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ABSTRACT 
 

Alec Soronow: Bell Jar: An Automated Analysis Tool for Mouse Brain Histology 
 

For comprehensive anatomical analysis of a mouse brain, accurate and efficient 

registration of the experimental brain samples to a reference atlas is necessary. Here, I 

introduce Bell Jar, an automated solution that can align and annotate tissue sections 

with anatomical structures from a reference atlas and detect fluorescent signals with 

cellular resolution (e.g., cell bodies or nuclei). Bell Jar utilizes machine learning-

based non-linear image registration to achieve precise alignments, even with damaged 

sample tissues. While user input remains required for fine-tuning section matches, the 

platform streamlines the process, aiding rapid analyses in high-throughput 

neuroanatomy studies. As a standalone desktop application with a user-friendly 

interface, Bell Jar's performance surpasses traditional manual and existing automated 

methods and can improve the reproducibility and throughput of histological analyses. 
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1 Introduction 

Assigning anatomical regions to mouse brain sections (known as alignment) based on 

a reference atlas is a challenging and necessary task for neuroscience research. Before 

the publication of digital reference atlases (e.g., the Allen Mouse Brain Reference 

Atlas1), alignment relied on paper atlases such as Paxinos and Franklin’s The Mouse 

Brain in Stereotaxic Coordinates2, which contains representative tissue section 

images using Nissl and Acetylcholinesterase (AChE) staining, and the corresponding 

line drawing of the anatomical boundaries of brain regions. The experimenter would 

then, by visual inspection, identify the reference image that is the closest to the 

experimental brain section and annotate the regions of interest accordingly. This 

method is time-consuming and is subject to inter-rater bias. Importantly, imperfect 

sectioning angles and other distortions introduced through histological processing or 

factors such as animal strain, age, sex, and size make the experimental tissue sections 

non-identical to the reference images. This may result in imprecise registration and 

annotation of brain structures in the experimental tissues. As neuroscience moves 

towards high-throughput experiments, automated methods are necessary to achieve 

accurate and reproducible results in a reasonable amount of time. Several tools 

developed to address this problem3–7 rely on rigid, affine transforms of the digital 

atlas to assign regions but remain problematic when aligning damaged, deformed, or 

otherwise sub-optimal specimens often encountered in research. To overcome this 

obstacle, I created Bell Jar, a software tool that automatically aligns sections to a 
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reference atlas with a deformable transformation, enabling all types of tissue to be 

aligned. 

 

1.1 Current Problems with Tissue Alignment in Neuroanatomy 

Due to the technological advances of microscopy and computer systems, large image 

datasets are becoming increasingly common among neuroscience researchers8–12, and 

there is a need to automate the analysis of this data. There can be hundreds of high-

resolution brain tissue sections for analysis of whole-brain histology experiments with 

even a few animals9–11. Researchers then must interpret results manually to analyze 

experimental signals (e.g., count labeled cells) and demarcate anatomical regions 

(e.g., draw borders between different structures) to interpret results manually for each 

section. Manual annotation across large datasets is time-consuming and prone to 

inter-rater bias3,13. The bias is introduced in the traditional application of region 

boundaries by an expert with the aid of a paper atlas14. Each expert rater has to make 

a personal determination based on cues in the tissue section, such as cytoarchitecture 

or landmark structures. However, while these heuristics work for ideal tissue sections, 

they become difficult to apply for damaged or irregular tissue sections.  

 

With advances in brain imaging and the collection of large datasets, digital reference 

atlases have become increasingly detailed and accessible. The Allen Brain Common 

Coordinate Framework1 (CCF) provides high-resolution atlas volumes and 

corresponding region annotations (including a coordinate system and structure 
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ontologies) representing the average adult mouse brain. A program can align an 

experimental tissue section into the reference atlas with a high-resolution digital 

intermediate tissue section as a guide3,4,6 , assuming they share key anatomical 

features. With the resulting alignment, the exact annotations of the digital tissue 

section can be used to determine the regions in the experimental tissue. With these 

boundaries, signals can be further analyzed within those regions via other software. 

  

Several programs have been developed for alignment and signal detection3,4,6,13 and 

have seen significant usage throughout the neuroscience community, but they face 

limitations in their ability to align experimental tissues. While implementation details 

vary, they use the same principle discussed above: each performs some user-defined 

affine3,6,15 or user-defined spline-based transformation15 of the digital atlas section to 

match the experimental tissue section. Affine transformations cannot accurately 

represent the extensive deformations arising from differences in the mounting and 

sectioning of individual experiments due to their inability to represent complex elastic 

deformations. Tools that feature manual landmark-based deformable transformations 

(user-defined spline-transformations) of alignments address this issue.  

 

Still, the added time to manually tune hundreds of sections this way limits their 

utility. In some cases, this is a semi-automated user-driven process3,6. In others, it is 

automated based on deep learning or other heuristics5,13. Despite their efficacy, these 

tools still achieve limited accuracy on challenging tissues and cannot overcome 
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complex deformations in tissues. Many of them also require data to be two-photon 

microscopy16,17 , which may be inaccessible or non-applicable to some neuroscience 

labs. Additionally, these tools are built on platforms that are consistently difficult to 

maintain and execute across platforms or as scripts in other software. The lack of 

maintenance for these platforms hinders their usage in research for labs that want to 

integrate high throughput analysis. Some of these tools are no longer usable on 

modern systems or not maintained altogether. I sought to create a platform that any 

researcher could learn and use, regardless of computational experience. 

 

1.2 Developing the Platform 

To address these limitations, I created Bell Jar. A standalone cross-platform desktop 

software combines the ability to automatically register experimental tissues to the 

Allen Brain CCF (common coordinate framework) and quantify experimental signals 

based on the alignment, with minimal requirement for computational expertise.  

 

Bell Jar’s UI (user interface) and backend were built on the Electron.js framework18 

to leverage web applications' ease of development, powerful frameworks, and cross-

platform compatibility. Bell Jar’s tools are written in Python as individual scripts. The 

software hosts its own standalone Python installation, keeping its dependencies 

separate from the host installations. These features let users download and start using 

the software with minimal configuration. Bell Jar provides various tools for histology 
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analysis, with its functionality divided into independent tools: alignment, detection, 

and counting. 

 

2 Materials and Methods 

2.1 Virus Preparation 

All AAVs and EnvA+RVdG were produced by the Salk Viral Core GT3: AAVretro-

nef-lox66/71-tTA (1.77X1012 GC/ml), AAV8-TRE-DIO-oG-WPRE (5.92X1012 

GC/ml), AAV8-TRE-DIO-eGFP-T2A-TVA (7.00X1013 GC/ml), AAV8-DIO-TVA66T-

2A-eGFP-2A-oG (5.06X1013 GC/ml), and EnvA+RVdG-mCherry (1.07X109 

Infectious Unit (IU)/ml).   

   

2.2 Animal Surgery for Virus Injection 

For rabies tracing experiments, SepW1-Cre NP39 or Tlx3-Cre PL56 mice received 

AAV helper injections at postnatal day (P)80-P100. Mice were anaesthetized with 100 

mg/kg of ketamine and 10 mg/kg of xylazine cocktail via intra-peritoneal injections 

and mounted in a stereotax (RWD instruments) for surgery and stereotaxic injections. 

50nl of AAVretro-nef-lox66/71-tTA was injected into the center of medial secondary 

visual cortex (V2M), using the following coordinates: 1.8 mm caudal, 1.6 mm lateral 

relative to lambda and 0.5-0.7 mm ventral from the pia. A 50 nl mixture of AAV8-

TRE-DIO-oG-WPRE and AAV8-TRE-DIO-eGFP-T2A-TVA or a 50 nl AAV8-DIO-

TVA66T-2A-eGFP-2A-oG was injected into the center of the primary visual cortex 

(V1), using the following coordinates: 3.4 mm caudal, 2.6 mm lateral relative to 
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bregma and 0.5-0.7 mm ventral from the pia. We injected AAVs using air pressure by 

1ml syringe with 18G tubing adaptor and tubing. To prevent virus backflow, the 

pipette was left in the brain for 5-10 minutes after completion of injection. Two or 

three weeks after AAV helper injection, 100-200 nl of EnvA+RVdG-mCherry were 

injected into the same site in V1 using 1ml syringe-mediated air pressure. Mice were 

housed for seven days to allow for trans-synaptic rabies spread and fluorescent 

protein expression.  

 

2.3 Histology and Image Analysis 

Brains were harvested after trans-cardiac perfusion using phosphate-buffered saline 

(PBS) followed by 4% paraformaldehyde (PFA). Brains were dissected out from 

skulls and post-fixed with 2% PFA and 15% sucrose in PBS at 4°C overnight, and 

then immersed in 30% sucrose in PBS at 4°C before sectioning. Using a freezing 

microtome, 50µm coronal brain sections were cut and stored in PBS with 0.01% 

sodium azide at 4°C. To enhance eGFP and dsRed signals, free-floating sections were 

incubated at 4°C for 16-48 hours with goat anti-GFP (1:1000; Rockland 600-101-215) 

and rabbit anti-dsRed (1:500; Clontech 632496) primary antibodies in PBS/0.5% 

normal donkey serum/0.1% Triton-X 100, followed by the appropriate secondary 

antibodies conjugated with Alexa 488 or 568 (Invitrogen). Sections were 

counterstained with 10μM DAPI in PBS for 30 min to visualize cell nuclei. 

Immunostained tissue sections were mounted on slides with Polyvinyl alcohol 

mounting medium containing DABCO and allowed to air-dry overnight. 
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All sections were scanned with a 10x objective on a Zeiss AxioImager Z2 Widefield 

Microscope. Scanned images were first processed in Zeiss ZEN software using their 

extended focal imaging algorithm. Subsequent image files were processed and 

analyzed by Bell Jar, ilastik or NIH ImageJ (FIJI). 

 

2.4 Statistical Methods 

Kruskal-Wallis one-way analysis from the SciPy22 of variance was used to analyze the 

significance of the difference between the alignment methods' fit metrics, followed by 

post-hoc Dunn to find statistical significances. Pearson's product-moment correlation 

coefficient was used to calculate the correlation and significance for the various 

counting methods to manual data. 

 

2.5 Hardware Specifications 

I performed all network training on a Windows 11 machine with an AMD Ryzen 9 

7950X processor and an Nvidia RTX A5000 GPU. The minimum specifications we 

recommend for running Bell Jar are: an 8th generation Intel or Ryzen 5 (2017 

onwards) processor and a GTX 1060 (6GB) GPU. The minimum GPU memory 

required for Bell Jar is 4GB, but we recommend at least 6GB for optimal 

performance. 
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2.6 Analysis of ISH Signals 

All images were collected from the Allen Mouse Brain Reference Atlas20 transgenic 

characterization dataset via their public application programming interface. The 

experiments were individually aligned using Bell Jar’s alignment workflow. Images 

were first inverted, then converted to 8-bit grayscale, and ISH signals were 

thresholded at a constant value (125) across all experiments to create binary masks of 

signal in each section. The number of thresholded pixels in each brain region was 

then quantified using the Bell Jar alignments.  

 

2.7 Model Generation and Training 

All YoloV826 models were trained using the large model weights for 200 epochs and 

with all recommended default hyperparameters. The predictor ResNet-10121 

architecture was based on the architecture described in the original work with some 

key differences. Inputs to the network first undergo Sobel filtering to enhance the 

edges of anatomical features. The network's final output dense layer is also modified 

to produce three normalized scalars representing our X-cut angle, Y-cut angle, and 

anterior-posterior position. I normalized these values to aid training and 

generalization. Normalization of the vectors was done by assuming -10 degrees to be 

the minimum cut angle in either dimension and 10 degrees to be the maximum cut 

angle in either dimension. Likewise, for the anterior-posterior position, I based this 

off the indices of the digitally coronally sectioned Allen Mouse Brain Reference 
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Atlas1,20 10µm Nissl volume, with 0 being the minimum position and 1324 being the 

maximum. 

 

2.8 Composite Transformation Routine for Alignment 

The composite transformation routine for aligning tissue sections to a reference atlas 

through a two-stage registration process, incorporating both affine and B-spline 

transformations. The SimpleITK framework, a toolkit for image processing, 

facilitates this process. Initially, the fixed (experimental tissue) and moving (digital 

reference tissue) images undergo padding, extended by a uniform margin of 50 pixels 

on all sides, to mitigate boundary effects during registration. Subsequently, these 

images are cast to a 32-bit floating-point format to ensure numerical precision in 

subsequent computations. Then, histogram matching gives the reference atlas the 

same intensity distribution as our sample. The function employs the SimpleITK 

framework to adjust the intensity distribution of a moving image to match that of a 

fixed image, a process known as histogram matching. This is achieved through the 

‘HistogramMatchingImageFilter’ function, which modifies the pixel values of the 

moving image such that its histogram aligns with the histogram of the fixed image. 

The filter is configured to use 1024 histogram levels, ensuring a detailed 

representation of intensity distributions, and it matches the histograms based on 10 

equally spaced intensity values (match points) that are representative of the entire 

intensity range. Additionally, by activating the ‘ThresholdAtMeanIntensityOn’ option, 

the algorithm modifies the intensity values of the moving image only above its mean 
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intensity, thereby preserving the lower intensity range. Afterwards I proceed with the 

first stage of registration. 

 

The first stage involves an affine registration, where the moving image is aligned to 

the fixed image through an affine transformation. This is initialized using the 

‘CenteredTransformInitializer’ function, which aligns the centers of the two images 

and estimates an initial transformation matrix. The affine registration employs the 

Mattes Mutual Information24 metric, a statistical similarity measure, with 32 

histogram bins to guide the optimization process. Optimization is performed using 

gradient descent, with a learning rate of 0.01, over 300 iterations, or until 

convergence is reached, as indicated by a minimum value change of 1×10−8 over a 

20-iteration window. Physical shifts determine the optimizer scales to ensure uniform 

step sizes across dimensions. A multi-resolution strategy is employed by setting 

shrink factors and smoothing sigmas per level to [4, 2, 1] and [2, 1, 0], respectively, to 

enhance convergence. The transformation is interpolated using a linear method. 

The affine transformation, denoted as Taffine, modifies the moving image to align with 

the fixed image based on translation, rotation, scaling, and shearing adjustments, 

formalized as: 

𝑇!""#$%(𝑥) = 𝐴𝑥 + 𝑏, 

where A is a linear transformation matrix, and b is a translation vector applied to 

coordinates x of the moving image. When the affine transformation is found, I apply 

it to the fixed image and begin the second stage with that transformed image. 
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The second stage of registration is conducted using a B-spline transformation. This is 

initialized over a specified mesh size (4 x 4), determined by a uniform grid with 

dimensions proportional to the image size, to introduce local deformations for finer 

alignment. This stage also utilizes gradient descent optimization with the same 

parameters as the affine stage, with the exception of now using neighborhood 

correlation as its fit metric. It also runs over 300 iterations to refine the alignment 

based on local deformations within the control points defined by the mesh. The B-

spline transformation, TB-spline, allows for elastic deformation of the moving image to 

fit the fixed image more accurately, represented as: 

𝑇&'()*#$%(𝑥) =*𝑃#𝐵#(𝑥),
+

#

 

where Pi are the control points, Bi(x) are the B-spline basis functions, and N is the 

number of control points. This method offers a flexible, high-degree-of-freedom 

approach to accommodate complex anatomical variations.  

 

The final output is a composite transformation, combining the affine and B-spline 

transformations. This composite ensures that the initial global alignment provided by 

the affine transformation is refined through local adjustments via the B-spline 

transformation. The resulting composite transformation is applied to the moving 

image, achieving an aligned reference atlas section with respect to the fixed tissue 
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image. The same transform is also applied to the reference atlas annotations so the 

labels may be applied to the tissue section. 

 

3 Results 

I first dissected the general workflow into its constituent steps to automate the 

analysis workflow. There are four key steps in going from raw images to results for a 

given experiment: prediction, alignment, detection, and integration (Figure 3.1B-F). 

Each step outputs an analyzed component of the whole experiment that can provide a 

final result when combined with the others. Prediction determines the approximate 

location of a given section in the CCF. Alignment uses predictions to warp matching 

atlas borders onto the experimental tissue. Detection locates experimentally relevant 

signals in experimental tissue. Finally, integration combines the outputs of alignment 

and detection into usable experimental results (e.g., cell counts). An experiment can 

have any number of variations in its setup, so I begin our workflow assuming that the 

end-user has acquired serial sections of their tissue (Figure 3.1A) and imaged them 

with a background stain and some signal of interest that can be separated into two 

distinct channels. Importantly, these must be serial coronal sections as they are 

currently the only supported data format, although they need not be whole brain 

sections, as single hemispheres, single pieces of cortex, and midbrain are supported. 

However, I plan to implement more experimental modalities like sagittal sections in 

future versions (see Future Directions). I will now discuss how each step is 

conducted. 
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Figure 3.1 Bell Jar is a pipeline for aligning histology and integrating datasets. 

(A) Images of the counterstained mouse coronal brain sections with Nissl are 
acquired in sequence anterior to posterior. (B) The predictor network processes each 
image to produce a preliminary X-cut angle, Y-cut angle, and anterior-to-posterior 
position (within the reference atlas). (C) Each prediction is evaluated for accuracy by 
a user and tuned for the best possible match. (D) An affine transformation followed 
by a B-spline transformation registering the atlas match onto the experimental tissue 
is found via gradient descent using SimpleITK19. (E) The transformation is applied to 
the annotations for the atlas match, resulting in the output annotation labeling the 
experimental tissue. (F) Annotations can be used to integrate a variety of datasets 
with the experimental tissue. Experimental tissue and atlas images were adapted from 
the Allen Mouse Brain Reference Atlas1,20. Scale bars are 1mm. 

 

3.1 Predicting Slice Positions and Fine Tuning 

Alignment of experimental tissue sections begins with predictor network processing. 

The Allen Brain CCF1 is a 3D volume, and our experimental tissue must have a 

corresponding section for alignment somewhere within that space. Therefore, we 

must define a good guess for the atlas section that matches each experimental tissue. 

The predictor network selected images to estimate each section's X and Y cut angles 

and the anterior-posterior positions (or Z) (Figure 3.1B). The X and Y angles are the 

rotation angles in the XZ and YZ planes, respectively, and the anterior-posterior 

position Z is the depth in the coronal axis of the 3D volume. I include this step since 
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typical microtome or cryostat tissue collection will result in some variation in cut 

angle. These values approximate how the section was cut during harvesting. The 

predictor network is based on the ResNet-101 architecture21. The predictor was 

trained on a dataset of 1 million images generated from the Allen Mouse Brain 

Reference Atlas1,20 10µm Nissl staining volume by slicing at random angles and 

depths coronally (single or dual hemisphere at random, 50:50) to produce a 

generalizable network that gives strong initial predictions. It uses a 256x256 coronal 

section image as input and outputs three normalized scalars representing the X and Y 

cut angles and the anterior-posterior position. I repeat this process for all images in 

the experiment, then calculate the average predicted X and Y cut angles and apply 

them across all predicted sections. Since these initial predictions are not perfect, I 

present the predictions to the user and enable tweaking on a section-by-section basis 

(Figure 3.1C). I refer to this step as fine-tuning, and it is essential to incorporate 

human expert knowledge into the alignment process. The user examines each 

predicted section's cut angle and position, ensuring they represent the experimental 

tissue reasonably and accurately. Once all sections have been checked, the workflow 

proceeds to the alignment step. 

 

3.2 Aligning Experimental Tissue 

Registration of the experimental tissue to the Allen Brain CCF1,20 (alignment) is non-

trivial. Experimental tissue can have widely ranging imaging settings and collection 

techniques, leading to significant inter and intra-experimental differences in 
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brightness, contrast, resolution, evenness of illumination, artifacts, and tissue quality. 

Previous methods avoid these variations using standardized imaging techniques like 

two-photon microscopy16,17 or deep learning approaches5,13 to make a generalized 

system insensitive to such factors. However, I used an image registration approach to 

achieve superior alignments at a local scale (cellular resolution) with standard 2D 

imaging. The moving image is the digital average tissue from the Allen Brain CCF, 

and the fixed image is our experimental tissue of interest. By finding this transform, I 

simultaneously warp the digital average CCF tissue onto our experimental tissue and 

find a valid transform for transforming the CCF labels into the space of our 

experimental tissue since any transformation of the digital average tissue is also 

applicable to its labels. Transformations are found using a two-step composite 

registration process using the Python library for SimpleITK19. It relies on the inherent 

similarity between the gradient of the digital average Nissl image and the real tissue. 

Even though a user may not have background data that is Nissl stained, the digital 

average still represents a strong feature set to which I can compare against the 

experimental tissue. First, images are preprocessed by being resized to 360x360 

pixels and converted from an intensity image into a gradient image via the Sobel 

operator22,23. The gradient image is then normalized to ensure gradients between the 

experimental tissue and the digital average image are on the same scale. An initial 

affine transformation is found via gradient descent using Mattes mutual 

information19,24 as the fit metric. After the affine transformation is found, the moving 

image is resampled by the affine transform, which centers it relative to the fixed 
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image. A B-spline transformation is then found via gradient descent with the same 

metric, but this time, the resampled moving image is used to superimpose the digital 

average tissue on the fixed image (experimental tissue) accurately by matching 

gradient intensities (Figure 3.1D). The same transformation of the digital average 

tissue is applied to its labels to create annotations for the experimental tissue (Figure 

3.1E). As a pixel-to-region mapping, such annotations can be applied to a variety of 

datasets, including fluorescently labeled signals to detect cells or molecules such as in 

situ hybridization (ISH) and multiplexed error-robust fluorescence in situ 

hybridization (MERFISH) or any dataset in the tissue section’s coordinate space 

(Figure 3.1F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  17 

 

Figure 3.2 Bell Jar accurately assigns anatomical labels to experimental tissues. 

(A) The Dice similarity coefficient calculated between experimental tissue sections 
and their alignments produced from each method. Bell Jar significantly outperformed 
QUINT3 and DeepSlice5 (p = 8.49e-07, 0.00297  Kruskal-Wallis with post hoc Dunn, 
n=12). (B) Directed Hausdorff distance between the contours of alignments and the 
aligned experimental tissue sections from each method. Bell Jar outperformed 



  18 

QUINT and DeepSlice (p = 0.00012, 0.0011 Kruskal-Wallis with post hoc Dunn, 
n=12). (C) The distance between the centroids of experimental tissue sections and the 
alignments from each method. (D) (top) A selection of Cre ISH images from a Cux2-
CreERT2 mouse provided by Allen Brain transgenic mouse characterization dataset25. 
Allen Mouse Brain Reference Atlas, connectivity.brain-
map.org/transgenic/experiment/571261835 (bottom) examples of per-section 
alignment alignments by Bell Jar. A heatmap shows the proportion of thresholded 
pixels (detected Cux2-Cre ISH signals) in each layer by section. The arrows in the 
middle panels point the damaged section images. (E) (top) A selection of Cre ISH 
images from an alignment of an Rbp4-Cre mouse provided by Allen Brain transgenic 
mouse characterization dataset25. Allen Mouse Brain Reference Atlas, 
connectivity.brain-map.org/transgenic/experiment/117285137 (bottom) examples of 
per-section alignment alignments by Bell Jar. A heatmap shows the proportion of 
thresholded pixels (detected Rbp4-Cre ISH signals) in each layer by section. (F) (top) 
A selection of Cre ISH images from a Th-Cre mouse provided by Allen Brain 
transgenic mouse characterization dataset25. Allen Mouse Brain Reference Atlas, 
connectivity.brain-map.org/transgenic/experiment/304164559 (bottom) examples of 
per-section alignment alignments by Bell Jar. Arrows show two key regions detected 
in our analysis VTA (ventral tegmental area) and SNr (substantia nigra, reticular part). 
A heatmap shows the normalized count of thresholded pixels (detected Th-Cre ISH 
signals) I detected in midbrain regions consistent with the expected expression. (G) 
An example of a single piece of cortex without midbrain or hindbrain aligned with 
Bell Jar. (H) An example of a single piece of midbrain without cortex aligned with 
Bell Jar. (I) Examples of damaged experimental tissue aligned by Bell Jar using 
masking. Arrows in D and I show damaged regions that were compensated for by 
masking. Scale bars are 1mm. * = p < 0.05; *** = p < 0.001; Kruskal-Wallis with post 
hoc Dunn. 

 

I compared the efficacy of Bell Jar’s alignment against two contemporary tools: 

QUINT3 and DeepSlice5. To measure accuracy, I used the Dice Similarity Coefficient 

(DSC), which quantifies the overlap between the aligned sections and their 

corresponding atlas annotations. I found that Bell Jar’s performance in fitting 

anatomical labels to experimental tissue sections (Figure 3.2A-C) is superior, being 

consistently closer to the ground truth than that of QUINT or DeepSlice. Further 

comparison using the Directed Hausdorff distance, which assesses the maximum 
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distance of a set to the nearest point in the other set, reinforced these findings. Bell Jar 

achieved a significantly lower mean distance than QUINT and DeepSlice, indicative 

of more precise contour alignment (Figure 3.2B). To further assess performance, 

centroid distance measurements between the experimental tissue sections and the 

respective alignments corroborated the superior performance of Bell Jar, as it yielded 

the smallest deviations (Figure 3.2C). 

 

To test Bell Jar’s alignment performance, I utilized ISH signals of Cre recombinase 

mRNAs in Cux2-CreERT2 mice expressing Cre in the cerebral cortical layers 2 and 3 

mostly25. I investigated whether Bell Jar can accurately detect Cre expression at the 

expected localization across different sections (Figure 3.2D). I first aligned all the 

sections using Bell Jar, and then used the resulting annotations to find the proportion 

of Cre ISH signals in the cortical layers of each section. A positive ISH signal was 

defined as pixels above an intensity threshold. As expected, the signal is 

predominantly in layers 2 and 3 (Figure 3.2D). I also used different Cre ISH 

expression images of two transgenic mice, Rbp4-Cre and Th-Cre. Rbp4-Cre mice 

express Cre specifically in the cortical layer 5, and Th-Cre mice in midbrain 

structures such as the ventral tegmental area (VTA) and substantia nigra (SNr)25 

(Figure 3.2E-F). Bell Jar successfully aligns the experiment brain tissue images from 

these two transgenic lines based on the precise demarcation of Cre+ cortical layers 

and midbrain subregions (Figure 3.2E-F). 
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I also investigated whether Bell Jar could handle challenging tissue types that can be 

produced when the posterior portions of the brain are coronally sectioned. As shown 

in Figure 3.2G-H, Bell Jar can align a single piece of cortex or midbrain section 

without midbrain or other forebrain tissues, respectively. It also showed versatility in 

aligning damaged tissues by employing masking techniques, removing portions of the 

atlas image to better match the experimental one, and ignoring areas of experimental 

artifact or damage (Figure 3.2I). These tests underscore the software’s adaptability to 

various experimental conditions and its proficiency in maintaining alignment 

accuracy even in non-ideal samples. 
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3.3 Detecting Signals of Interest 

Figure 3.3 Bell Jar uses object detection to detect cells automatically. 

(A) Training results for the YoloV826 object detector Bell Jar uses for cell detection. 
Each graph represents a measurement of model training progress. The final model 
demonstrates minimal loss and high precision. (B) The precision-recall curve for the 
cell detection model. (C) A representative microscopic image of the training data was 
used to create the cell detection model, showing RVdG-mCherry labeled neurons in 
the mouse visual cortex. The scale bar is 50µm. (D) The distribution of labels in 
space and by size in the training data set (left) normalized x and y coordinate heatmap 
of the cell labels (right) total image width and height normalized heatmap of cell label 
size. 

 

Bell Jar provides integrated cell detection by object detection to identify cells in the 

experimental tissue. I leverage the YoloV826 object detection model to autonomously 

detect cell bodies, demonstrating a notable advantage in handling varying signal 

levels, a challenge that traditional thresholding methods often fail to address (Figure 
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3.3A). The precision-recall curve for the cell detection model indicates high 

reliability, showcasing the model’s ability to effectively discern true positives from 

false positives (Figure 3.3B). The model was trained on a representative dataset of 

RVdG20 (G-deleted rabies virus) traced neuronal cell bodies (Figure 3.3C). I curated a 

dataset of 41 images in which we labeled 700 neurons, ensuring broad coverage of 

cell body appearances and signal intensities (Figure 3.3C). The resulting label 

distribution encompasses a wide variation in relative cell position and size, helping 

generalize the model (Figure 3.3D). From our initial 700 cells, I further augmented 

the dataset with random brightness and saturation levels to simulate a variety of 

imaging parameters (the final training had 2600 labeled instances). In addition to 

these advantages, Bell Jar also uses slicing-aided hyperinferencing27 (SAHI) to 

enhance its detections. It tiles high-resolution input images into small overlapping 

tiles (640x640, 50% overlap) and performs detection on each of them, then 

aggregates results by non-maximum suppression of overlapping detections. Using 

SAHI ensures that cells are detected at a contextually relevant scale since each cell 

body may be as little as 200px in a high-resolution microscopy image. 

 

Bell Jar’s cell counting performance was benchmarked against manual counts and 

standard automated methods, such as ImageJ28 and ilastik29. I selected tissue sections 

from experiments previously imaged in our lab with rabies virus-traced neurons in the 

mouse cerebral cortex labeled with mCherry. All the sections were counted 

independently with each method, and the counts were compared to each other (Figure 
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3.4A). The results demonstrated that Bell Jar’s deep learning object detection-based 

cell counting closely aligned with manual counts across ten representative sections, 

evidenced by significant correlation (ImageJ vs Manual: r=0.9650, p=6.31e-06*; 

ilastik vs Manual: r=0.8893, p=5.74e-04*; Bell Jar vs. Manual: r=0.9827, p=3.80e-

07*; Figure 3.4B). As performed by Bell Jar, the neuron counts per section closely 

matched those of manual counting, outperforming the counts achieved by ImageJ and 

ilastik, which rely on intensity thresholding and machine learning approaches, 

respectively (Figure 3.4A and 4B). In contrast, counts obtained from ImageJ and 

ilastik, while still correlated with manual counts, showed lower correlation 

coefficients, suggesting less accuracy with the manual standard (Figures 4C and 4D), 

mainly because of ImageJ and ilastik mislabeled neurons (yellow arrowheads in 

Figure 3.4G and 4H). Direct comparison with these conventional methods suggests 

the robustness of Bell Jar’s automated cell counting method. 

 

Figure 3.4. Bell Jar cell counting is comparable to manual counting 
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(A) Counts of neurons detected in ten representative coronal sections of a mouse with 
cortical cells traced by RVdG by each tested method. (B) Correlation of Bell Jar 
automatic counts and manual counting across ten representative sections (r=0.9827, 
p=3.80e-07*, Pearson’s Correlation) (C) Correlation of ImageJ28 automatic counts by 
thresholding and manual counting across ten representative sections (r=0.9650, 
p=6.31e-06*, Pearson’s Correlation) (D) Correlation of ilastik29 automatic counts and 
manual counting across ten representative sections (r=0.8893, p=5.74e-04*, Pearson’s 
Correlation) (E) The original sample image of labeled mouse cortical neurons. (F) 
Bell Jar’s detections of neurons are represented on the sample image as blue bounding 
boxes. (G) ImageJ’s detections of neurons are represented in green circles on the 
sample image. (H) Ilastik’s detections of neurons are represented in purple circles on 
the sample image. Yellow arrows indicate missing detections of cells in ImageJ and 
ilastik (G-H). The scale bars are 50µm.  

 

4 Conclusions and Discussions 

4.1 Bell Jar Advances Histological Analysis through Automation 

The integration of Bell Jar into histological analysis represents a significant 

advancement in the automation of tissue alignment by using automated non-linear 

deformations for image registration. The alignment module’s ability to accurately 

map experimental tissue to a reference atlas not only streamlines the initial stages of 

analysis but also ensures reproducibility. This yields a particularly notable advantage 

when considering the variance in signal levels and tissue integrity commonly 

encountered in experimental settings. Bell Jar’s alignment outcomes, validated 

against other current state-of-the-art methods such as DeepSlice and QUINT3,5, 

demonstrate its robustness and reliability. Together, these improvements enhance 

confidence in subsequent analytical processes. 
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4.2 Bell Jar Enhances Precision in Cell Detection 

Applying the YoloV826 object detection algorithm within Bell Jar for cell counting is 

a methodological shift from traditional thresholding-based techniques to a more 

sophisticated, deep learning-based approach. This shift is substantiated by the high 

correlation of Bell Jar’s cell counts with manual cell counts. These findings suggest 

that the object detection method employed by Bell Jar is sensitive enough to replicate 

the discernment of trained human eyes. Furthermore, the precision-recall balance 

achieved by the model underscores its efficiency in distinguishing true cell bodies 

from noise, a task that has been challenging for automated systems. 

 

4.3 Implications for Neuroscience and Beyond 

The implications of Bell Jar can extend into various fields of other biological 

research, where histological analysis is a cornerstone in other tissue systems or model 

organisms. The high-throughput and automated nature of Bell Jar’s pipeline enables 

researchers to process large datasets with greater ease, facilitating more extensive 

studies that the laborious nature of manual analysis may have previously limited. In 

neuroscience, this could accelerate the precise mapping of neural circuits and 

quantifying neuron populations across different brain regions. 

 

4.4 Future Directions 

The Bell Jar platform offers a foundation for further methodological enhancements 

and broader applications. The adaptability of the software to various tissue types and 
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staining methods suggests its potential utility in a broader range of biological studies. 

The underlying algorithms could also be refined to include more advanced artificial 

intelligence techniques, improving accuracy and expanding the scope of detectable 

features within tissue sections. One of the most likely future uses for Bell Jar is its 

potential integration into spatial transcriptomic studies, where histological data can be 

combined with genomic data. This comprehensive approach could provide greater 

accuracy in the anatomical localization of transcriptomic data.  

 

In conclusion, Bell Jar represents a step forward in automated histological analysis. 

Its ability to provide accurate, reproducible results lays a convenient platform for 

neuroscience research characterized by high-throughput image data analysis. 

Likewise, Bell Jar’s open-source nature lends itself to cross-disciplinary integration. 

Bell Jar provides easy access for neuroscientists to analyze the mouse brain anatomy 

accurately and flexibly.  

 

4.5 Limitations of the Current Work 

Despite the strengths of the Bell Jar system, certain limitations must be 

acknowledged. Bell Jar requires images in both the counterstain, such as Nissl or 

DAPI (4',6-diamidino-2-phenylindole), and signal channels simultaneously, an 

imaging paradigm that may not align with the objectives or resources of every study. 

Researchers who only image specific regions of interest, such as a subregion of the 

hippocampal formation, may find this requirement burdensome, as it necessitates 
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comprehensive imaging beyond their targeted area. Moreover, obtaining images of 

the sample with consistent aspect ratios in both channels is critical for ensuring 

accurate alignment. This can pose a practical challenge, mainly when dealing with 

samples that are difficult to image in their entirety or when equipment limitations 

impact image consistency. 

 

Additionally, while Bell Jar substantially reduces the need for expert input compared 

to traditional manual methods, it does not eliminate it. The initial setup and some 

aspects of the alignment process still require user intervention and a degree of 

expertise, while this user intervention provides the opportunity to correct errors and 

improve the qualities of the image alignment. This necessity for expert input, 

although reduced, could introduce user bias and inconsistency, especially in cases 

where multiple individuals are involved in the image processing workflow. 

 

Lastly, while object-based cell detection offers a clear advantage over thresholding-

based methods but can be prone to false positives, currently, Bell Jar can detect ~80% 

of cells reliably at a confidence threshold of 0.5. Lowering this threshold may detect 

more cells but at the risk of false positive detections. A key challenge is balancing 

confidence cutoffs for predictions to limit these false positives and having a sensible 

threshold to label most cells in an image. 
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