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Abstract: 

Recent events have forced building managers to examine energy use during vacant periods and revealed miscellaneous 

electrical loads (MELs) as an opportunity for savings. This paper addresses a key step in unlocking these savings, 

specifically the reliable identification of when a building is vacant. A Vacancy Inference Engine (VIE), using sensor 

fusion, was developed to identify vacant periods based on outputs from common sensors, historical building vacancy 

patterns, and expert knowledge. The VIE calculates the confidence that a building is vacant, allowing building 

managers to balance the capture of energy savings with the possibility of complaints due to powering down MELs. 

The VIE has the advantage over logistic regression and other models in that it does not require a full set of ground 

truth for the training process.  

The VIE successfully predicted vacancy in an office building using input data streams of instantaneous electricity 

demand, indoor carbon dioxide concentrations, and the number of active Wi-Fi connections. The VIE’s ability to 

predict vacancy was compared to that of logistic regression using a metric based on the Complaint Opportunity Rate 

and found to be nearly identical (0.94 versus 0.95, respectively).   

 

Keywords: Building energy consumption, vacancy modeling, plug loads, miscellaneous loads, green buildings, 

energy efficiency   
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1. Introduction 1 

Two intersecting trends in building energy usage have made electricity consumption during periods of no occupancy 2 

an attractive opportunity for energy savings. The first trend is the steadily increasing electricity use of l devices that 3 

operate even when few or no people are present. These devices include plug loads, network equipment, security 4 

systems, elevators, and certain, uncontrolled components in HVAC systems. These miscellaneous electrical loads are 5 

responsible for over 30% of electricity use in U.S. commercial buildings and appear to be still growing [1,2]. The 6 

second trend is the rising percentage of time when buildings are empty or intermittently occupied. Now, in addition 7 

to nights, weekends, and holidays, building managers must “plan” for closures due to smoke and even pandemics.  8 

The combination of higher miscellaneous electrical loads used during vacant periods and more vacant hours suggests 9 

the existence of potential energy savings.  10 

This paper addresses an essential step in realizing these savings, specifically, reliably identifying when a building is 11 

vacant.  The paper begins by documenting the two trends and then presents and tests a method for inferring vacancy.  12 

1.1. Miscellaneous Electrical Loads 13 

Miscellaneous electric loads (MELs) are typically defined as any electric load outside of a building’s core functions 14 

of HVAC, lighting, water heating, and refrigeration [3,4]. This definition by exclusion results in ambiguity as to which 15 

end uses are MELs and which are not. Nevertheless, the lack of a consistent definition should not hinder the 16 

development of strategies to reduce their energy use.  17 

Miscellaneous electric loads are responsible for a large fraction of electricity consumption in both residential and 18 

commercial buildings [5]. In the United States, MELs are responsible for 46% of total building electricity consumption 19 

[6]. This category of energy use is disaggregated by individual MEL type in Figure 1, which shows the contributions 20 

by various devices in the residential and commercial sectors [7]. The identified contributors illustrate the diversity of 21 

loads in the MELs category and the large, "Unspecified" slices hint at an even greater diversity. 22 
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23 

Figure 1. Electrical consumption of miscellaneous electric loads (MELs) in US building stock 24 

Investigations of individual buildings support the high MEL consumption estimates shown in Figure 1. For example, 25 

a study by Hafer of 220 buildings found that, on average, plug loads were responsible for 32% of the total building 26 

electricity consumed [8]. Other studies found similar levels in North America, Malaysia, and Europe [6,9–11]. 27 

Many recent studies have examined the correlation between Wi-Fi connections and occupancy [12–15]  and energy 28 

consumption [16,17]. For example, in a study at a university campus in California, total building electricity 29 

consumption was tracked along with Wi-Fi connections as Wi-Fi connections are known to be a good proxy for 30 

occupancy. Figure 2 shows Wi-Fi for one week that includes a holiday. 31 
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 32 

Figure 2. Campus-wide electricity demand and Wi-Fi connections for Monday, July 1 to Monday, July 8, 2019. 33 

Red, shaded regions indicate a holiday. 34 

For the campus, heating and cooling energy is centrally supplied and most of the lighting is centrally or sensor 35 

controlled so the electricity consumption shown in Figure 2 is primarily of MELs. It shows that electricity use fell 36 

only 24% during the holiday even though occupancy levels were only about 29% of previous days [18]. Many 37 

buildings had periods of zero occupancy (inferred by Wi-Fi connection) but also exhibited only modest falls in 38 

electricity use [19].  39 

Despite their diversity, most MELs have commonality in that they are small loads (less than a kilowatt), have some 40 

standby power consumption, and are connected to communication networks (because so many provide Information 41 

Technology services). MELs are  also typically not centrally controlled by building management systems. This lack 42 

of central control became evident during the pandemic when buildings’ electricity use decreased only slightly even 43 

though nobody was working in them. A national survey of office buildings found only a 21% reduction in electricity 44 

use during the pandemic [20].  In the Empire State Building (New York City), electricity use fell only 28% even 45 

though it was almost completely vacant [21].  46 

Miscellaneous electrical loads are projected to grow in the near term.  For example, in the United States, MELs are 47 

forecasted to increase to nearly 54% of all residential and commercial electricity purchased in 2050 [6].                                       48 
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1.2. Vacancy: An Opportunity for Savings 49 

Researchers have extensively investigated the impact of occupancy such as working hours and occupancy schedules 50 

on energy consumption [22–24] and their results inform HVAC operation and optimization. On the other hand, few 51 

studies have explicitly considered periods of vacancy and its impact on energy use in the buildings [25–28].1 Some of 52 

the detailed studies of occupancy indirectly reveal vacancy information when they report zero Wi-Fi counts or no 53 

activity from occupancy sensors. Although a  number of studies have documented occupancy patterns in diverse 54 

commercial buildings revealing significant periods of zero occupancy (weekends and holiday periods were ignored), 55 

the number of vacant hours and duration were not treated with similar detail [15,26,29–36]. Nonetheless, commercial 56 

buildings are vacant a significant number of hours each year and vacant long enough to justify special energy-saving 57 

strategies such as in the present study. 58 

Most commercial buildings are vacant for at least a few hours per year, but the number of hours depends on building 59 

functions, size, cleaning schedules, security procedures, culture, and other factors. Few measurements have been made 60 

on the frequency and duration of vacant hours. Most information is anecdotal; for example, every weekday security 61 

guards lock university buildings at 23:00 and custodians re-open them at 07:00 in the morning [26]. This simple 62 

schedule implies the building is vacant for 33% of the year. Operating procedures for weekends, holidays, and special 63 

situations (such as a pandemic) are not always clearly documented but only increase the proportion of vacant hours.  64 

On the other hand, certain staff may still be able to enter the building during the locked periods, which will reduce the 65 

vacant hours. A study of 24 buildings on one university campus estimated that the buildings were vacant 29% of the 66 

year [19].    67 

During the COVID-19 pandemic, campus buildings experienced a 90% reduction in occupancy, but electricity use fell 68 

only 15% [37]. In the past, a study of six commercial buildings showed that during unoccupied times of the weekend 69 

the buildings were consuming on average 23% of the building’s weekly energy [38].  Situations like those described 70 

above suggest that reducing electricity consumption when buildings are vacant or sparsely occupied is an untapped 71 

opportunity with significant potential for electricity savings [39,40]. 72 

 
1 We call buildings “vacant” when they are unoccupied for brief periods – minutes, hours, days.  This differs from 
the insurance definition, which considers “vacant” to refer to a building that contains no personal or corporate 
property. 
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1.3. Overview of Vacancy Inference Approach 73 

To unlock the savings described above, vacancy must be determined with high confidence. Completely unoccupied 74 

buildings – even if only for a few hours – are the most attractive target for energy savings because nobody is 75 

inconvenienced by reduced services. However, truly aggressive control strategies cannot be implemented unless there 76 

is high confidence that nobody is in the building. Thus, a “Vacancy Inference Engine” is proposed to combine data 77 

sources to identify vacant periods and then signal this condition to MELs. The logical flow of the Vacancy Inference 78 

Engine is shown in Figure 3.   79 

 80 

 81 

Figure 3. Proposed method to reduce MELs during periods of building vacancy. 82 

Ultimately, the MELs need to be modified to receive a signal and enter a “vacancy mode” when the situation is 83 

appropriate.  Some devices are already equipped to receive a signal in order to respond to real-time electricity prices 84 

and to provide other grid services [41]. This paper focuses on the VIE and its ability to infer vacancy from common 85 

sensors and then applies it to a case study. 86 

1.3.1. Occupancy Sensing vs Vacancy Inference  87 

The initial targets for energy savings are MELs operating during periods while a building is vacant. For this reason, a 88 

determination of vacancy is required before these devices can be powered down. The state of being vacant exhibits 89 

features that make it very different from the occupied state. For instance, the occupancy information can be categorized 90 

into presence, location, count, activity, direction, and identity of the person based on their spatial and temporal 91 

properties [42]. Moreover, the training data for vacancy inference is likely to be more similar across a wide range of 92 
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buildings than occupancy data for two reasons. First, the vacant condition is essentially identical across all buildings, 93 

that is, zero people are in the building. Second, near-vacant conditions, that is, when only a few occupants are present, 94 

are also likely to be similar across many types of buildings.  For example, near-vacant conditions correspond to when 95 

a custodian enters to clean the building, a security guard makes the rounds, or a person enters to fetch an item during 96 

off-hours. On the other hand, occupancy-based models are building specific, and the occupancy profile depends on 97 

the building type and its occupant characteristics [43]. 98 

No sensors exist to detect vacancy; nevertheless, the absence of signals from occupancy detectors is a crude inference 99 

of vacancy. The inference of vacancy is uncertain for three principal reasons. First, all sensors are susceptible to noise.  100 

The noise can lead to a sensor falsely interpreting a vacant condition as occupied. The opposite type of error is also 101 

possible where noise filtering is applied; there, the signal generated by occupant presence is filtered out and ignored.  102 

Some sensors, such as a PIR (passive infrared) sensor, fail to detect stationary persons, thereby reporting an occupied 103 

space as vacant. The third source of uncertainty arises because occupancy detectors are typically designed to maintain 104 

an ‘on’ output for a fixed period after ceasing to detect a presence. This delay translates into longer periods of apparent 105 

occupancy than actually occurred and a bias towards shorter durations of vacancy.  106 

Modeling occupancy and vacancy differs because the presence of persons can be detected whereas their absence can 107 

only be inferred. When testing for occupancy, a binary output would be described as [44] 108 

1: 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 109 

0: 𝑁𝑜𝑡 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 110 

whereas, in the case of vacancy inference, this would become  111 

1: 𝑉𝑎𝑐𝑎𝑛𝑡 112 

0: 𝑁𝑜𝑡 𝑣𝑎𝑐𝑎𝑛𝑡 113 

Here, the default case is that one or more persons are present, defined as “0”, and changes to “1” only when reasonable 114 

doubt exists. This reasonable doubt is quantifiable as a confidence level that is not solely a function of sensor accuracy, 115 

exposing the need for an output that describes this confidence in the form of a percentage.  116 
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1.3.2. A Sensor Fusion Approach 117 

Conventional sensors in buildings detect occupancy through a variety of physical means, such as a movement, a sound, 118 

a change of temperature, an increase in carbon dioxide, camera footage, and Wi-Fi connections [45]. Single sensors 119 

such as Wi-Fi however, have been proven to be unreliable [30], especially at very low occupancy levels [35]. A 120 

“sensor fusion” method can be employed to minimize these shortcomings and improve the accuracy of the result 121 

[46,47]. In this approach the information from various sensors is combined to infer vacancy, resulting in a lower 122 

overall error than a single sensor would achieve alone. This assumes the sensor outputs are independent [30] and 123 

results in a higher signal-to-noise ratio. Sensor fusion results in a single, actionable number that can be used in 124 

subsequent operations [48].  125 

Occupancy sensing algorithms have been generally categorized into several methods, including statistical and classical 126 

learning, kernel-based, data mining and clustering, probabilistic graphical, and neural networks [49]. These methods 127 

require building-specific ground truth occupancy information for training data, which is time consuming and 128 

expensive [50]. For example, for obtaining the ground truth, all the building entries and exits should be recorded, and 129 

it can be done using camera logs, keycard events, sensor technologies or human observations.  130 

The proposed model, referred to as the Vacancy Inference Engine (VIE), is trained using building vacancy patterns 131 

obtained from building experts, occupants, and general knowledge. Only a few studies have inferred occupancy 132 

probabilities without using any ground truth data; even then, their focus is not on vacancy [51,52] and moreover, 133 

assessment of various probabilistic models also highlight the fact that these methods lack the ability to predict only 134 

vacancy timeslots [43]. While on the other hand the method proposed in this study eliminates the need for ground 135 

truth and uses only the vacancy patterns to label the training data. The training data set is further simplified in that it 136 

only contains information about the vacant state and does not require knowledge of the occupied state, as is needed 137 

for other approaches. Since data used to train the VIE does not contain both possible states, we classify the model in 138 

the present study as a semi-supervised sensor fusion method.  139 

The output of the model is a number between 0 and 1 which represents confidence in the determination of vacancy. 140 

The signal communicating this confidence is expected to be transmitted to and monitored by end-use devices that 141 

process it and trigger themselves into low- or no-power modes, hereafter referred to as vacancy modes. Since the 142 
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output is a continuous variable rather than a binary output, it allows for the consideration of different risk profiles 143 

across devices. For example, the consequences of mistakenly powering down an elevator while someone is inside are 144 

more severe than the consequences of shutting down a water cooler while someone is thirsty. Thus, a higher confidence 145 

of vacancy would be required for placing the elevator into vacancy mode versus the water cooler. 146 

2. Methodology: Model Development 147 

The creation of the vacancy inference model and its usage occurs in three phases: model training, vacancy inference, 148 

and device action. The process flow for these phases is depicted in Figure 4. The parameters determined during the 149 

one-time model training phase (𝜇 and 𝑠) are used during the inference phase to convert raw sensor input (𝑥) into 150 

intermediate confidence of vacancy (𝑐). These intermediate predictions are fused at a single node in the inference 151 

phase to provide overall confidence of vacancy for the target area (𝐶). During operation, an end-use device converts 152 

the overall confidence of vacancy into a binary output (O) by comparing to its specific threshold value to initiate 153 

action through its controller. 154 

 155 

Figure 4. Logic flow for VIE during its development and usage phases 156 

The following assumptions were adopted to formulate the VIE and to process data produced by the individual sensors: 157 

● Increased occupancy will result in an increase in the sensor value. 158 
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● Once a sensor value rises significantly beyond those typical of vacancy, it can reasonably be assumed to 159 

indicate occupancy. This allows for the rejection of data from known occupied periods during the training 160 

process. 161 

● Sensor inputs are independent of each other.  162 

● The relationship between sensor outputs and confidence of vacancy can be approximated by a logistic 163 

probability distribution function 164 

2.1. Model Training Phase 165 

The VIE must first be trained to recognize vacant periods. This is accomplished by feeding it sensor values from 166 

periods where the space is known to be vacant.  In this example, the sensor values were manually inspected, so 167 

confidence of vacancy was extremely high (though not 100%). This means the data can be used as training data with 168 

a label of 1 which represents 100% confidence of vacancy.  The model training phase involves two main steps, 169 

preprocessing and vacancy curve generation. 170 

The input data must be preprocessed and made free of outliers and anomalous data. For example, faulty sensors must 171 

not pass negative or zero values to the VIE. Instances of outliers could occur because of malfunctioning sensors, the 172 

systems that support them, undesired noise, or real-world occurrences. The values outside of three standard deviations 173 

from the mean of the training data are rejected from consideration. Note that using standard deviation assumes the 174 

normal distribution, but this study assumes the input values to be distributed according to logistic distribution. This 175 

disparity is expected to have little effect on the results as the two distributions are very similar to each other. 176 

Normalization of training data removes bias and scales all values to between 0 and 1. The normalized value of every 177 

data point in the training set is given by: 178 

𝑥! = "#$%&(()
$*"(()#$%&(()

…... Eq  1 179 

where 𝑋 is the set of all 𝑥 in the training set and 𝑥! is the normalized value. 180 

The next step, the generation of vacancy inference curves, is achieved by performing a curve fit to empirical data that 181 

is referred to as the training data. When training a supervised model such as logistic regression, it is required that 182 
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information about all possible outcomes be included in the training set.  In contrast, the set of training data used in 183 

this treatment is simplified to contain only information about conditions during the “vacant” state; it does not include 184 

any data taken during the “not vacant” state. This selective generation of training data causes this treatment to fall 185 

under the umbrella of semi-supervised training. This approach is made possible by two features of the problem being 186 

solved. Firstly, this treatment is uninterested in determining when a building is occupied, only when it is vacant. 187 

Second, input data values remain relatively static during vacancy and any significant upward deviation indicates 188 

presence. 189 

The data during times of vacancy are distributed according to a logistic probability distribution function (PDF), and 190 

thus a representation of the underlying logistic cumulative distribution function (CDF) can be coaxed out of the data. 191 

For convenience, we will define “vacant” = 1, “not vacant” = 0, so lower sensor values correspond to higher 192 

probabilities of vacancy.  Subtracting the logistic CDF from 1 yields Eq 2:     193 

𝐶𝐷𝐹(𝑥%) = 1 − +

+,-!
"#!$
% 	

          …. Eq 2 194 

where 𝜇 is the location parameter which is equivalent to the mean of the training set, 𝑠 is the scale parameter which is 195 

proportional to the standard deviation of the training set, and 𝑥% is the raw sensor input value. 196 

To determine the parameters 𝜇 and s, the CDF shown in Eq 2 is fit to an empirical CDF built from the set of normalized 197 

training data, 𝑋!. When normalized such that its maximum value is 1 and it’s minimum is zero, the output of the CDF 198 

represents the confidence of vacancy2 indicated by a given 𝑥%: 199 

𝑐(𝑥%) = 𝐶𝐷𝐹(𝑥%)          …. Eq 3 200 

An empirically derived vacancy inference curve for each sensor input was generated from the cleaned input data as 201 

follows:   202 

1. Calculate the mean 𝜇/ and standard deviation 𝑠/ of the unnormalized training data. Retain these for later use, 203 

and sort the normalized training data in ascending order according to its value, ignoring any timestamp 204 

information.  205 

 
2The output of Eq 3 represents a true probability when both vacant and occupied states are considered.  In our case, 
the VIE output does not represent a true probability because data from occupied periods have been eliminated. More 
precisely, the output represents a percentage of occurrences. 
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2. Create a cumulative distribution by calculating the definite integral of the set generated in Step 1. 206 

Computationally, this is equivalent to calculating the sum of all values in the set that are less than or equal to 207 

𝑥%! , at each 𝑥%! . This is represented mathematically by: 208 

𝑧% = ∑ 𝑥%′%
%0+          .... Eq 4 209 

where  𝑥%!  is the 𝑖12 value from the sorted, normalized training data set.  210 

3. Generate the CDF for the vacant state by normalizing the results of Eq 4 according to Eq 5.   211 

𝑐% = CDF(𝑧%) = 1 − 3#
$*"(3)

		.... Eq 5 212 

where 𝑧 is the data set generated by Step 2. This re-normalizes the data and flips it across the vertical axis. 213 

The result is an empirically obtained vacancy inference curve, which can be approximated by the CDF in Eq 214 

2. 215 

4. Create a vacancy inference curve that maps raw sensor values to a confidence of vacancy by fitting the CDF 216 

from Eq 2 to the empirical vacancy inference curve and extract for later use the values that correspond to 217 

𝜇	and 𝑠 in Eq 2. In performing this fit, use the sorted unnormalized training data for the x-axis values, use 218 

the corresponding inference curve values from Step 3 for the y-axis values, and use the mean 𝜇/ and standard 219 

deviation 𝑠/ obtained in Step 1 as the initial guesses of 𝜇 and 𝑠, respectively. Once the fitted values of 𝜇 and 220 

𝑠 are known, they can be plugged into Eq 2 and the result used to infer the confidence of vacancy from new 221 

data received from the sensors during the operational phase.  222 

The steps above are performed to create a vacancy inference curve for each sensor. A minimum two-week data set 223 

was used in order to capture the weekly occupancy cycle.  224 

The three vacancy inference curves created by this study are shown in Figure 5 for the sensor inputs of indoor carbon 225 

dioxide concentration, electricity demand, and the number of active Wi-Fi connections.      226 
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 227 

 228 

 229 

Figure 5. Vacancy inference curves for CO2 (top left), electricity demand (top right), and active Wi-Fi connections 230 

(bottom). Red lines indicate actual data with best-fit curves indicated in blue. 231 

The best fit lines, shown in blue by Figure 5, take the form of the modified logistic cumulative distribution function 232 

from Eq 2. These vacancy inference curves describe, for each sensor, a mapping between the raw input data and the 233 

confidence of vacancy that will be generated by the model.  234 

2.2. Model Operation 235 

Raw sensor input (𝑥) is fed into the functional form of the modified logistic CDF in Eq 2, using values of 𝜇 and 𝑠 as 236 

determined during the model training phase. The output of this is the confidence of vacancy as predicted from each 237 

individual sensor stream, 𝑐4. This is referred to as the intermediate confidence of vacancy for each sensor stream. The 238 

set of 𝑐4  for all sensor streams is denoted by vector 𝑐. 239 
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Outlier detection is not performed on incoming data because outliers do not adversely affect the model during the 240 

inference phase. This is convenient because the true mean and standard deviation of incoming data is unknown for 241 

each sensor stream. Outliers could still result from malfunctioning sensors, calibration errors, or sensor failure. Often, 242 

sensors are set to send unreasonably high values when they fail so that their malfunction becomes apparent to 243 

operators. Since a vacant state is defined only by the lowest readings for each sensor, the outliers in the upper boundary 244 

of the input are not influential to confidence estimation. 245 

If a failing sensor erroneously produces a negative value or a value of zero, the model will output a nearly 100% 246 

confidence of vacancy for that data stream. If erroneous data is input to the VIE, the sensor fusion step will mitigate 247 

the effect of the data stream on the model output. Since this will affect model performance, building data systems need 248 

to be designed to differentiate real data from that produced by faulty sensors.  249 

2.2.1. Fusing Data Streams 250 

During the centralized fusion step, the intermediate confidences of vacancy, 𝑐, obtained from the various sensor input 251 

streams are fused to produce a single, overall confidence of vacancy, 𝐶: 252 

𝐶 = 𝑓(𝑐)                      …. Eq 6 253 

To determine the form of the fusion function 𝑓(𝑐) eight candidate functions for sensor fusion were studied for the 254 

given data. These are the maximum, product, root sum square, arithmetic mean, standard deviation weighted mean, 255 

geometric mean, harmonic mean, and root mean square. The overall confidence of vacancy obtained from this 256 

decision-level fusion was compared against the actual vacancy pattern of the office space and evaluated in terms of 257 

the potential for complaint versus missed opportunities for energy savings. This work is detailed by a separate study 258 

which concluded that Root Mean Square, shown by Eq 7, performed superior to the other tested methods in 259 

determining the overall probability of vacancy [18]. 260 

𝑓(𝑐) = C+
&
		∑ 𝑐45&

40+ D
&
'       .... Eq 7 261 

A notable benefit of fusing data in this manner (as opposed to regression-type approaches) is that it allows the 262 

intermediate confidence from any number of sensors to be used at any given moment in time without the need to 263 

retrain a fusion model. This makes the fusion step more robust and resilient to sensor drop-out. 264 
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2.3. Device Action: Conversion of the VIE Output to Device Control 265 

End-use devices are expected to utilize the VIE output to decide if they should enter vacancy mode. Since the VIE 266 

output is a continuous number, it must be transformed into a binary value of vacant (1) or not vacant (0) by the device’s 267 

controller. This is performed by thresholding as shown in the Device Action stage of Figure 4.  268 

Each piece of equipment is administered a defined threshold based on its risk profile. This threshold is compared with 269 

the confidence of vacancy from the VIE. If the confidence is found to be greater than the value of the threshold, the 270 

device considers it vacant (1) and enters vacancy mode. Conversely, if the confidence is found to be less than or equal 271 

to the value of the threshold, the device sees the space as occupied (0) and remains fully powered.  272 

To choose the threshold, a building manager must first understand the tradeoffs between risk and benefit that will 273 

manifest at each possible setting between 0 and 1. When comparing the VIE output to actual truth, there are four 274 

possible outcomes, as summarized in the confusion matrix shown in Figure 6. 275 

 276 

Figure 6. Confusion matrix comparing VIE output to ground truth 277 

The usual concept of accuracy is characterized by Vacancy Inference Accuracy (VIA), which describes the rate at 278 

which vacancy is correctly inferred by the model. VIA is defined as the number of true positives divided by the number 279 

of occurrences of actual vacancy, as shown by Eq 8: 280 

𝑉𝐼𝐴 = 67
67,89

          .... Eq 8 281 

Missed opportunities for energy savings occur when the model wrongly infers presence although the space is actually 282 

vacant. In this case, action is not taken based on the VIE output and because of it, energy is used to provide services 283 
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that no-one is around to enjoy. These are defined as Missed Opportunity Rate (MOR) described mathematically by 284 

Eq 9: 285 

𝑀𝑂𝑅 = 89
67,89

          .... Eq 9 286 

Opportunities for complaint arise in the reversed case. When these occur, taking action based on the VIE output 287 

switches off devices when people are actually present, causing potential problems for the occupants. The Complaint 288 

Opportunity Rate (COR) is expressed as 289 

𝐶𝑂𝑅 = 87
87,69

          .... Eq 10 290 

The consequences of these errors vary by end-device and application and can range from mild inconvenience to 291 

possible harm to the undetected occupants. A building manager will seek to minimize disruption to occupants while 292 

capturing energy savings and thus will choose a vacancy confidence threshold that tailors this trade-off to anticipated 293 

occupant tolerances. 294 

3. Model Application: Inferring Vacancy in Real Buildings 295 

The vacancy inference method proposed in this study is tested at an office in Davis, California, USA, the floorplan of 296 

which is illustrated in Figure 8. 297 

3.1. Input Data Selection 298 

The proposed method can accept a wide variety of inputs to infer vacancy, but not all candidates are suitable for the 299 

task. Some inputs contain little information about the state of vacancy and, if used, will effectively inject noise into 300 

the system and drastically reduce the VIA of the model. Many supervised methods exist for quantifying the correlation 301 

of input to vacancy. Unfortunately, these tools cannot be used for this treatment because it explicitly avoids ground 302 

truth requirements in the problem definition. Building managers who seek to apply the proposed vacancy inference 303 

method are not expected to collect ground truth data. Thus, qualitative methods must be used to determine input 304 

suitability. The most accessible way to establish a relation between the sensor inputs and vacancy is to observe the 305 
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raw sensor data in accordance with the expected occupancy patterns of the building. It is assumed that the value of the 306 

sensor input will generally increase with an increase in occupancy. 307 

 308 

Figure 7. Correlation between sensor inputs and estimated occupancy patterns for Monday, July 8 through Monday, 309 

July 15, 2019. Transparent red regions indicate approximate working hours 310 

 311 

For the given office space, Figure 7 shows the variation of sensor inputs compared to expected occupancy patterns. 312 

The approximate business hours are indicated by the transparent red regions. It is clear that carbon dioxide, the number 313 

of Wi-Fi connections, and electricity demand track roughly to the operational hours of the building. It is to be noted 314 

that the electricity demand shown in Figure 7 is independent of the demand associated with the HVAC system. This 315 

is done to eliminate HVAC control affecting energy demand, isolating electricity consumed by the end-use devices 316 

that are indicative of an occupied or vacant state. Relative humidity and temperature are expected to increase with 317 

occupancy, but for the given office space this does not occur to a recognizable degree. Thus, carbon dioxide, electricity 318 

demand, and the number of active Wi-Fi connections to the office’s access points are deemed suitable inputs. The 319 

binary signals (key card entry, etc.) were not included in the analysis to identify vacant periods because the building 320 

did not have any accessible binary data streams 321 

3.2. Testing Scenario 322 

The proposed vacancy detection method was tested in an office/lab area in Davis, California, USA, comprising the 323 

entire first floor of a building on the UC Davis campus. This floor consists of two research offices and the remaining 324 
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upper floors consist of residential apartments for university students. The research offices in the study and residential 325 

areas are physically independent spaces. No movement of people is possible between the two spaces without first 326 

exiting the building, nor is HVAC/air shared between them. Relevant input data from pre-existing sensors was isolated 327 

to the area of interest to the researcher’s best ability. 328 

 329 

Figure 8. Layout of test office space with CO2 sensors, Wi-Fi access point, and security camera  330 

Carbon dioxide measurements were obtained using a pre-existing system of 22 CO2 concentration sensors that gather 331 

ambient environmental data in 5-minute intervals. In the rare instance that a sensor does not have a value reported in 332 

the 5-minute window, the sensor’s previous value is used to ensure a value exists at every 5-minute interval. To 333 

combine the reading of all 22 sensors in the office space, the maximum of all sensor data is used. This preserves 334 

smaller signals that would otherwise be suppressed by an overall average, thus allowing for a single sensor detecting 335 

a single occupant in an otherwise vacant space. The outdoor carbon dioxide readings are then subtracted from this 336 

maximum value so that room CO2 levels are expressed as a deviation from outside concentrations. The outdoor CO2 337 

concentration was obtained from a sensor at a low-congestion area of the UC Davis campus. This sensor was found 338 

to be a good indicator of outdoor levels, with no sudden fluctuations due to cars or people. 339 

Concentration of carbon dioxide in buildings typically depends on the air exchange rates.  Fortunately, the location 340 

targeted by this study has no operable windows and the sensor units are not located next to any doorways. The 341 

ventilation for the area is controlled by schedule according to business hours but is also able to be controlled manually 342 
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by occupants. CO2 concentration measurements are also prone to temporal lag subject to placement of the sensors and 343 

environmental rates of effusion. This varies by scenario and is dependent on multiple factors such as airflow rates, air 344 

density, carbon dioxide concentration, and distance between the emitter and the sensor. Since the lag is not consistent 345 

across buildings, correction for it was not attempted. 346 

Electrical current readings are recorded at the control panel. These readings are converted from analog to digital and 347 

routed to data logger modules. These modules sample readings every minute, uploading them to a cloud. 348 

The Wi-Fi access points of the UC Davis campus-wide networks are grouped according to the building they are 349 

intended to serve and are programmed to report the number of active connections to a central server maintained by 350 

the campus. The total number of reported Wi-Fi connections data is updated and archived every 10 minutes.  351 

Since the time interval for each sensor stream differed, the data for carbon dioxide and electricity demand were down 352 

sampled such that their intervals matched that of the Wi-Fi sensor stream, resulting in an overall data collection interval 353 

of 10 minutes. This interval is typical of building data collection systems. 354 

A separate investigation was undertaken to determine the reliability of the Wi-Fi counts. Staff and students typically 355 

configure their phones and laptops to automatically connect to the network, but the same cannot be assumed for 356 

visitors’ devices. To confirm these expectations, interviews were performed to determine if employees’ mobile devices 357 

are set to automatically connect to the network. This was found to be the case for all respondents. This survey also 358 

revealed that the cell signal is weak in the target area, which would further encourage others to use the local Wi-Fi 359 

network. However, it was found that visitors typically do not configure their devices to connect to the network and 360 

are likely not reflected in the connection count. The custodial staff is also not typically captured. This decreases the 361 

VIA for Wi-Fi alone as it fails to detect these groups of people. It is also possible that a single person accounts for 362 

multiple observed Wi-Fi connections due to ownership of more than one smart device configured to automatically 363 

connect to either network. Connections unrelated to occupancy might also originate from Wi-Fi printers, smart 364 

televisions, and other “Internet of Things” devices.  This investigation demonstrates why Wi-Fi connections alone 365 

cannot be used to infer vacancy. 366 

Table 1. Sensor inputs with data acquisition for the office space 367 
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Sensor Input Sensor Count Data Acquisition Interval 

Indoor Carbon Dioxide 

Concentration (ppm) 

T6713 Miniature 

CO2  Sensor 

Module 

 

22 Each sensor reports its data asynchronously at 1-minute 

intervals, so data is grouped into 5-minute intervals for 

each sensor and the value closest to the 5-minute timestamp 

was extracted 

Instantaneous 

Electricity 

Demand (kW) 

Accu-CT Split 

Core Current 

Transformer 

1 Continuous analog readings are converted to digital and 

routed to Wi-Fi data loggers, which sample readings every 

1-minute  

Number of Wi-Fi 

connections (Number) 

Wi-Fi Network 

Access Point 

7 Number of active connections every 10th minute - 

Instantaneously 

Doorway Video 

(Ingress/Egress Count) 

Video Camera 4 Update on change of value 

As described in section 3.1, Wi-Fi, electricity demand, and carbon dioxide levels were selected for the study because 368 

they are well-correlated to vacancy. Example data outputs from each of these sources are shown in Figure 7, where 369 

they are compared with vacancy patterns over one week. 370 

3.3. Ground Truth 371 

The performance of the model for the given building was evaluated by comparing its predictions against the true state 372 

of vacancy, known as ground truth. The ground truth for this investigation was extracted by manually reviewing the 373 

recorded motion-sensing based videos from security cameras that monitor each exterior doorway of the target area. 374 

The video clips were first cropped by using OpenCV [53] so that only the doorway was captured, and then clips 375 

without people were deleted using a machine vision package called ImageAI [54] . The remaining video clips were 376 

reviewed manually by the researcher, ensuring that the number of entries cancels the number of exits so that the final 377 

occupancy at the end of each day is zero but 2 out of the 35 days ended at some value other than zero occupants.  The 378 
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unprocessed footage was inspected, and it was found that the cameras’ motion detection software missed those entry 379 

or exit events. Thus, a contrived entry was added to the ground truth to ensure it matched reality as known from 380 

historical vacancy patterns and occupant interviews.  381 

These difficulties and uncertainties in obtaining the perfect ground truth further illustrate the need for a semi-382 

supervised method of inferring vacancy. It should be emphasized that the ground truth collected from security cameras 383 

was used only for the evaluation of model performance; it was not used during model training.  384 

4. Results and Discussion: 385 

The confidence of vacancy obtained by the VIE for the test data was subjected to varying decision thresholds and 386 

compared to the ground truth to obtain performance metrics. These metrics were also obtained using logistic regression 387 

for vacancy inference and compared to those obtained for the proposed method to arrive at the following results. In 388 

the following results, the VIE output (range: 0-1) is expressed as percentages (range 0-100%). 389 

4.1. Receiver Operating Characteristic Curve 390 

The Receiver Operating Characteristic (ROC) curve is a diagnostic that compares the outcome being maximized, VIA, 391 

to the outcome being minimized, COR. The curve is built by varying the decision threshold across its full range and 392 

plotting the resulting VIA on the y-axis and the COR on the x-axis.  393 

The dashed line shown in Figure 9 represents the ROC curve of a perfectly predicting model i.e., ground truth, which 394 

would yield a VIA of 1 at every threshold other than one and a COR of 0 at every threshold other than zero. The ROC 395 

for the present treatment closely follows that of traditional logistic regression with slightly lower vacancy inference 396 

accuracy than that of logistic regression for the same thresholds. A model that exhibits an area under this curve closer 397 

to one is more desirable and the areas under the ROC curves for the proposed method and logistic regression are very 398 

closely matched (0.94 vs. 0.95, respectively).  399 
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 400 

Figure 9. Receiver Operating Characteristic curve 401 

4.2. COR-MOR Characteristic Curve 402 

The COR-MOR Characteristic (CMC) curve is a diagnostic that plots the complaint opportunity rate (COR) against 403 

the missed opportunity rate (MOR) at different decision thresholds, in a fashion similar to the ROC curve. The dashed 404 

line in Figure 10 is indicative of a CMC curve for a perfectly predicting model, resulting in a COR of 0 at every 405 

threshold other than zero and a MOR of 0 at every threshold other than one. Minimizing COR and MOR throughout 406 

the range of all thresholds is highly preferred for an optimally working vacancy inference system, and a model with 407 

area under this curve closer to zero is more desirable. The areas under the CMC curve for the proposed method and 408 

logistic regression are very closely matched, at 0.059 vs. 0.051 (Figure 10). 409 
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  410 

Figure 10. COR-MOR Characteristic Curve 411 

At decisions thresholds of about 63% for the VIE, COR and MOR are nearly equal, but for most applications building 412 

managers would choose a decision threshold that sets the rate of complaint lower than the rate of missed energy 413 

savings. For higher risk applications such as elevators, etc., a decision threshold of 80% is appropriate whereas for 414 

lower risk applications such as water fountains 60% might be appropriate. 415 

Note that at a COR of 0.2, logistic regression yields a MOR of 0.02, whereas the proposed method yields a MOR of 416 

0.05. In this range, the proposed method performs worse than logistic regression, however as discussed, this is not a 417 

typical operating range for most practical applications. Table 2 summarizes the results from Figures 9 and 10 for the 418 

ideal, VIE, and logistic regressions. 419 

Table 2. Comparison of overall model performance between VIE and logistic regression. 420 

Method Area under CMC Curve Area under ROC Curve 

Ideal values 0.0 1.0 

VIE  0.059 0.94 
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Logistic regression 0.051 0.95 

 421 

5. Model Limitations and Future Work 422 

The limitations of this study can be divided into limitations of the Vacancy Inference Engine model design and 423 

physical limitations of the model input data. These limitations also point to future work to improve the method. 424 

A key assumption of the VIE is that the sensor inputs are independent, but sensors employed in the present study were 425 

not specifically tested for independence. A second limitation is that the VIE does not iteratively update. Thus, in order 426 

to maintain accuracy, the model may need to be retrained over time, especially as new sensors are added. A third 427 

limitation of the proposed VIE is that it must be retrained for each new building because the sensor reading during 428 

vacancy will be different in each case. 429 

This case study illustrates the physical limitations of the inputs. The building examined was only a zone of a larger 430 

building (though physically separated) and the investigation did not capture variations beyond the scale of a few 431 

weeks.  Some of the sensors exhibited data dropout that required filtering and manual inspection, a level of attention 432 

not feasible in routinely monitored buildings without automation. Furthermore, none of the data were collected and 433 

processed in real-time, so the real-time application of the VIE has not yet been demonstrated. The approach described 434 

here applies only to analog signals.  Future work will include extension to binary sensor outputs, such as from card 435 

key swipes and motion sensors. We believe that the sensor fusion approach can be extended to binary signals as long 436 

as the sensor outputs are related to vacancy. 437 

Finally, the model needs to be applied to different types of buildings, over longer time periods, and with different 438 

combinations of sensor inputs.  These investigations will contribute to a generalized model applicable to most 439 

commercial buildings. 440 
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6. Conclusions 441 

Commercial buildings often have frequent periods of vacancy, but electricity demand during these periods falls only 442 

slightly. This paper’s first, new contribution is the recognition that complete building vacancy – when zero people are 443 

present – is a unique building condition.  Furthermore, this vacant condition is more common than usually supposed 444 

and potentially involves a significant fraction of a commercial building’s electricity consumption. If periods of 445 

vacancy can be confidently determined, then more aggressive energy-saving measures can be applied during those 446 

times by switching off miscellaneous electrical loads or greatly reducing their service levels.    447 

This paper’s second contribution is that the determination of vacancy is a unique problem requiring a new approach. 448 

Unlike occupancy – a condition that can be measured – vacancy must be inferred. Sensor fusion offers a means of 449 

creating an inference of vacancy from a collection of diverse sensors.  The method is robust in the sense that it can 450 

accommodate the variable and intermittent characteristics of building sensors.  The resulting output is a probability of 451 

vacancy.  Each MEL can respond differently to the vacancy probability based on the services it provides.  MELs 452 

providing less essential services can switch off during periods of low vacancy probability while MELs providing key 453 

services would only switch off at high probabilities. Thus, a pathway exists to save energy across a wide array of 454 

devices and services. Future research must still be undertaken to make devices responsive to vacancy levels.  455 

Fortunately, many of the components are already present in modern MELs, even if they have not been applied to 456 

precisely this goal. 457 

This paper’s third contribution deals with training a vacancy model. Only modest training is needed for vacancy 458 

inference because the relationships between the detected conditions and occupancy are similar in many buildings. In 459 

this way, training from one building can be transferred to another. This is in contrast to occupancy, where the 460 

relationships will often be unique to each building.   461 

This study developed and tested a vacancy inference engine that employed multiple pre-existing sensors with near-462 

zero ground truth requirements during model training. The sensors used in our test building were typical; electricity 463 

demand, room carbon dioxide concentrations, and number of active Wi-Fi connections. Although the method was 464 

tested only at a research office building, it should apply to any enclosed space.  Further improvements are necessary; 465 



26 

however, this work identified a mostly-untapped opportunity for energy savings and a promising method to obtain 466 

them. 467 
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