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Ambiguity Rate of Hidden Markov Processes

Alexandra M. Jurgens∗ and James P. Crutchfield†
Complexity Sciences Center, Physics Department

University of California at Davis
Davis, California 95616
(Dated: May 18, 2021)

The ε-machine is a stochastic process’ optimal model—maximally predictive and minimal in size.
It often happens that to optimally predict even simply-defined processes, probabilistic models—
including the ε-machine—must employ an uncountably-infinite set of features. To constructively
work with these infinite sets we map the ε-machine to a place-dependent iterated function system
(IFS)—a stochastic dynamical system. We then introduce the ambiguity rate that, in conjunction
with a process’ Shannon entropy rate, determines the rate at which this set of predictive features
must grow to maintain maximal predictive power. We demonstrate, as a ancillary technical result
which stands on its own, that the ambiguity rate is the (until now missing) correction to the
Lyapunov dimension of an IFS’s attractor. For a broad class of complex processes and for the first
time, this then allows calculating their statistical complexity dimension—the information dimension
of the minimal set of predictive features.

Keywords: Markov process, minimal machines, ambiguity rate, predictive feature, optimal prediction, state
growth

I. INTRODUCTION

An abiding challenge to scientific inquiry is the
nature of complex systems—those that create intricate
and delicate patterns through their internal interplay
of stochasticity and determinism. These systems are
often identified by the presence intrinsic instabilities,
collectively-interacting subsystems, and visually-striking
emergent structures.

Integrating Turing’s computation theory [1–3],
Shannon’s information theory [4], and Kolmogorov’s dy-
namical systems theory [5–9], computational mechanics
[10] introduced a suite of tools to analyze complex sys-
tems in terms of their informational architecture. The
ε-machine—its most basic statistic—is a system’s maxi-
mally predictive, minimal, and unique model. It captures
a system’s generation, storage, and transmission of in-
formation. Quantitatively, the information stored in the
ε-machine’s causal states—the minimal set of maximally-
predictive features—is a process’ statistical complexity
Cµ, a measure of the memory resources a system em-
ploys to generate its behavior and organization.

An optimally predictive model can be imagined as
a minimally noisy channel communicating the system’s
future into the past. The student of information theory
will recall that Shannon, in his analysis of information
transmission through channels, introduced two mecha-
nisms: equivocation, in which the same input may lead
to distinct outputs, and ambiguity, in which two different
inputs may lead to the same output; see Fig. 1. When
our channel is taken to be the ε-machine, the equivoca-
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(a) (b)

FIG. 1. (a) Equivocation: Same input sequence leads to dif-
ferent outputs. (b) Ambiguity: Two different inputs lead to
same output. The strategy underlying Shannon’s proof of his
second coding theorem is to find channel inputs that are least
ambiguous given the channel’s distortion properties, which
include equivocation.

tion rate of the channel is the entropy rate hµ of the un-
derlying system—the rate at which the system generates
future information. This is guaranteed by the predictive
optimality of the ε-machine—the only noise in the chan-
nel is due to the intrinsic randomness of our complex
system.

In the following, we introduce the parallel quantity,
the ambiguity rate ha. The ambiguity rate tracks the
rate at which the system discards past information by
introducing uncertainty over the infinite past. Explicitly,
if a process can be optimally modeled with a finite set of
predictive features, its ε-machine must forget information
at the same rate at which the system generates it: hµ =
ha. However, this is atypical, as our predecessor works
demonstrated [11, 12]. In point of fact, for many complex
systems, the predictive-feature set is uncountably infinite
and the statistical complexity Cµ diverges, requiring the
development of new tools to characterize the complexity
of these systems.

The recent work introduced a suite of tools to cap-
ture this state of affairs for a broad class of stochastic
processes—those used not only in the study of complex
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systems [10], but also in coding theory [13], stochastic
processes [14], stochastic thermodynamics [15], speech
recognition [16], computational biology [17, 18], epidemi-
ology [19], and finance [20].

The key realization was identifying a process’
ε-machine as the attractor of a hidden Markov-Driven
Iterated Function System (DIFS) [11]. First, we showed
that this gave efficient and accurate calculation of a pro-
cess’ Shannon entropy rate hµ. Second, we introduced
a new measure of structural complexity—the statistical
complexity dimension dµ—that tracks Cµ’s divergence
and gives the information dimension of the distribution
of predictive features [12].

Previously, accurate calculation of dµ was contingent
on the DIFS meeting restrictive technical conditions. In-
troducing ambiguity rate ha reframes these constraints
information-theoretically, effectively lifting them. The
result is a new method to accurately calculate dµ for a
broad class of complex processes. More abstractly, we
propose ha as a new intrinsic complexity measure of a
stochastic process—the growth rate of the information
stored in a process’ optimally predictive features. When
hµ = ha, this growth rate vanishes and the associated
ε-machine’s internal causal-state process is stationary.
However, when hµ > ha, the latter process is nonsta-
tionary and any optimal predictor must accumulate new
information over time to sustain accurate predictions.

Our development below introduces and motivates
the ambiguity rate ha. Sections II and III review stochas-
tic processes and information theory, respectively, and
may be skipped by the familiar reader. Section IV intro-
duces hidden Markov-driven iterated function systems.
Section V then discusses the statistical complexity di-
mension dµ and the overlap problem—a long-standing is-
sue in the dimension theory of iterated function systems.
Section VI introduces ha from an information-theoretic
perspective, motivating it as a solution to and a measure
of the overlap problem. Various interpretations are ex-
plored, including an historical note on Shannon’s original
dimension rate from 1948. Finally, to illustrate our algo-
rithm’s effectiveness and the challenges for very complex
processes, Section VII works through multiple example
processes, including those generated by stationary and
nonstationary ε-machines.

II. PROCESSES

A stochastic process P is a probability measure over
a bi-infinite chain . . . Xt−2Xt−1XtXt+1Xt+2 . . . of ran-
dom variables, each Xt denoted by a capital letter. A
particular realization . . . xt−2 xt−1 xt xt+1 xt+2 . . . is de-
noted via lowercase. We assume values xt belong to a dis-
crete alphabet A. We work with blocks Xt:t′ , where the
first index is inclusive and the second exclusive: Xt:t′ =
Xt . . . Xt′−1. P’s measure is defined via the collection of
distributions over blocks: {Pr(Xt:t′) : t < t′, t, t′ ∈ Z}.

To simplify, we restrict to stationary, ergodic pro-
cesses: those for which Pr(Xt:t+`) = Pr(X0:`) for all
t ∈ Z, ` ∈ Z+, and for which individual realizations obey
all of those statistics. In such cases, we only need to
consider a process’s length-` word distributions Pr(X0:`).

A Markov process is one for which Pr(Xt|X−∞:t) =
Pr(Xt|Xt−1). A hidden Markov process is the output of a
memoryless channel [21] whose input is a Markov process
[14].

III. INFORMATION THEORY

Beyond its vast technological applications to com-
munication systems [21], Shannon’s information theory
[4] is a widely-used foundational framework that provides
tools to describe how stochastic processes generate, store,
and transmit information. In particular, we use informa-
tion theory to study complex systems as it makes mini-
mal assumptions as to the nature of correlations between
random variables and handles multi-way, nonlinear cor-
relations that are common in complex processes. Here,
we now briefly recall several concepts needed in the fol-
lowing.

Information theory’s most basic measure is the
Shannon entropy. Intuitively, it is the amount of informa-
tion that one gains when observing a sample of a random
variable. Equivalently modulo sign, it is also the amount
of uncertainty one faces when predicting the sample. The
entropy H[X] of the random variable X is:

H[X] = −
∑
x∈A

Pr(X = x) log2 Pr(X = x) . (1)

We can probe the relationship between two jointly-
distributed random variables, say, X and Y . There is the
joint entropy H[X,Y ], of the same functional form but
applied to the joint distribution Pr(X,Y ). And, there is
conditional entropy that gives the amount of information
learned from observation of one random variable given
another:

H[X|Y ] = H[X,Y ]−H[Y ] . (2)

Conditional entropy can be generalized to describe
processes in terms of the intrinsic randomness—the
amount of information one learns upon observing the
next emitted symbol X0, given complete knowledge of
the infinite past. This is the Shannon entropy rate:

hµ = lim
`→∞

H[X0|X−`:0] , (3)

the irreducible amount of information gained in each time
step.

The fundamental measure of correlation between
random variables is the mutual information. It can be
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written in terms of Shannon entropies:

I[X;Y ] = H[X,Y ]−H[X|Y ]−H[Y |X] . (4)

As should be clear by inspection, the mutual information
between two variables is symmetric. When X and Y are
independent, the mutual information between them van-
ishes. As with entropy, we may condition the mutual
information on another random variable, giving the con-
ditional mutual information:

I[X;Y |Z] = H[X|Z] +H[Y |Z]−H[X,Y |Z] . (5)

The conditional mutual information is the amount of in-
formation shared by X and Y , given we know a third, Z.
Note that X and Y can share mutual information, but
be conditionally independent. Moreover, conditioning on
a third variable Z can either increase or decrease mutual
information [21]. That is, two variables can appear more
or less dependent, given additional data.

IV. DRIVEN ITERATED FUNCTION SYSTEM

Our main objects of study are hidden Markov pro-
cesses. The following introduces driven iterated function
system as a class of predictive models for them. A given
hidden Markov process can have many alternative mod-
els, each is referred to as a presentation. Driven iterated
functions systems are one class of presentations.

Definition 1. An N -dimensional hidden
Markov-driven iterated function system (DIFS)(
A,V,R, {T (x)}, {p(x)}, {f (x)} : x ∈ A

)
consists of:

1. a finite alphabet A of k symbols x ∈ A,
2. a set V of N presentation states,
3. a set of states R ⊂ ∆(N−1), over N -dimensional

presentation-state distributions η ∈R,
4. a finite set of N by N symbol-labeled substochastic

matrices T (x), x ∈ A,
5. a set of k symbol-labeled probability functions
p(x) = 〈η|T (x)1〉, and

6. a set of k symbol-labeled mapping functions f (x) =
〈η|T (x)1〉/p(x)(η).

The (N-1)-simplex ∆N−1 is the set of presentation-
state probability distributions such that:

{η ∈ RN : 〈η |1〉 = 1, 〈η |δi〉 ≥ 0, i = 1, . . . , N} ,

where 〈δi| =
(
0 0 . . . 1 . . . 0

)
—that is, 〈δi|i = 1, oth-

erwise 0—and |1〉 =
(
1 1 . . . 1

)
. We use this notation

for components of the presentation-state vector η to avoid
confusion with temporal indexing.

The set of substochastic matrices must sum to the
nonnegative, row-stochastic matrix T =

∑
x∈A T

(x)—
the transition matrix for the presentation-state Markov

(0, 1, 0)

(0, 0, 1) (1, 0, 0)

η

f�(η)

f4(η)

p�(η)

p4(η)

FIG. 2. How a hidden Markov-driven iterated function sys-
tem (DIFS) generates a hidden Markov process: An initial
state η—a distribution over three states: (0, 0, 1), (0, 1, 0), and
(1, 0, 0)—in the 2-simplex is associated with a transition prob-
ability distribution px(η) over the alphabet x ∈ A = {�,4}.
If the emitted symbol selected from this distribution is �, the
next state is generated according to the associated mapping
function f (�)(η) and the probability distribution is updated
accordingly. The same steps are followed if the symbol is 4
using f (4)(η), resulting in an emitted process P over symbols
A.

chain. This ensures that
∑
x∈A p

(x)(η) = 1 for all
η ∈ ∆(N−1).

Figure 2 shows how a DIFS generates a hidden
Markov process: Given an initial state η0 ∈ ∆N−1, the
probability distribution {p(x)(η0) : x = 1, . . . , k} is sam-
pled. According to the realization x0, apply the mapping
function to map η0 to the next state η1 = f (x0)(η0). Ac-
cording to the new probability distribution defined by η1,
draw x1 and repeat. This action generates our emitted
process P: x0, x1, x2, . . ..

This describes the random dynamical system—
the DIFS—that generates the hidden state sequence
η0, η1, η2, . . .. As we previously showed, the attractor
of this dynamical system is the invariant set of states
R and their evolution is ergodic [11, 22]. Additionally,
the attractor has a unique, attracting, invariant measure
known as the Blackwell measure µB(R) [23]. Although
R may be countable, as for the DIFS depicted in Fig. 3,
in general, R will be uncountably infinite and fractal in
nature, as in the examples in Fig. 4.

DIFS states are predictive in the sense that they are
functions of the prior sequences of observables (pasts)
and lead to the correct future distribution conditioned on
the pasts. Consider an infinitely-long past that, in the
present, has induced some state η. It is not guaranteed
that this infinitely-long past induce a unique state, but
it is the case that any state induced by this past must
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(0, 1) (1, 0)
. . .

Pr(4|η0) = 〈η0|T4|1〉

Pr(�|η1) = 〈η1|T�|1〉
Pr
(�|η

2)

Pr
(�|
η3
)

Pr
(�|
η4
)

Pr
(�
|η∞

)

(1, 0)

η0

( 1
2
, 1
2
)

η1

( 1
3
, 2
3
)

η2

( 1
4
, 3
4
)

η3

( 1
5
, 4
5
)

η4

(0, 1)

η∞

FIG. 3. The states and transitions of a hidden Markov-driven iterated function system (DIFS) discussed in Section VIIA
embedded in the 1-simplex. In this case, the set of states R is countable, which each subsequent application of f (4) bringing
η nearer to (0, 1), which is reached only after observing infinitely many 4s. The countable nature of the state set arises from
the the fact that one of the mapping functions is a constant: f (�) = (1, 0).

(a) Set of states generated by the “delta”
DIFS.

(b) Set of states generated by the “Nemo”
DIFS.

(c) Set of states generated by the “gamma”
DIFS.

FIG. 4. Hidden Markov driven iterated function system (DIFS) may generate state sets with a wide variety of structures, many
fractal in nature. Each subplot displays 105 states of a different DIFS. The DIFSs themselves are specified in Appendix A.

have the same conditional future distribution. Indeed,
for task of prediction, knowing the previous state is as
good as knowing the infinite past: Pr(X0:`|R0 = η) =
Pr(X0:`|X−∞:0) for all ` ∈ N+.

Therefore, the DIFS is a predictive model of the
given process P. Contrast this to it being merely a gen-
erative model that produces all and only the sequences in
a process, but whose states need not be predictive. Note
that predictive models are generative.

Borrowing from the language of automata theory, we
refer to the set of states R plus its transition dynamic—
Pr(xt|ηt) and Pr(ηt+1|ηt, xt)—as a state machine or, sim-
ply machine that optimally predicts P. When we force
each infinitely long past to induce a unique state, we
produce a canonical predictive model that is unique: a
process’ ε-machine [10].

Definition 2. An ε-machine is a DIFS with probabilis-

tically distinct states: For each pair of distinct states
η, ζ ∈R there exists a finite word w = x0:`−1 such that:

Pr(X0:` = w|R0 = η) 6= Pr(X0:` = w|R0 = ζ) .

A process’ ε-machine is its optimally-predictive,
minimal model, in the sense that the set R of predic-
tive states is minimal compared to all its other predic-
tive models. By capturing a process’ structure and not
merely being predictive, an ε-machine’s states are called
causal states. Unless otherwise noted, we assume that all
DIFS discussed here are ε-machines.

Calculating the Shannon entropy rate for a process
generated by an DIFS was the focus of our first analysis
of DIFSs [11]. Due to the associated process’ ergodicity,
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shown there, hµ may be written:

ĥµ
B

= − lim
`→∞

1
`

∑̀
t=0

∑
x∈A

Pr(x|η`) log2 Pr(x|η`) . (6)

This tracks the uncertainty in the next symbol x given
our current causal state ηt, averaged over the Blackwell
measure; hence the superscript B. It quantifies the in-
trinsic randomness of the process P.

V. STATISTICAL COMPLEXITY DIMENSION

Images of the self-similar DIFSs state sets R (as
in Fig. 4) are evocative and lead naturally to questions
about how R’s geometric properties relate to intrinsic
properties of the underlying process P. To answer this,
we say that a process’ memory is the information re-
quired to specify its ε-machine states, i.e., the minimal
amount of information needed to predict P. This may be
measured either in terms of the cardinality |R| of causal
states or the amount of historical Shannon entropy they
store—that is, the statistical complexity Cµ.

Definition 3. A process’ statistical complexity is the
Shannon entropy stored in its ε-machine’s causal states:

Cµ = H[Pr(R)]

=−
∑
η∈R

p(η) log2 p(η) . (7)

From the definitions above, a process’ ε-machine is
its smallest predictive model, in the sense that both |R|
and Cµ are minimized by a process’ ε-machine, compared
to all other predictive models. Due to the ε-machine’s
unique minimality, we identify the ε-machine’s Cµ as the
process’ memory.

However, when the set of causal states R is infinite,
the statistical complexity may diverge. In this case, Cµ
is no longer an appropriate complexity measure to distin-
guish processes. Despite this, a need remains: It is clear
that processes with infinite state sets differ significantly
in internal structure, as shown in Fig. 4. In this case,
we turn to the statistical complexity dimension, defined
as the rate of divergence of the statistical complexity, to
serve as a measure of structural complexity. This leaves
us with an abiding question, though, What does it mean
that a finitely-specified process’ state information (mem-
ory) diverges?

A. Dimension and Causal State Divergence

A set’s dimension, construed most broadly, gives the
rate at which a chosen size-metric diverges with the scale
at which the set is observed [24–28]. Fractional dimen-
sions, in particular, are useful to probe the “size” of

sets when cardinality alone is not informative. “Frac-
tal dimension”, said in isolation, is often taken to refer
to the box-counting or Minkowski-Bouligand dimension.
The following, though, determines the information di-
mension—a dimension that accounts for the scaling of a
measure on a fractional dimension set. In this case, our
measure of interest is the Blackwell measure µB over our
causal states R.

Consider the state set R on the (N − 1)-simplex for
an DIFS that generates a process P. Coarse-grain the
N -simplex with evenly-spaced subsimplex cells of side
length ε. Let F(ε) be the set of cells that encompass
at least one state. Now, let each cell in F(ε) itself be
a (coarse-grained) state and approximate the ε-machine
dynamic by grouping all transitions to and from states
encompassed by the same cell. This results in a finite-
state Markov chain that generates an approximation of
the original process P and has a stationary distribution
µ(F(ε)). Then µB(R)’s information dimension is:

d1(µB(R)) = lim
ε→0

Hµ[F(ε)]
log ε , (8)

where Hµ[F(ε)] = −
∑
Ci∈F(ε) µ(Ci) logµ(Ci) is the

Shannon entropy over the set F(ε) of cells that cover
attractor R with respect to µ.

Rearranging Eq. (8) shows that the state entropy of
the finite-state approximation scales logarithmically with
R’s information dimension with respect to the Blackwell
measure:

Hµ[F ] ∼ d1(µB) · log ε . (9)

Applied to a process P’s ε-machine, d1 describes the di-
vergence rate of statistical complexity Cµ:

Cµ(ε) ∼ dµ · log ε . (10)

In this way, we refer to the ε-machine’s information di-
mension d1(µB) as P’s statistical complexity dimension
dµ.

B. Determining Statistical Complexity Dimension

Directly calculating the statistical complexity di-
mension using Eq. (8) is nontrivial, as it often requires es-
timating a fractal measure. Fortunately, as two previous
works discussed and as we now show, the intractability
can be circumvented by leveraging the process’s associ-
ated generating dynamical system—the DIFS—to calcu-
late dµ [11, 12].

For a dynamical system, the spectrum of Lyapunov
characteristic exponents Γ = {λ1, . . . , λN : λi ≥ λi+1}
[29, 30] measures expansion and contraction as the av-
erage local growth or decay rate, respectively, of orbit
perturbations. The result is a list of rates that indicate
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(a) (b)

FIG. 5. Overlap problem on the 2-simplex ∆2: Two distinct
DIFSs (given in Appendix A) are considered, each with three
mapping functions. Images of the mapping functions over
the entire simplex are depicted as regions in red, blue, and
green. (a) Images of the mapping functions f (4),f (�), and
f (◦) do not overlap—every possible state has a unique pre-
image. (b) Images of the mapping functions coincide: there
exist η1, η2 ∈ ∆2 such that f

′(4)(η1) = f
′(�)(η2) = η3. This

case is an overlapping DIFS.

long-term orbit instability (λi > 0) and orbit stability
(λi < 0) in complementary directions.

Consider covering an attractor generated by a dy-
namical system f with hypercubes of side length ε. After
applying f to a hypercube k times, the side lengths are
approximately εeλ1k, εeλ2k, . . . , assuming that the hyper-
cube orientation is chosen appropriately. This property
allows combining the Γ into a expression approximat-
ing the growth rate of hypercubes needed to cover the
attractor, as ε → 0. In turn, this implies a natural rela-
tionship between the Γ and dimensional quantities, such
as Eq. (8). In point of fact, the Lyapunov dimension [31]
has been conjectured to be equivalent to the information
dimension for “typical systems” f .

Our previous work showed how to calculate Γ for
DIFSs [12]. However, since DIFSs are random dynam-
ical systems, additional orbit expansion arises from the
stochastic selection of the maps f (x). Indeed, for DIFSs,
since the maps are contractive all expansion arises from
this stochastic choice, which is measured by the Shannon
entropy rate hµ of the generated process P. That is to
say, for DIFSs, λi < 0 for all i while hµ monitors the
expansive exponent.

With this in mind, we adapt the Lyapunov dimen-
sion expression to DIFSs as follows:

d̃Γ =

k + Λ(k) + hµ
|λk+1|

, −Λ(N) > hµ

N , −Λ(N) ≤ hµ
, (11)

where we introduce the Lyapunov spectrum partial sum
Λ(m) =

∑m
i=1 λi and k = 0, 1, 2, . . . , N − 1 is the largest

index for which −Λ(k) < hµ. Note Λ(m) < 0,m =
1, 2, . . . , N and we take Λ(0) = 0. Readers familiar with

the Lyapunov dimension should take care as we have re-
indexed from the traditional presentation of dΓ for read-
ability.

Under specific technical conditions, dΓ is exactly the
information dimension of the DIFS’s attractor: dΓ = dµ

[32]. Generally, relaxing the conditions, d̃Γ only upper
bounds the statistical complexity dimension:

d̃Γ ≥ dµ . (12)

The extent to which the bound is not saturated is in large
part determined by the open set condition, which we now
discuss. We, then, turn to solve the associated “overlap
problem”. This leads to an exact expression for DIFS
attractor information dimension dµ.

C. The Overlap Problem

The overlap problem is a long-standing concern for
iterated function systems that arises from coinciding
ranges of the symbol-labeled mapping functions f (x).
Figure 5 illustrates the issue and Ref. [12] characterized
it. Specifically, to quantitatively count system orbits we
must properly monitor orbit divergence and convergence.
This then requires distinguishing between iterated func-
tion systems that meet the open set condition (OSC) and
those that do not.

Definition 4. An iterated function system with mapping
functions f (x) : ∆N → ∆N satisfies the open set condi-
tion (OSC) if there exists an open set U ∈ ∆N such that
for all η, ζ ∈ ∆N :

fη(U) ∩ fζ(U) = ∅ ,

where η 6= ζ. IFSs that meet the OSC are nonoverlap-
ping.

When the OSC is not met, the inequality in the dµ
bound Eq. (12) becomes strict. This is a consequence
of using hµ as our measure of state space expansion in
Eq. (11). The Shannon entropy rate tracks the uncer-
tainty in the next symbol x given our current causal state
ηt, averaged over the Blackwell measure. From a dynam-
ical systems point of view, we identify this as the typical
growth rate of orbits (words) in symbol space.

When the OSC is met, the Shannon entropy rate also
measures the typical growth rate of orbits in the (N−1)-
simplex. Observing x, current state ηt transitions to the
next state ηt+1 via application of the mapping function
ηt+1 = f (x)(ηt). By the OSC, this is guaranteed to be
a distinct new state—thus state sequences grow at the
same rate as words do. Then, we may use hµ to measure
expansion of the state space.

However, when the OSC is not met, it is possible for
two distinct states ηt, ζt ∈ ∆ to map to the same next
state on different symbols, by occupying the “overlapping
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R0 R1

�

4

X0

(A) H[X0|R0,R1]

R0

R0

R1

�

4

X0

(B) I[X0;R0|R1]

R0

R0

R1

�

�

X0

(C) H[R0|X0,R1]

FIG. 6. Sources of ambiguity rate depicted in state machines: (A) H[X0|R0,R1] > 0—Previous state R0 is mapped to the next
state R1 by two distinct symbols. This occurs when two symbols have identical mapping functions. (B) I[X0;R0|R1] > 0—
Two distinct previous states R0 map to the same next state by distinct symbols, due to overlapping mapping functions. (C)
H[R0|X0,R1] > 0—Two distinct previous states R0 map to the same next state by the same symbol. This occurs when a
mapping function is noninvertible.

region”, as depicted in Fig. 5. In this case, ηt+1 = ζt+1
has no unique pre-image. This introduces ambiguity
about the past, given knowledge of the current state. As
a consequence, the Shannon entropy rate, which tracks
uncertainty in symbol space, implies a larger expansion
in state space than is actually occurring. This indicates
the need to correct hµ, when determining dµ.

VI. AMBIGUITY RATE

The following introduces the ambiguity rate to cor-
rect d̃Γ of Eq. (11) from overcounting orbits. Since the
problem at hand is an overestimation in uncertainty in
our state space, we must identify and quantify mech-
anisms of state uncertainty reduction when the OSC is
not met. Consider that when the OSC is met, every state
ηt has a unique pre-image ηt−1 that can only be reached
via a single, specific observed symbol. When the OSC
is not met, for a subset of η ∈ R there is uncertainty
about the previous state, the previous symbol, or both.
Quantifying this ambiguity about the past is the goal in
constructing the ambiguity rate ha.

Intuitively, it would seem that generating uncer-
tainty in reverse time is equivalent to reduction of un-
certainty in forward time. The following shows that this
is the case and that the ambiguity rate is the necessary
correction to the DIFS dimension formula Eq. (11).

A. Sources of State Uncertainty Reduction

For ε-machines represented as DIFSs, there are three
distinct mechanisms that contribute to the ambiguity
rate, as depicted in Fig. 6.

The first is identical mapping functions, depicted in
Fig. 6 (a). When for x, x′ ∈ A, f (x)(η) = f (x′)(η) for
all η ∈ R, we say that x and x′ have identical mapping
functions. In this case, the distinction between x and

x′ is not reflected in state sequences and produces am-
biguity in the symbol sequence. We quantify this as the
Shannon entropy H[Xt|Rt,Rt+1] in our current symbol,
conditioned on the previous state and the next state.

The second is overlapping mapping functions, which
motivated this investigation and already have been de-
fined. Their impact on the state machine is shown in
Fig. 6 (b). In this case, two distinct symbols x, x′ ∈ A
map two distinct states η, ζ ∈R to the same next state.
Although the previous state affects the probability distri-
bution over the observed symbol, the next state “forgets”
that distinction. This is quantified by the mutual infor-
mation I[Xt;Rt|Rt+1] shared by the current symbol and
the previous state, conditioned on the next state.

Finally, there is noninvertibility in the mapping
functions. If a single function maps distinct states η, ζ ∈
R to the same next state, the pasts that led to η and ζ
can no longer be distinguished. Figure 6 (c) shows this in
general. However, it may also be observed in f (�) from
Fig. 3, which maps every state to η0 = (1, 0). The re-
duction via this mechanism is measured by the Shannon
entropy H[Rt|Xt,Rt+1] in the previous state, given our
next state and current symbol.

Combining these three sources of uncertainty reduc-
tion defines the ambiguity rate:

ha =H[Xt|Rt,Rt+1] + I[Xt;Rt|Rt+1]
+H[Rt|Xt,Rt+1]

=H[Xt,Rt|Rt+1] . (13)

This can be rewritten as a integral over R:

ha = −
∫
η∈R

dµB(η)
∑
x∈A,

ζ∈(f(x))−1(η)

Pr(x, ζ|η) log2 Pr(x, ζ|η). (14)

In this, we must be careful about the pre-images of η,
due to the possibility of noninvertible mapping func-
tions. The probability distribution inside the summation
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is given by the relationship:

Pr(X0 = x,R0 = ζ|R1 = η) =
µB(R0 = ζ)
µB(R1 = η) × Pr(X0 = x|R0 = ζ) . (15)

Calculating this distribution requires calculating or esti-
mating the Blackwell measure, which may be nontrivial.
Section VII discusses this in greater depth.

B. Correcting dµ

The information-theoretic decomposition of ambigu-
ity rate facilitates combining ha and hµ. Recall that for
prediction, the states of a predictive model are equivalent
to knowledge of the infinite past. Due to this, the Shan-
non entropy rate may be written H[Xt|Rt]. Combining
this with the ambiguity rate gives:

hµ − ha = H[Xt|Rt]−H[Xt,Rt|Rt+1]
= H[Rt+1|Rt, Xt] +H[Rt+1]−H[Rt]
= ∆H[Rt] .

Moving to the third line—that is, noting that the first
term vanishes—called on the fact that the symbol and
state transitions are defined by functions. So, the differ-
ence between the Shannon entropy rate and the ambigu-
ity rate is the growth rate of the causal state set R.

Recall that the information dimension, as defined in
Eq. (8), compares the average growth of occupied cells
F—taking into account the measure over those cells—
as the cell size ε shrinks. To adhere to the main de-
velopment, here we will not walk through the heuristic
for how a dimensional quantity is determined from the
Γ. (Though, this is briefly discussed in Section VB.)
Nonetheless, we will show how the relationship between
d1, hµ−ha, and Γ is intuitive for DIFSs in one dimension.

When the DIFS states lie in the 1-simplex, Γ con-
sists of only one exponent λ1 < 0, which is the weighted
average of the Lyapunov exponents of each map:

λ1 =
∫ ∑

x

p(x)(η) log
∣∣∣∣df (x)(η)

dη

∣∣∣∣ dµ ,
where µ is the Blackwell measure.

Now, consider a line segment in ∆1 of length ε. Map-
ping this line forward k times by the DIFS produces, av-
eraging over several iterations of this action, 2(hµ−ha)k

new lines of length εeλ1k < ε. (Note that the use of
base-two for Shannon entropy rather than base e follows
convention; retained here for familiarity. When numeri-
cally estimating dµ, we recommend a consistent base be
chosen for hµ, ha, and the Γ.) The logarithmic ratio of
the growth rate of lines (as averaged over the Blackwell
measure) compared to the shrinking of these lines is the

simple ratio:

dµ = −hµ − ha
λ1

.

This, of course, is exactly the definition of the informa-
tion dimension Eq. (8) and is, assuming the DIFS is an
ε-machine, the statistical complexity dimension dµ.

For higher-dimensional DIFSs, we conjecture that
the ambiguity rate is the adjustment to the IFS Lyapunov
dimension formula that gives the information dimension:

d̃µ =

k + Λ(k) + hµ − ha
|λk+1|

, −Λ(N) > hµ − ha

N , −Λ(N) ≤ hµ − ha
, (16)

where as in Eq. (11), Λ(m) is the Lyapunov spectrum
partial sum Λ(m) =

∑m
i=1 λi and k = 0, 1, 2, . . . , N − 1 is

the largest index for which −Λ(k) < hµ − ha.

C. Interpreting Ambiguity Rate

Up to this point, we motivated ambiguity rate as
correcting over counting in the DIFS statistical complex-
ity dimension dµ. It is worth discussing the quantity in
more depth.

On the one hand, note that when hµ − ha =
0, the causal-state process is stationary and Cµ time-
independent: ∆H[Rt] = 0. This occurs for finite-state
DIFSs, as well as many with countably-infinite states; see
Section VIIA. When this occurs, applying Eq. (16) re-
turns a vanishing statistical complexity dimension dµ =
0, as expected.

On the other hand, when ambiguity rate vanishes,
Cµ grows at the Shannon entropy rate: ∆H[Rt] = hµ.
This occurs when there are no identical maps, no over-
lap, and no noninvertibility in the mapping functions. In
short, ha = 0 when the causal-state process is “perfectly
self-similar” and every new observed symbol produces a
new, distinct state.

With this in mind, we can use the ambiguity rate,
and specifically hµ−ha, to describe the stationarity of the
model’s internal state process. The state set is time inde-
pendent. When ha > 0, however, to optimally predict the
process P requires a nonstationary model (temporally-
growing state set R), even though P is itself stationary.
This is a consequence of modeling “out of class”. That is,
predicting a perfectly self-similar P requires differentiat-
ing every possible infinite past. This is only possible with
a DIFS by storing new states at the rate new pasts are
being created. (Moving to a more powerful model class
by, say, imbuing our states with counters or stacks, may
make it possible to model P with a stationary model.)

This perspective naturally leads to another that
probes the efficacy of the causal-state mapping. Con-
sidering the space of all possible infinite pasts ←−X , the
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FIG. 7. The entropy rate hµ, which in this case is equivalent
to the ambiguity rate ha, is plotted for the DIFS depicted in
Fig. 3 for p, q,∈ (0, 1).

causal-state mapping fε(
←−
X ) � R is defined such that:

fε(
←−
X =←−x ) = fε(

←−
X =

←−
x′ ) = ηi ,

if Pr(X0:`|
←−
X = ←−x ) = Pr(X0:`|

←−
X =

←−
x′ ) for all ` ∈ N+.

When the process is perfectly self-similar, the causal-
state mapping is one-to-one and ha = 0. In this case,
storing the causal states is no better for prediction than
simply tracking the space of all pasts. (Although the
causal-state set R is still informative in characterizing
how we might approximate the process with a finite state
machine [33].) The number of pasts each state “contains”
is stationary and given by 2ha = 1.

In general, for a stationary process P, the average
number of pasts contained by a given causal state grows
at the rate 2ha . When the process has a stationary state
set, the number of pasts each state contains must nec-
essarily grow at the rate new pasts are being generated,
and so 2hµ = 2ha .

Finally, let’s close with a short historical perspec-
tive. The development of dµ was partially inspired by
Shannon’s definition in the 1940s of dimension rate [4]:

λ = lim
δ→0

lim
ε→0

lim
T→∞

N(ε, δ, T )
T log ε ,

where N(ε, δ, T ) is the smallest number of elements that
may be chosen such that all elements of a trajectory en-
semble generated over time T , apart from a set of mea-
sure δ, are within the distance ε of at least one chosen
trajectory. This is the minimal “number of dimensions”
required to specify a member of a trajectory (or message)
ensemble. Unfortunately, Shannon devotes barely a para-
graph to the concept, leaving it largely unmotivated and

uninterpreted.
Therefore, it appears the first modern discussion of

a dimensional quantity of this nature for stochastic pro-
cesses motivated the development using resource theory
[33], noting that the d1 of the causal-state set Eq. (8)
characterizes the distortion rate when coarse-graining an
uncountably-infinite state set. Starting from the dimen-
sional quantity, the relationship to statistical complexity
was then forged.

In this light, developing ambiguity rate and calling
out its easy mathematical connection to ∆H[Rt] flips
this motivation. The quantity hµ − ha can be defined
purely in terms of P and has an intuitive relationship to
the causal-state mapping. The dimensional quantity dµ
naturally falls out when we compare this rate of model-
state growth to the dynamics of the causal states in the
mixed-state simplex. Therefore, we may motivate dµ not
as only a resource-theoretic tool for finitizing infinitely-
complex state machines, but also as an intrinsic measure-
ment of a process’ structural complexity.

VII. EXAMPLES

We now consider two examples. The first is a
parametrized discrete-time renewal process that has a
countably-infinite state space for all parameters. This
allows us to explicitly write down the Blackwell measure
and calculate ambiguity rate exactly using Eq. (14). The
second is a parametrized machine with three maps, which
has an uncountably-infinite state space for nearly all pa-
rameters. Calculating the ambiguity rate in this case
requires us to approximate the Blackwell measure using
Ulam’s method.

A. Example: Discrete-Time Renewal Process

The DIFS depicted in Fig. 3 has the alphabet A =
{4,�} and the substochastic matrices:

T4 =
(

1− q q
0 1− p

)
and T� =

(
0 0
p 0

)
, (17)

where p = q = 1
2 . For the general case where p, q ∈ (0, 1)

are left unspecified, we have the probability function set:

p(4)(η) = 1− 〈η|δ2〉p ,
p(�)(η) = 〈η|δ2〉p ,

and the mapping function set:

f (4)(η) =
(
〈η|δ1〉(1− q)
1− 〈η|δ2〉p

,
〈η|δ1〉q + 〈η|δ2〉(1− p)

1− 〈η|δ2〉p

)
,

f (�)(η) = (1, 0) .
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FIG. 8. One-dimensional attractor for DIFS given in Eq. (18) with x = 0.25 and horizontally varying α ∈ (0, 1). State set η ∈R
plotted (red, blue, green) on top of the images of the mapping functions

{
f (4), f (�), f (◦)} applied to R. For α ∈ (0.07, 0.78),

there is overlap in the images of the maps.

Since R is countable, we may write down the state
set R as a sequence:

ηn =
[

(p− q)(1− q)n

p(1− q)n − q(1− p)n ,
q(1− q)n − q(1− p)n

p(1− q)n − q(1− p)n

]
,

where n is the number of4s seen since the last � and p 6=
q. This simple structure allows us to give the Blackwell
measure explicitly:

µB(n) = p(1− q)n − q(1− p)n

p− q
× pq

p+ q
,

where µB(n) is the asymptotic invariant measure over
the state induced after seeing n 4s since the last �.

With the Blackwell measure in hand, the entropy
rate can be explicitly calculated as the infinite sum:

hµ =
∞∑
n=1

µnH[Xn|Rn = ηn]

= −
∞∑
n=1

µn

(
p(4)(ηn) log2 p

(4)(ηn)

+ p(�)(ηn) log2 p
(�)(ηn)

)
.

Figure 7 plots hµ for p, q ∈ (0, 1). In calculating hµ, there
is a contribution from every state except the first—η0—
since the first state transitions to the second with prob-
ability one and there is no branching uncertainty. Every
other state transitions on a coin flip of a determined bias
between (4,�), generating uncertainty with each tran-
sition.

In contrast to how hµ averages over all mixed states,

ambiguity rate accumulates in only one state—η0. From
Fig. 3, we see that H[xn, ηn|ηn+1] = 0 for all n other
than n = 0. That is, each state ηn is only accessed via
the prior state ηn−1, except for η0, which may be accessed
from every other state. So, ambiguity in the past can only
be introduced by visiting η0. Since these transitions only
occur on a �, we must find the probability distribution
Pr(X0 = �,R0 = ηn|R1 = η0).

Applying Eq. (14) and Eq. (15), we explicitly write
down the ambiguity rate as:

ha = µ0

∞∑
n=1

(
µn
µ0
p(�)(ηn)

)
log2

(
µn
µ0
p(�)(ηn)

)
.

Both hµ and ha are infinite summations, but when cal-
culating the ambiguity rate, the sum refers to calculating
a single Shannon entropy over the infinite, discrete dis-
tribution representing the probability distribution over
prior states when arriving in η0.

Since the state space does not grow—∆H[Rt] = 0—
the entropy rate hµ = ha as n → ∞. Therefore, dµ
vanishes for all values of p and q. This will always be the
case for finite-state DIFSs and, in general, for those with
countable state spaces.

B. Example: 1-D Ambiguity Rate

Now, let’s turn to the more general case, those DIFSs
with uncountably-infinite state spaces. For the moment
we restrict to one-dimensional DIFSs, so that the states
lie in the 1-simplex. Consider a DIFS with the alphabet
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FIG. 9. Calculating entropies and dimensions for the DIFS given in Eq. (18) with α ∈ (0, 1), and x = 0.25: (Top) The entropy
rate hµ, the ambiguity rate ha, and hµ − ha. (Bottom) Comparing hµ/λ1 to dµ = (hµ − ha)/λ1: The latter smoothly departs
from the former and is approximately 1 for much of the overlap region, except where it discontinuously jumps to zero at
α = 1/3.

A = {4,�, ◦} and the associated substochastic matrices:

T4 =
(
αy βx
αx βy

)
, T� =

(
βy βx
βx βy

)
, and

T ◦ =
(
βy αx
βx αy

)
, (18)

with α = 1− 2β, α ∈ (0, 1), and x = 1− y, x ∈ (0, 1).
Figure 8 depicts all of the DIFSs for the slice of the

parameter space where x = 0.25. The vertical axis is
the 1-simplex and each vertical slice plots the state space
R(α) at the appropriate value of α, given on the hor-
izontal axis. Additionally, the images of the functions{
f (4)(R), f (�)(R), f (◦)(R)

}
are shaded in red, blue,

and green, respectively.
At α = 1/3, the mixed state set R contracts to a

finite set, and hµ must equal to ha, making dµ = 0. At
this point in parameter space, the state set consists of
only one state; R(α = 1/3) = {(1/2, 1/2)}. At every
other value of α, ha < hµ. There is overlap in the images
of the maps for, approximately, α ∈ (0.07, 0.78). In this
regime, ha > 0.

To calculate the ambiguity rate and therefore the
statistical complexity dimension dµ we use a modified
Ulam’s method to approximate the Blackwell measure
and then approximate the integral equation Eq. (14).
This method is not the only way to find the ambiguity
rate, but does have several advantages, including speed
and the ability to control the accuracy of our approxima-
tion. This method is discussed in depth in Appendix B.

The top plot in Fig. 9 gives the entropy rate, ambigu-
ity rate, and hµ−ha for the DIFSs pictured in Fig. 8. As

α is increased, ha smoothly increases from zero as overlap
begins to occur. It approaches ≈ 0.6 around α = 1/3,
but is discontinuously equal to zero at this point. The
reason for this is an instantaneous equality in the fixed
points of the mapping functions, causing the state space
to collapse. As α increases to 1, ha smoothly decreases
back to zero. The roughness seen in the plot is due to
numerical precision, as explained in Appendix B.

For a large portion of the overlap region, dΓ satu-
rates at 1.0. The bottom plot in Fig. 9 instead depicts
hµ/λ1 to show how this quantity smoothly changes across
parameter space, reaching a maximum around α ≈ 1.6.
By way of comparison, dµ = (hµ − ha)/λ1 smoothly de-
parts from the Lyapunov dimension when overlap begins
and, instead, asymptotes from below to the dim = 1.0
line for much of the overlap region. Again, at α = 1/3
there is the discontinuous drop to dµ = 0, followed by dµ
smoothly rejoining with the Lyapunov dimension as the
overlap region ends.

Unsurprisingly, calculating the ambiguity rate in
higher dimensions is more challenging. Although, in prin-
ciple, Ulam’s method still applies and we may in princi-
ple follow the algorithm laid out in Appendix B, higher-
dimensional mapping functions introduce additional er-
ror sources in the approximation. Developing an algo-
rithm to efficiently and accurately calculate the ambi-
guity rate in higher dimensions is of great interest. We
leave this task to future work, however, having achieved
our goal of introducing a method to estimate the statis-
tical complexity dimension.



12

VIII. CONCLUSION

Stepping back from developing ambiguity rate and
statistical complexity dimension, let us position the new
results here in the context of our prior two works in this
series [11, 12]. In the first, motivated by needing a general
solution to the Shannon entropy rate for processes gen-
erated by finite-state hidden Markov chains, we showed
how an optimal predictor can be constructed for any such
process, at the cost of a potentially uncountably-infinite
state space. To address the resulting challenge, we intro-
duced hidden Markov-driven iterated function systems
and showed that the attractor of a properly-defined DIFS
is equivalent to the ε-machine for the process generated
by its substochastic matrices.

The result gave benefits beyond a finite-dimensional
description of an infinite-state model. The identification
allowed us to adopt several rigorous results on IFSs, in-
cluding an ergodic theorem that allows us to sample the
DIFS to accurately and efficiently calculate the Shannon
entropy rate of the underlying process. With this, our
original goal was completed.

However, identifying these ε-machines as IFSs al-
lowed us to show that the dimension of the mixed state
set, a quantity well studied for IFSs, is a structural com-
plexity measure for stochastic processes. The second pre-
quel Ref. [12] then introduced the statistical complexity
dimension—the DIFS attractor information dimension.
A long-standing conjecture in dynamical systems theory
states that the Lyapunov dimension, a dimensional quan-
tity calculated using a system’s Lyapunov spectrum, is
equivalent to the information dimension. We showed that
for many DIFSs this is indeed the case, connecting the in-
formation dimension of the ε-machine’s state space to the
ε-machine’s statistical complexity dimension—the rate of
divergence of the statistical complexity. This related a
DIFS’s dynamics to the information-theoretic properties
of the underlying process. Additionally, it gave a new
and meaningful measure of structural complexity—one
that differentiates between stochastic processes with di-
vergent state spaces.

That was not the end of the story, since calculating
dµ is difficult due to long-standing challenges in the field
of IFS dimension theory. In particular, the overlap prob-
lem posed a significant hurdle—restricting the preceding
results to only nonoverlapping IFSs. This limited anal-
yses to the class of stochastic processes with one-to-one

past-to-causal state mappings. In one sense, these pro-
cesses are the most complex but exhibit structure that
is the least interesting. That is, for processes generated
by these DIFSs one simply stores every past to build an
optimally-predictive model.

This state of affairs led directly to the present de-
velopment and to introducing the ambiguity rate. The
latter allows smoothly varying between ε-machines with
countable state spaces (ha = hµ and ∆H[R] = 0) and
those with perfectly self-similar state spaces (ha = 0 and
∆H[R] = hµ), including all those lying in between, with
hµ > ha > 0 and ∆H[R] = hµ − ha. This model class
is much more general, generating an exponentially larger
family of stochastic processes. As such, we anticipate
that this class will be of great interest and likely to lead
to significant further progress in analyzing the random-
ness and structure generated by hidden Markov chains.

To close, we note that the structural tools and the
entropy-rate method introduced by this trilogy were put
to practical application in two other previous works.
One diagnosed the origin of randomness and structural
complexity in quantum measurement [34]. The other
exactly determined the thermodynamic functioning of
Maxwellian information engines [35], when there had
been no previous method for this kind of detailed and
accurate classification. The lesson from these applica-
tions of finite-state-generated processes is that the re-
sulting effectively-infinite state processes are very likely
generic. That said, for now we must leave to the future
investigating infinite-state machines and developing the
required algorithmic tools.
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The Supplementary Materials to follow give a suite of example hidden Markov chains and discuss numerically
estimating the ambiguity rate.

Appendix A: Hidden Markov-Driven Iterated Function System Examples

We reproduce here the hidden Markov-driven iterated function systems (DIFS) used to create Fig. 4.
First, the delta DIFS, from Fig. 4a, is given by a three-symbol alphabet and the substochastic symbol-labeled

matrices:

T� =

0.112 0.355 3.901× 10−2

0.434 7.685× 10−2 2.333× 10−2

0.215 2.518× 10−2 0.220

 , (S1)

T4 =

1.778× 10−2 0.113 0.220
6.465× 10−2 0.272 2.413× 10−2

0.400 8.697× 10−3 9.892× 10−3

 , and

T ◦ =

8.312× 10−2 2.867× 10−2 3.096× 10−2

4.690× 10−2 5.625× 10−2 1.807× 10−3

0.114 1.095× 10−3 7.522× 10−4

 ,

Second, the Nemo DIFS, from Fig. 4b, is given by a two-symbol alphabet and the substochastic symbol-labeled
matrices:

T� =

0.409 0.0 0.091
0.5 0.0 0.0
0.0 0.182 0.0

 , and (S2)

T4 =

0.091 0.0 0.409
0.5 0.0 0.0
0.0 0.818 0.0

 ,

Finally, the gamma DIFS, from Fig. 4c, is given by a three-symbol alphabet and the substochastic symbol-labeled
matrices:

T� =

2.479× 10−2 0.355 1.745× 10−2

0.410 1.878× 10−2 2.388× 10−4

0.204 2.472× 10−3 0.215

 , (S3)

T4 =

1.672× 10−3 0.133 0.235
3.377× 10−2 0.272 8.277× 10−2

0.426 1.498× 10−2 4.286× 10−3

 , and

T ◦ =

8.870× 10−2 3.059× 10−2 0.114
6.918× 10−2 0.112 1.804× 10−3

0.131 1.165× 10−3 8.005× 10−4

 ,
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FIG. S1. DIFS for x = 0.25 and α = 0.5: (Top) Blackwell Measure µB approximated by Ulam’s method with k = 400. The
two overlapping regions are overlaid and may be compared with Fig. 8. (Middle) Probability of each prior map is plotted.
In nonoverlapping regions, only one prior map is possible. In the overlapping regions, there are complicated, fractal-like
distributions over multiple prior maps. (Bottom) Shannon entropy over the prior map: Nonzero only in the overlapping
regions.

Due to finite numerical accuracy, reproducing the attractors using these specifications may differ slightly from
Fig. 4.

The mapping images shown in Fig. 5 are produced by the following three-symbol DIFS:

T� =

αy βx βx
αx βy βx
αx βx βy

 , T4 =

βy αx βx
βx αy βx
βx αx βy

 , and

T ◦ =

βy βx αx
βx βy αx
βx βx αy

 , (S4)

with α = 0.63 and x = 0.2 for the overlapping example in Fig. 5a and α = 0.6 and x = 0.15 for the nonoverlapping
example in Fig. 5b.

Appendix B: Numerical Approximation of Ambiguity Rate

To estimate the ambiguity rate for a DIFS lying in the 1-simplex, we may use Ulam’s method to approximate
the Blackwell measure, then compute Eq. (14). Given a partition {A1, . . . Ak} of the simplex, define:

P
(x)
ij = m(f (x)(Ai) ∩Aj)

m(f (x)(Ai))
× p(x) (Ai) ,
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where m is the Lebesgue measure over ∆ and Ai is the center of a partition element. Let P =
∑
P (x) and find the

left eigenvalue p = pP . Then, the invariant-measure approximation is:

µn(A) =
∑
i

pi
m(A ∩Ai)
m(Ai)

.

For this example, let’s walk through estimating the ambiguity rate for one DIFS—setting x = 0.25 and α = 0.5.
The partition {A1, . . . Ak} is created by dividing the 1-simplex into k boxes of equal length. The approximated
Blackwell measure µ̂B for the DIFS, using k = 400, is shown in the top plot of Fig. S1. The overlay indicates the
region (green) of the state space that exhibits overlap. Compare the two regions depicted in Fig. S1 to the overlap
shown in Fig. 8, for the vertical slice at α = 0.5.

Note that the partition may be defined as desired. We have found that defining the partition by calculating the
set of fixed points of the mapping functions

{
px : f (x)(px) = px

}
. Then, as many times as is desired, find all possible

iterates of each fixed point, constructing a new set
{
f (w)(px) : x ∈ A, w ∈

⋃N
n=0An

}
, where N ∈ Z+. Removing

duplicates and ordering the set gives a list of endpoints for a partition of the 1-simplex. Increasing N produces
increasingly fine partitions. This method of defining partitions has advantages when calculating ha across parameter
space as we have in Section VIIB, since the position of the fixed point iterates in the simplex are smooth functions
of α.

Regardless, once the partition is selected and µ̂B is determined, we again use the partition. For each cell Ai,
we find the probability distribution over the maps that could have transitioned into Ai. By applying Eq. (15) and
assuming invertibility of the mapping functions gives:

Pr(X0 = x|R ∈ Ai) =
µ̂B

((
f (x))−1 (Ai)

)
µ̂B(Ai)

px
((
f (x)

)−1 (Ai)
)
.

For our example DIFS, the probability of the previous map given current location in the simplex is plotted in
the middle figure of Fig. S1. For parts of the simplex outside the overlapping regions, only one prior map is possible
and it has probability one. Within the overlapping regions, the distribution over the possible prior maps may be very
complicated. The Shannon entropy over the prior map distribution H [X0 = x|R ∈ Ai] is shown in the third plot of
Fig. S1. Once these entropies are calculated, the final step is to approximate the integral equation Eq. (14) with a
summation over cells in the partition:

ha =
∑
i

µ̂B(Ai)
∑
x∈A

H [X0 = x|R ∈ Ai] .

In our example, the ambiguity rate is found to be ha = 0.4499. Since the DIFS entropy rate is hµ = 1.5596, this gives
an adjusted state space expansion rate of hµ − ha = 1.1098. Calculating the DIFS’s Γ and applying Eq. (16) results
in a statistical complexity dimension of dµ = 0.9815.

The advantage of Ulam’s method is its relative simplicity and computational speed. Additionally, it is determin-
istic given the partition. And, we may may increase estimation accuracy simply by tuning our partition; although,
increasingly-fine partitions increase computation time.

Additionally, when the set becomes highly rarefied, fluctuations will be observed in the ha estimates. This can
be seen in our example DIFS at either end of the overlap region; although, it is worst when α ∈ (0.6, 0.78). This
may be understood when comparing Fig. 8 to Fig. 9. From α ∈ (0.6, 0.78) there are bands of high density in the
overlapping region that increase in probability as the overlapping region itself shrinks. Calculating ha accurately in
this region requires increasingly-fine partitioning. An immediate improvement may be made by changing the method
to use adaptive partitioning while sweeping parameter space. This adapts to the changing structure of the state set.
The method may be applied to any DIFS in the 1-simplex with overlaps.




