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1. Introduction

Subspace iteration has become the standard tool for solving the large

eigen-problems which occur in the dynamic analysis of structures, typically
[K-a]¢=0 (1)

where K and M are respectively the stiffness and mass matrices and (A,¢) is

an eigen-pair.

Our goal 1is not to do a definitive compariﬁon of subspace iteration
with the Lanczos algorithm but simply to pofnt out that, when used properly,
Lanczos is too good to ignore. Qur comparison (Figs. 2 and 4) stopped
when subspace iteration exhausted our resources. Out of core solutions are

discussed in Section 4.

It is all too easy to load the dice, even inadvertantly, againét one
side in a comparison of numerical methods. We tried to be aware of this

throughout the study.



2. lLanczos

The Lanczos algorithm is less familiar to structural engineers than is

subspace iteration. A full description can be found in ref. (1).

Here we will just say that the simple Lanczos algorithm behaves as
though it retained - and used to a great advantage - évery vector computed in
a run of the power method (Stodola's iteration). In fact this information
is coded in a tridiagonal matrix and it is some of the eigen-vdlues of this
tridiagonal matrix which convefge to the eigen-values of the big matrix.
Convergence of the outer eigen-values occurs surprisingly fast. Storage

needs for Lanczos are considerably less than for subspace iteration.

There was a defect in the Lanczos algorithm which may have prevented its

acceptance: when should it be stopped? In contrast to subspace iteration-

‘there is no need to compute the smallest p eigen-values of the tridiagonal

I at each step. Even worse, only some of the eigen-values of I approximate
those of (E,<@). These blemishes have been overcome (see chapter 13 in ref 1)
and now the Lanczos iteration will be halted at the earliest possible step.
The userdoes not have to get involved beyond designating the desired accuracy

in the eigen-vectors. Of course, the eigen-values will be far more accurate.

Block versions of Lanczos are more complicated and more powerful,

Just as subspace iteration is more powerful than simple inverse iteration.

Naturally block Lanczos produces a block tridiagonal matrix. However, the

fact that Lanczos can be used with blocks of any convenient size must not

distract attention from the power of Lanczos with blocks of size 1, 2, or 3.



The program we obtained was aimed at big problems (n > 1000)‘and it
allows the user to choose the block size. The smallest effective size is
2, and this is what we used on our small problems. The results would have

been still more favorable to Lanczos had we used a simple version.

We turn now to an:important misconception concerning the Lanczos
algorithm. It is usually presented as a way to compute eigen-values and
eigen-vectors of a symmetric matrix e. vA]though the algorithm can be formu-
lated to work on a paif (K, @),.some form of inversioﬁ or factoring of a
matrix, either explicitly or implicitly, is reaquired. If v is positive
definite and of narrow bandwidth then the usuai recommendation is to factor
@ once and for all as @ = El ElT (this is the Choleski factorization, not
the square root) and then take EII K (EII)T as A. On the other hand it is
always possible to faétor E into Ez EzT and then find the largest few
eigen-vlaues of E}l M (EEI)T [of course the products given above are not

-~

computed explicitly because that would destroy sparsity].‘

There has been no mention of shifts and it is sometimes asserted that
Lanczos does not or cannot take advantage of good shifts. The truth is a
bit more subtle. Lanczos is so powerful that, indeed, the eigen-value
problem can be solved efficiently with either EII K (Eil)T or Ezl M (EQI)T.
Nevertheless if it is possible to factor 5 - o@ for a well chosen value

of o then it pays handsomely to run Lanczos with

A= LTS (2)
Qhere ‘

K- oM=LpL" )

Note that M need not be positive definite.



This important way of shifting was introduced by Ericsson and Ruhe in

ref. (3) as the spectral transformation. The eigen-values @ of A are

related to the eigen-values A; of (K, M) by
- o) (4)

The message is that although shifts can be used, fewer of them are needed

than with subspace iteration.

There were defects in the Lanczos algorithm which may have delayed its
acceptance. The complete loss of orthogonality among the Lanczos vectors
is not a disaster. It serves only to delay convergence somewhat beyond
the theoretical optimum, not to prevent it. This was the contribution of
Paige's thesis in [1971]. The technique of selective orthogonalization
_keeps the Lanczos vectors robustly linearly independent and keeps the number
of iterations close to the minimum. See ref. (6) for more details. More
troublesome is, or was, the choice of the right moment to stop. It is
overkill to compute all the eigen-values of the tridiagonal matrix at

each step.. Only a few are needed. See ref. (1) for more details.

3. Subspace Iteration

The subspace iteration is widely used by structural engineers for
extracting eigen-pairs of dynamic systems. A detailed description can be
found in ref. (4) and (5). This method can be implemented in a number of
different ways. The version used to solve the generalized eigen-problem
is the one developed by Bathe & Wilson and implemented within FEAP. Other
versions of the subspace iteration algorithm are in use but the costs for

these variations are very close to the one used.



4. Storage Requirements

For large problems it is essential to use secondary storage devices
(such as discs or magnetic tapes) and the variety of computing systems

makes it'difficult to generalize about their use.

As far as we can see, the use of secondary storage favors Lanczos
even more strongly than do our in-core results. There are a significant
number of intermediate size problems in which the factors of 5 and @ can
be held in core but not all the subspace vectors. All Lanczos needs is
to write out an old Lanczos vector at each step and then, from time to
time, to read in all the Lanczos vectors successively. In addition to
the factors of 5 and @, Lanczos must hold in core only the tridiagonal
matrix, two working vectors, and space for perhaps half of the wanted
eigen-vectors. In contrast, subspace iteration would need to access the
basis vectors at every step and to hold in core the small eigen-problem

which must be solved at every step.

For very large problems the Choleski factor E of E - cy will have
to reside 6ut of core and the solution of tfiangular systems EX =W will
have to be done in pieces. It is here that the fact that Lanczos requires
an almost minimal number of matrix-vector operations is most attractive.
For each problem there is a special number, r‘say, such that the cost of
computing Av for r vectors v is the same as the cost for just one vector v.
This facilitates the multiplication of the basis vectors in subspace

iteration but, for the same reason, it favors Lanczos with blocks of size r.

In extreme cases the Lanczos algorithm can function even when only

7 or 8 vectors can be held in core at one time: 2 for the Lanczos step,



2 for the tridiagonal, 1 for selective orthogonalization, and 2 or 3 fof

parts of E.

5. Computer Procedures

In our study two different programs were used (almost as "black boxes").
The Lanczos algorithm was the Block version developed at Oak Ridge National
Laboratory by David Scott (ref. 2). The program is designed to solve the
standard eigen-probTem, and was originally developed on an IBM machine.
ANSI FORTRAN was used to assure portability. The software was transferred
to the CDC 6400 at U.C. Berkeley. The Oak Ridge program is set to find a
given number of eigen-values at either end of the spectrum (but not both).
A11 the communication between the program and the eigen-problem is done
through subroutine OP (supplied by the user), so the modifications required
to extend the program to the generalized eigen-problem using @5(5 - c@)'lﬂg

was done through this subroutine.

The subspace iteration a]gorithmAwas the one utilized within the
finite element program FEAP which was developed at U.C. Berkeley by
R. L. Taylor (see chapter 24 of ref. 7). FEAP was also used to generate
the stiffness and mass matrices of our test problems. We followed the
standard practice in choosing as p, the subspace dimension, min (2m, m+8)

where m is the number of wanted eigen-values.

The execution times were determined from calls to the clock of the

computer.



6. Effect of Shifting

To determine the effect of a shifting strategy on each algorithm, a
series of tests was performed in which various shifts were applied to the
test problems and the C.P.U. times to extract the first three eigen-pairs
were obtained. The results were plotted in figs. 5 and 6. A good shifting
strategy will reduce the cost of each algorithm. However, figs. 5 and 6
show that the saving is somewhat more in Lanczos than in subspace iteration.
Therefore the use of a sophisticated shifting strategy in Lanczos, as in
Ericsson and Ruhe (ref. 3), would only enhance the cost ratio between the

two methods.

7. Test Problems

The problems used to test and compare the above algorithms were typical
problems occuring in structural analysis. They were set up in such a way
as to reflect the problems encountered in very large systems. The details

of the problems are layed out in figs. 1 and 3.

8. Discussion

It is evident from the results (figs. 2 and 4) that the Lanczos
algorithm is of an order of magnitude faster and therefore less costly

than Subspace iteration. It is never slower.



| G

e

References

B.N. Parlett, "The Symmetric Eigenvalue Problem", Prentice-Hall, Englewood
Cliffs, N.J. 1980.

D.S. Scott, "Block Lanczos Software for Symmetric Eigenvalue Problems",
Report ORNL/CSD-48, UC-32. :

T. Ericsson and A. Ruhe, "The Spectral Transformation Lanczos Method for
the Numerical Solution of Large Sparse Generalized Symmetric Eigenvalue
Problems", Report UMINF-76.79 ISSN 0348-0542.

K.S. Bathe and E.L. Wilson, "Solution Methods for Eigenvalue Problems in
Structural Mechanics", International Journal for Numerical Methods
in Engineering, Vol. 6, pp. 213-226 (1972)."

K.J. Bathe and E.L. Wilson, "Numerical Methods in Finite Element Analysis",
Prentice-Hall, Englewood Cliffs, N.J. 1976.

B.N. Parlett and D.S. Scott, "The Lanczos Algorithm with Selective Ortho- -
gonalization", Mathematics of Computations, Vol. 33, number 145,
Jan. 1979, pp. 217-238.

0.C. Zienkiewicz, "The Finite Element Method", third edition, McGraw-Hill,
1977. .



3@2.0m=6.0m

e

R = ER AN
%4
403.0m=12.0m
For all beams and columns: No. of Beam Elements = 27
Young's Modulus = 1.0 KN/m? No. of Nodes
Mass Density = 1.0 kg/m’ Total No. of D.0.F. = 45
Area = 1.0 m?
Moment of Inertia = 1.0 m"
Fiqure la. Building Frame of Example 1.
Ay Ao A3 Ay As Ag A7)g Ag Ato A1l Ao
i ] | l
0.3

0 0.1 ' 0.2

Figure 1b. Eigenvalues of the Above System




No. of Matrix - Vector Operations

300

250

200

150

100

50

Subspace ¢
7
4
)
7
4
'
/
4
'
/
7
[4
I
7
2
7
f
V4
/
7
-4
Vs
V4
V4
V4
4
s
V4
V4
r's
/
/
V4
4
Y2
§4
Vd
7/
Vg
Vi
V4
V4
V4
e Lanczos
o e e e A -
I S
e _,..-o——'“‘
- -
- -
1 1 1 1 1
2 4 6 8 10

No. of Eigenvalues

Figure 2.a. Comparison of Matrix - Vector Operations
for Obtaining Increasing Numbers of Eigen-
pairs for Building Frame of Example 1.



C.P.U. Time (seconds)

- 60.0

50.0

40.0

30.0

20.0

10.0

Subspace

Lanczos
1 ) ] 1 ‘ !
.o
2 4 6 8 10
No. of Eigenvalues
Figure 2b. Comparison of Solution Times for Obtaining

Increasing Numbers of Eigen pairs for Building
Frame of Example 1.



T

E

Low]

=

]

E

[an)

o~

(27

[Ve]

1 AR AT b N F oo AT ST

| - ]
| -
5@3.0m=15.0m
For all beams and columns: No. of Beam Elements = 55
Young's Modulus = 1.0 KN/m? No. of Nodes = 36
Mass Density = 1.0 Kg/m3 Total No. of D.0.F. = 90
Area = 1.0 m?
Moment of Inertia = 1.0 m“
Figure 3a. Building Frame of Example 2.

Al A2 Az Xy As A7 Ag Ag Al A1y A2
I ! L1 1 11
0 0.05 0.1

Figure 3b. Eigenvalues of the Above System




No. of Matrix - Vector Operations

300

250

200

150

100

50

s

¢
I
7
I
/
/
/
/
/
2
I
/
14
/
/
7
-/
/
/
Subspace d/
rd
rd
rd
rd
&~
rd
rd
rd
rd
&
/
/
/
/
/
/7
/
/
/
/
4
/
14
4
/
-4
P4
V4
4
”,
/,
s -
r'd "_.—
g Lanczos  _ _ _o---
-4 LA
Ve "a
‘o—"‘“""
———
1 i i g 1
2 4 6 8 10
No. of Eigenvalues
Figure 4.a. Comparison of the Matrix - Vector Operations

for Obtaining Increasing Numbers of Eigen-
pairs for Building Frame of Example 2.



C.P.U. Time (seconds)

60.0

50.0

40.0

30.0

20.0

10.0

Subspace

Lanczos

! ! 1 ! B

2 4 6 8 10
No. of Eigenvalues

Figure 4b. Comparison of Solution Times for Obtaining
Increasing Number of Eigen pairs for Building
Frame of Example 2.



Normalized Time t/t

max

Normalized Time t/t

max

1.0 ¢
Subspace tmax = 5.100 sec.
0.9 |~ Lanczos t_ .~ = 1.426 sec.
0.8 I~ Subspace
0.7 — Lanczos
0-6 1 1 1 .
0.0 0.008 0.016 0.024
Shift o
Figure 5. Results from Example 1.
1.0 Sub t = 16.210
ubspace t . = . sec.
Lanczos tmax = 4.445 sec.
0.9 I Subspace
0.8 |- Lanczos
0.7 |
0.6 i {1 i .
-0.030 -0.020 -0.010 0.00
Shift o

Figure 6. Results from Example 2.

Relative Improvement of Solution Times for Obtaining

2 & Py - - n L N





