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Optimal steering of inertial particles
diffusing anisotropically with losses

Yongxin Chen, Tryphon Georgiou and Michele Pavon ∗

October 24, 2018

Abstract

Exploiting a fluid dynamic formulation for which a probabilistic
counterpart might not be available, we extend the theory of Schrödinger
bridges to the case of inertial particles with losses and general, possibly
singular diffusion coefficient. We find that, as for the case of constant
diffusion coefficient matrix, the optimal control law is obtained by
solving a system of two p.d.e.’s involving adjoint operators and cou-
pled through their boundary values. In the linear case with quadratic
loss function, the system turns into two matrix Riccati equations with
coupled split boundary conditions. An alternative formulation of the
control problem as a semidefinite programming problem allows com-
putation of suboptimal solutions. This is illustrated in one example
of inertial particles subject to a constant rate killing.

1 Introduction

In 1931/1932, Erwin Schrödinger [1], [2, Section VII] posed the following
problem: a large number of i.i.d. Brownian particles in Rn is observed at
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an initial time t = 0 to have an empirical distributions ρ0(x), and at a final
time t = T an empirical distribution ρT (x). Assuming that the final distribu-
tion differs from the one dictated by the law of large numbers, Schrödinger
sought the most likely intermediate empirical distribution for the particle
trajectories. He computed that this in fact has one-time density of the form

ρ(x, t) = ϕ(x, t)ϕ̂(x, t)

where ϕt and ϕ̂ are suitable harmonic and co-harmonic functions; i.e., they
satisfy

∂ϕ(x, t)

∂t
+

1

2

n∑
i,j=1

aij
∂2(ϕ̂(x, t))

∂xi∂xj
= 0, (1a)

∂ϕ̂(x, t)

∂t
− 1

2

n∑
i,j=1

∂2(aijϕ̂(x, t))

∂xi∂xj
= 0, with (1b)

ϕ(x, 0)ϕ̂(x, 0) = ρ0(x) and ϕ(x, T )ϕ̂(x, T ) = ρT (x). (1c)

As usual, a = (aij) represents a constant, positive definite diffusion coefficient
(matrix); (1a-1c) is known as a Schrödinger system. Great many insights and
generalizations followed as well connections with Quantum mechanics and,
specifically, with Schrödinger’s own famous equation (see Wakolbinger [3] for
a historical account until 1991). The process sought by Schrödinger, as well
as the corresponding measure on path space that forms a bridge between
beginning and ending marginals, now bear his name. In modern terms, the
Schrödinger problem seeks to minimize relative entropy (Kullback-Leibler
distance) between distributions on trajectories given the initial and final
marginals [4].

Soon afterwards, it became apparent that Schrödinger’s bridge has a
reformulation as a stochastic optimal control problem, namely to seek a min-
imum energy control input u(t) so that the diffusion

dX(t) = u(X(t), t)dt+ σdw(t),

with X(0) = ξ a.s., ξ distributed according to ρ0(x) and w(·) a standard
Wiener process, is consistent with the empirical marginal ρT (x). Letting
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a = σσ′, the Schrödinger bridge can be constructed by solving

inf
(ρ,u)

∫
Rn

∫ T

0

1

2
u(x, t)′a−1u(x, t)ρ(x, t)dtdx, (2a)

∂ρ

∂t
+∇ · (uρ) =

1

2

n∑
i,j=1

∂2(aijρ)

∂xi∂xj
, (2b)

ρ(0, x) = ρ0(x), ρ(T, y) = ρT (y). (2c)

In fact, the optimizing control turns out to be

u∗(x, t) = a∇ logϕ(x, t)

where ϕ(x, t) is the space-time harmonic function in the solution of the
Schrödinger system. The function ϕ is connected to the neutron importance
function which has an important role in perturbation theory and reactor dy-
namic calculations [5]. The optimal control interpretation relates directly to
the property that the Schrödinger bridge represents the law which is clos-
est to the prior measure in the sense of relative entropy; this follows from
Girsanov’s theory ([4, 6, 7], see also [3] and the references therein).

Interestingly, the connection between Schrödinger bridges and stochastic
optimal control seems to have only focused on the case of non-degenerate
diffusions, possibly with creation and killing [8, 3, 9], in which the constant
diffusion matrix a is nonsingular (to some degree necessitated by the Girsanov
theory). Thus, for instance, models of inertial particles driven by stochas-
tic forces do not fall in this category. The authors were initially motivated
by this precise problem, to steer inertial particles, and by the possibility of
“cooling” oscillators via active feedback for high resolution measuring instru-
ments [10, 11]. In both of these applications, where the stochastic excitation
impacts only certain direction of the state vector, i.e., where a is singular, it
is still possible to construct generalized Schrödinger bridges for (degenerate)
diffusion processes and directly connect to an optimal control problem in a
similar fashion. This is done in [12, 13] focusing on linear dynamics and in
[14] in a more general context of nonlinear diffusions.

Herein, following [12, 13], we pursue yet another generalization of great
practical significance to general diffusion processes. Anisotropic diffusions
are important, for instance, in image processing and computer vision [15, 16].
Notice that for general diffusion processes where σ = σ(x, t) viz. a = a(x, t)
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depends, besides on time, on the spatial variables, a probabilistic problem
might not exist. Indeed, for different drift terms, the corresponding distri-
butions on the trajectories may be mutually singular and relative entropy be
always infinite. An exception is when the control enters through the “same
channel” as the noise [17, (5.3)], [12] or the diffusion coefficient is uniformly
bounded, nonsingular and bounded away from zero [18, p.305]. The fluid dy-
namic formulation (2a-2c), which resembles the celebrated Benamou-Brenier
formulation of the optimal transport problem [19, 20, 21], however, does
make sense also in the case of a general diffusion coefficient. More specif-
ically we consider a cloud of particles with density ρ(x, t), x ∈ Rn, which
evolves according to the transport-diffusion equation

∂ρ

∂t
+∇ · (f(x, t)ρ) + V (x, t)ρ =

1

2

n∑
i,j=1

∂2(aij(x, t)ρ)

∂xi∂xj
, (3)

with ρ(x, 0) = ρ0 a probability density. In departure from prior works on
connections to Feynman-Kac [3, 7] and in accordance with our aim to be able
to model inertial particles, we assume that the matrix a(x, t) = [aij(x, t)]

n
i,j=1

is positive semidefinite of constant rank on all of Rn × [0, T ] with

aij(x, t) =
∑
k

σik(x, t)σkj(x, t)

for a matrix σ(x, t) = [σik(x, t)] ∈ Rn×m of constant rank m ≤ n. The
presence of V (x, t) ≥ 0 allows for the possibility of loss of mass, so that the
integral of ρ(x, t) over Rn is not necessarily constant. This flexibility allows
modeling the situation where particles, obeying

dX(t) = f(X(t), t)dt+ σ(X(t), t)dw(t), (4)

are absorbed at some rate by the medium in which they travel or, if the sign
of V is negative, created out of this same medium [22, p.272]. We assume here
and throughout the paper that f and σ are smooth and that the operator

L =
n∑

i,j=1

aij(x, t)∂xi∂xj +
n∑
j=1

fj(x, t)∂xj − ∂t

satisfies Hörmander’s condition [23, 24] and is therefore hypoelliptic. Hy-
poelliptic diffusions occur in many branches of science: Ornstein-Uhlenbeck
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stochastic oscillators, Nyquist-Johnson circuits with noisy resistors, in im-
age reconstruction based on Petitot’s model of neurogeometry of vision [25],
etc. The “reweighing” the original measure of the Markov process (4) when
V is unbounded is a delicate issue and can be accomplished via the Naga-
sawa transformation, see [3, Section 8B] for the details. We suppose that (3)
represents a prior evolution and that at some point T > 0 we measure an
empirical probability density ρT (x) 6= ρ(x, T ) as dictated by (3). Thus, the
model (3) is not consistent with the estimated end-point empirical distribu-
tion. However, we have reasons to believe that the actual evolution must
have been close to the nominal one and that only the actual drift field may
be different and equal to

f̃(x, t) := f(x, t) + σ(x, t)u(x, t).

Notice that the control variables, which may be fewer than n, act through
the same channels of the diffusive part. The assumption that stochastic
excitation and control enter through the same “channels” is natural in certain
applications as explained and treated in [12] for linear diffusions. The case
were these channels may differ is considered in [13].

The paper is organized as follows: The basic theory is outlined in Section
2 where we derive a generalized Schrödinger system for the optimal control
law. We then specialize to the case of linear dynamics with constant diffu-
sion coefficient and quadratic potential V in Section 3 and derive a system of
coupled Riccati equations that correspond to the Schrödinger system. The
theory, even in the absence of a “killing” potential V, falls outside the setting
of “linear-quadratic regulator theory” where only one matrix Riccati equa-
tion occurs with a specified boundary value. Moreover, here the coupling
between the two differential Riccati equations through their split boundary
conditions is non-standard, and the solutions to the Riccati equations are
sign-indefinite in general [12]. Then, in Section 4 we outline a numerical
scheme to obtain suboptimal solutions for the corresponding stochastic con-
trol problem. Finally, in Section 5 we conclude with a numerical example.

2 A generalized Schrödinger system

Taking (3) as a reference evolution and given the terminal probability density
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ρT , we are led to consider the problem

inf
(ρ̃,ũ)

∫
Rn

∫ T

0

[
1

2
‖u‖2 + V (x, t)

]
ρ̃(x, t)dtdx, (5a)

∂ρ̃

∂t
+∇ · ((f + σu)ρ̃) =

1

2

n∑
i,j=1

∂2 (aij ρ̃)

∂xi∂xj
, (5b)

ρ̃(0, x) = ρ0(x), ρ̃(T, y) = ρT (y). (5c)

The motivation for this specific form of the index comes from a relative en-
tropy problem on path space (Schrödinger Bridge Problem) in the case when
[aij] does not depend on the spatial variable x [4, 3, 9]. When [aij] does
depend on x, such an interpretation is available only under rather restric-
tive assumptions such as uniform boundness of a [17, Section 5]. Problem
(5) can therefore be viewed as a generalization of the classical probabilistic
Schrödinger bridges problem.

The variational analysis for (5) can be carried out as follows. Let Xρ0ρT
be the family of flows of probability densities

ρ̃ = {ρ̃(·, t) | 0 ≤ t ≤ T}
satisfying (5c). Let U be the family of continuous feedback control laws u(·, ·).
Consider the unconstrained minimization of the Lagrangian over Xρ0ρT × U

L(ρ̃, u, λ) =

∫
Rn

∫ T

0

[(
1

2
‖u(x, t)‖2 + V (x, t)

)
ρ̃(x, t)

−λ(x, t)

(
∂ρ̃

∂t
+∇ · ((f + σu)ρ̃)

−1

2

n∑
i,j=1

∂2

∂xi∂xj
(aij(x, t)ρ̃)

)]
dtdx,

where λ is a C1 Lagrange multiplier. After integration by parts, assuming
that limits for x→∞ are zero, and observing that the boundary values are
constant over Xρ0ρT , we get the problem

inf
(ρ̃,u)∈Xρ0ρT×U

∫
Rn

∫ T

0

[
1

2
‖u‖2 + V +

(
∂λ

∂t

+(f + σu) · ∇λ+
1

2

n∑
i,j=1

aij
∂2λ

∂xi∂xj

)]
ρ̃(x, t)dtdx (6)
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Pointwise minimization of the integrand with respect to u for each fixed flow
of probability densities ρ̃ gives

u∗ρ̃(x, t) = −σ′∇λ(x, t). (7)

Plugging this form of the optimal control into (6), we get the functional of
ρ̃ ∈ Xρ0ρT

J(ρ̃, λ) =

∫
Rn

∫ T

0

[
∂λ

∂t
+ f · ∇λ− 1

2
∇λ · a∇λ (8)

+V +
1

2

n∑
i,j=1

aij(x, t)
∂2λ

∂xi∂xj

]
ρ̃(x, t)dtdx. (9)

We then have the following result:

Proposition 1 If ρ̃∗ satisfies

∂ρ̃

∂t
+∇ · ((f − a∇λ)ρ̃) =

1

2

n∑
i,j=1

∂2 (aij ρ̃)

∂xi∂xj
, (10)

with λ a solution of the HJB-like equation

∂λ

∂t
+ f · ∇λ+

1

2

n∑
i,j=1

aij(x, t)
∂2λ

∂xi∂xj
=

1

2
∇λ · a∇λ− V, (11)

and ρ̃∗(x, T ) = ρT (x), then the pair (ρ̃∗, u∗) with u∗ = −σ′∇λ is a solution
of (5).

Of course, the difficulty lies with the nonlinear equation (11) for which no
boundary value is available. Together, ρ̃(x, t) and λ(x, t) satisfy the cou-
pled equations (10-11) and the split boundary conditions for ρ̃(x, t) in (5c).
However, let us define

ϕ(x, t) = exp[−λ(x, t)], (x, t) ∈ Rn × [0, T ].

If λ satisfies (11), we get that ϕ satisfies the linear equation

∂ϕ

∂t
+ f · ∇ϕ+

1

2

n∑
i,j=1

aij(x, t)
∂2ϕ

∂xi∂xj
= V ϕ (12)
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Moreover, for ρ̃ satisfying (10) and ϕ satisfying (12), let us define

ϕ̂(x, t) =
ρ̃(x, t)

ϕ(x, t)
, (x, t) ∈ Rn × [0, T ].

Then a long but straightforward calculation shows that ϕ̂ satisfies the original
equation (3). Thus, we have the system of linear PDE’s

∂ϕ

∂t
+ f(x, t) · ∇ϕ+

1

2

n∑
i,j=1

aij
∂2ϕ

∂xi∂xj
= V ϕ, (13a)

∂ϕ̂

∂t
+∇ · (f(x, t)ϕ̂)− 1

2

n∑
i,j=1

∂2 (aijϕ̂)

∂xi∂xj
= −V ϕ̂, (13b)

nonlinearly coupled through their boundary values as

ϕ(x, 0)ϕ̂(x, 0) = ρ̃0(x), ϕ(x, T )ϕ̂(x, T ) = ρ̃T (x). (13c)

Equations (13a)-(13c) constitute a generalized Schrödinger system. We have
therefore established the following result.

Theorem 1 Let (ϕ(x, t), ϕ̂(x, t)) be nonnegative functions satisfying (13a)-
(13c) for (x, t) ∈ (Rn × [0, T ]). Suppose ϕ is everywhere positive. Then the
pair (ρ̃∗, u∗) with

u∗(x, t) = σ′∇ logϕ(x, t), (14a)

∂ρ̃

∂t
+∇ · ((f + a∇ logϕ)ρ̃) =

1

2

n∑
i,j=1

∂2 (aij ρ̃)

∂xi∂xj
, (14b)

is a solution of (5).

Establishing existence and uniqueness (up to multiplication/division of the
two functions by a positive constant) of the solution of the Schrödinger sys-
tem is extremely challenging even when the diffusion coefficient matrix a is
constant and nonsingular. Nevertheless, if the fundamental solution p of (3) is
everywhere positive on (Rn × (0, T ]), existence and uniqueness follows from
a deep result of Beurling [26] suitably extended by Jamison [27, Theorem
3.2], [3, Section 10].
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Remark 1 It is interesting to note that although (5) is not convex in (ρ̃, u),
it can be turned into a convex problem in a new set of coordinates (ρ̃, m̃)
where m = ρ̃u, in which case it becomes

inf
(ρ̃,m̃)

∫
Rn

∫ T

0

[
1

2

‖m‖2

ρ̃(x, t)
+ V (x, t)ρ̃(x, t)

]
dtdx, (15a)

∂ρ̃

∂t
+∇ · (fρ̃+ σm) =

1

2

n∑
i,j=1

∂2 (aij ρ̃)

∂xi∂xj
, (15b)

ρ̃(0, x) = ρ0(x), ρ̃(T, y) = ρT (y). (15c)

This type of coordinate transformation has been effectively used in [19] in the
context of optimal mass transport.

3 The linear-quadratic case

We now specialize system (13) to the case of linear dynamics with constant
diffusion matrix and quadratic loss function V (x), i.e., we assume that ρ(x, t)
represents the density function of a linear diffusion

dX(t) = AX(t)dt+Bu(t) +Bdw(t), with X(0) = ξ, a.s. (16)

and ξ distributed according to

ρ(x, 0) =
1√

(2π)n det(Σ0)
exp

(
−1

2
x′Σ−10 x

)
with Σ0 > 0. We also assume a loss/state-cost function

V (x, t) =
1

2
x′S(t)x

and a “target” end-point distribution

ρ(x, T ) =
1√

(2π)n det(ΣT )
exp

(
−1

2
x′Σ−1T x

)
,

at t = T , with S(t) ≥ 0 and ΣT > 0 1 .

1The special case where the diffusion coefficient BB′ is positive definite and V ≡ 0 has
been studied in [28].
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Take ϕ(x, t) and ϕ̂(x, t) in the form

ϕ(x, t) = c(t) exp{−1

2
x′Π(t)x}

ϕ̂(x, t) = ĉ(t) exp{−1

2
x′H(t)x}.

Substitution into (13) and separation of variables leads after straightforward
calculation to the following two coupled Riccati equations with split bound-
ary conditions

− Π̇(t) = A′Π(t) + Π(t)A− Π(t)BB′Π(t) + S(t) (17a)

−Ḣ(t) = A′H(t) + H(t)A+ H(t)BB′H(t)− S(t) (17b)

with

Σ−10 = Π(0) + H(0) and Σ−1T = Π(T ) + H(T ). (17c)

and

c(t) = exp{1

2

∫ t

0

trace(BB′Π(τ))dτ}

ĉ(t) = exp

{
−
∫ t

0

trace

[
A(τ) +

1

2
BB′H(τ)

]
dτ

}
Thus, the problem reduces to finding a pair (Π(t),H(t)) satisfying (17). For
the case when S(t) ≡ 0, it has been shown by the authors in [12] that this
system has a unique solution.

4 Semi-definite programming formulation

It appears that the solution of (17a-17c) using successive approximation is
not numerically stable. Thus, we now present an alternative formulation into
semi-definite program. This allows computation of suboptimal solutions that
are arbitrarily close to being optimal. This method was used to work out the
example that follows in Section 5.
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We are interested in computing a feedback gain K(t) so that the control
signal u(t) = −K(t)x(t) steers (16) from the initial state-covariance Σ0 at
t = 0 to the final ΣT at t = T . The cost functional to be minimized is

J = E
{∫ T

0

[
1

2
‖u‖2 +

1

2
x(t)′S(t)x(t)

]
dt

}
(18)

=
1

2

∫ T

0

[trace(K(t)Σ(t)K(t)′) + trace(S(t)Σ(t))] dt

subject to the corresponding differential Lyapunov equation for the state
covariance

Σ̇(t) = (A−BK)Σ(t) + Σ(t)(A−BK)′ +BB′ (19)

satisfying the boundary conditions

Σ(0) = Σ0, and Σ(T ) = ΣT . (20a)

If we replace K by U(t) := −Σ(t)K(t)′, then

J =
1

2

∫ T

0

[trace(U(t)′Σ(t)−1U(t)) + trace(S(t)Σ(t))]dt

becomes jointly convex in U(t) and Σ(t). On the other hand, the Lyapunov
equation (19) becomes

Σ̇(t) = AΣ(t) + Σ(t)A′ +BU(t)′ + U(t)B′ +BB′ (20b)

and is now linear in both U and Σ. Thus, our optimization problem reduces
to the semi-definite program to minimize∫ T

0

[trace(Y (t)) + trace(S(t)Σ(t))]dt (20c)

subject to (20a-20b) and [
Y (t) U(t)′

U(t) Σ(t)

]
≥ 0. (20d)

After discretization in time, (20a-20d) can be solved numerically and a (sub-
optimal) gain recovered as

K(t) = −U(t)′Σ(t)−1.

11



Figure 1: Inertial particles: state trajectories (S(t) ≡ I)

5 Example

We consider inertial particles modeled by

dx(t) = v(t)dt

dv(t) = u(t)dt+ dw(t).

Here, u(t) is a control input (force) at our disposal, x(t) represents the po-
sition and v(t) velocity of particles, while w(t) represents random exitation
(corresponding to “white noise” forcing). We wish to steer the spread of the
particles from an initial Gaussian distribution with Σ0 = 2I at t = 0 to the
terminal marginal ΣT = 1/4I for T = 1 in a optimal way such that the cost
function (18) is minimized.

Figure 1 displays typical sample paths {(x(t), v(t)) | t ∈ [0, 1]} in phase
space, as a function of time, that are attained using the optimal feedback
strategy derived following (20c) and S = I. The feedback gains K(t) =
[k1(t), k2(t)] are shown in Figure 2 as a function of time. Figure 3 shows the
corresponding control action for each trajectory.

For comparison, Figure 4 displays typical sample paths when optimal
control is used and S = 10I. As expected, Σ(·) shrinks faster as we increase
the state penalty S which is consistent with the reference evolution loosing
probability mass at a higher rate at places where V (x) is large.

12



Figure 2: Inertial particles: feedback gains

Figure 3: Inertial particles: control inputs

Figure 4: Inertial particles: state trajectories (S(t) ≡ 10I)

13
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