
UCSF
UC San Francisco Previously Published Works

Title
Evaluating a Targeted Minimum Loss-Based Estimator for Capture-Recapture Analysis: 
An Application to HIV Surveillance in San Francisco, California.

Permalink
https://escholarship.org/uc/item/27r8v6kc

Journal
American Journal of Epidemiology, 193(4)

Authors
Wesson, Paul
Das, Manjari
Chen, Mia
et al.

Publication Date
2024-04-08

DOI
10.1093/aje/kwad231

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27r8v6kc
https://escholarship.org/uc/item/27r8v6kc#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


American Journal of Epidemiology
© The Author(s) 2023. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

Vol. 193, No. 4
https://doi.org/10.1093/aje/kwad231

Advance Access publication:
November 17, 2023

Practice of Epidemiology

Evaluating a Targeted Minimum Loss-Based Estimator for Capture-Recapture
Analysis: An Application to HIV Surveillance in San Francisco, California

Paul Wesson∗, Manjari Das, Mia Chen, Ling Hsu, Willi McFarland, Edward Kennedy, and
Nicholas P. Jewell
∗ Correspondence to Dr. Paul Wesson, Department of Epidemiology and Biostatistics, School of Medicine, University of
California, San Francisco, UCSF Box 0886, 550 16th Street, 3rd Floor, San Francisco, CA 94615
(e-mail: paul.wesson@ucsf.edu).

Initially submitted January 9, 2023; accepted for publication November 15, 2023.

The capture-recapture method is a common tool used in epidemiology to estimate the size of “hidden”
populations and correct the underascertainment of cases, based on incomplete and overlapping lists of the target
population. Log-linear models are often used to estimate the population size yet may produce implausible and
unreliable estimates due to model misspecification and small cell sizes. A novel targeted minimum loss-based
estimation (TMLE) model developed for capture-recapture makes several notable improvements to conventional
modeling: “targeting” the parameter of interest, f lexibly fitting the data to alternative functional forms, and limiting
bias from small cell sizes. Using simulations and empirical data from the San Francisco, California, Department
of Public Health’s human immunodeficiency virus (HIV) surveillance registry, we evaluated the performance of
the TMLE model and compared results with those of other common models. Based on 2,584 people observed on
3 lists reportable to the surveillance registry, the TMLE model estimated the number of San Francisco residents
living with HIV as of December 31, 2019, to be 13,523 (95% confidence interval: 12,222, 14,824). This estimate,
compared with a “ground truth” of 12,507, was the most accurate and precise of all models examined. The
TMLE model is a significant advancement in capture-recapture studies, leveraging modern statistical methods to
improve estimation of the sizes of hidden populations.

bias; capture-recapture method; hidden populations; human immunodeficiency virus; machine learning;
prevalence estimation; SuperLearner; targeted minimum loss-based estimation

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus; SFDPH, San Francisco Department of Public Health;
TMLE, targeted minimum loss-based estimation.

Establishing the true denominator of a population at risk
is critical for determining rates of disease burden and acqui-
sition, allocating resources, and setting appropriate public
health priorities and policies. Multiple systems estimation,
often referred to as capture-(mark-)recapture, is commonly
used in epidemiology to estimate the denominator for the
population at risk and to correct the underascertainment of
cases in disease surveillance (1, 2). The capture-recapture
method estimates an unobserved population size based on
the number of people already observed on multiple overlap-
ping and incomplete lists of the target population (3–5). The
greater the lists’ overlap, the smaller the unobserved pop-
ulation; conversely, the smaller the overlap, the greater the

unobserved population. In public health applications, lists
can be administrative records from medical centers, disease
registries, and surveillance systems, or direct samples of the
target population from cross-sectional surveys, among other
possibilities (6). A key assumption for valid estimation is
that the lists are statistically independent of one another.
Presence on one list cannot increase (positive dependence)
or decrease (negative dependence) the probability of pres-
ence on another list. Positive dependence will underestimate
the true population size, while negative dependence will
result in overestimation. There are 3 other formal assump-
tions: the population is “closed” (there are no entries or
exits between capture occasions); there is accurate matching
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of individuals on multiple lists/captures; and, for each list,
everyone has the same probability of capture (capture homo-
geneity) (3). An additional, implicit assumption is random
assignment to lists, meaning the population observed on the
lists is reflective of the unobserved population.

The popularity of the capture-recapture method persists
in epidemiology despite a fundamental limitation: The pop-
ulation size estimate parameter is not identified without
untestable assumptions (7, 8). In capture-recapture model-
ing, there is always 1 fewer degree of freedom available than
is needed to estimate all parameters in the model. Variations
in modeling always impose a constraint in order to identify
the unobserved population size. In log-linear regression,
a common model form for capture-recapture due to the
data often being represented as cross-classified categorical
data (9), the constraint is often that k-way interaction is 0
(where k is the number of lists). This is a strong assumption
when using only 2 lists, as it assumes list independence,
but it may become more reasonable with additional lists.
Additional lists confer greater statistical flexibility because
more degrees of freedom allow modeling of lower-level list-
dependence through interaction terms.

Despite their broad implementation, log-linear models
are also criticized for producing implausible or unreliable
estimates (10–12). Using at least 3 lists, multiple log-linear
models may be fitted, each accounting for a different com-
bination of potential list dependencies. Model selection is
often achieved by selecting the model with the lowest infor-
mation criterion. This approach presents a single model
estimate, ignoring potentially plausible estimates from other
models with an approximately equally good fit to the data.
The information criterion does not always uniquely identify
the best model; two models can have the same information
criterion and give very different population size estimates
(12). Furthermore, model selection based on the information
criterion can be extremely sensitive to cell sparsity (i.e.,
few people observed in cells corresponding to different cap-
ture patterns). Because coefficients in the model are jointly
determined, searching the extreme regions of the parameter
space to maximize the likelihood of probabilities for the
sparse cells also impacts predictions for other cells (11, 13).
This sometimes results in implausibly large size estimates
and a deceptively small information criterion, making it the
(statistically) preferred model.

The log-linear modeling approach is arguably statistically
inefficient because degrees of freedom are spent estimating
parameters already observed and not of interest (i.e., much of
the probability distribution). The observed data, the number
“captured” on each combination of lists, are fitted to a log-
linear model to project to the intercept and estimate the num-
ber not seen on any list. Forcing the data to fit the log-linear
functional form is another potential limitation. This model
is chosen out of convenience but may not reflect the true
statistical model. Model misspecification can yield biased
estimates. These limitations to conventional log-linear mod-
eling motivated a targeted minimum loss-based estimation
(TMLE) approach to capture-recapture, paired with semi-
parametric modeling using machine learning techniques.

In this paper, we describe and evaluate a novel TMLE
capture-recapture estimator using data from the San Fran-

cisco Department of Public Health (SFDPH) human immu-
nodeficiency virus (HIV) surveillance registry. We applied
the TMLE estimator to data collected from medical center
lists reporting cases to the SFDPH to estimate the total
number of people living with HIV in San Francisco and
accessing HIV-related medical care in 2019. We compared
TMLE population size estimates with estimates from con-
ventional capture-recapture models and the likely population
size (ground truth), based on SFDPH surveillance data.

METHODS

Study population

Our target population was the number of San Francisco
residents living with HIV as of December 31, 2019. This
population included out-of-jurisdiction residents at the time
of HIV diagnosis who later moved to and received care
in San Francisco by the end of 2019. Excluded from this
population were San Francisco residents at the time of
diagnosis who then moved away from San Francisco by the
end of 2019. Deidentified data were pulled from the San
Francisco HIV case registry data and data from the San
Francisco HIV laboratory data management system as of
January 7, 2022. The data extraction included 3 indicator
variables for whether a patient was observed on any of 3
chosen lists feeding into the surveillance system: the ward
86 HIV clinic at Zuckerberg San Francisco General Hospital
(the largest public HIV care provider in the city), the SFDPH
Laboratory (the public health laboratory covering patients
for whom HIV-related laboratory tests are ordered), and the
Tom Waddell Urban Health Clinic (a community clinic serv-
ing a diverse patient population, including racial minorities,
transgender people, and people who are marginally housed).
These lists were chosen for their relative size and the diverse
patient populations they collectively contribute to SFDPH
surveillance. For the capture-recapture analysis, we only
considered patients who appeared on at least 1 of the 3 lists,
using the full data set from the HIV case registry as the
“ground truth” for comparison to assess the performance of
various estimators.

Additionally, we extracted the following covariates
believed to influence a person’s probability of selection
on one or multiple lists: race and ethnicity, birth sex, age in
2019, age at the time of HIV diagnosis, HIV transmission
risk category, indicator of new diagnosis in 2019, and viral
suppression status.

TMLE overview and application to capture-recapture

In contrast to the classic log-linear model discussed
above, Das et al.’s TMLE approach (14) reformulates the
target parameter, �, as the probability of being observed on
any list (i.e., the capture probability). Dividing the observed
n by � yields the estimated population size. Das et al.’s
approach, like other approaches (15), requires a single
identifiability assumption; with a pair of lists, selection on
one list is conditionally independent of selection on another
list, given a set of covariates, akin to classical confounding.
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Das et al. estimate � by

ψ̂ =
[
QN

{
1

γ̂(X)

}]−1

,

where QN is the empirical measure of the observed (biased)
data distribution Q of capture patterns. γ̂ depends on condi-
tional capture probabilities, given a level of X, as follows:

γ̂ (X) = q̂12(X)

q̂1(X)q̂2(X)
,

where q̂1, q̂2, and q̂12 are observational probabilities (q-
probabilities) for being captured by list 1, by list 2, and by
both lists 1 and 2, respectively. X is a vector of covariates
that may influence these q-probabilities.

TMLE is a doubly robust, maximum-likelihood–based
estimation method that optimizes the bias-variance tradeoff
through a “targeting” mechanism (16) that has been widely
used to address causal inference problems in epidemiol-
ogy. TMLE has been described in detail elsewhere (17).
Briefly, the TMLE framework in this context begins with
an initial estimation of the q-probabilities q1(X), q2(X), and
q12(X) (i.e., P(Y1 = 1|X), P(Y2 = 1|X), and P(Y1Y2 = 1|X),
respectively). In the “targeting” step for TMLE, the nuisance
parameters are estimated as part of the “clever covariates,”
the coefficients of which are used to update the initial esti-
mates of q1(X), q2(X), and q12(X). This process continues
iteratively according to a stopping rule and reduces bias in
the initial estimate of � = P(Y �= 0). The final updated
estimates of q1(X), q2(X), and q12(X) are then used to
calculate the target parameter � = P(Y �= 0). These steps
are outlined in Appendix 1. TMLE benefits from statistical
flexibility by incorporating various algorithms and machine
learning methods (e.g., cross-validation) to model complex
relationships in the data without making overly restrictive
assumptions about functional form.

As a corollary to the doubly robust properties of TMLE,
for the TMLE capture-recapture model, if either estimate of
q1 or q2 has small error and if either estimate of q12 or γ has
small error, then the overall error for ψ̂tmle (the TMLE for ψ̂)
will be just as small, even if the other estimates have large
errors or are misspecified (14).

If more than 2 lists are available, ψ̂tmle can be estimated
for all pairwise combinations of lists. The lists not used
to directly estimate the q-probabilities are treated either as
additional lists or as covariates. If the former, the additional
list(s) provide information to refine q-probabilities; the
model now becomes aware of additional people who are part
of the target population yet may not be observed on either
of the 2 primary lists, updating the capture probabilities for
those two lists. If the latter, the additional list(s) may be
used alongside other covariates in the vector X to make the
2 primary lists conditionally independent from one another.

The TMLE model for capture-recapture draws upon
multiple algorithms to model the relationship between
conditioning covariates and estimate the q-probabilities.
Currently, these algorithms include logistic regression,

generalized additive models, Ranger (a random forest
algorithm), multinomial logistic regression, and rangerlogit
(an ensemble model using Ranger and logistic regression).
SuperLearner, an ensemble machine learning method, is
also a feature of the model, permitting multiple algorithms
to be used at once to flexibly model these relationships
and parameters (18). Cross-validation is used to prevent
overfitting and flexibly model the data. Ninety-five percent
confidence intervals (CIs) are estimated on the basis of the
efficient influence function.

Additionally, the sizes of population subgroups may be
estimated on the basis of categorical variables included in X.

TMLE capture-recapture model simulations

Initial estimation of population sizes using TMLE
revealed sensitivity to a so-called margin setting. The margin
setting is a function that prevents searching the extremes of
the parameter space to estimate small q-probabilities. This
will likely occur with small cell sizes.

We conducted simulations to inform the optimal mar-
gin setting. All simulations included 3 lists with different
marginal capture probabilities for each list. To match the
SFDPH data, the true population size was set at 12,500 for
all simulations.

Scenario 1 modeled the 3 lists as statistically independent
from each other: List 1 had a capture probability of 20%, list
2 had 25%, and list 3 had 30%.

Scenario 2 also modeled the 3 lists as statistically inde-
pendent but reduced the marginal probabilities to align with
the SFDPH data. List 1 sampled 14% of the population, list
2 sampled 6%, and list 3 sampled 3%.

Scenario 3 modeled conditional independence. Depen-
dence is induced between lists 1 and 2 because of 2 addi-
tional independent binary variables, S (with 50% prevalence)
and A (with 30% prevalence). The marginal probabilities for
the lists are the same as in scenario 2, but the conditional
probabilities change depending on whether S and A are
observed. List 1 randomly samples 4.5% of the population;
an additional 10% is sampled for whom S = 1, and an
additional 15% is sampled for whom A = 1. List 2 samples
2% of the population; an additional 5% is sampled for whom
S = 1, and an additional 5% is sampled for whom A = 1. List
3 samples 3% of the population.

Scenario 4 models conditional independence that is only
partially accounted for in the TMLE approach. Three inde-
pendent binary variables are simulated in addition to the 3
lists: S (with 50% prevalence), A (with 30% prevalence), and
U (with 50% prevalence). Only S and U induce a dependence
between lists 1 and 2, but only S and A are included in
the X vector of the TMLE model to create conditional
independence. List marginal probabilities are the same as in
scenarios 2 and 3, but conditional probabilities differ. List 1
samples 4% of the population; an additional 10% is sampled
for whom S = 1, and an additional 10% is sampled for whom
U = 1. List 2 samples 4% of the population; an additional 2%
is sampled for whom S = 1, and an additional 2% is sampled
for whom U = 1. List 3 samples 3% of the population.

Each scenario was simulated 500 times. The margin was
set at 0.02, 0.04, 0.06, 0.08, 0.1, and a data-dependent value,
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M.star (M.star is a dynamic value that is calculated in each
simulation as the number observed on both lists 1 and 2, the 2
lists used for the TMLE, divided by the observed count from
all 3 lists). Violin plots were used to visualize the distribution
of size estimates for each scenario at each margin setting.

Population size estimation

We used the R package drpop (19) to fit the TMLE capture-
recapture model. Estimates were generated using the ward
86 and SFDPH Laboratory list pair (lists 1 and 2). The third
list, the Tom Waddell clinic list, was treated as an addi-
tional list to improve the estimation of the q-probabilities.
All measured covariates were included in the X vector to
model conditional independence. We used SuperLearner
to model covariate relationships and q-probabilities. The
SuperLearner library included generalized additive models,
generalized linear models, GLM.interaction, Ranger, and
glmnet. Cross-validation was based on 2 folds. The optimal
margin setting was determined from the results of the sim-
ulation analysis. These same settings were used to estimate
the sizes of population subgroups.

Additional capture-recapture models were fitted for
comparison. For these comparisons, we focused on models
developed to correct biases from list dependence (other
models have been developed to address biases resulting
from violation of the other formal assumptions) (20). The
R package Rcapture (21) was used to fit the log-linear
regression models, adjusting for potential list dependencies.
The R package SparseMSE (22) implements SparseMSE, a
model designed to correct the bias resulting from small or
no overlap between lists (11, 13). The R package DGA (23)
was used to implement the decomposable graph approach.
The decomposable graph approach uses Bayesian model
averaging to average estimates from individual log-linear
models, weighted by their posterior likelihood, into a
single posterior estimate. The R package shinyrecap (24)
was used to implement the Bayesian latent class model,
which seeks to meet the identifiability constraint of list
independence by conditioning on latent classes based on
observed capture histories. Both the decomposable graph
approach and Bayesian latent class models have shown
less bias than conventional log-linear models in previous
simulation studies (10, 11).

Population size estimates from all models were compared
against the complete SFDPH data as the ground truth.

Ethics

This study was reviewed and approved by the University
of California, San Francisco’s institutional review board.
No personally identifying information, including medical
record numbers, were present in the analytical database.

RESULTS

Sample/study population

There were 12,507 people living with HIV in the com-
plete SFDPH data. Of these, 2,584 were observed on the

combination of the 3 lists (see Web Figure 1, available
at https://doi.org/10.1093/aje/kwad231). List 1 (ward 86)
accounted for 70% of the analytical sample, list 2 (SFDPH
Laboratory) accounted for 28%, and list 3 (Tom Waddell
clinic) accounted for 14%. Notably, there was relatively
little overlap among the 3 lists. The lists differed in the
distribution of covariates (Table 1). There was a greater
proportion of Latino/a patients on the SFDPH Laboratory
list than on either of the other lists, whereas the racial/ethnic
distribution was more even on the Tom Waddell list. Females
were overrepresented on all 3 lists relative to their true pro-
portion in the surveillance data. Each list underrepresented
the proportion of men who had sex with men, relative to
the surveillance data, and overrepresented the proportion of
people who injected drugs and the proportion of men who
had sex with men and also injected drugs. Patients who
injected drugs as a transmission risk category were over-
represented by the Tom Waddell list. New HIV diagnoses
(in 2019) were overrepresented by the SFDPH Laboratory’s
list, whereas patients who were not virally suppressed were
overrepresented by the Tom Waddell list. The age distri-
butions by list largely reflected the age distributions in the
surveillance data.

Simulation results

The TMLE model was robust to different margin set-
tings when lists were independent and sampled from the
source population with at least 20% probability (Figure 1).
Modeling results were sensitive to margin settings when
the marginal sampling probabilities of the lists decreased.
There was a clear bias-variance tradeoff with margin settings
when lists were simulated to have smaller marginal capture
probabilities.

In scenario 2, simulating list independence, higher margin
settings (≥0.06) yielded biased distributions with a false
sense of greater estimated precision. Setting the margin to
0.04 yielded minimal bias, but moderately increased the
variance. The variance continued to increase when the mar-
gin was set to 0.02. The mean for M.star for this scenario
was close to 0.04 (mean = 0.039; range, 0.029–0.049), but
the spread of the distribution was wider than that observed
when the margin was set to 0.04 because of variability in the
distribution of M.star across simulations.

In scenario 3, modeling conditional independence, setting
the margin to 0.02 resulted in the only distribution to cover
the truth, albeit with greatest variance. The distribution was
tighter when the margin was set to 0.04, but barely failed to
cover the truth. Increasing margin settings yielded precise,
but biased, estimates. The distribution for M.star indicated
that this dynamic marginal probability fell between 0.04 and
0.06 in simulations.

In scenario 4, model misspecification yielded similar
results as in previous scenarios, albeit with moderately
increased variance. Setting the margin to 0.04 yielded the
least biased distribution with moderate spread. Based on
these results, we determined that the observed marginal
probability of the overlap is distorted when covariates
create a dependence between lists. For optimal performance
of the TMLE model, the margin should be set to the
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Figure 1. Estimated numbers of persons living with human immunodeficiency virus (HIV) as of December 31, 2019, from simulations varying
the marginal probability of list overlap, San Francisco, California. A) Scenario 1; B) scenario 2; C) scenario 3; D) scenario 4. The y-axis refers
to the estimated population size. The x-axis refers to the margin setting for each simulation (0.02, 0.04, 0.06, 0.08, 0.1, and M.star, a data-
dependent value that is calculated as the number observed on both list 1 and list 2 divided by the observed count from all 3 lists). The red
horizontal line refers to the "ground truth" estimate from the San Francisco Department of Public Health HIV surveillance office (n = 12,507).
PSE, population size estimate.

expectation when lists are independent (0.04 for our em-
pirical data).

Population size estimation results

Setting the margin to 0.04, the TMLE model estimated
the population size to be 13,523 (95% CI: 12,222, 14,824)
(Figure 2; Web Table 1). No other model produced estimates
as accurate or precise. The best-fitting log-linear model
included all 3 pairwise interaction terms modeling list
dependence yet substantially underestimated the “true”
population size (estimate = 6,536; 95% CI: 3,179, 18,010).
We note, however, that the confidence interval did contain
the ground truth. The Bayesian latent class model similarly
underestimated the population size yet estimated a credible
interval wide enough to contain the ground truth (estimate =
6,736; 95% credible interval: 2,647, 17,957). Although the
intervals for both of these models contained the ground
truth, the intervals were wider than the TMLE model’s
interval by nearly a factor of 6. Other models either

under- or overperformed, with 95% CIs excluding the
ground truth.

Population size estimates for subgroups

Subgroup estimates from the TMLE model were mixed
(Table 2). The model produced accurate estimates (i.e., the
95% CI contained the ground truth) for subgroups based on
new HIV diagnoses in 2019 and viral suppression. Numbers
of Black patients and patients with other/unknown race/eth-
nicity recorded were estimated with accuracy, whereas the
number of White patients was underestimated and the num-
ber of Latino/a patients was overestimated. Although male
patients were accurately estimated, the number of female
patients was overestimated by a factor of 1.7. Estimates
based on age (age in 2019 and age at diagnosis) were either
accurate or had minimal bias (the 95% CI nearly contained
the ground truth). When cell sizes fell below 4% of the total
count in the analytical data, the model failed to produce
estimates, perhaps due to positivity violations in the context
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Figure 2. Population size estimates (points) for the number of San Francisco, California, residents living with human immunodeficiency virus
as of December 31, 2019, comparing the targeted minimum loss-based estimation (TMLE) model with other common models. The horizontal
red line represents the ground truth (n = 12,507). The log-linear model (LLM) is the best-fitting model according to the lowest Akaike information
criterion value. Depending on the model, the bars represent 95% credible intervals (Bayesian latent class model, decomposable graph approach
(DGA)) or 95% confidence intervals (LLM, SparseMSE, TMLE). MSE, multiple systems estimation.

of cross-validation. The model underestimated the number
of men who had sex with men and overestimated numbers
in all other risk categories.

DISCUSSION

Using the TMLE capture-recapture model, we estimated
the number of San Francisco residents living with HIV in
2019 to be 13,523 (95% CI: 12,222, 14,824). This estimate,
based on 2,584 people observed on 3 different lists, is con-
sistent with the ground truth of 12,507 persons obtained
from the SFDPH HIV surveillance office. Estimates from the
TMLE model had greater accuracy and precision than those
from the more commonly applied models. Most models
failed to include the ground truth within their 95% CIs. The
poor performance from the log-linear models was consistent
with long-standing criticism that this approach cannot effec-
tively model complex list dependencies, especially in the
presence of sparce cells (10–12). More unexpected was the
underperformance of the Bayesian latent class and decom-
posable graph approach models, both of which performed
favorably in recent simulation studies (10, 11).

Our simulations indicated that the TMLE model estimates
are only sensitive to margin settings when lists sample the
target population with relatively low sampling probability
(perhaps < 20%). When lists are independent, the margin

should be set to the proportion of the sample observed
on both primary lists used for estimation. When covariates
induce dependence between lists, this marginal probability
of being observed on both lists is also distorted, and the
empirical proportion should not be used to set the mar-
gin. Instead, we recommend running a simple simulation,
assuming list independence, to approximate the marginal
probability. This requires a rough approximation of the
target population size, which investigators and stakeholders
can often provide.

Our simulation results also revealed the TMLE model’s
robustness to misspecification from erroneously excluding
(including) covariates that do (not) induce dependence
between lists. List dependence may be induced through a
simple linear combination of covariates. In this case, one
might build a logistic regression model to test the association
between potential covariates and overlap on the primary
lists. However, covariates could induce list dependence
through a more complex functional form (e.g., splines,
interactions, etc.) that the investigator cannot empirically
or comprehensively test a priori. Robustness to such model
misspecification is therefore an attractive feature of the
TMLE model.

Another attractive feature of the TMLE model is the
estimation of subgroups. However, the comparison of our
subgroup estimates with the ground truth warrants caution.
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Table 2. Estimated Numbers of Persons in Various Population Subgroups Living With HIV as of December 31, 2019, in a Comparison of a
TMLE Model With Ground Truth From the San Francisco Department of Public Health, San Francisco, California

Characteristic
Observed Total TMLE Model

No. % No. % No. 95% CI

Race/ethnicity

White 942 36.5 6,569 52.5 3,536 2,756, 4,316

Black 487 18.8 1,602 12.8 2,139 1,555, 2,722

Latino/a 863 33.4 2,901 23.2 5,193 4,427, 5,958

Other/unknown 292 11.3 1,435 11.5 1,465 1,133, 1,796

Birth sex

Female 260 10.1 743 5.9 1,262 1,020, 1,504

Male 2,324 89.9 11,764 94.1 11,981 10,698, 13,264

Age in 2019, years

13–19 5 0.2 10 0.1

20–29 120 4.6 460 3.7 635 471, 799

30–39 471 18.2 1,806 14.4 2,320 1,654, 2,986

40–49 573 22.2 2,409 19.3 2,946 2,146, 3,745

50–59 832 32.2 4,207 33.6 3,503 3,046, 3,960

60–69 496 19.2 2,740 21.9 2,141 1,805, 2,478

≥70 87 3.4 875 7.0

Age at diagnosis, years

≤12 5 0.2 19 0.2

13–19 74 2.9 219 1.8

20–29 816 31.6 3,475 27.8 4,342 3,658, 5,025

30–39 972 37.6 5,003 40.0 4,858 3,911, 5,806

40–49 537 20.8 2,853 22.8 2,226 1,721, 2,730

50–59 147 5.7 760 6.1 —a —

60–69 33 1.3 163 1.3 — —

≥70 15 0.1 — —

HIV risk category

MSM 1,407 54.5 9,223 73.7 5,804 4,902, 6,705

PWID 307 11.9 712 5.7 1,530 1,273, 1,787

MSM-PWID 657 25.4 1,823 14.6 2,640 2,095, 3,185

Other/unidentified 213 8.2 749 6.0 1,005 778, 1,233

New HIV diagnosis in 2019

No 2,477 95.9 12,275 98.1 12,939 11,857, 14,022

Yes 107 4.1 232 1.9 268 107, 487

Virally suppressed?

No 354 13.7 1,300 10.4 1,546 891, 2,202

Yes 2,225 86.1 10,726 85.8 11,845 10,635, 13,054

Unknown 5 0.2 481 3.8

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus; MSM, men who have sex with men; PWID, people who inject
drugs; TMLE, targeted minimum loss-based estimation.

a Not a number (undefined value).

The model reliably estimated subgroup sizes with 2 levels
to the categorical variable (e.g., new HIV diagnosis, viral
suppression). Other variables with more than 3 levels yielded

variable results. While this function must be investigated
further, investigators can assess the accuracy of estimated
subgroups by summing the population sizes. In our example,
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the covariates with inaccurate stratified estimates were also
the ones where the sum of the stratified estimates did not
equal or approximate the total population size estimated
from the main model.

Importantly, our data included lists with small overlap, a
challenging environment for any capture-recapture method.
This is further evidenced by examining the estimated empir-
ical distribution of the estimated overlap probabilities in lists
1 and 2 (i.e., q12). A useful sensitivity analysis may be to plot
size estimates across a range of margin settings.

Limitations

Our results should be interpreted within the context of
several limitations. First, as with any population size estima-
tion study, the true population size was unknown, making
it difficult to evaluate the accuracy of any estimate. The
SFDPH conducts both active and passive surveillance of
HIV cases. This paired with annual evaluations of the under-
count in the surveillance system boosts confidence that the
ground truth is a close approximation of the true number.
Second, sociodemographic information recorded in clinical
settings may be recorded with error, as demonstrated by a
recent evaluation (25). Misclassification may be differential
by race/ethnicity, age, and transmission risk category, poten-
tially affecting the estimation of population subgroups.

Conclusion

Estimation of the underascertainment of cases or the sizes
of hidden populations is key to epidemiologic surveillance
and public health programming. For example, current targets
for HIV control efforts recommend that 95% of people living
with HIV be tested and know their HIV status, necessitating
an awareness of the size of this target population (26).
Surveillance systems vary in quality, and even the most
rigorous surveillance systems suffer from incompleteness.
The capture-recapture method has always been appealing in
leveraging information from multiple incomplete, yet over-
lapping, data sources. The TMLE capture-recapture model
offers several advantages to move the field forward: 1) 2-
sample estimation assuming conditional independence is
a more reasonable assumption than 2-sample estimation
assuming complete list independence with conventional log-
linear modeling; 2) more than 2 lists are not required for
estimation (and may be difficult to acquire), but may still
be incorporated to improve estimation; and 3) drawing from
semiparametric statistical theory and machine learning, bias
due to model misspecification may be limited. The TMLE
capture-recapture model is therefore a welcomed addition
to the epidemiologist’s tool kit.
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APPENDIX 1

The steps needed to calculate the targeted minimum loss-
based estimate for �, the probability of being observed on
any list, are as follows.

1. Obtain initial estimates of q12(x), q1(x), and q2(x),
denoted q̂12,0(x), q̂1,0(x), and q̂2,0(x), respectively. Set
t = 0.

2. At step t, construct (so-called) clever covariates:

H12,t = q̂1,t(X)q̂2,t(X)

q̂12,t(X)2 − q̂1,t(X)

q̂12,t(X)
− q̂2,t(X)

q̂12,t(X)

H1,t = q̂2,t(X)

q̂12,t(X)

H2,t = q̂1,t(X)

q̂12,t(X)

3. Regress Y1Y2 on H12,t using a no-intercept logis-
tic model with logit

{
q̂12,t(X)

}
as an offset, obtain-

ing the estimated coefficient β̂12,t. Set q̂12,t+1(X) =
expit[logit{q̂12,t(X)} + β̂12H12,t].

4. Regress Y1(1 − Y2) on H1,t using a no-intercept
logistic model with logit

{
q̂1,t(X) − q̂12,t+1(X)

}
as an

offset, obtaining the estimated coefficient β̂1,t. Set
q̂1,t+1(X) = min{q̂12,t+1(X) + expit[logit{q̂1,t(X) −
q̂12,t+1(X)} + β̂1,tH1,t], 1 − q̂12,t+1(X)}.

5. Regress Y2(1 − Y1) on H2,t using a no-intercept
logistic model with logit

{
q̂2,t(X) − q̂12,t+1(X)

}
as an

offset, obtaining the estimated coefficient β̂2,t. Set
q̂2,t+1(X) = min{q̂12,t+1(X) + expit[logit{q̂2,t(X) −
q̂12,t+1(X)} + β̂2,tH2,t], 1 + q̂12,t+1(X) − q̂1,t+1(X)}.

6. Update t → t + 1. Repeat steps 2–6 until convergence

(e.g., until maxj

∣∣∣β̂j,t+1

∣∣∣ ≤ ε).

7. Finally, set �̂tmle =
[
QN

{
q̂∗

1(X)q̂∗
2(X)

q̂∗
12(X)

}]−1
, where q̂∗

j

are estimates obtained after convergence.

In the above notation, q12(x), q1(x), and q2(x) are the
probabilities of selection on lists 1 and 2, list 1, and list 2,
respectively; Y1 is the binary outcome variable for appearing
on list 1, Y2 is the binary outcome variable for appearing on
list 2, and Y1Y2 is the binary outcome variable for appearing
on both list 1 and list 2; �̂tmle is the targeted minimum loss-
based estimate for the target parameter, the probability of
selection on at least 1 list; and QN is the empirical measure
of the observed data distribution Q.
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