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Tri-Clustering Dynamic Functional Network Connectivity
Identifies Significant Schizophrenia Effects Across
Multiple States in Distinct Subgroups of Individuals

Md Abdur Rahaman,1,2 Eswar Damaraju,2 Jessica A. Turner,2 Theo G.M. van Erp,3,4 Daniel Mathalon,5

Jatin Vaidya,6 Bryon Muller,7 Godfrey Pearlson,8 and Vince D. Calhoun1,2

Abstract

Background: Brain imaging data collected from individuals are highly complex with unique variation; however,
such variation is typically ignored in approaches that focus on group averages or even supervised prediction.
State-of-the-art methods for analyzing dynamic functional network connectivity (dFNC) subdivide the entire
time course into several (possibly overlapping) connectivity states (i.e., sliding window clusters). However,
such an approach does not factor in the homogeneity of underlying data and may result in a less meaningful sub-
grouping of the data set.
Methods: Dynamic-N-way tri-clustering (dNTiC) incorporates a homogeneity benchmark to approximate clus-
ters that provide a more ‘‘apples-to-apples’’ comparison between groups within analogous subsets of time-space
and subjects. dNTiC sorts the dFNC states by maximizing similarity across individuals and minimizing variance
among the pairs of components within a state.
Results: Resulting tri-clusters show significant differences between schizophrenia (SZ) and healthy control (HC)
in distinct brain regions. Compared with HC subjects, SZ show hypoconnectivity (low positive) among subcor-
tical, default mode, cognitive control, but hyperconnectivity (high positive) between sensory networks in most
tri-clusters. In tri-cluster 3, HC subjects show significantly stronger connectivity among sensory networks and
anticorrelation between subcortical and sensory networks than SZ. Results also provide a statistically significant
difference in SZ and HC subject’s reoccurrence time for two distinct dFNC states.
Conclusions: Outcomes emphasize the utility of the proposed method for characterizing and leveraging variance
within high-dimensional data to enhance the interpretability and sensitivity of measurements in studying a het-
erogeneous disorder such as SZ and unconstrained experimental conditions as resting functional magnetic res-
onance imaging.

Keywords: dFNC states; dynamic functional network connectivity; ICA; resting-state fMRI; schizophrenia; tri-
clustering

Impact Statement

The current methods for analyzing dynamic functional network connectivity (dFNC) run k-means on a collection of dFNC
windows, and each window includes all the pairs of independent component analysis networks. As such, it depicts a short-
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time connectivity pattern of the entire brain, and the k-means clusters fixed-length signatures that have an extent throughout
the neural system. Consequently, there is a chance of missing connectivity signatures that span across a smaller subset of
pairs. Dynamic-N-way tri-clustering further sorts the dFNC states by maximizing similarity across individuals, minimizing
variance among the pairs of components within a state, and reporting more complex and transient patterns.

Introduction

Heterogeneity in schizophrenia (SZ) represents a
challenge for studying and diagnosing this disorder

(Alnæs et al., 2019; Rahaman et al., 2020; Tsuang et al.,
1990). A substantial amount of research effort has focused
on identifying the causes of SZ, that would aid in improving
diagnosis and treatments, yet we are still not close to the root
cause of this mental illness (Du et al., 2020; Ferri et al., 2018;
Lawrie and Abukmeil, 1998; Rashid et al., 2019). Studies
often use structural magnetic resonance imaging (MRI),
resting-state functional MRI (fMRI), and task-based fMRI
to analyze a wide range of neurocognitive variables; for in-
stance, brain network activation, subtyping, and neural com-
ponents clustering (Allen et al., 2011; Calhoun et al., 2008;
Rahaman et al., 2020). Resting-state fMRI is a widely used
method for exploring neural activity—because it has the ben-
efit of being both easy for patients to perform and potentially
more sensitive to brain disorders (Damoiseaux et al., 2006;
Franco et al., 2009; Shehzad et al., 2009; Zuo et al., 2010).
Studies during rest fMRI have identified several temporally
coherent networks that are putatively involved in functions
such as vision, audition, and directing attention (Beckmann
et al., 2005; Calhoun et al., 2001). More recent studies
have exploited the dynamics and intrinsic fluctuations of
connectivity (Arieli et al., 1996; Kucyi and Davis, 2014;
Leonardi and Van De Ville, 2015; Makeig et al., 2004;
Onton et al., 2006).

Dynamic functional network connectivity (dFNC) is a
well-studied approach for analyzing the dynamics of the
human brain. It provides time-varying correlation matrices
typically computed using a sliding window (e.g., 44 sec in
length) to estimate the connection among brain regions or in-
dependent components (ICs) of interest (Allen et al., 2011,
2014; Hindriks et al., 2016; Ioannides, 2007). In this study,
each correlation is considered a transient functional associa-
tion between functional networks (Ioannides, 2007). dFNC
has also been appeared to be sensitive to various brain neu-
rodegenerative diseases (Fu et al., 2018; Klugah-Brown
et al., 2019; Ma et al., 2014; Vergara et al., 2018; Wang
et al., 2020). The implementations vary across multiple
aims of studying neural systems, including analyzing transi-
tion frequency, improving classification accuracy (Cetin
et al., 2016; Rashid et al., 2016; Sakoglu et al., 2009), and
capturing intermittent connectivity (Du et al., 2017). More-
over, dFNC provides crucial insights about the underlying
dynamics in SZ, which might not be available in static inves-
tigations (Ma et al., 2014; Rashid et al., 2016). However, a
typical sliding window plus clustering (SWC) analysis ap-
proach continuously models the system through a fixed set
of connectivity patterns or states (Allen et al., 2011, 2014;
Miller et al., 2016; Shakil et al., 2016). These approaches
cluster the dFNC windows of a subject using k-means or
some other clustering methods. It essentially assigns all the
dFNC windows into some states but does not directly opti-
mize their subject-wise consistency. Here, the window is a vec-

tor of ‘‘m’’ real values where each value represents the
connectivity strength between a pair of brain components
and ‘‘m’’ is the number of pairs available. This assumes
each window carries information from all the pairs (connec-
tions); consequently, the approach explores patterns through-
out the brain. In practice, connectivity signatures are more
spatially constrained and often spread over a smaller subset
of components (Miller et al., 2016), and different subsets
showcase different types of connectivity patterns. As such,
for the connectivity signatures that are more transient and
have a comparatively lesser scope, that is, beyond a noncontig-
uous smaller subset of functional brain units, SWC fails to cap-
ture the patterns and reflect them in the clustering process.
Consequently, it hinders our capability to investigate the
brief and transient patterns of dFNC trajectories and their dif-
ferences in distinct subject’s group. In this study, we argued the
necessity of further sorting the subset of subjects, pair of com-
ponents, and time points enclosed within the dFNC states. So,
our key hypothesis is that by focusing on a more homogeneous
subset of the subject, connectivity pairs, and windows, we can
increase sensitivity to brain disorder and associations with
symptom measures. SWC considers all the pairs together and
search for a connectivity pattern, assuming it spans throughout
the brain. However, in practice, connectivity signatures often
spread over a smaller subset of components (spatially con-
strained), and different subsets showcase different connectivity
patterns. Hence, we need an approach that allows us to inves-
tigate the system more independently by looking at the rela-
tions within a subset of the brain regions. To localize the
exploration and identify meaningful patterns, we propose to
cluster all three dimensions (subjects, windows, and network
pairs) of the data set together to extract more homogenous sub-
groups to provide a better comparison.

In three-dimensional (3D) data, observations are generally
meaningfully correlated across various dimensions of the dy-
namic. As such, one-dimensional (1D) clustering is not likely
to provide the most effective means of exploration. Although
biclustering partially takes care of this challenge and is more
effective, it does not include the third dimension (Rahaman
et al., 2020). As dFNC is a 3D representation of the data,
we might be missing significant group differences in the
data by not clustering all three dimensions. Dynamic-N-
way tri-clustering (dNTiC) simultaneously clusters three
neural variables and return subgroups of entities with a max-
imized homogeneity across those given variables. Our ap-
proach, to our knowledge, represents the first attempt at
exploring all three dimensions of dFNC and a robust method
of tri-clustering multiple neural features. We perform more
rigorous sorting on the subject within a state while keeping
each of their windows highly correlated with the cluster cen-
troid. dNTiC compacts the connectivity patterns by ignoring
the heterogeneous connections and weakly correlated sub-
jects; results show it still identifies more group differences
than the 1D k-means approach, presumably because compar-
isons are more stable and meaningful (Allen et al., 2014).
These tri-clusters report significant Patient (SZ)-healthy
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control (HC) group differences described in the results section.
In an earlier study, the states were very similar for both SZ and
HC groups; therefore, the differences are very subtle. In this
study, we observe SZ < HC connectivity strength across Audi-
tory (AUD), Visual (VIS), and Sensorimotor (SM) regions, and
SZ > HC at subcortical (SC) in tri-clusters 3 and 5. In tri-cluster
1, we observe SZ > HC in AUD, VIS, and SM domains. The
experiment on reoccurrence time reveals two subgroups show-
ing a statistically significant difference between patient and
control (tri-clusters 2 and 5). Overall, HC subjects show higher
reoccurrence time than SZ except subgroup 2.

Data Collection and Preprocessing

In this study, we used resting-state fMRI data collected as
part of the Functional Imaging Biomedical Informatics
Research Networks project consisting of 163 HCs and 151
age- and gender-matched patients with SZ in a total of 314
subjects (Keator et al., 2016; Turner et al., 2013). The data
set includes 117 males, 49 females; mean age of 36.9 from
a healthy cohort, 114 males, 37 females; mean age of 37.8
from patients with SZ. More demographics of the samples
are available in the earlier references and reported in Allen
and associates (2014). The data acquisition and preprocess-
ing follow a similar pipeline described in Damaraju and as-
sociates (2014) (Allen et al., 2014). Data quality control,
head motion correction, and diagnosis are also described in
this study’s Supplementary Data. The collecting study en-
sured the informed consent of all participants before scan-
ning. In brief, a blood oxygenation level-dependent fMRI
scan was performed on 3T scanners across seven sites with
patients and controls collected at all sites. Resting-state
fMRI scans were acquired using the parameters FOV of
220 · 220 mm (64 · 64 matrix), TR = 2 sec, TE = 30 ms,
FA = 770, 162 volumes, axial slices = 32, slice thick-
ness = 4 mm, and skip = 1 mm. The scan was a closed eye
resting-state fMRI acquisition. Image preprocessing was
conducted using several toolboxes, namely AFNI, SPM,
GIFT, and custom MATLAB scripts. First, rigid body motion
correction was performed using SPM to correct for subject
head motion and slice-timing correction for timing differ-
ences in slice acquisition. Then time series data are despiked
to mitigate the outlier effect and warped to a Montreal Neu-
rological Institute template and resampled to 3 mm3 isotropic
voxels and followed by smoothing and variance normaliza-
tion. The data smoothing is done to 6 mm full width at half
maximum using AFNI’s BlurToFWHM algorithm.

After preprocessing, we ran a group independent compo-
nent analysis (Calhoun et al., 2001; Erhardt et al., 2011) on
the functional data. We performed group independent compo-
nent analysis (ICA) on the preprocessed data and identified 47
intrinsic connectivity networks (ICNs) from the decomposi-
tion of 100 components. Spatial maps and time courses for
each subject were obtained using the spatiotemporal regres-
sion back reconstruction approach (Calhoun et al., 2001).
Subject-wise spatial maps and time courses are then postpro-
cessed as described in this article (Allen et al., 2014). The
post-ICA processing for error control and corrections is de-
scribed more elaborately in early mentioned studies. In this
study, we discuss the steps concisely. The processing gener-
ates one sample t-test map for each spatial map across all sub-
jects and threshold them to obtain regions of peak activation

clusters for that component. Then we computed the mean
power spectra of the corresponding time courses. Followed
by that, we selected a set of components as ICNs if their
peak activation clusters fell on gray matter and showed less
overlap with known vascular, susceptibility, ventricular, and
edge regions corresponding to head motion. Moreover, we en-
sured that the mean power spectra of the selected ICN time
courses showed higher low-frequency spectral power. This se-
lection procedure resulted in 47 ICNs out of the 100 ICs
obtained. The cluster stability/quality (Iq) index for these
ICNs over 20 ICASSO (a portmanteau of Independent Com-
ponent Analysis [ICA] and least absolute shrinkage and selec-
tion operator [LASSO] for investigating the reliability of ICA
estimates) runs was very high (Iq > 0.9) for all of the compo-
nents, except an ICN that resembles the language network
(Iq = 0.74). The subject-specific time course corresponding to
the ICs selected were detrended, orthogonalized with respect
to estimated subject motion parameters, and then despiked.
The despiking procedure involved detecting spikes as deter-
mined by AFNI’s 3dDespike algorithm and replacing spikes
by values obtained from the third-order spline fit to neighbor-
ing clean portions of the data. The despiking process reduces
the impact/bias of outliers on subsequent FNC measures. The
dFNC between two ICA time courses was computed using a
sliding window approach with a 22 TR (44 sec) window
size in steps of 1 TR. The sliding window is a rectangular win-
dow of 22 time points convolved with Gaussian of sigma 3
TRs to obtain tapering along the edges (Allen et al., 2014).
We computed covariance from regularized inverse covariance
matrix (ICOV) (Smith et al., 2011; Varoquaux et al., 2010)
using graphical Lasso framework (Friedman et al., 2008).
Moreover, to ensure sparsity, we imposed an additional L1
norm constraint on the ICOV. We used a log-likelihood of un-
seen data of the subject in a cross-validation framework for
optimizing regularization parameters. To ensure the positive
semidefiniteness of the evaluated dynamic covariance matri-
ces, we ensure their estimated eigenvalues are positive.
Then we compute the dFNC values for each subject. More-
over, the covariance values are Fisher-Z transformed and resi-
dualized for age, gender, and sites.

Definitions

Definition 1: dFNC matrix

A dFNC matrix D is a symmetric matrix of n · n, where n
is the number of components we consider, for example, 47.
Each cell of the matrix represents the functional connectivity
(FC) strength between two ICs.

Definition 2: dFNC window

A vector of size k where each value demonstrates a con-
nection between two brain networks and k is the number of
pairs of components or connections in the analysis. The
transformation of the dFNC matrix to a 1D vector generates
a dFNC window.

Definition 3: dFNC time series

A subject’s dFNC time course, T = W1, W2, W3, ., Wn is a
sequential set of n real values, where Wi represents the cor-
relation between two ICs of the brain for a certain period.
W stands for the window.
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Definition 4: dFNC state

dFNC state, S is a finite collection of homogenous dFNC
windows from various subjects. Typically, the collection is
evaluated by a clustering approach such as k-means.

Definition 5: sorted dFNC state

A sorted dFNC state is a subset of subjects, windows, and
pairs of networks within a window after maximizing homo-
geneity across these dimensions.

Methods

Our methodology consists of three fundamental steps: (1)
computing dFNC states, (2) sorting the states, and (3) explor-
ing subsets of states, as shown in Figure 1. Figure 2 shows
the different dimensions of our dFNC data set. Our method
aims to cluster these dimensions simultaneously to generate
tri-clusters. The proposed framework’s input is the dFNC
time course collected from patients with SZ and HC.

Computing dFNC states

The subject-wise time course has a length of 136 windows,
and a window consists of 1081 pairs where each pair repre-
sents a functional connection between two independent brain
networks scaled from�1 to 1 (correlation). Of 100 ICA com-
ponents, 47 are reported as relevant intrinsic brain networks
in the earlier studies (Allen et al., 2014; Damaraju et al.,
2014), generating a 47 · 47 symmetric matrix of connectiv-

ity. Thus, by taking either part of the diagonal, we obtain a
vector of component pairs of size 1081 (47C2). To approxi-
mate the dFNC states, we collect windows from all subjects
and run k-means clustering using Euclidean as a distance
measure with an optimal k. We used the elbow criteria for
selecting the model order (k), the within-cluster ratio be-
tween cluster distances, as suggested in previous studies
(Abrol et al., 2017; Miller et al., 2016; Saha et al., 2019).
We observe elbow for k = 5 (Fig. 3). We describe these win-
dow clusters as ‘‘k’’ different dFNC states. A state is consist-
ing of a subset of subjects having at least one window
included in that cluster. So, a subject can be included in
the maximum k number of states and a minimum in one state.

Sorting the states

Given the k-means objective, windows within a state are
expected to be analogous in connectivity patterns. However,
k-means consider all the windows in a subject’s time course,
and each window potentially represents a connectivity signa-
ture span throughout the neural system. Thus, it is desirable
to further summarize these states for a subset of windows
highly correlated to the centroid of the corresponding state/
cluster. The main objective is to maximize the homogeneity
across the attributes of the states. In this study, we use the fol-
lowing heuristics to select closely associated widows and
pairs that show low variance across the subjects within a win-
dow. We described both sorting techniques elaborately in the
following paragraphs.

FIG. 1. Our proposed tri-clustering framework. It consists of three basic subroutines: (1) clustering the windows from all the
subjects into a certain number of clusters/states using standard k-means. (2) Sorting the states in two dimensions (subject and
pair) for maximizing homogeneity across the attributes of a dFNC state. The step characterizes states as a subset of subjects and
pairs. It downsizes the collection of windows (thus number of subjects) included in a state by removing weakly allied windows
from the state. (3) Tri-clustering the sorted states by exploring all possible subsets of a given set of states using an mDFS tech-
nique enriched by early abandoning. mDFS, modified depth-first search. Color images are available online.
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Sorting subjects within a state (maximizing the correla-
tion). For each subject s in a state k, the method computes
a mean window across all the windows of type k in s that
we describe as the mean window (lW). Next, it evaluates
the Spearman correlation (a) between lW and the centroid
of the state, Ck. The heuristic computes this correlation a
for all the subjects in the state and takes an average of it, de-
fined as a mean association score (la) for that state. Finally,
the process uses the following equations to retain a subgroup
of subjects with a higher association. A subject is included in
state S if,

corr lW , Cð Þ � la, where lW =
1

jW j +
jWj

i = 1

Wi,

where Wj j is the number of windows of the subject in-
cluded in state k, C is the centroid of a cluster, and ‘‘corr’’
is a MATLAB function for computing correlation between
two vectors.

Sorting the pairs within a state (minimizing the vari-
ance). In this study, the approach optimizes a subset of net-
work pairs for the window that shows similar connectivity
patterns beyond all state subjects. A window is a collection
of pairs of networks (1081 in our case), and after sorting,
the windows become a vector of size £1081. The algorithm
evaluates variance (r2) across all the subjects for each pair,
which yields 1081 variances. Then, it calculates the mean
of variances (lr2). Our heuristic keeps the pairs that are
showing relatively lower variance across the sorted subjects.
The following equation depicts the idea; a pair p is included
in state S if,

r2 < lr2

r2 = var
Yn

k = 1

Wp, k

 !
,

where Wp, k represents pth value in kth window and n corre-
spond to the number of windows in the state S.

Clustering the sorted states

The third step is exploring all possible subsets of sorted
dFNC states. We propose a modified depth-first search
(mDFS) (Even, 2011) for performing an exhaustive search
toward generating all possible subsets of states.

mDFS core subroutine

The core part of the implementation is inspired by the pop-
ular depth-first-search algorithm (Kozen, 1992) for graph tra-
versal. Typically, it discovers all possible connections
among the nodes for a given set of nodes by traversing
each node at least once. In our case, for a given set of states,
we are interested in the relations (commonalities) between
the subspaces. The relations might hold different sizes in
terms of the number of states we are considering. So, the
basic operation of our subroutine is an intersection among
the features (subjects, windows, and pairs) of the states under
consideration. Exploring the space by creating subsets is a
straightforward solution to the problem; however, since we re-
quire to explore all possible subsets, it yields exponential

FIG. 3. The elbow criteria for determining the model order
(k) for k-means. We run k-means for k = 1 to 8. y-Axis repre-
sents the SSE for each k in the x-axis. The rectangular box
indicates the elbow at k = 5. SSE, sum of squared errors.

FIG. 2. dFNC data set. Different color represents a distinct
window, and each window has 1081 (u1 to u1081) values,
where the value represents the strength of connectivity be-
tween a pair of components. dFNC, dynamic functional net-
work connectivity. Color images are available online.
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growth in the time complexity. We propose a tweak in the DFS
by considering the states as the nodes from an undirected graph
and aim to establish edges (subset) based on satisfactory con-
ditions on the input parameters. So, the major contribution is to
add an early abandoning technique in DFS by restricting dis-
tinct parameters of the resulting subspace. Our proposed
method (mDFS) requires a set of parameters given hereunder:

S: List of sorted states (ex: 1, 2, 3, 4, 5)
N: Minimum number of subjects in a tri-cluster
M: Minimum number of states/window cluster in a tri-

cluster
P: Minimum number of pairs in a tri-cluster
O: Allowed percentage of overlap between two tri-clusters

It starts forming subsets of size 1 – n, where n is the num-
ber of states in the list. For a subset of states, first, it evaluates
an intersection between their features to create a pseudo-
cluster. Then, reporting that tri-cluster or extending it to
more states depends on a validation step where the validator
evaluates boundary conditions for N, M, and O. The DFS
implementation uses backtracking for traversing the different
branches of the search tree. The algorithm depends on the
feedback from the validator to abandon a branch for explora-
tion. The negative feedback leads the processing to an ear-
lier branch of the search tree. Theoretically, the search
complexity is of order O(2n). In practice, search space mostly
becomes linear, an order of O(n). An example of an unsatis-
fied condition is that the number of subjects is less than N, or
the overlap becomes greater than the threshold calculated
based on O. Early abandoning a branch is feasible because
the core operation in the searching process is an intersection.
If the earlier iteration results in an inadequate tri-cluster
(dynamic tri-cluster [dTiC]), there is no chance of obtaining
a valid one in further steps. Therefore, the algorithm stops
exploring the path and backtracks to an earlier point. For
each eligible subset of states, we obtain an intersected 3D
subspace consisting of a subset of states, subjects, and
pairs. The validator computes the overlap ratio with the tri-
clusters that have already been listed. In this study, we use
the F1 similarity index to investigate the overlap between
any earlier reported dTiCs (Hripcsak and Rothschild, 2005;
Santamaria et al., 2007). The F1 similarity index is defined
as follows for any two arbitrary tri-clusters A and B:

F1 A, Bð Þ= 2 A \ Bj j
Aj j þ Bj j

A \ Bj j = Intersection between dTiC A and B;

SA\B · WA\B · PA\B

Aj j = Size of A; that is, the number of subjects

· windows · pairs

Bj j = Size of B; that is, the number of subjects

· windows · pairs :

After traversing through the whole search space by mDFS,
dNTiC returns a list of valid tri-clusters.

Parameter selection

k-Means yield five dFNC states; thus, the analysis assigns
the minimum number of states parameter from 1 to 5. How-
ever, the dFNC state is a 3D substructure of subjects, pairs,
and windows; thus, fusing more states leads to a shared sub-
space of neural features. Therefore, it is cardinal to set the ap-
propriate input parameters for extracting meaningful
subgroups. We first specify ‘‘O’’—allowed percentage of
overlap between the tri-clusters (dTiCs) to optimize the pa-
rameters. We explore a range of scalers for that parameter,
which controls overlap among extracted dTiCs. Users can
tweak this knob around to perturb the analysis; in our case,
we tried a range from 5 to 35. The choice is vastly dependent
on the data set, the number of subjects included in the sorted
states, and the average overlap in subjects between the states
(after k-means). However, these accessible selections are
influenced by the remaining subjects, pairs, and windows
in the sorted states. Table 1 shows the subgroups before
and after sorting the states according to steps A and B. In
our case, state 3 has the minimum number of subjects
(S = 73), so intersection with this state can yield a maximum
of 73 subjects in a dTiC if all the subjects match with other
comparing states. However, for generalization, after multiple
runs, we set them to moderate numbers, for example, N = 50,
M £ 2, O £ 20%, and P = 500. In our case, we are clustering in
three dimensions across the states. So, the tri-clusters quickly
get narrowed down while we intersect the pairs of compo-
nents and the subjects of multiple states. These parameters
act as a subset of gears to explore the subspace for different
objectives. For more than two states, the tri-clusters are re-
duced significantly in size. We tried setting the aforemen-
tioned parameters (N, M, P, and O) in many combinations

Table 1. Characteristics of the Sorted Dynamic Functional Network Connectivity States

States

Subjects Pairs of components Windows

Before sorting After sorting Before sorting After sorting Before sorting After sorting

1 156 81 1081 619 4923 3582
2 251 159 1081 604 15,609 9156
3 146 73 1081 572 6071 3276
4 182 119 1081 576 8837 4907
5 163 97 1081 560 7264 3602

The table demonstrates the number of subjects, pairs of components, and windows included in the dynamic functional network connec-
tivity states before and after running the sorting process (steps 1 and 2 of our methodology).
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by running the model for several repetitions and presented
the results using the most stable setup. We present results
on dTiCs that include a single state since the sorting steps al-
ready downsize the collection of features to a significant de-
gree. So, these tri-clusters can provide imperative results on
connectivity signatures and group differences. The parame-
ters selection and use cases are partially explained in Raha-
man and associates (2020).

Results

We run the experiments using distinct combinations of
input parameters for dNTiC approach. The significant results
are presented in the following section and provide results
from the extended investigation in our Supplementary
Data. Our method extracts five tri-clusters (dTiC) for the
input argument N = 50, M = 1 and P = 500. Figure 4 presents
the group differences identified from these tri-clusters by
running a two-sample t-test on each pair of components. In
two upper rows, most of the dTiCs show higher connectivity
in SC, VIS, SM, and default mode (DM) domains. The SC
components show mild to moderate anticorrelation with
AUD, VIS, and SM regions across the states and low nega-
tive to positive connectivity to all others.

dTiC 3 is the subgroup that shows substantial group differ-
ences among all the estimated dynamic tri-clusters. dTiC 1
and 3 distinguish each other in default mode network
(DMN) connectivity (anticorrelated strongly to VIS and
Motor in 1 vs. 3). dTiC 3 and 5 differ in SC connectivity
to other domains, and dTiC 2 and 4 also distinguish each
other in DMN connectivity. Apparently, dTiC 1, 3, and 5
have more active pairs in VIS and SM regions than dTiC 2
and 4. However, dTiC 2 and 4 have lightly more pairs in
the cognitive control (CC) region. These are dTiC of subjects
and pairs where one group of tri-clusters (dTiC 1, 3, and 5) is
more active/dense across different regions. In contrast, an-
other group (dTiC 2 and 4) is sparsely active, which means
fewer pairs clustered together in those subjects.

The bottom row (of Fig. 4) demonstrates the group differ-
ences reported by the dTiCs. In dTiC 1, we can see pairs from
SZ individuals showing higher connectivity strength than HC
pairs in VIS and SM regions. dTiC 2 is sparse primarily in
the different areas except for SZ-HC hyperconnectivity in
DMN and CC. In contrast, dTiC 3 shows group differences
across several regions of the brain. In this study, HC is show-
ing a more substantial within domain connectivity in VIS,
AUD, and SM regions, and greater anticorrelation to SC
and CC nodes comparing with SZ. The directionality in the
VIS-SM region is HC > SZ, and others are reverse. We
find strong group differences in SC to AUD-VIS-SM do-
mains, and it is higher correlations in the SZ group and
lower in HC. Patients exhibit reduced connectivity (in this
case, lack of anticorrelation) compared with HC. We also ob-
serve group differences in FC from DM to all other domains
that evidently affect SZ in the subject’s neural system. dTiC
4 shows significant differences in DM-VIS, CC, and dTiC 5
shows group differences in connectivity in SC to all other do-
mains. The last dTiC is similar to dTiC 3 unless both distin-
guish each other in CC components. In essence, SC, sensory,
DM, and CC regions revealed significant differences in aver-
age connectivity strength between patients and controls. In
an analysis where we forced dNTiC to explore homogeneity

across more than two states, we observed a large and signif-
icant tri-cluster (dTiC 4) where states 4 and 5 were clustered
together and showed significant group differences in sensory
and DM regions. We explain this scenario in the Supplemen-
tary Data.

Now, we evaluated the transition of each subject through-
out these 3D homogenous dynamic patterns. We measure
window frequency for each subject, representing how fre-
quently a subject changes its pattern and how long it contin-
ues with the same pattern. In Figure 5, we computed each
subject’s window frequency within a tri-cluster, representing
the percentage of windows type ‘‘i’’ for that subject. A sub-
ject can be a member of multiple tri-clusters. For a subject
taken from dTiC ‘‘i’’, we compute the percentage of the win-
dow of type ‘‘i’’, which is also the amount of time in TR the
subject spends in state ‘‘i’’. These negative t-values are evi-
dent that window frequency in SZ subjects is smaller than in
HC. Thus, HC subjects linger within uniform connectivity
states, whereas SZ subjects move back and forth among rel-
atively shorter states. However, of the dFNC time course, SZ
subjects in dTiC 2 have more windows of type 2, which ev-
idence these subjects’ dynamics spent more time in state 2
than the HC subjects within. Overall, the results demonstrate
that a quicker transition among different connectivity states
better characterize SZ subjects.

We check the correlation between mean FC and the pos-
itive and negative syndrome scale (PANSS) score from the
SZ subjects to investigate if these patterns are related to the
symptoms of the disorder (Kay et al., 1987). The regression
line characterizes the pattern of symptom scores (positive,
negative, and general) with the average connectivity
strength of the patients included in a subgroup. We see
from Figure 6, dTiC 1 anticorrelated with positive and asso-
ciated with adverse symptoms; subjects in dTiC 2 express
general symptoms, and the corresponding regression line
demonstrates linear increment with the rise of connectivity.

FIG. 5. SZ–HC t-values from a two-sample t-test com-
puted on window frequency in each subject within the tri-
cluster. Window frequency is defined as the percentage of
a specific type of window in a subject. The violins demon-
strate the distributions of the data points. The asterisk sign
on the t-value indicates the statistical significance at a level
of p < 0.05. Color images are available online.
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The general symptoms in dTiC 3 decreases with the in-
crease of connectivity (the green line). We also observed
weaker connectivity strength in the sensory, cerebellum,
and motor region for the subjects included in that tri-cluster
(Fig. 4). The loose connection of these regions is consistent
with the general symptom measures in the PANSS scale, in-
cluding tension, motor retardation, and anxiety. Moreover,
the subgroup expresses more positive symptoms with
higher connectivity, and for the negative symptoms, it fol-

lows the opposite. SZ subjects in dTiC 4 show a moderate
correlation with negative PANSS scores. The symptoms
are expressed more strongly with the increase of connectiv-
ity, a unique pattern within this subgroup. In general, for
dTiC 4 and 5, the connectivity pattern in these subjects
demonstrate the negative and positive symptoms, respec-
tively. In dTiC 4, negative symptoms are raised with the in-
crease of connectivity strength. So, the subset of pairs of
components included in the tri-cluster map a few domains

FIG. 6. Correlation between PANSS score and mean connectivity strength for SZ subjects within each subgroup (dTiC).
The subplots represent the data points and the regression lines between the variables. We plotted mean connectivity (x-axis)
versus PANSS score (y-axis). In subgroup 1, the SZ subjects are anticorrelated with positive symptoms—the positive PANSS
scores decrease with the rise of connectivity strength. Mentionable, these subjects show higher connectivity in VIS and SM
regions (Fig. 5). Subjects in dTiC 3, 5 are highly correlated with positive symptoms and exhibit lower connectivity strength
than controls within these subgroups. Patients in dTiC 3 show slightly diminishing trends in negative PANSS scores with the
increase of their connectivity level. Anticorrelation with negative PANSS scores might indicate functional dysconnectivity in
AUD, VIS, and SM regions (Fig. 5) effect negative symptoms in SZ. dTiC 4 has a strong association with negative symptom
scores and show very sparse connectivity in VIS and SM regions (Fig. 5). The significant correlations are indicated using the
asterisk sign. PANSS, positive and negative syndrome scale. Color images are available online.

TRI-CLUSTERING DFNC PROVIDES AN ‘‘APPLE-TO-APPLE’’ COMPARISON 69



in the brain where the weaker connectivity might help con-
trol the negative symptoms in SZ. Finally, dTiC 5 also ex-
hibits an association with positive symptoms, which
manifest with higher connectivity. Although the associa-
tions are not very strong in terms of the correlation
value, these indicate trends depicting interactions between
the symptom scores and the connectivity strength within
the subgroups. Thus, stronger connectivity in dTiC 5 may
help protect against positive symptoms.

Figure 7 presents the group differences in each state’s
reoccurrence time between patients and control. The reoc-
currence time of a tri-cluster is given by the number of win-
dows assigned to that dTiC. So, from a subject’s windows,
how many are assigned to a tri-cluster is the reoccurrence
time. The definition is consistent with the earlier study (Li
et al., 2017). Two-sample t-tests reveal dTiC 2 and 5, show-
ing statistically significant (at a level p < 0.05) group differ-
ences in the reoccurrence time. We observe SZ subjects
show a higher reoccurrence time for dTiC 3 but a lower reoc-
currence time in dTiC 5. It indicates the connectivity pattern
depicted by dTiC 2 is comparatively more recurring in SZ
subjects than any other connectivity pattern.

Discussion

The study demonstrates a novel method of tri-clustering
dFNC that sifts through all three dimensions of the data (net-
work pairs, windows, and subjects) simultaneously. dNTiC
provides a means of subgrouping the data more precisely,
revealing significant complex relationships within the sub-
groups that do not exist across the dimensions. The study’s
outcomes are intriguing because, throughout the method,
we maximized the homogeneity across the elements within

a tri-cluster. Then we analyzed those highly homogenous
subspaces for patient–control group differences, making
the reported outcomes of the comparison more sensitive
and meaningful. The results reveal significant differences
in connectivity, coactivations, and antagonism across a
set of distinct brain regions. We believe this illustrates a
key strength of our approach; since relating PANSS symp-
toms to brain activity is challenging due to heterogeneity,
the tri-clustering approach decomposes data instances into
subgroups with more uniform subjects, connectivity values,
and dynamic windows. Our initial thought was that this
would enhance sensitivity to detect associations with sub-
ject variables such as symptom scores.

The observed group differences show how the connectiv-
ity strength differs in distinct regions of the brain of HC and
SZ subjects. Subjects from tri-cluster 3 report distinguished
group differences at distinct regions of the brain: a sharp an-
tagonism in VIS and SM regions and less anticorrelation be-
tween SC and sensory networks. This subgroup also shows a
higher correlation with positive symptom and anticorrelation
with negative and general symptom scores, which indicates
patient with hypoconnectivity in sensory (AUD, VIS, and
SM) and hyperconnectivity between SC and sensory net-
works are more likely to express positive symptoms (i.e., hal-
lucinations, delusions, and racing thoughts). These
differences are prone to be related to sensory dysfunction
in SZ, which has been linked to SZ symptoms such as
AUD hallucinations and delusions ( Javitt and Sweet, 2015;
Rabinowicz et al., 2000; Zisook et al., 1999). The previous
studies appear to reveal comparatively less FC differences
within the brain regions (Allen et al., 2014; Barber et al.,
2018; Du et al., 2017; Rashid et al., 2014). A potential reason
for fewer differences could be the scattered focus throughout
the brain. Our main contribution is building a more compa-
rable subspace by reducing the heterogeneity across the
characteristics of dFNC states. In addition to the group dif-
ferences we presented, the subgroups of subjects are sorted
across a third dimension: the number of pairs of compo-
nents (connections). Instead of exploring the connectivity
throughout the brain, different tri-cluster includes distinct
subsets of connections. It assists in identifying subgroups
of subjects (dTiC 2, 4) where a smaller number of pairs
of components are present in (VIS, AUD, and SM) re-
gion than the tri-cluster dTiC 1, 3. The differences in the
number of active connections in a region shed light upon
the heterogeneity of connectivity structure and neural
wiring in SZ.

That finer comparability helps to extract more group dif-
ferences than earlier analysis. We can consider group differ-
ences in figure 3(B) (Allen et al., 2014), which used the same
data set and followed the same preprocessing pipeline for a
quantitative comparison. Apparently, our dTiCs provide
more SZ–HC group differences in several domains. Their
states report almost no differences except very sparse dots
in AUD, VIS, and SM regions. For reference, we are provid-
ing figure 3(B) from that study in our Supplementary Data
(Supplementary Fig. S3). In our research, the tri-clusters
are more precisely sorted for a subset of subjects showing
minimum heterogeneity in their connectivity pattern and
show significant group differences across multiple brain re-
gions. From Figure 4, we can see that all the dTiCs include a
subset of subjects, which comprises one-third of the total

FIG. 7. Reoccurrence time of both SZ and HC subjects in-
cluded in each dTiC. The green and red circles represent the
reoccurrence time of HC and SZ subjects, respectively. The
red line on the box shows the population mean—the asterisk
sign indicates the dTiC with statistically significant differ-
ences between SZ and HC groups. We run a two-sample
t-test on the reoccurrence time of SZ and HC subjects within
a tri-cluster to evaluate the group differences. Subjects in
dTiC 2 and 5 show statistical significance at a level of
p < 0.05. Color images are available online.
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number of subjects (N = 314) and half of the total number of
pairs (N = 1081). This type of subgrouping of subjects and
pairs can illuminate domain-wise connectivity differences
within patients and control, which would be lost in a
study using standard k-means or any other conventional
clustering approaches (Allen et al., 2011, 2014; Miller
et al., 2016; Rashid et al., 2014). The findings from the win-
dow frequency experiment characterize patients with a
higher transition frequency across distinct connectivity
states. This sporadic showcase of SZ dynamics also aligns
with the previous investigation (Allen et al., 2011, 2014).
Furthermore, when we ran the model using an increased
number of states in a tri-cluster, which is at least two states
(‡ 2) (Supplementary Data), which highlights the changes
in connectivity strength for the extended subgroup that
includes multiple states. The intuition behind mounting
multiple states in each tri-cluster is to capture more ex-
tended connectivity patterns, which approximates the per-
sistence of the states across the time course. However, the
broader tri-clusters report less significant variations in the
connectivity pattern than replicating the older templates
among a smaller subset of connections/pairs of compo-
nents. We also run the analysis for larger model order
(k = 9) where we observe tri-clusters consistent with model-
ing order 5, indicating starting with more dFNC states even-
tually converges to the similar connectivity patterns we
have already extracted using a smaller k.

Conclusion and Future Directions

Studies of FC data have primarily ignored individual
variabilities and have not optimized across the multiple
data dimensions. We are looking for clusters in the data
set, showing a relation among the data variables while ensur-
ing the subgroup’s homogeneity. Moreover, it is useful to un-
veil biomarkers for mental disorders that are heterogeneous,
such as SZ. The human brain is a complex dynamical system
that experiences a vast array of events in a very short tempo-
ral modulation. Therefore, gazing at the dynamic entirely
and searching for connectivity patterns throughout the entire
system is a less intuitive way to explore. Our framework ad-
dresses issues in existing dFNC analysis methods; it
searches for connectivity patterns that are more spatially
constrained, often across a smaller subset of brain net-
works. By calibrating the size parameter of the algorithm,
we can also analyze a feature’s stability. For instance, if
we identify a feature within a subgroup and gradually in-
crease the number of states, we can test the longevity of
this trend for a greater subset of states. Thus, dNTiC
helps identify a connectivity signature and draw an ap-
proximate effect size for this. Our framework is dependent
mainly on the selection of input parameters. We are devel-
oping a probabilistic framework to select these arguments
for dNTiC algorithm based on the given information and
other inferences as a future plan. We are also planning
to extend the method for task-based fMRI data in which
the windows would be synchronous across the subjects;
thus, we can directly tri-cluster the data without applying
k-means that will potentially increase the robustness of the
algorithm. We are working on a Gaussian kernel-based ex-
ploration to identify the coactivation of connectivity pat-
terns across the subjects over time for the sorting steps.
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