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1Department of Statistics, University of

California, Riverside, 92521, California, USA
2Department of Medicine, University of

California Irvine, Orange, 92868, California,

USA
3Department of Biostatistics, University of

California, Los Angeles, 90095, California, USA
4Harold Simmons Center for Chronic Disease

Research and Epidemiology, University of

California Irvine School of Medicine, Orange,

92868, California, USA

Correspondence

Esra Kürüm, Department of Statistics,

University of California, Riverside, CA 92521,

USA.

Email: esra.kurum@ucr.edu

Funding information

National Institute of Diabetes and Digestive

and Kidney Diseases, Grant/Award Number:

R01 DK092232

More than 720,000 patients with end-stage renal disease in the United States require

life-sustaining dialysis treatment. In this population of typically older patients with a high mor-

bidity burden, hospitalization is frequent at a rate of about twice per patient-year. Aside from

frequent hospitalizations, which is a major source of death risk, overall mortality in dialysis

patients is higher than other comparable populations, including Medicare patients with cancer.

Thus, understanding patient- and facility-level risk factors that jointly contribute to longitudi-

nal hospitalizations and mortality is of interest. Towards this objective, we propose a novel

methodology to jointly model hospitalization, a binary longitudinal outcome, and survival, based

on multilevel data from the United States Renal Data System (USRDS), with repeated obser-

vations over time nested in patients and patients nested in dialysis facilities. In our approach,

the outcomes are modeled through a common set of multilevel random effects. In order to

accommodate the USRDS data structure, we depart from the literature on joint modeling of

longitudinal and survival data by including multilevel random effects and multilevel covariates,

at both the patient and facility levels. An approximate Expectation-Maximization algorithm is

developed for estimation and inference where fully exponential Laplace approximations are

utilized to address computational challenges.

KEYWORDS
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1 INTRODUCTION

In the United States, there were over 726,000 individuals with end-stage-renal disease (ESRD) at the end of 2016 among whom 70% were

on dialysis, a life-sustaining treatment (United States Renal Data System, 2018). Dialysis patients have a substantially higher level of mortality

risk compared to most other morbid populations, including Medicare populations with cancer, diabetes, or cardiovascular disease. Furthermore,

because of the nature of dialysis treatment and overall comorbid conditions, dialysis patients are more frequently hospitalized, about twice per

patient-year (United States Renal Data System, 2018). Thus, for the dialysis population, mortality and longitudinal hospitalizations are correlated

patient outcomes, and it is of interest to examine the relative contribution of risk factors to this correlated outcome pair, after initiation of

dialysis. Potential risk factors include both patient-level risk factors and dialysis facility-level risk factors, such as facility staffing (e.g., the ratio of

nurses to patients). Recent works in modeling cause-specific (e.g., cardiovascular-related) and all-cause longitudinal hospitalizations in the dialysis

population have considered approaches that partly conditioned on survival (Estes, Nguyen, Dalrymple, Mu, & Senturk, 2016; Li et al., 2018), which

provide useful perspectives when the primary focus is on patients' longitudinal hospitalization trajectories after initiation of dialysis. Our work

here focuses on joint modeling of longitudinal hospitalization and survival outcomes in this population, in particular for multilevel/hierarchical

data. In the model development, we address new joint modeling challenges when facing complex hierarchical data with multilevel covariates and

computational challenges of high-dimensional random effects (REs).

We propose a novel multilevel joint model (MJM) that accounts for three-level hierarchical data, with longitudinal measurements, hospitalizations

over time, nested within subjects, and subjects further nested within dialysis facilities where they receive regular care. MJM accommodates

the hierarchical structure of the data from the United States Renal Data System (USRDS), a large national database, through multilevel REs and
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multilevel risk factors affecting both survival and longitudinal hospitalization outcomes. In particular, at the subject level, these include patient

demographics and baseline comorbidities. At the facility level, facility staffing, such as the ratio of nurses to patients, may impact patient outcomes.

We note that joint modeling of longitudinal and survival outcomes has been extensively studied; see Tsiatis and Davidian (2004) for an excellent

review. A common technique in modeling the dependency between the two outcomes is through the use of REs, often referred to as frailties

(Henderson, Diggle, & Dobson, 2000; Hsieh, Tseng, & Wang, 2006; Liu, Ma, & O'Quigley, 2008; Rizopoulos, Molenberghs, & Lesaffre, 2017;

Rizopoulos, Taylor, Van Rosmalen, Steyerberg, & Takkenberg, 2015; Rizopoulos, Verbeke, & Molenberghs, 2008; Njagi, Rizopoulos, Molenberghs,

Dendale, & Willekens, 2013; Tsiatis & Davidian, 2001; Song, Davidian, & Tsiatis, 2002; Wulfsohn & Tsiatis, 1997). Most of the literature on

joint modeling consider a two-level hierarchy, that is, longitudinal data nested within subjects, where a subject-specific RE is typically used to

model the dependency between the longitudinal outcome and survival. The few works (Liu et al., 2008) that consider a three-level data structure

(with longitudinal data nested in subjects and subjects nested in a higher clustering unit such as dialysis facilities) is limited to modeling of

continuous longitudinal outcomes and only subject-level risk factors. More specifically, the work by Liu et al. (2008) does not model the direct

effect of the longitudinal outcome on survival but rather builds a dependency in modeling of the two outcomes via multilevel REs and utilizes

Gauss quadrature techniques in estimation which do not scale up to the large complex data structure of USRDS data with a large number of

facilities. The proposed MJM departs from previous literature in considering multilevel REs (at both the subject-level and dialysis facility-level)

and multilevel risk factors in modeling the dependency between a generalized longitudinal outcome (hospitalization) and survival, where the

direct effects of the longitudinal outcome on survival is targeted. In addition, a feasible estimation and inference framework is proposed based

on fully exponential Laplace approximations that are scalable to estimation in large (USRDS) population data.

Estimation for the proposed MJM is based on an EM algorithm, where the subject- and facility-level REs connecting the two outcomes are

considered missing. The expectation step (E-step) estimates the posterior mean and variance of the REs, whereas the maximization step (M-step)

maximizes the joint likelihood with respect to model parameters, given the REs. The MJM for our three-level hierarchical data, with longitudinal

measurements nested in subjects and subjects clustered in dialysis facilities, leads to a high-dimensional vector of REs (of order ni +1) at the

facility level with the facility-level RE as well as subject-level REs for ni patients receiving dialysis at the ith facility. This is a major computational

challenge which has hindered the estimation of joint models with hierarchical data and multilevel REs and is compounded when the size of the

data is large. Our analysis of the USRDS data includes over 292,000 observations on ∼34,000 patients in >500 facilities, where the number of

patients within a facility, denoted by ni, ranges from 50 to 162. Although the Laplace approximation method has less computational burden than

other numerical integration methods such as Gauss quadrature or Monte Carlo approaches in approximating integration of high-dimensional

REs, the error associated with the approximation can get large in sparse longitudinal applications with a small number of repeated measurements

within subjects. Because the USRDS data have subjects with only a few (<5) repetitions during the follow-up period, we adopt the fully

exponential Laplace approximations (Rizopoulos, Verbeke, & Lesaffre, 2009; Tierney, Kass, & Kadane, 1989) to address this major computational

challenge, which has been shown to lead to reliable estimation and lower order approximation errors than the standard Laplace approximation

in modeling sparse longitudinal outcomes with few repeated measurements within a subject. Our previous work shows reliability and efficacy of

the fully exponential Laplace approximations in addressing integration over high-dimensional REs in the context of generalized multilevel varying

coefficient models (Li et al., 2018).

Distinct from Rizopoulos et al. (2009), who considered the exponential Laplace approximations for joint modeling with a continuous longitudinal

outcome, we demonstrate the use of exponential Laplace approximations in joint modeling of a generalized (e.g., binary) longitudinal outcome

with survival, and for a higher level (three-level) hierarchical data which are much larger than data considered in JM contexts. Furthermore, we

investigate the appropriateness of the use of model-based standard errors (SEs) in MJM and provide practical guidance.

The remainder of the paper is organized as follows. The proposed MJM and the EM algorithm utilizing fully exponential Laplace approximations

and SEs of model parameters are presented in Section 2. Simulation studies to examine the efficacy of estimation and comparison of SE estimates

based on likelihood- and bootstrap-based approaches are provided in Section 3. We also compare our proposed MJM with a simplified joint model

that ignores the correlation at the highest level of the hierarchy (i.e., at the facility-level) in Section 3. In Section 4, we illustrate the proposed

MJM to jointly model longitudinal hospitalization risk and survival using the USRDS data. We conclude with a brief discussion in Section 5.

2 MJM, ESTIMATION, AND INFERENCE

2.1 Model formulation

To obtain the joint distribution of the binary longitudinal and survival outcomes, we begin by defining the submodels for each outcome. For

the longitudinal submodel, denote the binary longitudinal outcome as Yij(t) for subject (patient) j in cluster (facility) i at time t. For the USRDS

data, the outcome Yij(t) is defined as the indicator of at least one hospitalization in a 3-month follow-up window with midpoint t, for the jth

patient, j = 1, … , ni, receiving dialysis at the ith facility i = 1, … , n. Let Xij =
(

Xij1, … ,Xijp

)T
and Zi( j) =

{
Zi( j)1, … ,Zi( j)q

}T
denote the subject-

and facility-level predictor vectors with the corresponding regression coefficients 𝜷 =
(
𝛽1, … , 𝛽p

)T
and 𝝍 =

(
𝜓1, … , 𝜓q

)T
, respectively. The

USRDS facility-level characteristics, such as the nurse-to-patient ratio, are reported yearly. Hence, Zi(j ) denotes those characteristics reported in

the calendar year prior to the jth patient initiating dialysis and, therefore, carry a second subject index.
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The proposed submodel for the longitudinal outcome is a linear mixed effects model:

mij(t) = E{Yij(t)|Xij,Zi( j), bij, 𝜉i} = g−1{XT
ij𝜷 + ZT

i( j)𝝍 + 𝛾 t + bij + 𝜉i},

where g(·) is the canonical logit link with g(p) = log{p∕(1 − p)} and bij and 𝜉 i denote the subject- and facility-level REs such that bij ∼  (0, 𝜎2
b
) and

𝜉i ∼  (0, 𝜎2
𝜉
). We assume that the subject- and facility-level REs are independent. Note that the parameter estimates and SEs in joint modeling

are reported to be robust to misspecification of the distribution of the REs (Hsieh et al., 2006; Rizopoulos et al., 2008; Song et al., 2002). We

make two important remarks regarding the above submodel for the longitudinal process: (1) although our motivating problem involves a binary

outcome process, namely, hospitalization, the model is applicable to a generalized outcome; (2) for simplicity of exposition, we describe a common

longitudinal model with a linear time effect and a random intercept, although the technical estimation and inference procedures that will be

subsequently described can directly accommodate more general formulations of time-dynamic effects.

In the survival submodel, the true and observed event (death) times are denoted by T∗
ij

and Tij, respectively, where the observed event time

is defined as the minimum of the potential censoring time Cij and T∗
ij

. In addition, 𝛿ij = 𝐼(Tij ≤ Cij) denotes the event indicator, where I(·) is

the indicator function. For the survival submodel, we adopt a proportional hazards model with the hazard of death at time t, accounting the

hospitalization history up to time t, defined as

hij{t|ij(t),Xij,Zi( j)} = lim
Δt→0

Pr{t ≤ T∗
ij < t + Δt|T∗

ij ≥ t,ij(t),Xij,Zi( j)}

= h0(t) exp{XT
ij𝜻 + ZT

i( j)𝜼 + 𝛼mij(t)},
(1)

where ij(t) = {mij(s),0 ≤ s < t} is the history of the true unobserved longitudinal process up to the time point t, 𝜻 =
(
𝜻1, … , 𝜁p

)T
and

𝜼 = (𝜂1, … , 𝜂q)T are the multilevel covariate effects on survival, h0(·) is the baseline hazard function, and 𝛼 is the regression coefficient that

quantifies the effect of the longitudinal outcome on the risk of an event. Thus, in terms of the survival function, we have

ij{t|ij(t),Xij,Zi( j)} = Pr{T∗
ij > t|ij(t),Xij,Zi( j)}

= exp
⎡⎢⎢⎣−

t

∫
0

h0(s) exp{XT
ij𝜻 + ZT

i( j)𝜼 + 𝛼mij(s)}ds
⎤⎥⎥⎦ .

(2)

The definitions of the hazard and survival functions indicate that the instantaneous probability of death at time t depends on the current

value of the longitudinal outcome, the hospitalization risk score (1) at time t, whereas the survival function depends on the entire history of the

hospitalization risk up to time t, namely, ij(t).
Hence, the joint distributions of the survival and longitudinal outcomes, specifically

p(Tij, 𝛿ij,Yij, bij, 𝜉i; 𝜃) = p(Tij, 𝛿ij|bij, 𝜉i; 𝜃) p(Yij|bij, 𝜉i; 𝜃) p(bij, 𝜉i; 𝜃), (3)

are connected through the multilevel REs bij and 𝜉 i, which not only account for the association between the two outcomes but also explain

the correlation between longitudinal measurements within a subject. In (3), Yij denotes the nij ×1 vector of the longitudinal outcome for the jth

subject within the ith facility, 𝜃 = (𝜃T
t , 𝜃

T
y , 𝜃b, 𝜃𝜉)T denotes the full parameter vector with survival parameters 𝜃t = (𝜻T, 𝜼T, 𝛼, 𝜃h0

)T and longitudinal

parameters 𝜃y = (𝜷T,𝝍T, 𝛾)T, and 𝜃h0
contains the parameters in modeling the baseline hazard function h0(·), 𝜃b = 𝜎2

b
and 𝜃𝜉 = 𝜎2

𝜉
. The density of

the observed event time Tij in (3) given the multilevel REs is given as

p(Tij, 𝛿ij|bij, 𝜉i; 𝜃) = hij{Tij|ij(Tij); 𝜃}𝛿ijij{Tij|ij(Tij); 𝜃}

=
[

h0(Tij) exp{XT
ij𝜻 + ZT

i( j)𝜼 + 𝛼mij(Tij)}
]𝛿ij

× exp

⎡⎢⎢⎢⎣−
Tij

∫
0

h0(s) exp{XT
ij𝜻 + ZT

i( j)𝜼 + 𝛼mij(s)}ds

⎤⎥⎥⎥⎦ .
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In addition, the joint density for the longitudinal outcome and the REs in (3) is

p(Yij|bij, 𝜉i; 𝜃) p(bij, 𝜉i; 𝜃) =

[ nij∏
k=1

p{Yij(tijk)|bij, 𝜉i; 𝜃y}

]
p(bij, 𝜉i; 𝜃)

=
⎛⎜⎜⎜⎝

nij∏
k=1

exp
[
{XT

ij
𝜷 + ZT

i( j)𝝍 + 𝛾 tijk + bij + 𝜉i}Yij(tijk)
]

1 + exp{XT
ij
𝜷 + ZT

i( j)𝝍 + 𝛾 tijk + bij + 𝜉i}
(2𝜋𝜎2

b )
−1∕2 exp

{
−b2

ij∕(2𝜎
2
b )

}⎞⎟⎟⎟⎠
× (2𝜋𝜎2

𝜉
)−1∕2 exp

{
−𝜉2

i ∕(2𝜎
2
𝜉
)
}
,

where tijk, k = 1, … , nij, denote the midpoints of the nij 3-month intervals in the follow-up period of the jth patient from the ith facility. The

longitudinal outcomes, Yij(tijk), k = 1, … , nij, within a subject are assumed to be independent conditional on the multilevel REs.

2.2 Estimation and inference

We propose an approximate EM algorithm (Dempster, Laird, & Rubin, 1977), in which we treat multilevel REs as missing data. The proposed

EM iterates between the E-step, targeting the REs and the M-step, maximizing the approximate expected complete likelihood to estimate

𝜃 = (𝜃T
t , 𝜃

T
y , 𝜃b, 𝜃𝜉)T.

Let 𝓁(u, 𝜽) denote the complete joint log-likelihood:

𝓁(u, 𝜃) =
n∑

i=1

𝓁i(ui, 𝜃) =
n∑

i=1

log Li(ui, 𝜃) =
n∑

i=1

ni∑
j=1

log p(Tij, 𝛿ij,Yij, bij, 𝜉i; 𝜃), (4)

where u = (u1, … ,un)T, ui = (bi1, … , bini
, 𝜉i)T, and Li(ui, 𝜽) and p(Tij, 𝛿ij, Yij, bij, 𝜉 i; 𝜽) denote the likelihood contribution of the ith facility and the jth

subject within the ith facility, respectively. Using (3), 𝓁i(ui, 𝜽) can be defined as

𝓁i(ui, 𝜃) =
ni∑

j=1

log p(Tij, 𝛿ij,Yij, bij, 𝜉i; 𝜃)

=
ni∑

j=1

{
log p(Tij, 𝛿ij|bij, 𝜉i; 𝜃) + log p(Yij|bij, 𝜉i; 𝜃) + log p(bij, 𝜉i; 𝜃)

}

=
ni∑

j=1

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝𝛿ij

[
log h0(Tij) + {XT

ij𝜻 + ZT
i( j)𝜼 + 𝛼mij(Tij)}

]

−

Tij

∫
0

h0(s) exp{XT
ij𝜻 + ZT

i( j)𝜼 + 𝛼mij(s)}ds

⎞⎟⎟⎟⎠
+

[{ nij∑
k=1

g(mijk)Yijk + log(qijk) −
b2

ij

2𝜎2
b

− 1
2

log(2𝜋𝜎2
b )

}
−
𝜉2

i

2
𝜎2
𝜉
− 1

2
log(2𝜋𝜎2

𝜉
)

]⎞⎟⎟⎟⎠ ,

(5)

where mij(t) = g−1{XT
ij
𝜷+ZT

i( j)𝝍 + 𝛾 t+bij + 𝜉i}, mijk = mij(tijk), Yijk = Yij(tijk) and qijk = 1−mijk . The incomplete likelihood used in defining the expected

value and variance of the REs is given by L(𝜃) =
∑n

i=1 ∫ Li(ui, 𝜃)dui.

The steps of the proposed EM algorithm are outlined below.

1. The initial values for all the parameters, denoted by 𝜃0 = (𝜃0T
t , 𝜃0T

y , 𝜃0
b
, 𝜃0

𝜉
)T, are set to initial estimates from separate model fits to the

longitudinal and the survival outcome. More specifically, a generalized multilevel linear mixed effect model is fitted to the longitudinal

outcome, and a Cox model (Cox, 1972) is fitted to the survival outcome.

2. E-step: in the 𝓁th iteration, the estimates of the posterior mean and variance of the REs in ui = (bi1, … , bini
, 𝜉i)T are obtained via fully

exponential Laplace approximations, leading to the approximated expected complete likelihood.

3. M-step: the expected complete likelihood is maximized to obtain closed form solutions for the current estimates of 𝜃b and 𝜃𝜉 (𝜃b = 𝜎2
b

and

𝜃𝜉 = 𝜎2
𝜉

). The approximate expected complete likelihood is maximized to obtain the rest of the current estimates of 𝜃∖𝜎 = (𝜃t, 𝜃y)T via a

Newton-Raphson algorithm.

4. The algorithm iterates between Steps 2 and 3 until the difference between two consecutive complete log-likelihood values are less than a

predefined tolerance level 𝜖.
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2.2.1 E-step and fully exponential laplace approximation

The posterior mean ui0 and variance vi0 of ui are defined as

ui0 =
∫ uiLi(ui, 𝜃)dui

∫ Li(ui, 𝜃)dui

and vi0 =
∫ (ui − ui0)(ui − ui0)TLi(ui, 𝜃)dui

∫ Li(ui, 𝜃)dui

. (6)

Note that the integrals in (6) are taken with respect to the potentially high-dimensional REs vector ui (of dimensions 51–163 in our data

application) and their closed form does not exist. For approximating the high-dimensional integrals in (6), we employ the fully exponential

Laplace approximation (Tierney et al., 1989). The fully exponential Laplace approximation can only be applied to strictly positive functions, and

the integrands in the estimation of ui0 might not always satisfy this condition. Therefore, adopting the approach of Rizopoulos et al. (2009), we

estimate the posterior mean and variance through targeting E{exp(cTui)} (where c = (c1, … , cni+1)T is a constant vector), which is always positive.

More specifically, ui0 and vi0 are obtained using the cumulant generating function log
[
E{exp(cTui)}

]
via ui0 = 𝜕 log

[
E{exp(cTui)}

]
∕𝜕cT|c=0 and

vi0 = 𝜕2 log
[
E{exp(cTui)}

]
∕𝜕cT𝜕c|c=0. The fully exponential Laplace approximation is performed in two steps: (1) the mode of ui is estimated by

maximizing the approximate complete likelihood via a Newton-Raphson algorithm, and (2) the mode from the first step is used to obtain ui0 and

vi0 via differentiating the cumulant-generating function and evaluating at c = 0.

In the first step, the mode ûi = û(c)
i

|c=0, where û(c)
i

= argmaxui
{𝓁i(ui, 𝜃) + cTui}, is obtained. Maximization is implemented via a safeguarded

Newton-Raphson algorithm where at the (it +1)th iteration, ûi is updated through

ûit+1
i = ûit

i − s(𝚺it
i )

−1 (ûit
i ), (7)

with 𝚺it
i
= 𝚺(c)

i
|(c,ui)=(0,ûit

i
), 𝚺

(c)
i

= −𝜕2{𝓁i(ui, 𝜃) + cTui}∕𝜕uT
i
𝜕ui = −𝜕2𝓁i(ui, 𝜃)∕𝜕uT

i
𝜕ui,  (ûit

i
) = −𝜕𝓁i(ui, 𝜃)∕𝜕uT

i
|ui=ûi

, and s denoting the step size used

along the Newton-Raphson updating direction. The estimated mode from the first step is used in targeting the posterior mean and variance of ui

in the second step by differentiating the cumulant-generating function and evaluating at c = 0:

ui0 = ûi −
1
2

tr(), vi0 = 𝚺−1
i − 1

2
tr

{
−T + 𝚺−1

i

𝜕2𝚺(c)
i

𝜕cT𝜕c
||(c,ui)=(0,ûi)

}
, (8)

where  = 𝚺−1
i
{𝜕𝚺(c)

i
∕𝜕cT}|(c,ui)=(0,ûi), 𝚺i = 𝚺(c)

i
|c=0, and ûi and 𝚺−1

i
denote ûit

i
and the inverse of 𝚺it

i
from the last iteration of the Newton-Raphson

algorithm, respectively. Details of the fully exponential Laplace algorithm are presented in the supporting information.

After estimating the posterior mean and variance of ui, the expectation of the complete joint likelihood is approximated in the E-step. Let

𝜃∗ = (𝜃∗T
t , 𝜃

∗T
y , 𝜃

∗
b
, 𝜃∗

𝜉
)T denote the current parameter estimates with 𝜃∗T

t = (𝜻∗T, 𝜼∗T, 𝛼∗, 𝜃∗
h0
), 𝜃∗T

y = (𝜷∗T,𝝍∗T, 𝛾∗), 𝜃∗
b
= 𝜎∗2

b
, and 𝜃∗

𝜉
= 𝜎∗2

𝜉
. Because

the closed form expression for
n∑

i=1

E{𝓁i(ui, 𝜃)|Yi, Ti, 𝛿ij,Xi,Zi( j), 𝜃
∗} is intractable, we approximate the expected log-likelihood via a second degree

Taylor's expansion around u∗
i0

:
n∑

i=1

𝓁i(u∗
i0, 𝜃

∗) + 𝓁′
i (u

∗
i0, 𝜃

∗)E(ui − u∗
i0) −

1
2

E(ui − u∗
i0)

T𝚺∗
i E(ui − u∗

i0)

=
n∑

i=1

[
ni∑

j=1

(
𝛿∗ij

[
log h∗

0(Tij) + {XT
ij𝜻

∗ + ZT
i( j)𝜼

∗ + 𝛼∗m∗
ij(Tij)}

]

−

Tij

∫
0

h∗
0(s) exp{XT

ij𝜻
∗ + ZT

i( j)𝜼
∗ + 𝛼∗m∗

ij(s)}ds

(9)

+

{ nij∑
k=1

Yijk{g(m∗
ijk)} + log(q∗

ijk) −
(b∗

0ij
)2 + v∗

b,ij0

2𝜎∗2
b

− 1
2

log(2𝜋𝜎∗2
b )

}

−
(𝜉∗

i0
)2 + v∗

𝜉,i0

2𝜎∗2
𝜉

− 1
2

log(2𝜋𝜎∗2
𝜉
) −

v∗
b,ij0

+ 2r∗
ij0
+ v∗

𝜉,i0

2
∗

ij

)]
,

where m∗
ij
(t) = g−1{XT

ij
𝜷∗ + ZT

i( j)𝝍
∗ + 𝛾∗ t + b∗

ij0
+ 𝜉∗

i0
}, m∗

ijk
= m∗

ij
(tijk), q∗

ijk
= 1 − m∗

ijk
, and ∗

ij
is ij (defined in the supporting information) evaluated at

𝜽∗, 𝚺i = −𝜕2𝓁i∕𝜕uT
i
𝜕ui|ui=ûi ,𝜃=𝜃∗ , and E(ui − u∗

i0
) = 0. Furthermore, in (9), u∗

i0
= (b∗

i10
, … , b∗

ini 0
, 𝜉∗

i0
)T, v∗

b,ij0
, v∗

𝜉,i0
, and r∗

ij0
denote the estimated posterior

mean of ui, posterior variance of the subject- and facility-level REs, and posterior covariance of subject- and facility-level REs based on the

current parameter estimates, respectively.

2.2.2 M-step

For estimation of the variance components, 𝜎2
b

and 𝜎2
𝜉

, the incomplete log-likelihood 𝓁(𝜃) = log L(𝜃) is maximized directly, by setting the score

functions to zero. The score functions of the incomplete log-likelihood with respect to 𝜎2
b

and 𝜎2
𝜉

can be given as

V(𝜎2
b ) =

𝜕𝓁(𝜃)
𝜕𝜎2

b

=
n∑

i=1

𝜕

𝜕𝜎2
b

log

{
∫ Li(ui, 𝜃)dui

}
=

n∑
i=1

∫
ni∑

j=1

(
b2

ij

2𝜎2
b

− 1

𝜎2
b

)
(ui)dui =

n∑
i=1

Vi(𝜎2
b )
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and

V(𝜎2
𝜉
) = 𝜕𝓁(𝜃)

𝜕𝜎2
𝜉

=
n∑

i=1

𝜕

𝜕𝜎2
𝜉

log

{
∫ Li(ui, 𝜃)dui

}
=

n∑
i=1

∫
(
𝜉2

i

2
𝜎2
𝜉
− 1
𝜎

2

𝜉

)
(ui)dui =

n∑
i=1

Vi(𝜎2
𝜉
),

where (ui) = Li(ui, 𝜃)∕ ∫ Li(ui, 𝜃) denotes the posterior density of ui. Setting the above score functions to zero leads to the following estimates

of 𝜎2
b

and 𝜎2
𝜉

at the current iteration:

𝜎∗2
b =

(
n∑

i=1

ni

)−1 n∑
i=1

ni∑
j=1

{
(b∗

ij0)
2 + v∗

b,ij0

}
and 𝜎∗2

𝜉
= n−1

n∑
i=1

{
(𝜉∗i0)

2 + v∗
𝜉,i0

}
. (10)

The likelihood-based SEs for �̂�2
b

and �̂�2
𝜉

are equal to the diagonal elements of (
∑n

i=1 ViVT
i
)−1, where Vi = {Vi(�̂�2

b
),Vi(�̂�2

𝜉
)}T.

The closed form solutions for the rest of the parameters, namely, 𝜽t and 𝜽y , cannot be obtained by maximizing the incomplete log-likelihood

directly. Therefore, we employ a Newton-Raphson algorithm to maximize the approximated expected log-likelihood given in (9) and obtain

estimates for the parameters 𝜃∖𝜎 = (𝜃t, 𝜃y)T,

𝜃∖𝜎(it+1) = 𝜃∖𝜎(it) − {∖𝜎(it)}−1V∖𝜎(it), (11)

where it is the current iteration of the Newton-Raphson algorithm and V∖𝜎 (it) and ∖𝜎(it) are the score function and the hessian of the approximated

expected log-likelihood (9) with respect to 𝜽∖𝜎 , respectively, evaluated at the current estimates 𝜽∖𝜎 (it). The likelihood-based SEs for 𝜃∖𝜎 = (𝜃t, 𝜃y)T

are equal to the diagonal elements of (
∑n

i=1 V∖𝜎
i

V∖𝜎T
i

)−1, where V∖𝜎
i

contains the score values from the last iteration. Full definitions of the score

function and the hessian are provided in the supporting information.

The likelihood-based SEs of the estimators in the EM algorithm are expected to be biased in estimating the true SEs because the variability in

the estimation of the REs is not taken into account, similar to findings in previous works of Hsieh et al. (2006) and Kass and Steffey (1989) on

joint/hierarchical modeling. Therefore, we examine the extent of this bias in the likelihood-based SEs via simulations in Section 3. Furthermore,

we study the utility of the bootstrap estimates of SEs for MJM in simulation studies to provide guidance in practice.

In implementing the proposed approach, a suitable baseline hazard function h0(t) needs to be selected. We used the P-splines approach (Eilers

& Marx, 1996), which provides a flexible specification for the baseline risk function. In particular, log{h0(t)} =
∑M

m=1 𝜏mm(t), where 𝜏m denotes

the coefficients for the baseline hazard and m(t) is the mth basis function of a B-spline. Under this baseline hazard definition, the aforementioned

parameter 𝜃h0
is 𝝉 = (𝜏1, … , 𝜏M)T, and it will be estimated as a part of the EM algorithm described above. The smoothness of the baseline

hazard is achieved by a differencing penalty, which is subtracted from the log-likelihood defined in (4), 𝓁∗(u, 𝜃) = 𝓁(u, 𝜃) − 𝜆DTD∕2 with 𝜆 as the

penalty parameter and D as a second-order difference matrix (Eilers, Marx, & Durbn, 2015). The above formulations and solutions stay the same

under this formulation with the replacement of 𝓁(u, 𝜃) by 𝓁∗(u, 𝜃) and of L(u, 𝜃) by L∗(u, 𝜃) = exp{𝓁∗(u, 𝜃)}. For choosing the penalty parameter

𝜆, we follow Eilers and Marx (2010) on studying the shape of the estimated log-likelihood as a function of 𝜆. Note that other parametric and

nonparametric forms for the baseline hazard function can also be accommodated in the proposed estimation and inference procedures.

3 SIMULATION STUDIES

We conducted simulation studies to assess efficacy of the proposed model parameter estimates and the likelihood-based and bootstrap-based

estimates of SEs. Performance of MJM was studied in two simulation scenarios with n = 200 and n = 500 facilities. Results reported for each

case were based on 150 Monte Carlo datasets. The number of subjects within facilities was simulated from a discrete uniform distribution

on the interval [50, 100] with 75 patients per facility on average, similar to the USRDS dialysis population. The maximum number of repeated

measurements per subject was taken to be 20, mimicking the total number of longitudinal observations in the USRDS data. The longitudinal

observations within an individual were equally spaced on the interval [0, 1] before censoring by survival. Among the subjects who were not

censored, the number of observations varied from 1 to 17 with an average of 5.

The subject-level covariates, Xij = (X1ij,X2ij)T, were generated from normal distributions with means 0 and 1.5 and variances 1 and 0.5,

respectively. Similarly, the facility-level covariates, Zi( j) = {Z1i( j),Z2i( j)}T, were simulated from normal distributions with means −0.3 and 0

and variances 1 and 0.5, respectively. The parameters in (3) equaled 𝜷 = (𝛽0, 𝛽1, 𝛽2)T = (1.0,0.2,−1.5)T, 𝝍 = (𝜓1, 𝜓2)T = (2.5,3.0)T, 𝛾 = 0.5,

𝜼 = (𝜂1, 𝜂2)T = (0.30,0.80)T, 𝜻 = (𝜁1, 𝜁2)T = (0.15,0.10)T, and 𝛼 = 0.5. The Weibull function with 𝜆 = 1.1 was used to generate the baseline

hazard h0(t). The subject- and facility-level REs were independently simulated from a normal distribution with mean zero and variances 1 and 0.5,

respectively.

The longitudinal outcome Yij(·) was generated via an underlying normal latent variable Y∗
ij
(·), where Yij(·) = I{Y∗

ij
(·) > 0}, and the mean of Y∗

ij
(·)

was determined by the longitudinal submodel. For the survival submodel, the true event times, T∗
ij

, for subjects were generated using the inverse

probability integral transformation with Weibull baseline hazard (Bender, Augustin, & Blettner, 2005). Following the descriptions in Section 2.1,

the observed time and the event indicator were obtained as Tij = min(Cij, T∗
ij
) and 𝛿ij = I(Tij ≤ Cij), respectively. The resulting overall hospitalization

and censoring rates were approximately 32% and 67%, respectively, similar to the USRDS data application.

The baseline hazard function was estimated via the P-splines approach described in Section 2.2.2, with 18 and 28 equally spaced knots and

𝜆 = 10 and 6 for n = 200 and n = 500, respectively. Figure 1 displays the estimated baseline hazard functions for n = 200 and n = 500, along with

bands representing the 2.5th and 97.5th pointwise percentiles. Estimates have smaller bias and variance as the number of facilities increases.
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(a) (b)

FIGURE 1 Estimated baseline hazard functions (dashed) in the simulation study overlaying the true functions (solid) along with along with the
2.5 and 97.5 percentiles based on 150 Monte Carlo runs (shaded) for (a) n = 200 and (b) n = 500

True Bias SD SE (SDSE) BootSE(BootSDSE
)

Number of facilities, n = 200

Longitudinal

𝛽0 1 −0.013 0.016 0.022 (2.11×10−5) 0.015 (0.002)

𝛽1 0.2 −0.004 0.007 0.006 (1.47×10−6) 0.006 (0.001)

𝛽2 −1.5 0.005 0.006 0.013 (6.39×10−6) 0.005 (0.001)

𝜓1 2.5 −0.016 0.022 0.013 (1.61×10−5) 0.019 (0.004)

𝜓2 3 −0.013 0.023 0.018 (3.01×10−5) 0.024 (0.004)

𝛾 0.5 0.009 0.014 0.013 (1.42×10−5) 0.014 (0.004)

Survival

𝜁1 0.15 −0.006 0.012 0.011 (4.05×10−6) 0.011 (0.002)

𝜁2 −0.1 0.005 0.011 0.024 (3.21×10−5) 0.010 (0.001)

𝜂1 0.3 0.004 0.016 0.023 (8.22×10−5) 0.013 (0.002)

𝜂2 0.8 −0.009 0.021 0.035 (1.48×10−4) 0.022 (0.004)

𝛼 0.5 0.011 0.022 0.048 (1.95×10−4) 0.023 (0.003)

Variance components

𝜎2
b

1 0.009 0.010 0.012 (3.33×10−6) 0.010 (0.001)

𝜎2
𝜉

0.5 0.008 0.022 0.053 (5.24×10−4) 0.028 (0.008)

Number of facilities, n = 500

Longitudinal

𝛽0 1 −0.007 0.009 0.014 (3.37×10−6) 0.009 (0.002)

𝛽1 0.2 −0.001 0.003 0.004 (2.06×10−7) 0.003 (0.001)

𝛽2 −1.5 −0.001 0.002 0.008 (2.78×10−6) 0.002 (0.001)

𝜓1 2.5 −0.010 0.015 0.008 (2.43×10−6) 0.016 (0.005)

𝜓2 3 −0.009 0.012 0.012 (5.85×10−6) 0.013 (0.003)

𝛾 0.5 0.006 0.010 0.012 (1.84×10−6) 0.010 (0.003)

Survival

𝜁1 0.15 0.001 0.006 0.012 (1.65×10−5) 0.005 (0.001)

𝜁2 −0.1 0.002 0.005 0.006 (2.35×10−5) 0.004 (0.001)

𝜂1 0.3 0.002 0.007 0.012 (1.20×10−5) 0.004 (0.002)

𝜂2 0.8 0.005 0.008 0.018 (2.13×10−5) 0.012 (0.003)

𝛼 0.5 0.009 0.013 0.019 (1.76×10−4) 0.013 (0.003)

Variance components

𝜎2
b

1 0.006 0.008 0.007 (9.26×10−7) 0.006 (0.002)

𝜎2
𝜉

0.5 0.005 0.014 0.033 (1.42×10−4) 0.018 (0.003)

Note. Given are bias, standard deviation (SD), likelihood-based standard errors (SE), and bootstrap
SE (BootSE). Given in parentheses (SDSE and BootSDSE

) are standard deviations of the corresponding
quantities.

TABLE 1 Simulation results for 200 and
500 facilities averaged over 150 datasets



8 of 13 KüRüM ET AL.

The simulation results are presented in Table 1 for n = 200 and n = 500. The ‘‘true’’ standard deviations (SDs) of the proposed estimators,

calculated based on 150 Monte Carlo runs, are denoted by SD. The sample average and the sample SD of 150 estimated likelihood-based SEs

are denoted by SE and SDSE, respectively. In addition, BootSE and BootSDSE
denote the bootstrap-based SEs and their sample SDs. The estimation

bias of all the proposed estimators is relatively small and is less than the corresponding SD, indicating that our proposed estimation procedure

performs well with respect to estimation of the model coefficients. However, with respect to SE estimates needed for inference, as explained

in Section 2.2.2, the EM algorithm framework does not take into account the variability in estimation of the REs leading to potential bias in

estimation of SEs. Indeed, this was verified for MJM and summarized in Table 1 where the likelihood-based SEs fail to accurately target the true

SD values (the difference between SD and SE is larger than the twice SDSE). However, the bootstrap-based SEs (BootSE) work reasonably well

in estimating the true SE (the difference between BootSE and SD is smaller than twice BootSDSE
). These results hold across the two simulation

scenarios, where the estimation bias, SD and SE estimates get smaller as the number of facilities increases, as expected. Thus, based on these

simulation results, bootstrap estimates of SEs are more suitable for use in practice. We applied these findings to use bootstrap SEs to form

confidence intervals for MJM estimates in the data analysis next.

We also compare our proposed MJM with a simplified two-level joint model that ignores the correlation at the highest level of the hierarchy (i.e.,

at the facility-level), which avoids integration over high-dimensional REs. The data for this simulation were generated using the setup described

above under two different (increasing) facility-level REs variances: 𝜎2
𝜉
= 0.5 and 𝜎2

𝜉
= 1. As the simple joint model ignores the correlation at the

facility-level, avoiding integration over high-dimensional REs, the Gauss-quadrature method was used in the integration of the subject-level REs.

The results are presented in Table 2. These simulation studies indicate that ignoring the correlation at the highest level of the hierarchy (i.e., at the

facility-level) leads to higher bias and lower overall efficiency (higher mean square error [MSE]) in estimation of model parameters. The highest

bias and MSE are observed in estimation of the covariate effects at the facility level in the longitudinal model and the bias and MSE increase

with increasing facility-level variance, as expected. Li et al. (2018) also report lower efficiency for ignoring the correlation at the facility-level in

TABLE 2 Simulation results for 200
facilities obtained using MJM and a
simple joint model (SJM; with only
subject-level random effects)
averaged over 150 datasets

MJM SJM

True Bias SD MSE Bias SD MSE

𝜎2
𝜉
= 0.5

Longitudinal

𝛽0 1 −0.013 0.016 4.3×10−4 0.030 0.047 0.003

𝛽1 0.2 −0.004 0.007 6.5×10−5 −0.003 0.016 2.6×10−4

𝛽2 −1.5 0.005 0.006 6.1×10−5 0.009 0.018 4.1×10−4

𝜓1 2.5 −0.016 0.022 7.4×10−4 −0.042 0.089 0.010

𝜓2 3 −0.013 0.023 7.0×10−4 −0.040 0.116 0.015

𝛾 0.5 0.009 0.014 2.8×10−4 0.012 0.036 0.001

Survival

𝜁1 0.15 −0.006 0.012 1.8×10−4 −0.004 0.017 3.1×10−4

𝜁2 −0.1 0.005 0.011 1.5×10−4 −0.002 0.017 3.0×10−4

𝜂1 0.3 0.004 0.016 2.7×10−4 0.004 0.027 7.5×10−4

𝜂2 0.8 −0.009 0.021 5.2×10−4 0.005 0.051 0.003

𝛼 0.5 0.011 0.022 6.1×10−4 0.014 0.040 0.002

Variance components

𝜎2
b

1 0.009 0.010 1.8×10−4 0.272 0.033 0.075

𝜎2
𝜉

0.5 0.008 0.022 5.5×10−4

𝜎2
𝜉
= 1

Longitudinal

𝛽0 1 −0.016 0.020 6.6×10−4 0.041 0.050 0.004

𝛽1 0.2 −0.008 0.010 1.6×10−4 −0.005 0.020 4.3×10−4

𝛽2 −1.5 0.003 0.007 5.8×10−5 0.010 0.028 8.8×10−4

𝜓1 2.5 −0.015 0.025 8.5×10−4 −0.083 0.117 0.021

𝜓2 3 −0.014 0.026 8.7×10−4 −0.095 0.149 0.031

𝛾 0.5 0.010 0.020 5.0×10−4 0.021 0.057 0.004

Survival

𝜁1 0.15 −0.005 0.014 2.2×10−4 −0.003 0.022 4.9×10−4

𝜁2 −0.1 0.007 0.012 1.9×10−4 −0.008 0.029 9.1×10−4

𝜂1 0.3 0.005 0.018 3.5×10−4 0.003 0.033 0.001

𝜂2 0.8 −0.008 0.022 5.5×10−4 0.004 0.069 0.005

𝛼 0.5 0.010 0.024 6.8×10−4 0.019 0.062 0.004

Variance components

𝜎2
b

1 0.006 0.011 1.6×10−4 0.515 0.077 0.271

𝜎2
𝜉

1 0.012 0.030 0.001

Note. Given are bias, standard deviation (SD), and mean-squared error (MSE).
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estimation of facility-level covariate effects for multilevel varying coefficient models. More specifically, the simplified joint model yields higher

MSEs for all estimates compared to the proposed MJM, and the biases of the estimated coefficients of the facility-level covariates are most

severe (relative to subject-level covariates) in the longitudinal model of the simplified joint model. Estimation of the variance of the subject-level

REs is also severely biased yielding high MSE values. Additional simulation results, on parametric estimation of the baseline hazard function, are

reported in the supporting information, Appendix D.

4 JOINT MODELING OF HOSPITALIZATION AND SURVIVAL OUTCOMES

4.1 Study cohort and patient- and facility-level risk factors

Data on U.S. patients with ESRD who are on dialysis are captured in the United States Renal Data System (USRDS), including patient outcomes of

hospitalization events over time and mortality. We applied the proposed MJM to jointly model longitudinal hospitalization and survival outcomes

using a cohort of incident ESRD patients age 18 or older, initiating dialysis between January 1, 2006 and December 31, 2008. Study patients

were followed for a maximum of 5 years, with the last date of follow-up as December 31, 2013, where follow-up was truncated if a patient

switched dialysis facilities. Basic inclusion criteria required that a patient survived the first 90 days, did not recover the kidney function, did

not have a kidney transplant, and was covered by Medicare as primary payer on Day 91. Thus, the first day of study follow up began on Day

91, as recommended by the USRDS Researcher's Guide ‘‘90-day rule’’ to allow for completion of the Medicare eligibility application process

and establishment of stable dialysis treatment modality, and, furthermore, because USRDS hospitalization data are incomplete for non-Medicare

patients (Chen et al., 2019; United States Renal Data System, 2014).

To illustrate the proposed MJM, the analysis cohort included 292,672 observations over time on 34,030 patients in 520 dialysis facilities,

where the number of patients per facility ranged from 50 to 162 (median 61, Q1–Q3 [first-third quartile]: 54–71). The longitudinal part of the

MJM included time (months); patient-level covariates of age, sex, and baseline comorbidities of chronic obstructive pulmonary disease (COPD),

coagulopathy, cardiorespiratory failure, septicemia, and other infectious diseases (and pneumonias); and psychiatric disorders. These common

Variable Mean/count SD/percent

Age 65.01 15.08

Female 15,374 45.18

COPD 6,364 18.70

Coagulopathy 2,688 7.90

Cardiorespiratory failure 4,066 11.95

Other Infectious disease and pneumonias 7,851 23.07

Psychiatric comorbidity 3,811 11.20

Septicemia 3,462 10.17

Percent nurse-to-patients 7.60 3.20

Percent PCT-to-patients 9.39 2.86

Note. COPD, chronic obstructive pulmonary disease; PCT, patient care
technician.

TABLE 3 Summary of patient-level and dialysis facility-level risk
factors

FIGURE 2 (Left) Distribution of the mean lengths of patient follow-up among the 520 facilities. (Right) Follow-up times of 61 patients in a
randomly selected dialysis facility with longitudinal hospitalizations marked by black circles
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comorbidities in the dialysis patients were determined using International Classification of Disease, Ninth Revision (ICD-9) diagnosis codes from

institutional claims data 12 months prior to the start of dialysis treatment. Facility-level risk factors included the percentages of nurse-to-patient

and patient care technician (PCT)-to-patient. The same patient- and facility-level risk factors were included in the survival submodel of the MJM

to assess their joint contribution to longitudinal hospitalization and survival outcomes. As described by (2), the survival component of the MJM

also included the longitudinal outcome risk score history up to time t. We report CIs for multilevel risk factors using the bootstrap-based SEs.

4.2 Results

4.2.1 Background/descriptive analysis

The study cohort included patients with mean age of 65 years old (SD 15) where 45% were females. Common serious baseline comorbidities

in the ESRD patients included chronic obstructive pulmonary disease (COPD; 18.7% ), septicemia (10.2% ), other infectious diseases (23.1%),

cardiorespiratory failure (12%), coagulopathy (7.9%), and psychiatric conditions (11.2%). On average, the percent of nurse-to-patient and

PCT-to-patient (facility-level covariates) were 7.6 (SD 3.2) and 9.4 (SD 2.9), respectively. See Table 3 for details.

The median length of patient follow-up among the 520 facilities is 24.3 months (Q1–Q3: 21.1 to 27.4 months; Figure 2). The mean number

of hospitalizations per person-year is 1.8 (SD 2.2). Figure 2 (right) shows the longitudinal hospitalizations during the study follow-up periods for

61 patients for a randomly selected facility, illustrating the typical high frequency of hospitalization for ESRD patients. As mentioned earlier, the

risk of mortality is also particularly high, where median marginal (unadjusted) survival is 46.5 months (3.9 years), and survival drops markedly for

patients with serious baseline comorbidities, such as ESRD patients with chronic conditions, for example, COPD, and/or septicemia.

4.2.2 MJM results

The MJM allows for explicit modeling of patient- and facility-level variation, and the results showed that there were both significant within-subject

and among facility variation: �̂�2
b
= 1.43 (95% CI 1.22–1.64) and �̂�2

𝜉
= 0.30 (95% CI 0.11–0.48). Thus, about 17% of the estimated total variation

was observed at the facility level.

TABLE 4 Multilevel joint model estimates of patient- and
facility-level effects on longitudinal hospitalizations and
survival

Longitudinal hospitalization

Variable OR Lower CL Upper CL

Time (Months) 1.1915a 1.1051 1.2846

Age 1.0351b 0.9943 1.0775

Female 1.2664 1.2410 1.2923

COPD 1.6218 1.5715 1.6737

Coagulopathy 1.3495 1.2999 1.4009

Cardiorespiratory failure 1.2116 1.1780 1.2462

Other infectious disease and pneumonias 1.4846 1.4456 1.5246

Psychiatric comorbidity 1.4862 1.4318 1.5427

Septicemia 1.5659 1.5064 1.6278

Percent nurse-to-patients 1.0112 0.9793 1.0442

Percent PCT-to-patients 1.0005 0.9669 1.0353

Survival

Variable HR Lower CL Upper CL

Age 1.1688a 1.1350 1.2037

Female 0.8277 0.7256 0.9441

COPD 1.2638 1.0261 1.5567

Coagulopathy 1.2089 1.1074 1.3196

Cardiorespiratory failure 1.4067 1.1858 1.6688

Other infectious disease and pneumonias 1.0983 0.9255 1.3034

Psychiatric comorbidity 1.1521 1.0037 1.3225

Septicemia 1.2834 1.2043 1.3678

Percent nurse-to-patients 0.8201 0.7778 0.8647

Percent PCT-to-patients 0.7038 0.6755 0.7332

Hospitalization risk score 1.0739c 1.0551 1.0932

Note. Given are estimates of odds ratios (ORs) of hospitalization and hazard ratios
(HRs) of death along with corresponding 95% lower and upper confidence limits (CLs).

Abbreviations: COPD, chronic obstructive pulmonary disease; PCT, patient care
technician.

a For 12-month effect.

b For 5-year effect.

c For ∼0.1 effect size (20% of standard deviation of hospitalization risk score—see the
main text).
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(a) (b)

(c) (d)

FIGURE 3 (a) Distribution of m̂ij(t), the hospitalization risk score, across all 30,030 patients with 292,672 total observations and corresponding
estimated probability of hospitalization as function of m̂ij(t) (right vertical axis). (b) Estimate of the baseline hazard function for 𝜆 = 10 (shaded:
bootstrap 95% confidence intervals). (c) Estimate of the baseline hazard function for 𝜆 from 0.5 to 8 and (d) for 𝜆 from 10 to 30 resulting in
similar smoothness of ĥ0(t)

The effects of patient- and facility-level risk factors on longitudinal hospitalizations and survival outcomes are summarized in Table 4. With

respect to hospitalization, patients with COPD and septicemia in the year prior to starting dialysis had the odds ratio (OR) of hospitalization

(COPD: OR 1.62, 95% CI 1.57–1.67; septicemia: OR 1.57, 95% CI 1.51–1.63). Presence of other comorbidities (coagulopathy, psychiatric

conditions, cardiorespiratory failure/shock, other infectious diseases, and pneumonias) were associated with about 21% to 47% higher odds of

hospitalization. Consistent with previous reports (e.g., United States Renal Data System, 2018), female sex was associated with higher odds

of hospitalization. One year on dialysis was associated with 19% higher odds of hospitalization. In addition, Figure 3a displays the distribution

of the estimated hospitalization risk scores, m̂ij(t), for all patients and time points t, (mean −0.47, SD 0.49; Q1–Q3: −0.84 to −0.20) and the

corresponding increasing hospitalization probability g(m̂ij) as a function of m̂ij(·).
The survival component (Table 4B) of the MJM similarly found significant increases in hazard ratio (HR) of death associated with nearly

all comorbidities ranging from 41% to 15% higher hazard of death for cardiorespiratory failure (HR 1.41, 95% CI 1.19–1.67) and psychiatric

comorbidity (HR 1.15, 95% CI> 1.00–1.32). Further, older age was associated with an incremental increase in HR, and female sex was associated

with lower mortality (HR 0.82, 95% CI 0.73–0.94).

The survival component of the joint model (2) also included ij(t), the longitudinal hospitalization risk score history up to time t, in estimating

survival. The longitudinal hospitalization history had a ‘‘moderate’’ effect (relative to severe cormorbidities) on the subsequent mortality risk as

revealed by the effect size estimate associated with an increase in the longitudinal hospitalization risk score history, ij(t). For example, Figure 3a

displays the distribution of estimated hospitalization risk scores (m̂ij(t)'s) for all 34,030 patients with a range of −1.50 to 2.24 and SD of 0.49.

Thus, an increase of 20% of the SD (0.2×0.49) in m̂ij(t) was associated with a 7.4% (95% CI 1.06–1.09) increase in the hazard of death (Table 4B).

Facility-level staffing covariates, specifically the percentages of nurse-to-patient and PCT-to-patient, were negatively associated with mortality;

that is, higher percentage of staff (nurse or PCT) to patient was associated with reduced hazard of patient death (HRs 0.82 and 0.70, respectively);

see Table 4B. The effect of facility staffing variables on hospitalization was not significant in the MJM (Table 4A).
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Finally, we note that the baseline hazard, h0(t), was estimated similarly as was done in the simulation studies and displayed in Figure 3b. More

specifically, 𝜆 = 10 was chosen, which provided a smoothed estimate of the baseline hazard and higher values resulted in similar estimates as

illustrated in Figure 3b,c.

5 DISCUSSION

We have considered a joint model of longitudinal hospitalizations and survival with respect to the U.S. dialysis population for three-level

hierarchical data where longitudinal hospitalizations over time are nested within subjects and subjects are further nested within dialysis facilities

through multilevel REs. Application of the novel MJM revealed the relative contribution of modifiable risk factors for hospitalization and

mortality. In particular, the MJM quantified the burden of hospitalizations over time on subsequent mortality risk; thus, the results suggest that

concerted strategies to reduce patient hospitalization, including aggressive management of chronic comorbid conditions as well as prevention of

hospitalization risk (e.g., infection-related hospitalizations, which are common for dialysis patients; e.g., see Dalrymple et al., 2011; Mohammed,

Senturk, Dalrymple, & Nguyen, 2012) may contribute to reduction of overall patient mortality risk. Interestingly, the effect of facility staffing

on mortality, accounting for patients' hospitalization history, was relatively large. Thus, evidence-based strategies for ‘‘optimal’’ staffing (e.g., the

minimal number of nurses and PCTs relative to patient volume) is an area worthy of exploration in an overall effort of dialysis facilities to reduce

patient mortality.

In this work, a generalization of the standard joint modeling framework was required to accommodate the multilevel USRDS data structure of

patients on dialysis. Specifically, our proposed MJM utilized multilevel REs (at both the subject- and dialysis facility-level) and multilevel risk factors

in modeling the dependency between hospitalization and survival. Several technical advancements were achieved, including the (1) development

of feasible estimation that addressed the challenge of high-dimensional integrations in the EM algorithm and (2) derivation of asymptotic SEs

formulas for the model parameters that allowed for a systematic assessment of their biases, resulting in investigation of alternative inference

based on bootstrap SEs. Finally, R codes and documentation for fitting the proposed MJM are made publicly available.
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