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Experiments on Rayleigh–Bénard convection,
magnetoconvection and rotating

magnetoconvection in liquid gallium

By J. M. A U R N O U† AND P. L. O L S O N
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore,

MD 21218, USA

(Received 4 March 1999 and in revised form 12 September 2000)

Thermal convection experiments in a liquid gallium layer subject to a uniform
rotation and a uniform vertical magnetic field are carried out as a function of
rotation rate and magnetic field strength. Our purpose is to measure heat transfer
in a low-Prandtl-number (Pr = 0.023), electrically conducting fluid as a function of
the applied temperature difference, rotation rate, applied magnetic field strength and
fluid-layer aspect ratio. For Rayleigh–Bénard (non-rotating, non-magnetic) convection
we obtain a Nusselt number–Rayleigh number law Nu = 0.129Ra0.272±0.006 over the
range 3.0× 103 < Ra < 1.6× 104. For non-rotating magnetoconvection, we find that
the critical Rayleigh number RaC increases linearly with magnetic energy density,
and a heat transfer law of the form Nu ∼ Ra1/2. Coherent thermal oscillations are
detected in magnetoconvection at ∼ 1.4RaC . For rotating magnetoconvection, we find
that the convective heat transfer is inhibited by rotation, in general agreement with
theoretical predictions. At low rotation rates, the critical Rayleigh number increases
linearly with magnetic field intensity. At moderate rotation rates, coherent thermal
oscillations are detected near the onset of convection. The oscillation frequencies are
close to the frequency of rotation, indicating inertially driven, oscillatory convection.
In nearly all of our experiments, no well-defined, steady convective regime is found.
Instead, we detect unsteady or turbulent convection just after onset.

1. Introduction
Convection in planetary cores and stellar interiors often occurs in the presence of

strong rotational and magnetic constraints. In this experimental study, we seek to
understand how the effects of rotation about a vertical axis and a uniform vertical
magnetic field influence thermal convection in a horizontal layer of liquid gallium
that is heated from below and cooled from above.

Advances in three-dimensional numerical simulations of the geodynamo (Glatz-
maier & Roberts 1997; Kuang & Bloxham 1997; Kageyama & Sato 1997; Christensen,
Olson & Glatzmaier 1999) are pushing forward our knowledge of how magnetic fields
are generated by convection in the Earth’s metallic core and the cores of other plan-
ets. Unfortunately, the smallest Prandtl numbers that are numerically feasible are, at
present, of the order of 1. As a result, the Prandtl numbers used in numerical sim-
ulations are approximately 102 times greater, and the magnetic Prandtl numbers are
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Non-dimensional number Definition Experiment Earth’s core

Rayleigh, Ra αg∆TD3/νκ < 105 > 1010

Flux Rayleigh, RaF αgFD4/ρCpκ
2ν < 105 > 1010

Nusselt, Nu FD/k∆T < 2 < 10
Chandrasekhar, Q σB2D2/ρν < 2.6× 103 > 1010

Taylor, Ta 4Ω2D4/ν2 < 108 > 1024

Prandtl, Pr ν/κ 0.021–0.025 ∼ 10−2

Magnetic Prandtl, Pm ν/η 1.5× 10−6 ∼ 10−8

Aspect Ratio, Γ L/D 6–21 —

Table 1. Non-dimensional parameters in rotating magnetoconvection.

about 106 times greater, respectively, than those of a liquid metal. Thus, experiments
using liquid metals are of great value in assessing the effects of high electrical and
thermal conductivity. Here, we demonstrate how the onset of thermal convection and
convective heat transfer in liquid gallium is affected by rotation and magnetic fields
for Rayleigh numbers up to about 10 times critical.

The controlling non-dimensional parameters in rotating magnetoconvection are the
Rayleigh number Ra, Chandrasekhar number Q, Taylor number Ta, Prandtl number
Pr, and magnetic Prandtl number Pm. The Rayleigh number is the ratio of buoyancy
forces to viscous forces. The Chandrasekhar number is the ratio of magnetic forces
to viscous forces. The Taylor number is the squared ratio of Coriolis forces to viscous
forces. In liquid gallium, both Prandtl numbers are much less than unity and Pm is
much less than Pr, similar to the Earth’s core. These parameters are defined in table
1. We denote the coefficient of thermal expansion by α, electrical conductivity by σ,
specific heat at constant pressure by Cp, kinematic viscosity by ν, thermal diffusivity
by κ and magnetic diffusivity by η. The depth of the convecting fluid layer is D and
the temperature difference imposed across the layer is ∆T . The acceleration due to
gravity is g, the intensity of the vertical magnetic field is B, and Ω is the angular
velocity about the vertical axis. Thermal convection in bounded regions also depends
on the aspect ratio of the fluid layer, Γ = L/D, where L is the horizontal dimension
of the layer.

Non-dimensional heat transfer across the fluid layer is given in terms of the
Nusselt number, Nu = FD/k∆T , where F is the horizontally averaged heat flux
at either boundary and k is the thermal conductivity of the gallium. For purely
conductive heat transfer, Nu = 1. When heat is also transferred across the fluid layer
by convection, Nu > 1.

Some of the results from these experiments are expressed using the flux Rayleigh
number, RaF = NuRa, also defined in table 1. The flux Rayleigh number is a non-
dimensional form of the strength of the heating.

2. Previous convection studies
Most experimental studies of Rayleigh–Bénard convection (RBC) have focused on

determining heat transfer laws at high-Rayleigh-number values. The early experimen-
tal studies of RBC determined a heat transfer law of the form Nu ∼ Ra1/3 at high
Ra (Globe & Dropkin 1959). This power law corresponds to the regime in which the
heat flux is independent of the depth of the fluid layer (Kraichnan 1962). Later RBC
experiments (i.e. Heslot, Castaing & Libchaber 1987) found heat transfer laws of the
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form Nu ∼ Ra2/7 for Ra > 107. Various arguments have been put forward to explain
this ‘hard turbulence’ 2/7 scaling exponent, based on the structure and behaviour
of the boundary layers and the interaction between the boundary layers and the
interior of the convecting fluid (Castaing et al. 1989; Shraiman & Siggia 1990; Gross-
man & Lohse 2000). It has also been predicted that at very high Rayleigh number
(above 1015–1020) the heat transfer may vary as Nu ∼ (RaPr)1/2 (Kraichnan 1962).
In this regime, the heat flux is insensitive to the thermal and kinematic diffusivities
of the fluid, occurring when the turbulence destroys the boundary layers. Convincing
evidence of this regime has yet to be found (Niemela et al. 2000).

In the low-Prandtl-number–moderate Rayleigh number regime relevant to the RBC
experiments presented here, previous experiments indicate that the convective heat
transfer first increases slowly with Ra for Rayleigh numbers just beyond critical, and
then, at larger Rayleigh numbers, a more rapid increase in the convective heat transfer
with Ra is observed (Chiffaudel, Fauve & Perrin 1987; Kek & Müller 1993; Horanyi,
Krebs & Müller 1999). These results are in qualitative agreement with theoretical
and numerical studies of steady, two-dimensional convection at low Prandtl number
(Jones, Moore & Weiss 1974; Proctor 1977; Busse & Clever 1981; Clever & Busse
1981). For low-Prandtl-number convection, there is an initial regime of very weak
convective heat transfer that is controlled by a balance between buoyancy and viscous
forces. At higher Rayleigh numbers, these same studies find that the viscous forces
are unable to balance the buoyancy forces and a new balance between inertial and
buoyancy forces is established. The transition to the inertial regime is marked by a
strong increase in convective heat transfer and a Nu ∼ (RaPr)1/4 power law.

Advances in computational speed and numerical methods now allow numerical sim-
ulation of three-dimensional, low-Prandtl-number RBC (Grötzbach & Wörner 1995;
Verzicco & Camussi 1997, 1999). For the parameters of liquid sodium, Grötzbach &
Wörner find that inertial convection occurs locally in both space and time, in regions
where the large-scale flow is two-dimensional. High velocity, inertial convection leads
to secondary shear instabilities at the no-slip top and bottom boundaries, similar to
the experimental findings of Willis & Deardorff (1967) and Krishnamurti & Howard
(1981). These shear instabilities create irregular, three-dimensional flow structures at
the walls which may relate to the flow field in our experiments. Verzicco & Camussi
(1999) find that their numerical results support the existence of an inertial convective
regime at low Prandtl number and a hard turbulence regime at moderate Prandtl
number.

Linear stability studies of magnetoconvection (MC) were first carried out by
Thompson (1951) and Chandrasekhar (1961). They found that the critical Rayleigh
number increases linearly with Chandrasekhar number Q in the asymptotic regime
of large Q. When the magnetic Prandtl number Pm is less than the Prandtl number
Pr, stationary convective onset is predicted to occur (Chandrasekhar 1961; Eltayeb
1972). In the opposite case, where the magnetic Prandtl number is greater than
the Prandtl number, double diffusive magnetic instabilities can occur, producing
oscillatory convective onset. For liquid gallium, Pm� Pr and stationary convection
is expected at the onset of convection.

Plane-layer MC experiments have been made by Nakagawa (1955, 1957a) and
Jirlow (1956). In all these MC experiments, it is found that vertical magnetic fields
delay the onset of thermal convection. For example, the experiments of Nakagawa
(1957a) were carried out for Q values up to 1.65 × 105 and indicate that the critical
Rayleigh number RaC ∼ Q.

There is also extensive literature on the effect of rotation on convection (Nakagawa
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& Frenzen 1955; Boubnov & Golitsyn 1990; Fernando, Chen & Boyer 1991; Clever
& Busse 2000). Rotating convection experiments in low-Prandtl-number fluids have
been made by Fultz & Nakagawa (1955), Nakagawa (1955), Dropkin & Globe (1959),
Goroff (1960), and Rossby (1969). These experiments show that rotation about a
vertical axis generally inhibits convective motions. This result is consistent with the
restrictions implied by the Taylor–Proudman theorem, which inhibits overturning
motions perpendicular to the rotation axis and thus suppresses convective heat
transfer in the direction parallel to the rotation axis. In low-Prandtl-number fluids,
the onset of convection occurs by overstable oscillations at sufficiently high Taylor
number. Linear stability theory predicts the onset of oscillatory convection above
Ta = 103 and RaC ∼ Ta2/3 above Ta ∼ 105 for Pr = 0.025 (Chandrasekhar 1961).

In an analytical study of low-Prandtl number rotating convection, Zhang & Roberts
(1997) find that rapidly oscillating thermal inertial waves are preferred over convective
modes when Ta → ∞ and τ = 1

2
Ta1/2Pr remains finite. In laboratory experiments

at finite Ta, it may be possible to detect thermal inertial waves when τ 6 1. In
our experiments in gallium, τ 6 1 for Ta 6 104. Thermal inertial waves are able to
relax the Taylor–Proudman constraint through high-frequency oscillatory motion. In
contrast, Chandrasekhar’s convective modes are released from the Taylor–Proudman
constraint by the action of viscosity at small lengthscales. In the regime where
thermal inertial waves dominate convection, the critical Rayleigh number varies as
RaC ∼ Ta1/4 (Zhang & Roberts 1997).

The literature on rotating magnetoconvection (RMC) is more limited. Nakagawa
(1957b, 1958) determined the variation of the critical Rayleigh number in liquid
mercury as a function of rotation rate and magnetic field strength. His results
support the theoretical prediction by Chandrasekhar (1961) that, at large values
of Taylor number and Chandrasekhar number, the critical Rayleigh number has
a local minimum in the regime where Q ∼ Ta1/2. In theoretical studies, Eltayeb
(1972, 1975) found that, for asymptotically large Ta and Q, the magnetic scaling law
RaC ∼ Q holds when Q � Ta1/2, while the rotational scaling law RaC ∼ Ta2/3 is
followed when Ta1/2 � Q3/2. In the range where the Lorentz and Coriolis forces are
comparable, Q < Ta1/2 < Q3/2, the critical Rayleigh number is reduced and varies as
RaC ∼ Ta1/2 ∼ Ta/Q (Eltayeb 1975).

In our experiments, we investigate the convective heat transfer in a plane layer of
liquid gallium beyond the critical Rayleigh number. We determine how Nu varies
with Ra in Rayleigh–Bénard convection (RBC) experiments, magnetoconvection (MC)
experiments and rotating magnetoconvection (RMC) experiments at six values of Q.
We also study the temperature–time series to determine the behaviour of the fluid
layer at convective onset and in the finite-amplitude regime.

3. Experimental apparatus
The experimental apparatus consists of a convection tank and a ‘magnetic capacitor’

made of ceramic ferromagnets on a rotating table. Liquid gallium is used as the
working fluid. The low toxicity, low vapour pressure and low melting point make
gallium safer and easier to handle than mercury or liquid sodium. The physical
properties of liquid gallium, including their temperature dependences, are given by
Iida & Guthrie (1988) and Okada & Ozoe (1992). Nominal values of these parameters
are given in table 2.

Figures 1 and 2 show the apparatus. The rectangular Lexan tank has interior
dimensions of 15.2×15.2×3.8 cm in height, and the walls of the Lexan tank are 1.3 cm
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Figure 1. Schematic of the experimental apparatus.
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Figure 2. Schematic of the convection tank.

in thickness. The thermal conductivity of Lexan is 0.2 W m−1 K−1, approximately 0.6%
that of gallium. To further minimize heat losses, the convection tank is surrounded
by 5 cm of foam insulation.

The depth of the liquid gallium layer was varied between 7.3 and 25 mm. The
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Property Symbol Units Value

Density ρ kg m−3 6.095× 103

Density change on melting ∆ρ/ρ — +3.2%
Melting temperature Tm

◦C 29.7
Thermal expansion coefficient α K−1 1.27× 10−4

Specific heat Cp J kg−1 K−1 397.6
Kinematic viscosity ν m2 s−1 3.2× 10−7

Thermal diffusivity κ m2 s−1 1.27× 10−5

Thermal conductivity k W m−1 K−1 31
Magnetic diffusivity η m2 s−1 0.21
Electrical conductivity σ (ohm m)−1 3.85× 106

Table 2. Physical properties of liquid gallium.

majority of the convection experiments are carried out at layer depths of 18 and
25 mm, which correspond to aspect ratios Γ = 8 and 6, respectively.

Heating of the fluid layer is controlled by a Kapton resistance heating pad seated
on the floor of the Lexan tank (see figure 2). The power output of the heatpad can be
varied between 0 and 530 W. The heating element of the Kapton heatpad is configured
such that the horizontal heating variations are less than ±2%. The imposed heatpad
power is recorded during all the experiments. The average heat flux into the fluid is
calculated by dividing the heatpad power by the area of the fluid layer. Experiments
in the conductive regime verify that this technique accurately determines the average
value of the heat flux (see figure 5).

A 6.4 mm thick copper plate is placed on top of the Kapton heatpad. The thermal
diffusivity of copper is about an order of magnitude greater than that of gallium and
acts to remove spatial inhomogeneities in the heating, resulting in a nearly isothermal
boundary condition. The approach to isothermal boundary conditions is estimated
by the Biot number Bi, the ratio of the resistance to heat transfer in the copper plate
to the resistance to heat transfer in the gallium layer,

Bi =

(
Dcu

kcu

)/(
D

k

)
=

k

kcu

Dcu

D
' 0.03, (3.1)

where Dcu = 6.4 mm and kcu = 402 W m−1 K−1 are the thickness and the thermal
conductivity of the copper plate. For values of Bi < 0.1, it is found that the conductive
plate is isothermal to within ∼ 5% (Özişik 1980). Thus, the heating imposed at the
base of the copper plate in our apparatus results in an approximately isothermal
lower-thermal-boundary condition between the copper plate and the gallium.

The temperature at the upper boundary of the gallium layer is maintained by the
circulation of cooling fluid through the copper lid of the convection tank (roughly
10 litres per minute). The cooling fluid, a mixture of water and ethylene glycol, is
separated from the top of the gallium layer by the 6.4 mm thick bottom of the copper
lid. The temperature of the cooling fluid is controlled by a refrigerated bath that is
constant to within ±0.05 ◦C.

Measurements of the temperature difference across the fluid layer are made using
a single pair of YSI 700-series surface thermistors, accurate to ±0.02 K, with a
resolution of ±0.5 mK. The thermistors are embedded into the top and bottom
copper boundaries, one 0.5 mm above and the other 0.5 mm below the gallium layer.
To avoid thermal interference with each other, the thermistors are misaligned laterally
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Field intensity (gauss) Layer depth (cm) Chandrasekhar number, Q

121± 8 1.854± 0.003 111± 13
202± 14 1.854± 0.003 292± 42
307± 14 1.854± 0.003 669± 65
307± 14 2.500± 0.003 1214±119
601± 5 1.854± 0.003 2562± 60

Table 3. Magnetic field intensities and corresponding Chandrasekhar numbers.

by 5 mm. A digital multimeter measures the thermistor voltages in the rotating frame
and electrical slip rings pass the voltages from the multimeter to the data acquisition
system in the stationary frame.

The magnetic field is generated between two parallel plates of ceramic magnets
placed above and below the convection tank in the rotating frame. This arrangement
produces a steady, nearly uniform, vertical magnetic field that co-rotates with the
convection tank, with a maximum intensity of 601 ± 5 gauss in the region of the
gallium layer. We varied the field intensity by changing the distance between the two
plates, or by removing the top magnetic plate. Experiments with vertical magnetic
fields are carried out at 4 different field intensities given in table 3. The errors in the
vertical field intensities in table 3 refer to the spatial variations of the field measured
over the volume of the gallium layer. The magnetic plates and convection tank are
placed on a rotating table. The rotation rate of the table can be varied between
0.07 r.p.m. and 30 r.p.m. In calibration tests, the rotation rate remained constant to 1
part in 1000 at 5 r.p.m.

Liquid gallium presents some experimental problems because it dissolves many
other metals and interacts strongly with oxygen. In our apparatus, the liquid gallium
is in direct contact with copper at the upper and lower boundaries. Copper dissolves
into liquid gallium with a solubility of 2.8× 10−4 g l−1 at 36 ◦C (Zebreva & Zubtsova
1968). The small gap between the Lexan convection box and the copper lid also allows
for a small region of interaction between the gallium and the atmosphere, which leads
to the formation of gallium oxides. Although our apparatus produces some minor
contamination of the gallium, it has the benefit of producing an effectively fully
wetted contact at the upper and lower boundaries and reduces the large surface-
tension forces that gallium can exert on unwetted contacts. In situ measurements of
the thermal conductivity of the working fluid were made after the completion of
the RBC experiments to verify that the bulk thermal properties correspond to pure
gallium. The thermal conductivity was measured to be k = 31.1 ± 0.8 W m−1 K−1 at
35 ◦C, in good agreement with the values of Okada & Ozoe (1992).

The same experimental technique is used in all the RBC, MC and aspect ratio
Γ = 6 RMC experiments. A fixed power is supplied to the Kapton heatpad, and the
system is allowed to come to thermal equilibrium. We find that thermal equilibrium is
reached after about 30 min. Temperatures are recorded for an additional 30–45 min
after thermal equilibrium is reached. The power to the heatpad is then increased to
begin the next experiment in the sequence, and the measurements are repeated.

Figure 3 shows the temperature difference across the gallium layer from a sequence
of 9 separate RBC experiments. In the first experiment, zero power is supplied to
the Kapton heatpad. In the 8 subsequent experiments, the basal heating is increased
roughly once an hour to begin each new experiment in the sequence. The increase in
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Figure 3. Temperature difference across the fluid layer versus time for a sequence of
Rayleigh–Bénard (Q = Ta = 0) convection experiments in liquid gallium. Each experiment in
the sequence is labelled with its average Rayleigh number.

heating causes an increase in ∆T and a corresponding increase in the value of Ra.
The first three experiments in this sequence, corresponding to Ra = 0, 800 and 1275,
are subcritical with respect to RBC. The other experiments, with Rayleigh numbers
greater than 2000, are supercritical with respect to RBC. At each of the supercritical
Rayleigh numbers, time-dependent fluctuations are found in the temperature records.
The r.m.s. amplitude of the thermal fluctuations increases in each subsequent experi-
ment in the sequence as the Rayleigh number is increased, implying a more strongly
time-dependent convection.

A different procedure is used for the Γ = 8 RMC experiments. Here, the power to
the Kapton heatpad is fixed at the same value for the entire sequence of experiments,
and the rotation rate of the table is increased in a stepwise manner to begin each
new experiment in the sequence. At each rotation rate, we allow 5–20 min for spin-up
of the fluid layer, the exact time allowed depending upon the rotation rate. At each
rotation rate, we record temperatures for 20–30 min after spin-up, in order to ensure
that the convection has reached statistically stationary conditions.

The sequence of 12 experiments shown in figure 4 have a flux Rayleigh number
RaF = 19 980 and Chandrasekhar number Q = 0. The rotation rate of the table in
the first experiment is zero. At low rotation rates, the convection is strongly time-
dependent, as indicated by the large-amplitude temperature fluctuations. At higher
rates of rotation the convection is suppressed, as evidenced by the decrease in the
amplitude of the fluctuations. Note that the temperature difference across the fluid
layer increases with rotation frequency, as proportionally more heat is transferred
across the layer by conduction.

4. Rayleigh–Bénard convection (RBC) experiments
Two sets of Rayleigh–Bénard convection experiments have been made, in order

to calibrate the system at subcritical Rayleigh numbers and to study low-Prandtl-
number convection in gallium at supercritical-Rayleigh-number values. In the first
set of experiments, the gallium layer depth is 7.26 ± 0.01 mm, corresponding to an
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Figure 5. Nusselt number versus Rayleigh number for gallium in the conductive regime.

aspect ratio Γ = 20.9. The results of these experiments are shown in figure 5. For
this layer depth, the maximum attainable Rayleigh number is less than 500, and the
Nusselt number remains close to a value of 1.0. The errors bars plotted in figure 5
are calculated from the accuracy of the thermistors, ±0.02 K. When the temperature
difference across the fluid layer is small, the propagated errors in the value of the
Nusselt numbers become large, yet the values of the Nusselt numbers remain within
5% of 1.0, even for quite low values of the Rayleigh number.

The results of experiments carried out with a layer depth of 18.31 ± 0.03 mm,
corresponding to an aspect ratio Γ = 8.3, are denoted as open circles in figure 6 and
solid triangles in figure 7. The maximum Rayleigh number achieved with this layer
thickness is Ra ∼ 1.6× 104. The onset of convection is located close to that predicted
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Figure 6. Nusselt number versus Rayleigh number for Rayleigh–Bénard convection in the range
Ra < 1.6× 104. Nusselt numbers for liquid gallium (Pr = 0.023) are plotted as circles and Rossby’s
(1969) Nusselt numbers for mercury (Pr = 0.024) are plotted as stars. The dashed vertical line
shows the critical Rayleigh number for an infinite layer, RaC = 1708.

by linear stability theory. A power-law fit to the Nu–Ra results yields

Nu = 0.129Ra0.272±0.006 for 2.5× 103 < Ra < 1.6× 104. (4.1)

The intersection of this power law with a linear fit to the subcritical results yields a
critical Rayleigh number of RaC = 2320.

We compare our results with Rossby (1969), who measured the Nusselt number in
mercury. Rossby’s Nusselt–Rayleigh results over the range of 103 < Ra < 1.6 × 104

are denoted by stars in figure 6. Our results in liquid gallium (Pr ∼ 0.023) agree well
with Rossby’s results in mercury (Pr ∼ 0.024) over this range of Rayleigh number,
especially for Ra > 4000. Separate regimes corresponding to viscous and inertial
convection are not evident in our Nusselt number results or Rossby’s.

We use the correlation between our Nusselt results and those of Rossby (1969) to
make an in situ calibration of our apparatus. The similarities with Rossby’s results
indicate that our boundary conditions are close to isothermal, and that the physical
properties of the gallium are not appreciably changed by chemical interactions with
the copper boundaries. For example, convection is not detected in experiments which
have Ra < 1700 because the boundary conditions are effectively isothermal. In
contrast, for a fixed temperature condition on the upper boundary and a fixed heat
flux condition on the lower boundary, convection would onset at a Rayleigh number
of 1296 (Sparrow, Goldstein & Johnson 1964). We also note that our agreement with
Rossby’s results is found in spite of major differences in the experimental geometries.
Our square-sided container has an aspect ratio of 8.3 and a corresponding layer
thicknesses of 18.31 mm. Rossby used cylindrical containers with aspect ratios of 32.1
and 21.6, corresponding to layer thicknesses of 6.93 mm and 10.28 mm, respectively.

Another way to estimate the critical Rayleigh number is from the r.m.s. variation
of the temperature difference across the fluid layer. Figure 7(b) shows the r.m.s.
variation of the temperature difference σ∆T , with the RBC (Q = 0) results plotted as
solid triangles. The value of σ∆T remains close to 2 mK in the conductive regime. The
bifurcation of σ∆T provides a second estimate for the critical Rayleigh number, in
this case RaC = 1720. This value is very close to 1708, the critical Rayleigh number
predicted by linear theory.
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Figure 7. Nusselt number and temperature variation measurements in liquid gallium. N,
Rayleigh–Bénard convection with Chandrasekhar number Q = 0 and aspect ratio Γ = 8.3; �,
magnetoconvection with Q = 670 and Γ = 8.3; •, magnetoconvection with Q = 1210 and Γ = 6.1.
(a) Nusselt number versus Rayleigh number. (b) The r.m.s. variation of the temperature difference
measured across the fluid layer, σ∆T , versus Rayleigh number. (c) Rayleigh number versus flux
Rayleigh number, both reduced by 103. (d) Nusselt number versus modified Rayleigh number
Q−1Ra.

We find that time-dependent fluctuations appear in all the RBC temperature
records as the first indication of the onset of convection. These irregular temperature
fluctuations indicate that chaotic or even turbulent motions appear in this experiment
very near to the onset of convection. Rossby (1969) and Yamanaka et al. (1998) also
inferred the convection to be non-stationary in the supercritical regime, on the basis
of irregular fluctuations in the temperature signals in mercury and liquid gallium,
respectively. These inferences differ from Krishnamurti (1973), who reported steady
convection in mercury over the range 1500 < Ra < 2400, and Chiffaudel et al. (1987)
who reported steady convection in mercury for 1700 < Ra < 2400.

One interpretation of the irregular temperature oscillations that we observe is that
they are caused by shear instabilities near the boundaries (Krishnamurti & Howard
1981; Grötzbach & Wörner 1995). The thermistors in our apparatus are shallowly
embedded into the top and bottom copper boundaries, making them well-situated
to detect such shear instabilities. If these oscillations are due to shear instabilities,
the irregular fluctuations may not correlate with the flow field in the interior of the
fluid layer. Instead, the flow field may be two-dimensional or steady far from the
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Q RaC (σ∆T ) RaC (Nu) RaC (RaF )

0 1720 2320 2670
670 11900 12500 13500

1210 26700 27100 27300

Table 4. Determinations of the critical Rayleigh number RaC for various Chandrasekhar numbers
Q from bifurcations in the curves in figure 7(a–c).

boundaries, especially near the onset of convection. Such a flow pattern has been
reported previously by Grötzbach & Wörner (1995).

Figure 7(c) shows the value of the Rayleigh number versus the flux Rayleigh
number. The RBC results are again plotted as solid triangles. In the conductive
regime, Ra should be equal to RaF since the heat transfer supposedly occurs by
conduction only. In the conductive regime, the experimental results define a linear
trend with a slope close to 1, and the onset of convection is marked by the first
deviation from this trend. By estimating the break in slope of the data for Rayleigh
numbers less than 104, we obtain a critical Rayleigh number of RaC = 2670 for RBC.

Three different estimates of the critical Rayleigh number for RBC (Q = 0) and MC
(Q = 670, 1210) are listed in table 4. Note that the critical Rayleigh number estimate
produced using σ∆T is lower than the other two estimates for all three values of Q.
We interpret this to indicate that the supercritical convection is non-stationary.

5. Magnetoconvection (MC) experiments
Two sets of magnetoconvection experiments were made with an imposed vertical

magnetic field of B = 310 gauss. In the first set, the fluid-layer depth was 18.31 ±
0.03 mm (Γ = 8), and in the second set the depth was 25.00 ± 0.03 mm (Γ = 6),
equivalent to Chandrasekhar numbers of Q = 670 and 1210, respectively. Figure 7
shows the results from these experiments, along with the Q = 0 results (RBC). For
increasing values of Q, the onset of convection, marked by the bifurcations in figure
7(a–c), occurs at higher Rayleigh numbers (see table 4). This has been observed
previously in magnetoconvection experiments by Nakagawa (1955, 1957a), Jirlow
(1956) and Lehnert & Little (1957). Figure 7(d) shows the Nusselt number versus the
modified Rayleigh number Q−1Ra, from our experiments. Note that the Q = 670 and
Q = 1210 Nusselt number results have the same behaviour when plotted this way. We
find that for large Q, the critical Rayleigh number scales as RaC ∼ Q, in agreement
with the results of Nakagawa (1957a).

Our Nusselt numbers in the supercritical magnetoconvection regime, that is, for
Q−1Ra > 25, fit the following power laws:

Nu = 0.23(Q−1Ra)0.50±0.03 for Q = 670, (5.1)

Nu = 0.23(Q−1Ra)0.49±0.02 for Q = 1210. (5.2)

The Nu ∝ (Q−1Ra)1/2 power law can be derived from simple scaling considerations.
Assuming the basic force balance is between buoyancy and the Lorentz force gives

gα∆T ∼ σuB2

ρ
, (5.3)

where u is the characteristic convective velocity. Similarly, the heat equation balance
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Figure 8. Critical Rayleigh numbers versus Chandrasekhar numbers obtained from
magnetoconvection experiments.

is between advection and boundary-layer conduction, which implies

u
∆T

D
∼ κ∆T

δ2
, (5.4)

where δ is the thickness of the thermal boundary layer. Combining (5.3) and (5.4)
yields

ρgα∆T

σB2D
∼ κ

δ2
. (5.5)

This relationship is equivalent to

Nu ∼ (Q−1Ra)1/2. (5.6)

We find that the Nusselt number in the MC experiments increases as Ra1/2 in the
supercritical regime, in comparison to Ra0.27 for RBC. Assuming both these power
laws continue to hold at higher Rayleigh-number values, then the two curves will
intersect at some Ra, and at some still larger Ra, the Nusselt number will be greater
for MC than for RBC. This suggests that the presence of the vertical magnetic field
can actually increase the efficiency of the convective heat transfer at sufficiently high
values of the Rayleigh number, an effect seen in the numerical calculations by Clever
& Busse (1989). Combining (4.1) with (5.1) and (5.2), we find this intersection occurs
at Ra ∼ 1.3 × 105 for Q = 670 and Ra ∼ 4.6 × 105 for Q = 1210, respectively.
The Nu ∼ Ra1/2 regime must eventually break down for sufficiently large Ra. Further
experiments are required to determine under what conditions this regime breaks down
and whether situations exist where vertical magnetic fields increase the efficiency of
MC relative to RBC.

Figure 8 shows our determinations of the critical Rayleigh number versus the
Chandrasekhar number for MC. The solid line represents the critical Rayleigh number
for stationary convection obtained from linear stability theory (Chandrasekhar 1961).
Our critical Rayleigh numbers found in gallium are marked by open circles. Three of
the circles correspond to the critical Rayleigh numbers determined in figure 7(b) at
Q = 0, 670 and 1210. The others correspond to critical Rayleigh numbers determined
from the Γ = 8 RMC Nusselt number results with Ta < 2.5×103. The open square is
from Jirlow (1956) for MC in mercury. The star and plus symbols denote MC results
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in mercury from Nakagawa (1955) and Nakagawa (1957a), respectively. The Q = 0
and Q = 670 critical Rayleigh numbers determined from σ∆T in figure 7(b) agree very
closely with the results of linear stability theory. The four critical Rayleigh numbers
determined from the Nusselt number bifurcation in the Γ = 8 RMC experiments are
all greater than the values predicted by linear stability theory. Note that the results
for Q = 0, 110 and 290 exceed the values predicted from linear theory by roughly
10–15%. This discrepancy lies within the uncertainty of our experiments and may
not be significant.

Coherent thermal oscillations are detected in our MC experiments in the finite-
amplitude regime, but are not observed at the onset of convection. This agrees with
the results of linear stability theory, which predict that the onset of convection is
stationary in low-Prandtl-number fluids. Here, we are interpreting the irregular ther-
mal oscillations that mark the onset of convection as turbulent boundary structures
caused by local shear instabilities. The irregular oscillations may not require large-
scale oscillatory convection to be occurring throughout the fluid layer. The frequency
of the coherent thermal oscillations are 0.022 Hz in Γ = 6, Q = 1210 magnetoconvec-
tion experiments at Ra = 1.4RaC . The frequency of the oscillations is too small to be
caused by Alfvén waves. For the parameter values in these experiments, the Alfvén
wave frequency is close to 2 Hz, roughly two orders of magnitude greater than the
frequency we detect.

In all our RBC and MC experiments with fluid aspect ratios of 8 or less, we find
that Nu lies between 0.93 and 1.0 in the conductive regime (see figure 6). We interpret
Nu-values systematically less than 1.0 in the conductive regime to be a consequence
of the finite value of the aspect ratio of the tank. The results shown in figures 5 and
6 demonstrate that Nu is very close to 1.0 in the conductive regime when the gallium
layer aspect ratio is of the order of 20, whereas Nu values becomes less than 1.0 when
the aspect ratio is less than 10. In order to correct for this effect in the power-law
fits and figures, we normalize our Nusselt values such that the lowest value in the
subcritical regime equals 1. An increase in Nu with increasing Ra is also apparent
in the conductive regime in figure 6. This is probably caused by subcritical motions
occurring in the fluid layer. Subcritical motions in liquid metals can be driven by very
small lateral temperature gradients along the upper boundary, for example.

6. Rotating magnetoconvection (RMC) experiments
In RMC experiments, we find the Nusselt number monotonically decreases and

the critical Rayleigh number monotonically increases with increasing Chandrasekhar
and Taylor numbers. This result contrasts with Nakagawa (1957b, 1958), who found
local minima in the critical Rayleigh number in the region Q ∼ Ta1/2, although for
much higher values of Ra, Q and Ta than in our experiments.

6.1. Aspect ratio 8 rotating magnetoconvection

Figure 9 shows contour fits of the Nusselt number as a function of the Taylor and
Rayleigh numbers for Γ = 8. The four plots in figure 9 correspond to experiments
with Chandrasekhar numbers of 0, 110, 290 and 670, respectively. Contours with
Nusselt numbers greater than 1.06 are drawn as solid lines and contours for Nusselt
numbers less than 1.06 are drawn with dashed lines. This has been done to estimate
where the subcritical (dashed lines) and supercritical regimes are located. The ‘+’
symbols denote the location of the experiments in each plot.

The Nusselt number decreases for Taylor numbers above 104, in response to the
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Figure 9. Contour plots of Nusselt number versus Taylor number and Rayleigh number for aspect
ratio Γ = 8 rotating magnetoconvection in liquid gallium. (a) Rotating non-magnetic convection
(Q = 0). (b–d) Rotating magnetoconvection for different Q-values. The contour interval is 0.02 in
each case. The contours are drawn as solid lines for Nu > 1.06, to denote the convective regime.
Dashed contours are used for Nu < 1.06 to represent the conductive regime. +, locations of
experimental data points.

stabilizing effect of the rotation. For Taylor numbers less than 104, Nu is not strongly
affected by rotation. The Q = 0 (rotating convection) experiments in figure 9(a) clearly
demonstrate that convection is strongly inhibited for Ta > 105, in agreement with
linear stability theory (Chandrasekhar 1961).

The results in figure 9 indicate that the vertical magnetic field delays the onset of
convection and reduces the value of the Nusselt number, relative to non-magnetic
convection. The value of RaC is close to 2400 for Q = 0. For Q = 110, RaC = 5850;
for Q = 290, RaC = 1.15× 104; for Q = 670, RaC = 1.38 × 104. Here, we estimate
the critical Rayleigh number using the bifurcation in the r.m.s. variation of the
temperature difference across the fluid layer, σ∆T . At the highest magnetic field
strength Q = 2560, convection does not occur over the range of Rayleigh numbers
studied.

Figure 10 shows profiles of slices through the contour surfaces of figure 9. Figures
10(a) and 10(b) show slices of Nu versus log10 Ta for two different Ra-values. Figures
10(c) and 10(d) show slices of Nu versus Ra for different fixed Ta-values. In figure
10(a), the Rayleigh number is 5000 and the Nusselt number is supercritical in the
Q = 0 case for Ta < 1.6 × 105. The Nusselt number is weakly supercritical for
Q = 110 and is subcritical in the other Q-cases. In figure 10(b), the Rayleigh number
is 17 300 and the Nusselt number remains supercritical in the Q = 0 case up to
Ta = 2.0× 106. The Taylor number is 1.4× 105 in figure 10(c) and convection occurs
above Ra = 4100 for Q = 0. In figure 10(d), the Taylor number is 3.3 × 105 and
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Figure 10. (a, b) Nusselt number versus Taylor number at fixed Rayleigh number for aspect ratio
Γ = 8 rotating magnetoconvection in liquid gallium. (c, d) Nusselt number versus Rayleigh number
at fixed Taylor number for the same experiments.

convection occurs above Ra = 8900 for the Q = 0 case. Note that the Nusselt number
increases with a weaker functional dependence on the Rayleigh number for Q = 110,
290, 670 RMC compared to the Q = 0 case in figures 10(c) and 10(d). This differs
from the Q = 670, 1210 MC experiments where we find that the Nusselt number
increases more sharply with the vertical magnetic field present.

In figure 11, Γ = 8 RMC Nusselt numbers are contoured in terms of a modified
Rayleigh number Q−1/2Ra. Before contouring, the data has been smoothed using a
two-dimensional five-point stencil. The onset of convection occurs at Q−1/2Ra ∼ 530.
Comparing figure 11 with figure 7 reveals a significant difference. For MC, the Nusselt
number scales with Q−1Ra. In contrast, figure 11 shows that Nu scales with Q−1/2Ra
for RMC.

6.2. Aspect ratio 6 rotating magnetoconvection

RMC experiments have also been made with a layer depth of 25 mm and an imposed
magnetic field of 310 gauss, corresponding to Γ = 6 and Q = 1210, respectively. The
results of experiments with this aspect ratio are systematic but qualitatively different
from those found in the Γ = 8 RMC experiments described above. Here, the Taylor
number is held constant and the Rayleigh number is varied in the general manner
shown in figure 3. Measurements were made for six different values of Ta, ranging
from 0 < Ta < 5 × 106 (see table 5). For this aspect ratio, the maximum Rayleigh
number attained is nearly 105.
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Figure 11. Smoothed contour fit to all the aspect ratio Γ = 8 rotating magnetoconvection Nusselt
numbers shown in figure 9, as a function of Taylor number and modified Rayleigh number Q−1/2Ra.

Ta RaC (σ∆T ) RaC (Nu) RaC (RaF )

0 26 700 27 100 27 300
9.7×102 29 300 25 500 25 300
1.1×104 28 300 28 300 27 600
9.5×104 30 000 29 800 29 800
1.0×106 47 100 44 500 45 300
5.2×106 83 700 79 900 —

Table 5. Determinations of the critical Rayleigh number RaC at Q = 1210 for various Ta values.
The results shown in figures 12(a) to 12(c) are used in determining RaC .

Figure 12(a) shows the Nusselt number versus the Rayleigh number for six different
Taylor number values. Figure 12(b) shows σ∆T as a function of the Rayleigh number.
Figure 12(c) shows the Rayleigh number versus the flux Rayleigh number. Figure
12(d) shows a contour fit of the Nusselt number as a function of Taylor and Rayleigh
numbers for Γ = 6 and Q = 1210. Bifurcations in the curves in figures 12(a) to 12(c)
yield the critical Rayleigh number estimates given in table 5. The onset of convection
is detected first from bifurcations in the Nu–Ra and RaF–Ra curves in the cases with
Ta > 0. We infer that the onset of convection is stationary only in these cases.

The results in figure 12 and table 5 indicate that the onset of convection is
determined by the ratio Q/Ta1/2, in general agreement with Chandrasekhar (1961)
and Eltayeb (1972, 1975). In the regime where Q > Ta1/2, the Lorentz force is greater
than the Coriolis force and the onset of convection is controlled by the magnetic
field. In cases where Q < Ta1/2, the Coriolis force is greater than the Lorentz force
and the onset of convection is controlled by rotation. At Q = 1210, the Lorentz force
is greater than the Coriolis forces when the Taylor number is less than 1.5× 106. In
these experiments the critical Rayleigh number sharply increases owing to rotation
above Ta = 106. In contrast, when Ta < 106, the convection is dominated by the
Lorentz force so the critical Rayleigh number depends on Q and is independent of Ta.
For example, the linear stability theory of Eltayeb (1972) predicts that in the double
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Figure 12. Results of rotating magnetoconvection experiments with Q = 1210 and Γ = 6.
(a) Nusselt number versus Rayleigh number at various Taylor numbers. (b) The r.m.s. varia-
tion of the temperature difference across the fluid layer versus Rayleigh number. (c) Rayleigh
number versus flux Rayleigh number. (d) Contour fit of Nusselt number as a function of Taylor
number and Rayleigh number, similar to figure 9. The circles connected by the solid line denote
RaC values from the asymptotic scaling law of Eltayeb (1972) in the regime where Lorentz and
Coriolis forces are comparable.

asymptotic limit of large Ta and Q, the critical Rayleigh number for stationary
convection scales as RaC ∼ 39.5Ta/Q over the range 0.5Q < Ta1/2 < 0.1Q3/2 for
rigid, electrically insulating boundaries. For Q = 1210, this corresponds to the range
of Taylor numbers between 3.7×105 and 1.8×107. Critical Rayleigh numbers predicted
by this scaling law are plotted in figure 12(d) for comparison with our experimental
results. Above Ta ∼ 106, the asymptotic law agrees well with our results.

7. Thermal oscillations and oscillatory convection
Coherent thermal oscillations are detected in our experiments in two different

situations. High-frequency coherent oscillations are found in Γ = 8 non-magnetic
rotating convection experiments at frequencies close to the inertial frequency, when
Ta > 105. Also, lower-frequency coherent thermal oscillations are found in the Γ = 6,
Q = 1210 RMC experiments at low-Taylor-number values, where Ta1/2 < Q. The
high-frequency inertial oscillations exist in the regime where the Coriolis force controls
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Figure 13. Inertially driven thermal oscillations recorded in the basal thermistor at RaF = 19 980,
Q = 0 and Ta ∼ 3.3× 106, taken from the experimental sequence shown in figure 4.

the convection. The low-frequency oscillations are found where the Lorentz force
controls the convection.

Figure 13 shows an example of the high-frequency temperature oscillations detected
in Γ = 8 rotating convection. These temperature signals were recorded on the
thermistor located at the base of the gallium layer during two successive experiments
at RaF = 19 980, the first with a rotation frequency of 0.13 Hz and the second with
a rotation frequency of 0.14 Hz. The corresponding values of the Taylor number are
3.1× 106 and 3.5× 106, respectively. The amplitude and frequency of the oscillations
vary with the rotation frequency. The large downward spike is an artefact, due to
EMFs induced in the electrical slip rings when the rotation rate of the table is changed
between experiments.

Figure 14 shows temperature spectral density versus frequency from experiments at
RaF = 13 100. Individual spectra are identified by their Taylor numbers and associated
rotation frequencies. The broad peaks observed in the Ta = 4.4× 105, 6.6× 105 and
1.6× 106 temperature spectra correspond to inertially driven thermal oscillations. For
example, the lowest-frequency oscillations in figure 14 have a frequency f = 0.067 Hz
at Ta = 4.4 × 105, corresponding to a non-dimensional frequency f/2Ω = 0.69.
Exact thermal inertial wave calculations (Zhang & Roberts 1997) have been made
for comparison with our results assuming Ta = 4.4 × 105 and rigid, isothermal
boundary conditions (K. Zhang, personal communication). These calculations predict
f/2Ω = 0.64 at RaC = 4.3 × 103. Thus, the experimental and theoretically predicted
oscillation frequencies are similar.

Note that oscillations are absent in the Ta = 1.1 × 105 spectrum in figure 14(a).
At this relatively low Ta value, the convection is far beyond the critical Rayleigh
number. Here, coherent oscillations in the fluid are replaced by less regular motions.
Oscillations are also absent in the Ta = 3.9× 107 spectrum, but for a different reason.
In this case, the Rayleigh number is subcritical for convection. The spectra in figure
14 that do show peaks are found in the range 4× 105 < Ta < 2× 106. Inertially
driven thermal oscillations are detected in this range because the layer is unstable
to convection, and is also strongly influenced by the rotation. Rotating experiments
have also been performed without heating, to determine if these oscillations were
erroneously produced by the temperature-measurement system. In these tests, coherent
thermal oscillations are not observed over the full range of rotation rates examined.
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Figure 14. Temperature spectra from rotating non-magnetic convection experiments in liquid
gallium at RaF = 13 100.

Non-dimensional oscillation frequencies, f/2Ω, measured in several of the non-
magnetic rotating convection experiments are plotted in figure 15. Oscillations from
experiments at four different values of RaF are shown. Thermal oscillations are
measured over a range of rotation rates for a given value of the flux Rayleigh
number (see figure 14). At each value of RaF , the oscillations detected at the highest
Taylor numbers correspond to the value of Nu closest to 1.0 and, therefore, occur
closest to convective onset. The solid line in figure 15 denotes Chandrasekhar’s (1961)
theoretical oscillation frequencies at the onset of convection for P = 0.025 and stress
free boundaries.

Figure 16 shows the critical Rayleigh numbers in the Ta1/2 > Q regime. These
critical Rayleigh numbers are determined from the breaks in slope of Nusselt number
versus Taylor number using plots similar to figures 10(a) and 10(b) and the results
given in table 5. For example, in figure 10(b), convection ceases in the Q = 110 case
above a Taylor number Ta = 106. Critical Rayleigh numbers in figure 16 are located
between Ta = 1.5× 105 and Ta = 7.4× 106. The solid line in figure 16 shows critical
Rayleigh numbers for oscillatory convection obtained from Chandrasekhar’s (1961)
linear stability analysis of non-magnetic rotating convection, the long-dashed line
corresponds to the critical Rayleigh numbers for steady onset (Chandrasekhar 1961)
and the short-dashed line shows the RaC ∝ Ta1/4 trend predicted by Zhang & Roberts
(1997) for thermal inertial waves in the asymptotic limit. The majority of the results
are located close to the critical Rayleigh numbers for oscillatory convection. This
supports our interpretation that the convective onset occurs as oscillatory convection
in our RMC experiments with Ta > 105 and Ta1/2 > Q. Our present results are not
at sufficiently high values of Ta to test the validity of the RaC ∼ Ta2/3 asymptotic
scaling laws of Chandrasekhar (1961) or the RaC ∼ Ta1/4 scaling law of Zhang &
Roberts (1997).

Low-frequency, magnetically-controlled coherent thermal oscillations are detected
in the Γ = 6, Q = 1210 RMC experiments (see figure 17). These oscillations are
observed in the range Ra = 1.1RaC to 1.4RaC in experiments between Ta = 0 and
Ta = 9.5 × 104 such that Ta1/2/Q < 1

4
, corresponding to the low-Taylor-number
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Figure 15. Thermal oscillation frequency normalized by the inertial frequency, f/2Ω, versus Taylor
number for rotating convection in liquid gallium at various values of flux Rayleigh number. The
solid line represents the predicted oscillation frequency at the onset of convection when both
boundaries are stress free (Chandrasekhar 1961). The error bars denote the uncertainty in the
oscillation frequencies.
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Figure 16. Critical Rayleigh number versus Taylor number for rotating magnetoconvection in
gallium. The long-dashed line denotes the critical Rayleigh number for oscillatory convection
predicted by linear stability theory and the solid line denotes the critical Rayleigh number for
steady convection (Chandrasekhar 1961). The short-dashed line shows an RaC ∼ Ta1/4 scaling law
predicted for thermal inertial waves in the asymptotic regime (Zhang & Roberts 1997).

regime. The oscillation frequencies are given in table 6. These frequencies are roughly
an order of magnitude lower than those of the inertially driven oscillations shown in
figure 14.

In table 6, the non-dimensional oscillation frequency is defined as fD2/κ, where D =
2.5 cm and κ = 1.27×10−5 m2 s−1. The non-dimensionalized oscillation frequencies are
close to 1 for magnetoconvection at Ra/RaC = 1.4. In the rotating magnetoconvection
experiments at Ta = 1.1 × 104 and 9.5 × 104, the primary spectral peak again
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Figure 17. Thermal oscillations recorded in the basal thermistor at Ra = 3.04× 104,
Q = 1210 and Ta ∼ 1.1× 104.

Ra/RaC Ra Ta f (Hz) fD2/κ

1.37 3.66×104 0 0.021 1.02
1.39 3.71×104 0 0.022 1.07
1.10 3.04×104 1.1× 104 0.010, 0.019 0.48, 0.92
1.18 3.27×104 1.1× 104 0.010, 0.020 0.48, 0.97
1.26 3.47×104 1.1× 104 0.011, 0.022 0.53, 1.07
1.17 3.49×104 9.5× 104 0.013, 0.026 0.63, 1.26

Table 6. Coherent thermal oscillation frequencies and non-dimensionalized frequencies in Γ = 6,
Q = 1210 magnetoconvection and rotating magnetoconvection experiments.

corresponds to a non-dimensional frequency close to 1. However, a secondary spectral
peak is also detected with a non-dimensional frequency value of ∼ 0.5. The primary
oscillation frequency is roughly a factor of 2 larger than Busse & Clever’s (1996)
non-dimensional frequency estimate at Q = 1000 for oscillating knot convection.
The secondary oscillation frequency agrees well with their numerical results. In their
numerical study of nonlinear magnetoconvection, Busse & Clever (1996) assume a
spatially periodic planform and calculate the oscillation frequency at the transition
from steady knot convection to oscillating knot convection. In comparing our results,
it should be noted that the convective planform in our experiments is probably not
spatially periodic or steady.

8. Summary
We have measured the Nusselt number and the temperature variations in thermal

convection in a layer of liquid gallium subject to the combined action of vertical
rotation and a uniform vertical magnetic field. We find that the vertical magnetic
field and rotation each individually inhibit the onset of convection. The simultaneous
action of both forces also tends to inhibit the convection, in the sense that we measure
a reduction in convective heat transfer when both are present. Our key results are
summarized in table 7. For Rayleigh–Bénard convection we find a heat transfer
law of the form Nu ∼ Ra0.272. For non-rotating magnetoconvection, we find a heat
transfer law of the form Nu ∼ (Q−1Ra)1/2. We find that rotating magnetoconvection
is controlled by a modified Rayleigh number Q−1/2Ra over the regime Ra < 3× 104

and Q 6 670.
This contrasts with the results of Nakagawa (1957a), who found the modified
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Experiment Result Range

RBC, MC, Γ = 8 RMC Non-stationary onset All experiments

Γ = 6 RMC Stationary onset Q = 1210; 103 < Ta < 5× 106

RBC Nu = 0.129Ra0.272 2.5× 103 < Ra < 1.6× 104

MC RaC ∼ Q Q = 670, 1210

MC Nu = 0.23(Q−1Ra)1/2 25 < Q−1Ra < 60; Q = 670, 1210

Γ = 8 RMC RaC ∼ Q1/2 Ra < 3× 104; Q 6 670

MC 0.02 Hz coherent oscillations Q = 1210; Ra/RaC ∼ 1.4

Γ = 6 RMC 0.01–0.02 Hz Q = 1210; 104 < Ta < 105;
coherent oscillations 1.1 ∼ Ra/RaC ∼ 1.3

Γ = 8 RMC O (0.1 Hz) inertial oscillations Q = 0; Ta > 105

Table 7. Summary of key experimental results. RBC = Rayleigh–Bénard convection,
MC = magnetoconvection, RMC = rotating magnetoconvection.

Rayleigh number to be Q−1Ra, but at higher Ra and Q-values. We observe that, at
sufficiently high Taylor number, convection is rotationally inhibited. The convection
ceases in all the experiments for which the Taylor number is increased above the
critical value predicted for the onset of oscillatory rotating convection. Inertial thermal
oscillations are measured in the aspect ratio Γ = 8 rotating convection experiments.
The oscillation frequency f is proportional to the inertial frequency 2Ω and their
ratio f/2Ω decreases with increasing Taylor number. Low-frequency oscillations are
detected in the supercritical regime magnetoconvection experiments, in qualitative
agreement with predictions by Busse & Clever (1996). The critical Rayleigh numbers
determined at high Ta values agree well with critical Rayleigh numbers obtained
from linear stability theory for oscillatory, rotating convection, even though we do
not detect the thermal oscillations that linear stability theory predicts at the onset of
convection.

We also find that the onset of convection coincides with the detection of irregular
temperature fluctuations in nearly all cases. Only in exceptional cases did we observe
stationary convection, even at slightly supercritical Rayleigh numbers. In fact, we do
not find any regime where the convection appears to be entirely stationary. Instead,
we find evidence for unsteady or perhaps turbulent convection just beyond the critical
Rayleigh number in liquid gallium.

We thank Brendan Meade for designing the data acquisition software, Keke Zhang
for providing the thermal inertial wave calculation, Tom Rossby for his experimental
results in mercury, and three anonymous referees. This research was supported by the
National Science Foundation Geophysics Program.
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