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Abstract

The state-of-the-art boosting implementations, such as XGBoost and LightGBM,
can process large training sets extremely fast. However, this performance requires
that the memory size is sufficient to hold a 2-3 multiple of the training set size.
This paper presents an alternative approach to implementing the boosted trees,
which achieves a significant speedup over XGBoost and LightGBM, especially
when the memory size is small. This is achieved using a combination of three
techniques: effective sample size, early stopping, and stratified sampling, which are
explained and analyzed in the paper. We describe our implementation and present
experimental results to support our claims.

1 Introduction

Boosting [7, 15], and in particular gradient boosted trees [9], are some of the most popular learning
algorithms used in practice. There are several highly optimized implementations of boosting, among
which XGBoost [5] and LightGBM [12] are two of the most popular ones. These implementations
can train models with hundreds of trees using millions of training examples in a matter of minutes.

However, a significant limitation of these methods is that all of the training examples are required
to store in the main memory. For LightGBM this requirement is strict. XGBoost can operate in the
disk-mode, which makes it possible to use machines with smaller memory than the training set size.
However, it comes with a penalty in much longer training time.

In this paper, we propose a new implementation of boosted trees1. It can run efficiently on machines
whose memory capacities are much smaller than the training set, with no penalty in accuracy, and at
a speed that is 10-100 times faster than XGBoost in the disk mode.

Our method is based on on the observation that each boosting step corresponds to an estimation
of the gradients along the axis defined by the weak rules. The common approach to performing
this estimation is to scan all of the training examples so as to minimize the estimation error. This
operation is very expensive especially when the training set does not fit in memory.

We reduce the number of examples scanned in each boosting iteration by combining two ideas. First,
we use early stopping [18] to minimize the number of examples scanned at each boosting iteration.

1The source code of the implementation is released at https://github.com/arapat/sparrow.
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Second, we keep in memory only a sample of the training set, and we replace the sample when the
sample in memory is a poor representation of the complete training set. We exploit the fact that
boosting tends to place large weights on a small subset of the training set, thereby reducing the
effectivity of the memory-resident training set. We propose a measure for quantifying the variation in
weights called the effective number of examples. We also describe an efficient algorithm, stratified
weighted sampling.

Early stopping for Boosting was studied in previous work [6, 4]. The other two are, to the best of our
knowledge, novel. In the following sections we give a high-level description of these three ideas, and
elaborate in the rest of the paper.

Effective Number of Examples Boosting assigns different weights to different examples. The
weight of an example represents the magnitude of its “influence” on the estimate of the gradient.
However, when the weight distribution of a training set is dominated by a small number of “heavy”
examples, the variance of the gradient estimates is high. It leads to over-fitting, and effectively
reduces the size of the training set. We quantify this reduction using the effective number of examples,
neff. The definition and analysis of neff is the first contribution of this paper.

To get reliable estimates, neff should be close to the size of the current training set in memory, n.
When neff

n is small, we flush the current training set, and get a new sample using weighted sampling.

Stratified Weighted Sampling While there are well known methods for weighted sampling, all
of the existing methods (that we know of) are inefficient when the weights are highly skewed. In
such cases, most of the scanned examples are rejected, which leads to very slow sampling. Our
second contribution is a technique we call stratified weighted sampling. It generates same sampled
distribution while guaranteeing that the fraction of rejected examples is no large than 1

2 .

Early Stopping Our third contribution is in reducing the number of examples that the boosting
algorithm loads from the memory to the CPU. In each boosting iteration, we update the current
ensemble by adding one new weak rule to it. The idea of early stopping is that, instead of scanning
all examples in memory to identify the best weak rule to be added, we read just as many examples
as needed to identify a weak rule that is significantly better than random guessing. Based on the
methods of sequential analysis and early stopping [18], we can carefully design a stopping rule to
decide when to stop reading more examples without increasing the chance of over-fitting.

We implemented a new boosted tree algorithm with these three techniques, called Sparrow. We
compared its performance to the performance of XGBoost and LightGBM on two large datasets:
one with 50 Million examples (the human acceptor splice site dataset [17, 1]), the other with over
600M examples (the bathymetry dataset [11]). We show that Sparrow can achieve 10-20x speed-up
over LightGBM and XGBoost especially in the limited memory settings.

The rest of the paper is organized as follows. In Section 2 we discuss the related work. In Section 3 we
give an overview on the confidence-based boosting algorithm. In Section 4 we describe the statistical
theory behind the design of Sparrow. In Section 5 we describe the system design. In Section 6 we
describe the experiments for empirical evaluation. Lastly, we conclude with the future work direction
in Section 7.

2 Related Work

There are several methods that uses sampling to reduce the training time of boosting. Both Friedman
et al. [8] and LightGBM [12] use a fixed threshold to filter out the light-weight examples: the former
discards the examples whose weights are smaller than the threshold; the later accepts all examples if
their gradients exceed the threshold, otherwise accepts them with a fixed probability. Their major
difference with Sparrow is that their sampling methods are biased, while Sparrow does not change
the original data distribution. Appel et al. [2] uses small samples to prune weak rules associated with
unpromising features, and only scans all samples for evaluating the remaining ones. Their major
difference with Sparrow is that they focus on finding the “best” weak rule, while Sparrow tries to find
a “statistically significant” one. Scanning over all example is required for the former, while using a
stopping rule the algorithm often stops after reading a small fraction of examples.
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The idea of accelerating boosting with stopping rules is also studied by Domingo and Watanabe [6]
and Bradley and Schapire [4]. Our contribution is in using a tighter stopping rule. Our stopping rule
is tighter because it takes into account the dependence on the variance of the sample weights.

There are several techniques that speeds up boosting by taking advantage of the sparsity of the
dataset [5, 12]. They are being considered as the future directions for Sparrow.

3 Preliminaries

We start with a brief description of the confidence-rated boosting algorithm under the AdaBoost
framework (Algorithm 9.1 on the page 274 of [15]).

Let ~x ∈ X be the feature vectors and let the output be y ∈ Y = {−1,+1}. For a joint distribution D
over X × Y , our goal is to find a classifier c : X → Y with small error:

errD(c)
.
= P(~x,y)∼D [c(~x) 6= y] .

We are given a setH of base classifiers (weak rules) h : X → [−1,+1]. We want to generate a score
function, which is a weighted sum of T rules fromH:

ST (~x) =

(
T∑
t=1

αtht(~x)

)
.

The term αt is the weights by which each base classifiers contributes to the final prediction, and is
decided by the specific boosting paradigm.

Finally, we have the strong classifier as the sign of the score function: HT = sign(ST ).

AdaBoost can be viewed as a coordinate-wise gradient descent algorithm [14]. The algorithm
iteratively finds the direction (weak rule) which maximizes the decrease of the average potential
function, and then adds this weak rule to ST with a weight that is a function of the gradient. The
potential function used in AdaBoost is e−St(~x)y . Other potential functions have been studied (e.g. [9]).
In this work we focus on the potential function used in AdaBoost.

We distinguish between two types of average potentials: the expected potential or true potential:

Φ(St) = E(~x,y)∼D

[
e−St(~x)y

]
,

and the average potential or empirical potential:

Φ̂(St) =
1

n

n∑
i=1

e−St(~xi)yi .

The ultimate goal of any boosting algorithm is to minimize the expected potential, which determines
the true error rate. However, most boosting algorithms, including XGBoost and LightGBM, focus
on minimizing the empirical potential Φ̂(St), and rely on the limited capacity of the weak rules
to guarantee that the true potential is also small. Sparrow takes a different approach. It uses an
estimator of the true edge (explained below) to identify the weak rules that reduce the true potential
with high probability.

Consider adding a weak rule ht to the score function St−1, we get St = St−1 + αtht. Taking the
partial derivative of the average potential Φ with respect to αt we get

∂

∂αt

∣∣∣∣
αt=0

Φ(St−1 + αth) = E(~x,y)∼Dt−1
[h(~x)y] (1)

where

Dt−1 =
D
Zt−1

exp (−St−1(~x)y) , (2)

and Zt−1 is a normalization factor that makes Dt−1 a distribution.
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Boosting algorithms performs coordinate-wise gradient descent on the average potential where each
coordinate corresponds to one weak rule. Using equation (1), we can express the gradient with respect
to the weak rule h as a correlation, which we call the true edge:

γt(h)
.
= corrDt−1

(h)
.
= E(~x,y)∼Dt−1

[h(~x)y] , (3)

which is not directly measurable. Given n i.i.d. samples, an unbiased estimate for the true edge is the
empirical edge:

γ̂t(h)
.
= ĉorrDt−1

(h)
.
=

n∑
i=1

wi
Zt−1

h(~xi)yi, (4)

where wi = e−St−1(~xi) and Zt−1 =
∑n
i=1 wi.

4 Theory

To decrease the expected potential, we want to find a weak rule with a large edge (and add it to the
score function). XGBoost and LightGBM do this by searching for the weak rule with the largest
empirical edge. Sparrow finds a weak rule which, with high probability, has a significantly large true
edge. Next, we explain the statistical techniques for identifying such weak rules while minimizing
the number of examples needed to compute the estimates.

4.1 Effective Number of Examples

Equation 4 defines γ̂(h), which is an unbiased estimate of γ(h). How accurate is this estimate?

A standard quantifier is the variance of the estimator. Suppose the true edge of a weak rule h is γ.
Then the expected (normalized) correlation between the predictions of h and the true labels, wZ yh(x),

is 2γ. The variance of this correlation can be written as
E(w2)
n2E2(w) − 4γ2. Summing over the expected

correlation of all n examples and assume γ → 0, we can estimate the variance of γ̂:

Var(γ̂) =

∑n
i=1 w

2
i

(
∑n
i=1 wi)

2 . (5)

If all of the weights are equal then Var(γ̂) = 1/n. It corresponds to a standard deviation of 1/
√
n

which is the expected relation between the sample size and the error.

If the weights are not equal then the variance is larger and thus the estimate is less accurate. We
define the effective number of examples neff to be 1/Var(γ̂), specifically,

neff
.
=

(
∑n
i=1 wi)

2∑n
i=1 w

2
i

. (6)

To see that the name “effective number of examples” makes sense, consider n weights where
w1 = · · · = wk = 1/k and wk+1 = · · · = wn = 0. It is easy to verify that in this case neff = k
which agrees with our intuition, namely the examples with zero weights have no effect on the estimate.

Suppose the memory is only large enough to store n examples. If neff � n then we are wasting
valuable memory space on examples with small weights, which can significantly increase the chance
of over-fitting. We can fix this problem by using weighted sampling. In this way we repopulate
memory with n equally weighted examples, and make it possible to learn without over-fitting.

4.2 Weighted Sampling

When Sparrow detects that neff is much smaller than the memory size n, it clears the memory and
collects a new sample from disk using weighted sampling.

The specific sampling algorithm that Sparrow uses is minimal variance weighted sampling [13].
This method reads from disk one example (~x, y) at a time, calculates the weight for that example
wi, and accepts the example with the probability proportional to its weight. Accepted examples are
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stored in memory with the initial weights of 1. This increases the effective sample size from neff back
to n, thereby reduces the chance of over-fitting.

To gain some intuition regarding this effect, consider the following setup of an imbalanced classi-
fication problem. Suppose that the training set size is N = 100, 000, of which 0.01N are positive
and 0.99N are negative. Suppose we can store n = 2, 000 examples in memory. The number of the
memory-resident examples is 0.01n = 20. Clearly, with such a small number of positive examples,
there is a danger of over-fitting. However, an (almost) all negative rule is 99% correct. If we then
reweigh the examples using the AdaBoost rule, we will give half of the total weight to the positives
and the other half to the negatives. The value of neff will drop to about 80. This would trigger a
resampling step, which generates a training set with 1000 positives and 1000 negatives. It allows us
to find additional weak rules with little danger of over-fitting.

This process continues as long as Sparrow is making progress and the weights are becoming
increasingly skewed. When the skew is large, neff is small and Sparrow resamples a new sample
with uniform weights.

Sparrow uses weighted sampling to achieve high disk-to-memory efficiency. In addition, Sparrow
also achieves high memory-to-CPU efficiency by reading from memory the minimal number of
examples necessary to establish that a particular weak rule has a significant edge. This is done using
sequential analysis and early stopping.

4.3 Sequential Analysis

Sequential analysis was introduced by Wald in the 1940s [18]. Suppose we want to estimate the
expected loss of a model. In the standard large deviation analysis, we assume that the loss is bounded
in some range, say [−M,+M ], and that the size of the training set is n. This implies that the standard
deviation of the training loss is at most M/

√
n. In order to make this standard deviation smaller

than some ε > 0, we need that n > (M/ε)2. While this analysis is optimal in the worst case, it
can be improved if we have additional information about the standard deviation. We can glean such
information from the observed losses by using the following sequential analysis method.

Instead of choosing n ahead of time, the algorithm computes the loss one example at a time. It uses a
stopping rule to decide whether, conditioned on the sequence of losses seen so far, the difference
between the average loss and the true loss is smaller than ε with large probability. The result is that
when the standard deviation is significantly smaller than M/

√
n, the number of examples needed in

the estimate is much smaller than (M/ε)2.

We uses a stopping rule based on Theorem 1 in Appendix B, which depends on both the mean and
the variance of the weighted correlation [3]. Fixing the current strong rule H (i.e. the score function),
we define a (unnormalized) weight for each example, denoted as w(~x, y) = e−H(x)y. Consider a
particular candidate weak rule h and a sequence of labeled examples {(~x1, y1), (~x2, y2), . . .}. For
some γ > 0, we define two cumulative quantities (after seeing n examples from the sequence):

Mt
.
=

n∑
i=1

w(~xi, yi)(ht(~xi)yi − γ), and Vt
.
=

n∑
i=1

w(~xi, yi)
2. (7)

Mt is an estimate of the difference between the true correlation of h and γ. Vt quantifies the variance
of this estimate.

The goal of the stopping rule is to identify a weak rule h whose true edge is larger than γ. It is defined
to be t > t0 and

Mt > C

√
Vt(log log

Vt
Mt

+B), (8)

where t0, C, and B are parameters. If both conditions of the stopping rule are true, we claim that the
true edge of h is larger than γ with high probability. The proof of this test can be found in [3].

Note that our stopping rule is correlated with the cumulative variance Vt, which is basically the same
as 1/neff. If neff is large, say neff = n when a new sample is placed in memory, the stopping rule stops
quickly. On the other hand, when the weights diverge, neff becomes smaller than n, and the stopping
rule requires proportionally more examples before stopping.

The relationship between martingales, sequential analysis, and stopping rules has been studied in
previous work [18]. Briefly, when the edge of a rule is smaller than γ, then the sequence is a
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Figure 1: The Sparrow system architecture. Left: The workflow of the Scanner and the Sampler.
Right: Partitioning of the examples stored in disk according to their weights.

supermartingale. If it is larger than γ, then it is a submartingale. The only assumption is that the
examples are sampled i.i.d.. Theorem 1 in Appendix B guarantees two things about the stopping rule
defined in Equation 8: (1) if the true edge is smaller than γ, the stopping rule will never fire (with
high probability); (2) if the stopping rule fires, the true edge of the rule h is larger than γ.

5 System Design and Algorithms

In this section we describe Sparrow. We use a bold letter in parenthesis to refer the corresponding
component in the workflow diagram in Figure 1. We also provide the pseudo-code in the Appendix C.

The main procedure of Sparrow generates a sequence of weak rules h1, . . . , hk and combines them
into a strong rule Hk. It calls two subroutines that execute in parallel: a Scanner and a Sampler.

Scanner The task of a scanner (the upper part of the workflow diagram in Figure 1) is to read
training examples sequentially and stop when it has identified one of the rules to be a good rule.

At any point of time, the scanner maintains the current strong rule Ht, a set of candidate weak rules
W , and a target edge γt+1. For example, when training boosted decision trees, the scanner maintains
the current strong rule Ht which consists of a set of decision trees, a set of candidate weak rulesW
which is the set of candidate splits on all features, and γt+1 ∈ (0.0, 0.5).

Inside the scanner, a booster (d) scans the training examples stored in main memory (c) sequentially,
one at a time. It computes the weight of the read examples using Ht and then updates a running
estimate of the edge of each weak rule h ∈ W accordingly. Periodically, it feeds these running
estimates into the stopping rule, and stop the scanning when the stopping rule fires.

The stopping rule is designed such that if it fires for ht, then the true edge of a particular weak
rule γ(ht+1) is, with high probability, larger than the set threshold γt+1. The booster then adds
the identified weak rule ht+1 (f) to the current strong rule Ht to create a new strong rule Ht+1 (g).
The booster decides the weight of the weak rule ht+1 in Ht+1 based on γt+1 (lower bound of its
accuracy). It could underestimate the weight. However, if the underestimate is large, the weak rule
ht+1 is likely to be “re-discovered” later which will effectively increase its weight.

Lastly, the scanner falls into the Failed state if after exhausting all examples in the current sample set,
no weak rule with an advantage larger than the target threshold γt+1 is detected. When it happens, the
scanner shrinks the value of γt+1 and restart scanning. More precisely, it keeps track of the empirical
edges γ̂(h) of all weak rules h. When the failure state happens, it resets the threshold γt+1 to just
below the value of the current maximum empirical edge of all weak rules.

To illustrate the relationship between the target threshold and the empirical edge of the detected
weak rule, we compare their values in Figure 2. The empirical edge γ̂(ht+1) of the detected weak
rules are usually larger than γt+1. The weak rules are then added to the strong rule with a weight
corresponding to γt+1 (the lower bound for their true edges) to avoid over-estimation. Lastly, the
value of γt+1 shrinks over time when there is no weak rule with the larger edge exists.
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Figure 2: The empirical edge and the correspond-
ing target edge γ of the weak rules being added
to the ensemble. Sparrow adds new weak rules
with a weight calculated using the value of γ at
the time of their detection, and shrinks γ when it
cannot detect a rule with an edge over γ.

Figure 3: Accuracy comparison on the Cover-
Type dataset. For uniform sampling, we trained
XGBoost on a uniformly sampled dataset with
the same sample fraction set in Sparrow. The ac-
curacy is evaluated with same number of boost-
ing iterations.

Sampler Our assumption is that the entire training dataset does not fit into the main memory and
is therefore stored in an external storage (a). As boosting progresses, the weights of the examples
become increasingly skewed, making the dataset in memory effectively smaller. To counteract that
skew, Sampler prepares a new training set, in which all of the examples have equal weights, by using
selective sampling. When the effective sample size neff associated with the old training set becomes
too small, the scanner stops using the old training set and starts using the new one2.

The sampler uses selective sampling by which we mean that the probability of an example (x, y)
being added to the sample is proportional to its weight w(x, y). Each added example is assigned an
initial weight of 1. There are several known algorithms for selective sampling. The best known one
is rejection sampling in which a biased coin is flipped for each example. We use a method known as
minimal variance sampling [13] because it produces less variation in the sampled set.

Stratified Storage and Stratified Sampling The standard approach to sampling reads examples
one at a time, calculates the weight of the example, and accepts the example into the memory with the
probability proportional to its weight, otherwise rejects the example. Let the largest weight be wmax

and the average weight be wmean, then the maximal rate at which examples are accepted is wmean/wmax.
If the weights are highly skewed, then this ratio can be arbitrarily small, which means that only a
small fraction of the evaluated examples are then accepted. As evaluation is time consuming, this
process becomes a computation bottleneck.

We proposed a stratified-based sampling mechanism to address this issue (the right part of Figure 1).
It applies incremental update to reduce the computational cost of making prediction with a large
model, and uses a stratified data organization to reduce the rejection rate.

To implement incremental update we store for each example, whether it is on disk or in memory, the
result of the latest update. Specifically, we store each training example in a tuple (x, y,Hl, wl), where
x, y are the feature vector and the label, Hl is the last strong rule used to calculate the weight of the
example, and wl is the weight last calculated. In this way both the scanner and sampler only calculate
over the incremental changes to the model since the last time it was used to predict examples.

To reduce the rejection rate, we want the sampler to avoid reading examples that it will likely to
reject. We organize examples in a stratified structure, where the stratum k contains examples whose
weights are in [2k, 2k+1). This limits the skew of the weights of the examples in each stratum so that
wmean/wmax ≤ 1

2 . In addition, the sampler also maintains the (estimated) total weight of the examples
in each strata. It then associates a probability with each stratum by normalizing the total weights to 1.

To sample a new example, the sampler first samples the next stratum to read, then reads examples
from the selected stratum until one of them is accepted. For each example, the sampler first updates

2The sampler and scanner can run in parallel on a multi-core machine, or run on two different machines. In
our experiments, we keep them in one machine.
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its weight, then decides whether or not to accept this example, finally writes it back to the stratum it
belongs to according to its updated weight. As a result, the reject rate is at most 1/2, which greatly
improves the speed of sampling.

Lastly, since the stratified structure contains all of the examples, it is managed mostly on disk, with a
small in-memory buffer to speed up I/O operations.

6 Experiments

In this section we describe the experiment results of Sparrow. In all experiments, we use trees as
weak rules. First we use the forest cover type dataset [10] to evaluate the sampling effectiveness. It
contains 581 K samples. We performed a 80/20 random split for training and testing.

In addition, we use two large datasets to evaluate the overall performance of Sparrow on large datasets.
The first large dataset is the splice site dataset for detecting human acceptor splice site [17, 1]. We use
the same training dataset of 50 M samples as in the other work, and validate the model on the testing
data set of 4.6 M samples. The training dataset on disk takes over 39 GB in size. The second large
dataset is the bathymetry dataset for detecting the human mislabeling in the bathymetry data [11].
We use a training dataset of 623M samples, and validate the model on the testing dataset of 83M
samples. The training dataset takes 100 GB on disk. Both learning tasks are binary classification.

The experiments on large datasets are all conducted on EC2 instances with attached SSD storages
from Amazon Web Services. We ran the evaluations on five different instance types with increasing
memory capacities, ranging from 8 GB to 244 GB (for details see Appendix A).

6.1 Effectiveness of Weighted Sampling

We evaluate the effectiveness of weighted sampling by comparing it to uniform sampling. The
comparison is over the model accuracy on the testing data when both trained for 500 boosting
iteration on the cover type dataset. For both methods, we generate trees with depth 5 as weak rules.
In uniform sampling, we first randomly sample from the training data with each sampling ratio, and
use XGBoost to train the models. We evaluated the model performance on the sample ratios ranging
from 0.1 to 0.5, and repeated each evaluation for 10 times. The results are showed in Figure 3. We
can see that the accuracy of Sparrow is higher with the same number of boosting iteration and same
sampling ratio. In addition, the variance of the model accuracy is also smaller. It demonstrates that the
weighted sampling method used in Sparrow is more effective and more stable than uniform sampling.

6.2 Training on Large Datasets

We compare Sparrow on the two large datasets, and use XGBoost and LightGBM for the baselines
since they out-perform other boosting implementations [5, 12]. The comparison was done in terms
of the reduction in the exponential loss, which is what boosting minimizes directly, and in terms of
AUROC, which is often more relevant for practice. We include the data loading time in the reported
training time.

There are two popular tree-growth algorithms: depth-wise and leaf-wise [16]. Both Sparrow and
LightGBM grow trees leaf-wise. XGBoost uses the depth-wise method by default. In all experiments,
we grow trees with at most 4 leaves, or depth two. We choose to train smaller trees in these
experiments since the training take very long time otherwise.

For XGBoost, we chose approximate greedy algorithm which is its fastest training method. LightGBM
supports using sampling in the training, which they called Gradient-based One-Side Sampling
(GOSS). GOSS keeps a fixed percentage of examples with large gradients, and randomly sample
from remaining examples. We selected GOSS as the tree construction algorithm for LightGBM.
In addition, we also enabled the two_round_loading option in LightGBM to reduce its memory
footprint.

Both XGBoost and LightGBM take advantage of the data sparsity for further speed-up training.
Sparrow does not deploy such optimizations in its current version, which puts it in disadvantage.

The memory requirement of Sparrow is decided by the sample size, which is a configurable parameter.
XGBoost supports external memory training when the memory is too small to fit the training dataset.
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Figure 4: Time-AUROC curve on the splice site
detection dataset, higher is better, clipped on
right and bottom The (S) suffix is for training
on 30.5 GB memory, and the (L) suffix is for
training on 61 GB memory.

Figure 5: Time-AUROC curve on the bathymetry
dataset, higher is better, clipped on right and
bottom. The (S) suffix is for training on 61 GB
memory, and the (L) suffix is for training on
244 GB memory.

The in-memory version of XGBoost is used for training whenever possible. If it runs out of memory,
we trained the model using the external memory version of XGBoost instead. Unlike XGBoost,
LightGBM does not support external memory execution.

Lastly, all algorithms in this comparison optimize the exponential loss as defined in AdaBoost.

Due to the space limit, we put the detailed summary of the experiment results in Table 1 and Table 2
in the Appendix A. We evaluated each algorithm in terms of the AUROC as a function of training
time on the testing dataset. The results are given in Figure 4 and Figure 5.

On the splice site dataset, Sparrow is able to run on the instances with as small as 8 GB memory. The
external memory version of XGBoost can execute with reasonable amount of memory (but still needs
to be no smaller than 15 GB) but takes about 3x longer training time. However, we also noticed that
Sparrow does not have an advantage over other two boosting implementations when the memory
size is large enough to load in the entire training dataset.

On the bathymetry dataset, Sparrow consistently out-performs XGBoost and LightGBM, even when
the memory size is larger than the dataset size. In extreme cases, we see that Sparrow takes 10x-20x
shorter training time and achieves better accuracy. In addition, both LightGBM and the in-memory
version of XGBoost crash when trained with less than 244 GB memory.

We observed that properly initializing the value of γ and setting a reasonable sample set size can
have great impact on the performance of Sparrow. If stopping rule frequently fails to fire, it can
introduce a significant overhead to the training process. Specific to the boosted trees, one heuristic
we find useful is to initialize γ to the maximum advantage of the tree nodes in the previous tree. A
more systematic approach for deciding γ and sample set size is left as future work.

7 Conclusion and Future Work

In this paper, we have proposed a boosting algorithm contains three techniques: effective number
of examples, weighted sampling, and early stopping. Our preliminary results show that they can
dramatically speed up boosting algorithms on large real-world datasets, especially when the data size
exceeds the memory capacity.

For future work, we are working on a parallelized version of Sparrow which uses a novel type of
asynchronous communication protocol. It uses stopping rule to do model update, and relaxes the
necessity for frequent communication between multiple workers especially when training on large
datasets, which we believe is a better parallel learning paradigm.
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Table 1: Training time (hours) on the splice site
dataset. The (m) suffix is trained in memory. The
(d) suffix is trained with disk as external memory.

Training time until the loss convergences
Memory Sparrow XGB LGM

8 GB 2.9 (d) OOM OOM
15 GB 8.4 (d) > 50 (d) OOM
30 GB 10.4 (d) 0.6 (d) OOM
61 GB 4.4 (d) 12.8 (d) 1.2 (m)

244 GB 1.3 (d) 1.1 (m) 0.5 (m)
Converged 0.057 0.055 0.053

Training time until the average loss reaches 0.06
Memory Sparrow XGB LGM

8 GB 1.4 (d) OOM OOM
15 GB 7.1 (d) > 50 (d) OOM
30 GB 2.3 (d) 9.3 (d) OOM
61 GB 1.3 (d) 4.6 (d) 0.3 (m)

244 GB 0.5 (d) 0.3 (m) 0.2 (m)

Table 2: Training time (hours) on the bathymetry
dataset. The (m) suffix is trained in memory. The
(d) suffix is trained with disk as external memory.

Training time until the loss convergences
Memory Sparrow XGB LGM

8 GB The disk cannot fit the data
15 GB 2.5 (d) OOM OOM
30 GB 1.9 (d) 41.7 (d) OOM
61 GB 1.2 (d) 38.6 (d) OOM

244 GB 0.4 (d) 20.0 (m) 4.0 (m)
Converged 0.046 0.054 0.054

Training time until the average loss reaches 0.06
Memory Sparrow XGB LGM

8 GB The disk cannot fit the data
15 GB 1.0 (d) OOM OOM
30 GB 0.6 (d) 41.7 (d) OOM
61 GB 0.6 (d) 38.4 (d) OOM

244 GB 0.2 (d) 16.9 (m) 3.3 (m)

A Evaluate Sparrow on Large Datasets

Due to the space limit, we summarize the detailed training time in each experiment in the appendix.

The experiments on large datasets are all conducted on EC2 instances with attached SSD storages
from Amazon Web Services. We ran the evaluations on five different instance types with increasing
memory capacities, specifically 8 GB (c5d.xlarge, costs $0.192 hourly), 15.25 GB (i3.large,
costs $0.156 hourly), 30.5 GB (i3.xlarge, costs $0.312 hourly), 61 GB (i3.2xlarge, costs $0.624
hourly), and 244 GB (i3.8xlarge, costs $2.496 hourly).

In Table 1 and Table 2, we compared the training time it takes to reduce the exponential loss as
evaluated on the testing data. Specifically, we compared the values of the average loss when the
training converges and the corresponding training time. In addition, we observed that the average
losses converge to slightly different values, because two of the algorithms in comparison, Sparrow and
LightGBM, apply sampling methods during the training. Therefore, we also compared the training
time it takes for each algorithm to reach the same threshold for the average loss.

We use “XGB” for XGBoost, and “LGM” for LightGBM in the tables. In addition, we observe that
the training speed on the 8 GB instances is better than that on 15 GB instances, because the 8 GB
instance has more CPU cores than the 15 GB instance.

B Stopping rule analysis

We set the stopping rule applied in Sparrow (Equation 8) based on the following theorem.

Theorem 1 (based on Balsubramani [3] Theorem 4) Let Mt be a martingale Mt =
∑t
iXi, and

suppose there are constants {ck}k≥1 such that for all i ≥ 1, |Xi| ≤ ci w.p. 1. For ∀σ > 0, with
probability at least 1− σ we have

∀t : |Mt| ≤ C

√√√√( t∑
i=1

c2i

)(
log log

(∑t
i=1 c

2
i

|Mt|

)
+ log

1

σ

)
,

where C is a universal constant.

In our experiments, we set C = 1 and σ = 0.001
|H| , whereH is the set of base classifiers (weak rules).
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C Pseudocode for Sparrow

Algorithm 1 Main Procedure of Sparrow
Input Sample size n

A threshold θ for the minimum neff/n ratio for training weak learner

Initialize H0 = 0
Create initial sample S by calling SAMPLE
for k := 1 . . .K do

Call Scanner on sample S generate weak rule hk, γk
Hk ← Hk−1 + 1

2 log 1/2+γ
1/2−γhk

if neff/n < θ then
Receive a new sample S ← from Sampler
Set S ← S′

end if
end for

Algorithm 2 Scanner

Input An iterator over in-memory sampled set S
Initial advantage target γ0 ∈ (0.0, 0.5)

static variable γ = γ0
loop

if sample S is scanned without firing stopping rule then
Shrink γ by γ ← 0.9 γ̂
Reset S to scan from the beginning

end if
(x, y, wl)← S.next()
w ← UPDATEWEIGHT(x, y, wl, H)
for h ∈ W do

Compute h(~x)y
Update Mt, Vt (Eqn 7)
if Stopping Rule (Eqn 8) fires then

return h, γ
end if

end for
end loop
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Algorithm 3 Sampler

Input Randomly permuted, disk-resident training-set

Disk-resident stratified structure D ← {}
Weights of the strata W ← {}
Construct new sample S ← {}
loop

With the probability proportional to W ,
sample a strata R

(x, y, wl)← R.next()
Delete (x, y, wl) from R, update W
Receive new model H from MAINPROCEDURE
w ← UPDATEWEIGHT(x, y, wl, H)
With the probability proportional to w,

S ← S + {(x, y, w)}.
Append (x, y) to the right stratum with regard to w,

D ← D + {(x, y, w)}
Update W

if S is full then
Send S to MAINPROCEDURE
S ← {}

end if
end loop
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