coordinate that belongs to the considered cell but not the 
vertex of the edge.



Figure 3

Vector notations at the considered and neighboring cells

The slope along    can be calculated as

 (20)

By following the approach of Buffard and Clain,8 the slopes along the line 
connecting the cell center with the edge center in the upwind and downwind 
directions can be thought of as the slopes from the far node Nm, with 
m=1,2,3, to the cell center i and from the cell center i to the considered 
edge center M, respectively, ie, the slopes along  and  in Figure 3, 
respectively.

In the scheme by Hou et al,13 the vectors  and  are obtained by solving a set 
of linear equations, which can be obtained by geometric considerations as

 (21)

 (22)



Here, α1,2 and β1,2 are coefficients for linear construction and can be 
calculated from Equations 21 and 22. The slopes along  are obtained by 
Equation 20. The gradients along and  are independent from each other and ,
so that slopes at the upwind and downwind directions can be calculated as

 (23)

 (24)

Values at the cell edge are defined as  and , where the superscripts i 
and o denote that the variable is defined at the inside or at the outside of the
cell under consideration, respectively. It is noted that the number of 
variables outside of the cell under consideration is equal to that inside of the 

neighbor cell.   can be calculated as

 (25)

where k is the local index of the edge, and j is the local index of the node 
along the opposite direction of the considered edge. ψ is the limiter function 
as defined in the previous section, with the difference being that the 
parameters here are using the upwind and downwind slopes instead of the 
slope ratio r.

3.3 Methods of improving the TVD property

One aspect that, to the authors' knowledge, has not been discussed in the 
literature is a special case of MUSCL reconstruction that violates 
monotonicity without creating new extrema. Consider the case illustrated in 
Figure 4. If r(C,D)>1.0 and r(D,C)>1.0, where r(C,D) is the slope ratio on the left 
side of the edge and r(D,C) is the slope ratio on the right side of the edge, the 
reconstructed values give qeL>qeR even though qC<qD. The classical TVD 
limiter does not prevent this case because no new extremum is created. 
However, the numerical flux based on qeL and qeR in this case is physically not
feasible.



Figure 4

Monotonicity‐violating reconstruction

In this work, it is ensured that the following condition is satisfied, so that the 
case discussed above is always prevented:

 (26)

This condition preserves the monotonicity for both cells and edges. The 
derivation of Equation 26 is briefly presented in the following.

The TVD condition for the 1D case is given in the work of Harten5 as

 (27)

Here, C is a variable‐dependent coefficient, subscripts “+” and “−” mean the
flux flow into and out of cell i, respectively, . The sufficient TVD conditions 
are expressed in a series of inequalities, ie,

 (28)

A TVD scheme needs to satisfy the conditions given in Equations 27 and 28. 
For 1D grids, the variable at time step n+1 in cell i can be written as

 (29)

and the reconstructed variables read

(30)

(31)



(32)

(33)

Υ can be seen as the distance multiplied with the slope limiter. Then, it is 
easy to get

 (34)

 (35)

so that Equation 29 can be rewritten as

(36)

(37)

For TVD schemes, it is not difficult to get 1.0−C−,(i,i+1)−C+,(i,i+1)≥0,C+,

(i+1,i+2)≥0,C−,(i−1,i)≥0. If Equation 37 satisfies the TVD property, the coefficients 
should be nonnegative, which gives that 1.0−Υ(i,i−1)−Υ(i−1,i),1.0−Υ(i+1,i)

−Υ(i,i+1),1.0−Υ(i+2,i+1)−Υ(i+1,i+2) should all be positive values and thus

(38)



Summing up Equation 38 for −∞<i<∞, the total variation at time n+1 gives

 (39)

It is noted that Υ depends on the slope limiter Ψ and the position information 
Δxi,i+1/2/(Δxi,i+1/2+Δxi+1/2,i+1); hence, Equations 30 to 36 are also valid for 
unstructured grids. If 1.0−Υ(i+1,i)−Υ(i,i+1) and 1.0−Υ(i,i−1)−Υ(i−1,i) are zero, which 
means the reconstructed values along the edge for both neighbors are the 
same, the absolute value for the value difference is zero and does not 
influence the TVD property of this scheme, as

 (40)

if qi+1≥qi, Equation 40 can be rewritten as

 (41)

it can be obtained that if qi≤qi+1, then qi,i+1≤qi+1,i, and vice versa, it will be 
very easy to get the relationship for the variables along the edges, ie,

 (42)

which is the condition given by Equation 26.

If the TVD condition is satisfied for the reconstruction method, the scheme 
should fullfill the relationship given in Equation 28, but if the upwind and 
downwind neighbor cells are defined as i−2 and i+2, respectively, Equation 
28 becomes

 (43)

The value difference between cells i and i+1 on the new time step n+1 can 
be stated as

 (44)

If all the coefficients satisfy the inequalities

 (45)

the total variation can be summed up for −∞<i<+∞, and the following 
expression is obtained:



 (46)

Changing the indices of the last 2 terms to i+2 and i−2, respectively, it is 
seen that the resulting equation is not TVD anymore, ie,

 (47)

It can be concluded that the coefficients that get the influence from i−2 and 
i+2 will not lead to a TVD scheme. As shown in Figure 5, the situation can be 
thought about as a dam‐break problem. From the time level t to t+1, if i ± 2 
are chosen to be the upwind and downwind cells, the slope for the water 
depth (left) is calculated properly, but the slope for the discharge (right), 
i+2, will yield a wrong interpolation if cell i is used as the upwind cell instead 
of i+1.

Figure 5

Illustration of the interpolation error in 2‐dimensional node evaluation methods

Considering the previous 2D node evaluation methods, only Darwish's 
scheme satisfies the condition presented in this section. In contrast, the 
other 2D node evaluation schemes using a certain distance or preferential 
direction may set i ± (n≠1) as the upwind cell, thus leading to a nonstable 
scheme. However, Darwish's scheme consists of a very localized stencil and, 
therefore, has lower‐order accuracy.

In the works of Hou et al26 and Park et al,27 the stability condition of 2D SWEs 
is extended to an interval from the minimum and maximum values of the 
cell‐center values at both sides of the considered edge and the values of the 
2 vertices of that edge, so that it will allow that the interpolated values of the



edge can be the values larger or lesser than the values at the cell centers of 
both adjacent cells.

The TVD condition for the vector manipulation method is obtained by 
verifying that the scheme satisfies Equation 26. As an illustrative example, a 
Scottish mesh is chosen to calculate the stencil of the reconstruction 
method, as shown in Figure 6. α1, α2 and β1, β2 are calculated to be 1.34164, 
0.632456 and 1.26491, 1.34164, respectively. Because the vectors and  are 
located between the vectors, they will be used for constructing the linear 
system later; it can be shown that all of the values are nonnegative 
numbers, so that the slope for upwind and downwind depends on . Let 
hD=1.1 m and hE=0.2 m, then the reconstruction of hD,M=1.1 m remains of 
first order, but for qC,M, the slopes for upwind and downwind in cell C can be 
calculated as ▽qN,C=0.7589 and ▽qC,M=0.7589, which means there will be a 
positive value calculated by the limiter function and multiplied with the 
distance, which may create a local extremum value larger than qD,M. If 
hD=1.0, the overestimated interpolation will also happen and will lead to the 
unphysical flux.

Figure 6

Stencils for the vector manipulation method

4 IMPROVED MULTISLOPE MUSCL RECONSTRUCTION METHODS

For multislope methods on unstructured grids, the 3‐point stencil can be 
considered as a 1D interpolation stencil problem in the local coordinate 
system of the edge, whereby the main challenge becomes the definition of 
the upstream node. In this work, it is suggested that the upwind values 
interpolated or extrapolated by the surrounding neighbor cell‐center values 
be used. The details are given in the following.



In the following, it is assumed that all the multislope MUSCL methods require
that the cell center of the considered cell be located inside the triangle 
constructed by the cell centers of the surrounding neighbors (cf Figure 7).

Figure 7

Configuration that satisfies (left) and does not satisfy (right) the assumption

4.1 Improved 2D node evaluation method

Motivated by the reconstruction method proposed in the work of Hou et al,12 
which is based on the fact that in advection‐dominated problems, the flux at 
the interface mainly depends on the variables transported normal to this 
interface, the following TVD reconstruction is suggested.

1. Draw a line perpendicular to the considered edge, which passes 
through the center of the edge.

2. Find the intersection node U of the normal line and the line connecting 
the neighboring cell centers that are the outside neighbors of the edges in 
the considered cell except the considered edge (cf Figure 8A).

3. Interpolate (if U is located between E and F) or extrapolate (if U is not 
located between Eand F).

4. Reconstruct the values.

Figure 8



Stencils for (A) the 2‐dimensional (2D) nodal evaluation method along the edge normal direction (UEM)
and (B) the 2D nodal evaluation method along the cell centerline (UEQ)

The main novelty of this method is the choice of the upstream node U. The 
upwind cell of the considered cell for the considered edge is chosen from the
neighboring cells of the considered cell. As illustrated in Figure 8A, these are 
cells E and F; thus, both of these 2 cells can be thought of as the upwind cell,
but both of these 2 cell centers are far from the normal line of the considered
edge. Thus, the value of the upstream node is calculated by interpolating or 
extrapolating the values at the center of E and the center of F. There are 2 
ways to draw a line to determine the position of the upstream node U: (i) the 
line is drawn through the edge center M in the normal direction of the edge 
(cf Figure 8A), so‐called UEM; or (ii) the line is drawn through the cell center 

of  C to the projection point Cr( ) and the distance from cell center D to 

the projection point Dr( ) may be large in comparison to the distances

 and , leading to numerical diffusion and increased mesh 
dependency.

4.2 Improved vector manipulation method

In Section 3.3, the discussion of occurring local extrema is based on Hou's 
vector manipulation method.13 The MUSCL reconstruction interpolates the 
cell‐center values to the edge along the gradient of the edge direction or, in 
other words, along the outside neighbor cells. Special attention has to be 
given to the downwind slope calculation in order to preserve the TVD 
property. In this study, it is suggested to use the geometric vector 
relationship to calculate the downwind slope by connecting both cells across 
the considered edge and construct the vector from the outside cell center to 
this edge center, as shown in Figure 9. Then, we have

 (48)

so that

(49)

(50)



Figure 9

Stencils for (A) the improved vector manipulation method (VEM) and (B) Buffard and Clain's vector 
manipulation method (VEQ)

The additional computational effort is very small compared to the scheme of 
Hou et al,13but the slope for calculating the downwind solely depends on the 
variables of the downwind direction (outside cell). Recalculating the water 
depth in Section 3.3, if hD=1.0, the downwind slope is calculated as 
▽qCM<0.0, and hence, qCM will be reconstructed first‐order accurate. If 
hD=1.1, the downwind slope is calculated by Equation 49, giving 
▽qCM=−0.8064. Then, qCMwill also be reconstructed first‐order accurate. 
When we observe the meshes, it can be seen that the line CM will pass 
through the center of cells D and E, and cell E shows a decreased slope from 
cells C and D. Therefore, it is meaningful to use a first order for the 
reconstruction of the values at the considered edge.

In comparison, consider the method by Buffard and Clain,8 where the slope is
calculated along the line connecting the center of the considered cell with 
the center of the neighbor cell (cf Figure 9B). While this method is able to 
accurately calculate downwind slopes, the extrapolated values at the 
considered edge are calculated not in the center of this edge Mbut rather at 
the intersection point Q and, therefore, may not represent the averaged 
values at the considered edge. Hereinafter, the improved vector 
manipulation method is referred to as VEM, and the method by Buffard and 
Clain is referred to as VEQ.

4.3 Comparison of the multislope MUSCL reconstruction procedures in a cell

The procedures of MUSCL reconstruction methods used in this work are 
summarized and compared in Table 1.



In this work, a modified van Leer's limiter function from the work of Hou et 
al6 is adopted for 2D nodal evaluation methods, ie,

 (51)

Here, R=(dCf+dDf)/dCf. Moreover, a limiter function from the work of Delis and 
Nikolos29 is adopted here for vector manipulation methods, ie,

 (52)

4.4 Boundary treatment

In this work, the boundary conditions are treated by following the description
in the work of Hou et al16; in order to maintain the high order inside the 
computational domain, a ghost cell technique is applied here. We will 
individually discuss the different MUSCL methods presented in Table 1 based
on the legend of Figure 10.

 UEQ: The ghost cells are used here for storing the values of the 
boundary information. In order to make sure that all internal cells have 
neighboring cells out of the local internal edge, the geometric information is 
stored by mirroring the internal neighboring cell. After storing the geometric 
information in the ghost cells, a 2‐step boundary interpolation will be carried 
out to preserve high‐order accuracy for the whole computational domain.



o The internal neighboring cells ACD and BDE will use cell‐center 
values for calculating the ghost cells' values by using the boundary 
conditions from the work of Hou et al.16

o The interpolation of edge values at edges CD and DE will be 
calculated based on the UEQ method, and the ghost cells' value will be 
chosen as the downwind cell value. After that, a new loop calculation for 
boundary edge values at DC and EDwill be updated by the boundary 
conditions.16 The ghost cells' values will remain the same as the boundary 
edges', and thus, all internal cells and edges have neighboring cells for high‐
order reconstruction.

Figure 10

Ghost cell techniques used for the monotonic upstream‐centered scheme for conservation laws 
reconstructions

 VEM, VEQ, and HOU: With the ghost cell technique, the slope from the 
center of the ghost cell to the edge center will be thought of as 0.0.

o Compute the ghost cells' values using the same method as UEQ. 
The downwind slope of the internal cell will be thought of as the value 
difference between the ghost cell and the internal cell divided by the 
distance from the internal cell center to the edge center and the edge 
perpendicular point for the VEM (same as HOU) and VEQ, respectively.

4.5 A novel approach for restraining the reconstruction instability

The instability of MUSCL reconstructions is mainly caused by overestimated 
velocities,30which will yield an overestimated flux across the cell edges. In 
order to avoid numerical instability, the velocities at the edge should satisfy 
the following monotonicity condition:

 (53)

Here, uC, uD, and   mean the velocities at the cell inside and outside and 
the velocity at the edge after interpolation.

If the case that creates local maxima in velocity is considered, if the unit 
discharges have the same sign, ie, qCqD≥0, then , and Equation 53 can be 
rewritten as



 (54)

This means that if the discharges have the same sign, the absolute value of 
the discharge can be considered for simplification. If the slope of the 
absolute value of the discharge and the slope of the water depth have 
different signs, no local maximum will be created, and therefore, we have

 (55)

It is always true for Equation 55 that, besides this, if discharge with the same
signs is considered, 2 distinct cases can be identified, which will create local 
extrema in the velocity: (i) increasing water depth and (ii) decreasing water 
depth.

For the increasing water depth, if the velocity is beyond the range of the 
adjacent velocities, again, 2 distinct cases have to be considered.

1. For the larger velocity interpolation: Velocities are calculated by using 
the discharge divided by the water depth. If the velocity is bigger than the 
adjacent velocities (absolute values), we can conclude that the discharge is 

overestimated. In this case, we will use the water depth   multiplied with 
the velocity with the larger absolute value. This means that the increasing 
estimated situation (slope) of discharge is not changed, but adjusted by 
imposing a limit to the MUSCL reconstruction of the discharge, as shown in 
Figure 11A.

2. For the smaller velocity interpolation: As before, we want to limit the 
MUSCL reconstruction values but do not want to change the slope sign for 
the MUSCL reconstruction. In other words, the aim of the additional limitation
is just to limit the relatively bigger overestimate. For this smaller velocity 
interpolation, we think about the modification of water depth, increasing the 
absolute value of discharge may give local extrema, as shown in Figure 11B.

Figure 11

When qCqD≥0, the local extrema for velocities created by monotonic upstream‐centered scheme for 

conservation laws reconstruction: (A) dh/dx>0, , the overestimated result is 

controlled by limiting the ; (B) dh/dx>0, , the overestimated result is 

controlled by limiting the ; (C) dh/dx<0, , the overestimated result is 

controlled by limiting the ; and (D) dh/dx<0, , the overestimated result is 

controlled by limiting the 



For the decreasing water depth, if the velocity is beyond the range of 
velocities, we also give 2 situations for consideration.

 For the larger velocity interpolation: If the velocity is larger than the 
range of velocities (absolute values), the water depth is underestimated. The

water depth will be calculated as the edge discharge   divided by the 
larger velocity of both sides, as shown in Figure 11C.

 For the smaller velocity interpolation: If the velocity is underestimated 
for the conditions of the water depth and the absolute discharge is 
decreasing, the discharge is underestimated, so that the discharge will be 
calculated as the water depth multiplied with the smaller velocity of both 
sides, as shown in Figure 11D.

We can summarize as follows:

(56)

The case for both sides of the considered edge with different signs for the 
discharge is limited in a similar way. We analyzed the situation with the 
increasing and decreasing water depths, and as shown in Figure 12A‐D, all 
kinds of situations are listed, which may occur for both sides with different 
signs for the discharges: the left side is the condition that will not create an 
extreme velocity, and the right side is the one where this situation may 
happen. The limitation can be summarized as follows:

 (57)



Figure 12

When qCqD<0, the left‐hand side of images (A)‐(D) shows the situations that cannot create the local 

extrema velocities. For the right‐hand side, we have that: (A) dh/dx>0, , the 

overestimated result is controlled by limiting the ; (B) dh/dx>0, , the 

overestimated result is controlled by limiting the ; (C) dh/dx<0, , the 

overestimated result is controlled by limiting the ; and (D) dh/dx<0, , the 

overestimated result is controlled by limiting the 

It can be observed that the water depth is modified during the limitation of 
the velocity. In 2D SWEs, the unit discharge is usually split into x‐ and y‐
directions, which may make the limitation process more challenging, 
because the unit discharge in both directions can be limited independently. 
The modified water depth may lead to a local extremum in velocity in the 
direction that is not being limited, eg, if the x‐direction is limited, a local 
extremum in the velocity in the y‐direction may occur. However, the 
treatment described in Equations 56 and 57 restricts the slope of the water 
depth while its sign is ensured to stay the same. Thus, the method for 
reconstructing the discharges in the x‐ and y‐directions will automatically 
select the smaller slope and, therefore, always satisfies the condition in both 
x‐ and y‐directions. An additional challenge is that the variables have to be 
also reconstructed at the vertices of the cell; hence, the limiting process is 
applied to the whole cell. Consequently, the order of accuracy of the MUSCL 
reconstruction decreases, and if the values of discharge at the vertices differ 
significantly from the values at the cell edge, the interpolation of the 
discharge will be wrong. In order to control this issue, we propose to use a 
threshold value ε+ for limiting very high velocities at the wet and dry 
interfaces. We choose this value to be ε+=100ε, where ε=10−6 m is the 
threshold that determines whether a cell is wet (if the water depth in the cell 
is larger than ε) or dry (if the water depth in the cell is less than ε); compare,
for example, with the works of Simons et al,19 Liang,20 and Hou et al.30



5 COMPUTATIONAL EXAMPLES

We present 5 computational test cases, 2 of which with analytical solutions. 
The performance of the improved MUSCL reconstructions is compared 
regarding accuracy, efficiency, and ease of implementation.

The first test case is the well‐known Thacker's solution benchmark, which is 
chosen to demonstrate accuracy and the capability to deal with wet and dry 
interfaces of the MUSCL schemes. The second test case is chosen to verify 
the capability of the scheme to capture shock waves for high‐speed 
discontinuous flow conditions and shows a steady‐state oblique jump. The 
third test case shows a radial dam break, and the fourth test case shows a 
2D Riemann problem, to demonstrate the accuracy of the presented 
reconstruction methods. Finally, in a last test case, a Tsunami experiment is 
replicated to demonstrate a near–real‐world application.

Three types of meshes are employed in this work, namely, the diagonal 
mesh, the Scottish mesh, and the Delaunay mesh,8 as shown in Figure 13.

Figure 13

The 3 types of mesh employed to evaluate the effective accuracy of the schemes: the diagonal mesh 
(left), the Scottish mesh (center), and the Delaunay mesh (right)

5.1 Thacker's planar rotation benchmark

Thacker's planar rotation benchmark is considered to be one of the most 
challenging test cases for numerical codes, because it involves moving wet 
and dry fronts inside a parabola. The bottom topography is defined as

 (58)

where (x0,y0) represent the coordinates of the parabola center, h0 is the 
water depth at the parabola center, and a is the distance from the center 
point to the zero elevation of the shoreline. The analytical solution of this 
test case is given as

(59)

(60)



where σ is a constant value, and   is the angular velocity of the 
rotation. In this work, parameters are set to be the same as in the work of 
Hou et al13 with h0=0.1 m, a=1.0 m, and σ=0.5, and the computational 
domain is set to be 4×4 m2 with the domain center at (2 m, 2 m). All 
boundaries are closed boundaries.

The characteristic length   is used to set the resolution of the 
meshes, where A is the area of the computational domain and N is the total 
number of cells.

The accuracy is expressed as the L1‐error, which can be calculated as

 (61)

The upper part of Figures 14-18 plots the water depth contour of FOU, HOU, 
UEQ, VEQ, and VEM compared to the analytical solution, respectively, at 
t=3.5T and 4T, where T represents 1 period. It can be observed that VEM 
reaches the best agreement. HOU also yields good agreement, which is 
slightly less accurate than VEM. FOU yields the worst agreement and has 
more diffusion compared to the other schemes. The lower part of Figures 14‐
18 shows the velocity field plot, where it can be observed that FOU gives the 
most drag effect of velocity; HOU shows a significantly drag tail, which may 
be due to too much information from upwind, leading to more diffusive 
behavior; and VEM shows the best velocity field, where the vectors of the 
velocity almost coincide with the water depth contour. In order to compare 
the accuracy of different methods, we consider the worst grids to test the 
schemes. Cut section plots are shown in Figures 19 and 20 for Delaunay and 
Scottish grids presented in Figure 13. It is seen that VEM can obtain good 
accuracy on both grids. The difference between VEM and the other methods 
is not very large on the Delaunay grid; however, on the Scottish grid, VEM 
yields much better agreement than the other methods. HOU always gives 
the second best agreement. The time step size is set adaptively using the 
CFL criterion; therefore, the velocity influences the time step size. Even 
though the algorithm of VEM is slightly more complex than HOU, its 
computational effort is about 10% less than that of HOU, because no high 
velocities are reconstructed.



Figure 14

Thacker's planar solution: contours of water depth computed by the FOU scheme (dashed line) and the
analytical solution (solid line) from Thacker at (A, left) t = 3.5T and at (A, right) t = 4.0T, with unit (m) 
and with 16 364 cells of the Delaunay mesh, and (B) the corresponding velocity field



Figure 15

Thacker's planar solution: contours of water depth computed by the HOU scheme (dashed line) and the
analytical solution (solid line) from Thacker at (A, left) t = 3.5T and at (A, right) t = 4.0T, with unit (m) 
and with 16 364 cells of the Delaunay mesh, and (B) the corresponding velocity field



Figure 16

Thacker's planar solution: contours of water depth computed by the UEQ scheme (dashed line) and the
analytical solution (solid line) from Thacker at (A, left) t = 3.5T and at (A, right) t = 4.0T, with unit (m) 
and with 16 364 cells of the Delaunay mesh, and (B) the corresponding velocity field



Figure 17

Thacker's planar solution: contours of water depth computed by the VEQ scheme (dashed line) and the
analytical solution (solid line) from Thacker at (A, left) t = 3.5T and at (A, right) t = 4.0T, with unit (m) 
and with 16 364 cells of the Delaunay mesh, and (B) the corresponding velocity field



Figure 18

Thacker's planar solution: contours of water depth computed by the VEM scheme (dashed line) and the
analytical solution (solid line) from Thacker at (A, left) t = 3.5T and at (A, right) t = 4.0T, with unit (m) 
and with 16 364 cells of the Delaunay mesh, and (B) the corresponding velocity field



Figure 19

Thacker's planar solution: computed and analytical water levels at the cross section of y=2 m at t = 
3.5T (left) and at t = 4.0T (right), with 2062 Delaunay meshes

Figure 20

Thacker's planar solution: computed and analytical water levels at the cross section of y=2 m at t = 
3.5T (left) and at t = 4.0T (right), with 2116 Scottish meshes

We present a mesh convergence study for this test case in Figures 21-23. 
The L1‐error at t=4Tfor h and qy is plotted in these Figures for different grids, 
in which the lines with symbols represent the numerical results varying with 
the refining of the mesh level (represented by characteristic length Δx shown
in Table 2) and the solid line is of order 2. It can be seen that the results for 
VEQ and HOU are the same for the diagonal grid, as the middle point and the
intersection point will reach the same coordinate on the diagonal grid; this 
also can be found in the work of Buffard and Clain.8 For the numerical results 



on the diagonal grid, all numerical results give a relatively low order; 
however, the VEM still can obtain the highest accuracy and numerical order. 
For the Scottish and Delaunay grids, the HOU scheme increases the accuracy
significantly, which means that the scheme is more or less mesh dependent. 
Furthermore, the VEM scheme keeps the highest accuracy and numerical 
order. UEQ and VEQ schemes give almost slightly different results for 
different grids; the advantage of each scheme is related to the mesh type 
but is quite small. The presented MUSCL schemes add a limitation presented 
in Section 4.5 at wet and dry fronts. This is to prevent the occurrence of 
negative water depths. Consequently, wet and dry fronts reduce the overall 
accuracy of these schemes, and this can be thought of as the explanation as 
to why the accuracy order cannot reach 2 in this test case.

Figure 21

Thacker's planar solution: h (left) and qy (right) convergence results for numerical schemes used on the
diagonal grid at t = 4T

Figure 22

Thacker's planar solution: h (left) and qy (right) convergence results for numerical schemes used on the
Scottish grid at t = 4T



Figure 23

Thacker's planar solution: h (left) and qy (right) convergence results for numerical schemes used on the
Delaunay grid at t = 4T

In summary, it can be observed that VEM yields the lowest error and the 
highest order in all Figures, HOU yields a slightly lower error than the other 
methods for the water depth, but also yields the most diffusive velocity field, 
except FOU. VEQ and UEQ are similar, because their algorithms are both 
based on using a line connecting both cell centers. However, from the 
results, we can conclude that the difference is negligibly small. The 
implementation of UEQ is more straightforward. The present results are 
compared to the results reported in the works of Hou et al16 and Delis and 
Nikolos.29 The cell numbers in these test cases are similar to those in the 
present one; therefore, a comparison is meaningful. The VEQ yields less 
accurate results, and the VEM yields almost similar accuracy. It is noted that 
both VEQ and VEM are computationally more efficient and more 
straightforward to implement than the approaches in the aforementioned 
works.(16, 29)

5.2 Steady oblique hydraulic jump

A steady‐state hydraulic jump that develops when a unidirectional 
supercritical flow in an open channel hits an inclined solid wall is 
investigated. A 40 m × 30 m frictionless domain with a flat bed is used, and a
uniform supercritical velocity with a Froude number of 2.7 is applied at the 
western inflow boundary. The initial water depth and velocity for the whole 
domain is set to 1 m and 8.57 m/s, respectively. The eastern boundary is a 



free outflow boundary, and the northern and southern boundaries are closed 
boundaries. The southern wall is given an inclined angle of 8.95°, beginning 
from x=10 m to the northeastern direction. The supercritical velocity will 
reflect, thus creating an oblique hydraulic jump along the southern wall. 
Theoretically, the water will jump from 1 to 1.5 m and, starting from x=10 m,
form a 30° angle to the x‐direction. We enforce a constant time step for all 
methods for comparison purposes. The simulation runs for 10 seconds until 
the flow is steady and the hydraulic jump is formed. The simulation is carried
out on a Delaunay grid (Figure 13) with 3029 cells.

Results are shown in Figures 24-28. The dashed line in the water level 
represents the 30° angle of the analytical solution. Except FOU, all methods 
diminish the numerical diffusion. On the left of the Figures, the cut sections 
show that the water depth increases from 1 m sharply to 10 m, and the 
water level almost reaches 1.4 m at x=5 m. All MUSCL reconstruction 
methods yield good accuracy for this test case.

Figure 24

Water level contour (left) and cut section plot for the FOU scheme (right)

Figure 25

Water level contour (left) and cut section plot for the HOU scheme (right)



Figure 26

Water level contour (left) and cut section plot for the UEQ scheme (right)

Figure 27

Water level contour (left) and cut section plot for the VEQ scheme (right)

Figure 28

Water level contour (left) and cut section plot for the VEM scheme (right)



As shown in Table 3, FOU is the fastest scheme. For the MUSCL 
reconstructions, UEQ is the most efficient method due to the straightforward 
implementation and simple algorithm. Comparing to HOU, VEQ only needs to
compute the linear system along the upwind direction, where we can 
improve the computational efficiency. The VEM takes the most 
computational time, but compared to HOU, the difference is quite small; the 
additional treatment for including the downwind information does not 
influence the computational efficiency too much.

5.3 Radial dam break

A 2D radial dam‐break case from the work of Canestrelli et al31 is simulated 
to test the capability of the reconstruction methods to preserve the 
symmetry of the problem. The initial conditions are

 (62)

The computational domain is 50 m × 50 m. The computational mesh is a 
Delaunay mesh (Figure 13) with 11 932 cells. The simulation is run for 3 
seconds.

A reference solution is obtained using a high‐resolution simulation with 1 000 
000 cells on a structured grid using the high‐resolution Godunov‐type 
scheme of Clawpack.32

Figure 29 shows a 3‐dimensional plot of VEM results at t=1.0 s and t=2.5 s. 
The cut section along y=25 m is shown in Figure 30, where the numerical 
results are plotted over a section that goes from (25,50) m to (50,50) m at 
times t=1 s, t=2 s, and t=3 s.



Figure 29

Radial dam‐break problem: 3‐dimensional view of the water level computed by VEM at t = 1.0 s 
(upper) and at t = 2.5 s (lower)



Figure 30

Radial dam‐break problem: section view of the computed water level at t = 1.0 s (upper), t = 2.5 s 
(middle), and t = 3.0 s (lower)



The difference between the different MUSCL reconstructions are quite small, 
but at t=1 s, it can be observed that UEQ shows the best agreement, and 
VEM is slightly better than VEQ and HOU. The shock wave position is 
correctly captured, but due to numerical diffusion, the shock wave front 
smeared. This is because of the low resolution of the grids. For t=2 s, the 
water level at the domain center is only well captured by HOU and VEM, 
whereas UEQ shows the lowest water level (about 0.05 m lower than the 
reference solution). Except at the center position, the MUSCL reconstructions
are near the reference solution, in which the VEM shows the best agreement,
followed by HOU. For t=3 s, the shock wave is still well captured, but for the 
water level at the domain center, HOU shows the most numerical diffusion, 
and VEQ gives the best agreement with the maximum water level of the 
reference solution, followed by VEM.

5.4 2D Riemann problem

This test case is originally presented in the work of Guinot.4 A frictionless 
[0,200]×[0,200] computational domain with an initial condition set as

(63)

(64)

(65)

is used. The Delaunay computational mesh (Figure 13) consists of 6552 cells.
In order to investigate the accuracy, a mesh that can be considered “poor” is
used.

Figure 31 shows the flow pattern calculated by VEM at 1, 3, and 5 seconds. It
can be observed that the shock wave positions are well captured. Due to the 
poor grid, the front of the shock wave is smeared. The rarefaction wave at 
the northeast of the domain is well resolved by the numerical scheme. The 
water depth contour plot and the velocity field are shown in Figure 32. As 
there is no analytical solution for this test case, quantitative analysis cannot 
be further conducted, but it can be obviously found that the present MUSCL 
schemes produce less diffusion than the FOU scheme.



Figure 31

Two‐dimensional Riemann problem: 3‐dimensional views of the computational flow pattern by the VEM
scheme at (A) t = 1 s, (B) t = 3 s, and (C) t = 5 s



Figure 32

Two‐dimensional Riemann problem: contour plots of water depths (left) and velocity vector fields 
(right) for the different numerical schemes (A) FOU, (B) HOU, (C) UEQ, (D) VEQ, and (E) VEM

In order to verify the order of accuracy of the methods, a cut section along 
[0,0] [200,200] is set inside the domain. The water depth along this cut 
section is shown in Figure 33. We can observe that the MUSCL reconstruction
methods are quite similar, but UEQ captured a slightly steeper rarefaction 
wave compared to the others. According to the description in the work of 
Hou et al26 and the theoretical and numerical analysis in the work of Toro,2 
the rarefaction waves are likely to be dampened by low‐order schemes. 
Then, we can conclude that UEQ has the best performance in modeling 
shock problems on unstructured grids.



Figure 33

Two‐dimensional Riemann problem: diagonal section of the water depth plot at t = 5 s for different 
numerical schemes

5.5 Tsunami wave impact on a conical island

We replicate the laboratory experiment from the work of Briggs et al33 using 
the presented numerical schemes and the MUSCL reconstructions. The 
experiment features wet and dry fronts, uneven topography, and very 
shallow water depths, which are challenging for a numerical method.

The experiment domain is a [0.0, 25.92] m ×[0.0, 27.6] m rectangle (Figure 
34). A Delaunay grid of 15 692 cells is used for discretization. An ideal conical
island with the center located at [x0,y0] = [12.96, 13.8] m is defined as

 (66)

The initial still water level of the domain is 0.32 m, the island is partially 
submerged inside the water, a wave maker is set at the inflow boundary with
a varying water level relative to the initial still water level, and the velocity is
set as

(67)

(68)

(69)

where H is the amplitude of the wave and η0 is the still water depth; T 
denotes the time for the wave crest to reach the domain. The wave working 
condition is chosen as η0=0.32 m, T=2.45 s, and H=0.064 m. Friction is not 
taken into account in this case. The simulation run time is 20 seconds.



Figure 34

Tsunami wave impact on a conical island: computational domain, boundary conditions, and locations of
selected gauges

Figure 35 shows the maximum wave run‐up at the front, the side, and the 
back of the island at t=9 s, t=11 s, and t=13 s. Figure 36 shows oscillating 
solutions computed by VEM and HOU without the treatment for the velocity, 
respectively, which means that the velocity limitation for the wetting and 
drying front significantly influences the stability of the numerical scheme.



Figure 35

Tsunami wave impact on a conical island: 3‐dimensional view of the water depth and the bottom 
topography calculated by the UEQ scheme at (A) t = 9 s, (B) t = 11 s, and (C) t = 13 s



Figure 36

Tsunami wave impact on a conical island: 3‐dimensional view of the water depth and the bottom 
topography calculated by the (A) VEM and (B) HOU schemes without a limitation for the velocity at 
11.5 s

Figure 37 shows the comparison of measurement data from the experiment 
with the numerical results from different reconstruction methods at gauges 
located approximately at the run‐up area. The gauge numbers 6, 9, 16, and 
22 are located at [9.36, 13.80] m, [10.36, 13.80] m, [12.96, 11.22] m, and 
[15.56, 13.80] m, respectively, as shown in Figure 34. Numerical results 
capture the peak of the water level at gauge 6 and gauge 9, but for gauge 6,
the trough is overestimated by all methods. For gauge 16 and gauge 22, 
both peak and trough are slightly smaller compared to the measurement 
data. This is because of the 3‐dimensional effects of the wave propagation. 
The position of the wave is well captured by all the MUSCL reconstructions; 



FOU shows the most diffusion. Furthermore, the computed maximum run‐up 
on the island is compared with the measurement data in Figure 38. A slightly
overestimated run‐up can be observed for the MUSCL schemes at the front 
face to the wave come direction; this may be the case because of the mesh 
size relative to the wetting and drying interfaces, which leads to a numerical 
error, whereas the backwash direction is well captured except for FOU. It can
be observed that the difference in the results between the different MUSCL 
schemes is quite small, but such results are much better than those of FOU. 
All MUSCL reconstructions are capable of handling wet and dry fronts over 
uneven terrain.



Figure 37

Tsunami wave impact on a conical island: time series of the water level at (A) gauge 6, (B) gauge 9, (C)
gauge 16, and (D) gauge 22



Figure 38

Tsunami wave impact on a conical island: measured maximum run‐up (blue lines) and computed dry 
area (red dot) for schemes (A) FOU, (B) HOU, (C) UEQ, (D) VEQ, and (E) VEM

6 CONCLUSIONS

This paper has presented 2 novel MUSCL reconstruction methods on 
unstructured grids: UEQ and VEM. Based on the TVD approach, the search 
for the upwind information is ambiguous. Therefore, we developed improved 
ways to determine the point from which the upwind information can be 
obtained. We derived an additional TVD condition, which limits the edge 
values based on the variables of the cells at the considered edge and 



showed that existing MUSCL reconstruction methods do not satisfy this 
condition. In order to avoid spurious velocity oscillations at the edge, we 
proposed a treatment for limiting the velocities.

The derived reconstruction methods are tested in 5 test cases. We compared
the results with the methods from the works of Buffard and Clain8 and Hou et
al.13 In most cases, we demonstrate that the novel VEM method is superior to
the existing methods, especially on Scottish meshes (Figure 13). The 
presented numerical scheme is able to handle wet and dry fronts, where the 
advantage and necessity of the proposed velocity treatment is significant.
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