
UCLA
UCLA Electronic Theses and Dissertations

Title
Exploiting Symmetry in Subgraph Isomorphism and Formulating Neural Network
Constrained Optimization Problems

Permalink
https://escholarship.org/uc/item/27t0b5fz

Author
Yang, Dominic

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27t0b5fz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Exploiting Symmetry in Subgraph Isomorphism

and Formulating Neural Network Constrained

Optimization Problems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Dominic Tianli Yang

2023

© Copyright by

Dominic Tianli Yang

2023

ABSTRACT OF THE DISSERTATION

Exploiting Symmetry in Subgraph Isomorphism

and Formulating Neural Network Constrained

Optimization Problems

by

Dominic Tianli Yang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Andrea Bertozzi, Chair

In this dissertation, I will cover two distinct topics. In the first part, I will discuss the sub-

graph isomorphism problem which has a broad range of applications from pattern recognition

and bioinformatics to compilers circuit design. In combinatorial problems such as these, sym-

metry, if unaccounted for, can confound standard solvers leading to significant amounts of

redundant work being done. I will introduce multiple approaches for dynamically exploiting

this symmetry to accelerate solvers as well as to compactly characterize the set of solutions.

I rigorously establish conditions under which from one subgraph isomorphism, potentially

exponentially many more may be generated. I also demonstrate through empirical assess-

ment that incorporating symmetry into subgraph search can provide significant reductions

in search time and produce many more solutions.

In the presence of these huge solution spaces, there still remains the work of determining

the actual subgraph isomorphism of interest. In an approach inspired by active learning, I

will introduce the problem of querying template vertices for more information to uniquely

ii

identify solutions. Multiple different strategies for querying vertices which also incorporate

symmetry are established and assessed by rigorous analysis and comprehensive experiments.

In the second part, I will discuss methods for formulating neural network constrained

optimization problems. With the advent of machine learning, neural networks have been

used as a surrogate for complicated physical models, and the incorporation of these networks

into optimization problems is a challenge. I will present a direct embedding approach,

a mixed integer program, and a nonlinear program with complementarity constraints as

methods for formulating these problems to be used with standard optimization solvers. I

establish key properties of each methods, and through experiments, I assess the advantages

and disadvantages for each approach.

iii

The dissertation of Dominic Tianli Yang is approved.

Christopher R. Anderson

Deanna M. Hunter

Mason Alexander Porter

Sven Leyffer

Andrea Bertozzi, Committee Chair

University of California, Los Angeles

2023

iv

TABLE OF CONTENTS

1 Introduction . 1

2 The Subgraph Isomorphism Problem . 4

2.1 Defining the Problem . 4

2.1.1 Terminology . 7

2.1.2 Applications of Subgraph Isomorphism 8

2.2 Approaches for Finding Subgraph Isomorphisms 9

2.2.1 Tree Search Approaches . 10

2.2.2 Constraint Programming . 13

2.2.3 Indexing Approaches . 16

2.3 Inexact Subgraph Matching . 19

3 Structural Equivalence in Subgraph Matching 21

3.1 Introduction . 21

3.1.1 Chapter Outline . 23

3.2 Structural Equivalence . 24

3.2.1 Interchangeability and Isomorphism Counting 25

3.2.2 Application to Tree Search . 29

3.3 Candidate Equivalence . 31

3.4 Node Cover Equivalence . 34

3.4.1 Equivalence Hierarchy . 37

3.5 Experiments . 38

v

3.6 Compact Solution Representation . 45

3.7 Application to Multiplex Networks . 50

3.7.1 Multiplex MultiGraph Matching . 50

3.7.2 Multiplex Experiments . 51

3.8 Conclusion . 62

4 Iterative Active Learning Strategies for Subgraph Matching 65

4.1 Introduction . 65

4.2 Active Learning Framework . 68

4.2.1 Associated Theoretical Problems . 71

4.3 NP-Completeness of the Minimal Solution Verification Set Problem 72

4.3.1 Reduction of Minimum Set Cover to Minimum Solution Verification Set 73

4.3.2 Solving the Minimal Solution Verification Set Problem 76

4.4 Querying Strategies for Template Vertices . 77

4.4.1 Local Strategies . 77

4.4.2 Probabilistic Query Strategies . 78

4.4.3 Symmetry in Active Learning . 81

4.5 Experiments . 84

4.6 Conclusion . 94

5 Modeling design and control problems involving neural network surrogates 95

5.1 Introduction . 95

5.1.1 Outline and Contributions . 97

5.1.2 Related Work . 98

vi

5.2 Modeling Optimization Applications Involving Neural Network Surrogates . . 99

5.2.1 Optimal Design of Combustion Engine 99

5.2.2 Adversarial Attack Generation . 105

5.2.3 Surrogate Modeling of Oil Well Networks 108

5.3 Embedded Neural Network Formulation . 111

5.3.1 Convergence Behavior . 113

5.3.2 Stationarity in the Embedded Formulation 116

5.4 Formulating DNNs as Optimization Models . 124

5.4.1 Formulating DNNs with Mixed-Integer Sets 124

5.4.2 Formulating DNNs with Complementarity Constraints 127

5.5 Numerical Experiments . 131

5.5.1 Numerical Experiments with Engine Design Optimization 131

5.5.2 Numerical Experiments with Adversarial Attack Generation 136

5.5.3 Numerical Experiments with Oil Well Networks 140

5.6 Conclusion . 144

6 Conclusion . 146

References . 149

vii

LIST OF FIGURES

2.1 Example subgraph matching problem. The colors of nodes and edges correspond

to different node labels and channels, respectively. There are four subgraph iso-

morphisms corresponding to mapping the template nodes (A,C,B) to each of

the four circled sets of nodes (4,7,5), (7,10,9), (1,6,8), (1,6,2). 4

2.2 A simple template graph (left), world graph (center) and representation of a sam-

ple tree search algorithm (right). Each level of the tree on the right corresponds

to a stage where one template vertex is assigned to a candidate world vertex. This

green path in the tree represents the subgraph isomorphism created by matching

A to 1, B to 2, and C to 3. The red nodes in the tree indicate assignments which

cannot possibly lead to solutions and may be pruned. 9

3.1 Graph representing a system of biochemical reactions from [GFM14]. Non-gray

vertices of the same color are structurally equivalent. 22

3.2 Example subgraph isomorphism problem with template on the left and world on

the right. Vertices of the same color are structurally equivalent. 23

3.3 Candidate structure for the graphs in Figure 3.2 before and after assigning tem-

plate vertex A to world vertex 1. 32

3.4 In order from left to right: template, world, and possible candidate structure.

The boxed vertices comprise a node cover of the template and the image of the

node cover in the world. Vertices of the same color in the world are node cover

equivalent. The red edges are extraneous edges which once removed, expose

equivalence. 36

viii

3.5 Number of satisfiable (top) and unsatisfiable (bottom) instances solved after a

given amount of time. This is aggregated over all single channel benchmark

data sets. For satisfiable instances, “solved” means having fully enumerated the

solution space. 42

3.6 Comparison of individual run times for full enumeration between no equivalence

and full equivalence runs for satisfiable problems (left) and unsatisfiable problems

(right). Note the phase, www, and meshes cv problems do not terminate for any

instance and take the full 600 second runtime, so they can be difficult to discern

as each occupies the same spot in the upper right corner of the graphs. 43

3.7 Comparison of isomorphism counts for full enumeration between no equivalence

and full equivalence runs for problems with small (< 109) numbers of isomor-

phisms (left) and problems with large (≥ 109) numbers of isomorphism (right).

Take note of the scales chosen for each graph. For 110 instances the solver with

full equivalence found greater than 1040 isomorphisms (the largest had ≈ 10384

isomorphisms), and they are not shown on these graphs. 44

3.8 The average compression rate for each dataset and equivalence type. 45

3.9 The template (left) and world (center) from Figure 3.2 recolored to represent so-

lution (B → {2,3},A→ 1,C → {2,3,4,5}). Each world vertex is colored with the

same color as template vertices which can map to it or gray if no vertex maps to it.

The right graph compresses the world graph by dropping nonparticipant vertices

and combining vertices of the same color into a vertex with a label indicating the

amount combined. 46

ix

3.10 A biochemical reactions [GFM14] template graph (left) and the solution-induced

world subgraph (right) for a solution class comprised of 9.18×1013 solutions. Dark

gray vertices are vertices with a single candidate. Vertices with the same non-gray

color in the world subgraph are fully candidate equivalent. Vertices with two or

more colors were part of one class at an early stage of subgraph search which

was later merged into another class. All solutions represented by the compressed

solution can be generated by mapping templates vertices of one color to world

vertices with the same color. 48

3.11 The world graph from Figure 3.10 with equivalent vertices joined into superver-

ticess with numbers indicating the size of the class. 49

3.12 Template Graph for PNNL v6-b7-s1. Non-gray vertices of the same color are

structurally equivalent. 56

3.13 Template (left), solution-induced world subgraph (middle) and the compressed

solution-induced world subgraph (right) for a solution class which can generate

about 3× 1012 solutions to GORDIAN v7-2 [KSG18]. World vertices of the same

color are fully candidate equivalent and are candidates of the template vertex

of the same color. All solutions represented by this compressed solution can be

generated by mapping each colored vertex to one of groups of world vertices with

the same color. 57

3.14 Template (left) and solution-induced world subgraph (right) for a solution class

from which 7.82 × 10103 solutions to IvySys v7 [BJU18] can be generated. World

vertices of the same color are fully candidate equivalent and are candidates of the

template vertex of the same color. All solutions represented by this compressed

solution can be generated by mapping each colored vertex to one of groups of

world vertices with the same color. 58

x

3.15 IvySys v7 [BJU18] Compressed solution-induced world graph (left) and the Venn

diagram representation of intersecting candidate sets in world graph(right) for a

solution class from which 7.82× 10103 solutions to can be generated. The number

in each section in the Venn diagram represents the size of a node cover equivalence

class in the world graph. All solutions represented by this compressed solution

can be generated by mapping each colored vertex in the template to the set in

the Venn diagram with the same color. 60

3.16 The average number of subgraph isomorphisms found for each equivalence level

where the templates are small Erdős–Rényi graphs and the world is the Higgs

Twitter graph. 62

3.17 COVID-19 [ZPM21] template (left) and the Venn diagram of candidate sets in

world graph (right) from which 2.6×1018 solutions can be generated in one solution

class. Each section in the Venn Diagram represents a node cover equivalence class,

and the number in the section is the size of the class. A few template vertices

were specified at the start whereas others simply received a vertex label of C, P,

or G indicating chemical, protein, and gene respectively. The solutions may be

generated by mapping non-gray template vertices of one color to world vertices

in the Venn diagram section of the same color. 63

4.1 Active learning flowchart for subgraph matching [GB21]. First, a subgraph

matching algorithm determines all potential candidates for template vertices.

Then an active learning algorithm determines the optimal vertices for subject

matter experts to obtain information about. These two steps are repeated until

the number of subgraph isomorphisms is reduced to a desired amount 66

xi

4.2 Solution spaces for example template and world graph following active learning

queries. The ground truth subgraph matching is given by mapping 1 to A and

2 to B. In I, there are initially four possible SIs, in II, there are two SIs after

querying template vertex 1 and finding it maps to A, and in III, finally we have

reduced the solution space to one SI after querying vertex 2 and finding it maps

to B. 69

4.3 The associated template and world for the set cover problem where S = {1,2,3}

and the subsets are S1 = {1}, S2 = {2,3}, S3 = {2}. The world graph vertex (i, j)

can be found in the ith row and jth column. The numbers represent the vertex

labels. The colors indicate four different subgraph isomorphisms which can be

found by picking all vertices of one color and the purple vertices adjacent to them. 74

4.4 Edge entropy example: Edge A may be mapped to nine possible candidate edges

in the world. There are three cases that the orange vertex can map to. In the

first case, there are three edges connected to the selected world vertex. So the

probability in this case is 1/3. Similarly the probability for the remaining edges are

2/9 and 4/9. Hence, the edge entropy of this edge is −(13 log(13)+ 2
9 log(29)+ 4

9 log(49)). 78

4.5 Average Number of queries needed to determine a solution to the subgraph match-

ing problem on the biochemical reactions dataset based on the approximation

used for the number of SIs and the uncertainty quantification method. Error bars

depict the standard deviation in the number of queries. 82

4.6 Bar chart depicting the average number of queries for the easy problems in Table

4.1. Error bars depict the standard deviation. The methods listed are described

in Section 4.5. 88

4.7 Bar chart depicting the average percent additional queries over the optimal amount

for the easy problems in Table 4.1. Error bars depict the standard deviation. The

methods listed are described in Section 4.5. 89

xii

4.8 Bar chart depicting the average number of queries for the hard problems in Table

4.1. Error bars depict the standard deviation. The methods listed are described

in Section 4.5. 90

4.9 Bar chart depicting the average percent additional queries over the best query

strategy for the hard problems in Table 4.1. Error bars depict the standard

deviation. The methods listed are described in Section 4.5. 91

4.10 Two separate query strategies applied to an example template graph from the

biochemical reactions dataset. The numbered vertices indicate the order in which

template vertices are queried. On the left, the MLE query strategy is used, and

on the right the ME query strategy is used. Non-gray vertices of the same color

are structurally equivalent. 92

4.11 Average number of queries made before a solution is found on various single

channel datasets when using the MC method with equivalence-informed queries. . 93

5.1 Location of training data and optimal solution for an engine design problem

on a neural network with 1 hidden layer of 16 nodes. On the left the input is

constrained by box constraints and on the right by convex hull constraints. 102

5.2 Optimal configuration for each time step when using box constraints (left) and

using convex hull constraints (right). The red lines indicate the drive cycles used

to train the neural network, and the blue lines indicate the optimal solution. . . . 103

5.3 Contour plot for the NO output of a 5-layer DNN. 104

5.4 Oil well optimization problem with deep neural network surrogate functions. . . . 109

5.5 Example oil well network with 8 wells, 2 manifolds, and 2 separators, from [GA19].110

5.6 Objective value, primal infeasibility, and dual infeasibility plotted against itera-

tion number for a sample ReLU network (left) and a sample swish network (right)

over an Ipopt solve of the Engine Design Problem in (5.3). 114

xiii

5.7 The minimal distance to a discontinuity (left) and distance to one neuron’s hy-

perplane (right) for iterates from an Ipopt solve of one instance of Problem (5.3).

On the right image, the highlighted sections indicate when the iterate is one side

of the hyperplane and when it is on the other. 115

5.8 Regions of a randomly instantiated neural network with two inputs followed by

1, 2, and 3 layers of 5 ReLU neurons each. 117

5.9 Regions of a zero-bias, single-layer network with two input variables and three

output variables. 120

5.10 Average time until a solver found its best solution to the engine design problem

within 3 hours (10,800 seconds). Experiments are averaged over ten runs on

different neural networks. If a runtime of 10,800 seconds is recorded, this indicates

the solver failed to find a feasible solution in the full 3 hours (if a warmstart is

used, this means it failed to find a feasible solution better than the warmstart).

If a number is present over a bar, this indicates the number of solves which did

not terminate in the full 3 hours given. 133

5.11 Percentage gap in objective between final objective value and best-known objec-

tive value of the engine design problem. Experiments are averaged over ten runs

on different neural networks. A value of 0 indicates the solver found the best-

known objective value, and a value of ∞ indicates that no solution was found

over any solve. If a number is displayed over a bar, this indicates the number of

solves of the ten runs which failed to determine a feasible solution. Cases where

the solver found no feasible solution are not included in the average. 134

5.12 Suite of 10 digits from the MNIST training data for which adversarial attacks are

generated. 139

xiv

5.13 Perturbed images produced after 1 hour of computation when using CPLEX to

solve the MIP formulation (left) and Ipopt to solve the NLP formulation (right)

with given digits in Figure 5.12 for the neural network with 2 hidden layers of

100 nodes. 139

xv

LIST OF TABLES

2.1 Various problems involving subgraph isomorphisms (from [MTC21]) 6

3.1 Template Graph Statistics from Benchmark Datasets used in Equivalence Exper-

iments . 39

3.2 World Graph Statistics from Benchmark Datasets used in Equivalence Experiments 40

3.3 Proportion of Satisfiable Instances from Benchmark Datasets in Table 4.1 Which

Were Fully Enumerated by Various Equivalence Levels 41

3.4 Number of representative solutions for each equivalence level in the toy problem

in Figure 3.2 . 47

3.5 Basic Graph Statistics for the Multichannel Graphs 52

3.6 Time (s) to enumerate solution spaces of multichannel problems. Experiments

were timed out at one hour. Bolded entries indicate the equivalence algorithm

which fully enumerated all subgraph isomorphisms the quickest. 54

3.7 Number of solutions found for multichannel subgraph isomorphism problems

listed in Table 3.5 within one hour. Bolded entries indicate the algorithms which

found the most solutions in the allotted time. 55

4.1 Template Graph Statistics from Benchmark Datasets Used in Active Learning

Experiments . 85

4.2 World Graph Statistics from Benchmark Datasets Used in Active Learning Ex-

periments . 86

5.1 Input/output parameters of engine DNN model. Time-dependent parameters are

shown with time per second (/s). 100

5.2 Sets used in oil well optimization problem . 108

xvi

5.3 Comprehensive results for solves of the MIP formulation using CPLEX, the

MPCC formulation using Ipopt, and the embedded ReLU formulation also using

Ipopt. Times are recorded in seconds. 137

5.4 Time for each solver to find its best feasible solution for each instance of the full

oil well problem within a time limit of 1 hour. The * indicates that the solver did

not terminate within 1 hour. For these starred problems, a time of 3600 seconds

indicates no solution was found; otherwise, the solution found was not deemed

optimal (locally optimal, when using bonmin). 141

5.5 Time until a solver finds its best feasible solution within an hour time limit for

each formulation and for both shallow and deep neural networks on each particular

fixing of the oil well problem. The * indicates that the solver did not terminate

within 1 hour. For these starred problems, a time of 3600 seconds indicates no

solution was found; otherwise, the solution found was not deemed optimal (locally

optimal, when using Ipopt). 142

5.6 Objective value of the best feasible solution for each formulation for both shallow

and deep neural networks on each particular fixing of the oil well problem. -

indicates that no feasible solution was found. 143

xvii

ACKNOWLEDGMENTS

I would like to thank first my advisor, Andrea Bertozzi, for her help in the duration of my

studies. I would also like to thank all of the other members of my research group who have

given me advice, ideas, and support. Thank you specifically to Jacob Moorman, Thomas

Tu, and Yurun Ge. I would also like to extend thanks to Sven Leyffer who has offered a

great deal of support to me in my research.

I also would like to extend thanks to all of the graduate student friends who I have made

during my time at UCLA. In particular, I want to thank Benjamin Bowman, Joel Barnett,

Patrick Hiatt, Louis Esser, Jerry, Luo, Xia Li, and Kaiyan Peng. I also want to thank all of

my officemates through the years, Eilon Tzur, Nicholas Boschert, and Yotam Yaniv. Thank

you also to Jason Brown, James Chapman, Michael Johnson, Allison Schiffman for being

good friends. Thank you also to Sandy Kim for being a good friend through Covid and

since. Thank you all for keeping me sane in these years.

I want to thank my friends from UC Davis whose friendship I think is invaluable. Thank

you to Andrew Jackson, Alejandro Hernandez, Vidush Vishwanath, Kamal Gill, Kyla Brod-

erick, Sheila Kulkarni, Amelia Freije, Daniel Loran, Sam Truong, Hershel Shah, and Bianca

Rivera. I am grateful for the many positive memories that I have of you all.

I want to thank especially my mother, my father, my brother, and all of my grandparents.

It is only with the support of my family that I could have gotten to the point where I am

today. I love you all dearly. I hope that through my life I will be able to show that

appreciation.

Chapter 3 is a version of [YGN23] and is joint work with Yurun Ge, Thien Nguyen,

Jacob Moorman, Denali Molitor, and Prof. Andrea Bertozzi. Andrea Bertozzi supervised

the project. Thien Nguyen introduced a version of candidate equivalence in prior work, and I

expanded on these concepts for use in subgraph matching, provided rigorous proofs, created

the method for compactly representing the solution space, and adapted another solver for use

xviii

in experiments. Yurun Ge developed the method for accelerating subgraph search for solving

the all-different aspect of search, and contributed to the code, experiments, and visualizations

for the multichannel datasets. Jacob Moorman and Denali Molitor contributed to the code.

Chapter 4 is a version of [GYB23] and is joint work with Yurun Ge and Prof. Andrea

Bertozzi. Andrea Bertozzi supervised the project. Yurun Ge formalized the concept of ac-

tive learning in subgraph matching, provided the proof for NP-completeness, and developed

methods and code for solving the active learning query problem and performed several ex-

periments. I established the reduction to the set cover problem, introduced the theoretical

variants of the problem, and also devised several methods and experiments for this project.

Chapter 5 is a version of [YBL22] which is joint work with Sven Leyffer and Prasanna

Balaprakash. Sven Leyffer supervised the project and provided ideas and developed theory.

Prasanna Balaprakash provided a use case for the problem. I contributed to the development

of the theory of surrogate optimization and set up the experiments analyzing the various

formulations.

The work done in Chapter 3 is based on research sponsored by the Air Force Research

Laboratory and DARPA under agreement number FA8750-18-2-0066. The U.S. Government

is authorized to reproduce and distribute reprints for Governmental purposes notwithstand-

ing any copyright notation thereon. The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily representing the official poli-

cies or endorsements, either expressed or implied, of the Air Force Research Laboratory and

DARPA or the U.S.Government. The work done in Chapter 4 is based on research supported

by the National Science Foundation (Grant DMS-2027277). The work done in Chapter 5 is

based on research supported by the U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357. This work

was also supported by the U.S. Department of Energy through grant DE-FG02-05ER25694.

This was also supported through an NSF-MSGI fellowship.

xix

VITA

2016-2017 Student Assistant, UC Davis Graduate School of Management, UC Davis,

Davis, California.

2017-2019 R & D Intern, Discrete Optimization Group, Sandia National Laboratories,

Albuquerque, New Mexico

2018 B.S. (Mathematics) and B.S. (Computer Science), UC Davis.

2018–2023 Teaching Assistant, Mathematics Department, UCLA.

2019–2023 Research Assistant, Mathematics Department, UCLA.

2020–2021 NSF MGSI Intern / Givens Scholar, Argonne National Laboratory,

Lemont, Illinois

2022 Applied Machine Learning Fellow, Los Alamos National Laboratory, Los

Alamos, New Mexico

PUBLICATIONS

Yurun Ge, Dominic Yang, Andrea Bertozzi. “Iterative Active Learning Strategies for the

Subgraph Matching Problem.” Submitted.

Dominic Yang, Yurun Ge, Thien Nguyen, Jacob Moorman, Denali Molitor, and Andrea

Bertozzi. “Structural Equivalence in Subgraph Matching.” IEEE Transactions on Network

Science and Engineering (2023).

xx

Dominic Yang, Prasanna Balaprakash, and Sven Leyffer. “Modeling design and control

problems involving neural network surrogates.” Computational Optimization and Applica-

tions (2022): 1-42.

Thomas Tu, Jacob Moorman, Dominic Yang, Qinyi Chen, and Andrea Bertozzi. “Inex-

act Attributed Subgraph Matching.” Fourth workshop on Graph Techniques for Adversarial

Activity Analytics (GTA3 4.0), IEEE BIG DATA conference, Los Angeles, Dec 10, 2020.

Thomas Tu, Dominic Yang. “Fault-tolerant Subgraph Matching on Aligned Networks.”

Fourth workshop on Graph Techniques for Adversarial Activity Analytics (GTA3 4.0), IEEE

BIG DATA conference, Los Angeles, Dec 10, 2020.

Jesùs A. De Loera, Thomas A. Hogan, Deborah Oliveros, and Dominic Yang. “Tverberg

Type Theorems with Altered Intersection Patterns (Nerves).” Discrete & Computational

Geometry (2020): 1-22.

Thien Nguyen, Dominic Yang, Yurun Ge, Hao Li, and Andrea Bertozzi. “Applications

of Structural Equivalence to Subgraph Isomorphism on Multichannel Multigraphs.” Third

workshop on Graph Techniques for Adversarial Activity Analytics (GTA3 3.0), IEEE BIG

DATA conference, Los Angeles, Dec 9, 2019.

Benjamin A. Rachunok, Andrea Staid, Jean-Paul Watson, David L. Woodruff and Dominic

Yang. “Stochastic Unit Commitment Performance Considering Monte Carlo Wind Power

Scenarios.” 2018 IEEE International Conference on Probabilistic Methods Applied to Power

Systems (PMAPS), Boise, June 2018.

xxi

CHAPTER 1

Introduction

In this thesis, we will be discussing two distinct topics: efficient algorithms for finding

subgraph isomorphisms and the implementation of surrogate neural network models into

generic optimization problems. The subgraph isomorphism problem, also known as the

subgraph matching problem, refers to the task of discovering a small template graph as a

subgraph of a larger world graph. In the past few decades, there has been a great influx

of giant datasets of graphs representing all kinds of interactions between entities including

communication patterns, social networks, biological structures, and countless other systems.

Subgraph isomorphism checking has emerged as a tool for analyzing these graphs to recognize

certain patterns of interaction where these patterns might be molecules within a larger

protein structure, a criminal ring in a financial transaction network, or segments of an image.

As a result of the myriad applications of finding subgraph isomorphisms, the development

of efficient algorithms for detecting subgraph isomorphisms has become a burgeoning field

of research.

In Chapter 2, we formally define the subgraph matching problem and give an overview

of various different approaches to finding subgraph isomorphisms. We elaborate on a central

tool for subgraph search, the tree search routine, and we identify specific optimizations

that have been made to this approach for enumerating subgraph isomorphisms. We also

discuss other distinct approaches: modeling the subgraph matching problem as a constraint

program and developing graph indexes which can potentially offer a quick way to filter out

problems for which there can be no match. We also briefly discuss the inexact subgraph

1

matching problem, a related problem where we look for subgraphs which approximately

match a template.

In Chapter 3, we analyze the impact of symmetry on standard subgraph search algo-

rithms and assess how we can exploit it to improve algorithm efficiency. The presence of a

high degree of symmetry in a subgraph isomorphism problem can result in a combinatorial

explosion in the count of matchings, and if unaccounted for, can confound standard sub-

graph isomorphism solvers. In this chapter, we characterize different notions of symmetry

and explain how to exploit symmetry to avoid redundant work, accelerate subgraph search,

and compactly represent the set of all subgraph isomorphisms. For these highly symmet-

ric examples, we argue that it is essential to address the impact of symmetry on subgraph

search and demonstrate how to easily adapt standard tree search algorithms to incorporate

symmetry.

In Chapter 4, with inspiration from the field of active learning, we pose the question:

if we could query vertices in our graphs for more information, which queries would help us

the most in finding a subgraph isomorphism. This problem arises in contexts where there

are an abundance of potential subgraph isomorphisms, and we wish to better characterize

our template graph in order to narrow down which of the subgraph isomorphisms we are

actually interested in. We formalize this problem and present a collection of criteria for

determining which vertices to query so as to determine an isomorphism in the least number

of queries. We also demonstrate how we can incorporate symmetry into the query procedure

using techniques developed in Chapter 3.

In Chapter 5, we introduce the second topic of our thesis: implementing surrogate neural

network models into optimization problems. This problem is motivated by the development

of highly computationally intensive models representing complicated physics simulations.

Using these models, we would like to solve optimization problems incorporating their behav-

ior. For example, we consider a model of an automobile engine predicting emissions and we

wish to pose an optimization problem which designs an engine to minimize these emissions.

2

We cannot typically incorporate these models directly into optimization problems owing to

their high computational costs, and as an approximation, we instead consider neural net-

work surrogates trained using the data from this simulation. We formalize three different

approaches of directly incorporating neural networks into optimization problems: via di-

rect embedding, as an integer program, and as a nonlinear program with complementarity

constraints.

3

CHAPTER 2

The Subgraph Isomorphism Problem

Figure 2.1: Example subgraph matching problem. The colors of nodes and edges correspond

to different node labels and channels, respectively. There are four subgraph isomorphisms

corresponding to mapping the template nodes (A,C,B) to each of the four circled sets of

nodes (4,7,5), (7,10,9), (1,6,8), (1,6,2).

2.1 Defining the Problem

The subgraph isomorphism problem (also called the subgraph matching problem) specifies

a small graph (the template) to find as a subgraph within a larger (world) graph. We can

see examples of multiple subgraph isomorphisms present in Figure 2.1 where we wish to find

nodes which match both the adjacency and label structure of our template graph.

Formally, we have two graphs, a template, Gt = (Vt,Et), and a world, Gw = (Vw,Ew). In

this thesis, unless otherwise stated, we assume the graphs under consideration are simple

4

directed graphs so that for a graph G = (V ,E), E ⊂ V × V , and we forbid any multiple edges

or self loops. The concepts discussed in the thesis extend naturally to more complicated

graphs, but for simplicity of exposition, we consider solely simple directed graphs. In this

context, a subgraph isomorphism is a function f ∶ Vt → Vw that is both injective and respects

the adjacency structure of Gt. For the latter property to hold, we require that if (t1, t2) ∈ Et,

then we must have (f(t1), f(t2)) ∈ Et. If this is true, we say that f is edge-preserving. We

define subgraph isomorphism as follows:

Definition 1. Given a template Gt = (Vt,Et) and a world Gw = (Vw,Ew), a map f ∶ VT → VW

is a subgraph isomorphism (SI) (or subgraph matching) if and only if f is injective

and edge-preserving.

If in addition, the vertices and edges in our template and world also have labels, we also

impose the requirement that our mapping f be label-preserving. Formally, if we have a

vertex label function LV and an edge label function LE which maps vertices and edges to a

label set L, then we require that for any vertex v ∈ Vt, LV (v) = LV (f(v)), and for any edge

(u, v) ∈ Et, LE((u, v)) = LE((f(u), f(v))). If there is at least one subgraph isomorphism, we

call the problem satisfiable. We refer to the set of all subgraph isomorphisms between a

template Gt and a world Gw using the notation F(Gt,Gw).

Throughout this thesis, we will use the terms subgraph isomorphism and subgraph match-

ing interchangeably. Also, given Gt and Gw and the problem of finding subgraph isomorphism,

we will call any individual subgraph isomorphism a solution and we call algorithms for find-

ing them solvers. Related terms are subgraph homomorphism or edge-preserving

mapping (EPM) which relaxes the injectivity requirement, and induced subgraph iso-

morphism which also requires the map to be non-edge-preserving ((u, v) ∉ Et if and only if

(f(u), f(v)) ∉ Ew).

Simply finding a subgraph isomorphism is NP-complete [GJ02], suggesting that there is

no algorithm that efficiently finds all subgraph isomorphisms on all graphs. In spite of this,

5

Problem Description

Subgraph Isomorphism Problem (SIP) Determine if a SI exists

Signal Node Set Problem (SNSP) Find all world vertices which

participate in a SI

Minimal Candidate For any v ∈ Vt, find all w ∈ Vw
Sets Problem (MCSP) where there exists f ∈ F(Gt,Gw)

with f(v) = w

Subgraph Isomorphism Count the number of SIs

Counting Problem (SICP)

Subgraph Matching Problem (SMP) Enumerate all SIs

Table 2.1: Various problems involving subgraph isomorphisms (from [MTC21])

significant progress has been made in the development of algorithms for detecting subgraph

isomorphisms [MPT20, HLL13, BCL16, HDM14].

There are a variety of different problems which involve subgraph isomorphisms as cata-

loged in [MTC21]. We reproduce these problems and list them roughly in order of difficulty

in Table 2.1. In this thesis, we will mostly be interested in the last two problems, the sub-

graph isomorphism counting problem (SICP) and the subgraph matching problem (SMP).

We focus on these problems because we are primarily interested in the characterization of

the set of all subgraph isomorphisms, F(Gt,Gw). We reason that for many problems, often

there are an abundance of subgraph isomorphisms so that simply finding a single matching

provides a very incomplete picture of the space of all solutions. If we had a template rep-

resenting a network of transactions in a financial crime, knowing that there are millions of

matches would inform us that our template is perhaps underspecified and we would need

more information to identify the true matching. Had we found only one isomorphism, there

would be an extremely high probability that this would be a false positive, and we may have

6

falsely accused someone of a crime. Having a full characterization of the solution space will

establish a better picture of the problem we desire to solve.

2.1.1 Terminology

We now define some related terms from graph theory which will recur throughout this thesis.

We say that two vertices u and v are adjacent if (u, v) ∈ E or (v, u) ∈ E and that the edge

(u, v) is incident to vertices u and v and no other vertices. The neighborhood of a vertex

v, denoted N(v), is the set of neighbors of v, i.e., the vertices adjacent to v. The degree

of v, deg(v), is the size of the neighborhood of v, ∣N(v)∣. The indegree and outdegree for

v are defined to be the number of other vertices u for which (u, v) is an edge and (v, u) is

an edge, respectively. A leaf is any vertex with degree 1.

A path is a sequence of vertices v1, . . . , vn such that vi is adjacent to vi+1 for all i =

1, . . . , n−1. If v1 = vn, we say that the path is a cycle. A graph is connected if for any two

vertices u and v, there is a path starting at u and ending at v. A tree is a connected graph

which has no cycles. A complete graph is a graph where every two vertices u and v are

adjacent.

We also establish some notation which will be useful for talking about the subgraph

isomorphism problem. We call a world vertex w a candidate for template vertex t if we

believe that there exists a subgraph isomorphism mapping t to w (meaning in an algorithm

we have not determined there is no subgraph isomorphism mapping t to w). The set of all

candidates for t is the candidate set of t and is denoted C(t). To explicitly list specific

subgraph isomorphisms, we use the following notation: If we have template vertices t1, . . . , tn,

and a subgraph isomorphism f , we write the subgraph isomorphism {t1 → f(t1), . . . , tn →

f(tn)}. For example, the subgraph isomorphism in Figure 2.1 which maps A to 4, B to 5,

and C to 7, we will write this as {A→ 4,B → 5,C → 7}.

7

2.1.2 Applications of Subgraph Isomorphism

There are myriad applications of finding subgraph isomorphisms that have emerged over

the years. Some of the most common applications come from pattern recognition where

research problems involving subgraph isomorphism have included handwriting recognition

[SF83], face recognition [WKK97], biomedical imaging [DGG92], and analyzing geospatial

data [WSM14]. More recently, subgraph matching arises as a component in motif discovery

[MGF18, RS14], where frequent subgraphs are uncovered for graph analysis in domains

including social networks and biochemical data.

One very active area for subgraph isomorphism of which the author has been involves

isomorphism algorithm is that of detecting adversarial activity as part of the DARPA-MAA

program [KSG18, BJU18, CPM18, MTC21, SPP19, JHW19]. For these problems, the graphs

of interest are patterns of communication, transactions, and other interactions between peo-

ple and the goal of the program was to detect certain specific templates modeling precise

interaction patterns.

Some novel applications of subgraph isomorphism involve graphs which represent pro-

grams programs and subgraph isomorphism has played a role in malware detection [BMM06],

compilation [MF12], and plagiarism detection [LCH06]. Subgraph isomophism has also found

a place in solving sudoku problems [MTC21] and generating crossword puzzles [Moo21].

Additionally, subgraph matching is relevant in knowledge graph searches, wherein incom-

plete factual statements are completed by querying a knowledge database [ABK07, TMY20].

Networks are present in many applications; hence, the ability to detect interesting structures,

i.e., subgraphs, apparent in the networks bears great importance.

8

Figure 2.2: A simple template graph (left), world graph (center) and representation of a

sample tree search algorithm (right). Each level of the tree on the right corresponds to a

stage where one template vertex is assigned to a candidate world vertex. This green path in

the tree represents the subgraph isomorphism created by matching A to 1, B to 2, and C to

3. The red nodes in the tree indicate assignments which cannot possibly lead to solutions

and may be pruned.

2.2 Approaches for Finding Subgraph Isomorphisms

Since the problem was first established by Ullman in 1976 [Ull76], many different approaches

for subgraph isomorphism have been developed. The surveys [FPV14], [CFS07], and [EDS16]

explain the broad variety of techniques used for finding the isomorphisms in the fifty years

since the problem was formulated. We explore in detail three different classes of subgraph

isomorphism finding algorithms: tree search algorithms, constraint programming approaches,

and graph indexing approaches. We discuss prominent solvers arising from each of these

paradigms.

9

2.2.1 Tree Search Approaches

A tree search approach to subgraph isomorphism represents perhaps the most natural method

to finding subgraph isomorphisms. The general idea behind the method is to gradually build

up an assignment between template vertices and world vertices. We first explain the approach

by example and then present a general purpose algorithm. If we consider the graphs in Figure

2.2, we may attempt to find a solution by mapping template vertex A to world vertex 1. We

then proceed in turn by mapping vertices B to 2 and C to 3 out of all the possible candidate

world vertices 1, 2, 3, and 4, and we have found one solution {A → 1,B → 2,C → 3}. If we

want to find another solution, we can unmap C to 3 and instead map C to 4 to produce

yet another solution. We can represent this search procedure using a tree structure where

each level of the tree corresponds to a stage where a particular template vertex is assigned

to a world vertex. The process of finding all subgraph isomorphisms by building up partial

mappings can be represented as a traversal of this search tree.

Navigating the entire search tree however is computationally intractable given there are

exponentially many nodes in the tree. To reduce the amount of work done in the search, it is

beneficial to avoid any assignment of template vertex to world vertex which we know cannot

lead to a subgraph matching. For example, once we map A to 1, we cannot map B to 1 as this

would violate the injectivity requirement of subgraph isomorphisms. In addition, we cannot

map A to any of the vertices 2, 3, or 4 as the degree of these world vertices is smaller than

that of A so that there is no way the mapping can satisfy the edge-preserving requirement.

This process of ruling out candidate world vertices for a given template vertex is known as

filtering or pruning and is essential for efficient discovery of subgraph isomorphisms.

Other methods of optimizing the search include intelligently choosing which template

vertices we assign first. For example, many tree search algorithms [CFS04b, RS14] prioritize

mapping high degree vertices first as this typically enables the filtering of more candidate

vertices out which minimizes the size of the search space.

10

A skeleton of a basic tree search algorithm is presented in Algorithm 1. This is naturally

represented as a recursive routine and the body of the function represents how we would

go through the process of finding an assignment for one template vertex. We start with

some representation of a partial match as well as a collection of the candidate world vertices

for every given template vertex. In lines 2-4, if we have matched all template vertices, we

report a solution and are done. In line 5, we apply filters to eliminate as many candidates as

possible to shrink the search space. In lines 6 and 7 we pick a template vertex and generate

possible candidate world vertices for the template vertex. Then in lines 8-11, we sequentially

try mapping our template vertex to each candidate world vertex, explore the remainder of

the search tree with this assignment, and then undoing this match once this search has been

completed. In this fashion, we can search the entire tree.

Algorithm 1 Generic routine for a tree search

1: function TreeSearch(Template Gt, World Gw,partial match, cands)

2: if MatchComplete(partial match) then

3: ReportMatch(partial match)

4: return

5: ApplyFilters(Gt, Gw, partial match, cands)

6: Let u = GetNextTemplateVertex(Gt)

7: Let ws = GenerateWorldVertices(Gw, u, cands)

8: for v in ws do

9: partial match.match(u, v)

10: TreeSearch(Gt, Gw, partial match, cands)

11: partial match.unmatch(u, v)

12: return

We now give an overview of the different subgraph isomorphism algorithms that have

emerged over the years which employ a tree search. The first significant algorithm for finding

subgraph isomorphisms proposed by Ullmann in 1976 [Ull76] was a tree search algorithm.

11

This algorithm implemented this basic recursive algorithm along with a simple filtering rule:

if an unmatched template vertex t′ is adjacent to a template vertex t which is mapped to

world vertex w, its candidates in the world must be adjacent to w. The widely used VF2

algorithm [CFS04b] improves on this by imposing a match ordering that favors template

vertices adjacent to already-matched template vertices and also adds filtering rules based

on the degrees of vertices. VF2+ [CFV15], VF2++ [JM18], and VF3 [CFS17] are more

recent expansions on the VF2 algorithm. The RI algorithm [BGP13] is another tree search

approach which proposes a static order for how template vertices are assigned by prioritizing

the dense core of the template graph.

Other algorithms which are built on this paradigm include QuickSI [SZL08], GraphQL

[HS08], and SPath [ZH10]. QuickSI derives its order for matching template vertices from

spanning tree representations of the template and world which have been flattened into

arrays, and it uses a modification of the classical Ullman algorithm to implement the tree

search. GraphQL develops a query language where a graph is composed of various operations

joining nodes together and performs matching in an analogous fashion to database queries.

The SPath algorithm establishes a “neighborhood signature” composed of neighborhoods

of vertices at a fixed distance from a node using this signature as a tool for filtering out

matches. These methods and more are motivated by the creation of large databases of graphs

and these algorithms are components of these systems. We talk about graph databases and

graph indexing methods for databases in Section 2.2.3.

Some approaches minimize the amount of work done in the tree search by exploiting

symmetry of the template and world graphs to avoid redundant work done in the tree

search. These techniques rely on the realization that if we have one solution, and we are

aware of symmetry in the solution space, we can use this knowledge to produce additional

solutions without needing to navigate the full search tree. The TurboISO algorithm [HLL13]

established neighborhood equivalence classes which are groups of template vertices which

can be interchanged in a subgraph isomorphism to produce a new subgraph isomorphism.

12

The BoostISO algorithm [RW15] applies a similar concept to the world graph. Symmetry as

a tool for greatly accelerating the speed of subgraph search is explored in depth in Chapter

3.

The latest algorithms for subgraph isomorphism using tree search to utilize more infor-

mation about both template and world to optimize search order. The CFL-match algorithm

[BCL16] provides a decomposition of the template into a dense core, a forest of trees and

leaves alongside a data structure to store candidates in a spanning tree of a template. The

DAF algorithm [HKG19] improves upon this approach using a directed acyclic subgraph of

the template to aid in vertex ordering as well as a more complete data structure for storing

candidates.

2.2.2 Constraint Programming

In an approach inspired by artificial intelligence, several researchers have posed the problem

of finding subgraph isomorphisms as a constraint satisfaction problem (also known as a

constraint program (CP)). Constraint programs are satisfaction problems where there is a

set of variables X = {x1, . . . , xn}, a set of domains for each variable D = {D1, . . . ,Dn} which

dictate values each variable may take, and a set of constraints C = {C1, . . . ,Cm} which

further restrict the allowed instantiation of variables. The domains D are directly analogous

to the candidate sets discussed in tree search approaches. The goal of any constraint program

is to find a solution, i.e., a value vi ∈ Di for each variable xi which satisfies all constraints.

Formally, each constraint is defined for a subset of variables xi1 , xi2 , . . . , xik and specifies

which combinations of values from Di1 ×⋯×Dik are allowed, either explicitly as a list or as

given by a general rule. The number of variables, k, a constraint C restricts is called the

arity of C. Constraints with k = 1 and k = 2 are called unary and binary, respectively.

A standard way to frame the subgraph isomorphism problem as a constraint program

involves introducing one variable xv for each vertex v ∈ Vt whose corresponding domain Dv

is given by the set of world vertices Vw. Two different sets of constraints are produced to

13

enforce both the injectivity and edge-preserving conditions for subgraph isomorphisms. To

impose that the mapping is injective, we have the following set of binary constraints:

∀u, v ∈ Vt, u ≠ v Ô⇒ xu ≠ xv. (2.1)

This constraint can be generalized to k variables using what is called an alldifferent constraint

which imposes that the assignments of each of these k variables is to k unique values. To

impose that the mapping is edge-preserving, we have the associated set of binary constraints:

∀u, v ∈ Vt, (u, v) ∈ Et Ô⇒ (xu, xv) ∈ Ew. (2.2)

If our graphs are labelled, we can impose the following set of unary constraints to ensure

that the mapping is label-preserving:

∀u ∈ Vt,L(xu) = L(u). (2.3)

Approaches for solving general constraint programs revolve around a technique called

constraint propagation which aims to reduce the size of the domains of each variable to

values which can participate in a solution. We say that a variable x is node consistent

if each value in its domain Dx satisfies all unary constraints. In the context of subgraph

isomorphism, one such constraint might be that template nodes are mapped to world nodes

of the same label, and we would say a variable for a template node v is node consistent if its

domain consisted solely of nodes of the same label. A related notion is arc consistency which

is defined for binary constraints. We say a variable x1 is arc consistent with respect to x2

if for each binary constraint C defined for variables x1 and x2, for any value v1 ∈ Dx1 , there

is a corresponding value v2 ∈Dx2 which will satisfy constraint C. More complicated forms of

consistency include path consistency which require the consistent instantiation of sequences

of variables. Algorithms for solving constraint programs generally proceed by a tree search

exploring possible instantiations of each variable (in a very similar fashion as described in

the prior section) and then enforce these notions of consistency (using for example, AC-3

algorithm for arc consistency [Mac77]) at each step to reduce the number of candidates to

14

try in the tree search. Highly efficient and general-purpose solvers (e.g., GeCode [SS04] or

IBM’s ILOG CP optimizer [LRS18]) have been created for constraint programs given their

very general form and broad applicability to a wide variety of problems.

The first approach which invoked the constraint programming paradigm was given by

McGregor [McG79] not long after Ullman’s original approach. In this work, McGregor di-

rectly integrated these methods of constraint propagation for arc and path consistency into a

backtracking tree search. He later expands this approach to the maximum common subgraph

problem in [McG79]. Since then, the research into subgraph isomorphism algorithms in the

constraint programming space has focused on the development of stronger valid constraints

for the subgraph isomorphism problem which in turn enables better filters for a quicker

traversal of the search tree.

Régin [Reg94] devised a method to impose a generalized form of arc consistency for the

alldifferent constraint on k variables. This was followed by the LV algorithm [LV02] which

introduced a constraint based on the size of the neighborhoods of template vertices. The ILF

algorithm [ZDS10] proposed a method of strengthening constraints on individual vertices to

constraints on neighborhoods of these vertices. Solnon [Sol10], in the LAD algorithm, intro-

duced constraints which require that an injective mapping exists from the neighborhood of

any template vertex to the neighborhood of a candidate world vertex. The SND algorithm

[ALS14] adds a constraint based on the number of k-length paths through a given vertex.

Aspects from the LAD and SND algorithms were then combined to produce the PathLAD

algorithm [KMS16]. The latest algorithm to emerge in this paradigm is the Glasgow algo-

rithm [MP15, MPT20] which adds constraints defined for supplemental graphs as well as

presents a novel method for parallelizing the tree search.

As a whole, constraint programming approaches for subgraph isomorphism bear a strong

similarity to the methods presented in Section 2.2.1 in that the methods involve ultimately a

tree search and constraint propagation effectively amounts to pruning branches which cannot

possibly lead to solutions. What distinguishes these approaches from standard tree search

15

methods like VF2 is how they describe the problem as less a procedure to attain match-

ing subgraphs via a tree search and more a declarative description of the problem as a set

of variables with corresponding domains of which any solution must satisfy a set of con-

straints. Posed in this manner, even if the resulting algorithm ultimately is a standard tree

search, these works can make use of the numerous methods from the constraint programming

literature.

2.2.3 Indexing Approaches

The indexing approach to finding subgraph isomorphisms was developed alongside the cre-

ation of large databases of graphs and the desire to determine which of these graphs contain a

particular template graph of interest. Put formally, given a graph database of world graphs,

D = {G1,G2, . . . ,Gn} and a template graph Gt (also commonly called a query), the goal is

to produce the subset of graphs in D which contain Gt as a subgraph. Indexing approaches

have also been commonly used in the setting of having one very large world graph where

building an index for this large graph may speed up the subgraph matching process for a

collection of small template graphs significantly [ZLY09].

Any of the algorithms mentioned thus far would be suitable for this task, but a central

assumption behind these approaches is that applying a tree search approach to enumerating

the subgraph isomorphisms for each graph in D would be too costly. Instead, an index for

each of the graphs in the database is created which would enable quick filtering out of graphs

which world graphs which cannot contain Gt. For the remaining graphs in D, a more costly

tree search algorithm (like VF2) is then applied to verify which world graphs do contain Gt.

This two-step process has led this approach to be called the filter-and-verify algorithm.

A very simple example of one such index for a collection of labeled graphs may simply be

a count of the number of vertices with a given label. Then for any template graph, we can

similarly count the number of vertices with this label and immediately rule out any world

graph which do not have any vertices of this kind. Graph indexes vary in complexity from

16

simple easy-to-compute quantities as these to counts of more complicated graph substruc-

tures. The strength of any given index is measured by how many world graphs are ruled out

by the index for a given template graph. There is a natural trade off between how strong

an index is and how long an index takes to construct. Let Cq be the set of graphs in D

which remain after using index to filter out graphs. If we denote the time for constructing

the graph index by Tindex, the average time for subgraph isomorphism checking as Tiso, we

can represent the total time for finding which graphs in the database contain Gt as

T = Tindex + ∣Cq ∣Tiso. (2.4)

This approximation for computation time was first presented in [YYH04]. Proponents of

indexing approaches reason that Tiso is the most costly operation, so a very expensive pre-

processing step with a large Tindex is justifiable if the resulting index can filter out a large

number of graphs so that ∣Cq ∣ is relatively small.

We now present a variety of the different methods for creating the indexes which are

used in graph databases. One of the first algorithms, GraphGrep [GS02], uses counts of the

number of paths with specific vertex labels as an index and develops a query method by

which all subgraph isomorphisms may be found. The algorithm gIndex [YYH04] proposes a

very strong index given by a collection of frequent subgraphs of the database graphs with

rules to ensure the frequent subgraphs are not redundant and are discriminative (meaning

the presence of such a subgraph in a template would rule out many world graphs). In an

expansion on gIndex, the authors of FG-index [CKN07] attempt to reduce the computa-

tion and memory requirements by instead only indexing what are called δ-tolerance closed

frequent subgraphs where δ is a parameter which is used to tune the number of frequent

subgraphs stored so as to fit into memory.

The authors of the Tree+∆ algorithm [ZYY07] proposed a slightly weaker index composed

of frequent subtrees arguing that this can capture the diversity of subgraphs while not being

as costly to compute. The Treepi algorithm [ZHY06] also indexes based on frequent trees

17

while also providing a novel method for finding subgraph isomorphisms in conjunction with

this index based on distances between the centers of subtrees.

In a novel approach, the creators of the Closure-Tree algorithm [HS06] organize the fre-

quent subgraphs indexed in a tree where a substructure G1 is a descendant of G2 if one is

a subgraph of the other. They compute “pseudo subgraph isomorphisms” which are ap-

proximate matches to save on computation time. The GADDI indexing algorithm [ZLY09]

defines an index composed of the intersection of neighborhoods of close vertices as its fre-

quent substructures which it also uses in its own subgraph isomorphism algorithm. The

Gstring algorithm [JWP06] uses as an index, a decomposition of the world graphs into basic

substructures like paths, cycles, and stars.

The Lindex algorithm [YM13] organize the frequent subgraphs in a lattice structured

index with graphs being adjacent if one is a subgraph of the other. In this fashion, they aim

to be able to quickly find the maximal common subgraph or minimal common supergraph

between two graphs. GraphGrepSX [BFG10] is an extension of GraphGrep in that it also

records paths of a certain length, but it stores them in a suffix tree for easy access. Then

in the subgraph search, maximal paths of a template are compared to the index to filter

out graphs based on frequency of these paths. CT-index [KKM11] creates an exhaustive

index of paths, trees, and cycles up to a certain size and uses an adaptation of VF2 to

perform verification. Grapes [GBB13] is an algorithm which uses a path-based index with

additional location information about the paths as well as a design that lends itself well to

the parallelization of a subgraph search.

Recent work suggests that the computation time T in (2.4) may be misleading as the

world graphs filtered out may be easier subgraph isomorphism problems leaving the hard

and costly problems to still be solved in the verification step. The authors of [MPS18] argue

that a well-written constraint programming approach should be able to quickly solve these

easy problems at low cost and question the need for the costly indexing step.

18

2.3 Inexact Subgraph Matching

One problem closely related to the subgraph isomorphism problem is the inexact subgraph

matching problem. This problem relaxes the edge-preserving and label-preserving condi-

tions of exact subgraph isomorphism and instead introduces a penalty for edge and label

mismatches. The goal then is to find a mapping f ∶ Vt → Vw which minimizes this penalty

which will be a mapping which should closely approximate a subgraph isomorphism. The

exact form of the penalty varies across applications and there are a myriad of approaches

many taking inspiration from the exact matching problem. An example model for the cost

for a mapping f may involve a cost function imposing a penalty for failing to preserve edges,

for mismatching node labels, and for mismatching edge labels. If cE, cLV
and cLE

represent

these three functions, respectively, a possible cost for a given mapping f ∶ Vt → Vw may

c(f) = ∑
e∈Et,f(e)∉Ew

cE(e) + ∑
v∈Vt

cLV
(LV (v),LV (f(v))) + ∑

e∈Et
cLE
(LE(e),LE(f(e))). (2.5)

Many techniques used for finding subgraph isomorphisms can be applied to the inexact

subgraph matching problem. The concepts of tree search and filtering can be adapted instead

to search for matchings with minimal cost and prune branches in the search tree which can

only hold solutions above a certain threshold. Two different approaches [TMY20, KX19] take

this branch-and-bound style of approach. These algorithms produce an approximation for

the minimal cost of any mapping extending a partial matching by solving a linear assignment

problem derived from the cost function. With this bound, they can filter out candidates that

lead to mappings of high cost. The algorithm presented in [JHW19] attempts to minimize

this cost function using the A∗ algorithm.

In the event that our template and world each have n vertices and we only consider

missing edges and impose a constant cost for each edge present in the template and not in

the world, we can frame this problem in a simpler fashion. In this context, mappings can

be represented as permutations of the template vertices. Let A and B be the adjacency

19

matrices of the template and world graph respectively. Then the problem is to minimize

c(P) = ∥AP − PB∥2F (2.6)

over all permutation matrices P , where ∥ ⋅ ∥F is the Frobenius norm of a matrix. This

problem has been studied in great depth (see [CFS04a] for a survey), and typical approaches

[VCL15] involve minimizing c over the convex hull of permutation matrices, the set of doubly

stochastic matrices. This approach can be extended to graphs of differing sizes by padding

the template graph with isolated vertices so that the two graphs are of the same size. This

is the approach taken in [SPP19] where the authors analyze different techniques for padding

and then apply [VCL15] to find a solution.

A different model for the cost of the of matching a template graph to a subgraph of a

world graph is the graph edit distance, which is a measure of how many operations would

be required to transform one graph into another. Certain graph operations are allowed

(inserting or deleting vertices or edges, and changing labels), and each operation has an

associated cost with it. The graph edit distance is then given by cost of the sequence of

operations which transform the one graph into another with minimal cost. Computing this

distance is known to be NP-hard [GJ79].

Several graph indexing approaches have been developed where the indexes are used to

immediately filter out graphs which have a prohibitively high graph edit distance. Similar

to indexing approaches for the exact subgraph isomorphism problem, these indexes consider

frequent substructures, in this context called q-grams in analogy to q-grams used for approxi-

mate string matching [Ukk92]. Frequencies of structures which include subtrees of a distance

k from each node [WWY10], paths of certain length [ZXL12], and star graphs [WDT12] have

been used to derive lower bounds on graph edit distance to be used as a filter.

20

CHAPTER 3

Structural Equivalence in Subgraph Matching1

3.1 Introduction

In this chapter, we concern ourselves with graph symmetry and its impact on the problem of

finding subgraph isomorphisms. As an example of symmetry, observe the template graph in

Figure 3.1 which is from a system of biochemical reactions [GFM14] and note that each pair

of colored vertices is interchangeable in any subgraph isomorphism as they have the exact

same neighbors. As there are 11 such pairs in the graph, for any found isomorphism, we can

generate 211 − 1 = 2047 more solutions simply by interchanging vertices. By avoiding redun-

dant solutions in a subgraph search, we can significantly reduce the search time (potentially

by a factor of 2048 or more). This simple form of symmetry where vertices have the exact

same set of neighbors is known as structural equivalence.

Broader notions of equivalence can be used to further accelerate search. In Figure 3.2,

the yellow and blue vertices are each individually structurally equivalent. However, if we

proceed by matching A to 1, then we can complete an isomorphism by matching B and C

to any of 2, 3, 4, or 5. The presence of additional edges incident to 4 and 5 hides that

4 and 5 may be swapped out for 2 or 3. By identifying when these additional edges may

be ignored, we can again dramatically reduce the amount of work. This second notion of

equivalence we will refer to as candidate equivalence. In the body of this chapter, we

will formally define these terms and demonstrate how they can be applied in a tree search

1This chapter is adapted from [YGN23]

21

Figure 3.1: Graph representing a system of biochemical reactions from [GFM14]. Non-gray

vertices of the same color are structurally equivalent.

algorithm. These two notions of equivalence can be broadly classified into two categories:

static equivalence, which describes equivalence apparent from the problem description,

and dynamic equivalence, which describes equivalence uncovered in the search process.

Structural equivalence falls into the former category while candidate equivalence belongs to

the latter. We note that these forms of equivalence are dependent on the structure of the

graphs and cannot be used should we interchange one template graph for another.

Our work identifies and characterizes the structure of redundancies due to symmetry in

the matching problem. We exploit these symmetries to produce a compressed version of the

solution space which saves space as well as aids in understanding the problem’s solutions.

In the literature, there has been significant work done to exploit symmetry to compress

graphs and count isomorphisms. TurboIso [HLL13] exploits basic symmetry in the template

graph and optimizes the matching order based on a selection of candidate regions and ex-

ploration within those regions. BoostIso [RW15] exploits symmetry in the world graph and

presents a method by which other tree-search-based approaches are accelerated by using

their methodology. The ISMA algorithm [DMF13] exploits basic bilateral and rotational

22

Figure 3.2: Example subgraph isomorphism problem with template on the left and world on

the right. Vertices of the same color are structurally equivalent.

symmetry of the template to boost subgraph search and this work was extended into the IS-

MAGS algorithm [HDM14] to incorporate general automorphic symmetries of the template

graph.

3.1.1 Chapter Outline

In this chapter, we demonstrate how tree search-oriented approaches can be accelerated by

exploiting both static forms of equivalence, apparent at the start of search, as well as dynamic

forms of equivalence, which are uncovered as the search proceeds. In Section 3.2, we formally

define structural equivalence and how to incorporate it into a subgraph search. In Section

3.3, we introduce candidate equivalence to demonstrate how to expose not immediately

apparent equivalences during a subgraph search. In Section 3.4, we introduce node cover

equivalence, an alternate form of equivalence which is easy to calculate, and unify all the

notions of equivalence into a hierarchy. In Section 3.5, we adapt the state-of-the-art solver

Glasgow [MPT20] to incorporate equivalences and apply it to a set of benchmarks to assess

the performance of each of the equivalence levels2. In Section 3.6, we demonstrate how to

succinctly represent and visualize large classes of solution by incorporating equivalence. In

Section 3.7, we extend our algorithm to be able to handle multiplex multigraphs and show

2Our implementation of our algorithms can be found at the following repository: https://github.com/
domyang/glasgow-subgraph-solver.

23

https://github.com/domyang/glasgow-subgraph-solver.
https://github.com/domyang/glasgow-subgraph-solver.

our algorithm’s success in fully mapping out the solution space on a variety of these more

structured networks.

This chapter takes inspiration for the general subgraph tree search structure and shares

many of the same test cases on multichannel networks as [MTC21]. In a previous work

[NYG19], we introduced a simpler notion of candidate equivalence and candidate structure,

and tested it on a small selection of multichannel networks. From these prior works, we

observed the high combinatorial complexity of the solution spaces necessitating an approach

which can exploit symmetry to compress the solution space and accelerate search. In this

work, we expand on both papers by introducing several new notions of equivalence, providing

a rigorous foundation for their efficacy in subgraph search, establishing a compact represen-

tation of the solution space, and empirically assessing these methods on a broad collection

of both real and synthetic data sets.

3.2 Structural Equivalence

Structural equivalence is a simple property of networks which, if present, can be exploited

to greatly speed up subgraph search. Intuitively, two vertices are structurally equivalent to

each other if they can be “swapped” without changing the graph structure. This type of

equivalence often occurs in leaves that are both adjacent to the same vertex.

Definition 2. In a graph G = (V ,E), we say that two vertices v,w are structurally equiv-

alent (denoted v ∼s w) if:

1. For u ∈ V , u ≠ v,w,

(a) (u, v) ∈ E ⇔ (u,w) ∈ E

(b) (v, u) ∈ E ⇔ (w,u) ∈ E

2. (v,w) ∈ E ⇔ (w, v) ∈ E

24

This definition implies that the neighbors of structurally equivalent vertices (not including

the vertices themselves) must coincide. The following proposition verifies that this is an

equivalence relation. If the graphs are labeled, then in addition we require that LV (v) =

LV (w) and that the edge labels of each pair of edges above agree.

Proposition 3. ∼s is an equivalence relation.

Proof. Reflexivity and symmetry are both obvious, so we just need to check transitivity.

This is immediate by seeing for u ∼s v and v ∼s w, it is clear that any z that is an in-neighbor

or out-neighbor for u, is one for v and therefore is one for w. Similarly, if (u,w) ∈ E , then

(v,w) ∈ E implying (w, v) ∈ E and therefore (w,u) ∈ E . Hence this relation is transitive.

Using this relation, we can partition the vertices of any graph into structural equivalence

classes, and interchange members of each class without changing the essential structure of

the graph. Checking for equivalence between two vertices simply amounts to comparing

neighbors in an O(∣V ∣) operation in the worst case, but is generally faster for sparse graphs.

Computing the classes themselves can be found by pairwise comparison of vertices resulting

in O(∣V ∣3) operations in the worst case. Algorithm 2 demonstrates how one could implement

a breadth first search algorithm to take advantage of the sparsity of a graph to accelerate the

computation. Since for each vertex v visited, it takes O(deg(v)2) to partition the neighbors

of v into equivalence classes, and so in the worst case the algorithm takes O(∑v deg(v)2) ≈

O(∣V ∣deg(v)2) where deg(v)2 denotes the average over deg(v)2 for all v. For sparse graphs,

deg(v)≪ ∣V ∣, so this will be significantly faster than a naive pairwise check.

3.2.1 Interchangeability and Isomorphism Counting

We now show that given any subgraph isomorphism, we can interchange any two vertices in

the template graph and still retain a subgraph isomorphism. Before we do this, we formally

define what we mean by interchangeability.

25

Algorithm 2 Routine for computing equivalence classes

1: function FindEqClasses(G = (V ,E))

2: Let Q be a queue

3: Pick first vertex v to put in Q

4: Let EQ = {}

5: Let visited = {}

6: while Q not empty do

7: Dequeue v from Q

8: Add v to visited

9: Partition N(v) into equivalence classes, to EQ

10: Add representatives from neighbor classes to Q

11: Check if first vertex v is in any class and add if so

12: Else add it to its own class

13: return EQ

Definition 4. Two template graph vertices v,w ∈ Vt are interchangeable if for all subgraph

isomorphisms f ∶ Vt → Vw, the mapping g given by interchanging v and w:

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(w) u = v

f(v) u = w

f(u) otherwise

is also a subgraph isomorphism.

Two world graph vertices v′,w′ ∈ Vw are interchangeable if for all subgraph isomor-

phisms f , if both v′,w′ are in the image of f with preimages v,w, the mapping g:

g(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′ u = v

v′ u = w

f(u) otherwise

26

is an isomorphism. If only one, say v′, is in the image, then h given by

h(u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w′ u = v

f(u) otherwise

is also an isomorphism.

To handle more complicated notions of interchangeability, we will qualify this defini-

tion later by restricting the interchangeability only to certain subsets of isomorphisms. The

proposition affirming template vertex interchangeability under template structural equiva-

lence follows:

Proposition 5. Given graphs Gt = (Vt,Et), Gw = (Vw,Ew), if v,w ∈ Vt are structurally

equivalent, then they are interchangeable in any subgraph isomorphism.

Proof. Obviously g is still injective, so we need only check that it is edge-preserving. Suppose

(x, y) ∈ Et. We consider multiple cases. If neither x, y are v or w, then (g(x), g(y)) =

(f(x), f(y)) ∈ Ew as f is a subgraph isomorphism. If x = v and y = w, then (g(x), g(y)) =

(f(w), f(v)). Now as v ∼s w and (v,w) ∈ Et, so is (w, v) and using that f is a subgraph

isomorphism, (f(w), f(v)) ∈ Ew. Now suppose one of x, y is one of v,w. Without loss

of generality let x = v. Then (g(x), g(y)) = (f(w), f(y)). As v ∼s w, y is also an out-

neighbor of w, and so (g(x), g(y)) = (f(w), f(y)) ∈ Ew. This verifies that g is a subgraph

isomorphism.

Hence, interchanging the images of two template vertices preserves subgraph isomor-

phism. As transpositions generate the full set of permutations, we have the following result:

Proposition 6. If we can partition Vt = C1, . . . ,Cn into structural equivalence classes, and

there exists at least one subgraph isomorphism, then there are at least

n

∏
i=1
∣Ci∣!

subgraph isomorphisms.

27

We can also apply this structural equivalence to the world graph to demonstrate a similar

kind of interchangeability.

Proposition 7. If v′,w′ ∈ Vw are structurally equivalent, then in any subgraph isomorphism

f , they are interchangeable.

Proof. The proofs of this proposition for the two types of interchanges in Definition 4 are

very similar, so we just prove the first one. g is obviously injective, so we just check that it is

edge-preserving. Given (x, y) ∈ Et, we consider three cases. In the first case, neither of x and

y are v or w, {x, y} ∩ {v,w} = ∅. Then (g(x), g(y)) = (f(x), f(y)) ∈ Ew. In the second case,

one of x and y equals one of v or w; either x ∈ {v,w} or y ∈ {v,w}. Without loss of generality,

we take x = v, then (g(x), g(y)) = (w′, f(y)). As w′ ∼s v′ and (f(x), f(y)) = (v′, f(y)) ∈ Ew,

we have (w′, f(y)) ∈ Ew. For the final case, {x, y} = {v,w}. Without loss of generality we take

x = v, y = w. Then (g(x), g(y)) = (w′, v′) = (f(y), f(x)). As (f(v), f(w)) = (v′,w′) ∈ Ew, the

reverse edge (w′, v′) ∈ Ew since v′ ∼s w′. This completes the proof.

If we apply both template and world structural equivalence to our problem, it is natural

to ask how many solutions we can now generate from a single solution. This is given by the

following proposition:

Proposition 8. Let f ∶ Vt → Vw be a subgraph isomorphism. Suppose we partition the

template graph Vt = ⋃n
i=1Ci and the world graph Vw = ⋃m

j=1Dj into structural equivalence

classes. Let Ci,j = Ci∩f−1(Dj) represent the set of template vertices in Ci that map to world

vertices in the equivalence class Dj. Then there are

n

∏
i=1
∣Ci∣!

m

∏
j=1

n

∏
i=1
(∣Dj ∣ −∑i−1

k=1 ∣Ck,j ∣
∣Ci,j ∣

)

isomorphisms generated by interchanging equivalent template vertices or world vertices using

Propositions 5 and 7.

Proof. As before, the first factor comes from all permutations on the equivalence classes.

Once we fix a permutation, from each world equivalence class Dj, we need to choose ∣Ci,j ∣

28

elements to be the values for the elements of Ci,j. For C1,j, we have (∣Dj ∣
∣C1,j ∣) elements, for C2,j,

we have (∣Dj ∣−∣C1,j ∣
∣C2,j ∣) as we have already used ∣C1,j ∣ elements, and so on. Taking the product

over j gives the second factor.

3.2.2 Application to Tree Search

We now demonstrate how to adapt any tree-search algorithm to incorporate equivalence. A

tree-search algorithm proceeds by constructing a partial matching of template vertices to

world vertices, at each step extending the matching by assigning the next template vertex to

one of its candidate world vertices. If at any point, the match cannot be extended (due to a

contradiction or finding a complete matching), the last assigned template vertex is reassigned

to the next candidate vertex. Each possible assignment of template vertex to world vertex

corresponds to a node in the tree, and a path from the root of the tree to a leaf corresponds

to a full mapping of vertices.

Algorithm 3 demonstrates how to incorporate equivalence into the tree search given

by Algorithm 1. Template equivalence can significantly accelerate the tree search. From

Proposition 5 we can swap the assignments of equivalent template vertices to find another

isomorphism. If we have a partial match, template vertices u1 ∼s u2, and we have just

considered candidate w for u1, we can ignore branches where u2 is mapped to w since we can

generate those isomorphisms by taking one where u1 is mapped to w and swapping. Lines

16 and 17 demonstrate how we can incorporate this idea into a tree search (without these,

we would have a standard tree search).

To incorporate world equivalence into the search, we modify the search so that we only

assign any template vertex to one representative of an equivalence class in the search. This

can be done by modifying GenerateWorldVertices to pick only one representative vertex of

each equivalence class out of the candidates for the current template vertex.

Note that after performing the tree search, the solutions found will represent classes of

29

Algorithm 3 Tree Search Adapted For Equivalence

1: function Tree Search(Template Gt, World Gw, partial match, cands)

2: if MatchComplete(partial match) then

3: ReportMatch(partial match)

4: return

5: ApplyFilters(Gt, Gw, partial match, cands)

6: Let u = GetNextTemplateVertex(Gt)

7: Let ws = GenerateWorldVertices(Gw, u, cands)

8: if Using World Equivalence then

9: RecomputeEquivalence(Gt, Gw, partial match, cands)

10: Let ws = GenerateWorldVertices(Gw, u, cands, eq)

11: for v in ws do

12: partial match.match(u, v)

13: TreeSearch(Gt, Gw, partial match, cands)

14: partial match.unmatch(u, v)

15: if Using Template Equivalence then

16: for unmatched u′ ∼ u do

17: Set v as not a candidate for u′

18: if Using World Equivalence then

19: RestoreEquivalence(eq)

20: return

30

solutions that can be generated by swapping. Some bookkeeping is needed to determine what

assignments can be swapped to count the number of distinct solutions. We call the solutions

that are actually found (and are not produced by interchanging vertices) representative

solutions. The set of solutions that can be generated by interchanging equivalent vertices

for a given representative solution is a solution class. The ability to represent large solution

classes with a sparse set of solutions is what allows us to compactly describe massive solution

spaces.

3.3 Candidate Equivalence

The equivalence discussed in the prior section is a static form of equivalence, only taking into

account information provided at the start of the subgraph search. However, as a subgraph

search proceeds, we may be able to discard additional vertices and edges based on information

derived from the assignments already made. For example, in Figure 3.2, after assigning A to

1, we may discard vertices 6 and 7 and edge (4, 5), as it is impossible for them be included

in a match if A and 1 are matched. After these vertices are discarded, we discover that with

respect to the matches already made, 2, 3, 4, and 5 are effectively interchangeable. In order

to make use of this dynamic form of equivalence, we need to introduce an auxiliary structure

that takes into account our knowledge of the candidates of each vertex u, C(u).

Definition 9. Given template graph Gt = (Vt,Et), world graph Gw = (Vw,Ew), and candidate

sets C(u) ⊂ Vt for each u ∈ Vt, the candidate structure is the directed graph GC = (VC ,EC)

where the vertices VC = {(u, c) ∶ u ∈ Vt, c ∈ Vw} are template vertex-candidate pairs and

((u1, c1), (u2, c2)) ∈ EC if and only if (u1, u2) ∈ Et and (c1, c2) ∈ Ew.

The candidate structure represents both the knowledge of candidates for each template

vertex and how template adjacency interplays with world adjacency. It removes extraneous

information to expose equivalences not apparent when looking at the original graphs. We

note that this data structure is similar to the compact path index (CPI) introduced in

31

Figure 3.3: Candidate structure for the graphs in Figure 3.2 before and after assigning

template vertex A to world vertex 1.

[BCL16]. However, the CPI is only defined for a given rooted spanning tree of the template

graph whereas our candidate structure takes into consideration all edges of the template

graph. For our toy example in Figure 3.2, if we assume that the candidate sets are reduced

to the minimal candidate sets so that C(A) = {1,4} and C(B) = {2,3,4,5,6,7}. Then the

candidate structure for these graphs is as shown on the left in Figure 3.3. At this point,

there is no apparent equivalence to exploit from the candidate structure. However once we

decide to map vertex A to 1, the candidate structure reduces to the right graph in Figure 3.3.

It is visually clear that vertices 2, 3, 4, and 5 are structurally equivalent as candidates of B

and C. Similarly, if we assigned A to 4, vertices 5, 6, and 7 will be structurally equivalent in

the candidate structure. We want to determine under which circumstances this will ensure

interchangeability. We introduce the following definition:

Definition 10. Given a candidate structure GC = (VC ,EC), c1, c2 ∈ Vw, we say that c1 is

candidate equivalent to c2 with respect to u ∈ Vt, denoted c1 ∼c,u c2, if and only if c1, c2 ∉

C(u) or c1, c2 ∈ C(u) and (c1, u) ∼s (c2, u).

32

It is easy to show that if the candidate sets are complete (for each template vertex u, if

there is a matching which maps u to world vertex v, then v ∈ C(u)), then if c1 ∼s c2, then

c1 ∼c,u c2 for all template vertices u.

The exact criteria for interchangeability is a little more complicated. For example, in

Figure 3.2, 4 appears as a candidate for both A and for B and C, so that we cannot simply

swap 4 with vertices that are candidate equivalent to 4 with respect to B. To address a more

complex notion of interchangeability, we introduce some terms. We say that a subgraph

isomorphism f is derived from a candidate structure GC if for any v ∈ Vt, (v, f(v)) ∈ VC (i.e.,

f(v) is a candidate of v). We say that world vertices w1,w2 are GC-interchangeable if for

all isomorphisms derived from the candidate structure GC , w1 and w2 can be interchanged

and preserve isomorphism.

A simple criterion for interchangeability is provided in the following proposition:

Proposition 11. Suppose that given a specific candidate structure GC = (VC ,EC), we have

that c1, c2 ∈ C(u) and c1 ∼c,u c2 for some template vertex u. Suppose that c1 and c2 are not

candidates for any other vertex. Then c1 and c2 are GC-interchangeable.

Proof. This is clearly injective, and for any edge (v,w) which doesn’t include u, g agrees with

f , so it preserves those edges. If we have (u, v) ∈ Et, we have (f(u), f(v)) = (c1, f(v)) ∈ Ew.

Since c1 ∼c,u c2, and we have ((u, c1), (v, f(v)) ∈ EC , we must have ((u, c2), (v, f(v)) ∈ EC
which implies (c2, f(v)) ∈ Ew.

This proposition suggests a simple method for exploiting candidate equivalence. In our

tree search, when we generate candidate vertices for a given vertex u, we find representatives,

for each candidate equivalence class, that do not appear as candidates for other vertices. If

a class has a vertex appearing in other candidate sets, then we cannot exploit equivalence

and must check each member of the class. Furthermore, as we continue to make matches

and eliminate candidates, more world vertices will become equivalent, so it is advantageous

33

to recompute equivalence before every match as is done in line 9 of Algorithm 3. Upon

unmatching, we need to restore the prior equivalence as is done in line 19.

If we have that f(v) = c1 and f(w) = c2, and we want to swap c1 for c2, we need a

stronger condition; namely, we need that they are equivalent with respect to both v and w.

In the process of a tree search, we do not know exactly what each vertex will be mapped to

so instead we consider an even stronger condition:

Definition 12. Given a candidate structure GC = (VC ,EC), we say that c1 ∈ Ew is fully

candidate equivalent to c2 ∈ Vw, denoted c1 ∼c c2 if for all u ∈ Vt, c1 ∼c,u c2.

Note that if c1 ∼c,u c2 for some u, and c1, c2 are not candidates for any other vertices,

then c1 ∼c c2. This condition enables us to interchange world vertices and still maintain the

subgraph isomorphism conditions. This is established by the following proposition:

Proposition 13. Suppose that given a specific candidate structure GC = (VC ,EC), we have

that c1, c2 ∈ Vw and c1 ∼c c2. Then, c1 and c2 are GC-interchangeable.

Proof. If (x, y) ∈ Et, and neither is u1 or u2, then g agrees with f and preserves the edge.

If one is u1 or u2, without loss of generality take x = u1, then (g(x), g(y)) = (c2, f(y)). As

f is a subgraph isomorphism (c1, f(y)) ∈ Ew and since c1 ∼c c2, (c2, f(y)) ∈ Ew as well. If

x = u1, y = u2, then (g(x), g(y)) = (c2, c1) = (f(y), f(x)) and this edge is in Ew since c1 ∼c c2
and (c1, c2) ∈ Ew.

3.4 Node Cover Equivalence

An alternate notion of equivalence, introduced in [MTC21], involves the use of a node cover.

A node cover is a subset of vertices whose removal, along with incident edges, results in

a completely disconnected graph. The approach in [MTC21] is to build up a partial match

of all the vertices in the node cover followed by assigning all the vertices outside the node

cover. After reducing the candidate sets of all the vertices outside the cover to those that

34

have enough connections to the vertices in the cover, what remains is to ensure that they

are all different.

We formalize this with some definitions. A partial match is a subgraph isomorphism

from a subgraph of the template graph to the world graph. We list out the mapping as as a

list of ordered pairs M = {(v1,w1), . . . , (vn,wn)}. A template vertex - candidate pair (v, c) is

joinable to a partial match M if for each (vi,wi) ∈M , if (vi, v) ∈ Et, then (wi, c) ∈ Ew and if

(v, vi) ∈ Et, then (c,wi) ∈ Ew. If two world vertices w1,w2 are interchangeable in any subgraph

isomorphism extending a partial match M , we say that w1 and w2 are M-interchangeable.

Since the problem is significantly simpler, it is easier to obtain a form of equivalence on

the vertices.

Definition 14. Let M be a partial match M on a node cover N of Vt and suppose that

for all u ∈ Vt ∖N , the candidate set C(u) is comprised entirely of all world vertices joinable

to M . Two world vertices w1,w2 are node cover equivalent with respect to M , denoted

w1 ∼N,M w2, if for all u ∈ Vt ∖N , w1 ∈ C(u) if and only if w2 ∈ C(u).

For example, consider the template and world in Figure 3.4. Once vertices B and D in

the node cover are mapped to 2 and 5, the remaining vertices have candidates that have

the associated color in the world graph. We then simply group each of these candidates

together into equivalence classes. Note that the edges depicted in red are what prevent

structural equivalence, and the node cover approach effectively ignores these edges to expose

the equivalence of these vertices.

Proposition 15. Suppose we have a node cover of the template graph N , and a partial

matching M on N and two world vertices w1,w2 not already matched satisfy w1 ∼N,M w2.

Then w1 and w2 are M-interchangeable.

Proof. Let f be such an isomorphism which maps u1 to w1 and u2 to w2 and g interchanges

w1 and w2. Consider (x, y) ∈ Et. If neither are u1, u2, then g agrees with f and so the edge is

35

Figure 3.4: In order from left to right: template, world, and possible candidate structure.

The boxed vertices comprise a node cover of the template and the image of the node cover

in the world. Vertices of the same color in the world are node cover equivalent. The red

edges are extraneous edges which once removed, expose equivalence.

preserved. If one of them is u1 or u2, say x = u1, then it must be that y is in N as N is a node

cover (u1 is disconnected from any element outside the node cover). Since f is a subgraph

isomorphism, (u1,w1) must be joinable to M and (w1, f(y)) ∈ Et and so w1 ∈ C(u1). It must

be that w2 ∈ C(u1) and so (u1,w2) is also joinable toM . Hence (w2, f(y)) = (g(x), g(y)) ∈ Et.

The last case x = u1 and y = u2 is impossible since x and y are outside the node cover and

therefore disconnected.

Node cover equivalence is easy to check and captures a significant portion of the equiva-

lence posed by other methods. This is often due to interchangeable vertices being composed

of sibling leaves which are generally outside of a node cover.

We note that the methods discussed in the chapter (with the exception of basic structural

equivalence for template and world as in Proposition 8) cannot easily incorporate both

template and world equivalence. The combination of allowing template and world vertex

interchanges and having dynamic world equivalence classes significantly complicates the

counting process. One approach which can facilitate the use of both forms of equivalence

36

involves a tree search where entire template equivalence classes are assigned at once instead

of individual template vertices. We do not consider this approach here.

3.4.1 Equivalence Hierarchy

There is a relation between node cover equivalence and full candidate equivalence, given in

the following proposition:

Proposition 16. Suppose that N is a node cover of Vt, M is a partial match on N , candidate

sets are reduced to joinable vertices, and w1,w2 ∈ Vt ∖N . Then w1 ∼N,M w2⇔ w1 ∼c w2.

Proof. Fix a template vertex u. If u ∈ N , then these vertices are already assigned to world

vertices, neither of which will be w1 or w2 and so w1,w2 ∉ C(u). Therefore w1 ∼c,u w2. If

u ∉ N , and we have ((u,w1), (v, x)) ∈ EC , then (u, v) ∈ Et and (w1, x) ∈ Ew. v must be inside

the node cover as those can be the only connections to u and therefore v must already be

assigned to x. As w1 ∼N,M w2, we must have w2 ∈ C(u) as well, and so must be joinable

to the matching. This implies that (w2, x) ∈ Ew. Hence we must have ((u,w2), (v, x)) ∈ EC .

Since this edge was chosen arbitrarily, we must have w1 ∼c,u w2. Since this holds for all u,

we must have w1 ∼c w2.

On the other hand, if w1 ∼c w2, for any template vertex t, if (t,w1) is joinable to M ,

then (t,w2) is also joinable to M . Hence, the template vertices for which w1 and w2 are

candidates coincide, so that w1 ∼N,M w2.

Thus, until we have assigned a node cover, we can use candidate equivalence to prevent

redundant branching; once we have matched all vertices in the node cover, we can check for

node cover equivalence—a simpler condition.

The agreement of node cover equivalence and fully candidate equivalence is apparent in

the candidate structure presented on the right of Figure 3.4. From the candidate structure,

the yellow vertices and the green vertices are fully candidate equivalent as they have the

37

same neighbors, and that they are node cover equivalent as they only appear as candidates

for the corresponding yellow and green vertices in the template.

Based on these propositions, we can organize the various notions of equivalence into

a hierarchy. Structural equivalence of world vertices has the strictest requirements and

implies all other forms of equivalence. Proposition 16 asserts that under mild conditions, full

candidate equivalence and node cover equivalence are one and the same. We can also include

candidate equivalence with respect to a template vertex as a weaker condition implied by full

candidate equivalence that does not guarantee interchangeability. The following proposition

summarizes these findings:

Proposition 17. Suppose the assumptions of Proposition 16 hold. Given template vertex t,

world vertices w1,w2, we have w1 ∼s w2 ⇒ w1 ∼N,M w2⇔ w1 ∼c w2 ⇒ w1 ∼c,t w2. Under the

first three equivalences, w1 and w2 are interchangeable.

From this proposition, we observe that of the notions of symmetry considered, full can-

didate equivalence and node cover equivalence provide the most compact solution space as

they require the weakest conditions while still guaranteeing interchangeability. However, the

cost in determining full candidate equivalence may be prove excessive compared to simpler

types of equivalence. We address these trade-offs on real and simulated data in Section 3.5.

3.5 Experiments

To demonstrate the utility of equivalence for the SMP, we adapt a state-of-the-art tree search

subgraph isomorphism solver, Glasgow [MPT20], using the modifications described in Algo-

rithm 3. We consider seven levels of equivalence: no equivalence (NE) (default), template

structural equivalence (TE), world structural equivalence (WE), template and world struc-

tural equivalence (TEWE), candidate equivalence as in Proposition 11 (CE), full candidate

equivalence as in Proposition 13 (FE), and node cover equivalence (NC). Each equivalence

mode is integrated into the Glasgow solver separately.

38

Dataset # Instances # Vertices # Edges Density

Min Max Min Max Min Max

SF 100 180 900 478 5978 0.006 0.165

LV 6105 10 6671 10 209000 0.001 1.000

SI 1170 40 777 41 12410 0.005 0.209

images-cv 6278 15 151 20 215 0.019 0.190

meshes-cv 3018 40 199 114 539 0.022 0.146

images-pr 24 4 170 4 241 0.017 0.667

biochemical 9180 9 386 8 886 0.012 0.423

phase 200 30 30 128 387 0.294 0.890

www 3850 5 15 5 45 0.071 0.750

Table 3.1: Template Graph Statistics from Benchmark Datasets used in Equivalence Exper-

iments

For each test class involving template equivalence (TE, TEWE), we compute the template

structural equivalence classes, and for each involving world equivalence (WE, TEWE, CE,

FE, NC), we compute world structural equivalence classes at the start using Algorithm 2.

Then we make the modifications for template and world equivalence as in Algorithm 3. For

algorithms requiring recomputation of the equivalence classes at each node of the tree search,

for speed purposes, we only recompute equivalence for vertices that appear as candidates for

the current template vertex under consideration. We check equivalence between each pair of

candidates using the definitions directly.

We consider graphs from the benchmark suite in [Sol19]. Basic graph statistics for the

templates from these datasets are listed in Table 3.1 and the corresponding statistics for the

worlds are listed in Table 3.2. SF is composed of 100 instances that are randomly generated

using a power law and are designed to be scale-free networks. LV is a diverse collection

of randomly generated graphs satisfying various properties (connected, biconnected, tricon-

nected, bipartite, planar, etc.). SI is a collection of randomly generated instances falling into

four categories: bounded valence, modified bounded valence, 4D meshes, and Erdős–Rényi

39

Dataset # Instances # Vertices # Edges Density

Min Max Min Max Min Max

SF 100 200 1000 592 7148 0.006 0.159

LV 6105 10 6671 10 209000 0.001 1.000

SI 1170 200 1296 299 34210 0.004 0.191

images-cv 6278 1072 5972 1540 8891 4.89e-4 0.003

meshes-cv 3018 201 5873 252 15292 4.40e-4 0.022

images-pr 24 4838 4838 7067 7067 0.001 0.001

biochemical 9180 9 386 8 886 0.012 0.423

phase 200 150 150 4132 8740 0.370 0.782

www 3850 325729 325729 1497135 1497135 1.41e-5 1.41e-5

Table 3.2: World Graph Statistics from Benchmark Datasets used in Equivalence Experi-

ments

graphs. The images-cv, meshes-cv, and images-pr data [DSH11, SDD15] sets are real in-

stances representing segmented images and meshes of 3D objects drawn from the pattern

recognition literature. The biochemical dataset [GFM14] contains matching problems taken

from real systems of biochemical reactions. The phase dataset [MPS18] is comprised of

randomly generated Erdős–Rényi graphs with parameters known to be very difficult for

state-of-the-art solvers.

We also include a problem set where the template graph is a small Erdős–Rényi graph

and the world graph is composed of the webpages on the Notre Dame university website with

directed edges representing links between pages [AJB99]. In these instances, the template is

randomly generated with nt vertices and et edges where 5 ≤ nt ≤ 15 and nt ≤ et ≤ 3nt. The

world graph is fairly sparse and has 325,729 vertices and 1,497,135 edges. We refer to this

problem set as the www dataset. We collected 50 template graphs for each value of nt for a

total of 550 templates.

For each instance, we run the algorithm for each equivalence level with the solver con-

figured to count all solutions. We record the number of representative solutions found, the

40

Dataset NE TE WE FE TEWE CE NC

biochemical 0.73 0.78 0.83 0.86 0.81 0.84 0.85

LV 0.10 0.10 0.14 0.15 0.13 0.14 0.15

scalefree 1.00 1.00 1.00 1.00 1.00 1.00 1.00

images-cv 1.00 1.00 1.00 1.00 1.00 1.00 1.00

meshes-cv 0.00 0.00 0.00 0.00 0.00 0.00 0.00

si 0.83 0.92 0.83 0.94 0.90 0.85 0.93

images-pr 1.00 1.00 1.00 1.00 1.00 1.00 1.00

phase 0.00 0.00 0.00 0.00 0.00 0.00 0.00

www 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.3: Proportion of Satisfiable Instances from Benchmark Datasets in Table 4.1 Which

Were Fully Enumerated by Various Equivalence Levels

total number of solutions that can be generated by interchanging, as well as the total run

time for the instance. We terminate each run if the search is not completed after 600 seconds

and record the statistics for the incomplete run. For each run, we measure the compression

rate which is the number of representative solutions divided by the total number of solutions

found. This quantity indicates the factor by which the form of equivalence chosen decreases

the size of the solution space. All experiments were performed on an Intel Xeon Gold 6136

processor with 3 GHz, 25 MB of cache, and 125 GB of memory.

In Table 3.3, we record the proportion of satisfiable problems for which the solution space

is fully enumerated by each algorithm within 600 seconds. For the biochemical, LV, and si

datasets, there is an increase of 5-10% of all problems fully solved when using any form of

equivalence. We further note that full equivalence always has the best performance followed

by node cover equivalence. This is not surprising given that Proposition 16 states that full

equivalence is the most expansive form of equivalence.

Figure 3.5 portrays how many instances are solved by a given time and demonstrates

41

Figure 3.5: Number of satisfiable (top) and unsatisfiable (bottom) instances solved after a

given amount of time. This is aggregated over all single channel benchmark data sets. For

satisfiable instances, “solved” means having fully enumerated the solution space.

42

Figure 3.6: Comparison of individual run times for full enumeration between no equivalence

and full equivalence runs for satisfiable problems (left) and unsatisfiable problems (right).

Note the phase, www, and meshes cv problems do not terminate for any instance and take

the full 600 second runtime, so they can be difficult to discern as each occupies the same

spot in the upper right corner of the graphs.

that full equivalence performs best in solution space enumeration for satisfiable problems

followed by node cover and the other forms of equivalence. The plot for unsatisfiable problems

demonstrates drawbacks to using full candidate equivalence; the additional computation time

to check equivalence is not needed if there are no solutions. Checking equivalence in the TE,

WE, and NC routines are very cheap operations so there is little difference in the amount of

unsatisfiable problems solved compared to the NE routine.

Figure 3.6 demonstrates the variation among and within the data sets by comparing run

times for the NE and FE routines. We observe that it is primarily among the biochemical, SI,

and LV for which the full equivalence routine vastly outperforms the no equivalence routine

often by several orders of magnitude. On the other hand, the images-cv, meshes-cv, and

images-pr datasets are more challenging, especially for unsatisfiable problems. This may be

due to wasted equivalence checks as there is no solution space to be compressed.

Figure 3.7 includes two plots to illustrate variation in solution counts when using the

43

Figure 3.7: Comparison of isomorphism counts for full enumeration between no equivalence

and full equivalence runs for problems with small (< 109) numbers of isomorphisms (left)

and problems with large (≥ 109) numbers of isomorphism (right). Take note of the scales

chosen for each graph. For 110 instances the solver with full equivalence found greater than

1040 isomorphisms (the largest had ≈ 10384 isomorphisms), and they are not shown on these

graphs.

NE and FE routines. Each has different limits on the axes to emphasize different aspects.

The left demonstrates that for problems with fewer than 109 isomorphisms, 10 minutes is

often enough time to fully enumerate the solution space without using equivalence. The

number 109 functions as an approximate upper bound for the number of solutions found in

10 minutes for any problem using the original Glasgow solver. We note that for the www

dataset, the base Glasgow solver finds at most approximately 106 solutions, a significantly

smaller number. This happens because that a significant portion of time is taken to load in

the large world graph. The right plot shows problems for which the FE routine finds many

orders of magnitude more solutions. In these highly symmetric problems, an equivalence-

based approach is essential to fully understand the solution space. We observe that for the

biochemical, si, lv, and www, we find many orders of magnitude more solutions when using

full equivalence. The largest disparity found between FE and NE solution counts is not

displayed - FE found about 10384 solutions and NE found roughly 109 solutions: a difference

44

Figure 3.8: The average compression rate for each dataset and equivalence type.

of 375 orders of magnitude.

Figure 3.8 demonstrates the different average compression rates across each dataset and

equivalence level. As expected, FE, NC, and CE perform the best in terms of compression

followed by TEWE and then depending on the dataset, either TE or WE. For the biochemical,

lv, meshes cv, and www datasets, we observe on average, the solution space is compressed

in size by an order of magnitude or more when using the CE, FE, or NC methods. On

specific particularly symmetric problems from these datasets, we find the solution space can

be compressed by tens or even hundreds of orders of magnitude when using FE or NC. For

these cases, it is necessary to incorporate equivalence to come close to understanding the set

of solutions to the subgraph isomorphism problem.

3.6 Compact Solution Representation

As noted in prior sections, the solution space for subgraph matching is often combinatorially

complex. However, the notion of structural equivalence provides methods to diagram the

45

Figure 3.9: The template (left) and world (center) from Figure 3.2 recolored to represent

solution (B → {2,3},A → 1,C → {2,3,4,5}). Each world vertex is colored with the same

color as template vertices which can map to it or gray if no vertex maps to it. The right graph

compresses the world graph by dropping nonparticipant vertices and combining vertices of

the same color into a vertex with a label indicating the amount combined.

solution space in a compact visual way that a user can understand. We explain this first

for the toy example from Figure 3.2. We begin with the base representation of one solution,

{A → 1,B → 2,C → 3}, which pairs template vertices with world vertices and extend it to

incorporate equivalence.

If we use template structural equivalence, equivalent template vertices are interchange-

able. We indicate this by pairing template equivalence classes with world vertices; producing

a solution amounts to picking a unique representative from each class. In our example, as

B and C are equivalent, we write {A → 1,{B,C} → 2,{B,C} → 3}. World equivalence is

represented similarly: the representation {A → 1,B → {2,3},C → 4} indicates B can match

with 2 or 3.

Table 3.4 illustrates the different numbers of representative solutions for each different

equivalence level for the toy problem in Figure 3.2. The candidate and node cover equivalence

numbers are computed assuming A is assigned first. As the full candidate and node cover

equivalence levels have the broadest notion of equivalence, they have the most compression.

If we use candidate or node cover equivalence, equivalence classes are recomputed before

46

Eq. Level # Rep. Sols. Example Sol.

NE 18 {A→ 1,B → 2,C → 3}

TE 9 {A→ 1,{B,C}→ 2,{B,C}→ 3}

WE 10 {A→ 1,B → {2,3},C → 4}

TEWE 6 {A→ 1,{B,C}→ 5,{B,C}→ {6,7}}

CE 5 {A→ 1,B → 2,C → {3,4,5}}

FE 2 {A→ 1,B → {2,3,4,5},C → {2,3,4,5}}

NC 2 {A→ 1,B → {2,3,4,5},C → {2,3,4,5}}

Table 3.4: Number of representative solutions for each equivalence level in the toy problem

in Figure 3.2

each assignment. Hence, it may be the case that a template vertex is paired with a world

equivalence class that has been previously assigned but has grown in size due to recomputing

equivalence. For example, if we first assign template vertex B to the equivalence class

{2,3}, we are forced to assign A to 1. Finally, we recompute equivalence, and we find that

{2,3,4,5} comprise an equivalence class, to which we assign our last template vertex C. We

therefore have solution class {B → {2,3},A → 1,C → {2,3,4,5}}. We diagram this class in

Figure 3.9 where we color each template vertex and its associated candidates the same color.

The subgraph of all vertices and edges that participate in the representative solution is the

solution-induced world subgraph. The final graph depicts the compressed solution-

induced world subgraph where we drop all nonparticipant vertices and edges, and we

combine like-colored vertices into “supervertices” with a label indicating the number of

vertices joined. From this last graph, we can observe the original template graph structure

among the participant world vertices.

We use these graphical representations depict various symmetric features of our datasets.

As an example, we plot the template and world subgraph for an example from the biochem-

ical dataset in Figure 3.10. From this depiction, we observe that there are multiple different

47

Figure 3.10: A biochemical reactions [GFM14] template graph (left) and the solution-induced

world subgraph (right) for a solution class comprised of 9.18 × 1013 solutions. Dark gray

vertices are vertices with a single candidate. Vertices with the same non-gray color in the

world subgraph are fully candidate equivalent. Vertices with two or more colors were part of

one class at an early stage of subgraph search which was later merged into another class. All

solutions represented by the compressed solution can be generated by mapping templates

vertices of one color to world vertices with the same color.

sources from which equivalence may arise. One aspect is the large number of pairs of struc-

turally equivalent vertices that are colored the same in the template graph. A second source

is leaf vertices on the template graph that can be mapped to large equivalence classes in

the world graph. By using an equivalence-informed subgraph search, we can expose exactly

where these complexities arise. The compressed solution-induced world graph is depicted in

Figure 3.11 and clearly shows the role each world vertex plays with respect to the template

graph in a solution.

48

Figure 3.11: The world graph from Figure 3.10 with equivalent vertices joined into super-

verticess with numbers indicating the size of the class.

49

3.7 Application to Multiplex Networks

3.7.1 Multiplex MultiGraph Matching

Often analysts wish to encode attributed information into the vertices and edges of a graph

and allow for more than one interaction to occur between vertices. For example, a transporta-

tion network may have multiple modes of travel between hubs (e.g., trains and subways).

Formally, if we have K distinct edge labels, then a multiplex multigraph is a K + 1-tuple

(V ,E1,E2, . . . ,EK) where V is the set of vertices, and E i ∶ V × V → Z≥0 is a function dictating

how many edges there are of label i between two vertices. Intuitively, a multiplex multigraph

is a collection of K multigraphs which share the same set of vertices. The index i of the

edge function is the “channel” i, and we refer to the edges given by edge function Ei as the

edges in channel i, and the graph (V ,E i) as the graph in channel i.

Multiplex multigraphs are special cases of multilayer graphs [DSC13]. Multilayer graphs

in their full generality allow even more complicated interactions in that each vertex can exist

on several different layers and edges connect vertices within and between layers. See the

surveys [KAB14, BBC14] for a precise formalization of multilayer graphs, related concepts,

and key properties which have been studied over the years. The graph isomorphism problem

in the complete generality of multilayer graphs has been studied as well in [KP18]. The

multiplex graphs which we study are simpler forms of multilayer graphs which require each

vertex to exist in each layer and edges can only exist between vertices within a layer (in this

context, the layer an edge lies in is a channel).

A multiplex subgraph isomorphism f ∶ Vt → Vw preserves the number of edges in

each channel. Given template (Et,E1t , . . . ,EKt) and world (Vw,E1w, . . . ,EKw), for any u, v ∈ Vt,

we require E iw(f(u), f(v)) ≥ E iw(u, v), i.e., there need to be enough edges between f(u) and

f(v) to support the edges between u and v. Definitions for equivalence also extend naturally:

we say v ∼s w if in each channel i for each u ≠ v,w, E i(v, u) = E i(w,u), E i(u, v) = E i(u,w),

and E i(v,w) = E i(w, v). The other forms of equivalence and related theorems all generalize

50

similarly.

Recently, significant work has been done on developing algorithms for finding multi-

plex subgraph isomorphisms. [IIP16] develops an indexing approach based on neighborhood

structure in multichannel graphs. [MBF20] extends the single channel package [BGP13] to

handle the multichannel case and focuses on using intelligent vertex ordering for finding

isomorphisms. [MCT18] utilizes a constraint programming approach for filtering out can-

didates which is extended in [MTC21]. A similar filtering approach is taken in [LDT19].

[SPP19] relaxes the problem to a continuous optimization problem which is then solved and

projected back onto the original space.

3.7.2 Multiplex Experiments

We assess the performance of our equivalence enhancements on the Glasgow solver, adapted

to handle multiplex subgraph isomorphism problems. The adaptations involve minimal

changes to the base algorithm, to ensure that matches are only made if they preserve the

edges in every channel. To eliminate more candidates, we also perform a prefilter using

the statistics and topology filters from [MCT18] as well as maintain the subgraphs in each

channel as the supplemental graphs used in the Glasgow algorithm.

We consider datasets including those from [MTC21] and which represent both real world

examples and synthetically generated data. The real world examples include a transporta-

tion network in Great Britain [GB15], an airline network [CGZ13], a social network built

on interactions on Twitter related to the Higgs Boson [DLM13], and COVID data [ZPM21].

For the transportation and twitter networks, the template is extracted from the world graph.

The synthetically generated datasets are examples which represent emails, phone calls, fi-

nancial transactions, among other interactions between individuals and are all generated as

part of the DARPA-MAA program [KSG18, BJU18, CPM18]. The subgraph isomorphisms

to be detected may be a group of actors involved in adversarial activities including human

trafficking and money laundering. The statistics regarding these different subgraph isomor-

51

Template World

Dataset Vertices Edges Vertices Edges Chan.

Brit. Trans. 53 56 262377 475502 5

Higgs Twitter 115 2668 456626 5367315 4

Airlines 37 210 450 7177 37

PNNL RW 74 35 158 6407 3

PNNL v6-b0-s0 74 1620 22996 12318861 7

PNNL v6-b5-s0 64 1201 22994 12324975 7

PNNL v6-b1-s1 75 1335 22982 12324340 7

PNNL v6-b7-s1 81 1373 23011 12327168 7

GORDIAN v7-1 156 3045 190869 123267100 10

GORDIAN v7-2 92 715 190869 123264754 10

IvySys v7 92 195 2488 5470970 3

IvySys v11 103 387 1404 5719030 5

COVID 28 38 87580 1736985 9

Twitter - ER 5-15 4-31 456626 5367315 4

Table 3.5: Basic Graph Statistics for the Multichannel Graphs

phism problems are described in Table 3.5. For more details on these particular datasets,

see [MTC21].

The multiplex datasets are much larger than the single-channel graphs in the previous

section, with the largest world graphs having hundreds of thousands of vertices and hun-

dreds of millions of edges. The synthetic datasets are divided into three groups based on

which organization generated the dataset: PNNL [CPM18], GORDIAN [KSG18], and IvySys

Technologies [BJU18].

52

For our experiments, we examine the same seven modes of equivalence used in the single

channel case, but with a time limit of one hour to count as many solutions as possible. These

experiments were run on the same computer using our adapted version of the Glasgow solver.

The amount of time required to enumerate all the solutions is displayed in Table 3.6 and the

number of solutions found with a given method is displayed in Table 3.7. A quick inspection

of the times illustrates that in a few cases (Airlines, GORDIAN, and Higgs Twitter), using

full equivalence can enumerate the full solution space an order of magnitude faster than any

other approach. This speedup is reflected in the solution count table for which FE finds

significantly many more solutions. The other methods only find a mere fraction of the total

solutions. The NC method often appears to be the second best both in terms of solutions

found and time taken to enumerate all. This makes sense given Proposition 17. TE appears

to be the third best method which can be explained by the simplicity of implementation

and having no need to recompute equivalence. WE and CE are not competitive with the

other methods. The datasets bear different qualities that illustrate why certain levels of

equivalence work better than others. We discuss a few datasets in detail.

3.7.2.1 PNNL

The PNNL template and world graphs [CPM18] are generated to model specific communi-

cation, travel, and transaction patterns from real data and the templates are then embedded

into the world graph. For these instances, the counting problem is almost entirely solved

after applying the initial filter and the solution space is understood by equivalence in the tem-

plate. For example, observe the template displayed in Figure 3.12. The number of solutions

generated equals the count of solutions generated by permutations of the template vertices

for a single representative solution. We have a group of 9, a group of 4, and two groups of

3 interchangeable vertices, meaning any solution can generate 9!4!3!3! more solutions. All

variants on the PNNL problems illustrate this behavior.

53

Algorithm CE FE NC NE TE TEWE WE

Dataset

Brit. Trans. 3600 3600 3600 3600 3600 3600 3600

Higgs Twitter 3600 369 456 3600 3600 3600 3600

Airlines 0.34 0.24 1985 3600 1329 3600 3600

PNNL RW 3600 3600 3600 3600 3600 3600 3600

PNNL v6-b0-s0 41.6 42.1 41.8 41.3 41.7 41.4 41.6

PNNL v6-b1-s1 241 240 241 240 242 240 240

PNNL v6-b5-s0 62.6 58.1 58.9 58.0 62.3 62.3 63.0

PNNL v6-b7-s1 1133 200 201 3600 188 211 1138

GORDIAN v7-1 3600 327 3600 3600 3600 3600 3600

GORDIAN v7-2 3600 316 3600 3600 3600 3600 3600

IvySys v7 3600 3600 3600 3600 3600 3600 3600

IvySys v11 3600 3600 3600 3600 3600 3600 3600

COVID 3600 3600 3600 3600 3600 3600 3600

Twitter - ER 514.7 505.4 494.8 536.0 536.7 544.2 541.3

Table 3.6: Time (s) to enumerate solution spaces of multichannel problems. Experiments

were timed out at one hour. Bolded entries indicate the equivalence algorithm which fully

enumerated all subgraph isomorphisms the quickest.

54

Algorithm CE FE NC NE TE TEWE WE

Dataset

Brit. Trans. 1.5e+11 2.3e+15 5.0e+08 1.3e+07 2.5e+12 2.0e+12 1.2e+07

Higgs Twitter 1.4e+14 3.2e+14 3.2e+14 5.7e+06 6.4e+06 5.7e+06 7.0e+06

Airlines 3.7e+09 3.7e+09 3.7e+09 3.6e+09 3.7e+09 8.1e+08 2.4e+09

PNNL RW 3.5e+09 2.8e+11 4.7e+11 8.6e+08 2.0e+10 5.0e+09 8.7e+08

PNNL v6-b0-s0 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03

PNNL v6-b1-s1 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03

PNNL v6-b5-s0 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03 1.2e+03

PNNL v6-b7-s1 3.1e+08 3.1e+08 3.1e+08 8.6e+07 3.1e+08 3.1e+08 3.1e+08

GORDIAN v7-1 1.1e+12 9.1e+12 1.4e+10 1.6e+07 7.8e+09 5.3e+09 1.6e+07

GORDIAN v7-2 2.1e+11 1.4e+16 1.2e+15 1.7e+07 3.9e+08 3.2e+08 1.6e+07

IvySys v7 2.0e+14 8.0e+96 2.1e+90 1.8e+09 2.7e+47 5.8e+45 5.4e+07

IvySys v11 7.4e+10 3.6e+89 5.1e+66 1.8e+09 4.4e+72 6.6e+71 4.9e+07

COVID 5.3e+14 7.5e+21 3.1e+20 9.6e+06 9.5e+06 4.5e+07 1.3e+07

Twitter - ER 3.5e+08 8.8e+09 1.4e+11 7.2e+05 7.4e+05 6.1e+05 6.8e+05

Table 3.7: Number of solutions found for multichannel subgraph isomorphism problems listed

in Table 3.5 within one hour. Bolded entries indicate the algorithms which found the most

solutions in the allotted time.

55

Figure 3.12: Template Graph for PNNL v6-b7-s1. Non-gray vertices of the same color are

structurally equivalent.

56

Figure 3.13: Template (left), solution-induced world subgraph (middle) and the compressed

solution-induced world subgraph (right) for a solution class which can generate about 3×1012

solutions to GORDIAN v7-2 [KSG18]. World vertices of the same color are fully candidate

equivalent and are candidates of the template vertex of the same color. All solutions repre-

sented by this compressed solution can be generated by mapping each colored vertex to one

of groups of world vertices with the same color.

3.7.2.2 GORDIAN

The GORDIAN datasets [KSG18] have a much larger templates and worlds than PNNL and

they are generated separately in an agent-based fashion to match the daily routines and

travel patterns of a certain population of people. Only the FE method fully enumerates the

solution space, but the NC and CE methods come close to a full enumeration. Figure 3.13

illustrates the symmetries for one solution class; the template graph possesses a large group

of leaf vertices. After mapping the central vertex to a candidate, the leaves need only

be mapped to neighbors of this candidate. These graphs demonstrate a trade-off between

vertex specificity and symmetry: template vertices with fewer edges exhibit great amounts

57

Figure 3.14: Template (left) and solution-induced world subgraph (right) for a solution class

from which 7.82 × 10103 solutions to IvySys v7 [BJU18] can be generated. World vertices of

the same color are fully candidate equivalent and are candidates of the template vertex of

the same color. All solutions represented by this compressed solution can be generated by

mapping each colored vertex to one of groups of world vertices with the same color.

of symmetry, whereas dense subgraphs are restricted in their candidates and have minimal

symmetry. The right graph in Figure 3.13 depicts a compressed version of the world graph

induced by this solution class from which 3 × 1012 solutions may be generated.

3.7.2.3 IvySys

The IvySys template and world graphs [BJU18] are separately generated to match the de-

gree distribution and email behavior of the Enron email dataset and have the most complex

solution space. None of the methods were successful at enumerating all solutions. The vast-

ness of the solution space is in contrast to the size of the graphs which only have thousands

58

of vertices. The complexity emerges from the preponderance of template leaf vertices as

shown in Figure 3.14, depicting one particularly large solution class. Figure 3.15 depicts the

compressed representation of the world subgraph for this solution as well as a Venn diagram

displaying candidates of certain template vertices.

The TE solver finds an astonishing 2.7×1047 solutions for IvySys v7. However, using the

FE method still dramatically increases the solution count to 8×1096, by mapping these large

template equivalent classes into larger world equivalence classes. An equivalence-informed

subgraph search is essential as the NE method finds only 1.75 × 109 solutions, 87 orders of

magnitude less than the FE search. Furthermore, a typical subgraph search would assign

each group of leaf vertices sequentially meaning only the candidates of the last group would

be explored. Incorporating symmetry gives a fuller vision of the solution space.

3.7.2.4 COVID

We lastly apply our algorithm to the problem of querying a knowledge graph representing

known causal relations between a large variety of biochemical entities. This problem arises

from a desire to extracting causal knowledge in an automated fashion from the research

literature. In [ZPM21], a knowledge graph is assembled from multiple sources including the

COVID-19 Open Research Dataset [WLC20], the Blender Knowledge Graph [WLW21], and

the comparative toxigenomics database [DWW21]. The authors of [ZPM21] then create a

query representing how SARS-CoV-2 might cause a pathway leading to a cytokine-storm in

COVID-19 patients, but is generalized to detect other possible confounding factors in the

pathway.

When rephrased as a multichannel subgraph isomorphism problem, template and world

vertices represent biochemical entities. Some template vertices are specified, and others are

labeled as a chemical, gene or protein. The 9 channels in this problem are various known

types of interactions between entities, e.g., activation. A solution is an assignment of each

vertex which has the desired chemical interactions.

59

Figure 3.15: IvySys v7 [BJU18] Compressed solution-induced world graph (left) and the Venn

diagram representation of intersecting candidate sets in world graph(right) for a solution class

from which 7.82 × 10103 solutions to can be generated. The number in each section in the

Venn diagram represents the size of a node cover equivalence class in the world graph. All

solutions represented by this compressed solution can be generated by mapping each colored

vertex in the template to the set in the Venn diagram with the same color.

60

As can be seen in Tables 3.6 and 3.7, there is an abundance of solutions to this problem,

and incorporating equivalence greatly enhances our ability to understand the solution space.

Figure 3.17 depicts the template and Venn diagrams of candidates sets for one solution

class and exposes unspecified template vertices with a large amount of candidates. Such

information is useful to an analyst for determining confounding factors in a pathway and

suggesting label information or interactions to add to better specify the entire solution space.

3.7.2.5 Higgs Twitter Erdős–Rényi Experiments

Lastly, we perform a similar experiment as we did for single channel graphs using small

Erdős–Rényi graphs as our templates and our largest graph, the Higgs Twitter dataset,

as our world graph. We generate a multichannel template graph by overlaying 4 different

graphs corresponding to each channel each generated as an Erdős–Rényi graph with p = lognt

8nt

where nt is the number of template vertices. This value p is chosen so that the graph

will be connected with high probability. We generate 45 connected graphs in this way for

each of nt = 5,7,9,11,13,15. We then compute the number of isomorphisms counted for

each method within 10 minutes. For these problems, we precompute the world structural

equivalence classes of the Higgs Twitter graph prior to running our algorithms. The average

isomorphism count for each equivalence method and template size is depicted in Figure 3.16.

The overall averages for total runtime and isomorphism count are included in Tables V and

VI under the Twitter-ER dataset.

From these results, we observe that the NC, FE, and CE methods find significantly more

solutions than the base routine whereas the other equivalence methods do not improve on

the NE method. NC performs the best both in terms of the number of isomorphisms found

and the total amount of time which we speculate is due to its lightweight computation and

ability to capture most of the equivalence. FE and CE are a few orders of magnitude worse,

and the remaining methods TE, WE, and TEWE fail to provide significant benefit over

the base method and in fact does worse when involving world structural equivalence. That

61

Figure 3.16: The average number of subgraph isomorphisms found for each equivalence level

where the templates are small Erdős–Rényi graphs and the world is the Higgs Twitter graph.

these methods do not improve much we can explain by the fact that vertices in multichan-

nel Erdős–Rényi graphs are fairly unlikely to be structurally equivalent. All in all, these

experiments demonstrate even when using randomly generated template graphs, significant

improvements can be had in incorporating equivalence into the algorithm. However, certain

modes of equivalence may be more appropriate for certain classes of graphs and some care

must be taken to ensure that the level of equivalence chosen actually helps with solving the

problem.

3.8 Conclusion

In this chapter, we have developed a theory for static and dynamic notions of equivalence and

presented conditions under which vertex assignments can be interchanged while preserving

isomorphisms. With minimal changes to a subgraph isomorphism routine to incorporate

equivalence during a tree search, we can dramatically reduce the amount of time to solve

a problem and get a compact characterization of the solution space. For instances with

62

Figure 3.17: COVID-19 [ZPM21] template (left) and the Venn diagram of candidate sets in

world graph (right) from which 2.6 × 1018 solutions can be generated in one solution class.

Each section in the Venn Diagram represents a node cover equivalence class, and the number

in the section is the size of the class. A few template vertices were specified at the start

whereas others simply received a vertex label of C, P, or G indicating chemical, protein, and

gene respectively. The solutions may be generated by mapping non-gray template vertices

of one color to world vertices in the Venn diagram section of the same color.

63

minimal symmetry, little is to be gained, but for problems with large symmetric structures,

it is essential to exploit equivalence in order to understand the large solution space. In

particular, we demonstrated that the FE and NC methods both perform well in capturing

equivalence present in the problem enabling the greatest compression of the solution space.

We showed our results apply to standard subgraph solvers by integrating our methods into

the state-of-the-art solver Glasgow and extended our methods to the more complex problem

spaces of multiplex multigraphs.

Future directions for this research include adapting these notions of equivalence to inexact

search as well as producing inexact forms of equivalence. We would also like to better under-

stand how to incorporate automorphic equivalence with the different notions of equivalence

discussed in this chapter.

64

CHAPTER 4

Iterative Active Learning Strategies for Subgraph

Matching1

4.1 Introduction

Despite the simple statement of the subgraph matching problem, both real world and syn-

thetic examples illustrate the complexity of the set of all subgraph isomorphisms. As can be

seen from the benchmark subgraph isomorphism problems in the prior chapter, even prob-

lems with relatively small templates and worlds may still have trillions of possible subgraph

isomorphisms. This abundance of solutions may arise from the existence of multiple good

candidates for matches for our template graph of interest. Alternatively, it may be the case

that our template graph is underspecified, and if we could add more information to our

template in the form of more edges or labels, we may be able to eliminate the vast majority

of these subgraph isomorphisms as irrelevant.

In a real use-case scenario, we often wish to identify exactly one specific subgraph isomor-

phism out of the many possible matchings. There are a number of reasons why this would

be - for example if the world graph represents data related to an investigation involving

an unknown actor, such as in a homicide investigation, it would be important to identify

the actual person involved. The consequences of misidentifying someone could be grave -

both for the person wrongly identified and for potential future victims of the actual person

involved.

1This chapter is adapted from [GYB23] which is currently under review.

65

Figure 4.1: Active learning flowchart for subgraph matching [GB21]. First, a subgraph

matching algorithm determines all potential candidates for template vertices. Then an active

learning algorithm determines the optimal vertices for subject matter experts to obtain

information about. These two steps are repeated until the number of subgraph isomorphisms

is reduced to a desired amount

In some cases, there may be more than one subgraph isomorphism of relevance, for ex-

ample in the case of identifying different but equally important pathways in a biochemical

reaction network [GFM14] or the case of identifying groups involved in human trafficking or

smuggling. Likewise, organizations or people interested in identifying those wrongly accused

of crimes could look at a knowledge graph of information that might present alternate sce-

narios. In a real life setting, this could entail additional constraints added to the problem

space such as attributes for the vertices (e.g. names, dates, times etc). Such information

might come at a cost and therefore it would be of interest to understand strategies to reduce

the complexity of the solution space with the minimal cost.

Active learning is an area of research in statistical machine learning that involves a sub-

ject matter expert (SME) as a human in the loop in algorithms for classification of points in

a dataset. Supervised machine learning algorithms require an abundance of labeled data. In

the real world however, unlabeled data is common and accurate labeling may require human

66

involvement that can not be crowd-sourced due to privacy or security reasons. The choice of

labelled data often affects classifier performance, and so the development of methods to de-

termine which data points to label can significant improve accuracy. Active learning involves

the use of an algorithm or formula to choose individual data points for labeling by a SME.

Then the newly labeled data are included in the semi-supervised learning problem. These

active learning methods iterate between the following procedures: (1) Training a model given

the current labeled data (2) Choosing one or a batch of query points in the unlabeled set

based on an active learning criterion such as an acquisition function. Most active learning

acquisition functions for statistical machine learning belong to one of a few categories: un-

certainty [Set12, HHG11, GIG17], margin [TK01, BBL06, JG19], clustering [DH08, MM19],

and look-ahead [ZLG03, CZZ13].

We can come up with an analogous routine for subgraph matching. A flowchart describing

how this approach might be used in a real world setting in shown in Fig. 4.1. Initially, we

obtain the candidate set for all template vertices using a filter based subgraph matching

algorithm which loosely represent the set of possible solutions. Then, an active learning

algorithm determines the optimal vertices for subject matter experts to obtain additional

information about. After that, the additional information is fed back into the subgraph

matching algorithm filter out more candidates. We repeat this procedure until we can reduce

the number of candidates for any given template vertex to a manageable amount (just one

if we want to identify a unique solution).

Researchers have introduced active learning into problems similar to subgraph isomor-

phism problems such as the network alignment problem. This problem tries to find an

optimal mapping of graph vertices with maximum similarity between the vertices and edges,

in which a cost function measures differences between the vertices or edges. The optimal

solution with least cost is given by updating the probability distribution for each vertex.

Prior research shows that better alignment can be achieved by introducing interaction with

a human to obtain extra information on certain vertices. For example, in [SC15], researchers

67

compare three probability matrix based query strategies. In [CS20], the cost function for

network alignment is updated after interaction with human. In [MGT17], the authors ex-

amine the case where experts only provide partial information about the mapping of certain

vertices instead of the exact answer. In [PPL20], the authors study the problem of vertex

nomination in the inexact subgraph matching problem.

The objective of this chapter is to explore the implementation of an active learning

scenario in the context of subgraph matching. This chapter is a significant extension of

previous work [GB21] which rigorously defines the problem, establishes key propositions

about the active learning problem, and assesses various active learning strategies on a large,

diverse dataset. The outline of this chapter is as follows: In section 4.2, we introduce the

key concepts and terminologies of the subgraph matching problem and the formal definitions

of the active learning framework. In section 4.3, we will study the complexity of the active

learning problem we defined and prove that it is in fact NP-complete. In section 4.4, we

will formulate different active learning strategies for querying template vertices. In section

4.5, we present the assess the performance of our strategies on the subgraph isomorphism

benchmark datasets and discuss advantages and disadvantages to each querying strategy.

4.2 Active Learning Framework

In this section, we will present the general algorithmic framework we will be using to test

various active learning strategies. For each experiment, we will assume we have a template

graph Gt, world graph Gw, and a ground truth subgraph matching f which we are trying

to determine. f(t) will represent the ground truth world vertex which is associated with a

given template vertex t.

As a toy example of how the active learning problem may proceed, we consider the ex-

ample template and world presented in Figure 4.2. Initially, there are four possible subgraph

isomorphisms in the world graph and the ground truth matching maps vertices 1 and 2 to

68

Figure 4.2: Solution spaces for example template and world graph following active learning

queries. The ground truth subgraph matching is given by mapping 1 to A and 2 to B. In I,

there are initially four possible SIs, in II, there are two SIs after querying template vertex

1 and finding it maps to A, and in III, finally we have reduced the solution space to one SI

after querying vertex 2 and finding it maps to B.

A and B, respectively. At this stage, we query template vertex 1 and determine its true

assignment, A. From this knowledge, we can rule out any solution which maps 2 to a world

vertex not adjacent to A eliminating two solutions. Then, with two solutions left we query

template vertex 2 finding it maps to B which fully determines the true subgraph matching

after two queries. However, if we instead had queried template vertex 2 first, we would have

found it mapped to B, which only one of the candidate solutions does, and we can determine

the solution in 1 query. From this simple example, we observe that having a clever strategy

for querying template vertices is important to minimizing the total work needed to find a

solution.

We now present in Algorithm 4 the basic framework by which we perform active learning

for the subgraph matching problem. The algorithm proceeds by alternately filtering the

current candidate sets of each template vertex based on the filtering criteria described in

[MTC21] and querying for a template vertex according to a given strategy.

The QueryStrategy function picks out a template vertex to query and is the central object

of study in this chapter and we will discuss it in detail in Section 4.4. The Match function

69

Algorithm 4 Active Learning Template Query Loop

Input: Template Gt, World Gw, Matching f

C ← Filter(Gt, Gw) ▷ Initialize domains

count← 0

while Not all t in Vt have 1 candidate do

t← QueryStrategy(Gt, Gw, C)

Match(t, f(t))

C ← Filter(Gt, Gw, C)

count← count + 1

Return count

formally associates t and f(t), and then the Filter function eliminates candidates based on

the various filters. Once filtering has reduced the size of the candidate sets of each template

vertex to one candidate, the matching has been determined, and we report the number of

queries made.

We now formally state the problem we will address:

Definition 18 (Optimal Template Query Problem). Given Gt,Gw, candidate sets C(t) for

t ∈ Vt, and a fixed choice of filter, which query strategy will require the fewest template queries

as given by Algorithm 4?

Our metric is the number of queries required to fully determine a subgraph matching. We

envision this as the most expensive operation as it potentially requires expert involvement

to perform the query. In our problem, each template vertex requires the same amount of

work to query, but future work may study an extension of this problem which varies the work

required on a per-vertex basis. We also note that this problem depends on the choice of filter.

Stronger filters (filters which eliminate more candidates) will give us more information and

it is possible that strategies which make better use of this information may perform better

in that context. We will sidestep this problem instead opting to fix the choice of filter to

70

that of the LAD filter introduced in [Sol10].

4.2.1 Associated Theoretical Problems

Within this framework, we can consider two similar theoretical problems given a template

Gt and a world Gw. The first problem involves a candidate solution f ∈ F(Gt,Gw), and we

wish to determine the minimal number of template vertices we need to query to verify that

f is the true solution. This is formalized in the following definitions:

Definition 19 (Solution Verifying Set). Given Gt, Gw and f ∈ F(Gt,Gw), a solution veri-

fying set is a subset A ⊂ Vt such that if we have g ∈ F(Gt,Gw) with g(t) = f(t) for all t ∈ A,

then g = f .

Definition 20 (Minimal Solution Verifying Set Problem). Given Gt, Gw and f ∈ F(Gt,Gw),

what is a solution verifying set for f of minimal size?

In the example in Figure 4.2, we observe that for any of the solutions, we need only to

query one template vertex to verify a given solution. For solutions 1 and 2, we query vertex

1 and for solutions 3 and 4, we query vertex 2.

For the second problem, we do not have a candidate solution. Rather, we wish to know

the minimal size of a subset of Vt for which if we knew the images of these vertices, we could

uniquely identify the images of the remaining vertices. We introduce the following definition

and problem to this end:

Definition 21 (Determining Set). Given Gt and Gw, a determining set is a subset A ⊂ Vt
where for every f, g ∈ F(Gt,Gw) if f(t) = g(t) for t ∈ A, then f = g.

Definition 22 (Minimal Determining Set Problem). Given Gt and Gw, what is a determining

set of minimal size?

For the problem in Figure 4.2, we need to query both template vertices 1 and 2 to

determine the subgraph isomorphism in all cases. If we query template vertex 1 and 1 maps

71

to world vertex C, there are still two SIs which are possible. Similarly, if we query template

vertex 2 and find that 2 maps to world vertex D, there are also two possible SIs. Hence,

the minimal determining set is {1,2} and is of size 2. Note that this is a counterexample to

the statement that the size of the minimal determining set is the maximal size of a minimal

verifying set over all SIs f ∈ F(Gt,Gw).

The decision variants of both of these problems are NP-complete. We will prove that

the solution verification set problem is NP-complete in Section 4.3 by reduction from the

minimum set cover problem. As for the minimal determining set problem, we note that in

the case that Gt = Gw, finding a determining set of a certain size is equivalent to finding a

base for the automorphism group of Gt, which is already known to be NP-complete [Bla92].

In practice, the optimal template query problem is intermediate to both of these theoret-

ical problems as we will generally not have a solution f at our disposal (and almost certainly

not the whole set of subgraph isomorphisms F(Gt,Gw)). However, we may have some prior

information, and in the process of querying template vertices, we will be gathering additional

information which will aid us in determining the ground truth subgraph isomorphism.

4.3 NP-Completeness of the Minimal Solution Verification Set

Problem

In this section, we will present results on the complexity of the optimal template query

problem. We first introduce the set cover problem, which is well known for being NP-

complete [Kar72]. Then we prove that the minimum set cover problem is reducible to

the minimal solution verifying set problem. As the optimal template query problem is an

extension of the minimal solution verifying set problem, it is also as hard as the set cover

problem.

72

4.3.1 Reduction of Minimum Set Cover to Minimum Solution Verification Set

We define the minimum set cover problem as follows:

Definition 23 (Minimum Set Cover Problem). Suppose S is a set S = {1,2, . . . ,m}, and we

have k subsets Si ⊆ S, 1 ≤ i ≤ k. The minimum set cover problem is to find an index set

I ⊆ {1,2 . . . , k} with minimum cardinality, such that S ⊆ ∪i∈ISi.

We assume the problem is non-trivial and has at least one set cover, i.e., ∪ni=1Si = S. We

let m denote the cardinality of S and without loss of generality, we write S = {1, . . . ,m}.

Given an instance of the minimum set cover problem (S,{S1, . . . , Sn}), we will produce an

equivalent instance of the solution verification set problem. The basic idea behind this proof

is to construct a template graph and world graph where each vertex in the template graph

will correspond to one of the subsets Si. Each element of S will correspond to a subgraph

isomorphism which we want to rule out and querying a template vertex will correspond to

ruling out all isomorphisms in that subset.

We choose our template graph to be a complete undirected graph on n vertices and we

denote the vertices by Vt = {1, . . . , n}. We impose that each vertex has a label given by the

labeling function LV (i) = i. We define our world graph Gw = (Vw,Ew) where the vertices are

given by the following expression:

Vw = {(i,0) ∶ i = 1, . . . , n} ∪ {(i, j) ∶ j ∈ Si}. (4.1)

Given two different vertices (i1, j1), (i2, j2) ∈ Vw, there is an edge between them if any of the

three conditions hold: (1) j1 = j2, (2) j1 = 0, j2 ∉ Si1 , or (3) j2 = 0 and j1 ∉ Si2 . We then label

each vertex according to the label function LV ((i, j)) = i.

For an example depiction of these graphs, in Figure 4.3, we show the associated template

and world graphs for the set cover problem where S = {1,2,3} and we have the subsets

S1 = {1}, S2 = {2,3}, S3 = {2}.

73

Figure 4.3: The associated template and world for the set cover problem where S = {1,2,3}

and the subsets are S1 = {1}, S2 = {2,3}, S3 = {2}. The world graph vertex (i, j) can be

found in the ith row and jth column. The numbers represent the vertex labels. The colors

indicate four different subgraph isomorphisms which can be found by picking all vertices of

one color and the purple vertices adjacent to them.

To turn this into a template query problem, we set as our ground truth the mapping

g0 ∶ Vt → Vw which is given by g0(i) = (i,0) for all i ∈ Vt. This is easily verified to be a

subgraph isomorphism.

With our template and world defined in this manner, we note that there are exactly m+1

subgraph isomorphisms which are given by the following proposition:

Proposition 24. f ∶ Vt → Vw is a subgraph isomorphism from Gt to Gw if and only if f = g

or there exists a j ∈ S, f = gj where gj is given by

gj(i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i,0) j ∉ Si

(i, j) j ∈ Si

Proof. First we note that as Gt is complete, all template vertices are adjacent. By construc-

tion, each of the gj are clearly injective and label-preserving. To see that it is edge-preserving,

we consider multiple cases. Suppose we have two different template vertices i1, i2. If j is not

74

in Si1 or Si2 , the images will be (i1,0) and (i2,0) which are adjacent. If j is in exactly one

of them, say Si1 , then by definition, (i1, j) is adjacent to (i2,0). If j is in both, (i1, j) is also

adjacent to (i2, j) by definition.

There are a few cases for mappings that are not g0 or some gj. If we have some template

vertex i which maps to some (i′, j) where i =≠ i′, this map will not be label preserving and

therefore not a subgraph isomorphism. The remaining cases we assume each vertex i maps

to (i, j) for some j. Suppose we have two vertices i1, i2 which map to (i1, j1) where (i2, j2),

respectively, where neither of j1 and j2 are 0. This is not a subgraph isomorphism as (i1, j1)

and (i2, j2) are not adjacent. The only other case to consider that is not g or some gj is when

there is some i1 mapping to (i1, j) with j ≠ 0 and there is some i2 with j ∈ Si2 where i2 maps

to (i2,0). This is also not a subgraph isomorphism as (i1, j) is not adjacent to (i2,0)

Now we observe that if we query template vertex i and find that it maps to (i,0), we

can rule out the subgraph isomorphisms gj for j ∈ Si as these map i to (i, j). To rule out all

subgraph isomorphisms except for g0, we can query vertices i1, . . . , ik whose sets Si1 , . . . , Sik

constitute a set cover of S. Hence, finding a minimal verification set corresponds to finding

a minimal set cover of S.

This construction proves the following theorem:

Theorem 25. The minimum set cover problem is reducible to solving the minimum solution

verification set problem.

This demonstrates that the decision variant of the minimum solution verification problem

(finding a verification set with fewer than N queries) is NP-hard. If we note that any such

set is a certificate for the problem, it follows that the problem is in NP , and so we have the

following theorem.

Theorem 26. The decision variant of the solution verification problem is NP-complete.

75

4.3.2 Solving the Minimal Solution Verification Set Problem

In spite of the fact that determining if there is a solution verification set of a given size is NP-

complete, it may still be possible to solve this problem if the solution space F ∶= F(Gt,Gw)

can be computed and is of a manageable size.

Given F and a solution f ∈ F , we can reduce finding a minimal verification set to the

minimum set cover problem in the following manner. For each subset of template vertices

A ⊂ Vt, we define FA ∶= {g ∈ F ∶ ∃t ∈ A,g(t) ≠ f(t)}, the set of SIs that we can rule out if we

know f(t) for all t ∈ A. A solution verification set is any set A ⊂ Vt for which FA = F ∖ {f}.

We then define ∣Vt∣ sets, S1 = Ft1 , . . . , S∣Vt∣ = Ft
∣Vt ∣

. Our goal is then to determine an index set

I ⊂ {1,2, . . . , ∣Vt∣} of minimal cardinality such that ⋃i∈I Si = F ∖ {f}. This is precisely the

minimum set cover problem as defined in Definition 23.

We can solve the minimum set cover using a binary program where we introduce binary

variables z1, . . . , zk ∈ {0,1} where zi represents whether or not we are using subset Si in our

set cover. We define a matrix A ∈ {0,1}k×m with entries aij for i = 1, . . . , k and j = 1, . . . ,m

where aij = 1 if element j is in subset Si and 0 otherwise. We can then write the optimization

problem we wish to solve with the following formulation:

min
z

k

∑
i=1

zi (4.2)

s.t.
k

∑
i=1

aijzi ≥ 1, j = 1, . . . ,m (4.3)

zi ∈ {0,1}, i = 1, . . . , k (4.4)

where the objective that we are minimizing in (4.2) is exactly the count of how many subsets

we use. The constraints in (4.3) verify that each element in S is in at least one chosen subset.

In practice, the matrix A often has a significant number of duplicate columns which we can

safely drop without changing the solution set of the problem. We can then solve this integer

program using any standard integer program solver; in this work, we use the state-of-the-art

solver Gurobi [Gur18]. Once we have solved this problem, the size of the given solution

76

verifying set can then be used as a lower bound on the number of queries under any given

template query strategy.

4.4 Querying Strategies for Template Vertices

In this section, we will introduce various query strategies for the active learning problem in

subgraph matching.

4.4.1 Local Strategies

The first strategies we consider are those which are based entirely on information from

the immediate neighborhood of a given vertex. These strategies target vertices which are

the least constrained which typically correspond to vertices with low degree or have many

candidates. In [GB21], these strategies are shown to be effective to reduce the solution space

with a limited number of queries. These techniques are as follows:

● Minimum degree: choose the template vertex with the lowest degree.

t = argmin
t∈Vt

deg(t) (4.5)

● Max candidate: Choose the vertex with the largest number of candidates.

t = argmax
t∈Vt

∣C(t)∣ (4.6)

● Max sum of candidates: choose the vertex with the largest sum of the number of

candidates for neighboring template vertices and itself.

t = argmax
t∈Vt

⎛
⎝
∣C(t)∣ + ∑

t′∈N(t)
∣C(t′)∣

⎞
⎠

(4.7)

● Edge entropy: This is the novel technique introduced in [GB21]. Let t ∈ Vt and

t′ ∈ N(t). Then let N tw
t′ be the number of candidates for t′ if t is matched to w ∈ C(t).

77

Figure 4.4: Edge entropy example: Edge A may be mapped to nine possible candidate edges

in the world. There are three cases that the orange vertex can map to. In the first case,

there are three edges connected to the selected world vertex. So the probability in this case

is 1/3. Similarly the probability for the remaining edges are 2/9 and 4/9. Hence, the edge

entropy of this edge is −(13 log(13) + 2
9 log(29) + 4

9 log(49)).

Let N t
t′ = ∑w∈C(t)N tw

t′ . Then we can interpret PEE
t′ (t = w) ∶= N tw

t′ /N t
t′ as an estimate

for the probability that t is mapped to w based on the possible mappings of the edge

with endpoints t′ and t. The edge entropy formula is then given as follows:

EE(v) = ∑
t′∈N(t)

∑
w∈C(t)

−PEE
t′ (t = w) logPEE

t′ (t = w) (4.8)

Figure 4.4 shows a computation of the edge entropy.

4.4.2 Probabilistic Query Strategies

In this section, we introduce strategies for querying which attempt to estimate the probability

with which a template vertex is assigned to a given world vertex. There are a variety of ways

of establishing a probability space on the set of subgraph isomorphisms but the simplest

involves granting all subgraph isomorphisms for a given template graph and world graph

equal probability.

78

With this established, the probability that a template vertex t ∈ Vt and world vertex

w ∈ Vw are paired together is simply the proportion of subgraph isomorphisms where they

are matched:

PSI(t = w) =
∣{f ∈ F(Gt,Gw) ∶ f(t) = w}∣

∣F(Gt,Gw)∣
. (4.9)

If we know certain template vertices are already assigned to world vertices, we can adjust

the above definition to restrict F(Gt,Gw) to those with the known assignments.

Directly computing all subgraph isomorphisms is in many cases computationally in-

tractable owing to the NP-complete nature of simply finding one. Instead of fully enu-

merating all subgraph isomorphisms, we can instead try to approximate the above quantity

based on local structures.

One such structure is the immediate neighborhood. We can attain an approximation for

the number of solutions by asking how many mappings there are from the neighbors of a

template vertex t to the neighbors of a world vertex w. Put concretely, we can define the set

of local subgraph isomorphisms (LSI) for any template vertex, world vertex pair (t,w)

in the following manner:

LSI(Gt,Gw, t,w,C) = {f ∶ N(t)→ N(w) ∶ f injective,

f(t′) ∈ C(t′),∀t′ ∈ N(t)}.
(4.10)

This is precisely the set of subgraph isomorphisms from the neighborhood of t to the

neighborhood of w with the additional requirement that each template vertex has candidates

inherited from the original subgraph isomorphism problem.

We can then define an associated probability:

PLSI(t = w) =
∣LSI(Gt,Gw, t,w,C)

∑w′∈C(t)∣ ∣LSI(Gt,Gw, t,w′,C)∣
. (4.11)

Computing the number of LSIs corresponds to counting mappings between N(t) and N(w)

and ensuring that each template vertex is assigned a different world vertex. In the constraint

programming framework, this is referred to as an alldifferent problem. We can reduce this

79

problem to that of finding the permanent of a 0-1 matrix which lies in the P#-complete

complexity class [Val79] suggesting that even this problem may be difficult to solve efficiently.

In practice, the problem sizes are often small enough and we can exploit symmetry in the

candidate sets to solve these relatively quickly.

In the case that this problem is still too costly to solve, we can compute a crude approx-

imation to the number of LSIs by removing the injectivity requirement in which case we are

counting the number of local edge preserving mappings (LEPM). This quantity is very

easy to count as it is just given by the product of the sizes of each of the candidate sets for

the all neighbors:

∣LEPM(Gt,Gw, t,w,C)∣ = ∏
t′∈N(t)

∣C(t′) ∩N(w)∣. (4.12)

Then our probability is defined in the same manner as before:

PLEPM(t = w) =
∣LEPM(Gt,Gw, t,w,C)

∑w′∈C(t)∣ ∣LEPM(Gt,Gw, t,w,C)
∣. (4.13)

We can also obtain a rough approximation of the number of SIs by instead considering

EPMs for a spanning tree of the template. We denote the number of EPMs between a

spanning tree T of template Gt world Gw where t is mapped to w by STEPM(Gt,Gw, t,w, T).

We then have an associated probability computed in the same manner:

PSTEPM(t = w) =
∣STEPM(Gt,Gw, t,w, T)∣

∑w′∈C(t) ∣STEPM(Gt,Gw, t,w′, T)∣
. (4.14)

Once we have computed the associated probabilities, we can devise a variety of strategies

for selecting query vertices. There are well-established strategies in active learning (surveyed

here [Set12]) and three popular choices for determining queries are minimum confidence

sampling, margin sampling, and maximum entropy sampling. We define these as follows:

● Minimum Confidence Sampling : Select the template vertex which is least confident

about its most likely assignment.

t = argmin
t∈VT

max
w∈C(t)

P (t = w). (4.15)

80

● Margin Sampling : Select the template vertex whose two most probable assignments

are closest together in probability. If w∗ = argmaxw∈C(t)P (t = w), then this is given by

t = argmin
t∈VT

(P (t = w∗) − max
w∈C(t),w≠w∗

P (t = w)) . (4.16)

● Maximum Entropy Sampling : Select the template vertex which maximizes entropy.

t = argmax
t∈VT

− ∑
w∈C(t)

P (t = w) logP (t = w). (4.17)

Results from preliminary experiments from the biochemical reactions dataset (as in-

troduced in Table 4.1) are depicted in Figure 4.5. In these experiments, we compare methods

by the average amount of queries needed to uniquely determine a solution for a random se-

lection of subgraph matching problems from this dataset. We observe that the maximum

entropy and minimum confidence methods have similar performances with the minimum

margin method doing worse for each method for computing probability. As these meth-

ods have negligible differences on average, we will primarily focus on the maximum entropy

approach here.

4.4.3 Symmetry in Active Learning

Another approach for developing a query strategy involves analyzing the symmetry apparent

in the subgraph matching problem. Symmetry is well-known for confounding general combi-

natorial problems by dramatically expanding the solution space. Algorithms which exploit

symmetry [BCL16, RW15, HLL13, NYG19] can significantly reduce search time (sometimes

by an exponential factor for highly symmetric problems). These algorithms generally iden-

tify vertices which are effectively interchangeable in that exchanging them in a subgraph

isomorphism will produce another valid isomorphism.

As discussed in Chapter 3, there are various notions of symmetry which can be discussed

in the context of the subgraph matching problem. The simplest is structural equivalence

and two vertices are deemed structurally equivalent when they have the exact same set of

81

Figure 4.5: Average Number of queries needed to determine a solution to the subgraph

matching problem on the biochemical reactions dataset based on the approximation used

for the number of SIs and the uncertainty quantification method. Error bars depict the

standard deviation in the number of queries.

82

neighbors (excluding each other). These vertices can be interchanged in any isomorphism and

the new mapping will also be an isomorphism. A more complicated notion which includes

structural equivalence is automorphic equivalence. Two vertices are automorphically

equivalent if there is an automorphism ϕ ∶ V → V on the graph mapping one vertex to the

other. Then given this automorphism ϕ and any subgraph isomorphism f , we can construct

a new subgraph isomorphism f ○ ϕ.

In the context of the active learning problem, symmetry can be an important factor

to consider when deciding which vertices to query. If we have a group of M structurally

equivalent template vertices, then for any subgraph isomorphism f , we can construct M !−1

additional isomorphisms by simply permuting the images of these vertices. All of these

isomorphisms are valid based on the information apparent in the problem. To discern which

permutation is the true solution necessarily requires querying at least M −1 of these vertices

(the last may be determined by process of elimination).

This discussion naturally leads to the following proposition:

Proposition 27. Suppose we have a satisfiable subgraph isomorphism problem with template

Gt = (Vt,Et) and world Gw = (Vw,Ew). Let Vt = ⋃N
i=1 Si partition the template vertices into

structural equivalence classes. Then at least ∑N
i=1(∣Si∣ − 1) template queries are needed to

identify a unique solution.

Discerning between isomorphisms which are generated by applying an automorphism

to the template graph is more challenging. Relevant to this task is the notion of a base

of the automorphism group of a template graph. A base of an automorphism group is

a sequence of vertices (v1, v2, . . . , vn) such that for any pair of automorphisms ϕ1 ≠ ϕ2, the

two sequences (ϕ1(v1), ϕ1(v2), . . . , ϕ1(vn)) and (ϕ2(v1), ϕ2(v2), . . . , ϕ2(vn)) are distinct. This

definition implies that the values of ϕ on v1, . . . , vn uniquely identify ϕ. Hence, to distinguish

isomorphisms generated by the automorphism group would involve querying all vertices of

a base of the automorphism group.

83

The problem of generating a base for the automorphism group is difficult but the library

nauty [MP14] in the process of finding generators for the automorphism group of a general

graph will also find a base. Querying vertices which constitute a base for the automorphism

group then may be a useful strategy which exploits symmetry.

4.5 Experiments

In this section, we describe a series of experiments performed on a collection of real and

synthetic single channel subgraph isomorphism problems. We consider ten different strategies

for querying vertices which are listed as follows:

1. MC (Most Candidates): Vertex with the most candidates as in (4.6).

2. MD (Minimum Degree): Vertex with the lowest degree as in (4.5).

3. MNCS (Maximum Neighbor Candidate Sum): Vertex whose neighbors have the most

candidates as given by (4.7).

4. ME (Maximum Entropy): Vertex given by (4.17) with PSI defined as in (4.9).

5. MLE (Maximum Local Entropy): Vertex given by (4.17) with PLSI defined as in (4.11).

6. MLE∼ (Maximum Local Entropy Approximation): Vertex given by (4.17) with PLSH

defined as in (4.13).

7. R (Random): Random vertex.

8. EE (Edge Entropy): Vertex with the highest edge entropy as defined in (4.8).

9. STE (Spanning Tree Entropy): Vertex given by (4.17) with PSTEPM as defined in

(4.14).

10. O (Optimal): The optimal vertex to query as given by solving (4.2).

84

Template

Dataset # Instances # Vertices # Edges Density

Min Max Min Max Min Max

LV-easy 26 10 435 10 2520 0.027 1.000

SI-easy 446 40 777 43 2047 0.006 0.201

biochemical-easy 739 9 68 8 90 0.036 0.417

images 10 5 11 6 13 0.236 0.600

LV-hard 246 10 280 10 1848 0.002 1.000

SI-hard 249 40 518 41 1669 0.006 0.197

biochemical-hard 554 9 184 8 355 0.021 0.423

phase 47 30 30 128 387 0.294 0.890

Table 4.1: Template Graph Statistics from Benchmark Datasets Used in Active Learning

Experiments

In the event that multiple vertices tie on one of these criteria, the vertex with minimal index

which has not been queried yet will be selected.

For our study, we will again consider the benchmark dataset for subgraph matching

problems compiled by Solnon [Sol19]. For our experiments, we only consider problems for

which there are at least ten subgraph isomorphisms. From these, we divide our datasets into

“easy” and “hard” instances. Easy instances are those for which we can fully enumerate the

solution space and therefore can compute the optimal amount of queries as in Section 4.3.

Hard instances are the subgraph matching problems where we do not have the full solution

space and as such we cannot compute the number of queries using the O or ME methods.

We also include in this set, problems for which the MLE does not find terminate within ten

minutes. A compilation of basic graph statistics for these datasets is presented in Tables 4.1

and 4.2.

For these problems, we select ten random solutions from the solution space for a given

subgraph matching problem. For the easy instances, this is uniformly chosen over all so-

85

World

Dataset # Vertices # Edges Density

Min Max Min Max Min Max

LV-easy 10 2000 45 2592 0.001 1.000

SI-easy 200 1296 299 4377 0.004 0.098

biochemical-easy 9 386 12 886 0.012 0.423

images 4838 4838 7067 7067 0.001 0.001

LV-hard 42 6671 114 209000 0.001 1.000

SI-hard 200 1296 299 7788 0.004 0.191

biochemical-hard 25 386 44 886 0.012 0.160

phase 150 150 4312 8740 0.386 0.782

Table 4.2: World Graph Statistics from Benchmark Datasets Used in Active Learning Ex-

periments

lutions, and for hard instances, it is randomly chosen from a selection of solutions by the

Glasgow solver [MPT20] within one minute. Then for each solution, we proceed using the

framework described in Algorithms 4. We count the number of queries made and then record

the average number of queries required for a given subgraph isomorphism problem for each

querying strategy.

The results for the easy data sets are presented in Figure 4.6. We also consider the

average percent gap between a given method’s number of queries and the best method for

a specific problem. A bar chart of this data is presented in Figure 4.7. We observe that

the ME method is nearly optimal for the biochemical reactions and SI datasets and requires

20% more guesses on the other datasets. The next best methods are MLE, MLE∼, and STE

which all approximate the ME method and require between 15 and 40% more guesses across

the datasets. Empirically, there does not seem to be much difference in using MLE or the

approximation MLE∼ with MLE∼ even outperforming MLE on certain datasets. The EE

and MNCS methods on average perform worse than picking vertices at random. From the

86

disparity between the optimal and the other methods, there remains significant work to be

done to develop computationally tractable methods which can close this gap.

The average number of queries for the hard instances is presented in Figure 4.8 and the

average percent additional queries needed over the best method is presented in Figure 4.7.

As we do not have the full solution set computed, we cannot consider the O or ME methods,

and we also exclude the MLE method due to its long computation time. These problems

require significantly more queries, and we observe less variation in the number of queries

across methods. On average, we observe that the MLE∼ and STE methods perform the best

with MC not too far behind. The random method on average requires 10-15% more queries

over the best of these methods typically.

As discussed in Section 4.4.3, graph symmetry plays a significant role in subgraph match-

ing and neglecting it may confound some of the methods presented in this section. The

biochemical reactions data set is a highly symmetric data set, and as a result of Propo-

sition 27 necessarily require a high number of queries to distinguish a solution. For some

query strategies, they systematically avoid the structurally equivalent vertices leading to high

query counts. We observe this behavior in Figure 4.10 where the template graph from the

biochemical reactions dataset has multiple sets of structurally equivalent vertices. The ME

strategy which picks out the structurally equivalent vertices to query first finds the ground

truth solution after only seven queries whereas the MLE strategy requires 20 queries. The

reason for the significantly higher count comes from how the MLE approach leaves these

structurally equivalent vertices for the end as other vertices have higher local entropy values

at the stage in which they are queried.

In Figure 4.11, we compare two equivalence-based improvements on the MC strategy to

the base MC approach. As discussed in Section 4.4.3, the structural equivalence approach

queries all but one member of each structural equivalence class before considering other

template vertices. The automorphic equivalence approach first queries template vertices

which constitute a base of the automorphism group. As can be seen in the figure, these

87

Figure 4.6: Bar chart depicting the average number of queries for the easy problems in Table

4.1. Error bars depict the standard deviation. The methods listed are described in Section

4.5.

88

Figure 4.7: Bar chart depicting the average percent additional queries over the optimal

amount for the easy problems in Table 4.1. Error bars depict the standard deviation. The

methods listed are described in Section 4.5.

89

Figure 4.8: Bar chart depicting the average number of queries for the hard problems in Table

4.1. Error bars depict the standard deviation. The methods listed are described in Section

4.5.

90

Figure 4.9: Bar chart depicting the average percent additional queries over the best query

strategy for the hard problems in Table 4.1. Error bars depict the standard deviation. The

methods listed are described in Section 4.5.

91

Figure 4.10: Two separate query strategies applied to an example template graph from the

biochemical reactions dataset. The numbered vertices indicate the order in which template

vertices are queried. On the left, the MLE query strategy is used, and on the right the ME

query strategy is used. Non-gray vertices of the same color are structurally equivalent.

92

Figure 4.11: Average number of queries made before a solution is found on various single

channel datasets when using the MC method with equivalence-informed queries.

equivalence-informed improvements on the base methods can make significant improvements

on the average number of queries required to determine a solution. On average, we can save

nearly half a query for particular symmetric datasets like the biochemical reactions and SI

graphs, and on particular examples as in Figure 4.10, using symmetry is essential.

93

4.6 Conclusion

In this chapter, we present a rigorous mathematical treatment of the active learning query

problem for subgraph matching where only one ground truth solution exists. We prove that

finding the optimal template vertices to query to be NP-complete even if the solution space

and the ground truth are known. We present several strategies for determining template

queries, some based on simple graph structure and others which attempt to estimate the

probability of matching template and world vertices. We design an inexpensive and fast

method to estimate the solution space based on the spanning tree. We assess our results on

benchmark data and compare the performance of different strategies on single channel and

multichannel network datasets with varying graph size and number of solutions. Our exper-

iments show that for single channel networks, the maximum entropy strategy which requires

the calculation of the solution space is nearly optimal and other methods which approximate

this approach are close but with much room for improvement. For large multichannel graphs,

several methods have similar behavior, with the spanning tree entropy method performing

best on average.

There are many open problems which offer great potential directions for future research.

One obvious one is the consideration of diverse active learning strategies. For example, the

information of query could be related to world graph vertices rather than template graph.

Likewise we do not consider combinations of different strategies in sequence but rather just

consider iterations of a single strategy. Extensions on the subgraph isomorphism problem is

another possible direction for future research. We can introduce noise to the problem and

study the active learning for inexact subgraph matching problem [TMY20, KX19, SPP19].

We also only considered sequential queries. Future work could examine batch active learning

scenarios - especially in the case of large complex graphs or queries done on the world graph

rather than the template.

94

CHAPTER 5

Modeling design and control problems involving neural

network surrogates1

5.1 Introduction

In this chapter, we will introduce and analyze the second topic of the thesis: formulating

optimization problems involving neural network surrogates. We are interested in solving

general optimization problems that include deep neural networks (DNNs) that are used as

surrogate models of complex functions (e.g., physical processes [AB19], classification schemes

[KSH12, SZ14, HZR16]). In particular, we consider optimization problems of the form

minimize
x

f(DNN(x), x) subject to c(DNN(x), x) ≤ 0, x ∈X, (5.1)

where f and c are smooth functions representing the objective function and constraints,

respectively; DNN(x) ∈ Y ⊂ Rm is the output of a DNN at x (which we assume to have

been previously trained on suitable data); and x are the optimization variables. X ⊂ Rn and

Y ⊂ Rm are compact sets that may include integer restrictions and represent the input and

output spaces, respectively. We consider feedforward neural networks in this paper that are

composed of a sequence of multiple layers of neurons. The values of neurons in layer ℓ, xℓ

are a nonlinear function (the activation function) applied to a linear transformation of the

values in the prior layer:

xℓ = σ(W ℓTxℓ−1 + bℓ), ℓ = 1, . . . , L. (5.2)

1This chapter is adapted from [YBL22] and is reproduced with permission from Springer
Nature

95

We have x0 = x, xL = DNN(x), L is the number of layers, W and b are weights determined

by a training procedure, and σ is the activation function applied componentwise. Unless

otherwise specified, we will take σ to be the ReLU function: ReLU(x) =max{x,0}.

An example of an optimization problem we wish to solve is to minimize the output of

a neural network regressor that predicts the quantity of emissions from automobile engine

specifications. In this case X would be the set of existing automobile specifications, the

constraints c would be constraints to ensure the engine is realistic, and the objective would

be a function of the emissions or engine performance. We will discuss this problem in detail

in Section 5.2.1.

To arrive at a tractable form of (5.1), we make the following assumptions.

Assumption 1. We assume that the following conditions are satisfied for problem (5.1):

1. The objective function, f ∶ Rn+m → R, and the constraint functions, c ∶ Rn+m → Rp, are

twice continuously differentiable convex functions (in both arguments).

2. The sets X ⊂ Rn, Y ⊂ Rm are convex and compact.

The most restrictive assumption is the convexity assumption. We can relax this assump-

tion by leveraging standard global optimization techniques (see, e.g., [Sah96, TS02, Bel20]),

at the expense of making the reformulated problem harder to solve. We note, that the con-

vexity assumption is only used in Section 5.4.1 to show that the reformulation with binary

variables results in a convex MINLP. The smoothness assumption on f and c can be relaxed

to Lipschitz continuity by using subgradients, and the compactness assumption is typically

satisfied as long as x are constrained by bounds or the constraint function has compact level

sets. Below, we consider deep neural networks with ReLU activation functions that satisfy

this assumption.

96

5.1.1 Outline and Contributions

We start by discussing three applications that employ DNN surrogates within an optimization

problem such as (5.1): (a) the minimization of emissions in an engine design problem (as in

[AB19]), (b) the generation of optimal adversarial examples to “fool” a given classifier (as in

[FJ18]), and (c) the optimization of the pump configuration for oil (as in [GA19]). We develop

a warmstart heuristic for the engine design problem that generates good initial guesses from

the training data and helps us overcome the challenges of the nonconvex formulation. We

also show how to add constraints that restrict the optimization problem to search only near

where existing training points can be added.

Next, we demonstrate empirically that simply including a ReLU DNN within an opti-

mization problem can lead to poor convergence results. In particular, we have developed a

new nonlinear constraint for JuMP [DHL17] that allows us to directly include DNNs within

an optimization model specified in JuMP. We then give a compact characterization of sta-

tionarity of the embedded formulation of our optimization problem.

Next, we consider alternative formulations and show that DNNs that use purely ReLU

activation functions can be formulated as mixed-integer sets, building on [FJ18, AHT19]. We

can then formulate (5.1) equivalently as a convex mixed-integer nonlinear program (MINLP),

which we refer to as the mixed-integer program (MIP) formulation. We also introduce a new

formulation that results in a nonconvex nonlinear program (NLP) with complementarity

constraints. We refer to this as the mathematical program with complementary constraints

(MPCC) formulation. We prove this formulation has stationarity conditions equivalent to

the embedded formulation. Our reformulations involve a lifting into a higher-dimensional

space in which the MINLP problem is convex.

We show empirically for each of our applications that for moderately sized machine

learning (ML) models the resulting programs can be solved by using state-of-the-art MINLP

and NLP solvers, making optimization problems with ML models tractable in practice. We

97

demonstrate that using the MIP formulation, we can find provably optimal solutions for

small problems. Using the embedded and MPCC formulation, we show that we can address

significantly larger networks at the cost of guaranteeing only locally optimal solutions, and

we showcase scenarios where the MPCC formulation outperforms the embedded formulation

in terms of both optimal value found and consistency in convergence to a solution.

Throughout this chapter we assume that the deep neural network has been trained and

is fixed for the optimization, and we do not consider the question of updating the neural

network weights during the optimization loop. One limitation of our approach is that we

use standard MINLP solvers to tackle the reformulated MINLP, which limits the size of the

neural network, DNN(x), that can be used in the optimization.

5.1.2 Related Work

Prior approaches to optimization over neural networks using MIP formulations include

[FJ18, CNR17, DJS18, KGD18, SR20, TXT17]. These approaches primarily model the

piecewise ReLU constraint using standard big-M modeling tricks. They generally use the

same basic formulation, but each augments the solve by adding methods to tighten the

big-M constraints [FJ18, TXT17, GA19], decomposing the problem into smaller problems

[KGD18], or adding local search routines [DJS18]. Anderson et al. [AHT19] provide an in-

depth overview of how to strengthen these models to an ideal formulation with exponentially

many constraints, as well as a method to separate in linear time. Lombardi et al. [LMB17]

present a MIP formulation as well as constraint programming and local search approaches

to embedding neural networks in optimization problems. Bergman et al. [BHB21] have

produced a modeling framework which incorporates embedded neural networks and logistic

regression models as MIPs in optimization problems.

Some other approaches to these problems using methods from MINLP have been tried.

Cheon [Che21] solves an inverse problem over ReLU constraints using a method inspired

outer-approximation approaches, but without global optimality guarantees. Katz et al.

98

[KBD17] use an approach from satisfiability modulo theory to address an optimization prob-

lem over neural networks. Scheweidtmann and Mitsos [SM19] use a MINLP approach in-

volving McCormick relaxations.

One major focus of these optimization problems is on testing the resilience of neural

networks against adversarial attack [CW17]. This involves either maximizing a notion of

resilience [CNR17] or finding minimal perturbations needed to misclassify an image [FJ18].

Some work has also been done in using optimization to visualize features corresponding to

neurons [FJ18] and for surrogate optimization in the context of optimizing the production of

a set of oil wells [GA19]. Other applications involve the use of neural networks as surrogates

in the context of policy design for reinforcement learning [RCA19, DAT20]. A recent paper

by Papalexopoulos et al. [PTA21] discusses the use of ReLU neural network surrogates for

the purposes of black-box optimization.

5.2 Modeling Optimization Applications Involving Neural Net-

work Surrogates

In this section we describe three optimization models that make use of neural-network sur-

rogates, and we discuss some of the challenges that arise.

5.2.1 Optimal Design of Combustion Engine

Automobile engine operation is typically modeled by using highly intensive physics-based

simulation code, which even on powerful computers can take hours just to model even a short

drive. Hence, modeling the evaluation of this simulation code by using a neural network

surrogate model can produce significant time savings, at the cost of producing slightly less

accurate results. A study examining this approach is documented in [AB19].

Given a trained neural network, we could formulate several optimization problems an-

99

swering questions related to the operation of an engine on a given commute. The problem

we consider is that of minimizing emissions over the course of a given drive. The resulting

solution will then be both the engine type and the drive style (e.g., RPM at all times in

the drive) that produces the most environmentally efficient commute. The following section

demonstrates how such a problem can be formulated.

5.2.1.1 Simple Engine Design and Control Problem

Suppose we have a trained DNN that predicts engine behavior based on engine specifications

and driving parameters, given in Table 5.1. The DNN is trained by using 64 trips each split

into 1,500 observations (25 minutes observed at second intervals). This training data was

provided by the authors of [AB19] and was generated in a comprehensive physics simulation.

250,000 separate cycles were produced and a representative set of 64 cycles ranging over

the entire parameter space were sampled using Latin hypercube sampling. The authors of

[AB19] report that with a configuration of 6 hidden layers of 16 nodes each, the resulting

mean absolute percent test error was about 1%.

Input Parameter Output Parameter

fuel injection (g) /s nitrogen oxide, NO /s

engine RPM /s carbon monoxide, CO /s

compression ratio torque /s

Table 5.1: Input/output parameters of engine DNN model. Time-dependent parameters are

shown with time per second (/s).

The problem we propose to solve is the optimal design and control of an engine for a

given 25-minute trip. We will use a prescribed torque profile as a surrogate for the trip

characteristics and minimize a weighted sum of NO and CO output. We have the following

design variables that are input to the DNN: fuel injection, f ; engine RPM, r; and compression

ratio, c. Note that f and r are characteristics that change over time whereas c is an engine

100

parameter that is fixed for the full drive. We also have variables NO and CO that represent

nitrogen oxide and carbon monoxide emissions produced by the engine, as well as a variable

torque that indicates engine torque. Each of these quantities is predicted by the neural

network for each time interval of the drive.

Formally, we state the following optimal design and control problem over the time horizon

t = 1, . . . , T (where T is the number of time intervals):

minimize
f,r,c,CO,NO,Torque

T

∑
t=1
(NOt + λCOt)∆t min. emissions

subject to Torquet ≥ PrescribedTorquet, ∀t = 1, . . . , T trip profile

(NOt,COt,Torquet) = DNN (ft, rt, c) DNN constraints

ft ∈ [fmin, fmax], rt ∈ [rmin, rmax], c ∈ [cmin, cmax] bounds on controls.

(5.3)

We are using 1,500 time intervals (corresponding to T = 1500 seconds in a 25-minute

drive). As written, we will have 2T + 1 continuous control variables in addition to the 3T

output variables predicted by the DNN for a total of 5T + 1 continuous variables in this

formulation.

We envision this problem to require only a single solve before a prospective drive. Mod-

ifications could be made to this formulation to adapt it to an online setting where control

parameters are updated during a drive, but the methods developed in this paper address the

former case.

Our model has a separate DNN evaluation for each time interval t, meaning each evalu-

ation engenders different neural network activations. Because of the presence of the design

variable c, which is independent of t, this problem does not decompose into individual time

steps. One may construct a bilevel optimization problem wherein on the upper level we

decide c and other engine-level variables of interest and on the lower level we determine the

drive-specific variables that change over time by solving T separate optimization problems

of much smaller size. This approach will not be addressed in this paper.

101

5.2.1.2 Convex Hull Constraints

In addition to the constraints that encode the evaluation of a neural network, constraints

must be added to ensure that the solver does not extrapolate significantly from the training

data. Without these constraints, the optimization routine may find that the optimal solution

resides in an area for which the neural network has not learned the behavior of the modeled

function, leading to a solution that, while optimal, does not reflect the true function behavior

and may be nonsensical. In fact, in an earlier implementation without the convex hull

constraint, we observed that the optimal design was obtained for an engine that produced

negative emissions. We rectify this error by introducing constraints that constrain the input

data to our model to be within the convex hull of the input training data.

In our experiments we examined how the optimization models operated with simple box

constraints that bounded the input by the extremal values of the training data, as well as

with the convex hull constraints. Figure 5.1 shows the location of fuel mass and RPM for

solutions computed for a sample neural network trained on our data set compared with the

actual training data. The corresponding solutions are displayed in Figure 5.2.

Figure 5.1: Location of training data and optimal solution for an engine design problem on

a neural network with 1 hidden layer of 16 nodes. On the left the input is constrained by

box constraints and on the right by convex hull constraints.

102

In our setting, this approach works well, because the convex hull of our data admits a

small number of faces, owing to the shape of the training data. In general, the number of

faces of the convex hull of n points can grow very quickly as n grows. In the worst case,

where the convex hull is a cyclic polytope [Gal63], the number of facets can grow as fast

as n⌊
d
2
⌋. In these scenarios, alternative approaches would be required perhaps involving the

collection of a representative sample.

Without the convex hull constraints, the optimal solution of neural network evaluation

appears to wander off to an area for which no training data exists. This situation immediately

creates problems in the computed solutions, which are obviously nonsensical because they

involve negative emissions. This suggests that our neural network does not generalize well

to data that has not yet been seen by the network. On the other hand, constraining the

input data to be within the convex hull has the effect of producing solutions that look like

the training data.

Figure 5.2: Optimal configuration for each time step when using box constraints (left) and

using convex hull constraints (right). The red lines indicate the drive cycles used to train

the neural network, and the blue lines indicate the optimal solution.

Unfortunately, these constraints have the effect of restricting possible solutions to those

that are close to the training data, when the function being modeled may have a minimum

that appears far from the training data. A happy medium between restricting the data to

103

the bounds of the training data and unrestricted optimization might be adjusting the given

convex hull bounds by a small quantity ϵ. In this way, we could allow for a small amount of

exploration in a region for which we do not have training data, but do not extrapolate too

much from our known data. We do not consider this modification in this paper.

To find a global optimum of the original function would necessarily involve an alternating

approach wherein the surrogate model was optimized and then this solution was queried

against the modeled function for new data to be added to the surrogate. This type of

approach is addressed in [QHS05] and a similar approach is implemented in [PTA21].

If we fix the compression ratio, we can plot the contours of the objective function as a

function of fuel mass and RPM. Figure 5.3 shows the contours of the objective function for

a 5-layer DNN. We observe that this objective function is highly nonconvex in the reduced

space of the original variables but it is convex in the lifted MINLP space according to

Proposition 32. We also observe that the convex hull constraint fulfills a second function by

acting as a mild convexifier of the problem by restricting the variables to a small sliver of

the feasible set.

Figure 5.3: Contour plot for the NO output of a 5-layer DNN.

104

5.2.1.3 Warmstarting the Problem

Seeding a MILP or NLP solver with a feasible solution of high quality can significantly

reduce the solve time. For MILP solvers, a feasible solution with sufficiently low value

can be used to prune subproblems with higher objective value in a branch-and-bound tree

search. For NLP solvers, beginning with a feasible solution avoids the need to search for

a feasible solution, and the choice of a good solution may lead to quicker convergence to

better locally optimal solutions. R3.2Being in the neighborhood of good solutions can lead

to fewer iterations needed to reach the good solutions and we observe this behavior in the

experiments in Section 5.5.1.

For the optimal engine design problem, we can use our collection of training data to

find parameterizations of the engine that exceed the desired torque value but also have a

low amount of emissions produced. We do not directly work with the output data from the

training set but rather with the output from the neural network applied to the input data

since this is what is constrained.

To produce a high-quality solution is then a matter of fixing the parameters that must

remain constant for the entire drive (i.e., the compression ratio) and then, from the training

data with these fixed parameters, choosing the remaining controls so as to minimize emissions

while still exceeding the desired torque for each time step. The remaining variable values

correspond to activation of each neuron in the neural network when applied to the input data

and hence must be set to exactly those values. This procedure is summarized in Algorithm 5.

5.2.2 Adversarial Attack Generation

Our next problem involves the resilience of neural networks to incorrect classifications. Deep

neural networks have the immensely useful property of being able to uniformly approximate

any function in a certain general class, but at the cost of being fairly opaque in terms of

how the underlying machinery works. This opacity may mask unpredictable behavior that

105

Algorithm 5 Algorithm for finding a warmstart solution to (5.3)

Input DNN, compression ratio c0, training data X , torque profile TorqueProfilet, T

Select subset of training data X̃ with compression ratio c0

Let Ỹ = DNN(X̃)

for t = 1, . . . , T do

Let NO,CO,Torque = Ỹ

Let T be the set of times t where Torquet ≥ TorqueProfilet
Let τ = argmint∈T (NOt + λCOt)

Let xt = X̃τ

Set remaining variable values from activation of DNN when applied to xt for all t.

makes these neural networks susceptible to attacks that disrupt the correct classifications

observed on training and testing data. Szegedy et al. [SZS14] first demonstrated that al-

most imperceptible perturbations of image data may lead to misclassifications, in essence

demonstrating key instabilities in neural networks. This work has led to a number of pa-

pers [CW17, CNR17, FJ18] developing algorithms that produce estimates of the resilience

of neural networks, estimating how close an incorrectly classified image can be to a correctly

classified one.

The central problem of interest as introduced by [SZS14] is described as follows. Given a

classifier DNN, an image x ∈ [0,1]m, and a desired classification label l, we have the following

problem:

minimize
z

∥x − z∥

subject to DNN(z) = l

z ∈ [0,1]m,

(5.4)

where ∥ ⋅ ∥ is a suitable norm. Essentially, we ask for an image of minimal distance to

image x that is classified with a different label. We remark that this particular problem is

distinct from the other problems discussed in this paper as the actual object of interest is

the neural network itself, and susceptibility of this surrogate to malicious data manipulation.

106

We include this as yet another example of an optimization problem involving an embedded

neural network as well as a study into how we may analyze the robustness of a neural network

surrogate using our three different methods.

We add additional constraints (see, e.g., [FJ18]) to ensure that this is a very confident

classification. Specifically, we replace the constraint DNN(z) = l with a constraint asking

that the activation for label l is some factor larger than the activation for each of the other

labels; in other words, if yL is the final layer, we have yL,l ≥ αyL,i for i ≠ l. Often the final

layer is given by applying a softmax function, namely,

yL,i = σ(z1, . . . , zn)i = exp(zi)/
n

∑
j=1

exp(zj), (5.5)

where the produced values yL,i effectively represent probabilities that the image is a given

label i. In this case we can represent this constraint in terms of zi as

σ(z)l/σ(z)i ≥ α⇔ exp(zl − zi) ≥ α⇔ zl ≥ zi + log(α),

which is a linear constraint. Then if we write yL = DNN(z) as the final layer prior to the

softmax layer, we will have the following problem:

minimize
z

∥x − z∥

subject to yL = DNN(z)

yL,l ≥ yL,i + log(α), i ≠ l

z ∈ [0,1]m.

(5.6)

We observe that the formulation in (5.6) is easily extendable and that constraints on

the allowable perturbations can augment the formulation. For example, we may restrict

the magnitude of the perturbation to any given pixel by restricting ∣xi − zi∣ ≤ ϵ for all i.

Alternatively, we may be interested in continuous perturbations and therefore restrict ∣(xi −

zi) − (xj − zj)∣ < ϵ for all pixels j adjacent to pixel i. Constraints of this sort have been used

to extend adversarial attack optimization problems in [FJ18].

107

Set Description

N Set of nodes in the network.

Nw Subset of well nodes in network.

Nm Subset of manifold nodes in the network.

N s Subset of separator nodes in the network.

E Set of edges in the network.

Ed Subset of discrete edges that can be turned on or off.

Er Subset of riser edges.

Ein
i Subset of edges entering node i.

Eout
i Subset of edges leaving node i.

C Oil, gas, and water.

Table 5.2: Sets used in oil well optimization problem

5.2.3 Surrogate Modeling of Oil Well Networks

The next example of an optimization problem with an embedded neural network involves

the operation of an offshore oil platform and is taken from [GA19]. The full optimization

problem is reproduced in Figure (5.4), and the associated sets are given in Table 5.2.

In this problem we have a network comprising three sets of nodes: the wells Nw that are

the sources of oil, water, and gas; the manifolds Nm that are connected to wells and mix

incoming flows of oil, water, and gas; and the separators N s that are the sinks of all the flow.

Each well is connected to each manifold by a pipeline in Ed that may be turned on and off.

Each manifold is then connected to a unique separator by a riser in Er. An example network

with 8 wells, 2 manifolds, and 2 separators taken from [GA19] is depicted in Figure 5.5.

Our goal in this problem is then to optimize the flow rate of oil to each of the sinks.

Various physical and logical constraints are used to encode the operation of this flow network.

(5.7b) ensures that the flow into each node matches the flow out of each node. (5.7e) and

108

maximize
y,q,p,∆p

∑
e∈Er

qe,oil (5.7a)

subject to ∑
e∈Ein

i

qe,c = ∑
e∈Eout

i

qe,c, ∀c ∈ C, i ∈ Nm (5.7b)

pj = DNNe(qe,oil, qe,gas, qe,wat, pi), ∀e = (i, j) ∈ Er (5.7c)

∆pe = pi − pj, ∀e = (i, j) ∈ Er (5.7d)

−Me(1 − ye) ≤ pi − pj −∆pe, ∀e = (i, j) ∈ Ed (5.7e)

pi − pj −∆pe ≤Me(1 − ye), ∀e = (i, j) ∈ Ed (5.7f)

∑
e∈Eout

i

ye ≤ 1, ∀i ∈ Nw (5.7g)

yeq
L
e,c ≤ qe,c ≤ yeqUe,c ∀c ∈ C, e ∈ Ed (5.7h)

pLi ≤ pi ≤ pUi , ∀i ∈ N (5.7i)

∑
e∈Eout

i

qe,oil = DNNi(pi), ∀i ∈ Nw (5.7j)

∑
e∈Eout

i

qe,gas = ce,gor ∑
e∈Eout

i

qe,oil, ∀i ∈ Nw (5.7k)

∑
e∈Eout

i

qe,wat = ce,wor ∑
e∈Eout

i

qe,oil, ∀i ∈ Nw (5.7l)

pi = psi = const., ∀i ∈ Nw (5.7m)

ye ∈ {0,1},∀e ∈ Ed (5.7n)

Figure 5.4: Oil well optimization problem with deep neural network surrogate functions.

109

Figure 5.5: Example oil well network with 8 wells, 2 manifolds, and 2 separators, from

[GA19].

(5.7f) ensure that if a pipeline is open, then the difference in pressure between the two nodes

is actually represented by ∆pe. (5.7g) ensures that each well routes its flow only to a single

manifold. (5.7h) bounds the flow rate of each material when pipelines are active and forces

the rate to zero when inactive, whereas (5.7i) bounds the pressure at each node. (5.7k) and

(5.7l) establish the expected ratio of flow rates of each material.

The neural networks DNNe and DNNi appear in the problem in (5.7c) and (5.7j) and

represent nonlinear functions that predict the separator pressure and outgoing oil flow rate

based on incoming flow rate and pressure, respectively. There is one neural network DNNe

for each riser edge e and one neural network DNNi for each well i. Each is trained separately;

and for our particular configuration of the network, we have 2 risers and 8 wells for a total

of 10 separate neural networks that are encoded into our problem.

Among these three problems, with the exception of the DNN constraints, the engine

design problem has a linear objective with linear constraints on real variables, the adversarial

attack problem has a quadratic objective with linear constraints on real variables, and the

oil well problem has a linear objective with linear constraints on a combination of real and

integer variables. The introduction of neural network constraints to the problem introduces

the complexity of nonlinear (and nondifferentiable) constraints. Our approach to handle

110

them is either using a directly embedded nonlinear function, as we consider in Section 5.3,

or reformulate using integer variables or complementarity constraints which we consider in

Section 5.4.

5.3 Embedded Neural Network Formulation

Given that many deep learning libraries (e.g.,, TensorFlow [ABC16] and PyTorch [PGC17])

have well-developed built-in automatic differentiation capabilities, we naturally want to see

whether we can directly embed the evaluation of the neural network into an NLP:

minimize
x

f(DNN(x), x) subject to c(DNN(x), x) = 0, x ∈X. (5.8)

Unlike the formulations in Section 5.4, this formulation has the advantage of not requir-

ing auxiliary variables for each of the internal nodes of the neural network. That is, this

formulation should scale significantly better as the number of nodes in the neural network

increases.

The modeling package JuMP [DHL17] in the programming language Julia is a library

that establishes a general framework for representing generic optimization problems and

interfacing with solvers. Of particular use in this problem is its ability to handle nonlinear

functions with user-provided gradients.

The current release of JuMP supports only univariate user-defined nonlinear functions,

but we can represent vector-valued functions by listing each output component separately.

A single nonlinear constraint representing yi = DNN(x)i can be written as

register(model, DNN_i, n, DNN_i, DNN_i_prime)))

@NLconstraint(model, y[i] == DNN_i(x...)))),

where model is the JuMP optimization model, n is the dimension of the input, and DNN i

and DNN i prime represent function evaluations of the neural network’s ith output neuron

and its gradient that can be provided by TensorFlow.

111

For networks with many outputs, explicitly listing these commands can quickly become

unwieldy, but we can enumerate these constraints using macros. The following code demon-

strates how one can encode y =M(x), where x ∈ Rn and y ∈ Rm, and f and f p are evaluation

of the neural network and the Jacobian, respectively.

macro DNNConstraints_grad(model, x, y, n, m, f, f_p)

ex = Expr(:block)

for i = 1:m

dnn = gensym("DNN")

push!(ex.args, :($dnn_s(z...) = $f(z...)[$i]))

p = gensym("DNN_prime")

push!(ex.args,:($prime(g, z...) = begin g .= $f_p(z...)[$i,:] end))

push!(ex.args,:(register($model, $(QuoteNode(dnn_s)), $n, $dnn, $p)))

push!(ex.args,:(@NLconstraint($model, $y[$i] == $dnn($x...))))

end

ex

end

This macro can then be called to add constraints on a neural network that takes in values

from R20 and outputs values in R10 using the following command,

@DNNConstraints_grad(model, x, y, 20, 10, DNN, DNN_prime),

where DNN and DNN prime are now vector- and matrix-valued functions that return the output

vector and Jacobian for neural network evaluation, respectively.

With this macro, we now have the ability to directly embed evaluation of a neural network

and its derivatives within a mathematical program. This allows us to treat neural network

evaluation as simply another function that appears in functions and constraints so that we

can use any NLP solver for our optimization problems.

112

5.3.1 Convergence Behavior

We have observed in our experiments that state-of-the-art solvers express real difficulties with

convergence when applied to this formulation. We believe that the reason has to do with

the choice of activation function, ReLU(a) = max(a,0). This activation function results in

nonconvex constraints and objective in (5.1); moreover, the function is nonsmooth whenever

a = 0.

The nonsmoothness of the ReLU function has generally been considered to be of little

concern since, in practice, neural networks involving ReLU neurons have found great success

especially in problems of classification [HZR16, SZ14, KSH12] so that they have become

an industry standard in deep learning. Part of their success is attributed to their ease in

implementation as well as their tendency to produce sparse activation patterns and avoid the

vanishing gradient problem in training [GBB11]. Furthermore, some theoretical results have

affirmed some convergence guarantees under mild conditions [LY17, DZP18] and [GVS14]

have demonstrated qualitatively that the training problem often experiences few of the issues

common in nonconvex and nonsmooth optimization.

These results pertain primarily to the optimization problems solved in the training pro-

cess. We have observed relatively little work in the literature regarding constrained opti-

mization problems involving trained networks. Our preliminary experiments suggest that, in

this context, the expectation of good behavior may be unfounded. Initial solves of Problem

(5.3) using the state-of-the-art NLP solver Ipopt [WB06] experienced serious issues with

convergence. Figure 5.6 illustrates the objective value and primal and dual infeasibility for

one example solve of the problem. Qualitatively, we observe that instead of terminating,

the solver bounces about among objective values of about the same magnitude. The reason

for the lack of convergence can be explained by the fact that one measure of convergence,

the dual infeasibility, remains high throughout the duration of the solve. This type of be-

havior makes this formulation difficult for general use because there are not clear conditions

113

Figure 5.6: Objective value, primal infeasibility, and dual infeasibility plotted against itera-

tion number for a sample ReLU network (left) and a sample swish network (right) over an

Ipopt solve of the Engine Design Problem in (5.3).

in general for checking whether the current solution at hand is “good.” We suspect that

these convergence issues can arise in part due to the nondifferentiability of the ReLU neu-

rons. Classical optimization algorithms such as quasi-Newton algorithms [Pow69] often have

basked in the assumption of differentiability, and convergence results typically depend on

them.

We observe that in the 480 solves of Problem (5.3) that we perform in Section 5.5.1, only

17.5% were reported by Ipopt to have converged to a locally optimal solution, 57.1% failed

to converge as a result of exceeding the iteration limit of 3000, and the remaining 25.4%

failed for other reasons, mainly an inability to call a restoration phase at a feasible point.

Of this latter group, the impact of nondifferentiability on the solver is most apparent. In

Figure 5.7, we plot the minimal distance to a discontinuity and the distance to the particular

hyperplane discontinuity that the solve converges to for one failed solve of Problem (5.3).

In this instance, even though the iterates do converge to a solution, Ipopt does not declare

a solution found due to a failure to satisfy first order conditions. Furthermore, the solve

exhibits the zigzagging behavior of repeatedly jumping between the two regimes on each

114

Figure 5.7: The minimal distance to a discontinuity (left) and distance to one neuron’s

hyperplane (right) for iterates from an Ipopt solve of one instance of Problem (5.3). On the

right image, the highlighted sections indicate when the iterate is one side of the hyperplane

and when it is on the other.

side of the hyperplane before eventually failing.

We note that there have been contexts where gradient-based optimization methods have

been applied with success in the context of constrained optimization involving trained net-

works, most notably for adversarial attack generation. However, these methods typically

address a modified optimization problem instead of directly treating the neural network as a

surrogate function in a nonlinear program. This is the case for the original method presented

in [SZS14] which instead minimizes a weighted combination of perturbation norm and neu-

ral network loss and [CW17] which addresses a variety of alternatives to the constraint that

the neural network misclassifies the perturbed image. Furthermore, often these methods do

not address issues of convergence to a local optimum instead settling for performing a fixed

number of iterations or finding a sufficiently good solution. This is the case for “one-step

methods” such as the “Fast Gradient Sign Method” [GSS15] and its generalization to multi-

ple steps, the “Basic Iterative Method” [KGB18], each of which take a fixed number of steps

based on a user-specified parameter in the direction of the sign of gradient of the loss.

115

An alternative type of activation function that has seen some success in classifier networks

[RZL17] is the swish function, which is defined as follows:

swish(a) = a

1 + e−βa . (5.9)

β is a hyperparameter that may be learned but is typically set to 1. Note that for β = 0 this

is simply a linear function and that for β →∞ this approaches the ReLU function. With the

activation function in (5.9), all functions in (5.1) are twice continuously differentiable under

Assumption 1.

To ensure that failure to converge when using the ReLU network is not due to choice of

NLP solver, we perform the same solve of Problem (5.3) using instead swish neurons. We

plot the objective and infeasibilities in Figure 5.6. Instead of failing to terminate after 3,000

iterations, Ipopt converges successfully after only 25 iterations; and both primal infeasibility

and dual infeasibility converge rapidly to zero. As a differentiable network, the swish for-

mulation does not express the convergence issues that the nondifferentiable ReLU networks

appear to exhibit.

These initial results confirm the observation in [BP20, Fig. 1] that showed that ReLU

networks can be nondifferentiable almost everywhere for certain types of networks. This

observation makes the use of ReLU networks questionable as embedded constraints within

optimization solvers that rely on differentiable problem functions. Hence, in Section 5.4 we

develop alternative formulations that have better numerical properties.

5.3.2 Stationarity in the Embedded Formulation

In this section we will give a condition for the stationarity of the embedded formulation as

well as prove a specific form for the Jacobian of a ReLU neural network that holds under

mild genericity conditions. To handle the points of nondifferentiability in the embedded

formulation, we consider generalized Jacobians first introduced in [CLJ96], which can be

116

Figure 5.8: Regions of a randomly instantiated neural network with two inputs followed by

1, 2, and 3 layers of 5 ReLU neurons each.

defined for all x in the domain of a function g as follows:

∂g(x) = conv{lim
k
∇g(xk) ∶ xk → x,xk ∉ S}, (5.10)

where S is the set of points of nondifferentiability of g and conv(A) is the convex hull of the

set A. Since ReLU networks are piecewise linear functions by construction, the generalized

Jacobian will be given by a convex hull of the Jacobians of linear functions on finitely many

regions in the neighborhood of a given point. Stationarity of g at a point x is then equivalent

to having 0 ∈ ∂g(x).

We elaborate on what we mean by region in the context of feedforward ReLU networks.

As these neural networks are created by composing sequences of ReLU activation functions

with affine maps, we can specify the region of the function by deciding which ReLU neurons

will be active; each selection corresponds to a different affine function. Given a set of active

neurons N (we will refer to these as activation patterns), we will define the associated region

R(N) to be the set of points x such that the value at a neuron in N prior to activation

is positive and this value for any other neuron is negative. The value prior to activation

being zero corresponds to being on the boundary of another region. R(N) will be empty if

117

no point x engenders the activation pattern N . The regions will tile the input space, and

adjacent regions are separated by the 0-level sets of a particular neuron.

Depictions of the regions of neural networks with 1, 2, and 3 layers can be seen in

Figure 5.8. We observe that the regions of a single-layer network arise from arrangements

of hyperplanes but that as more layers are added, the regions become more complex as they

are subdivided. The total amount of nonempty regions of both shallow and deep neural

networks has been studied in detail in [MPC14] and [PMB14]. However, their definition of

region as maximally connected linear regions of the piecewise function slightly differs from

ours because we distinguish adjacent regions that have the different activation patterns but

ultimately get mapped to the same linear map.

Before we can discuss stationarity of the embedded formulation, we will need to introduce

some notation. We will identify any neuron by its layer index ℓ and the index i within the

layer. Given a subset of neurons in the neural network N = {(ℓ1, i1), . . . , (ℓn, in)}, we define

FN to be the affine form given when the set of neurons in N are active and all other neurons

are inactive. Put precisely, given the affine transform in layer ℓ, Aℓx =W ℓTx + bℓ, if neuron

(ℓ, i) is inactive, we replace column wi and component bi with zeros. We define our new

affine form as

Âℓ
Nx = Ŵ ℓTx + b̂ℓ, Ŵ ℓ =Wdiag(κℓ), b̂ = diag(κℓ)b.

where κℓ is a vector with κℓ
i equal to 1 if neuron (ℓ, i) ∈ N , and zero otherwise. Then

FN(x) = ÂL
N Â

L−1
N ⋯Â1

Nx.

We can partition the neurons of layer ℓ into three sets given x: strictly inactive neurons

Iℓ,−(x), nonstrictly inactive neurons Iℓ,0(x), and active neurons Iℓ,+(x). We define these to

be the indices i of the neurons in layer ℓ for which Aℓ
iÂ

ℓ−1⋯Â1x is negative, zero, and positive,

respectively. The sets I+(x), I0(x), I−(x) are then defined to be all layer-neuron pairs (ℓ, i),

where i ∈ Iℓ,+(x), Iℓ,0(x), or Iℓ,−(x), respectively. With these definitions we observe that for

any x, DNN(x) = FI+(x)(x).

118

Note that FN is now smooth as a composition of affine functions, and we can compute

the Jacobian JFN
simply by the chain rule:

JFN
= Ŵ 1Ŵ 2⋯ŴL. (5.11)

In light of (5.10), the generalized gradient at x can then be written as the convex hull of

these Jacobians associated with the activation pattern for each region in the neighborhood

of x. Any such activation pattern must necessarily include I+(x) and exclude I−(x) but may

only include a subset of I0(x). If there is a region corresponding to each set of the form

I+(x) ∪N , where N ⊂ I0(x), we can write the generalized gradient in a nice form given by

the following proposition.

Proposition 28. Suppose at a point x that the region R(I+(x) ∪M) is nonempty for each

choice of M ⊂ I0(x). Let S be the set of all matrices of the form

W 1diag(κ1)⋯WLdiag(κL),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κℓ
i = 1 (ℓ, i) ∈ I+(x),

κℓ
i ∈ [0,1] (ℓ, i) ∈ I0(x),

κℓ
i = 0 (ℓ, i) ∈ I−(x).

Then the generalized gradient of DNN(x) at x, ∂DNN(x) = S.

Proof. First, we remark that any Jacobian JFN
, where N = I+(x) ∪M , is clearly in S since

we can take κℓ
i = 1 for all (ℓ, i) ∈M and take it equal to 0 for (ℓ, i) ∈ I0(x)∖M , and the two

expressions agree. Furthermore any convex combination of the JFN
should be contained in

S since S is a convex set. Hence ∂DNN(x) ⊂ S.

Now given a matrix V =W 1diag(κ1)⋯WLdiag(κL) in S, we show that it is in ∂DNN(x).

We enumerate I0(x) = {(ℓ1, i1), . . . , (ℓn, in)}. Consider first any alteration V1 of V by fixing

κℓ1
i1

and replacing κ
ℓj
ij

by κ̂ℓj ∈ {0,1} for j > 1. Note that V1 is a convex combination of the

119

Figure 5.9: Regions of a zero-bias, single-layer network with two input variables and three

output variables.

two matrices given by replacing κℓ1
i1

with 1 and by replacing it with 0. Both these matrices

are in ∂DNN(x) since this set includes all Jacobians associated with any activation pattern

on I0(x). Hence we must have that V1 ∈ ∂DNN(x). If we then consider fixing the first

two components and replacing the remaining such components to produce V2, in the same

fashion we can find two matrices of the form V1 of which V2 is a convex combination and

hence V2 ∈ ∂DNN(x). Repeating until we have fixed all components, we will have that

V ∈ ∂DNN(x).

Unless the region is nonempty for each of these activation patterns, the generalized

Jacobian will not necessarily take this form. As a counterexample, consider a zero-bias two-

layer network with one input variable and W 1 = (1,1), W 2 = (1,−1)T . This corresponds to

having DNN(x) = ReLU(x)−ReLU(x) = 0, and so the generalized gradient is {0} everywhere,

whereas the formulation given above would introduce many more possible gradients.

For a slightly more interesting example, consider a one-layer network with two input vari-

ables, no bias, and three output variables, namely, DNN(x) = ReLU(W Tx) = ReLU(wT
1 x) +

ReLU(wT
2 x) +ReLU(wT

3 x). The input domain R2 is then divided into regions by the lines

wT
i x = 0 for i = 1,2,3 each intersecting at the origin, as can be seen in Figure 5.9. Observe

120

that in the neighborhood of the origin, there are only six neighboring regions and two regions

are missing, one where the output would be (w1+w2)Tx and another where the output is wT
3 ,

corresponding to activation patterns where only the first two neurons are active and only

the third neuron is active, respectively. In this scenario the generalized gradient is similarly

not as expansive as we desire.

Requiring each region R(I+(x)∪N) to be nonempty seems to be an onerous requirement,

especially given there are 2∣I0(x)∣ such regions. However, it turns out that under some mild

genericity conditions, we can expect this to be true. These conditions arise from the theory

of hyperplane arrangements. Suppose we have a collection of hyperplanes H1, . . . ,Hn ⊂ Rd,

where Hi is given by {x ∈ Rd ∶ aTi x = bi} for some vectors ai ∈ Rd and constants bi ∈ R. We

say the collection is in general position if the intersection of m hyperplanes has dimension

d −m if m ≤ d and is empty if m > d. If the intersection of all hyperplanes is nonempty,

it is called a central arrangement. In particular, if d = 2, the hyperplanes are lines in R2,

and they are in general position if no three lines intersect at a point and no two lines are

parallel. A well-known result from Zaslavsky [Zas75] is that if we have m hyperplanes in

general position, the number of regions they divide Rd into is given by ∑d
i=0 (mi). Note that

if m ≤ d, this quantity is 2m, and we can identify each region by choosing whether aTi x < b

or aTi x > b for all i.

To ensure that the necessary regions are not empty, we will require a specific set of

hyperplanes to be in general position. Before we describe the hyperplanes, we will prove a

useful lemma.

Lemma 29. Suppose a central arrangement of hyperplanes H1, . . . ,Hn, where Hi = {x ∈ Rn ∶

aTi x = bi}. Then the set H1, . . . ,Hn−1,HA
n , where H

A
n = {x ∶ (∑i∈Awiai+an)Tx = ∑i∈Awibi+bn}

for any choice of constants wi ∈ R, is also in general position for any A ⊂ {1, . . . , n − 1}.

Proof. Because the hyperplanes intersect, we can change coordinates so that each hyperplane

intersects the origin; thus, without loss of generality, we can write bi = 0 for all i. In this set-

121

ting, hyperplanes being in general position is equivalent to the normal vectors being linearly

independent. Obviously if a1, . . . , an are linearly independent, a1, . . . , an−1, an +∑i∈Awiai are

linearly independent.

Using this lemma, in the following proposition we can now show exactly which hyper-

planes need to be in general position.

Proposition 30. Suppose that the set of hyperplanes {Hℓ,i = {x ∶ Aℓ
iÂ

ℓ−1
I+(x)⋯Â1

I+(x)x = 0} ∶

ℓ = 1, . . . , L, i ∈ I0,ℓ(x)} is in general position. Then for any choice of N ⊂ I0(x), the set

of hyperplanes {Hℓ,i = {x ∶ Aℓ
iÂ

ℓ−1
M ⋯Â1

Mx = 0} ∶ ℓ = 1, . . . , L, i ∈ I0,ℓ(x)} is also in general

position with M = I+(x) ∪N .

Proof. Observe for any hyperplane Aℓ
iÂ

ℓ−1
I+(x)⋯Â1

I+(x)x = 0 and any j in 1, . . . , ℓ−1, we consider

the associated affine form Aℓ
iÂ

ℓ−1
I+(x)⋯Â

j+1
I+(x)(Â

j
I+(x)+Â

j
N)Â

j−1
I+(x)⋯Â1

I+(x)x = 0. Let bTx+c denote

the affine form associated with Aℓ
iÂ

ℓ−1
I+(x)⋯Â

j+1
I+(x), and for each neuron i in layer j let dTi x+ ei

denote the affine form associated with Âj
i Â

j−1
I+(x)⋯Â1

I+(x)x. Then we can write

Aℓ
iÂ

ℓ−1
I+(x)⋯Â

j+1
I+(x)(Â

j
I+(x) + Â

j
N)Â

j−1
I+(x)⋯Â

1
I+(x)x = ∑

i∈I+,j(x)∪Nj

bi(dTi x + ei) + ci,

and by assumption the hyperplane defined by H = {x ∶ ∑i∈I+,j(x) bi(dTi x + ei) + ci = 0} is in

general position with the hyperplanes defined by Hi = {x ∶ dTi x + ei = 0} for i ∈ Nj. The

new hyperplane is created by adding to the normal vector of H a linear combination of the

normal vectors of each Hi, and so it remains in general position with the Hi. Hence, we have

replaced one I+(x) with M . Repeating in this fashion, we can replace each I+(x) in each

affine form with M and still remain in general position.

Now that for any choice of N ⊂ I0(x) the associated hyperplanes will be in general

position, we can be assured that the associated region is nonempty.

Proposition 31. Suppose the hypothesis of Proposition 30 holds at a given x. Then for each

subset N ⊂ I0(x), the region R(M) with M = I+(x) ∪N is nonempty.

122

Proof. From Proposition 30, the hyperplanes {Hℓ,i = {x ∶ Aℓ
iÂ

ℓ−1
M ⋯Â1

Mx = 0} ∶ ℓ = 1, . . . , L, i ∈

I0,ℓ(x)} are in general position; and since these form a central arrangement (centered at x),

there must be a nonempty region with Aℓ
iÂ

ℓ−1
M ⋯Â1

Mx > 0 if (ℓ, i) ∈M and Aℓ
iÂ

ℓ−1
M ⋯Â1

Mx < 0

otherwise.

The condition that the hyperplanes enumerated in Proposition 30 be in general position

is fairly mild. Certain types of neural networks will violate this assumption: for example,

zero-bias neural networks will violate this assumption since each hyperplane will go through

the origin. Additionally, we cannot have ∣I0(x)∣ be larger than the dimension of the input

space since in this case, we will also have too many intersecting hyperplanes. That being

said, we generally expect a collection of randomly generated hyperplanes to be in general

position with probability 1 under most natural probability distributions.

With these tools in hand, we can now state in full the stationarity conditions for the

embedded problem:

Theorem 1. Suppose at a given x∗, the conditions of Proposition 30 hold. Then x∗ is a

stationary point of (5.8) if there exist nonnegative multipliers µ∗ and matrices Ŵ 1, . . . , ŴL

with Ŵ 1⋯ŴL ∈ ∂DNN(x) such that

1. c(DNN(x∗), x∗) ≤ 0

2. µ∗T c(DNN(x∗), x∗) = 0

3. ∇xf∗ +∇xc∗µ∗ + Ŵ 1⋯ŴL(∇yf∗ +∇yc∗µ∗) = 0,

where f∗, c∗ indicate evaluation of f, c at x∗.

Proof. The first two conditions are standard primal feasibility and complementary slackness

conditions. To arrive at the third, we note that the gradient of the Lagrangian L(x,µ) =

f(DNN(x), x) + µc(DNN(x), x) on each region (with activation pattern B) nearby is given

by ∇xf + ∇xcµ + JFB
(∇yf + ∇ycµ) evaluated at x. As x → x∗ in a given region, since f

123

and c are smooth, this approaches ∇xf∗ + ∇xc∗µ + JFB
(∇yf∗ + ∇yc∗µ). As the generalized

gradient at x∗ is given by the convex hull of all such gradients and by Proposition 31 there

is one for region I+(x) ∪A with A ⊂ I0(x), it follows in a similar fashion as in the proof of

Proposition 28 that any element of the generalized gradient can be written ∇xf∗ +∇xc∗µ∗ +

Ŵ 1⋯ŴL(∇yf∗ +∇yc∗µ∗). Thus condition 3 holds.

5.4 Formulating DNNs as Optimization Models

We provide two alternative formulations of ReLU DNNs in terms of optimization models

that avoid the pitfalls of the embedded formulation in Section 5.3.1. The first formulation

uses binary variables to model the max-functions, resulting in a mixed-integer program,

building on [GA19, FJ18, AHT19]. Our formulation differs from [Che21], which considered

only inverse problems and did not exploit the convex structure of the DNNs that arises when

we lift the DNN constraint, resulting in a nonconvex mode. The second formulation uses

complementarity constraints that can be solved as systems of nonlinear inequalities. We

derive theoretical properties of both formulations.

5.4.1 Formulating DNNs with Mixed-Integer Sets

In this section we show how general optimization problems involving DNNs, such as (5.1),

can be equivalently formulated as convex MIPs, extending [FJ18].

We assume that the DNN is a deep neural network with ReLU activation functions, and

we rewrite the nonconvex problem (5.1) as a constrained problem:

minimize
x,yL

f(x, yL) subject to yL = DNN(x), c(x, yL) ≤ 0, x ∈X, (5.12)

where L is the number of layers of the DNN. Fischetti and Jo [FJ18] have shown that the

nonconvex constraint, yL = DNN(x), can be formulated as a mixed-integer linear set in the

case of DNNs with ReLU activation functions. We let wℓ
i denote the weights of neuron

124

i = 1, . . . ,Nℓ at level ℓ = 1, . . . , L and bℓi its corresponding bias. Then, the levels ℓ = 1, . . . , L

are computed as

yℓi = ReLU (wℓT

i yℓ−1 + bℓi) =max (0,wℓT

i yℓ−1 + bℓi) . (5.13)

We lift this constraint by introducing slack variables, sℓi , and binary variables, zℓi ∈ {0,1},

and observe that (5.13) is equivalent to the mixed-integer linear constraints

yℓi − sℓi = wℓT

i yℓ−1 + bℓi , 0 ≤ yℓi ≤M ℓ,y
i (1 − zℓi), 0 ≤ sℓi ≤M

ℓ,s
i zℓi , z

ℓ
i ∈ {0,1}, (5.14)

where M ℓ,y
i ,M ℓ,s

i > 0 are sufficiently large constants (if zℓi = 1, we are on the 0-branch of

ReLU, and if zℓi = 0, we are on the positive branch). By substituting (5.14) into (5.12) we

obtain a convex MINLP that is equivalent to the problem (5.1):

minimize
x,y,s,z

f(x, yL)

subject to c(x, yL) ≤ 0

yℓi − sℓk = wℓT

i yℓ−1 + bℓi , ℓ = 1, . . . , L

0 ≤ yℓi ≤M
ℓ,y
i (1 − zℓi), 0 ≤ sℓi ≤M

ℓ,s
i zℓi , i = 1, . . . ,Nℓ, ℓ = 1, . . . , L

y0 = x, zℓi ∈ {0,1}, x ∈X.

(5.15)

We observe that we have as many binary variables in this problem as we have ReLU nodes.

Next we show that the resulting lifted formulation results in a tractable convex MINLP.

Proposition 32. Let Assumption 1 hold. Then it follows that (5.15) is a convex MINLP in

the sense that the continuous relaxation of (5.15) is a convex NLP.

Proof. The result follows from the convexity of f , c, and X and the fact that the remaining

constraints are affine (with the exception of the integrality restriction on z).

The choice of the big-M constants M ℓ
i in (5.14) can have a great impact on the solution

time of our MIP. If M ℓ
i is too small, the problem excludes solutions that should be feasible;

but if it is too large, the space that must be searched by the solver may become so large as

to be too computationally intractable for most computers.

125

These upper bounds are common in mixed-integer programs, and we follow the approach

in [FJ18] where we consider each neuron in our neural network individually, removing all

constraints on other neurons in the same or subsequent layers. We do not relax the integrality

constraints on the neurons remaining. We also retain the convex hull constraints as presented

in Section 5.2.1.2 as well as other constraints on the input, but discard the constraints on

the output of the neural network, namely the torque bound. Then we set as our objective

function to maximize yℓi in one iteration and sℓi in another iteration. We can then use these

computed optimal values as upper bounds M ℓ,y
i and M ℓ,s

i , respectively, for computing the

big-M values of neurons deeper in the neural network. After we have processed all layers,

we will have computed big-M bounds for all our variables. This process of obtaining bounds

is related to the optimality-based bound-tightening technique used in global optimization;

see, for example, [GBM17].

Since these constants depend solely on the weights for the neural network as well as

inputs to the neural network, we need to compute these bounds only once and may reuse

them in any optimization problem involving this neural network. Alternative methods for

handling the big-M constraints are considered in [GA19, TXT17, TKT21].

With this formulation established, we may then easily pass the problem as is to any stan-

dard MINLP solver such as Gurobi [Gur12], CPLEX [IBM09], Bonmin [BL07], MINOTAUR

[MLL11], or Baron [Sah96] to compute the solution. Because MINLPs are NP-complete,

however, these problems do not scale well, and only problems involving modestly sized net-

works (on the order of 100 hidden nodes) may be tractably solved. Neural networks used in

commercial settings generally involve at least thousands of hidden nodes, resulting in thou-

sands of binary variables, a number that typically is well beyond the reach of commercial

solvers.

126

5.4.2 Formulating DNNs with Complementarity Constraints

In this section we discuss an alternative formulation of (5.1) as a nonconvex nonlinear pro-

gram using complementarity constraints. This approach has the advantage of scaling signif-

icantly better for problems with larger neural networks, but with the caveat that solutions

produced can be guaranteed only to be locally optimal. The

Our approaches are based on the following observations. We can rewrite the ReLU activa-

tion function in (5.13) equivalently as a complementarity constraint (using vector notation):

yℓ =max(W ℓT yℓ−1 + bℓ,0) ⇔ 0 ≤ yℓ ⊥ yℓ ≥W ℓT yℓ−1 + bℓ, (5.16)

where ⊥ means that for each component, i, both inequalities yℓi ≥ 0 and yℓi ≥ [W ℓT yℓ−1 + bℓ]i
are satisfied and at least one is satisfied at equality. By replacing the ReLU function

with these complementarity constraints, we obtain a mathematical program with comple-

mentarity constraints, which we can solve using standard NLP solvers; see, for example,

[Ley03, LLN06, FLR06, RB05]. The reformulation of the ReLU activation function using

complementarity constraints is based on a classical reformulation of the max function, see,

e.g. [BRB08]. A similar approach is taken in [ZB17], where the authors consider a refor-

mulation of the ReLU function as a constrained projection problem, and add a quadratic

penalty or regularization to the loss function. However, unlike our approach, this reformula-

tion is not exact, and provides a relaxation only, because the ReLU constraints are generally

violated for any penalty parameter less than infinity. The mathematical program modeling

language AMPL [FGK93] allows the modeling of complementarity constraints: for example,

the above constraint can be written as follows:

ReLUCompl{l in Level, i in Neuron[l]}: 0 <= y[l,i] complements

y[l,i] >= sum{j in Neuron[l-1]} W[l,i,j] y[l-1,j] + b[l,i] .

The most successful NLP solvers handle MPCCs by reformulating the complementarity

constraints in (5.16) by first introducing the same slack variables as for the MINLP and

127

lifting the formulation

sℓ = yℓ −wℓT

i yℓ−1 + bℓ,

and then rewriting (5.16) equivalently as

sℓ = yℓ −wℓT

i yℓ−1 + bℓ and 0 ≤ yℓ ⊥ sℓ ≥ 0.

A nonlinear optimization formulation is then given as

sℓ = yℓ −wℓT

i yℓ−1 + bℓ, yℓ ≥ 0, sℓ ≥ 0, and yℓ
T

sℓ ≤ 0,

where the lower bound, yℓ
T
sℓ ≥ 0, is implied by the nonnegative bounds on yℓ, sℓ ≥ 0, and

again omitted for numerical reasons; see [FLR06].

Because the last constraint involves the nonconvex term yℓ
T
sℓ, the problem as a whole is

nonconvex, and standard NLP solvers will produce only locally optimal solutions instead of

globally optimal ones. Altogether, we then have the following NLP:

minimize
x,y,s,z

f(x, yL)

subject to c(x, yL) ≤ 0

yℓi − sℓi = wℓT

i yℓ−1 + bℓi, ℓ = 1, . . . , L

0 ≤ yℓi , 0 ≤ sℓi , i = 1, . . . ,Nℓ, ℓ = 1, . . . , L
L

∑
ℓ=1

Nℓ

∑
i=1

yℓis
ℓ
i ≤ 0,

y0 = x, x ∈X.

(5.17)

Note that we could have used the constraint yℓ
T
sℓ ≤ 0 for each ℓ separately. We prefer the

formulation in (5.17) because it has better convergence behavior in practice; see [FL04].

Again we have a continuous variable for every node in our neural network as well as a slack

variable for each ReLU node. The absence of integer variables, however, produces a much

more scalable problem.

We now demonstrate that the stationarity conditions for the MPCC formulation coincide

with those of the embedded formulation. In MPCC form, the optimization problem is given

128

by the following:

minimize
x

f (x0, xL))

subject to c (x0, xL)) ≤ 0

0 ≤ xℓ ⊥ xℓ ≥W ℓTxℓ−1 + bℓ, ℓ = 1, . . . , L.

(5.18)

First, we state the definition of strong stationarity for the MPCCs (5.18); see, for example,

[SS00] for its general form. We then show that the two conditions are equivalent in our case.

Definition 33 (Scheel and Scholtes, [SS00]). We say that (x0,∗, x1,∗, . . . , xL,∗) is a strongly

stationary point of (5.18) if there exist multipliers µ∗ ≥ 0 and ν∗1 , ν
∗
2 such that the following

conditions are satisfied:

c∗ ≤ 0 and 0 ≤ xℓ,∗ ⊥ xℓ,∗ ≥W ℓTxℓ−1,∗ + bℓ, ℓ = 1, . . . , L (5.19a)

µ∗,T c∗ = 0 (5.19b)

0 = ∇x0f∗ +∇x0c∗µ∗ +W 1ν1,∗
2 (5.19c)

− νℓ,∗
1 − ν

ℓ,∗
2 +W ℓ+1νℓ+1,∗

2 = 0, ℓ = 1, . . . , L − 1 (5.19d)

∇xLf∗ +∇xLc∗µ∗ − νL,∗
1 − νL,∗

2 = 0 (5.19e)

xℓ,∗
j > 0⇒ νℓ,∗

1j = 0 and x
ℓ,∗
j > wℓT

j xℓ−1,∗ + bℓj ⇒ νℓ,∗
2j = 0, ℓ = 1, . . . , L (5.19f)

0 = xℓ,∗
j = w

ℓ,T
j xℓ−1,∗ + bj ⇒ νℓ,∗

1j ≥ 0, ν∗2j ≥ 0, ℓ = 1, . . . , L, (5.19g)

where all functions and gradients are evaluated at (x∗, y∗), that is, f∗ ∶= f(x∗, y∗).

Using these stationarity conditions, we can arrive at the following conditions on the

gradients of our optimization problem.

Proposition 34. Given a strongly stationary point satisfying (5.19), there exist Ŵ 1, . . . , ŴL,

column scalings of W 1, . . . ,WL such that ∇x0f∗ +∇x0c∗µ∗ + Ŵ 1⋯ŴL(∇xLf∗ +∇xLc∗µ∗) = 0.

Proof. To construct such matrices, we work backward starting with layer L and examine

each component j = 1, . . . ,NL. Backsubstituting νL,∗
2 using (5.19d) and (5.19e), we have

−νL−1,∗
1 − νL−1,∗

2 +WL(∇xLf∗ +∇xLc∗µ∗ − νL,∗) = 0.

129

For a given component j we can determine the appropriate scaling factor κL
j in three cases:

1. wLT

j xL−1,∗+bLj < 0: Then it follows that xL,∗
j = 0, νL,∗

2j = 0 and ν∗1j is not sign-constrained.

It follows from (5.19e) that νL,∗
1j = [∇xLf∗ −∇xLc∗µ∗]j and hence that κL

j = 0.

2. wLT

j xL−1,∗ + bLj > 0: Then it follows that xL,∗
j = wL,T

j x∗ + bj > 0 and hence that νL,∗
1j = 0.

Thus, we can set κL
j = 1.

3. wLT

j xL,∗ + bLj = 0 = x
L,∗
j : Then it follows that νL,∗

1j , νL,∗
2j ≥ 0 from (5.19g). From (5.19e),

we obtain that [∇xLf∗+∇xLc∗µ∗]j ≥ νL,∗
1j , νL,∗

2j ≥ 0; and given ν∗1j ∈ [0, [∇yf∗ +∇yc∗µ∗]j],

we choose κL
j =

[∇
xL

f∗+∇
xL

c∗µ∗]j−νL,∗
j

[∇
xL

f∗+∇
xL

c∗µ∗]j , which is in [0,1].

Hence we can write WL(∇xLf∗ + ∇xLc∗µ∗ − νL,∗) = ŴL(∇xLf∗ + ∇xLc∗µ∗), where ŴL =

Wdiag(κL). Repeating this process for each ℓ, we have

∇x0f∗ +∇x0c∗µ∗ + Ŵ 1⋯ŴL(∇xLf∗ +∇xLc∗µ∗) = 0.

We can now prove the following theorem.

Theorem 2. Given x∗, suppose the assumptions of Proposition 30 hold. Then x∗ is a

stationary point of (5.8) if and only if (x0,∗, x1,∗, . . . , xL,∗) is a strongly stationary point of

(5.18) with xℓ,∗ being the activations of layer ℓ in the neural network.

Proof. Since the given expression lies in the generalized gradient for (5.8) and equals zero,

strong stationarity of the MPCC formulation clearly implies stationarity in the embedded

formulation. On the other hand, if 0 is in the generalized gradient for the embedded formu-

lation, as we know the form of the generalized gradient, we can find Ŵ 1, . . . , ŴL such that

∇x0f∗ + ∇x0c∗µ∗ + Ŵ 1⋯ŴL(∇xLf∗ + ∇xLc∗µ∗) = 0. The choice of scaling factors κ for the

matrices will then determine the values of ν as in Proposition 34 so that the conditions for

strong stationarity hold.

130

5.5 Numerical Experiments

Here we present our numerical experiments with neural-network surrogates for the three

sample applications introduced in Section 5.2.

We assess the performance of solvers for the MIP, MPCC, and embedded formulations

of (5.3). We use the commercial solver CPLEX [IBM09] to solve the MIP formulation of the

problem and the solver Ipopt [WB06] to solve the MPCC and embedded formulations of the

problem. Both solvers are run with the default options. All experiments are performed on a

single thread on an Intel Xeon Gold 6130 CPU and 188 GB of memory.

5.5.1 Numerical Experiments with Engine Design Optimization

We have applied our models and algorithms to a collection of neural networks with varying

numbers of layers to study how well each formulation scales. The architectures we tested

all have the simple structure of an input layer with the three input variables, followed by n

hidden layers of 16 nodes, and then the output layer with the three output variables. We

consider networks with 1, 3, and 5 hidden layers and train each of these networks for 20

epochs on the simulation data produced by the simulator of [AB19]. We use the adam solver

in TensorFlow [ABC16] to train the neural network.

The number of auxiliary variables for the MIP and MPCC formulations scales with the

number of ReLU neurons as well as with the number of time steps. The last layer has no

ReLU neurons since we want the final layer to be able to take all real values, but each of the

hidden layers uses ReLU neurons. We then have T ×(#Hidden Layers)×(#Nodes Per Layer)

additional sets of auxiliary variables.

We will see that using this formulation to solve the full integer program with 1,500 time

steps to optimality is generally intractable (even for a single-layer network, this amounts to

1500 × 16 × 1 = 24000 binary variables), so we consider instead a coarser discretization using

larger time steps.

131

Instead of using data at each second as is presented in the original data, we consider time

intervals of 750, 500, 250, 150, 30, 15, 10, 5, and 1 seconds. Since we have 1,500 seconds

of data, this corresponds to 3, 6, 10, 50, 100, 150, 300, and 1,500 time steps for which we

are evaluating our neural network. At each of the larger time steps, our prescribed torque

profile will be the average of the prescribed torques in that interval. This approach gives us

separate problems for each choice of coarseness of the discretization and for each choice of

neural network architecture. As the number of time steps increases, we have observed that

the computed solutions converge to the solution of the full problem.

For each configuration, we consider ten instantiations of the same neural networks trained

on the same data and we run each solve until convergence to a solution, 3 hours have passed,

or Ipopt has performed 3,000 iterations. If the solver has not converged at the end of the

experiment, we record the best solution discovered that is feasible which we define as having

a constraint violation under 10−6. Our results are all averaged over the ten instantations.

Figure 5.10 shows the average amount of time needed until a solver found its best solution

with a time limit of 3 hours on each architecture with each time step size. This time

does not include the time to find a warmstart solution, which takes at most a few seconds

to compute for the instances with the most timesteps. The percentage gap between the

computed objective and the best-known objective for each solver is shown in Figure 5.11.

Note that each time recorded in Figure 5.10 is not the full time that each solver ran for

and instead records only the time taken until the solver’s iterate was optimal. We believe

this more fairly represents the solves of the embedded formulation as Ipopt can often find

good solutions among its iterates, but fails to converge to these points due to the issues of

nondifferentiability discussed in 5.3.1. The full run times for each solve are included in the

appendix as well as the fully tabulated results that comprise Figure 5.10 and Figure 5.11.

Except for the smallest problems, CPLEX fails to converge to the optimal solution of

the MIP within the allotted time limit of 3 hours. Even worse, it fails to even find a feasible

solution for most problems with architectures with 3 or 5 hidden layers. This result is to

132

Figure 5.10: Average time until a solver found its best solution to the engine design problem

within 3 hours (10,800 seconds). Experiments are averaged over ten runs on different neural

networks. If a runtime of 10,800 seconds is recorded, this indicates the solver failed to find

a feasible solution in the full 3 hours (if a warmstart is used, this means it failed to find a

feasible solution better than the warmstart). If a number is present over a bar, this indicates

the number of solves which did not terminate in the full 3 hours given.

133

Figure 5.11: Percentage gap in objective between final objective value and best-known objec-

tive value of the engine design problem. Experiments are averaged over ten runs on different

neural networks. A value of 0 indicates the solver found the best-known objective value, and

a value of ∞ indicates that no solution was found over any solve. If a number is displayed

over a bar, this indicates the number of solves of the ten runs which failed to determine a

feasible solution. Cases where the solver found no feasible solution are not included in the

average.

134

be expected because, except for the smallest cases, these problems can involve thousands

of binary variables. With the warmstart, CPLEX is actually able to find solutions with

significantly better objective values for each of the configurations. It still fails to prove

optimality for any of these solutions, however, and times out for the same set of problems

as without the warmstart.

For the MPCC, on the other hand, Ipopt always finds locally optimal solutions within

the time limit with the exception of the problems with 1500 timesteps. The time taken is

often in seconds for problems with a small number of time steps. These solutions may be

suboptimal, however, worse by up to 10% in some instances. With the warmstart solution,

Ipopt solves the MPCC in terms of speed generally by a factor of 2-3. Furthermore, the

objective solution tends to have a significantly smaller objective. Solving the MIP without

warmstart finds a better solution than does the MPCC formulation in only three problem

instances, and in all three cases the MPCC solution is within 0.1% of the MIP’s globally

optimal solution.

In almost all cases the embedded network formulation is able to find its best solution

more quickly than does either the MIP or the MPCC formulation. Without the warmstart,

the embedded ReLU network formulation performs better in almost all cases where it found a

solution. However, we observe that in the problems with more timesteps, there are difficulties

with finding a feasible solution, and for problems with more than 100 timesteps on 3 or 5

layers, Ipopt fails to find a feasible solution for between 1 and 4 of the 10 trial runs. With

the warmstart, the objective values are comparable between the MPCC and the embedded

formulation, with the MPCC formulation edging out the embedded formulation in almost

all cases.

Overall, these experiments confirm our prior suspicions that using the MIP formulation

without warmstart quickly becomes computationally intractable as the size of the neural

network increases past modest architectures. Switching to the MPCC formulation of the

problem offers significant speedup at the cost of losing global optimality, although when the

135

MPCC formulation obtains a worse objective value, it tends to be by only a marginal amount,

and when it does better, the improvement can be by a significant amount. The embedded

formulation, on the other hand, can provide speed and scalability but often encounters

difficulty with convergence finding slightly better values than the MPCC solutions without

warmstart and slightly worse objective values than the MPCC solutions with warmstart. For

all formulations, significant gains can be realized in terms of both solving time and solution

quality by providing the solver with a high-quality warmstart solution.

5.5.2 Numerical Experiments with Adversarial Attack Generation

Next we consider each of the formulations of the adversarial attack generation problem in

(5.6) by considering neural networks trained on the MNIST handwritten digit recognition

data set [LeC98]. We consider 10 different architectures corresponding to having an input

layer with 28 × 28 nodes followed by either 1 or 2 fully connected layers with 20, 40, 60, 80,

or 100 hidden ReLU nodes each and then the output layer with 10 nodes and a softmax

activation function.

If we use the mixed-integer formulation from (5.15) for the DNN constraints, then de-

pending on our choice of norm, it becomes a mixed-integer linear program (for L1 or L∞

norms) or a mixed-integer quadratic program (for L2 norm) that we can solve using CPLEX.

We will use the L2 norm in experiments.

For each neural network, we train the model by minimizing the categorical cross-entropy

loss function for 10 epochs using the 60,000 digits of training data. Each neural network

attains a test accuracy of 96–98% when tested on the 10,000 digits of testing data.

We set α = 1.2, meaning the probability for the given classification l is 1.2 times higher

than for any other. On each architecture, we solve the problem for 100 digits from the

training data, with the goal of finding the closest image to the given digit that will be

classified as a zero. As a warmstart, we initialize the solution in each solve to be a digit that

136

Architecture MIP MPCC Embedded ReLU

Avg.

Time

Avg.

Obj.

Num.

Opt.

Num.

Feas.

Avg.

Time

Avg.

Obj.

Num.

Feas.

Avg.

Time

Avg.

Obj.

Avg.

Feas.

Obj.

Num.

Feas.

784,20,10 1.8 1.79 100 100 0.3 1.80 100 35.5 14.67 1.80 88

784,40,10 76.9 1.75 100 100 1.5 1.77 100 28.4 8.64 1.77 94

784,60,10 2302 1.85 52 100 4.8 1.87 100 31.8 1.91 1.91 100

784,80,10 2571 2.04 38 100 14.2 2.07 100 48.1 17.35 2.08 86

784,100,10 3078 2.16 16 100 22.9 2.18 100 30.1 10.66 2.09 92

784,20,20,10 106.1 1.20 100 100 0.8 1.22 100 26.6 4.04 4.04 100

784,40,40,10 3100 1.90 16 100 4.4 1.77 100 38.8 19.97 1.68 84

784,60,60,10 3513 6.85 5 100 14.3 1.88 100 29.8 12.61 12.61 100

784,80,80,10 3587 27.59 1 76 36.1 1.46 100 27.8 3.83 3.83 100

784,100,100,10 3600 54.83 0 42 57.0 1.78 100 35.1 1.83 1.83 100

Table 5.3: Comprehensive results for solves of the MIP formulation using CPLEX, the MPCC

formulation using Ipopt, and the embedded ReLU formulation also using Ipopt. Times are

recorded in seconds.

is classified as the desired digit, so that the solver starts at a feasible point. We run each

iteration until convergence to the globally optimal solution (for the MIP formulation) or to

a locally optimal solution (for the MPCC and embedded network formulations) or until one

hour has passed or 3,000 iterations have occurred in Ipopt, at which point we terminate with

the best feasible solution seen so far.

In Table 5.3 we tabulate the results of the experiments for all three formulations. For

each neural network architecture we record the average solve times and objectives for CPLEX

and Ipopt over the 100 solves. We also record how many times CPLEX finds the optimal

solution to the MIP as well as how many times in each formulation a feasible solution that is

better than the initial solution is found. For the embedded formulation we also include the

average objective excluding the infeasible problems since we observed a significant difference

between these cases.

137

The average time to convergence for the CPLEX solves of the MIP formulation is signif-

icantly higher than that of the Ipopt solves of the MPCC formulation. Most CPLEX solves

for the larger networks time out at 1 hour before finding an optimal solution; for the smaller

networks, it can take 10 to 100 times longer to converge to a solution. Ipopt, on the other

hand, takes less than a minute on average to converge to a locally optimal solution of the

MPCC formulation. The embedded formulations are fairly uniform in how long they take to

find their best solution, which makes sense given that the problem does not change in size

with the number of neurons in the network.

The longer solve times of the MIP formulation have the advantage of eventually uncov-

ering better solutions the majority of the time even if they are not provably optimal. For all

the single hidden layer architectures and the two smallest double hidden layer architectures,

the MIP formulation almost always produces a better solution than the MPCC formulation

does. These solutions generally offer only a marginal improvement on the order of 1–2% dif-

ference in the objective. For perturbations of this magnitude, the differences are essentially

imperceptible.

For the largest networks the MIP formulation fares poorly and cannot find a better

feasible solution than the initial solution in all cases for the two largest networks. The

feasible solutions it does find are of noticeably lower quality: of all instances from the three

largest networks, CPLEX found the best solution in only 13 cases out of 300. The MIP

solutions for the larger networks are visually worse, as can be seen in a comparison between

the perturbed images generated from CPLEX and Ipopt in Figure 5.13 with respect to the

original images in Figure 5.12.

When compared with the MIP and MPCC formulations, the embedded formulation, while

often faster and more scalable, can be more unstable in the sense that while using it, Ipopt

can fail to find feasible solutions even though for this problem they certainly exist. The

ReLU networks are more prone to failure and exhibit the poor convergence behavior as in

Figure 5.6 leading to failure to find solutions in about 5% of instances. In a few cases the

138

Figure 5.12: Suite of 10 digits from the MNIST training data for which adversarial attacks

are generated.

Figure 5.13: Perturbed images produced after 1 hour of computation when using CPLEX to

solve the MIP formulation (left) and Ipopt to solve the NLP formulation (right) with given

digits in Figure 5.12 for the neural network with 2 hidden layers of 100 nodes.

139

objective value of the found solutions is also noticeably worse.

5.5.3 Numerical Experiments with Oil Well Networks

Next we consider solving the oil well problem using each of our formulations. Following

the authors in [GA19], we consider two different configurations of neural networks for this

problem: a “shallow” network with few layers of many nodes and a “deep” network with

many layers of fewer nodes. The shallow configuration had two hidden layers of 20 nodes

for the well networks fi and two hidden layers of 50 nodes for the riser networks ge. The

deep configurations had four hidden layers of 10 nodes for the well networks and 5 layers

of 20 nodes for the riser networks. All in all, this corresponds to 520 ReLU nodes for each

configuration.

We again used CPLEX for the MIP formulation and solved the problem with a time

limit of 1 hour, recording the best time for each neural network configuration. This problem

involves binary variables even in the complementary constraint formulation, so we needed

to use an MINLP solver and elected to use the solver Bonmin [BL07]. We used the default

branch-and-bound scheme with Ipopt as the NLP solver. Because no MINLP solver is

currently supported on JuMP for handling both integer variables and user-defined nonlinear

functions, we could not solve the problem as stated using the embedded neural network

formulations.

The results for the solves on the full problem are presented in Table 5.4. We observe

that in this small set of problems, the MPCC formulation outperforms the MIP formulation

in both network configurations in terms of time taken as well as objective value produced.

CPLEX fails to even produce a solution for the deep neural network configuration. These

are hard problems; indeed, in 3 of the 4 solves performed, the solutions found are not proven

optimal.

To obtain a problem that did not have binary variables, we considered fixing each of the

140

Shallow Deep

Solver Time (s) Objective Time (s) Objective

CPLEX 3388∗ 1.271 3600∗ -

bonmin 1865∗ 1.283 1275.3 1.304

Table 5.4: Time for each solver to find its best feasible solution for each instance of the

full oil well problem within a time limit of 1 hour. The * indicates that the solver did not

terminate within 1 hour. For these starred problems, a time of 3600 seconds indicates no

solution was found; otherwise, the solution found was not deemed optimal (locally optimal,

when using bonmin).

binary variables randomly to either 0 or 1 while still ensuring feasibility. If we represent the

neural networks using complementary constraints or using the embedded formulation, the

problems become standard NLPs that we can directly solve using Ipopt as before. In our

setup we considered 10 different configurations of the binary variables, and we solved them

using CPLEX for the MIP formulation and Ipopt for the rest. We ran each instance until

convergence or 1 hour had passed, and we recorded the best solution found.

The results for the experiments performed with the binary variables fixed to arbitrary

configurations are presented in Table 5.5, which details the solve times, and in Table 5.6,

which details the objective values produced. We observe that, overall, the MPCC formulation

clearly outperforms all the other formulations in terms of speed in that it is able to find

solutions in about 2 seconds where the embedded network formulations take 10 to 20 seconds

and the MIP formulation can take much longer. In fact, the MIP formulation fails to find a

single solution for any of the instances using the deep neural network configuration, which

suggests that optimization problems with deeper networks are more difficult than networks

with shallow networks even if the number of nodes is the same.

In terms of objective value, for the shallow network all formulations were able to find

141

Shallow Deep

Instance MIP MPCC Embedded MIP MPCC Embedded

1 17.5 1.8 10.3 3600∗ 1.6 16.7

2 22.0 1.2 8.2 3600∗ 1.4 19.4

3 23.9 1.5 7.5 3600∗ 1.7 14.2

4 40.3 1.5 6.2 3600∗ 1.4 7.2

5 19.0 1.4 4.0 3600∗ 1.6 13.0

6 21.0 2.1 3.0 3600∗ 1.7 7.1

7 169.4 1.7 5.4 3600∗ 1.2 14.1

8 14.9 1.5 5.7 3600∗ 1.4 7.3

9 86.3 1.9 4.3 3600∗ 1.6 12.1

10 15.5 1.7 5.8 3600∗ 1.5 5.8

Table 5.5: Time until a solver finds its best feasible solution within an hour time limit for

each formulation and for both shallow and deep neural networks on each particular fixing of

the oil well problem. The * indicates that the solver did not terminate within 1 hour. For

these starred problems, a time of 3600 seconds indicates no solution was found; otherwise,

the solution found was not deemed optimal (locally optimal, when using Ipopt).

142

Shallow Deep

Instance MIP MPCC Embedded MIP MPCC Embedded

1 1.231 1.231 1.231 - 1.248 1.183

2 1.228 1.228 1.228 - 1.228 1.155

3 1.219 1.219 1.219 - 1.229 1.274

4 1.264 1.264 1.264 - 1.274 1.255

5 1.182 1.182 1.182 - 1.192 1.253

6 1.252 1.252 1.252 - 1.256 1.266

7 1.229 1.229 1.229 - 1.244 1.215

8 1.207 1.207 1.207 - 1.201 1.225

9 1.239 1.239 1.239 - 1.249 1.282

10 1.263 1.263 1.263 - 1.276 1.243

Table 5.6: Objective value of the best feasible solution for each formulation for both shallow

and deep neural networks on each particular fixing of the oil well problem. - indicates that

no feasible solution was found.

143

the global optimum in every instance relatively quickly. For the deep networks the different

formulations outperformed each other on different instances, leaving no clear winner. The

MPCC formulation solves each instance the quickest, because of the relatively small size of

each of the neural networks.

Unlike the other two problems, we observed for these instances that the embedded ReLU

network formulation did not have trouble with convergence and that, in spite of nondif-

ferentiability, the dual infeasibility was brought down to zero, signifying convergence in all

instances. We postulate that the reason for the success here as compared with the other

instances may be due to the simplicity of the networks: 8 of the networks are single input

and single output, and so the difficulties that might emerge in multiple dimensions do not

appear.

5.6 Conclusion

We have presented three alternative formulations of ReLU deep-neural network constraints as

a mixed-integer problem, an optimization problem with complementarity constraints, and a

problem with the neural network directly embedded. The MIP and MPCC formulations can

be viewed as lifted formulations, and we have shown that the lifting convexifies optimization

problems with deep neural network constraints in the case of the mixed-integer formulation.

We have also presented a warmstart technique that uses training data of the neural network

to construct good initial solutions. We have compared the three formulations on three

examples arising in the design of engines, the design of images that “fool” a given classifier,

and the assignment of flow in an oil well network. Each formulation has its advantages.

We have shown the MIP formulation to be useful in finding an optimal solution, but at the

cost of a potentially long solve time. We observed that the new complementarity constraint

formulation generally outperforms the mixed-integer formulation in terms of solution time

but may not find the optimal solution, although it often comes close. We also observed that

144

the embedded neural network formulation has the advantage of being scalable and quick to

solve but has difficulties with convergence related to the nondifferentiability of the ReLU

activation function (which could be rectified by using a smooth activation function, e.g., the

swish function).

We can assess from these experiments some limitations of the MIP and MPCC formu-

lations in that the number of variables in these models scale with the number of neurons

of a network suggesting these models are intractable for networks with millions of neurons

which boast the highest accuracy. The embedded formulation scales better and may be a

better fit for these large models, but given the difficulties with convergence exhibited in this

paper, we see that explicit care must be taken if we want to ensure that the solutions we find

are in fact locally optimal. The experiments reported in this paper portray the difficulty in

incorporating neural network models into general optimization problems, and provides three

possible solutions each with potential advantages and drawbacks.

In the future, we hope to address through experimentation, the question of surrogate

quality in the optimization process. We would like to develop algorithms which incorporate

retraining of the neural network surrogates and explore conditions necessary to ensure con-

vergence of the solution to local optima of the original optimization problems. In addition,

our study was limited to problems involving generally linear and quadratic objectives, and

linear constraints outside of the DNN constraints. Future work would involve a study of

this problem with more complex nonlinear objectives and constraints. For example one can

consider the problem of synthesizing process systems [DG86a] with additional physical con-

straints modeled by neural networks as is done in the oil well setting or the optimal product

location problem [DG86b] with the cost function replaced by a surrogate. These problems

and similar MINLPs are still convex and so the theorems in this paper still hold, but work

remains to be done to empirically assess the utility of these formulations in solving these

problems.

145

CHAPTER 6

Conclusion

In this thesis, we addressed two separate problems: developing efficient algorithms for sub-

graph discovery and creating methods for incorporating neural network surrogates into opti-

mization problems. Through our work on subgraph isomorphism, we introduced a collection

of techniques which improve the ability to discover patterns in highly symmetric graphs as

well as succinctly characterize these solutions. Our work on surrogate optimization prob-

lems allows for the easy incorporation of computationally expensive models into optimization

programs through the use of neural network surrogates.

Through our work on characterizing symmetry in subgraph isomorphism, we have defined

several different methods for handling equivalence in the subgraph matching problem. We

established conditions under which vertices may be interchanged safely in a given subgraph

isomorphism to produce more subgraph isomorphisms. We also established a hierarchy for

these different equivalence methods which a user could use to tune their solver to incorporate

more equivalence at the cost of more computation time. Through comprehensive assessment

on a large benchmark set, we demonstrated that for certain highly symmetric instances,

addressing symmetry is essential and results in exponentially more solutions found and orders

of magnitude reductions in computation time.

We established a concrete formulation for how one might try to apply active learning

to the subgraph isomorphism problem. Through rigorous argument, we establish that this

problem is NP-complete, and give in certain circumstances, a method for determining the

optimal query sequence. We present many different approaches for how to solve this problem,

146

and through empirical assessment, we establish that many of these methods improve upon

a naive approach of picking vertices at random.

In our work on surrogate optimization problems, we posed three different techniques by

which one can plug a complicated and computationally intensive model into an optimization

problem. We established through both rigorous analysis and empirical evaluation different

reasons for considering each technique, and we can envision this method allowing for the

solving of optimization problems which may have before appeared intractable due to the

computational costs.

There are many future directions that would improve upon the research presented in this

thesis. A key component lacking in the discussion of symmetry in subgraph isomorphism

is how to incorporate both template and world symmetry simultaneously. We discuss this

topic in the context of the simple forms of structural equivalence, but for dynamic candidate

equivalence, there is work to be done to produce a method which utilizes both while still

lending itself to easy counting. We would also like to develop methods which can incorporate

a dynamic form of automorphic equivalence (or at least certain classes of automorphisms

like reflections and rotations) into a tree search routine.

For the active learning problem, there still remains a significant gap between the best

methods presented and the generally computationally intractable optimal routine. There is

research which can be done to develop more sophisticated methods which may close this gap

further. We would also like to consider mixed strategy methods which allow for queries on

both the template and the world. There is also work to be done using different models for

the information gained from a query; for example, we may gain information about a label

or additional edges instead of the exact match.

As for the research on surrogate optimization problems, there remains much work on

improving on the formulations presented in this work. For example, we could consider

tighter formulations for the integer programming formulation. We would also like to expand

our work to handle other types of neural networks or machine learning models other than

147

simply ReLU neural networks. We would also like to come up with formulations which could

be scaled to the size of the models which are used in industry involving potentially millions

or billions of neurons.

148

REFERENCES

[AB19] S. M. Aithal and P. Balaprakash. “MaLTESE: Large-Scale Simulation-Driven
Machine Learning for Transient Driving Cycles.” In High Performance Comput-
ing, pp. 186–205, Cham, 2019. Springer International Publishing.

[ABC16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. “TensorFlow: A system for large-scale machine
learning.” In 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16), pp. 265–283, 2016.

[ABK07] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. “Dbpedia:
A nucleus for a web of open data.” In The semantic web, pp. 722–735. Springer,
2007.

[AHT19] R. Anderson, J. Huchette, C. Tjandraatmadja, and J. P. Vielma. “Strong Mixed-
Integer Programming Formulations for Trained Neural Networks.” In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pp.
27–42, 2019.

[AJB99] R. Albert, H. Jeong, and A.-L. Barabási. “Diameter of the world-wide web.”
Nature, 401(6749):130–131, 1999.

[ALS14] G. Audemard, C. Lecoutre, M. Samy-Modeliar, G. Goncalves, and D. Porumbel.
“Scoring-based neighborhood dominance for the subgraph isomorphism problem.”
In Int. Conf. on Principles and Practice of Constraint Programming, pp. 125–141.
Springer, 2014.

[BBC14] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gómez-Gardenes, M.
Romance, I. Sendina-Nadal, Z. Wang, and M. Zanin. “The structure and dynam-
ics of multilayer networks.” Physics reports, 544(1):1–122, 2014.

[BBL06] M.-F. Balcan, A. Beygelzimer, and J. Langford. “Agnostic active learning.” In
Proceedings of the 23rd international conference on Machine learning, ICML ’06,
pp. 65–72, Pittsburgh, Pennsylvania, USA, June 2006. Association for Computing
Machinery.

[BCL16] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. “Efficient subgraph match-
ing by postponing cartesian products.” In Proceedings of the 2016 International
Conference on Management of Data, pp. 1199–1214. ACM, 2016.

[Bel20] P. Belotti. “Couenne: A user’s manual.” Technical report, FICO, 2020.

[BFG10] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha. “Enhancing
graph database indexing by suffix tree structure.” In Pattern Recognition in

149

Bioinformatics: 5th IAPR International Conference, PRIB 2010, Nijmegen, The
Netherlands, September 22-24, 2010. Proceedings 5, pp. 195–203. Springer, 2010.

[BGP13] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro. “A subgraph
isomorphism algorithm and its application to biochemical data.” BMC bioinfor-
matics, 14(7):1–13, 2013.

[BHB21] D. Bergman, T. Huang, P. Brooks, A. Lodi, and A. U. Raghunathan. “JANOS: an
integrated predictive and prescriptive modeling framework.” INFORMS Journal
on Computing, 2021.

[BJU18] K. O. Babalola, O. B. Jennings, E. Urdiales, and J. A. DeBardelaben. “Statistical
Methods for Generating Synthetic Email Data Sets.” In 2018 IEEE International
Conference on Big Data (Big Data), pp. 3986–3990, 10 2018.

[BL07] P. Bonami and J. Lee. “BONMIN user’s manual.” Numer Math, 4:1–32, 2007.

[Bla92] K. D. Blaha. “Minimum bases for permutation groups: the greedy approxima-
tion.” Journal of Algorithms, 13(2):297–306, 1992.

[BMM06] D. Bruschi, L. Martignoni, and M. Monga. “Detecting self-mutating malware
using control-flow graph matching.” In Detection of Intrusions and Malware &
Vulnerability Assessment: Third International Conference, DIMVA 2006, Berlin,
Germany, July 13-14, 2006. Proceedings 3, pp. 129–143. Springer, 2006.

[BP20] J. Bolte and E. Pauwels. “Conservative set valued fields, automatic differenti-
ation, stochastic gradient methods and deep learning.” Mathematical Program-
ming, pp. 1–33, 2020.

[BRB08] B. Baumrucker, J. Renfro, and L. Biegler. “MPEC problem formulations and so-
lution strategies with chemical engineering applications.” Computers & Chemical
Engineering, 32(12):2903–2913, 2008.

[CFS04a] D. Conte, P. Foggia, C. Sansone, and M. Vento. “Thirty years of graph matching
in pattern recognition.” International journal of pattern recognition and artificial
intelligence, 18(03):265–298, 2004.

[CFS04b] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. “A (sub) graph isomor-
phism algorithm for matching large graphs.” IEEE Trans. Patt. Anal. Mach.
Int., 26(10):1367–1372, 2004.

[CFS07] D. Conte, P. Foggia, C. Sansone, and M. Vento. How and Why Pattern Recogni-
tion and Computer Vision Applications Use Graphs, pp. 85–135. Springer Berlin
Heidelberg, 2007.

150

[CFS17] V. Carletti, P. Foggia, A. Saggese, and M. Vento. “Introducing VF3: A New
Algorithm for Subgraph Isomorphism.” Graph-Based Representations in Pattern
Recognition, pp. 128–139, 2017.

[CFV15] V. Carletti, P. Foggia, and M. Vento. “VF2 Plus: An improved version of VF2 for
biological graphs.” In International Workshop on Graph-Based Representations
in Pattern Recognition, pp. 168–177. Springer, 2015.

[CGZ13] A. Cardillo, J. Gómez-Gardenes, M. Zanin, M. Romance, D. Papo, F. Del Pozo,
and S. Boccaletti. “Emergence of network features from multiplexity.” Scientific
reports, 3(1):1–6, 2013.

[Che21] M.-S. Cheon. “An outer-approximation guided optimization approach for con-
strained neural network inverse problems.” Mathematical Programming, pp. 1–30,
2021.

[CKN07] J. Cheng, Y. Ke, W. Ng, and A. Lu. “Fg-index: towards verification-free query
processing on graph databases.” In Proceedings of the 2007 ACM SIGMOD in-
ternational conference on Management of data, pp. 857–872, 2007.

[CLJ96] L. Clarke, J. Linderoth, E. Johnson, G. Nemhauser, R. Bhagavan, and M. Jordan.
“Using OSL to Improve the Computational Results of a MIP Logistics Model.”
EKKNEWS, 16, 1996.

[CNR17] C.-H. Cheng, G. Nührenberg, and H. Ruess. “Maximum resilience of artificial
neural networks.” In International Symposium on Automated Technology for Ver-
ification and Analysis, pp. 251–268. Springer, 2017.

[CPM18] J. A. Cottam, S. Purohit, P. Mackey, and G. Chin. “Multi-Channel Large Net-
work Simulation Including Adversarial Activity.” In 2018 IEEE International
Conference on Big Data (Big Data), pp. 3947–3950, 10 2018.

[CS20] D. Conte and F. Serratosa. “Interactive online learning for graph matching using
active strategies.” Knowledge-Based Systems, 205:106275, 2020.

[CW17] N. Carlini and D. Wagner. “Towards Evaluating the Robustness of Neural Net-
works.” In 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57,
2017.

[CZZ13] W. Cai, Y. Zhang, and J. Zhou. “Maximizing Expected Model Change for Active
Learning in Regression.” In 2013 IEEE 13th International Conference on Data
Mining, pp. 51–60, December 2013. ISSN: 2374-8486.

[DAT20] A. Delarue, R. Anderson, and C. Tjandraatmadja. “Reinforcement Learning with
Combinatorial Actions: An Application to Vehicle Routing.” Advances in Neural
Information Processing Systems, 33, 2020.

151

[DG86a] M. A. Duran and I. Grossmann. “A mixed-integer nonlinear programming algo-
rithm for process systems synthesis.” AIChE journal, 32(4):592–606, 1986.

[DG86b] M. A. Duran and I. Grossmann. “An Outer-Approximation Algorithm for a Class
of Mixed-Integer Nonlinear Programs.” Mathematical Programming, 36:307–339,
1986.

[DGG92] A. C. Dumay, R. J. van der Geest, J. J. Gerbrands, E. Jansen, and J. H. Reiber.
“Consistent inexact graph matching applied to labelling coronary segments in
arteriograms.” In 11th IAPR International Conference on Pattern Recognition.
Vol. III. Conference C: Image, Speech and Signal Analysis,, volume 1, pp. 439–
442. IEEE Computer Society, 1992.

[DH08] S. Dasgupta and D. Hsu. “Hierarchical sampling for active learning.” In Pro-
ceedings of the 25th international conference on Machine learning, ICML ’08, pp.
208–215, Helsinki, Finland, July 2008. Association for Computing Machinery.

[DHL17] I. Dunning, J. Huchette, and M. Lubin. “JuMP: A Modeling Language for Math-
ematical Optimization.” SIAM Review, 59(2):295–320, 2017.

[DJS18] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. “Output range analysis
for deep feedforward neural networks.” In NASA Formal Methods Symposium,
pp. 121–138. Springer, 2018.

[DLM13] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. “The anatomy of a
scientific rumor.” Scientific reports, 3(1):1–9, 2013.

[DMF13] S. Demeyer, T. Michoel, J. Fostier, P. Audenaert, M. Pickavet, and P. Demeester.
“The index-based subgraph matching algorithm (ISMA): fast subgraph enumer-
ation in large networks using optimized search trees.” PloS one, 8(4):e61183,
2013.

[DSC13] M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter,
S. Gómez, and A. Arenas. “Mathematical formulation of multilayer networks.”
Physical Review X, 3(4):041022, 2013.

[DSH11] G. Damiand, C. Solnon, C. De la Higuera, J.-C. Janodet, and É. Samuel. “Polyno-
mial algorithms for subisomorphism of nd open combinatorial maps.” Computer
Vision and Image Understanding, 115(7):996–1010, 2011.

[DWW21] A. P. Davis, T. C. Wiegers, J. Wiegers, C. J. Grondin, R. J. Johnson, D. Sciaky,
and C. J. Mattingly. “CTD Anatomy: analyzing chemical-induced phenotypes
and exposures from an anatomical perspective, with implications for environmen-
tal health studies.” Current research in toxicology, 2:128–139, 2021.

152

[DZP18] S. S. Du, X. Zhai, B. Poczos, and A. Singh. “Gradient Descent Provably Op-
timizes Over-parameterized Neural Networks.” In International Conference on
Learning Representations, 2018.

[EDS16] F. Emmert-Streib, M. Dehmer, and Y. Shi. “Fifty years of graph matching,
network alignment and network comparison.” Information sciences, 346:180–
197, 2016.

[FGK93] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. The Scientific Press, 1993.

[FJ18] M. Fischetti and J. Jo. “Deep neural networks and mixed integer linear opti-
mization.” Constraints, 23(3):296–309, 2018.

[FL04] R. Fletcher and S. Leyffer. “Solving Mathematical Program with Complemen-
tarity Constraints as Nonlinear Programs.” Optimization Methods and Software,
19(1):15–40, 2004.

[FLR06] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes. “Local convergence of SQP
methods for Mathematical Programs with Equilibrium Constraints.” SIAM Jour-
nal on Optimization, 17(1):259—-286, 2006.

[FPV14] P. Foggia, G. Percannella, and M. Vento. “Graph matching and learning in
pattern recognition in the last 10 years.” Int. J. of Pattern Recognition and
Artificial Intelligence, 28(01):1450001, 2014.

[GA19] B. Grimstad and H. Andersson. “ReLU networks as surrogate models in mixed-
integer linear programs.” Computers & Chemical Engineering, 131:106580, 2019.

[Gal63] D. Gale. “Neighborly and cyclic polytopes.” In Proc. Sympos. Pure Math, vol-
ume 7, pp. 225–232, 1963.

[GB15] R. Gallotti and M. Barthelemy. “The multilayer temporal network of public
transport in Great Britain.” Scientific data, 2:140056, 2015.

[GB21] Y. Ge and A. L. Bertozzi. “Active Learning for the Subgraph Matching Problem.”
In 2021 IEEE International Conference on Big Data (Big Data), pp. 2641–2649.
IEEE, 2021.

[GBB11] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks.”
In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 315–323. JMLR Workshop and Conference Proceedings, 2011.

[GBB13] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and D. Shasha.
“Grapes: A software for parallel searching on biological graphs targeting multi-
core architectures.” PloS one, 8(10):e76911, 2013.

153

[GBM17] A. M. Gleixner, T. Berthold, B. Müller, and S. Weltge. “Three enhance-
ments for optimization-based bound tightening.” Journal of Global Optimization,
67(4):731–757, 2017.

[GFM14] S. Gay, F. Fages, T. Martinez, S. Soliman, and C. Solnon. “On the subgraph
epimorphism problem.” Discrete Applied Mathematics, 162:214–228, 2014.

[GIG17] Y. Gal, R. Islam, and Z. Ghahramani. “Deep Bayesian active learning with image
data.” In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, pp. 1183–1192, Sydney, NSW, Australia, August 2017.
JMLR.org.

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability, volume 174.
freeman San Francisco, 1979.

[GJ02] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. W.H.
Freeman, New York, 2002.

[GS02] R. Giugno and D. Shasha. “Graphgrep: A fast and universal method for querying
graphs.” In 2002 International Conference on Pattern Recognition, volume 2, pp.
112–115. IEEE, 2002.

[GSS15] I. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing Adversarial
Examples.” In International Conference on Learning Representations, 2015.

[Gur12] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, Version 5.0,
2012.

[Gur18] L. Gurobi Optimization. “Gurobi optimizer reference manual.”, 2018.

[GVS14] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. “Qualitatively characterizing neural
network optimization problems.” arXiv preprint arXiv:1412.6544, 2014.

[GYB23] Y. Ge, D. Yang, and A. L. Bertozzi. “Iterative Active Learning Strategies for
Subgraph Matching.” 2023.

[HDM14] M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, and M. Pick-
avet. “The Index-based Subgraph Matching Algorithm with General Symmetries
(ISMAGS): exploiting symmetry for faster subgraph enumeration.” PloS one,
9(5):e97896, 2014.

[HHG11] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. “Bayesian Active Learn-
ing for Classification and Preference Learning.” arXiv:1112.5745 [cs, stat], De-
cember 2011. arXiv: 1112.5745.

154

[HKG19] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han. “Efficient Subgraph Matching:
Harmonizing Dynamic Programming, Adaptive Matching Order, and Failing Set
Together.” In Proceedings of the 2019 International Conference on Management
of Data, pp. 1429–1446. ACM, 2019.

[HLL13] W.-S. Han, J. Lee, and J. hoon Lee. “Turboiso: towards ultrafast and robust
subgraph isomorphism search in large graph databases.” In SIGMOD Conference,
2013.

[HS06] H. He and A. K. Singh. “Closure-tree: An index structure for graph queries.”
In 22nd International Conference on Data Engineering (ICDE’06), pp. 38–38.
IEEE, 2006.

[HS08] H. He and A. Singh. “Graphs-at-a-time: query language and access methods
for graph databases.” In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 405–418. ACM, 2008.

[HZR16] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recog-
nition.” In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[IBM09] IBM Corp. IBM Ilog CPLEX V12.1: User’s Manual for CPLEX, 2009.

[IIP16] V. Ingalalli, D. Ienco, and P. Poncelet. “SuMGra: Querying multigraphs via
efficient indexing.” In International Conference on Database and Expert Systems
Applications, pp. 387–401. Springer, 2016.

[JG19] H. Jiang and M. Gupta. “Minimum-Margin Active Learning.” arXiv:1906.00025
[cs, stat], May 2019. arXiv: 1906.00025.

[JHW19] H. Jin, X. He, Y. Wang, H. Li, and A. L. Bertozzi. “Noisy Subgraph Isomorphisms
on Multiplex Networks.” In 2019 IEEE International Conference on Big Data
(Big Data), pp. 4899–4905. IEEE, 2019.

[JM18] A. Jüttner and P. Madarasi. “VF2++—An improved subgraph isomorphism
algorithm.” Discrete Applied Mathematics, 242:69–81, 2018.

[JWP06] H. Jiang, H. Wang, S. Y. Philip, and S. Zhou. “Gstring: A novel approach for
efficient search in graph databases.” In 2007 IEEE 23rd International Conference
on Data Engineering, pp. 566–575. IEEE, 2006.

[KAB14] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter. “Multilayer Networks.” J. of Complex Networks, 2(3):203–271, 2014.

[Kar72] R. M. Karp. “Reducibility among combinatorial problems.” In Complexity of
computer computations, pp. 85–103. Springer, 1972.

155

[KBD17] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. “Reluplex:
An efficient SMT solver for verifying deep neural networks.” In International
Conference on Computer Aided Verification, pp. 97–117. Springer, 2017.

[KGB18] A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial examples in the phys-
ical world.” In Artificial intelligence safety and security, pp. 99–112. Chapman
and Hall/CRC, 2018.

[KGD18] E. B. Khalil, A. Gupta, and B. Dilkina. “Combinatorial Attacks on Binarized
Neural Networks.” In International Conference on Learning Representations,
2018.

[KKM11] K. Klein, N. Kriege, and P. Mutzel. “Ct-index: Fingerprint-based graph indexing
combining cycles and trees.” In 2011 IEEE 27th International Conference on
Data Engineering, pp. 1115–1126. IEEE, 2011.

[KMS16] L. Kotthoff, C. McCreesh, and C. Solnon. “Portfolios of subgraph isomorphism
algorithms.” In International Conference on Learning and Intelligent Optimiza-
tion, pp. 107–122. Springer, 2016.

[KP18] M. Kivelä and M. A. Porter. “Isomorphisms in Multilayer Networks.” IEEE
Transactions on Network Science and Engineering, 5(3):198–211, 2018.

[KSG18] K. Karra, S. Swarup, and J. Graham. “An Empirical Assessment of the Com-
plexity and Realism of Synthetic Social Contact Networks.” In 2018 IEEE In-
ternational Conference on Big Data (Big Data), pp. 3959–3967, 10 2018.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks.” Advances in neural information processing
systems, 25:1097–1105, 2012.

[KX19] A. Kopylov and J. Xu. “Filtering Strategies for Inexact Subgraph Matching on
Noisy Multiplex Networks.” In 2019 IEEE International Conference on Big Data
(Big Data), pp. 4906–4912, 2019.

[LCH06] C. Liu, C. Chen, J. Han, and P. S. Yu. “GPLAG: detection of software plagia-
rism by program dependence graph analysis.” In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp.
872–881, 2006.

[LDT19] L. Liu, B. Du, H. Tong, et al. “G-Finder: Approximate Attributed Subgraph
Matching.” In 2019 IEEE International Conference on Big Data (Big Data), pp.
513–522. IEEE, 2019.

[LeC98] Y. LeCun. “The MNIST database of handwritten digits.” 1998.

156

[Ley03] S. Leyffer. “Mathematical Programs with Complementarity Constraints.”
SIAG/OPT Views-and-News, 14(1):15–18, 2003.

[LLN06] S. Leyffer, G. Lopez-Calva, and J. Nocedal. “Interior Methods for Mathematical
Programs with Complementarity Constraints.” SIAM Journal on Optimization,
17(1):52–77, 2006.

[LMB17] M. Lombardi, M. Milano, and A. Bartolini. “Empirical decision model learning.”
Artificial Intelligence, 244:343–367, 2017.

[LRS18] P. Laborie, J. Rogerie, P. Shaw, and P. Viĺım. “IBM ILOG CP optimizer for
scheduling: 20+ years of scheduling with constraints at IBM/ILOG.” Con-
straints, 23:210–250, 2018.

[LV02] J. Larrosa and G. Valiente. “Constraint satisfaction algorithms for graph pattern
matching.” Mathematical Structures in Computer Science, 12(4):403–422, 2002.

[LY17] Y. Li and Y. Yuan. “Convergence Analysis of Two-layer Neural Networks with
ReLU Activation.” Advances in Neural Information Processing Systems, 30:597–
607, 2017.

[Mac77] A. K. Mackworth. “Consistency in networks of relations.” Artificial intelligence,
8(1):99–118, 1977.

[MBF20] G. Micale, V. Bonnici, A. Ferro, D. Shasha, R. Giugno, and A. Pulvirenti.
“Multiri: Fast subgraph matching in labeled multigraphs.” arXiv preprint
arXiv:2003.11546, 2020.

[McG79] J. J. McGregor. “Relational consistency algorithms and their application in find-
ing subgraph and graph isomorphisms.” Information Sciences, 19(3):229–250,
1979.

[MCT18] J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd, and A. L. Bertozzi. “Filter-
ing Methods for Subgraph Matching on Multiplex Networks.” In 2018 IEEE
International Conference on Big Data (Big Data), pp. 3980–3985. IEEE, 2018.

[MF12] A. Murray and B. Franke. “Compiling for automatically generated instruction
set extensions.” In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pp. 13–22, 2012.

[MGF18] G. Micale, R. Giugno, A. Ferro, M. Mongiovi, D. Shasha, and A. Pulvirenti. “Fast
analytical methods for finding significant labeled graph motifs.” Data Mining and
Knowledge Discovery, 32(2):504–531, 2018.

[MGT17] E. Malmi, A. Gionis, and E. Terzi. “Active network alignment: a matching-based
approach.” In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 1687–1696, 2017.

157

[MLL11] A. Mahajan, S. Leyffer, J. Linderoth, J. Luedtke, and T. Munson. “MINOTAUR:
A toolkit for solving mixed-integer nonlinear optimization.” wiki-page, 2011.

[MM19] M. Maggioni and J. M. Murphy. “Learning by active nonlinear diffusion.” Foun-
dations of Data Science, 1(3):271, 2019. Company: Foundations of Data Sci-
ence Distributor: Foundations of Data Science Institution: Foundations of Data
Science Label: Foundations of Data Science Publisher: American Institute of
Mathematical Sciences.

[Moo21] J. Moorman. Stochastic Optimization and Subgraph Search. University of Cali-
fornia, Los Angeles, 2021.

[MP14] B. D. McKay and A. Piperno. “Practical graph isomorphism, II.” J. of Symbolic
Computation, 60:94–112, 1 2014.

[MP15] C. McCreesh and P. Prosser. “A parallel, backjumping subgraph isomorphism
algorithm using supplemental graphs.” In International conference on principles
and practice of constraint programming, pp. 295–312. Springer, 2015.

[MPC14] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. “On the Number of Linear
Regions of Deep Neural Networks.” Advances in Neural Information Processing
Systems, 27:2924–2932, 2014.

[MPS18] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. “When subgraph isomor-
phism is really hard, and why this matters for graph databases.” Journal of
Artificial Intelligence Research, 61:723–759, 2018.

[MPT20] C. McCreesh, P. Prosser, and J. Trimble. “The Glasgow subgraph solver: using
constraint programming to tackle hard subgraph isomorphism problem variants.”
In International Conference on Graph Transformation, pp. 316–324. Springer,
2020.

[MTC21] J. D. Moorman, T. Tu, Q. Chen, X. He, and A. Bertozzi. “Subgraph Matching on
Multiplex Networks.” IEEE Transactions on Network Science and Engineering,
8(2):1367–1384, 2021.

[NYG19] T. Nguyen, D. Yang, Y. Ge, H. Li, and A. L. Bertozzi. “Applications of structural
equivalence to subgraph isomorphism on multichannel multigraphs.” In 2019
IEEE International Conference on Big Data (Big Data), pp. 4913–4920. IEEE,
2019.

[PGC17] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer. “Automatic differentiation in PyTorch.”
2017.

158

[PMB14] R. Pascanu, G. Montúfar, and Y. Bengio. “On the number of response regions of
deep feed forward networks with piece-wise linear activations.” In International
Conference on Learning Representations, 2014.

[Pow69] M. Powell. “A method for nonlinear constraints in minimization problems in
Optimization.” In R. Fletcher, editor, Optimization. Academic Press, 1969.

[PPL20] H. G. Patsolic, Y. Park, V. Lyzinski, and C. E. Priebe. “Vertex nomination via
seeded graph matching.” Statistical Analysis and Data Mining: The ASA Data
Science Journal, 13(3):229–244, 2020.

[PTA21] T. Papalexopoulos, C. Tjandraatmadja, R. Anderson, J. P. Vielma, and D. Be-
langer. “Constrained Discrete Black-Box Optimization using Mixed-Integer Pro-
gramming.” arXiv preprint arXiv:2110.09569, 2021.

[QHS05] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and P. K.
Tucker. “Surrogate-based analysis and optimization.” Progress in aerospace sci-
ences, 41(1):1–28, 2005.

[RB05] A. Raghunathan and L. T. Biegler. “An Interior Point Method for Mathemati-
cal Programs with Complementarity Constraints (MPCCs).” SIAM Journal on
Optimization, 15(3):720–750, 2005.

[RCA19] M. Ryu, Y. Chow, R. Anderson, C. Tjandraatmadja, and C. Boutilier. “CAQL:
Continuous Action Q-Learning.” In International Conference on Learning Rep-
resentations, 2019.

[Reg94] J.-C. Régin. “A filtering algorithm for constraints of difference in CSPs.” In
AAAI, volume 94, pp. 362–367, 1994.

[RS14] P. Ribeiro and F. Silva. “Discovering colored network motifs.” In Complex Net-
works V, pp. 107–118. Springer, 2014.

[RW15] X. Ren and J. Wang. “Exploiting vertex relationships in speeding up subgraph
isomorphism over large graphs.” Proceedings of the VLDB Endowment, 8(5):617–
628, 2015.

[RZL17] P. Ramachandran, B. Zoph, and Q. V. Le. “Searching for activation functions.”
arXiv preprint arXiv:1710.05941, 2017.

[Sah96] N. V. Sahinidis. “BARON: A general purpose global optimization software pack-
age.” Journal of Global Optimization, 8(2):201–205, 1996.

[SC15] F. Serratosa and X. Cortés. “Interactive graph-matching using active query
strategies.” Pattern Recognition, 48(4):1364–1373, 2015.

159

[SDD15] C. Solnon, G. Damiand, C. De La Higuera, and J.-C. Janodet. “On the complex-
ity of submap isomorphism and maximum common submap problems.” Pattern
Recognition, 48(2):302–316, 2015.

[Set12] B. Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool, 2012.

[SF83] A. Sanfeliu and K.-S. Fu. “A distance measure between attributed relational
graphs for pattern recognition.” IEEE transactions on systems, man, and cyber-
netics, (3):353–362, 1983.

[SM19] A. M. Schweidtmann and A. Mitsos. “Deterministic Global Optimization with
Artificial Neural Networks Embedded.” Journal of Optimization Theory and
Applications, 180(3):925–948, 2019.

[Sol10] C. Solnon. “AllDifferent-based Filtering for Subgraph Isomorphism.” Artificial
Intell., 174:850–864, August 2010.

[Sol19] C. Solnon. “Experimental evaluation of subgraph isomorphism solvers.” In In-
ternational Workshop on Graph-Based Representations in Pattern Recognition,
pp. 1–13. Springer, 2019.

[SPP19] D. Sussman, Y. Park, C. E. Priebe, and V. Lyzinski. “Matched Filters for Noisy
Induced Subgraph Detection.” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pp. 1–1, 2019.

[SR20] T. Serra and S. Ramalingam. “Empirical Bounds on Linear Regions of Deep
Rectifier Networks.” In AAAI, pp. 5628–5635, 2020.

[SS00] H. Scheel and S. Scholtes. “Mathematical Program with Complementarity Con-
straints: Stationarity, Optimality and Sensitivity.” Mathematics of Operations
Research, 25:1–22, 2000.

[SS04] C. Schulte and P. J. Stuckey. “Speeding up constraint propagation.” In Principles
and Practice of Constraint Programming–CP 2004: 10th International Confer-
ence, CP 2004, Toronto, Canada, September 27-October 1, 2004. Proceedings 10,
pp. 619–633. Springer, 2004.

[SZ14] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition.” In International Conference on Learning Representations,
2014.

[SZL08] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. “Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism.” Proceedings of the VLDB
Endowment, 1(1):364–375, 2008.

160

[SZS14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. “Intriguing properties of neural networks.” In 2nd International Con-
ference on Learning Representations, 2014.

[TK01] S. Tong and D. Koller. “Support Vector Machine Active Learning with Applica-
tions to Text Classification.” Journal of Machine Learning Research, 2(Nov):45–
66, 2001.

[TKT21] C. Tsay, J. Kronqvist, A. Thebelt, and R. Misener. “Partition-based formulations
for mixed-integer optimization of trained relu neural networks.” Advances in
Neural Information Processing Systems, 34, 2021.

[TMY20] T. K. Tu, J. D. Moorman, D. Yang, Q. Chen, and A. L. Bertozzi. “Inexact at-
tributed subgraph matching.” Proc. IEEE Cong. BIG DATA, Graph Techniques
for Adversarial Activity Analytics (GTA3 4.0) workshop, pp. 2575–2582, 2020.

[TS02] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization
in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms,
Software, and Applications. Kluwer Academic Publishers, Boston MA, 2002.

[TXT17] V. Tjeng, K. Xiao, and R. Tedrake. “Evaluating robustness of neural networks
with mixed integer programming.” arXiv preprint arXiv:1711.07356, 2017.

[Ukk92] E. Ukkonen. “Approximate string-matching with q-grams and maximal
matches.” Theoretical computer science, 92(1):191–211, 1992.

[Ull76] J. R. Ullmann. “An Algorithm for Subgraph Isomorphism.” J. ACM, 23(1):31–
42, January 1976.

[Val79] L. G. Valiant. “The complexity of computing the permanent.” Theoretical com-
puter science, 8(2):189–201, 1979.

[VCL15] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer, E. T.
Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe. “Fast approximate
quadratic programming for graph matching.” PLOS one, 10(4):e0121002, 2015.

[WB06] A. Wächter and L. T. Biegler. “On the Implementation of a Primal-Dual Interior
Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming.”
Mathematical programming, 106(1):25–57, 2006.

[WDT12] X. Wang, X. Ding, A. K. Tung, S. Ying, and H. Jin. “An efficient graph indexing
method.” In 2012 IEEE 28th International Conference on Data Engineering, pp.
210–221. IEEE, 2012.

[WKK97] L. Wiskott, N. Krüger, N. Kuiger, and C. von der Malsburg. “Face recognition
by elastic bunch graph matching.” IEEE Trans. on Patt. Anal. and Mach. Int.,
19(7):775–779, 1997.

161

[WLC20] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Burdick, D. Eide, K.
Funk, Y. Katsis, R. M. Kinney, et al. “CORD-19: The COVID-19 Open Research
Dataset.” In Proceedings of the 1st Workshop on NLP for COVID-19 at ACL
2020, 2020.

[WLW21] Q. Wang, M. Li, X. Wang, N. Parulian, G. Han, J. Ma, J. Tu, Y. Lin, R. H.
Zhang, W. Liu, et al. “COVID-19 Literature Knowledge Graph Construction and
Drug Repurposing Report Generation.” In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Demonstrations, pp. 66–77, 2021.

[WSM14] J.-P. Watson, D. R. Strip, W. C. McLendon, O. D. Parekh, C. F. Diegert, S. B.
Martin, and M. D. Rintoul. “Encoding and analyzing aerial imagery using geospa-
tial semantic graphs.” Technical report, Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States), 2014.

[WWY10] G. Wang, B. Wang, X. Yang, and G. Yu. “Efficiently indexing large sparse graphs
for similarity search.” IEEE Transactions on Knowledge and Data Engineering,
24(3):440–451, 2010.

[YBL22] D. Yang, P. Balaprakash, and S. Leyffer. “Modeling design and control problems
involving neural network surrogates.” Computational Optimization and Applica-
tions, pp. 1–42, 2022.

[YGN23] D. Yang, Y. Ge, T. Nguyen, D. Molitor, J. D. Moorman, and A. L. Bertozzi.
“Structural Equivalence in Subgraph Matching.” IEEE Transactions on Network
Science and Engineering, 2023.

[YM13] D. Yuan and P. Mitra. “Lindex: a lattice-based index for graph databases.” The
VLDB Journal, 22:229–252, 2013.

[YYH04] X. Yan, P. S. Yu, and J. Han. “Graph indexing: a frequent structure-based
approach.” In Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pp. 335–346, 2004.

[Zas75] T. Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of
space by hyperplanes: Face-count formulas for partitions of space by hyperplanes,
volume 154. American Mathematical Soc., 1975.

[ZB17] Z. Zhang and M. Brand. “Convergent Block Coordinate Descent for Training
Tikhonov Regularized Deep Neural Networks.”, 2017.

[ZDS10] S. Zampelli, Y. Deville, and C. Solnon. “Solving subgraph isomorphism problems
with constraint programming.” Constraints, 15:327–353, 07 2010.

162

[ZH10] P. Zhao and J. Han. “On graph query optimization in large networks.” Proceed-
ings of the VLDB Endowment, 3(1-2):340–351, 2010.

[ZHY06] S. Zhang, M. Hu, and J. Yang. “Treepi: A novel graph indexing method.” In 2007
IEEE 23rd International Conference on Data Engineering, pp. 966–975. IEEE,
2006.

[ZLG03] X. Zhu, J. Lafferty, and Z. Ghahramani. “Combining Active Learning and Semi-
Supervised Learning Using Gaussian Fields and Harmonic Functions.” In ICML
2003 workshop on The Continuum from Labeled to Unlabeled Data in Machine
Learning and Data Mining, pp. 58–65, 2003.

[ZLY09] S. Zhang, S. Li, and J. Yang. “GADDI: distance index based subgraph matching
in biological networks.” In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, pp. 192–203.
ACM, 2009.

[ZPM21] J. Zucker, K. Paneri, S. Mohammad-Taheri, S. Bhargava, P. Kolambkar, C.
Bakker, J. Teuton, C. Hoyt, K. Oxford, R. Ness, and O. Vitek. “Leveraging
Structured Biological Knowledge for Counterfactual Inference: A Case Study of
Viral Pathogenesis.” IEEE Trans. on Big Data, 7(01):25–37, 1 2021.

[ZXL12] X. Zhao, C. Xiao, X. Lin, and W. Wang. “Efficient graph similarity joins with
edit distance constraints.” In 2012 IEEE 28th International Conference on Data
Engineering, pp. 834–845. IEEE, 2012.

[ZYY07] P. Zhao, J. X. Yu, and P. S. Yu. “Graph indexing: tree+ delta¡= graph.” In
Proceedings of the 33rd international conference on Very large data bases, pp.
938–949, 2007.

163

	Introduction
	The Subgraph Isomorphism Problem
	Defining the Problem
	Terminology
	Applications of Subgraph Isomorphism

	Approaches for Finding Subgraph Isomorphisms
	Tree Search Approaches
	Constraint Programming
	Indexing Approaches

	Inexact Subgraph Matching

	Structural Equivalence in Subgraph Matching
	Introduction
	Chapter Outline

	Structural Equivalence
	Interchangeability and Isomorphism Counting
	Application to Tree Search

	Candidate Equivalence
	Node Cover Equivalence
	Equivalence Hierarchy

	Experiments
	Compact Solution Representation
	Application to Multiplex Networks
	Multiplex MultiGraph Matching
	Multiplex Experiments

	Conclusion

	Iterative Active Learning Strategies for Subgraph Matching
	Introduction
	Active Learning Framework
	Associated Theoretical Problems

	NP-Completeness of the Minimal Solution Verification Set Problem
	Reduction of Minimum Set Cover to Minimum Solution Verification Set
	Solving the Minimal Solution Verification Set Problem

	Querying Strategies for Template Vertices
	Local Strategies
	Probabilistic Query Strategies
	Symmetry in Active Learning

	Experiments
	Conclusion

	Modeling design and control problems involving neural network surrogates
	Introduction
	Outline and Contributions
	Related Work

	Modeling Optimization Applications Involving Neural Network Surrogates
	Optimal Design of Combustion Engine
	Adversarial Attack Generation
	Surrogate Modeling of Oil Well Networks

	Embedded Neural Network Formulation
	Convergence Behavior
	Stationarity in the Embedded Formulation

	Formulating DNNs as Optimization Models
	Formulating DNNs with Mixed-Integer Sets
	Formulating DNNs with Complementarity Constraints

	Numerical Experiments
	Numerical Experiments with Engine Design Optimization
	Numerical Experiments with Adversarial Attack Generation
	Numerical Experiments with Oil Well Networks

	Conclusion

	Conclusion
	References

