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Abstract

Multivariate Nearest-Neighbors Gaussian Processes with Random Covariance

Matrices

by

Isabelle Grenier

Computational efficiency is at the forefront of many cutting edge spatial modeling tech-

niques. Non-stationarity, on the other hand, has often been an unintentional feature of

the approximations used in these spatial models. Deriving from the well known multi-

variate linear regression model, we propose a non-stationary and non-isotropic spatial

model. In order to remain relevant with today’s massive datasets challenges, we ap-

ply the concept of nearest-neighbors to our normal-inverse-Wishart framework. The

model, called Nearest-Neighbor Gaussian Process with Random Covariance matrices

(NN-RCM) is developed for both univariate and multivariate spatial settings and al-

low for specific characteristics such as duplicate observations and missing data. In a

first dive into nearest-neighbor models such as Nearest-neighbor Gaussian Processes

(NNGP), we initially look at divide-and-conquer implementations. Ultimately, we de-

vise a technique to use NNGP models on blocks of data to then aggregate the posterior

inference without loss of information. The models are illustrated in a case study of

albedo assessments over CONUS from the Geostationary Operational Environmental

Satellites (GOES) East and West. First, the divide-and-conquer algorithm is used to

output multi-day successive predictions of albedo assessments in a sequential updating

scheme. By applying the distributed model on each day of data, one can concatenate the

posterior parameters of the blocks of interest to output evolving predictions. Finally,

we apply the bivariate NN-RCM model using each satellite as a source of information.

The objective is to merge the albedo assessments while also quantifying the discrepancy

between the sources.
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Chapter 1

Introduction

The land surface albedo is the ratio between the upward and downward re-

flected solar radiation at the Earth’s surface (NOAA, 2018). Quantifying the amount

of light that hits the surface of the Earth without being reflected is essential for under-

standing climate change and its potential impact on human health. Missions such as

the National Oceanic and Atmospheric Administration’s (NOAA) Geostationary Oper-

ational Environmental Satellites (GOES) East and West have been designed to target

specifically the forecasting of extreme weather events (e.g floods) and the monitoring of

land process analysis (NOAA, 2016). In light of being a sensitive indicator of environ-

mental changes, surface albedo has been classified an Essential Climate Variable (ECV)

by the Global Climate Observing System (GCOS).

Figure 1.1 shows a few examples of the range of observed values for different

land surfaces. For example, the reflectance on snow is close to 90% as opposed to the

reflectance on dark roads which can be as low as 5 to 20%.

Surface albedo can be measured by a variety of instruments including ground-

based stations and satellites. As we can expect, each platform has its advantages and

disadvantages. Ground-based stations have fine temporal and spatial resolution but the

available networks are very sparse. In terms of satellites, polar orbiting satellites have

1



Figure 1.1: Reflectance over different surfaces. Courtesy of Univ. of Idaho, College of

Science.
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Figure 1.2: Illustration of the viewing angle limit of the five world satellites. Blue:

GOES from NOAA. Green: Meteosat satellites from EUMETSAT. Red: Geostationary

Meteorological Satellite (GMS) from JMA. Figure adapted from Govaerts et al. (2008).

global coverage but their biweekly temporal resolution is very coarse. On the other

hand, geostationary satellites have excellent temporal resolution but they only provide

coverage for a fixed window.

To resolve the shortcomings of geostationary satellites, a global project called

SCOPE-CM (“Sustained and COordinated Processing of Environmental satellite data

for Climate Monitoring”) has been set in place to merge surface albedo from different

agencies and their satellites. The project includes collaborators from the United States

(NOAA), Europe (EUMETSAT), Japan (JMA), Switzerland (MeteoSwiss), and Korea

(KMA). The circles in Figure 1.2 show the viewing angle limit for each of the five world

geostationary satellite.
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1.1 Large spatial data literature review

Ultimately, we faced two main challenges in the development of a methodology

to reconcile the albedo assessments from the two GOES satellites for NOAA. The most

important challenge presented by this project is the size of the data at hand which

must be at the forefront of all modeling decisions. Although the project focuses on the

years 1995-2017, the GOES archives include data starting in 1978. The raw imagery

obtained from the satellites form millions of files for a total size of 270TB. That daily

surface albedo extracted from the original imagery consists of daily files for 23 years

for each satellite. In other words, we have approximately 17,000 files. Moreover, an

additional 1,000 files are created along with the daily values. These files contain a 10-

day assessment which is calculated three times per month. This assessment is selected

based on the quality rating of each albedo observation for the 10-day period. That is,

the albedo observation with the highest quality rating for those 10 days is retained as

the best 10-day albedo assessment. In sum, we are dealing with 18,000 files, or 3TB of

data.

The land surface albedo is therefore an example of a new class of problems

which arise from dealing with massive spatial datasets. The increased availability of

georeferenced data has produced a need to handle, analyze and make inferences and

predictions for very large collections of data, posing a large computational burden on

model-based inference of spatial fields. Geostatistical methods that deal with point-

referenced data consider random fields that are indexed in space, usually 2D or 3D.

Intuitively, proximity between observations should provide information for inference

about unobserved values of the field. This is often formalized using model-based ap-

proaches for which there is a solid body of literature and software, see, for example, the

books by Cressie (1993); Gelfand et al. (2010); Cressie and Wikle (2011); Banerjee et al.

(2014). Modern geostatistical approaches provide flexible probabilistic models, coupled

4



with powerful learning methods, that are used to investigate challenging inferential

questions related to geographically-referenced data.

Traditionally, model-based spatial models have relied on the Gaussian process

(GP). GPs capture the dependence due to proximity through a covariance function.

For a likelihood-based approach to GPs, the bottleneck lies in the computation of the

determinant and the inverse of the covariance matrix induced by the locations of the

available observations. Matrix inversion has order n3 operations, which can be costly

for datasets with large number of observations n. To illustrate the problem with some

numbers, an application for observations at, say, 1,000,000 locations will produce a

covariance matrix with 500,000,500,000 possibly different values. Such a large data

structure would need to be stored, decomposed and operated with, possibly within an

iterative procedure.

Modern applications can have datasets that are orders of magnitude larger

than that. To tackle this problem most current methods take one of two approaches:

exploit sparsity in the structure of the covariance matrix or reduce the dimensionality

of the problem by seeking representations of GPs on lower dimensional subspaces. In

both cases the goal is to speed up calculations, as well as reduce the size of the objects

that need to be handled and stored in memory when performing computations. An

example of the former is covariance tapering that consists of truncating the covariance

function to zero for distant observations (Furrer et al., 2006; Kaufman et al., 2008; Du

et al., 2009; Shaby and Ruppert, 2012). By using an appropriate tapered correlation

kernel, the covariance matrix becomes very sparse while remaining positive definite. An

example of the latter is the predictive Gaussian processes, as introduced by Banerjee

et al. (2008a), which represents the GP using basis functions generated by the covariance

function. This produces a reduction of the dimension of the matrix that needs to be

inverted to perform inference to a fixed, small dimension, that depends on a pre-specified

set of knots. Other extensions of predictive processes are explored in Finley et al. (2009)

5



and Guhaniyogi et al. (2011).

Another dimensionality reduction technique is the process convolution ap-

proach which operates on a reference grid and averages each location from a set of

basis kernels for the neighbouring knots (Higdon, 1998; Lemos and Sansó, 2009). Fixed

rank kriging takes advantage of a special type of covariance function which allows one to

solve exactly for the best linear unbiased spatial prediction (Cressie and Johannesson,

2008; Katzfuss and Cressie, 2011). Approaching the problem differently, circulant em-

bedding uses data augmentation and fast Fourier transforms to compute the likelihood

of the complete dataset Stroud et al. (2017); Guinness and Fuentes (2016).

Finally, one different approach to dimension reduction is the use of subregions.

These models seek to fit Gaussian processes on each subregion to then obtain a global

model through a hierarchical structure. Variants on this idea include Bayesian Treed

Gaussian Process models (Gramacy and Lee, 2008), multi-resolution models (Katzfuss,

2017) and multi-scale models (Kirsner and Sansó, 2020).The balance between the scala-

bility of these methods through block-independence and the ability to share knowledge

between regions is challenging. Moreover, the inference and predictions obtained from

the models can be sensitive to the varying creation of the subregions.

A number of other techniques have been investigated. A few of them include

the spectral domain approximation by Terres et al. (2015) and Gaussian Markov random

fields by Lindgren et al. (2011). For further information about the state of the art model-

based geostatistics methods suitable for large data sets see Banerjee (2017) and Heaton

et al. (2019).

In this work, we focus on nearest-neighbor spatial processes such as nearest-

neighbor GP (NNGP) Datta et al. (2016). These models are particularly intriguing, as it

blends features of both the dimension reduction and the sparsity approaches, formalizing

to a Gaussian process framework the popular likelihood approximation proposed in

Vecchia (1988). Nearest-neighbor processes uses the conditional distribution structure

6



of a joint likelihood to build a directed network of neighbors. By making observations

conditionally independent of non-neighboring locations, the new precision matrix has

a very sparse structure. In that case, the number of operations needed to invert the

precision matrix is limited by the number of neighboring locations allowed.

1.2 Non-stationary spatial model literature review

The second challenge that is tackled with the proposed models is that of the

non-stationarity of the land surface albedo. A spatial process w(s) is said to be second-

order stationary when

E(w(s)) = E(w(s+ h)) = constant

and

C(w(s), w(s+ h)) = C(h),

where h is the distance between two locations and C denotes the covariance function of

the process. As expected, this assumption is too rigid for the land surface albedo which

has a different correlation based on the orientation of the locations.

Previous approaches have been developed to model anisotropy in spatial fields.

Starting with spatial deformations where the observed geographic locations are mapped

to a warped space where stationarity holds (Sampson and Guttorp, 1992). One specific

example of spatial deformation is discussed in Schmidt and O’Hagan (2003) where the

model seeks to learn the true covariance matrix Σ of the Gaussian process using the

observed covariance matrix S. In Brown et al. (1994), non-stationarity occurs from the

choice of using an inverse Wishart prior for the covariance matrix within the general

multivariate normal framework. Using a different approach, Paciorek and Schervish

(2006) create a new general class of non-stationary covariance functions.

Many of the approaches for large spatial fields discussed in section 1.1 re-

sult in non-stationary processes naturally. Partition models like the ones introduced
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in Gramacy and Lee (2008) and Kim et al. (2005) construct non-stationary models by

averaging over locally stationary processes. Further examples include Fuentes (2001)

and Fuentes and Smith (2003) where the non-stationary process is a discrete or contin-

uous weighted average of stationary models for subregions of the space. Similarly, basis

function models such as low-rank approximations (Katzfuss, 2013) and multi-resolution

models (Nychka et al., 2015; Katzfuss, 2017), while heavily focused on the computa-

tional effort, induce non-stationarity unintentionally by their definition. Finally, process

convolutions also result in non-stationary processes by the way they are constructed.

In Higdon (1998), the use of basis kernel which is ultimately for computational reasons

results in an approximated Gaussian process which is non-stationary. Another example

of non-stationarity being owed to discrete convolutions processes is found in Lemos and

Sansó (2009).

In Chapter 3, we leverage the inverse Wishart prior in the multivariate normal

framework to set our initial focus on developing a non-isotropic covariance structure.

Then, we adapt the model to handle large spatial datasets by including a nearest-

neighbors idea.

1.3 Roadmap

In Chapter 2, we introduce a distributed implementation for NNGPs which

tackles multiple issues of large datasets that are often overlooked. Specifically, the

distributed approach suggested offers a solution for datasets with restricted data access

or data movement. It is often assumed in model-based inferences that one can handle a

dataset at once. As we see with increasingly large problems, this is no longer a reliable

assumption. We start by reviewing the current state of distributed spatial modeling

methodologies. Then, we develop and discuss the equivalence between the distributed

full conditionals and the original full conditionals of the NNGP model. Finally, we
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illustrate the model using simulated datasets up to 1,000,000 datapoints. Note that we

return to the distributed approach in Chapter 5 by developing a sequential technique

for daily predictions updates.

In Chapter 3, we introduce a univariate and a multivariate non-isotropic hier-

archical nearest-neighbor model. For both the univariate and the multivariate settings,

we develop two versions of what we call the nearest-neighbors Gaussian processes with

random covariance matrices (NN-RCM). The first version leverages the marginal poste-

rior distribution of the model and allows to obtain posterior inference of the covariance

parameters efficiently. The second version builds a hierarchical structure which includes

fixed effects and an observational error. This second model relies on the parallelization

of the model which has a structure reminiscent of multivariate linear regression models.

In Chapter 4, we discuss the journey that followed the development of the R

package NNRCM to accompany the model. We first walk the user through reproducible

examples of the univariate model along with a model comparison to the NNGP model.

We also present the results obtained from applying the univariate NN-RCM model to a

dataset of Mediterranean sea surface temperature. Through this application, we high-

light the lack of support for duplicate observations in the existing methods. By suggest-

ing the use of larger neighborhoods for datasets involving duplicates, we demonstrate

the increased accuracy of the resulting predictions. We then detail the implementation

of the bivariate NN-RCM model. Again through reproducible simulations we discuss

the many questions regarding multivariate nearest-neighbor spatial processes that were

unanswered by current methods. We first describe the creation of multivariate neigh-

borhoods, and then touch on the issue of misaligned sources of information. For these

examples, we compare our results to predictive processes as NNGPs do not offer a

multivariate implementation of their model.

In Chapter 5, we apply the two methodologies developed to the land surface

albedo dataset. As an initial exploration, we investigate the 10-day albedo average which
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is created along with the daily albedo assessments. We present an alternative to the

current averaging methodology by applying our divide-and-conquer NNGP approach

to illustrate its potential in a sequential updating setting. Subsequently, we use the

bivariate NN-RCM model to extract the common surface between the two satellites and

quantify the discrepancy surface in the process.

Finally, in the last chapter, we explore the next steps for our model, including

our initial thoughts for a distributed implementation of the NN-RCM models. We also

summarize our findings in the surface albedo case study and discuss the next phase of

the analysis.
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Chapter 2

Distributed Nearest-Neighbor Gaussian

Processes

While data storage systems has been improved to accommodate large flows

of information, model-based approaches to analyse spatial observations rely on data

access and ultimately on data movement. Yet, in most cases, statistical models take for

granted that the data can be accessed and manipulated all at once. It is not uncommon

for large data collections to be stored in multiple locations (distributed data). Similarly,

data may be stored in one location but be too large for computations to be performed

at once. In addition, it is often the case that not all data are available at the same

time, as in the case of sequential data retrieval processes. Under these three possible

scenarios, our primary objective is to adapt a powerful and flexible statistical method to

perform spatial interpolation to keep up with distributed data structures. Distributed

computing and parallel implementation are key to the next significant gain in efficiency

of statistical inference.

In this chapter, we introduce a divide-and-conquer approach for nearest-neighbor

Gaussian processes (NNGP). The gain in efficiency from the distributed approach is of

particular interest as it does not sacrifice accuracy in the process. In Section 2.1, we
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review the distributed approach for low-rank models suggested by Katzfuss and Ham-

merling (2014). In Section 2.2, we introduce NNGPs and detail our divide-and-conquer

strategy. In Section 2.3, we illustrate the method by applying it to three synthetic

datasets and testing the runtime. A final demonstration of the potential for a sequen-

tial updating framework will be presented in Chapter 5 by applying our method to the

Geostationary Operational Environmental Satellites (GOES) East and West satellites

for three days of July 2000.

2.1 Distributed computing for spatial models

Several distributed methods for spatial models have been suggested over the

last few years. The idea to define independent data subregions is explored in Heaton

et al. (2017). Other approaches have looked at aggregating posterior samples into

a global posterior distribution. Meta-Kriging is defined in Guhaniyogi and Banerjee

(2017) and Distributed Kriging (DISK) is introduced in Guhaniyogi et al. (2017). The

latter combines posterior samples from a collection of MCMC samples by averaging

over the empirical quantiles of each samples. While the strength of these frameworks is

that they are agnostic to the choice of model, an important drawback is the assumption

that the subsets are created at random and contain locations for each region of the

spatial domain. In many applications, it is often the case that data is stored by region,

violating the assumption. In those situations, an initial randomization step would be

required to proceed with the technique which can be costly and inefficient. A more

desirable approach will tackle the dataset as presented without incurring additional

data movement costs. In the next section, we review the distributed implementation

of low-rank models by Katzfuss and Hammerling (2014) which uses a similar approach

to our suggestion for the distributed implementation of NNGPs. As opposed to other

approaches, these methodologies are not approximations. The inference obtained is
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exactly the same as under the direct implementation.

2.1.1 Parallel inference for low-rank models

While low-rank models already achieve a significant improvement in compu-

tational efficiency compared to the implementation of the full GP, Katzfuss and Ham-

merling (2014) took a step further by using parallelization to achieve an even greater

speed gain. Their divide-and-conquer approach was developed assuming that a dataset

can be separated into J servers. They focus on the model

y(sj,i) = w(sj,i) + ϵ(sj,i) (2.1)

where sj,i is the location of observation i on server j for i = 1, ..., nj , j = 1, ..., J , and

ϵ(sj,i) ∼ N(0, vϵ(sj,i)) is independent of y for a known function vϵ. In spatial low-rank

models, the approximation of the true underlying process is based on a set of m basis

functions B:

w(sj,i) = B(sj,i)
′
η + δ(sj,i),

where δ ∼ N(0, vδ(sj,i)) is spatially independent and independent of η. Assuming

the covariance parameters are fixed, and using a normal prior, η ∼ Nm(ν0,K0), the

posterior distribution of η is Nm(νy,Ky), where

K−1
y = K−1

0 +R, R = B
′
1:JV

−1
1:J B1:J

νy = Ky(K
−1
0 ν0 + Γ), Γ = K

′
1:JK

−1
1:Jy1:J ,

where B1:J = (B1, ..., BJ) is a vector of matrices where each Bj = (B(sj,1), ..., B(sj,nj ))

and V1:J = blockdiag(V1, ..., VJ) where each Vj = diag(vδ(sj,1) + vϵ(sj,1), ..., vδ(sj,nj ) +

vϵ(sj,nj )). Because of the block structure of V1:J , the above calculations become a sum

of quantities that can be computed independently on each server:

R =

J∑
j=1

B
′
jV

−1
j Bj , Γ =

J∑
j=1

B
′
jV

−1
j yj .
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The main algorithm consists of computing the posterior parameters on each

server j, moving the results to a central node and adding them to obtain the posterior

parameters for the joint model. This is a special case of the algorithm developed by

Qian (2018) discussed in Section 2.2.2.

2.2 Distributed NNGP

Let w(s) ∼ GP (0, Cθ) denote a zero-centered GP where s is any location in a

space D. The process relies on a valid covariance function Cθ, θ = (τ2, ϕ), which only

depends on the distance between pairs of observations. Let S = s1, ..., sk be any set

of reference locations, possibly involving a grid where the indexes 1, ..., k are tied to a

specified ordering of the locations. Note that the choice of reference set is not limited

to a grid and can be expanded to include as many locations as needed. Since this is a

fixed subset of D, wS ∼ Nk(0, Cθ,S) where Cθ,S is the covariance matrix corresponding

to the locations in S, generated by the covariance function Cθ. The joint distribution

of wS can be expressed using a chain of conditional distribution:

p(wS) = p(w(s1))
k∏

i=2

p(w(si)|w(s1), ..., w(si−1)).

The Vecchia approximation as introduced in Vecchia (1988) suggests that for a large

i, the conditional distribution above includes superfluous information. It is therefore

appropriate to restrict the conditional distribution to an approximation of order m

based on the Euclidean distance between the locations. This likelihood approximation

method implies that the locations that are closest to si influence the value of w(si) the

most. Applying this to the full joint distribution, we obtain

p̃(wS) = p(w(s1))

k∏
i=2

p(w(si)|wN(si)),

where N(si) ⊂ {s1, s2, ..., si−1} is a neighborhood which includes the m closest locations

to si. This sequential structure produced by the ordering of the reference locations
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creates a directed acyclic graph which guarantees a proper joint density. Using the

conditional normal distribution density, we obtain the following approximated joint

distribution

p̃(wS) =

k∏
i=1

N(w(si)|BsiwN(si), Fsi),

where

Bsi = Cθ,si,N(si)C
−1
θ,N(si)

Fsi = Cθ,si − Cθ,si,N(si)C
−1
θ,N(si)

Cθ,N(si),si ,

where Cθ,si,N(si) is a vector where each entry is the covariance between si and its

neighbors N(si), Cθ,N(si) is a symmetric matrix with elements corresponding to the

covariance of each pair of neighbors, and Cθ,si is the variance of si. In all cases, the

covariances are fully specified by the covariance function Cθ. The resulting distribution

for p̃(wS) is a multivariate normal distribution with covariance matrix denoted C̃θ,S .

Let u be any location in D, and N(u) be the set of m neighbors of u in S. As

detailed in Datta et al. (2016), given a parent spatial process and a fixed reference set S,

we can construct a new process over D. In this case, the original process is GP (0, Cθ),

therefore for a fixed set of locations U = u1, ..., un, the nearest-neighbors density of wU

conditional on wS is

p̃(wU |wS) =
n∏

i=1

p(w(ui)|wN(ui)) (2.2)

=
n∏

i=1

N(w(ui)|BuiwN(ui), Fui), (2.3)

where

Bui = Cθ,ui,N(ui)C
−1
θ,N(ui)

Fui = Cθ,ui
− Cθ,ui,N(ui)C

−1
θ,N(ui)

Cθ,N(ui),ui

From this point, we can define a new covariance function C̃∗
θ. For any two
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locations u1 and u2 in D, we have

C̃∗
θ(u1, u2) =


C̃θ,s1,s2 , if u1 = s1, u2 = s2

Bu1C̃θ,N(u1),s2 , if u1 /∈ S, u2 = s2

Bu1C̃θ,N(u1),N(u2)B
′
u2

+ 1(u1=u2)Fu1 , if u1, u2 /∈ S

where C̃θ is the covariance matrix associated with the density of w̃S . This completes

the construction of the new spatial process which is denoted NNGP (0, C̃∗
θ).

2.2.1 Current implementation

The current implementation of the NNGP model takes advantage of a fully

parallel algorithm. The initial spatial model is as follows,

y(si) = x(si)β + w(si) + ϵ(si),

where si is the location of observation i for i = 1, ..., n and x(si) is a vector of dimension

p. As shown in Finley et al. (2018), after integrating out the random effects in the

collapsed NNGP model, we are left with a multivariate Gaussian distribution with a

sparse precision matrix. The computations with this matrix can then be achieved in

parallel. A similar parallelization is obtained in their NNGP-response model which does

not allow for the random effects to be recovered. The authors also suggest a parallel

MCMC-free implementation which chooses the covariance parameters θ based on the

minimization of the predictive mean squared error.

All three implementations of the model have computational complexity that

are linear in n. The order of computations also depend on the size of the neighborhood

(m3) and the size of the parameter space (p3). In the spatial settings, we assume that m

and p are sufficiently small and therefore have a minimal impact of the computational

efficiency. The issue that arises in these three algorithms however is the cost of the

communication at each step. For large datasets, handling the data in one location can
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be undesirable or even impossible. Moreover, when data is incoming sequentially, this

implementation requires the algorithm to be performed every time from scratch, rather

than update the results with every new batch of observations. In the next section,

we propose a new implementation of NNGPs which solves the communication issue by

reducing the communication cost to the size of the reference set.

2.2.2 Distributed implementation of posterior inference

The core computational advantage of NNGPs resides in the sparsity of the

resulting precision matrix. Such sparsity can be explicitly leveraged in a dimension

reduction setting, as illustrated in Banerjee (2017), where the conditional distribution

of wU on wS is rewritten as a linear model:

w(ui) =

m∑
j=1

aj(ui)w(sj) + η(ui), η(ui) ∼ N(0, δ2(ui)), (2.4)

where aN(ui)(ui) = (a1(ui), ..., am(ui)) and δ2(ui) are fully specified by the covariance

function. We can compute the values of aN(ui)(ui) and δ(ui) efficienctly as:

aN(ui)(ui) = C−1
θ,N(ui)

Cθ,N(ui),ui
,

δ2(ui) = Cθ,ui
− Cθ,ui,N(ui)aN(ui)(ui).

The only inverse matrices to be computed have size m. For that reason, the compu-

tational complexity is capped at O(m3). The remaining operations, the matrix-vector

multiplication and the dot product are of order O(m2) and O(m) respectively. Com-

pleting the previous calculations for all datapoints is therefore linear in n, the number

of observed locations.

Rewriting Equation 2.4 for the joint model of U and including p covariates

encoded in a matrix X, we have

y =
[
X A

] β

wS

+ ξ, ξ ∼ Nn(0, D + τ2I),
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where A is the matrix formed by the vectors aN(ui)(ui) where ∀sj /∈ N(ui), asj (ui) = 0,

and D is a diagonal matrix with elements δ2(ui). This linear representation allows

us to use the split-and-merge idea presented in Qian (2018) to compute the posterior

distribution of the parameters β, wS and σ2. The proposed method uses the posterior

parameters of the multivariate Gaussian model computed on separate blocks of data.

With a careful aggregation of the information in each block, we can recover the posterior

parameters for the full dataset without loss of information. More details about the

process will follow in the next section.

2.2.2.1 Posterior inference for β, wS and σ2

Our approach focuses on the implementation of the NNGP in three possible

scenarios: The data are too large to be handled at once, thus we seek a divide and

conquer strategy where the data are split into J groups, and the processing of each

group is assigned to a different processor; The data are in a distributed storage system,

and it is not practical or possible to concentrate it in one device, thus, we seek to process

it locally and then blend the results; The data are obtained sequentially, and we seek a

compatible sequential strategy to process it. The implementation of the NNGP model

in Datta et al. (2016) suggests to use U as the reference set. However, this is not a

feasible choice in the cases considered above. Thus, the implementation of a distributed

approach relies on the use of a smaller reference set of dimension k, which is assumed

to be known by all servers.

Assuming the prior for β is Np(0,K
−1
β ), and the prior for σ2 is IG(a, b) the

joint posterior distribution for β, wS and σ2 follows a normal-inverse-gamma (NIG)

model, NIGp+k(µ
∗, V ∗, a∗, b∗) where
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µ∗ = V ∗
([

X A

]′
G−1y

)
V ∗ =

([
X A

]′
G−1

[
X A

]
+ K̃

)−1

a∗ = a+
n

2

b∗ = b+
1

2

(
y

′
y − µ

′∗V ∗µ∗
)
,

where σ2G = D+ τ2I, and K̃ = blockdiag(C̃−1
θ,S ,Kβ). Applying the divide-and-conquer

construction from Qian (2018) with the assumption that we have J blocks, the param-

eters of the posterior distribution are equivalently computed by

µ∗ = V ∗

 J∑
j=1

[
Xj Aj

]′
G−1

j yj


V ∗ =

 J∑
j=1

[
Xj Aj

]′
G−1

j

[
Xj Aj

]
+ K̃

−1

a∗ = a+
J∑

j=1

nj

2

b∗ = b+
1

2
µ∗′K̃µ∗ +

1

2

J∑
j=1

(µj − µ∗)
′
(V −1

j )(µj − µ∗),

where

µj = Vj

[
Xj Aj

]′
G−1

j yj

Vj =

([
Xj Aj

]′
G−1

j

[
Xj Aj

])−1

,

and Aj , Xj , Gj and yj include the locations ui corresponding to block j.

The complexity of the posterior calculations for each block are linear in nj .

To compute µj , the calculations involve matrix multiplication of order O(nj(p + k)).

To compute the matrix Vj , the calculations are of order O(nj(p + k)2). Note that

these complexities do not account for the sparsity of the matrices. By using the sparse
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algebra available in the Matrix package developed by Bates and Maechler (2018), we

substantially decrease the number of computations required to obtained the previous

quantities. Looking at the aggregation of the posterior parameters into the global

posterior inference, the calculations required for µ∗ and V ∗ have complexity O((p+k)2)

and O((p+ k)3) respectively. Finally, the calculations needed to compute the posterior

parameters for σ2 are constant for a∗ and of order O((p + k)3) for b∗. The gain is

the ability to fully distribute the computations across the servers requiring them to

communicate only the values of µj and Vj . Since both objects are small in size, p + k

and (p+ k)× (p+ k) respectively, the communication cost is greatly reduced.

2.2.2.2 Posterior inference of θ

The posterior inference for the covariance function parameters θ can be ob-

tained under two different approaches. The first one consists of estimating θ by max-

imizing its marginal posterior distribution. While this method is highly efficient as it

does not require to sample the random effects, it only provides a point estimate for

the parameters. A more complete approach uses block sampling within an MCMC.

The drawbacks of this method is that it requires constant communication between the

servers and the user node. More specifically, at each iteration, the new parameters

must be communicated to the user node, and the covariance matrix must be fully com-

puted for the reference set. While both methods are feasible, we favor the former to

maintain the efficiency of the proposed distributed approach. As previously mentioned,

the fast implementation of the NNGP model also uses an MCMC-free version with the

optimization over a grid of values for θ.

For both approaches we require the marginal likelihood. This can be computed

using the outputs from each server, and is given as

m(y|θ) = p(y|β,wS , σ
2,θ)p(β,wS , σ

2|θ)
p(β,wS , σ2|y,θ)

. (2.5)
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This expression holds true for any value of β, wS and σ2. By fixing β,wS = 0 and

σ2 = 1 the sampling distribution simplifies to:

p(y|β = 0,wS = 0, σ2 = 1,θ) = (2π)−
n
2

∣∣∣G∣∣∣−1/2

exp

(
−1

2
yTG−1y

)
Finally, since G is diagonal, we can further rewrite the expressions to represent the J

servers

yTG−1y =

n∑
i=1

y(si)
2

δ(si) + τ2
=

J∑
j=1

nj∑
i=1

y(sji)
2

δ(sji) + τ2∣∣∣G∣∣∣−1/2

=
J∏

j=1

∣∣∣Gj

∣∣∣−1/2

.

In terms of the joint prior and posterior distributions, we need to evaluate the

terms at the chosen values for β, wS and σ2. The evaluation can be done at the user

node level using the aggregated posterior parameters obtained from fitting the model.

Therefore, the marginal likelihood in Equation 2.5 becomes

m(y|θ) =
p(y|β = 0,wS = 0, σ2 = 1,θ)p(β = 0,wS = 0, σ2 = 1|θ)

p(β = 0,wS = 0, σ2 = 1|y,θ)

=
(2π)−

n
2

∣∣∣G∣∣∣−1/2

exp
(
−1

2y
TG−1y

)
|K̃|−1/2

|V ∗|−1/2e−
1
2
µ∗TV ∗−1µ∗

Again the complexity of computations for the marginal likelihood with respect

to nj is linear. The computation of the prior and posterior distributions for the specified

values of β, wS and σ2 are of order O((p + k)3) due to the presence of determinants

and inverse matrices. The order of computations are therefore highly dependent on

the choice of the reference set. If a small reference set is adequate to obtain accurate

posterior inference on the model, then this is not an issue. On the other hand, if

one requires a larger reference set, then taking advantage of the sparsity of V ∗ will be

essential.
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2.2.3 Posterior predictive distribution

Using the posterior inference for β, wS , and θ, we can obtain the posterior

predictive distribution for any new location u∗. Denote N(u∗) as the set of m neighbors

of u∗ in the reference set S. After obtaining B samples of the random effects w
(b)
S ,

b = 1, ..., B using the posterior inference of µ∗ and V ∗, we can obtain a posterior

predictive sample w(b)(u∗) from

w(b)(u∗) =
m∑
j=1

a
(b)
j (u∗)w(b)(sj)

where the linear coefficients are computed from the covariance function as

a
(b)
N(u∗)(u

∗) = C−1
θ∗,N(u∗)Cθ∗,N(u∗),u∗ ,

where θ∗ is the posterior point estimate of θ obtained from maximizing the marginal

likelihood.

2.3 Simulation

As a first demonstration of the potential of our algorithm, we applied our

distributed approach to a range of synthetic datasets. The objective is to illustrate the

potential scalability of the methodology when varying the size of the dataset and the

number of blocks used to perform model inference.

The three simulated datasets varied in size from 10,000 datapoints to 1 million

datapoints. The observed locations bounded by a square area were randomly generated.

The observations were then sampled based on a spatial process with a Matérn covariance

function with smoothness, range and variance parameters equal to ν = 3/2, ϕ = 1/3 and

σ2 = 1 respectively. In addition, an observational error was added on the observations

using a Gaussian distribution with variance τ2 = 0.5.

To test the runtime of our algorithm, we repeated the maximization process

using an increasing number of blocks of data from 1 block (original dataset) to 1000
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Figure 2.1: Runtime results for simulations with varying sample size and increasing

number of blocks of data.

sample size 10,000 100,000 1,000,000

1 block 0.90 7.89 75.15
10 blocks 0.39 1.86 18.45
25 blocks 0.38 1.85 18.34
50 blocks 0.48 1.88 17.13
100 blocks 0.50 1.90 17.05
500 blocks 1.27 2.51 16.81
1000 blocks 2.25 3.30 22.32

Table 2.1: Runtime in minutes for each test run

blocks. For each scenario, the blocks are generated randomly. The computer used

for this work was a Razer Blade 15 with Intel(R) Core(TM) i7-10750H Processor with

16.0GB of RAM. The six dual-cores give us a total of 12 cores to run the model. In

Figure 2.1, we plot the runtime for each number of blocks as a percentage of the runtime

with 1 block. See Table 2.1 for a summary of the runtimes in minutes. We notice that

the runtime plateaus and then increases for large number of blocks. This implies that

the gain in efficiency is optimal when using a moderate number of blocks. We also

conclude that the gain in efficiency is more significant for larger datasets.
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2.4 Conclusions and future work

As datasets continue to grow, the need to bring our statistical methods to the

data rather than have the data come to us will become a priority. With many spatial

applications, the cost of moving data to a central location has become a bottleneck

in our ability to perform accurate statistical inference. In this chapter, we have laid

out a technique to speed up the implementation of NNGP models by distributing the

computations by servers. Not only can we improve the computational aspect by a factor

proportional to the number of servers available to the user, we also prevent the need to

manipulate the data all at once.

In that light, our method is a good alternative for sequential problems where

data is collected over time. The algorithm allows the user to fit the model and update the

posterior parameters as new data become available. This idea is presented in section

5.1 where we use daily albedo assessments to provide time evolving predictions over

multiple days. Alternatively, instead of aggregating the posterior parameters for all

blocks of data, we can gradually phase out the earlier time points with the use of a

moving window. For example, in the case of the albedo assessments where we have

daily updates, we could obtain spatial predictions each day by only aggregating the

posterior inference from the two previous days. This would allow to see the evolution

of the data without having to fit the model over the same day multiple times.

While the divide-and-conquer methodology presented focused on the univariate

case, the NNGP model has been extended to the multivariate setting. Many applica-

tions rely on the joint modeling of multiple measurements and the implementation of a

distributed approach would be largely beneficial.
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Chapter 3

Nearest-Neighbor Gaussian Processes

with Random Covariance Matrices

As previously stated, the increasing size of spatial datasets urges the develop-

ment of efficient and scalable spatial models. Many methods explored rely on isotropic

models, more specifically on iterations on Gaussian Processes. However, there are many

cases where distance is not sufficient to determine the correlation between observations.

We therefore suggest an extension to nearest-neighbor Gaussian process (NNGP) as a

non-stationary and non-isotropic model.

In what follows, we develop both a univariate and a multivariate normal-

inverse-Wishart (NIW) spatial model with an implementation that relies on a fully

parallel algorithm. We first discuss the general framework of the model which is remi-

niscent of a multivariate linear regression model. Then we introduce a marginal model

which does not allow for fixed effects and observational errors. The advantage of this

condensed model is that inference can be obtained using optimization and still provide

us with full posterior predictive uncertainty. The second approach is a more complete

hierarchical model which includes fixed effects, spatial random effects and an obser-

vational error. Not only is this version more realistic but it also has the potential to
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output the full posterior inference for all the parameters of interest.

3.1 Model framework

We define a nearest-neighbors Gaussian Process with random covariance ma-

trix (NN-RCM) based on the NIW regression framework. Let S = s1, ..., sk be a set

of locations for which we have spatially dependent q-variate observations y(S), the

proposed model is:

y(S)|Σ ∼ Nkq(0,Σ),

Σ ∼ IW (α, (α− kq − 1)Cθ),
(3.1)

where Cθ, when no missing values are present, is a kq × kq covariance matrix obtained

from a valid cross-covariance function with parameters θ. A cross-covariance function

Kθ takes two locations, si and sj and returns a q × q covariance matrix where each

element is the covariance between the respective components:

Kθ(si, sj) =


cov(y1(si), y1(sj)) · · · cov(y1(si), yq(sj))

...
. . .

...

cov(yq(si), y1(sj)) · · · cov(yq(si), yq(sj))

 .

The covariance matrix Cθ is therefore constructed from using the covariance from the

appropriate components for each location.

The model in Equation 3.1 is such that E(Σ) = Cθ. Note that as α → ∞, Σ

converges to its mean, reverting the model back to a regular GP. This proposed model,

while relying on a valid cross-covariance function apriori, offers many advantages in com-

parison to GPs. Primarily, the suggested approach allows for the expected covariance

to be adjusted with respect to what was observed.
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3.1.1 Vecchia’s approximation

By introducing an ordering of the locations based on their index, we can write

the joint multivariate normal model as the product of conditional normal distributions.

p(y(S)) =
k∏

i=1

p(y(si)|y(s1), ...,y(si−1))

Given that y(S) is a zero-mean Gaussian process, we can express the recursive condi-

tional representation of y(si) using a linear combination of y(s1), ...,y(si−1). This in

fact shows the decomposition of Σ into a lower triangular matrix Ls and a diagonal

matrix Λ, both of size kq × kq,

(Ikq − Ls)y(S) = es, es ∼ Nkq(0,Λ),

where Ikq is the identity matrix and Σ = (Ikq−Ls)
−1Λ(Ikq−Ls)

−T . To induce sparsity,

Vecchia’s approximation, which consists of reducing the size of the conditioning set to

a small number m of variables, has become increasingly popular (Vecchia, 1988; Datta

et al., 2016). Denote N(si) as the m closest neighbors of si in {s1, ..., si−1} ∈ S when

i ≥ m, and as the set {s1, ..., si−1} when i < m. The joint density can therefore be

written as:

p(y(S)) ≈
k∏

i=1

p(y(si)|yN(si)),

which corresponds to setting the elements of the matrix L outside of N(s) to zero.

3.1.2 Linearization of the NIW model

The distribution of y(si) given its m neighbors is available in closed form since

the joint distribution of y(S) is a multivariate normal distribution. We first denote the

joint covariance matrix between si and itsm neighbors as the submatrix of Σ, Σ{si,N(si)}:

Σ{si,N(si)} =

Σsi,N(si) Σsi,N(si)

ΣN(si),si ΣN(si),N(si)

 .
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Using this decomposition, we can write the conditional distribution of y(si) as:

p(y(si)|yN(si)) = Nq(Γ(si)yN(si),Φ(si)),

where

Γ(si) = Σsi,N(si)Σ
−1
N(si),N(si)

,

Φ(si) = Σsi|N(si) = Σsi,si − Σsi,N(si)Σ
−1
N(si),N(si)

ΣN(si),si .

The form of Γ(si) and Φ(si) come from the Bartlett decomposition which gives us the

equivalence between Σ{si,N(si)} and

Σ{si,N(si)} =

Φ(si) + Γ′(si)ΣN(si),N(si)Γ(si) Γ(si)
′ΣN(si),N(si)

ΣN(si),N(si)Γ(si) ΣN(si),N(si)


The properties and distributions of Γ(si) and Φ(si) are then proven in a Lemma from

Brown et al. (1994) and are also discussed in Dawid and Lauritzen (1993).

Lemma 3.1.1. Suppose Σ{si,N(si)} is a matrix of size (m+ 1)q × (m+ 1)q and follows

a Wishart distribution IW (δ, C). After the transformation to ΣN(si),N(si),Γ(si) and

Φ(si), the following hold:

1. ΣN(si),N(si) is independent of Γ(si) and Φ(si)

2. ΣN(si),N(si) ∼ IW (δ, CN(si),N(si))

3. Φ(si) ∼ IW (δ +m,Csi|N(si))

4. Γ(si)|Φ(si) ∼ Nm,q(C
−1
N(si),N(si)

CN(si),si , C
−1
N(si),N(si)

,Φ(si)).

Inspired by the approach from Dobra et al. (2004), we apply this result to our

model in Equation 3.1 to get a model for y(s) that is compatible to the global model

for y(S). The equivalence is summarized in Theorem 3.1.1. For clarity purposes, we

first introduce the matrix Normal distribution notation in Definition 3.1.1.
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Definition 3.1.1. Let X be an n × p random matrix that follows a matrix normal

distribution denoted Nn,p(M,U, V ). The three parameters defining the matrix normal

probability density function include M , an n×p location matrix, U an n×n scale matrix

and V , a second scale matrix with size p× p. The probability density function of X has

the form

p(X|M,U, V ) =
exp

(
−1

2tr(V
−1(X −M)′U−1(X −M)))

)
(2π)np/2|V |n/2|U |p/2

.

Theorem 3.1.1. Let (yS ,Σ) be a kq-dimensional Normal-Inverse-Wishart hierarchical

model, where k ≥ 2 as follows;

yS |Σ ∼ Nkq(0,Σ)

Σ ∼ IWishart(α, (α− kq − 1)Cθ).

The model is such that E(Σ) = Cθ, where Cθ is obtained from a valid cross-covariance

function with parameters θ. The joint distribution of si and its m nearest-neighbors

N(si) can be written as

y(si),yN(si)|Σ ∼ N(m+1)q(0,Σ{si,N(si)}),

where Σ{si,N(si)} is an (m + 1)q × (m + 1)q submatrix of Σ which corresponds to the

location of si and its m neighbors. The conditional distribution of y(si) given its m

nearest-neighbors N(si) can be written as

y(si)|yN(si),Σ ∼ Nq(Σsi,N(si)Σ
−1
N(si),N(si)

yN(si),Σsi,si − Σsi,N(si)Σ
−1
N(si),N(si)

ΣN(si),si)

Σ{si,N(si)} ∼ IW (α− kq + (m+ 1)q, (α− kq − 1)Cθ,{si,N(si)}.

or equivalently as

y(si)|yN(si),Γ(si),Φ(si) = Nq(Γ
′(si)yN(si),Φ(si))

Γ(si)|Φ(si) ∼ Nmq,q(C−1
θ,N(si)

Cθ,N(si),si ,
1

(α− kq − 1)
C−1
θ,N(si)

,Φ(si))

Φ(si) ∼ IW
(
α− kq + (m+ 1)q, (α− kq − 1)Cθ,si|N(si)

)
,

where Cθ,si|N(si) = Cθ,si − Cθ,si,N(si)C
−1
θ,N(si)

Cθ,N(si),si .
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Hence, the covariance matrix likelihood has been transformed into an aggregate

of normal linear regression models. This series of normal linear regressions intrinsically

offers a methodology to parallelize the calculations needed for the posterior inference of

the model. The strong computational efficiency potential will be discussed further in

chapter 4 where we develop an R package to fit the presented model.

3.1.3 Extension to a stochastic process

Finally, we demonstrate that the model introduced is a valid stochastic process.

Let U = u1, ..., un be any location outside our set of observed values S, and let N(ui)

denote the neighborhood of ui in S. The conditional density

p̃(yU |yS ,ΣU ,S) ∼
n∏

i=1

p(y(ui)|yN(ui),Σui,N(ui))

is proper because N(ui) ∈ S. Since p̃(yS) is a multivariate Normal distribution, we

have

p̃(yU |yS ,ΣU ,S) ∼
n∏

i=1

N(Γ(ui)yN(ui),Φ(ui)).

To extend the model to a process, we generalize with the set V = v1, ..., vb, which

contains any location in space. Denote the non-overlapping portion with the observed

values as U = V\S. The joint conditional density for the set V is

p̃(yV |ΣV) =

∫
p̃(yU |yS ,ΣU ,S)p̃(yS |ΣS)

∏
S\V

d(yS),

where we integrate out the locations in S that do not appear in V. Since p̃(yU |yS ,ΣU ,S)

and p̃(yS |ΣS) are multivariate Normal distributions, the resulting distribution p̃(yV |ΣV)

is also a multivariate Normal. The covariance for two locations v1, v2 ∈ V, conditional

on ΣV , is,
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Σv1,v2 =


Σs1,s2 , if v1 = s1, v2 = s2

Γ(v1)ΣN(v1),s2 , if v1 /∈ S, v2 = s2

Γ(v1)ΣN(v1),N(v2)Γ
′
(v2) + 1(v1=v2)Φ(v1), if v1, v2 /∈ S.

In summary, we have developed a multivariate nearest-neighbor non-stationary

stochastic process with a tremendous potential for parallel computations. The NN-RCM

model creates a dedicated non-isotropic framework that leverages the advantages of mul-

tivariate linear regression in terms of computational efficiency. As will be demonstrated

in the next section, the possibility to marginalize the spatial random effects furthers

even more the ability of obtaining fast posterior inference.

3.1.4 Special case: univariate observations

We briefly highlight the important case of univariate spatial observations. By

setting q = 1 in the previous model definition, we obtain a generalization of the model

in Dobra et al. (2004):

y(si) = γ ′(si)yN(si) + ν(si), ν(si) ∼ N(0, ϕ(si)),

γ(si)|ϕ(si) ∼ Nm

(
C−1
θ,N(si)

Cθ,N(si),si ,
ϕ(si)

(α− k − 1)
C−1
θ,N(si)

)
,

ϕ(si) ∼ IG
(
α− k + 1 +m, (α− k − 1)(Cθ,si − Cθ,si,N(si)C

−1
θ,N(si)

Cθ,N(si),si)

)
.

3.2 Marginal NN-RCM model

The first version of the model that we will consider focuses on creating a

response model for predictions. By starting with the proposed model and integrating

out the random effects Γ and Φ, we obtain a marginal model which is specified by

two sets of parameters α and θ. The goal is to develop an efficient method to obtain

the inference on α and θ and use it for prediction purposes. In the following section,
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we discuss the steps to obtain the posterior marginal distribution and the suggested

methodology to be employed to obtain predictions.

3.2.1 Posterior inference for α and θ

Obtaining the full posterior inference for θ, the parameters of the covariance

function Cθ, requires the use of MCMC which can be costly and ineffective. We suggest

instead to maximize the posterior distribution of θ to obtain the maximum aposteri-

ori point estimates for θ. The optimization can be implemented using a fully parallel

algorithm which makes the evaluation independent of the size of the dataset. For maxi-

mization purposes, we can evaluate the posterior distribution of θ upto a proportionality

constant,

π(θ|yS) ∝
kq∏
i=1

m(y(si)|yN(si),θ)π(θ).

Lemma 3.2.1. The marginal distribution of y(si) conditional on its qm neighbors is

m(y(si)|yN(si),θ) =

√
1

π

Γ
(
α−kq+mq+2

2

)
Γ
(
α−kq+mq+1

2

) |Vθ,{si,N(si)}|
α−kq+mq+1

2

|(Vθ + S){si,N(si)}|
α−kq+mq+2

2

×
|(Vθ + S)N(si)|

α−kq+mq+1
2

|Vθ,N(si)|
α−kq+m

2

,

where Vθ = (α− kq − 1)Cθ and S = yy′.

Proof. Note that for clarity purposes, we will assume that we are handling univariate

observations, that is, q = 1. Starting with the model in Equation 3.1, we can find

the marginal distribution of y(si) conditional on its m neighbors using the following

equivalence,

m(y(si)|yN(si),θ) =
m(y(si),yN(si)|θ)

m(yN(si)|θ)
. (3.2)
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To find the joint marginal distribution of y(si) and its m neighbors, we inte-

grate out the covariance matrix Σ from the likelihood function. Recall that

y(si),yN(si)|Σ,θ ∼ Nm+1(0,Σ{si,N(si)}),

Σ{si,N(si)}|θ ∼ IWishart(α− k +m+ 1, Vθ,{si,N(si)}),

Vθ,{si,N(si)} = (α− k − 1)Cθ,{si,N(si)}

where Cθ,{si,N(si)} is an (m + 1) × (m + 1) submatrix of Cθ which corresponds to the

location of si and its m neighbors. Therefore, we find the marginal distribution of

y(si),yN(si) as,

m(y(si),yN(si)|θ) =
(

1

2π

)m+1
2 2−

(α−k+m+1)(m+1)
2

Γm+1

(
α−k+m+1

2

) |Vθ,si |
α−k+m+1

2

×
∫

|Σ{si,N(si)}|
−α−k+2m+4

2 e

(
− 1

2
tr
(
Σ−1

{si,N(si)}
(Vθ+S){si,N(si)}

))
dΣ{si,N(si)},

where S = yy′. Simplifying the expression, we obtain

m(y(si),yN(si)|θ) =
(

1

2π

)m+1
2 2−

(α−k+m+1)(m+1)
2

Γm+1

(
α−k+m+1

2

) Γm+1

(
α−k+m+2

2

)
2−

(α−k+m+2)(m+1)
2

×
|Vθ,{si,N(si)}|

α−k+m+1
2

|(Vθ + S){si,N(si)}|
α−k+m+2

2

=

(
1

π

)m+1
2 Γ

(
α−k+m+2

2

)
Γ
(
α−k+1

2

) |Vθ,{si,N(si)}|
α−k+m+1

2

|(Vθ + S){si,N(si)}|
α−k+m+2

2

.

Similarly, the marginal distribution for the neighbors of y(si) is found to be

m(yN(si)|θ) =
(
1

π

)m
2 Γ

(
α−k+m+1

2

)
Γ
(
α−k+1

2

) |(Vθ,N(si)|
α−k+m

2

|(Vθ + S)N(si)|
α−k+m+1

2

,

Using the two joint marginal distributions in Equation 3.2, we can find the marginal

distribution of y(si) given its m neighbors,

m(y(si)|yN(si),θ) =

√
1

π

Γ
(
α−k+m+2

2

)
Γ
(
α−k+m+1

2

) |Vθ,{si,N(si)}|
α−k+m+1

2

|(Vθ + S){si,N(si)}|
α−k+m+2

2

|(Vθ + S)N(si)|
α−k+m+1

2

|Vθ,N(si)|
α−k+m

2

.
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For the implementation of the optimization problem, we look at the summation

of the log marginals. Moreover, since the terms Γ
(
α−kq+mq+2

2

)
and Γ

(
α−kq+mq+1

2

)
are

very large, we can use the log-implementation of the functions or an approximation of

the ratio. One possible approximation is as follows

Γ
(
α−kq+mq+2

2

)
Γ
(
α−kq+mq+1

2

) ≈
√

α− kq +mq + 2

2
− 1.

Under the assumption that the prior distribution on θ is proper, the posterior distribu-

tion is also guaranteed to be proper. In the next section, we discuss our suggestions for

the choice of prior distributions on α and θ.

3.2.2 Prior distribution of α and θ

The parameters that constitutes θ depend on the choice of correlation function

used for the model. In the univariate setting, the usual spatial correlation functions are

categorized by families with the most common ones including the Matérn, the Gaussian

and the Spherical families. In particular, the Matérn family has become the most

popular choice of spatial covariance function due to its flexibility. The Matérn family

depends on two parameters the range parameter ν and the smoothness parameter κ:

Cν,κ(d) =
2κ−1

Γ(κ)

(√
2κ

d

ν

)κ

Kκ

(√
2κ

d

ν

)
,

where Γ is the gamma function and Kκ is the modified Bessel function of the second

kind. In addition, we also include a nugget ξ2 to account for the initial lag at the zero

distance. Finally, we complete θ with the partial sill σ2 to obtain the final covariance

matrix Cθ = σ2(Cν,κ + ξ2I).

The difficulty in imposing valid priors for the range parameter ν in a GP setting

is discussed in Berger et al. (2001) and Kazianka and Pilz (2012). While the focus is to

use priors that guarantee to result in a proper posterior distribution, the maximization

aspect of the marginal model requires additional restrictions. Without these limitations,
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there is no guarantee that the maximum of the marginal will not occur with ν tending

to zero or ∞. Following a similar argument as in Gu and Berger (2016), the following

restriction on the prior specification of the range ν must be respected.

Lemma 3.2.2. To guarantee that the maximized marginal distribution occurs at ν > 0,

the prior on ν must be such that π(ν) → 0 when ν → 0.

Proof. When ν → 0, Cν → I. Consequently, Cθ → σ2(1 + ξ2)I and Vθ → (α − k −

1)σ2(1 + ξ2)I. Thus when ν → 0,

m(y(si)|yN(si),θ) =

√
1

π

Γ
(
α−k+m+2

2

)
Γ
(
α−k+m+1

2

) |(α− k − 1)σ2(1 + ξ2)Im+1|
α−k+m+1

2

|((α− k − 1)σ2(1 + ξ2)I + S){si,N(si)}|
α−k+m+2

2

×
|((α− k − 1)σ2(1 + ξ2)I + S)N(si)|

α−k+m+1
2

|(α− k − 1)σ2(1 + ξ2)Im|
α−k+m

2

→ b,

where b is a constant greater than 0. By utilizing a prior π(ν) such that π(ν) → 0 when

ν → 0, we obtain that

m(y(si)|yN(si),θ)π(ν) → bπ(ν) → 0

as ν → 0. Therefore, we ensure that the maximum of the posterior marginal will not

achieved for a small value of ν.

Adding to the limitation on the prior for the range parameter, we must also

restrict the choice of prior for the partial sill σ2 and the nugget ξ2. To avoid excessively

large values of σ2 and ξ2, we restrict the choice of priors to distributions that go to 0

when σ2, ξ2 → ∞.

Following these guidelines, and in order to remain consistent with the hierar-

chical model presented in the next section, the recommended choice of prior distribution

for σ2 is the Inverse Gamma distribution. Similarly, the recommended prior on the proxy

nugget ξ2 is also an Inverse Gamma distribution. Finally, for the range parameter ν
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we choose a Gamma distribution where the mean is an approximate of the smallest

observed distance between two datapoints. To satisfy the rule outlined in Lemma 3.2.2,

the shape aν must be greater than 1.

The discussion of the covariance parameter priors for the multivariate case

is delayed to Chapter 4 where we detail four options that were investigated in the

development of the NNRCM R package.

Finally, a natural choice for the prior distribution of the degrees of freedom

α is the Pareto(xm, p) distribution which has a truncated domain and has very thick

tails. By setting the scale parameter xm at the minimum possible value for the degrees

of freedom, we ensure that the distribution is only valid on the proper interval. For the

shape parameter p, a value of p = 1 is recommended as it results in a distribution with

infinite variance.

3.2.3 Posterior predictive distribution

While the posterior marginal likelihood model only results in point estimates

for our parameters, we can still recover the full posterior predictive distribution for any

new location. Let s∗ denote this new location with its set of m neighbors from the

original data y(s1), ...,y(sk). We wish to draw B samples from the posterior predictive

distribution of s∗ using our point estimates α∗ and θ∗ obtained from the posterior

marginal likelihood model. Looking back at the original model, we start by sampling

Φb(s
∗)

Φb(s
∗) ∼ IW

(
α∗ − kq + (1 +m)q, (α∗ − kq − 1)Cθ∗,s∗|N(s∗)

)
where b = 1, ..., B. Second, we can sample the matrix Γb(s

∗)

Γb(s
∗)|Φb(s

∗) ∼ Nmq,q

(
C−1
θ∗,N(s∗)Cθ∗,N(s∗),s∗ ,

1

(α∗ − kq − 1)
C−1
θ∗,N(s∗),Φb(s

∗)

)
.
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Finally, using these two set of posterior predictive samples and the neighboring obser-

vations, we can generate a set of predictions for s∗,

yb(s
∗)|Φb(s

∗),Γ′(s∗) = Γ′(s∗)yN(s∗) + ϵ(s∗), ϵ(s∗) ∼ Nq(0,Φb(s
∗)).

Consequently, the samples y1(s
∗), ...,yB(s

∗) gives us the full posterior predictive distri-

bution for y(s∗).

3.3 Hierarchical NN-RCM model with covariates

The marginal model allowed us to obtain posterior inference on the degrees

of freedom and covariance parameters in a computationally efficient manner. By using

an optimization scheme, we avoid costly MCMC procedures to obtain point estimates

for the covariance parameters. The marginal model also enabled us to learn the full

posterior predictive distribution of y(s) without having to sample the random effects

w(s).

To elaborate on this, we designed a hierarchical model that includes fixed

effects and an observational error ϵ(s). Let y(s) be a q-variate observation, the model

then becomes

y(s) = X(s)β +Aw(s) + ϵ(s),

where X(s) are the covariates, β are the fixed effects, A is a known nonsingular matrix

and w(s) is the spatial field. The likelihood function and the priors are therefore as
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follows:

y(s)|β,w(s), τ2 ∼ Nq(X(s)β +Aw(s), τ 2Iq)

β ∼ Np(0, s
2
βI)

w(s)|Γ(s),Φ(s) ∼ Nq(Γ(s)wN(s),Φ(s))

Γ(s)|Φ(s) ∼ Nmq,q(C−1
θ,N(s)Cθ,N(s),s,

1

α− kq − 1
C−1
θ,N(s),Φ(s))

Φ(s) ∼ IW (α− kq + (1 +m)q, (α− kq − 1)Cθ,s|N(s)),

π(τ 2) ∼
q∏

i=1

IG(τ2i |aτ , bτ ),

where p is the dimension of the fixed effects. As previously mentioned, the structure,

reminiscent of multivariate linear regression models, allows us to derive the full condi-

tionals for each observed location si independently. Therefore, in the implementation of

the MCMC algorithm, the spatial field w(si) can be sampled in a fully parallel fashion.

The full conditional posterior distribution for si, where i = 1, ..., k are obtained using

the Bayesian normal linear model posterior inference formulas,

w(si)|− ∼ Nq(u(si), S(si)),

where

u(si) = S(si)

Γ′(si)Φ
−1(si)wN(si) +A′ (τ 2Iq

)−1
y(si) +

∑
u∈N−1(si)

Γ′
u,siΦ

−1(u)bu,si


S(si) =

Φ−1(si) +A′ (τ 2Iq
)−1

A+
∑

u∈N−1(si)

Γ′
u,siΦ

−1(u)Γu,si

−1

,

where the set u ∈ N−1(si) is the group of locations which has si as a neighbor. The

notation Γu,si indicates the rows of Γ(u) that corresponds to the neighbors located at

si and bu,si = w(u)−
∑

r∈N(u)\si Γ
′(u, r)wr.

The full conditionals for the spatial random effects Γ(si) and Φ(si) can also

be obtained for each location separately. Similar to the spatial field, we leverage the
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Bayesian linear model posterior inference equations to obtained the closed-form full

conditional distributions.

Γ(si)|− ∼ Nmq,q(U(si), V (si),Φ(si)),

U(si) = V (si)
(
wN(si)w(si) + (α− kq − 1)Cθ,N(si),si

)
V (si) =

(
wN(si)w

′
N(si)

+ (α− kq − 1)Cθ,N(si)

)−1

Φ(si)|− ∼ IW (α− kq + 2q(1 +m), (α− kq − 1)Cθ,si|N(si) +Q(si) +R(si)

Q(si) = (w(si)− Γ′(si)wN (si))(w(si)− Γ′(si)wN (si))
′

R(si) = (α− kq − 1)(Γ(si)− C−1
θ,N(si)

Cθ,N(si),s)
′Cθ,N(si)(Γ(si)− C−1

θ,N(si)
Cθ,N(si),s).

Finally, for each sampling iteration of the MCMC algorithm, we have global

full conditionals for each element τ2q of the observational error τ 2. The likelihood and

the choice of prior for the observational errors in the hierarchical structure leads to

conditional conjugacy. Therefore, the full conditional of τ2q is also an inverse gamma

distribution,

τ2q |− ∼ IG

aτ +
k

2
, bτ +

∑
si∈S

(wq(si)− yq(si))
2

2

 .

3.3.1 Special case: univariate observations full conditionals

We again call attention to the special case of univariate spatial observations.

Setting q = 1, the model simplifies to ,

y(s) = x(s)β + w(s) + ϵ(s),
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where

y(s)|β, w(s), τ2 ∼ N(x(s)β + w(s), τ2)

β ∼ Np(0, s
2
βI)

w(s)|γ(s), ϕ(s), σ2 ∼ N(γ(s)wN(s), σ
2ϕ(s))

γ(s)|ϕ(s) ∼ Nm(C−1
θ,N(s)Cθ,N(s),s,

ϕ(s)

α− k − 1
C−1
θ,N(s))

ϕ(s) ∼ IG(α− k + (1 +m), (α− k − 1)Cθ,s|N(s)),

π(σ2, τ2) = IG(τ2|aτ , bτ )× IG(σ2|aσ, bσ),

where p is the dimension of the fixed effects and m is the number of neighbors. We

recognize the framework of a multivariate linear regression model in the prior structure

of the spatial random effects w(s). By using the posterior equations from the Normal-

Normal model, we obtain a closed-form solution for the full conditional distribution of

w(s):

w(si)|− ∼ N(µ(si), σ
2(si)),

where

µ(si) =

(
1

σ2ϕ(si)
+

1

τ2

)−1
γ ′(si)wN(si)

σ2ϕ(si)
+

y(si)

τ2
+

∑
u∈N−1(si)

γu,si
σ2ϕ(u)

bu,si


σ2(si) =

 1

σ2ϕ(si)
+

1

τ2
+

∑
u∈N−1(si)

γ2u,si
σ2ϕ(u)

−1

,

where the notation γu,si indicates the element of γ(u) that corresponds to the neighbors

located at si and bu,si = w(u)−
∑

r∈N(u)\si γu,rw(r).

To obtain the full conditional distributions of the random effects γ(si) and
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ϕ(si), we use the normal equations from the linear models posterior inference.

γ(si)|− ∼ Nm(µγ(si), h
2
γ(si)

),

µγ(si) =
h2γ(si)

ϕ(si)

(
wN(si)w(si)

σ2
+ (α− k − 1)Cθ,N(si),si

)
h2γ(si) = ϕ(si)

(
wN(si)w

′
N(si)

σ2
+ (α− k − 1)Cθ,N(si)

)−1

ϕ(si)|− ∼ IG

(
α− k + 1 +m+

m+ 1

2
, (α− k − 1)Cθ,si|N(si) +

q(si)

2σ2
+

r(si)

2

)
q(si) = (w(si)− γ ′(si)wN (si))

2

r(si) = (α− k − 1)(γ(si)− C−1
θ,N(si)

Cθ,N(si),s)
′Cθ,N(si)(γ(si)− C−1

θ,N(si)
Cθ,N(si),s)

Finally, we are left with the posterior inference of the observational error τ2

and the partial sill σ2. In contrast to the multivariate model, the partial sill is factored

out of the covariance matrix. In the previously defined model, we therefore have

σ2Cθ = σ2(Cν + ξ2I).

This allows us to learn the full posterior distribution for the partial sill under the

hierarchical NN-RCM model. The choice of prior for the observational error and partial

sill both lead to closed-form full conditional distributions:

σ2|− ∼ IG

aσ +
k

2
, bσ +

∑
si∈S

(w(si)− γ ′(si)wN (si))
2

2ϕ(si)


τ2|− ∼ IG

aτ +
k

2
, bτ +

∑
si∈S

(w(si)− y(si))
2

2

 .

3.3.2 Posterior inference for α and θ

To sample α and θ, we leverage the marginal likelihood obtained for the

marginal model. By following the same derivation, the marginal likelihood for w(s)

can be used in the Metropolis step. Therefore, by removing the random effects, the
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likelihood involving α and θ is reduced to

m(w(s)|wN(s), θ, α) ∝
Γ
(
α−k+m+2

2

)
Γ
(
α−k+m+1

2

) |Vθ,{si,N(si)}|
α−k+m+1

2

|(Vθ + S){si,N(si)}|
α−k+m+2

2

|(Vθ + S)N(si)|
α−k+m+1

2

|Vθ,N(si)|
α−k+m

2

,

where Vθ = (α− k − 1)Cθ and S = yy′.

It is worth noting that sampling α and θ results in a significant increase in

computation time. A possible strategy to accelerate the inference based on the hierar-

chical model is to increase the intervals at which the parameters are sampled. Taken to

the extreme, the parameters α and θ can be held fixed at the point estimates obtained

from the marginal approach for the duration of the algorithm.

As previously explained for the marginal model, a natural prior selection for

α is the Pareto distribution as it highlights the lower bound of the parameter. As for

the range parameter ν, we are still faced with the limitations of the prior which should

converge to 0 as ν approaches 0. For that reason, we use the Gamma distribution that

is centered at the smallest distance between two observations. Note that even if one

samples the two parameters, we highly suggest using the marginal model as a first step

to obtain their starting values.

The last parameter of θ is the proxy nugget ξ2. Unfortunately, after extensive

testing, we have concluded that it is impossible to sample the proxy nugget along with

the remaining covariance parameters and the observational error. Ultimately, the con-

vergence of the MCMC algorithm was compromised by including too much flexibility in

the variability of the model. Therefore, we suggest fixing ξ2 to either a small value, or to

use the point estimates obtained from the marginal model. This results in a stabilized

MCMC chain and does not impact the uncertainty or the resulting predictions.

3.3.3 Posterior predictive distribution

Similar to the simplified model, using the posterior samples obtained from

running an MCMC with the full conditionals detailed above, we can generate predictive
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samples. Let s∗ and the setN(s∗) denote a new location and its qm neighbors. Assuming

we have B posterior samples, we start by drawing Φb(s
∗), where b = 1, ..., B from

Φb(s
∗) ∼ IW (αb − kq + (1 +m)q, (αb − kq − 1)Cθb,s|N(s)).

Next, we generate the matrix Γb(s
∗) from the posterior samples and the neighbors of

s∗,

Γb(s
∗)|Φb(s) ∼ Nmq,q(C−1

θb,N(s∗)Cθb,N(s∗),s∗ ,
1

αb − kq − 1
C−1
θb,N(s∗),Φb(s

∗)).

Using the posterior predictive samples for Γ(s∗) and Φ(s∗), we can sample the spatial

random effects w(s∗)

wb(s
∗)|Γb(s∗),Φb(s

∗) ∼ Nq(Γb(s
∗)wb,N(s∗),Φb(s

∗)).

Finally, we can use the original model to generate the predictions samples,

yb(s
∗)|βb,w(s∗), τ2b ∼ Nq(X(s∗)βb +wb(s

∗), τ 2
bIq).

In sum, we have recovered the full posterior predictive distribution of y(s∗). These

predictive samples can then be used for prediction purposes but also for risk assessment

and for model validation.

3.4 Model properties illustration

The most important feature of the proposed model is its ability to capture

anisotropy in a dataset. To understand how the non-stationarity of the model impacts

the covariance, we compare the prior and posterior mean of Σ given some point estimates

obtained for θ in the univariate case. Recall, the prior of Σ is

Σ ∼ IW (α, (α− k − 1)Cθ).
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The posterior of Σ is available in closed-form as we have a Normal-Inverse-Wishart

structure. By using the full conditionals, we obtain the following:

π(Σ|y) ∝ π(Σ)π(y|Σ)

= |Σ|−
α+k+1

2 exp

(
−1

2
tr(CθΣ

−1)

)
|Σ|−

1
2 exp

(
−1

2
(y′Σ−1y

)
= |Σ|−

(α+1)+k+1
2 exp

(
−1

2
tr(CθΣ

−1)

)
exp

(
−1

2
(tr(yy′Σ−1)

)
= |Σ|−

(α+1)+k+1
2 exp

(
−1

2
tr((Cθ + yy′)Σ−1)

)
.

Therefore, we identify the kernel of the posterior of Σ as

Σ|y ∼ IW (α+ 1, (α− k − 1)Cθ + yy′).

Recall that, by construct, the prior mean of Σ is Cθ. Moreover, from the posterior

distribution of Σ, the posterior mean is

E(Σ|y) = (α− k − 1)Cθ + yy′

α− k
.

Therefore, while we have apriori an isotropic expected covariance, the aposteriori co-

variance is no longer stationary and incorporates information from the dataset.

To illustrate the benefits from the model and its features, we use a 1-D sim-

ulation which includes significant localized variability. Note that in the next chapter,

we present a complete overview of the implementation of the NN-RCM model as an R

package.

We start with a mean function which contains irregular patterns and local

modes. Figure 3.1 shows the mean function which we wish to recover in red and the ob-

served dataset which includes additional noise in black. We have k = 1000 observations

which are evenly spaced over the interval [0, 10].

Using the Matérn covariance family with smoothness 1 for the prior covariance,

we optimize the marginal posterior distribution as shown in section 3.2.1 to recover
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Figure 3.1: 1-D simulated dataset. The observations are in black and the underlying

true surface is in red.

posterior estimates of θ. Table 3.1 summarizes the point estimates and the runtime

needed to fit the model.

Using the posterior predictive inference methodology described in section 3.2.3,

we can look at the posterior predictions obtained from using the marginal model. Fig-

ure 3.2 shows the mean function and the posterior predictive mean superimposed for a

high resolution sequence. We see that the model is able to recover the truth through

the optimization of the parameter θ.

Runtime Degrees of Freedom Range Covariance Nugget
α ν σ2 τ2

3.13s 1100 6.14 0.14 0.16

Table 3.1: 1-D simulated dataset. Point estimates for the parameters α and θ.
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Figure 3.2: 1-D simulated dataset. The observations are in grey, the underlying true

surface is in red and the predicted surface is in blue.

Finally, in Figure 3.3, we compare the prior mean and the posterior mean of

Σ in our example. Since the locations are ordered from left to right and evenly spaced,

the distance is constant for lines that are parallel to the diagonal. We can see that for

the prior mean of Σ, shown on the left, the covariance is constant along those diagonal

lines. This is a reflection of the apriori isotropy of the covariance matrix. However,

for the posterior mean shown on the right, this is no longer the case. It is especially

noticeable for the posterior covariance of the second half of the dataset for which the

observations are generated from a sine wave. Therefore, we can conclude that the model

has the particular ability to capture the local variability of the correlation structure of

the dataset.
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Figure 3.3: Comparison of the prior and posterior mean of the covariance parameter Σ.

3.5 Misalignment of observations

In many multivariate cases, we are faced with a misalignment of the observa-

tions. In other words, we frequently have to deal with incomplete or missing values at

some locations. To date, to our knowledge, no existing nearest-neighbor models have

been developed with the ability to tackle this problem. The methodology that we define

in order to address this issue seeks to create neighborhoods for each source of observa-

tions separately. That is, the m neighbors from each q-variate need not come from a

fixed set of m locations.

Figure 3.4 illustrates how the neighborhoods are created using a small example.

Assuming that we have 5 observed locations with two components shown in orange and

purple. The ordering is from left to right and the components are ordered sequentially.

Therefore, to create a neighborhood of size 6 for the second component of the location s4,

which is denoted in black in the right plot of Figure 3.4, we would select the three closest

previous observations from component 1 and component 2 separately. We denote these

in red and together, they form the neighborhood of the observation. It is important
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to highlight that the neighborhood does include the first component of the observed

location.

y_1(s_1)
y_2(s_1)

y_1(s_2)
y_2(s_2)
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y_2(s_3)
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(b) Neighborhood for y2(s4)

Figure 3.4: Creation of a bivariate neighborhoods using an even number of neighbors

from each component.

Starting with the marginal model, we are therefore extending the initial or-

dering of the observations from section 3.1. Instead of ordering the observations by

locations, we can extend the product to go over each component of each location.

p(y(S)) =
k∏

i=1

qi∏
j=1

p(yj(si)|y1(s1), ..., yj−1(si))

where qi indicates the number of observed variables at location si. Using this new

ordering, we can define neighbors as we did previously based on the m closest locations.

For each variate, we define a neighborhood of size m based on the previous available

observations.

p(y(S)) ≈
k∏

i=1

qi∏
j=1

p(yj(si)|yj,N(si)).

We should note that this definition allows for a location to have itself as a neighbor,

only for a previous variable.
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The same methodology can be used in the hierarchical NN-RCM and the

neighborhood creation for the spatial random effects w(s). Again, using the extended

product over the locations and the variables, we obtain unique neighborhoods for each

wj(si). Once these are obtained, the conditional model reverts to a product of univari-

ate Normal-Inverse-Gamma distributions. The full conditional posterior distribution of

wj(si) is therefore

wj(si)|− ∼ N(µ(si), σ
2(si)),

where

µ(si) = σ2(si)

γ ′(si)wN(si)

ϕ(si)
+A′

j·(τ
2I)−1(y(si)−X(si)β) +

∑
u∈N−1(si)

γj,u,si
ϕ(u)

bu,si


σ2(si) =

 1

σ2ϕ(si)
+A′

j·(τ
2I)−1Aj· +

∑
u∈N−1(si)

γ2u,t,si
ϕ(u)

−1

.

where the notation γu,t,si indicates the element of vector γ(u) that corresponds to the t-

variate of the neighbor located at si. The notation bu,t,si = wt(u)−
∑

r∈N(u)\si γu,t∗,rwt∗(r)

where t∗ indicates all the variates that are neighbors at location r.

The impact of the missing values is seen in the posterior parameters. If only

a subset of y(si) is available, then only the corresponding elements of A and τ 2 are

maintained. Note that for some choices of A, the two terms A′
j·(τ

2I)−1(y(si)−X(si)β)

and A′
j·(τ

2I)−1Aj· can disappear altogether. For example, if A = Iq, then the spatial

random effects for any missing observation could not rely directly on any observations in

its posterior. However, beyond the prior information, neighboring locations offer insight

and therefore create a kriging effect for the locations with no information from y(si).

3.6 Conclusions and future work

We have demonstrated the pertinence of a non-isotropic nearest-neighbor hi-

erarchical spatial model and discussed its implementation for both univariate and mul-
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tivariate observations. In the next chapters, we present simulated examples and real

life cases to illustrate how the model was implemented.

The implementation of the bivariate model generates an important discussion

on the handling of missing data and neighborhoods in multivariate nearest-neighbor

methods. The misalignment of multivariate observations is a key issue for many datasets

that had not yet been addressed. Similarly, the question of neighborhoods in multivari-

ate models can be answered with multiple difference options. As will be presented in

the next chapter, our implementation for the bivariate model concatenates two neigh-

borhoods each based on one source of data.

Further advancement for the NN-RCM model include a deep dive into dis-

tributed implementations. While the current development relies on parallel methods,

divide-and-conquer algorithms present even stronger opportunities for computational

efficiency. As featured in the previous chapter, distributed methods can not only reduce

the computing time linearly, but also avoid redundancies when it comes to recurring

data collection.
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Chapter 4

NNRCM - R Package

The NNRCM package offers an implementation of the nearest-neighbors Gaussian

process with random covariance matrix (NN-RCM) for both univariate and bivariate

processes. The advantage of the model lies in its ability to capture anisotropy in a

process. By conditioning apriori on a valid spatial covariance function, we allow added

flexibility around the covariance matrix. By its definition, the model is fully paralleliz-

able making it scalable to large datasets.

In this chapter, we demonstrate the use of the NNRCM package through re-

producible examples and comparisons. First, we show two univariate simulations to

illustrate how to use the marginal and hierarchical models. Second, we apply the uni-

variate framework to a real dataset of Mediterranean sea surface temperatures. This

dataset is a great example of a difficult and unique spatial problem. Not only does the

data include a large number of duplicates, but the observed locations form a particular

pattern that ultimately impacts the final predictions. Finally, we discuss the bivariate

models through the use of two simulated datasets. For reproducibility purposes, all the

examples have been ran on a personal computer with six core processing units, for a

total of 12 threads. More specifically, the computer used for the applications was a

Razer Blade 15 with Intel(R) Core(TM) i7-10750H Processor with 16.0GB of RAM.
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4.1 Scoring methods

In order to compare the various univariate applications, we face our immediate

competitor, the nearest-neighbor Gaussian process (NNGP) model and its implementa-

tion as the spNNGP package by Finley et al. (2020). Since the multivariate NNGP model

has not been implemented, we compare the bivariate applications to predictive processes

models available under the spBayes package (Finley et al., 2007, 2015). Using the pos-

terior predictive samples obtained under each model, we are able to compare the results

quantitatively. To do so, the NNRCM package includes a function called NNRCM.scores

which computes the following four scoring methods:

• Predictive Mean Squared Error

• Continuous Rank Probability Score

• Posterior Predictive Loss Criterion

• 95% Predicted Interval Coverage.

While these four scoring methods can be defined for spatial vectors, it is challenging to

obtain samples from the joint predictive distribution. Instead, we calculate the scores

at each location si, i = 1, ..., k of the testing subset and average the results and report

the global scores.

The predictive mean squared error (PMSE) is an important tool to assess the

predictive ability of a model. Not only is the PMSE a good indicator for predictive

power, it also allows to keep overfitting problems under control.

Proposition 4.1.1. Assuming that we have posterior predictive estimates ŷ(si) for a

set observations y(si), where i = 1, ..., k, the Predictive Mean Squared Error (PMSE) is

computed as

PMSE =
1

k

k∑
i=1

(y(si)− ŷ(si))
2
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The Continuous Rank Probability Score (CRPS) is a second measure that

assesses the forecast ability of a model (Gneiting and Raftery, 2007). Again, smaller

values are desirable and indicate a better modeling of the probabilistic model.

Proposition 4.1.2. Assuming that we have B posterior predictive samples for an ob-

servation y(s), the Continuous Rank Probability Score (CRPS) is computed as

ˆcrps(F, y(s)) =
1

B

B∑
i=1

|y(i)(s)− y(s)| − 1

2B2

B∑
i=1

B∑
j=1

|y(i)(s)− y(j)(s)|.

For a set of k observations y(sk), the global CRPS is computed as the average of their

respective ˆcrps(F, y(sk)).

The Posterior predictive loss criterion (PPLC) is a metric that combines the

measurement of predictive accuracy and uncertainty (Gelfand and Ghosh, 1998). The

criterion seeks to penalize models that output high uncertainty predictions. Therefore,

large prediction variances are less desirable than small prediction biases.

Proposition 4.1.3. Assuming that we have posterior predictive samples of y(si) de-

noted as y(si)
rep where i = 1, ..., k, the Posterior Predictive Loss Criterion (PPLC) with

a penalty term p is computed as

Dp(k) =
k∑

i=1

var(y(si)
rep) +

p

p+ 1

k∑
i=1

(y(si)− E(y(si)
rep))2

Finally, the last scoring method included in the NNRCM.scores function is the

95% predicted interval coverage (Coverage). While this metric is difficult to compare

across models, it is a good indicator of the uncertainty associated with the predicted

values. A coverage of 100% can highlight the excessive variance of the predictions. On

the other hand, a low coverage can point to a bias problem or overfitting issues.

Proposition 4.1.4. Assuming that we have B posterior predictive samples for a set

observations y(si), where i = 1, ..., k, the 95% Predicted Interval Coverage (Coverage)
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is computed as

Coverage =
1

k

k∑
i=1

1{y(si)≥y(0.025k)(si)}1{y(si)≤y(0.975k)(si)}

In the next section, we start with the univariate examples and a discussion

of the package implementation. Note, we first use ”set.seed(1)” so the user can easily

reproduce the results.

4.2 Univariate spatial process

We first generate a dataset using a Gaussian Process with a Matérn covariance

function with smoothness parameter κ = 1/2. We generate n = 2500 observations y(si)

in a 10× 10 square using

Y (s) ∼ GP (0, Cθ),

where θ = (σ2, ν) = (1, 1) represents the partial sill and the range of the covariance

function. For added difficulty, we also add white noise to the dataset according to

a N(0, 0.52) distribution. Finally, we split the generated observations equally into a

training set and a testing set.

1 library(NNRCM)

2

3 # define the parameters

4 N1 <- 50

5 N2 <- 50

6 N <- N1 * N2

7 n <- N / 2

8 theta <- c(1, 1)

9 kappa <- 1/2

10

11 # define the locations

12 set.seed (1)
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13 observed.locations <- expand.grid(seq(0, 10, length.out = N1),

14 seq(0, 10, length.out = N2))

15 observed.distance <- fields ::rdist(observed.locations)

16

17 # generate the observations

18 C <- exp(-observed.distance / theta [2])

19 y.truth <- mvrnorm(1, rep(0, N), C)

20

21 # add noise (optional)

22 y <- y.truth + rnorm(N, 0, 0.5)

23

24 # divide the observations into the training and testing sets

25 training.sample <- sample (1:N, n, replace = FALSE)

26 training.locations <- observed.locations[training.sample , ]

27 testing.locations <- observed.locations[-training.sample , ]

28 training.y <- y[training.sample]

29 testing.y <- y[-training.sample]

4.2.1 Marginal model

We first call the marginal posterior function to fit the marginal version of the

model. We use the default settings for the number of neighbors (10) and the starting

values (n+ 2, 0.5, 0.5, 0.5).

1 # inference from the marginal model on the training set

2 optim.results <-

3 NNRCM.marginal.infer(Y = training.y,

4 observed.locations = training.locations ,

5 smoothness = kappa)

The implementation of the marginal model relies on the optim function from

the base stats package of the R software (R Core Team, 2021). Since the covari-

ance parameters and the degrees of freedom are bounded values, the method used
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is the L-BFGS-B option. This method uses the implementation of the limited mem-

ory Broyden–Fletcher–Goldfarb–Shanno algorithm with bounded constraints by Byrd

et al. (1995). Therefore, the object returned from the marginal inference function

NNRCM.marginal.infer is the output from the optim call.

The computation of the objective function relies on the RcppArmadillo pack-

age by Eddelbuettel and Sanderson (2014) and the Rcpp package by Eddelbuettel and

François (2011); Eddelbuettel (2013); Eddelbuettel and Balamuta (2018). We compute

the posterior marginal distribution using three consecutive parallel loops from the pack-

age RcppParallel (Allaire et al., 2020). The first two are parallelFor loops which

compute the neighbor covariance and posterior covariance matrices at each observed lo-

cation. These matrices are saved using cubes objects from the RcppArmadillo. These

two arrays are then used in a final parallelReduce loop to compute the log marginal

at each observed location and add up their value to obtain the global posterior marginal

value.

It is also essential to give credit to the spConjNNGP function of the spNNGP

package for the very fast neighbor structure retrieval process. This crucial step, which

comes prior to the optim function was originally a burden on the runtime of our model.

By using the conjugate NNGP implementation, we can obtain the neighborhood sets

almost instantly to then proceed with the rest of the model.

1 optim.results

2 $par

3 [1] 2354.3895857 0.8592910 0.7475868 0.2909917

4

5 $value

6 [1] -1114.765

7

8 $counts

9 function gradient

10 50 50
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11

12 $convergence

13 [1] 0

14

15 $message

16 [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Using the element par from the optim object, we can then call the function

NNRCM.marginal.predict. This function allows us to obtain predictive samples for

each location of interest. We again use the default settings for the number of neighbors.

Computationally, the function is a shell calling a parallel routine over each new location.

We first compute the neighbor covariance matrix and then sample the predictions from

the posterior predictive model. Note that for all the posterior predictive sampling in

the NNRCM package, the neighbor structure retrieval is done using the nn2 function from

the RANN package by Arya et al. (2019).

1 # posterior predictive sampling on the testing set

2 posterior.predictive.marginal <-

3 NNRCM.marginal.predict(Y = training.y,

4 observed.locations = training.locations ,

5 predicted.locations = testing.locations ,

6 optim.pars = optim.results$par ,

7 smoothness = kappa)

Using these posterior predictive samples, we call the function NNRCM.scores

to compute the PMSE, CRPS, PPLC and Coverage values. In Section 4.2.3, we will

revisit these values when comparing the model to its NNGP counterpart.

1 # scoring

2 NNRCM.scores(Y = y.truth[-training.sample],

3 pp.samples = posterior.predictive.marginal ,

4 k = 1)

5 PMSE CRPS PPLC Coverage

6 0.2627284 0.3004626 821.4719384 0.9992000
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Finally, to compare the true surface and the predicted surface, we generate

posterior predictive samples for every location of a fine grid spanning over the whole

surface.

1 # posterior predictive sampling over high resolution surface

2 predicted.locations <-

3 expand.grid(seq(-0.01, 10.01, length.out = 2 * N1),

4 seq(-0.01, 10.01, length.out = 2 * N2))

5 predicted.surface <-

6 NNRCM.marginal.predict(Y = training.y,

7 observed.locations = training.locations ,

8 predicted.locations = predicted.locations ,

9 optim.pars = optim.results$par ,

10 smoothness = kappa)

Using the ggplot2 package, we can plot Figure 4.1 which shows the true surface

(without noise) and the predicted surface side by side. The predicted surface is taken

as the posterior mean computed independently at each predicted location. Running the

example from the beginning to the end takes approximately 25 seconds. A more detailed

breakdown of the runtime will follow in section 4.2.3 as we compare our efficiency to

the spNNGP package.

1 # plot the true surface

2 true.df <- data.frame(x = observed.locations[, 1],

3 y = observed.locations[ ,2],

4 z = y.truth)

5

6 ggplot2 :: ggplot(true.df , aes(x = x, y = y, fill = z)) +

7 geom_raster(interpolate = T) +

8 scale_fill_gradient2(low = "red", mid = "white", high = "blue",

9 midpoint = 0, space = "Lab", na.value = "grey50",

10 guide = "colourbar", aesthetics = "fill")

11 # plot the high resolution predictions

12 predicted.df <- data.frame(x = predicted.locations[, 1],
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13 y = predicted.locations[ ,2],

14 z = apply(predicted.surface , 1, mean))

15

16 ggplot2 :: ggplot(predicted.df , aes(x = x, y = y, fill = z)) +

17 geom_raster(interpolate = T) +

18 scale_fill_gradient2(low = "red", mid = "white", high = "blue",

19 midpoint = 0, space = "Lab", na.value = "grey50",

20 guide = "colourbar", aesthetics = "fill")
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Figure 4.1: Comparison of true surface (no noise) and predicted surface for the univariate

marginal NN-RCM model.

4.2.2 Hierarchical model

In order to model the observational error and to include fixed effects, we need

to extend our analysis to the hierarchical framework. Since no covariates were used in

the simulated dataset above, we only included an intercept in the training and testing

design matrices.

1 # define the fixed effects

2 training.X <- rep(1, n)
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3 testing.X <- rep(1, n)

The implementation of the hierarchical mode takes full advantage of the par-

allelizeable nature of the model. The Gibbs sampling step for the random effects, w(s),

ϕ(s) and γ(s) is performed using a parallelFor loop over the observed locations. This

significantly reduces the runtime as each location is sampled simultaneously. Next, we

sample the covariance parameters and the degrees of freedom using a Metropolis step.

As explained in section 3.3.2, we leverage the marginal likelihood instead of using the

full conditionals of each parameters. Finally, each iteration ends with the sampling of

the fixed effects based on the sampled spatial random effects w(s).

As an added feature, the user has the option to choose the interval for the sam-

pling of the degrees of freedom and the range parameter. Using an interval of 1 implies

that the parameters will be samples at each MCMC iteration. At the other extreme,

using an interval larger than the total number of samples will keep the parameters

constant for the duration of the MCMC algorithm.

In this simulation, we do not specify the interval which ultimately keeps the

parameters constant. We highly suggest this method since the marginal model provides

good point estimates and this reduces the runtime considerably. As for the remaining

function parameters, we again use the default settings for the number of neighbors (10)

and the size of the posterior samples (1000).

1 # inference from the hierarchical model on the training set

2 training.samples <-

3 NNRCM.hierarchical.infer(Y = training.y,

4 observed.locations = training.locations ,

5 X = training.X,

6 starting.values = optim.results$par[1:3] ,

7 smoothness = kappa ,

8 nugget = optim.results$par [4])

Using the posterior samples obtained, we can generate the posterior predictive samples
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for the testing dataset. Similar to the marginal model, we also output the scores for the

hierarchical model.

1 # posterior predictive sampling for the testing set

2 testing.samples <-

3 NNRCM.hierarchical.predict(

4 Y = training.y,

5 X = testing.X,

6 observed.locations = training.locations ,

7 predicted.locations = testing.locations ,

8 posterior.samples = training.samples ,

9 point.estimates = c(mean(training.samples$alpha),

10 1,

11 mean(training.samples$nu),

12 optim.results$par [4]),

13 smoothness = kappa)

14

15 # scoring

16 NNRCM.scores(Y = y.truth[-training.sample],

17 pp.samples = testing.samples ,

18 k = 1)

19 PMSE CRPS PPLC Coverage

20 0.2749540 0.3160237 1041.2992470 1.0000000

Finally, we can complete the univariate simulation study by looking at the fine resolution

predictions over the entire space. In Figure 4.2, we compare side by side the true surface,

the predictions obtained from the marginal model and the hierarchical model. We notice

that the two predicted surfaces are very similar.

1 # posterior predictive sampling for the high resolution surface

2 predicted.X <- rep(1, 4 * N1 * N2)

3

4 predicted.surface .2 <-

5 NNRCM.hierarchical.predict(
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6 Y = training.y,

7 X = predicted.X,

8 observed.locations = training.locations ,

9 predicted.locations = predicted.locations ,

10 posterior.samples = training.samples ,

11 point.estimates = c(mean(training.samples$alpha),

12 1,

13 mean(training.samples$nu),

14 optim.results$par [4]),

15 smoothness = kappa)

16

17 # plot the high resolution predictions

18 predicted.df <- data.frame(x = predicted.locations[, 1],

19 y = predicted.locations[ ,2],

20 z = apply(predicted.surface.2, 1, mean))

21

22 ggplot2 :: ggplot(predicted.df , aes(x = x, y = y, fill = z)) +

23 geom_raster(interpolate = T) +

24 scale_fill_gradient2(low = "red", mid = "white", high = "blue",

25 midpoint = 0, space = "Lab", na.value = "grey50",

26 guide = "colourbar", aesthetics = "fill")
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Figure 4.2: Comparison of true surface (no noise) and predicted surfaces for the uni-

variate NN-RCM models.
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4.2.3 Comparison to spNNGP

To compare the results obtained using the NN-RCM model, we apply the

NNGP model to the same simulations. Two versions of the NNGP models are available

in the spNNGP package. The first function, named spConjNNGP, fixes the range and

the nugget of the covariance structure to achieve fast posterior sampling of the fixed

effects and the partial sill. In order to obtain point estimates for the fixed parameters,

the suggestion is to use a variogram or to proceed with a cross-validation scheme over

a grid of values. While the advantage of the maximization is that it is MCMC-free,

the predictions obtained do not include any uncertainty. To obtain posterior predictive

samples, we sample a Gaussian distribution centered at the predicted point estimate

with the estimated variance as the scale.

The second implementation of the NNGP model is the MCMC version and is

available under the function named spNNGP. This function has the option to output the

posterior samples for all the parameters, including the random effects. To obtain the

posterior predictive function, the object returned by the spNNGP function can be used in

the predict function. In this case, the full posterior predictive distribution is recovered

and can be used to compare the results to the NN-RCM model.

Figure 4.3 and 4.4 show the posterior predictive mean obtained under the

spNNGP package and the NNRCM package. In Table 4.1 we summarize the scores obtained

for the different models. From both the conjugate and the full MCMC figures, we notice

heavier localized patterns of the NNGP predictions.

For the conjugate NNGP model, given a moderately sized grid of values (100×

100) for the covariance point estimates, the runtime was 50 seconds. In comparison, the

marginal NN-RCM model optimized the covariance parameters in under 5 seconds with

no guidance on the starting values. It is however important to be more transparent in

regards to the factors that can impact the runtime of the marginal NN-RCM function.

In an attempt to reduce the global runtime of the spConjNNGP function, one could use
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a coarse grid for the choice of range and nugget. On the other hand, without a proper

first guess from the simulation, the spConjNNGP function can require multiple runs

or make it difficult to use a small grid. Moreover, the simulation discussed involved

only two parameters due to the exponential covariance function. In other cases, the

number of parameters can be larger (e.g. Matérn) which makes it increasingly difficult to

maintain a small grid of values. While the optimization grid supplied to the spConjNNGP

directly impacts its runtime, the tuning of the marginal NN-RCM function is more

covert. Ultimately, what dictates its runtime is the stopping rule of the optimization

process. Using a very large convergence tolerance or limiting the number of iterations

can decrease the runtime artificially. In our case, for the univariate marginal model, we

rely on the default optim stopping rule which uses a convergence tolerance of 1e−08 and

a total number of iterations of 100. Finally, we note that the starting values can also

have a small impact on the runtime of the marginal NN-RCMmodel. For the simulation,

we made an honest attempt at keeping the starting values within a reasonable guess,

similar to the grid of values given to the spConjNNGP function.

The inference of the full MCMC NNGP model took 3.45 seconds and the

predictions on the testing set took 8.55 seconds. Similarly, the hierarchical NN-RCM

model took 4.05 seconds for the posterior inference but sampled the predictions 4 times

faster taking only 2.21 seconds. Note that the scale of the difference is maintained for

larger prediction location sets. Obtaining the high resolution predictions used to plot

the results took 70 seconds for the NNGP predict which is exactly 4 times more than

the NN-RCM model at 17.5 seconds.

Model PMSE CRPS PPLC Coverage

marginal NN-RCM 0.2627 0.3005 821.47 0.9992
hierarchical NN-RCM 0.2749 0.3160 1041.29 1.0000
conjugate NNGP 0.2646 0.3021 841.71 0.9984
MCMC NNGP 0.2619 0.3028 872.04 0.9984

Table 4.1: Scores comparison for the univariate simulation under the four studied models

64



0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−3

−2

−1

0

1

2

z

(a) True surface

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

−1

0

1

2

z

(b) Marginal NN-RCM

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

−1

0

1

2

z

(c) Conjugate NNGP

Figure 4.3: Comparison of true surface (no noise) and predicted surfaces for the marginal

NN-RCM model and conjugate NNGP model.
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Figure 4.4: Comparison of true surface (no noise) and predicted surfaces for the hierar-

chical NN-RCM model and full MCMC NNGP model.

4.3 Mediterranean sea surface temperature

Stepping away from simulations, we explore the use of our model to analyse

a Mediterranean sea surface temperature (SST) dataset from the month of December

2003. Those observations are collected from multiple devices including buoys and read-

ings along ship routes. The dataset is available as part of the NN-RCM package using

the data function.

1 data(sst)

Figure 4.5 shows the irregular spacing between the collected observations. We also im-
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Figure 4.5: Mediterranean SST from the month of December 2003.

mediately notice that the dataset contains a large quantity of duplicates. The reason

for this issue is twofold. First, some of the data were collected from free buoys over

multiple days. Since the buoys tend not to move quickly through space, this results in

duplicate observations. Second, the data were recorded using a very coarse resolution.

The number of unique locations is 3,072 while the dataset contains over 12,000 observa-

tions. In the most extreme case, one location recorded 710 observations. We therefore

have two choices to perform our analysis: average out duplicates, or adjust our model

to handle duplicates. In what follows we present both with an emphasis on the novel

method of handing duplicates in a nearest-neighbor spatial model.

4.3.1 Averaged out duplicates

As a mean of comparison, we first output predictions using both the NN-RCM

model and the spNNGP package. Since we did not have any external data to complement

the model, the choice of fixed effects was limited to an intercept, the longitude and

the latitude. The selection of the covariance function was done based on the relative
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roughness of the observations. To reflect the high variation in the observations, we

chose to use an exponential covariance function for both models. Finally, to compare

the models, we split the dataset into two groups, the training set and the testing set.

Without duplicates, the training set contained 2,572 observations and the testing subset

had 500 locations. After fitting the models and obtaining posterior predictive samples

for the 500 new locations, we computed the four scoring functions, PMSE, CRPS,

PPLC and the Coverage. The scores in Table 4.2 show that the two models have very

similar predictive samples when no duplicates are included. The NN-RCM does have a

better PMSE and CRPS but has a slightly larger variability penalty in the PPLC. The

similarity in the results is also visible in the predicted surfaces illustrated in Figure 4.6.

Model PMSE CRPS PPLC Coverage

Hierarchical NN-RCM 1.3497 0.6375 957.98 0.9180
Full MCMC NNGP 1.3601 0.6400 956.16 0.9280

Table 4.2: Scores comparison between the hierarchical NN-RCM model and the full

MCMC NNGP model for the no duplicates SST dataset.

(a) MCMC NNGP (b) Hierarchical NN-RCM

Figure 4.6: Posterior predictive averages of the no duplicates dataset using the full

MCMC NNGP model and the hierarchical NN-RCM model.
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4.3.2 Allowing duplicates

Duplicates present a serious challenge when it comes to nearest-neighbors

method. In fact, the spNNGP package clearly specifies that duplicate locations cannot

be handled by their method. In general, assuming that all locations have q duplicates,

we suggest considering a neighborhood of size qm, where m is the desired number of

external neighbors. Therefore handling a large number of duplicates can significantly

impact the runtime of the algorithm.

In cases where only some locations have duplicates, the size of the neighbor-

hood could be reduced but would still require to be at least as large as the highest count

of duplicates. In this specific dataset, the location with the most duplicates has 710 ob-

servations. Accounting for them while allowing that location to have external neighbors

defeats the purpose of using a nearest-neighbor approach. What we suggest is to reduce

the number of duplicates to account for the range of the observations. For example,

we reduced the duplicates to five summary statistics: the minimum, the maximum, the

first and third quartile and the median.

Running the model again and comparing it against our initial results, we see

a large improvement in the predictions. As seen in Table 4.3, the PMSE, CRPS and

PPLC are all significantly smaller than under the no duplicates model. The coverage

is also closer to 95% which is the desired level of probability we were reaching for.

Figure 4.7 shows the difference in the predicted surfaces of the hierarchical NN-RCM

model when including and excluding duplicates.

Model Duplicates PMSE CRPS PPLC Coverage

hierarchical NN-RCM No 1.3498 0.6376 957.99 0.9180
NNGP No 1.3602 0.6400 956.16 0.9280
hierarchical NN-RCM Yes 1.1075 0.5561 882.90 0.9700

Table 4.3: Scores comparison between the hierarchical NN-RCM and full MCMC models

for the SST dataset with and without duplicates
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(a) No duplicates (b) With duplicates

Figure 4.7: Posterior predictive averages using the hierarchical NN-RCM model for the

SST dataset with and without duplicates.

4.4 Bivariate spatial process

The second simulation example seeks to demonstrate the ability of the package

to analyze spatially dependent bivariate data. While the model has been developped for

the general multivariate case, we limited the NNRCM package to handle bivariate data.

This choice was made in light of our own interest for a particular bivariate dataset.

Note that to extend the model further, additional attention to the validity of the cross-

covariance function would be needed. Before we dive into the example, we must describe

the four possible options for the cross-covariance functions that the user can choose to

model their data.

4.4.1 Cross-covariance function options

There are many different approaches to the definition of a multivariate spatial

covariance function. Genton and Kleiber (2015) give a thorough overview of the multiple

options available for spatial modeling. In what follows, we review three of these methods

in more detail and discuss their specific implementation in the NNRCM package.

The first choice is a separable model where the cross-covariance matrix is the

result of the Kronecker product between a covariance matrix T and a spatial covariance
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matrix generated from a common covariance function C. That is, the covariance between

the variate i and j for two locations s1 and s2 can be written as

Cij(s1, s2) = tij ∗ C(s1, s2).

In the package, this option is available for the Matérn covariance function.

Another popular option, called the linear model of coregionalization, consists

of combining univariate random fields using a linear representation. Assuming the linear

combinations can be represented by the nonsingular matrix A, the cross-covariance is

then defined as A′C∗A, where C∗ is a block-matrix where each block represents the

covariance matrix obtained from the respective univariate covariance function Ck. Any

element of the cross-covariance matrix follows the equation below,

Cij(s1, s2) =

q∑
k=1

Ck(s1, s2)aikajk.

In the package, the method of coregionalization is defined where A is a lower triangular

matrix and the univariate covariance functions all follow Matérn kernels.

Finally, a multivariate extension of the Matérn covariance function has been

developed. As shown in Gneiting et al. (2010), in order to use the most flexible defi-

nition of the Matérn cross-covariance function, a set of conditions must be met. The

parsimonious option where the range parameter ν is kept fixed offers a largely simplified

implementation of the function. In that case, the cross-covariance is calculated as

Cij(s1, s2) = ρijσiσjM(s1, s2|
1

2
(κi + κj), ν),

where M(·|·) is the univariate Matérn covariance function for two locations s1 and s2,

ρ11 = ρ22 = 1 and κ1 and κ2 are the smoothness parameters. The only condition for

the validity of this cross-covariance function, which is both sufficient and necessary is

|ρ12| ≤

(
Γ(κ1 +

d
2

Γ(κ1

)1/2(
Γ(κ2 +

d
2

Γ(κ2

)1/2
Γ(12(κ1 + κ2)

Γ(12(κ1 + κ2) +
d
2

,
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where d is the dimension of the space. On the Euclidean plane, where d = 2, this

condition reduces to

|ρ12| ≤
(κ1κ2)

1/2

1
2(κ1 + κ2)

.

A slightly more relaxed version is also proposed where the range parameters

can vary as long as ν1 + ν2 ≥ 2ν12. For our purposes, we consider the case where the

cross range parameter is the average of the individual ranges, ν1 + ν2 = 2ν12.

4.4.2 Bivariate marginal model

The first bivariate example that we discuss consists of two surfaces gener-

ated using a cross-covariance Matérn function. For simplicity, we use the package

RandomFields to assist us with the generation of the datasets (Schlather et al., 2021,

2015). The goal is both to demonstrate how the model was implemented but also to il-

lustrate how the cross-covariance functions perform. Therefore, in order to challenge the

different cross-covariance choices, we use range and smoothness parameters that vary

greatly between the two surfaces. Moreover, we include a correlation of -0.5 between

the two surfaces.

1 library(RandomFields)

2

3 # define the parameters

4 N1 <- 25

5 N2 <- 25

6 N <- N1 * N2

7 n <- 300

8 kappa.bv <- c(3, 0.5, 1)

9 range.bv <- c(2, 1, 0.5)

10 sill.bv <- c(1, 1, -0.5)

11

12 # define the locations

13 observed.locations.grid <- cbind(seq(0, 10, length.out = N1),
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14 seq(0, 10, length.out = N2))

15 observed.locations <- expand.grid(seq(0, 10, length.out = N1),

16 seq(0, 10, length.out = N2))

17

18 # define the bivariate Mat{\’e}rn model using the RandomFields package

19 set.seed (1)

20 model.bv <- RMbiwm(nudiag = c(kappa.bv[1], kappa.bv[2]),

21 nured = kappa.bv[3],

22 s = range.bv ,

23 cdiag = c(sill.bv[1], sill.bv[2]),

24 rhored = sill.bv[3],

25 notinvnu = TRUE)

26

27 # generate the observations

28 y.modeled <- RFsimulate(model.bv , x = observed.locations.grid , spConform=

FALSE)

29 y.truth <- cbind(as.vector(y.modeled [,,1]), as.vector(y.modeled [,,2]))

30

31 # add noise (optional)

32 y <- y.truth + array(rnorm(N * 2, 0, 0.5), dim = c(N, 2))

33

34 # divide the observations into the training and testing sets

35 training.sample <- sample (1:N, n, replace = FALSE)

36 training.y.bv <- y[training.sample , ]

37 testing.y.bv <- y[-training.sample , ]

38 training.locations <- observed.locations[training.sample , ]

39 testing.locations <- observed.locations[-training.sample , ]

Similar to the univariate version, the bivariate marginal NN-RCM function

uses optim to obtain the point estimates for the model. Once again, we rely on the

Rcpp, RcppArmadillo and RcppParallel packages to compute the objective function

of the optimization program. However, unlike the univariate function, we limit the

number of iteration of the optim function to 20 to avoid excessive runtimes.
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An added difficulty of the bivariate dataset is the creation of the neighborhoods

sets. As we relied on existing functions for the univariate case, the same could not be

done for the bivariate model. To account for the potential misalignment of the data,

we needed to use a loop to create balanced neighborhoods for each observed location.

In an attempt to speed-up the computations, we allow the user to forego the even

neighborhood option. In that case, it is possible to use the spConjNNGP method to

obtain the neighbor structure. The downside is that this no longer guarantees that

each observation will benefit from having neighbors from both sources of data. For the

simulation at hand, because of the small size of the dataset, we do not select this option

and instead continue with the balanced neighbors choice.

The four cross-covariance function options are selected using the two flags

parsimonious and coregionalization. By default, the model optimizes the parsimo-

nious cross-covariance Matérn function. Therefore, we can obtain our first set of point

estimates using the following,

1 # inference using the parsimonious Matern cross -covariance function

2 optim.results <-

3 NNRCM.bv.marginal.infer(Y = training.y.bv ,

4 observed.locations = training.locations ,

5 smoothness = kappa.bv)

We can easily obtain the point estimates under the flexible range Matérn cross-

covariance function and under the coregionalization model by using the appropriate tags.

We keep the results separate using the abbreviation ”ns”, standing for not simplified,

and ”cr” standing for coregionalization.

1 # inference using the flexible Matern cross -covariance function

2 optim.results.ns <-

3 NNRCM.bv.marginal.infer(Y = training.y.bv ,

4 observed.locations = training.locations ,

5 smoothness = kappa.bv ,
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6 parsimonious = FALSE)

7

8 # inference using coregionalization

9 optim.results.cr <-

10 NNRCM.bv.marginal.infer(Y = training.y.bv ,

11 observed.locations = training.locations ,

12 smoothness = kappa.bv ,

13 coregionalization = TRUE)

Finally, for testing purposes we also fit the separable model which assumes a

constant range and smoothness parameter for the two surfaces and their cross-correlation.

In order to fit this model, we use the default settings which implements the parsimo-

nious model and provide a vector of repeated elements for the smoothness parameter.

In this case, we decided to use the average of the true smoothness parameters as an

acceptable compromise. We denote the results using the letters ”sp” for separable.

1 # inference using a separable covariance function

2 optim.results.sp <-

3 NNRCM.bv.marginal.infer(Y = training.y.bv ,

4 observed.locations = training.locations ,

5 smoothness = rep(mean(kappa.bv [1:2]) , 3))

The next step is to output posterior predictive samples for the testing set.

While we only show how to achieve this for the parsimonious Matérn cross-covariance

function, the same process can be repeated for each set of point estimates. The user

can modify the same flags and smoothness parameters according to what was used in

the first step.

1 # posterior predictive sampling of the testing set

2 posterior.predictive.marginal <-

3 NNRCM.bv.marginal.predict(Y = training.y.bv ,

4 observed.locations = training.locations ,

5 predicted.locations = testing.locations ,

6 point.estimates = optim.results$par ,
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Model Runtime Component PMSE CRPS PPLC Coverage

Coregionalization 49.01s Component 1 0.0503 0.1674 115.66 1.0000
Component 2 0.6838 0.4658 418.68 0.9754

Parsimonious 6.98s Component 1 0.0522 0.1680 116.42 1.0000
Component 2 0.6884 0.4657 415.16 0.9754

Flexible 8.05s Component 1 0.0507 0.1673 116.77 1.0000
Component 2 0.6749 0.4617 417.37 0.9754

Separable 6.58s Component 1 0.0643 0.1772 121.98 1.0000
Component 2 0.7063 0.4706 419.81 0.9815

Table 4.4: Scores comparison between the four possible cross-covariance function choices

for the bivariate marginal NN-RCM model. The scores are computed for each simulated

surface individually.

7 smoothness = kappa.bv)

8

9 # scoring

10 NNRCM.scores(testing.y.bv[, 1], posterior.predictive.marginal [,,1])

11 NNRCM.scores(testing.y.bv[, 2], posterior.predictive.marginal [,,2])

By using the same scoring function as we did under the univariate simulations,

we can test the differences between the four choices of cross-covariance models. For each

model, we compute the scores for each of the two surfaces of the bivariate dataset. If

the global scores are desired, they can be obtained by averaging the values from each

surface. From Table 4.4 we see that the separable model had a comparable runtime

to the parsimonious model but did not perform as well. Additionally, even though the

coregionalization model performed well, its optimization took three times longer.

To complete the example, we output high resolution predicted surfaces and

compare them to the true surfaces. Figure 4.8 and 4.9 show the resulting predictions

which seems to accurately depict the original datasets.
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Figure 4.8: Comparison of the first true surface (no noise) and predicted surface from

the bivariate marginal NN-RCM model.
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Figure 4.9: Comparison of the second true surface (no noise) and predicted surface from

the bivariate marginal NN-RCM model.

4.4.3 Bivariate hierarchical model

The final example shows the performance of the bivariate hierarchical NN-

RCM model for a linear combination of the spatial random effects. Assume that we
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observed y(s) which is obtained from the transformation

y(s) =

1 0

1 1

w(s).

Our interest is to recover the two spatial surfaces w1(s) and w2(s). For this simulation,

we start with the two surfaces used in the marginal example and transform them into

our observed data.

1 # transform the dataset

2 A <- matrix(c(1,1,0,1), ncol =2)

3 transformed.training.y <- training.y.bv %*% t(A)

4 transformed.testing.y <- testing.y.bv %*% t(A)

Using the point estimates that we obtained from the marginal model as starting

values, we fit the bivariate hierarchical model on the transformed dataset. We obtain

1000 posterior samples for the parameters in 4.01 seconds.

1 # inference from the bivariate hierarchical model on the training set

2 posterior.samples <-

3 NNRCM.bv.hierarchical.infer(

4 Y = transformed.training.y,

5 observed.locations = training.locations ,

6 starting.values = list(alpha = optim.results$par[1],

7 sigma = optim.results$par[2:4] ,

8 nu = optim.results$par[5],

9 nugget = optim.results$par [7:8]) ,

10 smoothness = kappa.bv ,

11 a.nu.update.interval = 1005,

12 A = A)

In terms of the neighbor structure retrieval, the possible misalignment of the

dataset does not have any impact. Since the neighbor structure is based on the spa-

tial random effects, the missing data does not change the neighbors of each location.

Therefore, we can once more leverage the spConjNNGP function with a slight adjust-
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Model Runtime Component PMSE CRPS PPLC Coverage

Parsimonious 6.86s Component 1 0.0522 0.1680 116.42 1.0000
Component 2 0.6884 0.4657 415.16 0.9754

Hierarchical 4.00s Component 1 0.0804 0.1915 135.62 1.0000
Component 2 0.7089 0.4754 459.70 0.9785

spMvLM 2.35m Component 1 0.0534 0.1737 124.03 1.0000
Component 2 0.7742 0.4995 515.49 0.9815

Table 4.5: Scores comparison for the bivariate simulation under the bivariate NN-RCM

models and the posterior predictive process model. The scores are computed for each

surface individually.

ment. While we must build different neighborhoods for each variable of each location,

fortunately, the neighborhoods follow a strict logic. Let w1(s) and w2(s) be the random

effects for a location s and assume that they join the global ordering of the locations

in numerical order. The neighboring sets of w1(s) denoted by N1,1(s) and N1,2(s) must

be the same since we have no missing data. For w2(s), the neighboring set N2,2(s) is

the same as N1,2(s). The neighboring set N2,1(s) however must be modified: the last

neighbor must be removed and w1(s) must be added. The remaining of the posterior

inference of the bivariate hierarchical NN-RCM model is relatively similar to the uni-

variate case. One notable difference is that for memory allocation reasons, we do not

output the posterior samples of the random effects γ and . As we did for the marginal

model, we use cross-validation to test the predictions obtained from the model. In Ta-

ble 4.5 we compare the scores obtained under the parsimonious marginal model and

the hierarchical model. The conclusion is that the hierarchical model performs very

similarly in terms of prediction error and in terms of the variability of the posterior

predictive samples.

1 # posterior predictive sampling for the testing set

2 leave.out.predictive.samples <-

3 NNRCM.bv.hierarchical.predict(

4 Y = transformed.training.y,
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5 kappa = kappa.bv ,

6 observed.locations = training.locations ,

7 predicted.locations = testing.locations ,

8 posterior.samples = posterior.samples ,

9 point.estimates = list(alpha = optim.results$par[1],

10 sigma = optim.results$par[2:4] ,

11 nu = optim.results$par[5],

12 nugget = optim.results$par [7:8]) ,

13 A = A)

14

15 # scoring

16 NNRCM.scores(testing.y.bv[, 1], leave.out.predictive.samples [,,1])

17 NNRCM.scores(testing.y.bv[, 2], leave.out.predictive.samples [,,2])

Finally, we output predictions for a high resolution grid and compare it to our

previous results in Figure 4.10 and 4.11. We see that the model is able to recover the

two transformed surfaces accurately.

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

−1

0

1

2

z1

(a) True surface

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

0

2

4
z1

(b) Marginal NN-RCM

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−1

0

1

z1

(c) Hierarchical NN-RCM

Figure 4.10: Comparison of the first true surface (no noise) and predicted surfaces from

the bivariate NN-RCM models.

4.4.4 Comparison to spBayes

Since the spNNGP package does not offer a multivariate implementation of the

NNGP model, we resort to comparing our results to the spBayes package (Finley et al.,
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Figure 4.11: Comparison of the second true surface (no noise) and predicted surfaces

from the bivariate NN-RCM models.

2015). Specifically, the spMvLM function implements the multivariate predictive process

for a given set of knots over the observed surface (Banerjee et al., 2008b). Denote the set

of knots by S∗ and the realizations of w(s) over S∗ by w∗. The multivariate predictive

process is then defined as

w̃(s) = Cθ(w(s),w∗)Cθ(w
∗)w∗,

where Cθ is any valid cross-covariance function with parameters θ. The process on

w̃(s) is effectively an interpolator of the orignal GP, w(s), with anchors such that

w̃(s∗) = w(s∗) for all s∗ ∈ S∗. Figure 4.12 and 4.13 show the true surfaces and the high

resolution predictions from the marginal NN-RCM model and the predictive process

side-by-side. In Table 4.5, we compare the posterior predictive scores obtained under

the best bivariate marginal model to the results from the spMvLM function with a 10×10

grid of knots. We notice that the scores of the two models are similar for the first surface.

The smoothness of the first surface presents an easy task for the predictive process

which can often suffer from oversmoothing. For the second surface, the limitations of

the knots is shown as the predictive process struggles to fully recover the true surface.

The predictions are overly smooth which leads to a larger predictive mean squared error

than the NN-RCM model. It is important to note that the predictive process required
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heavy tuning and burn-in to obtain the presented output.

We must also highlight that the runtime to obtain the posterior inference was

significantly longer under the spBayes package. To obtain the posterior inference, the

spMvLM function took 2.35 minutes and the bivariate NN-RCM model took 6.86 seconds.

The runtime to recover the predictions over the testing set was almost 300 times longer

under the spPredict function of the spBayes package. In seconds, the runtime for the

NNRCM package was 1.18 seconds and 320.50 seconds for spBayes. Extending this for

the high resolution predictions, the runtime for the spPredict function was just over 1

hour compared to 7.94 seconds for the NN-RCM model.

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

−1

0

1

2

z1

(a) True surface

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

0

2

4
z1

(b) Marginal NN-RCM

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0
x

y

−2

−1

0

1

2

z1

(c) Predictive process

Figure 4.12: Comparison of the first true surface (no noise) and predicted surfaces from

the bivariate marginal NN-RCM model and the posterior predictive process model.

4.5 Conclusions and future work

We have developed a flexible and efficient package for the univariate and bi-

variate NN-RCM models. The univariate model not only rivals with the spNNGP package

in terms of accuracy and efficiency, it also provides the user with the unique ability to

fit a spatial model for duplicated observations. This unique feature is especially useful

in settings like the SST dataset where a large number of observations are available for

each location. Reducing the data by taking the average at each location greatly reduces
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Figure 4.13: Comparison of the second true surface (no noise) and predicted surfaces

from the bivariate marginal NN-RCM model and the posterior predictive process model.

the potential to understand the uncertainty of the data and the predictions.

In the multivariate settings, a spatial nearest-neighbor model had not yet been

implemented in R. Our comparison with the established spBayes package showed the

superior potential of the NN-RCM method for rough surfaces. More importantly, the

implementation of the NN-RCM models allows for significantly faster inference even for

small datasets. The difference in runtime for recovering predictive samples is also worth

noting as the NN-RCM model was 300 times faster.

The development of the NN-RCM package is still in progress with a few key

items being of particular importance. First, while the Matérn covariance function is

largely favored in spatial settings, we wish to expand the covariance function options

of the package. At a minimum, the package could benefit from offering the Spherical

and Gaussian covariance functions. Next, the hierarchical bivariate model does not

currently accept and model fixed effects. While we do not expect any issues with

the posterior sampling and the full conditionals have been discussed in the previous

chapter, for testing purposes, we have not yet included them in our implementation.

One foreseeable hurdle is the impact on the runtime which is already sensitive to the

dataset size.

Finally, one essential improvement going forward is the reduction of the mem-
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ory footprint of the functions in the package. Currently, the memory allocation is

heavily solicited to keep the distance matrices available at all times. Similar to the

spNNGP package, the model could be improved by a more clever implementation which

does not require keeping large arrays in memory. The size of the posterior samples array

outputted by the hierarchical NN-RCM models also causes memory allocation issues.

In the future, it could be beneficial to include the possibility to routinely save the poste-

rior samples externally or devise an alternative method to save the samples using more

efficient objects. In particular, this issue will be highlighted in the next chapter with

our discussion of the Geostationary Operational Environmental Satellites (GOES) for

albedo assessments.
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Chapter 5

Surface Albedo Case Study

As mentioned in Chapter 1, one of the motivations for the development of

the methods considered in this dissertation is to analyse the surface albedo assess-

ments obtained from the National Oceanic and Atmospheric Administration’s (NOAA)

Geostationary Operational Environmental Satellites (GOES). The ultimate goal in this

chapter is to reconcile the observations obtained from both satellites, GOES-East and

GOES-West.

In the first section we discuss an alternative to the 10-day average currently

being used. We apply the distributed nearest-neighbor Gaussian process (NNGP) imple-

mentation in order to develop a sequential updating for the surface albedo predictions.

The current approach creates a product with a disconnect between time and space.

What we suggest is a seamless update of the albedo predictions after each day of a

10-day period. This is demonstrated with a proof of concept for a three-day average.

In the second section we tackle the core of the satellite reconciliation project.

We apply the bivariate spatial model developed in Chapter 3 which will allows us to

merge the observations from the two satellites using a common surface w(s) and a

differential surface d(s). We start our analysis with an area limited to a small portion

of the Midwest to illustrate how the model performs in comparison to its univariate
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counterpart. We then extend our analysis to a larger area by looking at the albedo

assessments over the state of Texas. Finally, we present the final results of the bivariate

model over the Continental United States (CONUS).

5.1 Sequential updating of surface albedo

We apply the divide-and-conquer approach to a subset of surface albedo mea-

surements obtained from NOAA’s GOES East and West. The GOES-East and GOES-

West are two Earth satellites that assess the bi-hemispherical reflectance factor (BHRiso)

daily. In this analysis, we wish to demonstrate the sequential potential of the divide-

and-conquer algorithm. In our settings, the GP can be fitted once per day after which

the data is no longer needed. This implies that at no point in time one needs to have

the data for more than one day on one server. This is especially useful for the task of

recording multi-day averages from massive datasets.

5.1.1 Sequential updating

To perform our experiment, we selected data from the GOES East and West

satellites for three days in the month of July 2000. Albedo varies slowly in time and its

retrieval can be affected by atmospheric conditions prevalent in a given day. Thus, it is

reasonable to combine several days of data to obtain updated predictions of the albedo

estimates. As presented in our results, we highlight the evolution of the predictions

updates over the course of July 1st-3rd, 2000. The data is retrieved at a resolution

of 4km by 4km. By restricting our analysis to CONUS, the result is a dataset with

approximately 665 000 observations per day for a total of roughly 2 million observations

over three days. As previously noted, the albedo product is captured by a percentage

of the weight between upward and downward radiant influxes. In order to transform

the range to be applicable for the GP model, we use a logit transformation on the data.
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Figure 5.1: Subset of surface albedo observations from July 1, 2000.

Figure 5.1 shows a subset of size 10,000 for the July 1st, 2000 data. Points colored

bright yellow are likely to correspond to areas with dense cloud covering.

As mentioned in Section 3.2, a reference set is needed to implement our pro-

posed method. To create the set, we first generated an equidistant grid of size 50 by

50 based on a rectangle spanning over CONUS. By cropping the grid to the inland

locations, the size of the final reference grid was reduced to 1,650 locations.

The covariance function used in the results presented was the Matérn with

smoothing parameter ν = 3/2. Different smoothness parameters were investigated but

did not lead to significant differences in the resulting predictions. The point estimates

for the nugget τ2 and the covariance range parameter ϕ were obtained after each day

by maximizing the marginal likelihood over a grid of possible values. The grid for τ2

included values between 0.5 and 1.00, and the grid for ϕ ranged from 5 and 10. For

all three days, the pair of parameters that maximized the marginal likelihood were the

same at τ2 = 0.55 and ϕ = 6.
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Figure 5.2: Posterior predictive average of surface albedo for July 1, 2000.

Using the point estimates obtained from the marginal optimization, we used

the R NNGP package spNNGP and the function spConjNNGP to obtain posterior pre-

dictions after each day. The cumulative predictions over the three days are shown in

Figures 5.2 to 5.4. For each day, we computed the posterior parameters by separating

the new incoming data in 100 blocks. We then combined the new values to the current

estimates of the posterior parameters. Once the new parameters are obtained, the data

can be discarded as they are no longer needed for future updates.

5.1.2 Runtime comparison

Each day, obtaining the sufficient statistics to compute the marginal likelihood

over a range of values for τ2 and ϕ took approximately 24 minutes. Once these sufficient

statistics are obtained, the runtime to combine them to maximize the marginal likeli-

hood is negligible. The analysis was also performed on a Razer Blade 15 with Intel(R)

Core(TM) i7-10750H Processor with 16.0GB of RAM. Obtaining predictions using the

optimal parameters using spConjNNGP took less than one minute.

As a comparison we used the function spConjNNGP to perform model inference

over the same data using the same grid for τ2 and ϕ. The function spConjNNGP uses
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Figure 5.3: Posterior predictive average of surface albedo for July 1-2, 2000.

Figure 5.4: Posterior predictive average of surface albedo for July 1-3, 2000.
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cross-validation to select the optimal point estimates for τ2 and ϕ. This inference must

then be repeated from scratch adding the additional data for each new day. The runtime

therefore increases each day, in this case, from 7 minutes on the first day to around 22

minutes on the third day. Although our implementation of the sequential method is not

fully optimized, we see its potential for sequential updating, as the runtime is constant

over time as opposed to the observed linear increase of the function spConjNNGP.

We also compared our methodology to the MCMC implementation of NNGP

using the function spNNGP of the spNNGP package. Over the course of the three days,

the runtime increases from 20 minutes for the first day to 65 minutes needed to handle

the data accumulated after the third day. It is worth noting that while this method

is superior in terms of quantifying and propagating the uncertainty quantification of

τ2 and ϕ, we noticed poor mixing of the MCMC samples. In order to obtain better

inference, we would need to rerun the model with updated starting values, priors and

tuning parameters.

In summary, we see that the possibility of updating the sufficient statistics

each day to obtain the marginal likelihood is beneficial for the runtime in the long-run.

Each day, the sufficient statistics for the new dataset can be retained and combined with

any subset of previous observations. For applications where cumulative predictions are

needed each day, maintaining a constant runtime can be particularly beneficial.

5.2 Bivariate surface albedo (cropland)

The model that we seek to use to analyse the albedo observations relies on two

spatial processes, a common surface and a differential surface. Let s be any location in

our space of interest, we denote the two possible observations from the GOES-East and

the GOES-West satellites as yE(s) and yW (s). We attempt to reconcile them to obtain

a common surface albedo represented by the spatial process w(s) and a discrepancy
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quantification from the process d(s). The model we use is therefore denoted asf(yE(s))

f(yW (s))

 = X(s)β +

1 0

1 1

w(s)

d(s)

+

ϵ1(s)

ϵ2(s)

 ,

where f is any appropriate transformation to the real line, X(s) and β represent the

covariates and fixed effects to be included, and ϵi ∼ N(0, τ2i ), for i = 1, 2. The covariates

included in X(s) are an intercept and the longitude and the latitude of the location s.

The choice of having common fixed effects β for both sources of information reflects our

assumption that the effects of the longitude and latitude on the albedo assessments are

not impacted by the satellite retrieval process.

As an initial exploration, we focus our analysis on croplands from the Mid-

west where the satellites GOES-East and GOES-West contain around 18,000 and 6,000

observations respectively. To capture the predictive fit of the model, we first split the

data into two equal subsets which we refer to as the training set and the testing set. We

will first fit the model on the training set only to evaluate the predictive power. Then,

we will fit the model once more on the full 24,000 datapoints to obtain high resolution

posterior predictive surfaces.

To fit this model as efficiently as possible, we proceed with a multi-tier ap-

proach. First, we discuss the transformation f and the fixed effects. Second, we look

at the univariate marginal nearest-neighbor Gaussian processes with rancom covari-

ance matrices (NN-RCM) models used to obtain point estimates for the covariance

parameters and the degrees of freedom. Since the bivariate marginal model does not

output point estimates for linear combinations of the observations, we use the univariate

marginal NN-RCM model in a two-step process. Finally, we use the bivariate hierar-

chical NN-RCM model to obtain the posterior inference on w(s) and d(s). Using these

posterior samples, we obtain posterior predictive samples for both w(s) and d(s) which

help us understand the uncertainty of our predictions and the difference between the

two GOES satellites.
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Covariate Mean St. dev.

Intercept -2.4466 0.0820
Longitude -0.0017 0.0005
Latitude -0.0032 0.0015

Table 5.1: Posterior mean of the fixed effects of the stacked albedo linear model for the

Midwest croplands.

5.2.1 Univariate marginal model tiered approach

As we previously explained in the sequential updating problem, the albedo

observations are percentages and first need to be transformed. Similarly, we used a logit

transformation to transform the percentages to the real line. We then use a univariate

linear model on the stacked training observations to remove the average fixed effects.

Table 5.1 summarizes the posterior mean and standard deviation for the fixed effects

obtained using the lm function in R. From these, we can remove the predicted expected

value from our transformed observations and continue with our spatial analysis.

Denote the transformed and centered observations as y∗E(s) and y∗W (s). The

bivariate marginal NN-RCM model is fitted on two spatial processes that correspond

to each source of information. Therefore, in this scenario, the point estimates that

the bivariate marginal NN-RCM model obtains do not correspond to the covariance

parameters for w(s) and d(s). Instead, we suggest using a two-step method to obtain

an approximation of the those covariance parameters.

First, we fit the univariate marginal model using the observations from the

first satellite, GOES-East only. The runtime for this first step was 22.15 seconds. Using

the posterior inference obtained, we extract predictions y
E(b)

W (s), for b = 1, ..., 1000, for

each the observed locations s of the second satellite, GOES-West. This second step

took 1.43 seconds. Finally, we fit a second univariate marginal NN-RCM model on the

difference between the observed value and the average predicted value for the second

source:
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yW (s)−
1000∑
b=1

y
E(b)

W (s)

1000
∼ NN −RCM(0, Cθ).

This last step took 10.28 seconds for an overall runtime of 34 seconds. Together, the two

models supply us with approximates for ξ2w, ξ
2
d, σ

2
w, σ

2
d, νw, νd, αw, αd. We can therefore

use the proxy nugget estimates and the partial sill estimates directly. For the range

parameter, since the bivariate model uses a common range, we have multiple options.

We decided to use the average of the two estimates, but another choice was to use the

smallest of the two ranges. Finally, for the degrees of freedom, we can obtain the point

estimate for α by adding the two estimates. We therefore have α = 2∗ (αw+αd), where

the estimate must be multiplied by 2 to account for the misalignment of the satellites.

More precisely, the two satellites do not share the same assessment grid which results

in a bivariate dataset with exactly 50% missing data.

This methodology does not provide us with an estimate for the cross-covariance

term of the Matérn covariance function, ρwd. A good approximation of the parameter

is obtained by computing the empirical correlation between the posterior predictive

averages for the second satellite and the difference between the albedo assessments

and the posterior predictive means. Carrying this calculation and adjusting for the

smoothness parameters, we obtain an estimate of ρwd = −0.0770. See Table 5.2 for the

complete list of point estimates obtained from the univariate marginal NN-RCM models

approach.

5.2.2 Bivariate hierarchical model

The final step of our spatial inference analysis consists of fitting the bivariate

hierarchical NN-RCM model to y∗E(s) and y∗W (s). The first few steps have allowed us

to reduce the model to the following,y∗E(s)

y∗W (s)

 =

1 0

1 1

w(s)

d(s)

+

ϵ1(s)

ϵ2(s)

 ,
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Parameter Notation w(s) d(s)
Bivariate
estimate

Degrees of freedom αw, αd, α 8960 2727 79582
Range νw, νd, ν 1.1047 1.5790 1.3419
Partial Sill σ2

w, σ
2
d 0.0361 0.0769 -

Correlation ρwd - - -0.0770
Nugget ξ2w, ξ

2
d 1.0499 0.0962 -

Table 5.2: Point estimates for the covariance parameters obtained from the multi-tiered

approach using the univariate marginal NN-RCM models for the Midwest croplands.

Model Runtime Satellite PMSE CRPS PPLC Coverage

Bivariate NN-RCM 1.76 mins GOES-E 0.0096 0.0713 590.59 0.9992
GOES-W 0.0250 0.0975 241.46 0.9993

Univariate NN-RCM 1.11 mins GOES-E 0.0205 0.0799 358.06 0.9662
GOES-W 0.0894 0.1984 196.95 0.6975

Table 5.3: Scores comparison for the hierarchical NN-RCM model and the univariate

marginal NN-RCM model for the Midwest croplands. The scores for the GOES-East

and GOES-West testing sets are reported individually.

where ϵi ∼ N(0, τ2i ), for i = 1, 2. We obtain posterior samples for the spatial random

effects using the bivariate hierarchical NN-RCM model with the point estimates as

outlined in Table 5.2. Overall, the posterior inference took 1.76 minutes to complete.

Using these posterior samples, we complete the final step of the cross-validation analysis

by sampling the posterior predictive distribution of the testing set locations. With those,

we can compute the four scoring values and compare them to using a univariate NN-

RCM model on the stacked dataset. Table 5.3 summarizes the results and shows that

the bivariate model does indeed outperform its univariate counterpart.

5.2.3 High resolution predicted surface

Repeating the same steps but for the full Midwest dataset, we again obtain

posterior samples for the bivariate hierarchical NN-RCM model. Using these samples
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we generate posterior predictive samples for a high resolution grid. Figure 5.5 shows

the posterior mean for the spatial random effect w(s) and the albedo predictions on the

original scale.
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(b) Albedo predictions

Figure 5.5: Spatial random effects w(s) and albedo predictions from the bivariate hier-

archical NN-RCM model for the Midwest croplands.

We are particularly interested in the spatial surface d(s) to learn about the

differences between the two satellites GOES-East and GOES-West. Figure 5.6 shows

the posterior predictive mean for d(s) and the posterior predictive difference between

yE(s) and yW (s) on the original scale. That is, for a location s, we plot the average of

the following quantity:

d∗b(s) = f−1(wb(s) + db(s) +X(s)β)− f−1(wb(s) +X(s)β),

where b = 1, ..., 1000.

We immediately notice that the discrepancy between the two satellites presents

irregular spatial patterns. A simple solution such as investigating the longitude/latitude

or the satellite view angle is not reasonable in view of these results. One plausible avenue

would be to look in more detail at the topography and the land cover of the area.

By looking at the 90% posterior predictive intervals at each location s, we

note that only 6% of them are significant. Reducing the interval to contain 80% of

the distribution, the significance increases to 20%. Therefore, we conclude that the

discrepancy is highly localized which reinforces the idea that the model would benefit
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from additional topographic information.

In the next sections, we look at larger spatial areas of CONUS. Taking into

consideration the high variability of the field d(s), we want to gauge the significance of

discrepancy in a more global model.
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Figure 5.6: Spatial random effects d(s) and posterior predictive mean of yE(s)− yW (s)

from the bivariate hierarchical NN-RCM model for the Midwest croplands.

5.3 Bivariate surface albedo (Texas)

As a second phase in our analysis, we investigate the differences between the

bivariate and univariate NN-RCM models for a larger area. We look at the state of

Texas which contains around 40,000 observations from each satellite. In this case,

while the datasets are balanced, they both contain a large number of missing values for

the northern portion of the state due to cloud coverage. We proceed again with the

univariate multi-tier approach to obtain point estimates for the covariance parameters.

5.3.1 Univariate marginal model tiered approach

We first start by transforming the dataset which includes removing the fixed

effects. Table 5.4 summarizes the posterior mean and standard deviation for the fixed

effects obtained using the lm function in R. After removing the predicted expected value

from our transformed observations, we continue with the univariate models.
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Covariate Mean St. dev.

Intercept -11.9600 0.0524
Longitude -0.0817 0.0005
Latitude 0.0753 0.0006

Table 5.4: Posterior mean of the fixed effects of the stacked albedo linear model for the

state of Texas

Parameter Notation w(s) d(s)
Bivariate
estimate

Degrees of freedom αw, αd, α 23801 15990 79582
Range νw, νd, ν 0.6193 0.4123 0.5158
Partial Sill σ2

w, σ
2
d 0.4094 0.1475 -

Correlation ρwd - - -0.0428
Nugget ξ2w, ξ

2
d 0.2577 0.6952 -

Table 5.5: Point estimates for the covariance parameters obtained from the multi-tiered

approach using the univariate marginal NN-RCM models for the state of Texas.

The three steps of the univariate multi-tier approach were performed with an

overall runtime of 75 seconds. The first step which consists of fitting the marginal uni-

variate NN-RCM model on the observations from the GOES-East satellite took 40.21

seconds. Obtaining the posterior predictive samples for the GOES-West observed loca-

tions then took 8.46 seconds. Finally, the second univariate model which looks at the

difference between the observed albedo assessment from the GOES-West satellite and

the posterior predictive mean obtain from the first model ran in 26.03 seconds. In Ta-

ble 5.5, we summarize the list of point estimates obtained from the univariate marginal

models approach.

5.3.2 Bivariate hierarchical model

Using the point estimates obtained in the previous section we sample the bi-

variate hierarchical NN-RCM model in 31.17 minutes. Finally, we obtain the posterior
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Model Runtime Satellite PMSE CRPS PPLC Coverage

Bivariate NN-RCM 31.2 mins GOES-E 0.0837 0.1735 8914.36 0.9962
GOES-W 0.1276 0.2290 12121.86 0.9991

Univariate NN-RCM 1.1 mins GOES-E 0.0530 0.1207 1915.54 0.9600
GOES-W 0.0613 0.1320 1358.17 0.9433

Table 5.6: Scores comparison for the hierarchical NN-RCM model and the univariate

marginal NN-RCM model for the state of Texas. The scores for the GOES-East and

GOES-West testing sets are reported individually.

predictive distribution samples for the testing locations and perform our cross-validation

of the model. Table 5.6 summarizes the results and shows that for this larger area, the

bivariate model does not perform better than the univariate marginal NN-RCM model.

To understand why the model is not as successful as in the croplands case, we investigate

the difference surface of the high resolution predictions in the next section.

5.3.3 High resolution predicted surface

Repeating the same steps but for the full Texas dataset, we again obtain pos-

terior samples for the bivariate hierarchical NN-RCM model. Using these samples we

generate posterior predictive samples for a high resolution grid. Figure 5.7 shows the

posterior mean for the spatial random effect w(s) and the albedo predictions on the

original scale respectively.

Once again we pay special attention to d(s) to learn about the differences

between the two satellites GOES-East and GOES-West. Figure 5.8 shows the posterior

predictive mean for d(s) and the posterior predictive difference between yE(s) and yW (s)

on the original scale. We immediately notice that on the original scale, the difference

surface is very close to 0. Looking at the 90% predictive intervals at each location s,

we see that over 99% of them include 0. This is a strong indication that the difference

between the satellites for the state of Texas is likely not significant. Other the hand,

it may also further suggest that the global variance of the model overwhelms the local
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Figure 5.7: Spatial random effects w(s) and albedo predictions from the bivariate hier-

archical NN-RCM model for the state of Texas.

variability of d(s). As we saw for the cropland area, the spatial layout of the discrepancy

field indicate that larger differences occur in localized patterns. As concluded earlier,

on a large scale level, the univariate model is sufficient to obtain joint predictions from

both sources of information.
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Figure 5.8: Spatial random effects d(s) and posterior predictive mean of yE(s)− yW (s)

from the bivariate hierarchical NN-RCM model for the state of Texas.
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Covariate Mean St. dev.

Intercept -1.1250 0.0066
Longitude -0.0088 0.0001
Latitude -0.0436 0.0001

Table 5.7: Posterior mean of the fixed effects of the stacked albedo linear model for

CONUS

Parameter Notation w(s) d(s)
Bivariate
estimate

Degrees of freedom αw, αd, α 386233 278686 1329822
Range νw, νd, ν 1.1402 3.2358 2.1880
Partial Sill σ2

w, σ
2
d 0.4522 0.0705 -

Correlation ρwd - - 0.0705
Nugget ξ2w, ξ

2
d 0.1879 0.7995 -

Table 5.8: Point estimates for the covariance parameters obtained from the multi-tiered

approach using the univariate marginal NN-RCM models for CONUS.

5.4 Bivariate surface albedo (CONUS)

In this final section, we repeat the analysis one additional time for the full

albedo dataset over CONUS. Table 5.7 summarizes the posterior mean and standard

deviation for the fixed effects obtained using the lm function. Continuing with out two-

step univariate approach, we fit the univariate marginal model using the observations

from the first satellite, GOES-East only. The runtime for this first step was 12.24 min-

utes. Before fitting the second univariate marginal model, we obtained the predictions

for the second satellite which took 4.68 minutes. Finally, the second univariate marginal

model ran for 17.24 minutes for an overall runtime of 34.16 minutes.

Using the same approach as for the Midwest croplands and for Texas, we obtain

the point estimates for the bivariate hierarchical NN-rCMc model which are summarized

in 5.8. We notice that the cross-covariance parameter estimate ρwd = −0.0705 is similar

to that of the two previous areas.
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Figure 5.9: Predicted spatial random effects w(s) from the bivariate hierarchical NN-

RCM model for CONUS.

5.4.1 Bivariate hierarchical model

Unlike the smaller examples, we encountered a memory allocation limit on

the number of posterior samples that can be obtained. Namely, we can only output

50 bivariate samples for the 631,441 observed locations. In total, the object has size

over 500Mb. The runtime is also impacted by the limited CPU usage. Overall, the

posterior inference took 20 hours to complete. Using these samples we generate posterior

predictive samples for a high resolution grid. Figure 5.9 and 5.10 show the posterior

mean for the spatial random effect w(s) and the albedo predictions on the original scale

respectively.

Figure 5.11 and Figure 5.12 show the posterior predictive mean for d(s) and

the posterior predictive difference between yE(s) and yW (s) on the original scale. In this

scenario also, the 90% predictive intervals overlap 0 in 99.9% of the predicted locations.

It is even more apparent in such a large area that the discrepancy is significant only at

the local level. In this example, d(s) shows very few spatial patterns even in areas like

the Midwest where were saw a significant difference in an earlier example. One could

expect that this is due to the lower resolution of the posterior predictive fields over
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Figure 5.10: Albedo predictions from the bivariate hierarchical NN-RCM model for

CONUS.
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Figure 5.11: Predicted spatial random effects d(s) from the bivariate hierarchical NN-

RCM model for CONUS.
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Figure 5.12: Posterior predictive mean of yE(s)− yW (s) from the bivariate hierarchical

NN-RCM model for CONUS.

the croplands. In Figure 5.13, we use the same predictive grid to output the posterior

predictive mean over the Midwest area. We see that despite the higher resolution, the

spatial field under the full CONUS model is still a rendition of white noise. Therefore,

the final conclusion is that the model with the full dataset smooths the assessements of

the smaller subsets and the global variance is too large to recover the regional variability.
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Figure 5.13: Spatial random effects d(s) from the bivariate hierarchical NN-RCM model

using the Midwest dataset vs using the full CONUS dataset.
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5.5 Conclusions and future work

In this chapter, we have first successfully implemented a very substantive ex-

ample of sequential updating for NNGP. We have developed a methodology that allows

for multi-day averaging without running the model over the same dataset more than

once.

Second, we have demonstrated the ability of the univariate and bivariate NN-

RCM models to deal with increasingly large datasets. In addition to facing continental

scale data, we have also tackled the challenge of misaligned datasets. As noted, the two

satellites GOES East and GOES West do not share their retrieval grid. In other words,

we overcame datasets with exactly 50% missing data. Finally, the linear structure of the

bivariate hierarchical NN-RCM model allowed us to quantify the discrepancy between

the two satellites. Using this knowledge, we were able to conclude that the differences

in the albedo assessements fall on more intrinsic characteristics than the Zenith viewing

angle of the satellite.

From our analyses of the various areas of CONUS, we concluded that for large

scale predictions, stacking the observations from both satellites and using the univariate

NN-RCM model is sufficient. The next step in this analysis will be to look at predictions

for the subsequent days of data. Using the univariate model, we can also compare the

daily predictions to the stacked predictions from multiple days. Since the NNRCM package

can handle duplicates, stacking multiple days of data does not bring any issues to the

model.

In terms of small scale analysis, for example with the croplands, the bivariate

model does provide a good understanding of the spatial differences between the satellites.

As shown in our cross-validation results, the bivariate model outputs a smaller predictive

mean squared error and a better coverage of the true values. The bivariate model is

therefore useful to gain an understanding of specific differences. While in this case we
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were looking at croplands in the Midwest, the next step will be to look at other regions

with interesting geographic characteristics. For example, we could look at urban regions,

grasslands, shrublands, forests and deserts.

One of the next stage of our analysis will be to consider the extension to the

full scale of the satellites. The viewing angle of GOES-East and GOES-West go well

beyond CONUS to include all of the Americas. Moreover, it will be essential to look at

an extended timeframe outside of the month of July to see how the discrepancy evolves

over time.

Finally, while we were interested in the white sky albedo assessement (BHRiso),

the GOES East and GOES West satellites also retrieve the directional Hemispherical

Reflectance (DHR30) also called the black sky albedo. It would be not only possible

to model DHR30 as we did for BHRiso, but it would also be interesting to design a

bivariate model to understand the differences between the two ratings.
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Chapter 6

Discussion

The importance of scalable methodologies in the realm of spatial statistics has

been firmly established. Many of the existing approaches that tackle massive spatial

data rely on approximations with result in non-stationary spatial models. Our main

objective was to shift the priorities by developing a non-stationary and non-isotropic

spatial model that is also computationally efficient. In this chapter, we summarize

the achievements and the next steps of the development of the nearest-neighbor Gaus-

sian process with random covariance matrix (NN-RCM) model. Before discussing the

NN-RCM model, however, we first review the implementation and the future for the

distributed nearest-neighbor Gaussian process (NNGP) methodology.

6.1 Distributed NNGP

While NNGP already benefit from a highly efficient implementation, we have

highlighted specific situations where it may not be sufficient. For example, in the case

of distributed datasets where one may not be able to access the data all at once, an

alternative solution must be defined. We proposed a distributed approach which allows

to recover the exact posterior inference by applying the model on blocks of data. By

using a common reference set for all blocks, we are able to aggregate the posterior
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parameters and obtain the global posterior distribution. Another frequent situation

involves recurring data. In that case, it is desirable to devise a sequential updating

plan for the model. The same distributed approach can be applied which results in a

constant runtime over time. We have illustrated this concept in the albedo case study

where we wish to obtain multi-day posterior predictive averages. By obtaining the

posterior parameters for each day of data for a common reference set, we are able to

concatenate the days of interest to obtain the global posterior distribution. We have

shown that the runtime of competing methods will increase linearly with the size of the

dataset as opposed to our method which keeps a constant runtime based on one day of

data.

One of the next step for the distributed method will be to extend the procedure

for multivariate NNGP. Joint modeling of spatial processes is commonly found in many

applications and present an even bigger computational challenge. Having a divide-and-

conquer method could be helpful especially in situations where the evolution of data

over time is of interest.

6.2 NN-RCM

We introduced a non-isotropic extension to the NNGP which we called nearest-

neighbor Gaussian process with random covariance matrices (NN-RCM). We have de-

veloped and implemented in the R package NNRCM both a univariate and a multivariate

version of the model. Moreover, for both the univariate and multivariate settings, we

established a marginal model and an extended hierarchical model.

By marginalizing the spatial random effects, we obtain the posterior marginal

distribution of the model. The optimization of the posterior marginal distribution gives

us point estimates for the covariance parameters very quickly. Using these point esti-

mates, we can recover the posterior predictive distribution of the observations allowing
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us to fully quantify the uncertainty of the predictions.

The extension to the hierarchical model allows to include fixed effects and

an observational error to the structure. In this case, we use an MCMC algorithm to

recover the full posterior distribution of all the parameters in the model. For a faster

option, it is reasonable to fix the covariance parameters and the degrees of freedom

using the previously discussed marginal model. In that case, the MCMC algorithm

retrieves posterior samples for the spatial random effects, the fixed effects and the

observational error while keeping the remaining parameters constant. Ultimately, this

saves the algorithm from performing a Metropolis step.

Through the implementation of the NN-RCM model, we have dealt with mul-

tiple issues that are often overlooked. First, we addressed the issue of duplicate obser-

vations with a case study on the Mediterranean sea surface temperature (SST). The

inclusion of a proxy nugget in the covariance structure of our model allows us to include

duplicates without obtaining singular matrices. Allowing duplicates however must come

with a thoughtful discussion on the size of the neighborhood. Ideally, the duplicates

would be included in addition to a set number of unique neighbors. In the most extreme

cases, where each observed location has q duplicates, the neighborhood size would be

extended to mq, where m represents the number of neighboring locations. In the SST

dataset, the number of duplicates was initially too large but we were able to reduce it

by taking a variety of measures of variability. While the neighborhood were significantly

extended, this resulted in a smaller predictive mean squared error and better continuous

rank probability score and posterior predictive loss criterion when compared to the no

duplicates NN-RCM and NNGP models.

A second challenge that we tackled was the presence of misaligned multivariate

data. In the albedo case study, the missing data represented 50% of the data as the

assessments from the two satellites were fully misaligned. Our implementation of both

the bivariate marginal and hierarchical models support the case of missing observations.
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For the marginal model, we create the neighborhoods and the likelihoods based on the

available data and can obtain the posterior inference for the covariance parameters as

such. In the hierarchical case, the spatial random effects w(s) can be be fully sampled

even for missing observations. Therefore, the neighborhoods are created based on the full

spatial random effects being available. The impact of the missing values are reflected

in the likelihood of the spatial random effects. That is, the posterior distribution of

the spatial random effects that are associated with a missing value relies only on its

neighbors and its prior.

Through the scarcity of the nearest-neighbors and the linearization of the

model, we achieve a scalable model which is fully parallelizable. One future goal is

the possibility of implementing a distributed version of the presented model. While the

current implementation does not allow for it directly, it would be possible to devise a

sequential updating of the posterior parameters.

In the distributed NNGP model, we saved the marginal values for each cell

of a grid of parameters. Then, by adding these tables for the days or blocks of inter-

est, we could recover the global marginal values. Applying the optimization was then

straightforward as selecting the combinations of parameters resulting in the highest

global likelihood value. While a similar approach would be possible for the NN-RCM,

it is not desirable as the dimension of the covariance parameters is larger. One would

need thousands of combinations of the four covariance parameters in order to carry such

an analysis.

A better alternative would be to use a sequence of starting values for the

marginal optimization based on the previous days or blocks. For example, after ob-

servations are collected for one day, we can maximize the marginal and obtain point

estimates for θ and α. On the following day, we can repeat the process by starting the

optimization at the previous day’s estimates.

There is one issue that we have not addressed which pertains to the creation
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of the neighborhoods. In the case of the distributed NNGP, the neighbors were chosen

from a common reference grid shared by each block of data. Therefore, the selection

of the neighbors was consistent across each new day. In our case, we do not have a

reference grid. To maintain the order of the observations, we would need to accumulate

the observed data which defeats the purpose of the distributed implementation. Instead,

we would explore a new notion of truncated neighborhoods for which each observations

would only contain neighbors from the current day. That is, the ordering of the locations

would effectively be restarted every day.

6.3 Albedo case study

In the final chapter, we presented a case study on the surface albedo assess-

ments from NOAA’s GOES East and West. The importance of surface albedo stems

from its potential to display the rate of climate change. The first objective of our anal-

ysis was to explore multi-day posterior predictive averages. By using the previously

discussed sequential updating NNGP model, we obtained evolving predictions over the

course of three days. This method can then be extended to aggregate the posterior

parameters of any days of interest. One use of this averaging, in conjunction with the

quality rating of the assessments, would be to replace the 10-day product that is cur-

rently being produced. One of the next step in our analysis would be to create these

averages and conduct a formal comparison with the existing statistic.

The second objective of the study was to quantify the discrepancy between

GOES-East and GOES-West. While the two satellites seem similar on a global level,

for smaller areas, the subtle differences were clearly visible. We used the bivariate

hierarchical NN-RCM model to capture the spatial random effects as a common albedo

surface w(s) and a discrepancy surface denoted d(s). Starting with a smaller area in the

Midwest of the United States, we concluded that the difference between the two satellites
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was not only significant but also dictated by a non-trivial spatial pattern. One possible

idea would be to include additional fixed effects related to the topography of the land.

We then moved on to larger areas, including the state of Texas and the whole CONUS

area. Overall, these two examples included 80,000 and 630,000 datapoints respectively.

The conclusions for both were that the global variability over large areas was too great

to quantify the discrepancy. The uncertainty surrounding the discrepancy surface was

too large to be significant. This tells us that, at this time, with the current additional

information included in the model, combining the assessments from both satellites into

a univariate model is sufficient when it comes to large scale predictions.

The next stage of our analysis will be to expand the model to the entirety of

the data available from both satellites. This includes most of the Americas totalling

over two millions observations each day. It is also of interest to understand if the time of

year has an impact on the discrepancy between the satellites. While we focused on the

month of July for CONUS, it will be interesting to see how surface albedo is impacted

in the winter months. Finally, through our study of croplands in the Midwest, we were

able to detect patterns in the differences between the satellites. It will be essential

to study other small areas and identify what causes these spatial patterns and how to

capture them with our bivariate NN-RCM model.
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