
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Explainable Models of Performance on Networks

Permalink
https://escholarship.org/uc/item/27v6k0d4

Author
Askarisichani, Omid

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/27v6k0d4
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Explainable Models of Performance on Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Omid Askarisichani

Committee in charge:

Professor Ambuj K. Singh, Chair
Professor Noah E. Friedkin
Professor Francesco Bullo
Professor Xifeng Yan

December 2020



The Dissertation of Omid Askarisichani is approved.

Professor Noah E. Friedkin

Professor Francesco Bullo

Professor Xifeng Yan

Professor Ambuj K. Singh, Committee Chair

November 2020



Explainable Models of Performance on Networks

Copyright © 2020

by

Omid Askarisichani

iii



To my self-sacrificing parents

iv



Acknowledgements

Throughout the journey of my Ph.D., I have had the pleasure of interacting with,

learning from, and being influenced by many special people who I hope one day I can

reciprocate their pure kindness. The least I can do is to acknowledge them here.

Foremost, I would like to express my gratitude to my research advisor, Prof. Ambuj K.

Singh for being the best supporter, the greatest mentor I have ever had, and an absolute

role model for academic excellence. I have tremendously benefited from Ambuj’s depth of

vision, technical knowledge, and his perspective regarding how to do successful scientific

research. Since the beginning of my Ph.D., Ambuj trusted me with choosing and leading

open problems in our funded project on network science of teams. He generously helped

me at many different times and always led by example in productivity and academic

success. Ambuj has made me a wiser researcher and a better person. I truly could not

have asked for a better advisor.

I am extremely grateful to Prof. Noah E. Friedkin. I have known Noah since I started

my Masters back in Iran due to his highly acclaimed Friedkin-Johnson model. Since I

joined, I was thrilled to work with him. I cannot begin to describe how much I benefited

from working with Noah. His unquestionable kindness, his care for my academic success,

and his excitement about research have made me forever in debt to him. At many times,

he supported me through his funding, his soul generosity, and diligence. I want to thank

Noah for allowing me to design a protocol and run human subject studies. As a result, I

have acquired a unique skill in the department of Computer Science. His level of attention

to detail, his integrity in research, and his unconditional support for me throughout my

entire Ph.D. has shown me how an ideal professor and human being can be. I am proud

to learn from him in my Ph.D.

I am profusely grateful to Prof. Francesco Bullo. Since I joined the Ph.D. program,

v



Francesco has been a role model in every aspect I witnessed. His level of involvement

in the research, his enthusiasm for scientific discovery, and his depth of knowledge is

exemplary. For instance, in one of the papers I had the pleasure to collaborate with him,

he spent weeks meeting with us students to make sure our paper was well-presented. The

level of selflessness and generosity with his time is simply stellar. Due to Francesco, I have

better understood the link between Computer Science and Engineering and integrated

both into my research and I am forever grateful to him.

I am exceptionally grateful to Prof. Brian Uzzi. I collaborated with Brian on a

paper that I thought I could never publish in such a prestigious venue. Brian absolutely

showed us the path by a tremendous amount of experience, support, and generosity with

his time. I am especially grateful to Brian, who has piqued my interest in studying

financial networks, served as an inspiration and a role model of an academic leader.

I want to also extend my gratitude to Prof. Xifeng Yan for his serving on my doctoral

committee, as well as his academic advice and encouragement. Throughout my Ph.D.,

Xifeng has given me moral and academic support. After every doctoral exam, receiving

his feedback has been one of the best moments of my life.

It was an absolute privilege to collaborate with Dr. Jackie Ng-Lane. Jackie’s in-

volvement in experimental studies, writing the article, and intelligence in handling the

revision was of paramount importance. Working with Jackie was an absolute honor.

I would like to extend my gratitude to Elizabeth Huang for her work ethics, depth of

knowledge, and consistency in our collaboration. Through collaborating with Elizabeth,

I have learned a lot about the realm of dynamical systems and control theory. It was

a privilege to collaborate with Prof. Thomas W. Malone, and Dr. Young Ji Kim, with

whom we co-authored works on theoretical and empirical network process analysis. It

was an absolute privilege to collaborate with my lab-mates Dr. Xuan-Hong Dang, Dr.

Victor Amelkin, and Dr. Wei Ye. I learned a lot from each and every one of them. They

vi



always supported me as the Junior student in the projects and I am beyond thankful

for how much they helped me throughout my Ph.D. My gratitude further extends to all

the members of the Network Science of Teams MURI for their collegiality. I wanted to

specifically thank Haraldur for his kindness and generous help throughout my Ph.D. He

had been always the senior lab-mate that I looked up to.

I had the pleasure to spent time with some awesome colleagues in the Dyanmo lab:

Wei, Sourav, Arlei, Xuan-Hong, Victor, Hongyuan, Haraldur, Alex, Zexi, Mert, Rachel,

Yuning, Furkan, Sikun, Minh, Richika, Ashwini, Chandana, Nikhil, Aneesha, and Koa.

I am grateful to Prof. Yu-Xiang Wang for countless extremely helpful machine learn-

ing discussions. Almost every single time I met with him I learned something new and

helped me to improve my modeling or mathematical proof. I am also grateful to Prof.

Amr El Abbadi who I had the pleasure to work with as a teaching assistant and truly

enjoyed working with. I am thankful to Prof. Linda Petzold who responded to my email

when applying for Ph.D. and was the reason I joined UCSB.

I am grateful to my loving family. Thanks to my mother Ozra, my father Abbasali,

and my two brothers Mohammad Reza and Amir for their immense belief in me. Without

them, I will not be able to make this far. I would like to thank my girlfriend Jessamyn

for her unconditional love. She has been very supportive through my Ph.D. She believed

in me and constantly encouraged me in my journey. I consider myself extremely lucky

to have her in my life.

My research has been largely supported by the US Army Research Lab and the US

Army Research Office through the Network Science of Teams MURI grant W911NF-15-

1-0577, and to a lesser extent by the UC Office of the President through the UC National

Laboratory Fees Research Program and UC Multicampus-National Lab Collaborative

Research and Training grant LFR-18-547591.

vii



Curriculum Vitæ
Omid Askarisichani

Education

2015-2020 Ph.D. in Computer Science (GPA: 3.95/4.0), University of Califor-
nia, Santa Barbara, USA.

2011-2014 M.Sc. in Artificial Intelligence (GPA: 4.0/4.0), Sharif University of
Technology, Tehran, Iran.

2007-2011 B.Sc. in Software Engineering (GPA: 3.86/4.0), University of Isfa-
han, Isfahan, Iran.

Publications

1. O. Askarisichani, Elizabeth Y. Huang, Koa K. Sato, Noah E. Friedkin, Francesco
Bullo, and Ambuj K. Singh. ”Expertise and confidence explain how social influence
evolves along intellective tasks”, submitted (2020). Git

2. O. Askarisichani, AK Singh, F. Bullo, and NE Friedkin. ”The 1995-2018 Global
Evolution of the Network of Amicable and Hostile Relations Among Nation-States.”,
Communications Physics, vol. 3, p. 215, Nov (2020). Git

3. Ye, Wei, O. Askarisichani, AT Jone, AK Singh. ”DeepMap: Learning Deep
Graph Representations.”, IEEE Transactions on Knowledge and Data Engineering
(TKDE)(2019). Arxiv

4. O. Askarisichani, JN Lane, F Bullo, NE Friedkin, AK Singh, B Uzzi, ”Structural
balance emerges and explains performance in risky decision-making,”
Journal of Nature Communications 10, 2019. Link News Media Git

5. Dang, X-H, O. Askarisichani, Singh. AK., “ Discovery of Varying Predic-
tive Features in Multitask Learning with Smooth SVM,” Big Data IEEE
Conference, Seattle, US, 2018.

6. V Amelkin, O Askarisichani, YJ Kim, TW Malone, AK Singh, ”Dynamics of
Collective Performance in Collaboration Networks,” Journal of PLOS ONE,
13(10): e0204547, 2018. Link News

7. O. Askarisichani, M. Jalili, “ Inference of Hidden Social Power through
Opinion Formation in Complex Networks,” Journal of IEEE Transactions
on Network Science and Engineering, (TNSE), Vol. 4, No. 3, Pages 154-164,
DOI:10.1109/TNSE.2017.2691405, ISSN:2327-4697,
http://ieeexplore.ieee.org/document/7892936/#full-text-section, 2017. Link Git

8. O. Askarisichani, M. Jalili, “ Influence Maximization of Informed Agents
in Social Networks,” Journal of Applied Mathematics and Computation, (AMC),
Vol. 254, Pages 229-239, 3/1/2015, Elsevier,
http://www.sciencedirect.com/science/article/pii/S0096300314018001, 2015. Link
Git

viii

https://github.com/omid55/appraisal_network_dynamics
https://github.com/omid55/appraisal_network_dynamics
https://arxiv.org/pdf/2004.02131.pdf
https://www.nature.com/articles/s41467-019-10548-8
https://www.news.ucsb.edu/2019/019530/balance-under-pressure
https://www.nature.com/articles/s41467-019-10548-8/metrics
https://github.com/omid55/longitudinal_structural_balance_theory
https://doi.org/10.1371/journal.pone.0204547
http://www.news.ucsb.edu/2018/019212/investigating-team-networks
http://ieeexplore.ieee.org/document/7892936/#full-text-section
http://dx.doi.org/10.1109/TNSE.2017.2691405
https://github.com/omid55/inference_opinion_dynamics
http://www.sciencedirect.com/science/article/pii/S0096300314018001
http://dx.doi.org/10.1016/j.amc.2014.12.139
https://github.com/omid55/influence_maximization


9. O. Askarisichani, M. Jalili, “ Large-scale Global Optimization through
Consensus of Opinions Over Networks,” Journal of the Complex Adaptive
Systems Modeling, Springer, 1(1):11, 2013. Link Git

10. M. Jalili, O. Askarisichani, Xinghuo Yu “ Optimal pinning controllability of
complex networks: Dependence on network structure,” Journal of Phys-
ical Review E, (PRE), Vol. 91, No. 1, Page 012803, American Physical Society,
DOI:10.1103/PhysRevE.91.012803, 2015. Link Git

11. SM Hill, LM Heiser, T Cokelear, M Unger, D Carlin, Y Zhang, A Sokolov, E
Paull, CK Wong, K Graim, A Bivol, H Wang, F Zhu, B Afsari, LV Danilova, AV
Favorov, W Lee, D Taylor, HPN-DREAM Consortium (O. Askarisichani), GB
Mills, JW Gray, M Kellen, T Norman, S Friend, EJ Fertig, Y Guan, M Song, J
Stuart, H Koeppl, PT Spellman, G Stolovitzky, J Saez-Rodriguez, and S Mukherjee
“ Inferring causal molecular networks: empirical assessment through a
community-based effort, Nature Methods, Feb 2016. Link Git

12. M. Shahriari, O. Askarisichani, J. Gharibshah, M. Jalili, “ Sign prediction in
social networks based on users reputation and optimism, Journal of Social
Network Analysis and Mining, Vol. 6, No. 1, DOI:10.1007/s13278-016-0401-6, 6:91,
Springer, 2016. link

13. V. Amelkin, O. Askarisichani, Y. J. Kim, A. K. Singh, T. W. Malone, “ Dynam-
ics of Collective Performance in Collaboration Networks,” XXXVI Sunbelt
Conference, page 6, April 2016. Link

14. A. Fatemi, K. Zamanifar, N. Nematbakhsh, O. Askarisichani, “ A Team-Based
Organizational Model for Adaptive Multi Agent Systems,” in 3rd Interna-
tional Conference on Agents and Artificial Intelligence, ICAART 2011, Rome, Italy,
Volume 2, No. 297, session 10:30-11:00, 2011. Link Git

15. A. Gharipour, A. Yousefian, O. Askarisichani, “Clustering Based on Fuzzy
Rules and Genetic Algorithm for alpha-Reliability Decision of Asset Clas-
sification and Portfolio Selection,” Journal of the Asian Economic Review, Vol-
ume 55, No. 1, Pages 47-60, 2013. Link

Awards

• Awarded $2000 Computer Science Fellowship in UC Santa Barbara, Sept 2015.

• Awarded $6000 Computer Science Endowment Fellowship in UC Santa Bar-
bara, Sept 2015.

• Ranked 1st in Bioinformatics HPN-DREAM Consortium Breast Cancer Network
Inference Challenge, Feb 2014.

• Ranked 1st in B.Sc. within a class of 47, Department of Computer Engineering,
July 2011.

ix

https://casmodeling.springeropen.com/articles/10.1186/2194-3206-1-11
https://github.com/omid55/optimization_opinion_formation
http://link.aps.org/doi/10.1103/PhysRevE.91.012803
https://github.com/omid55/optimal_pinning_control
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3773.html
https://github.com/omid55/nature_causal_network
https://link.springer.com/article/10.1007/s13278-016-0401-6
http://insna.org/sunbelt2016/wp-content/uploads/2015/09/Sunbelt2016abstracts.pdf
https://www.researchgate.net/publication/221539731_A_Team-based_Organizational_Model_for_Adaptive_Multi-agent_Systems
https://github.com/omid55/team_based_rescue_jade_multi_agent_system
https://www.econbiz.de/Record/clustering-based-on-fuzzy-rules-and-genetic-algorithms-for-%CE%B1-reliability-decision-of-asset-classification-and-portfolio-selection-gharipour/10009764924


• Ranked 4th in M.Sc. within a class of 56, Department of Computer Engineering,
Feb 2013.

• Awarded Fellowship of Exceptional Talents for M.Sc. program in Sharif Uni-
versity of Technology, Sept 2011.

Teaching

• Lead Teaching Assistant, UC Santa Barbara, CA (Sept 2016 – June 2017)

• Project Mentor: IGERT Bootcamp, UC Santa Barbara, CA (Sept 2017 - Oct 2017)

• Teaching Assistant: Data Structure and Algorithms, UC Santa Barbara, CA (Jan
2016 – Mar 2017)

• Teaching Assistant: Machine Learning, Sharif University of Technology, Tehran,
Iran (Sept 2012 – Dec 2012)

• Teaching Assistant: Neural networks and fuzzy systems, Sharif University of Tech-
nology, Tehran, Iran (Feb 2013 – May 2013)

• Teaching Assistant: Data Structure and Algorithms, University of Isfahan, Isfahan,
Iran (Sept 2009 – Dec 2010)

Research Mentorship

• Koa K. Sato, M.Sc. student, Department of Computer Science, University of Cali-
fornia Santa Barbara (2019 - 2020)
Machine learning-based interpersonal influence estimation

• Aneesha Mathur, M.Sc. student, Department of Computer Science, University of
California Santa Barbara (2019 - 2020)
Impact of work/life balance on risky decision-making

Professional Service

• External Reviewer for KDD - ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (2017, 2018, 2020)

• External Reviewer for ICDM - IEEE International Conference on Data Mining
(2020)

• External Reviewer for WebConf - International World Wide Web Conference (2020)

• External Reviewer for AAAI - Association for the Advancement of Artificial Intel-
ligence (2019)

• External Reviewer for WWW - International World Wide Web Conference (2018,
2019)

• External Reviewer for SDM - SIAM International Conference on Data Mining (2018)

• Reviewer for TKDD - ACM Transactions on Knowledge Discovery from Data (2018)

• Reviewer for Journal of Complex Networks (2017)

x



Published Content, Contributions, and Permissions

Some of the materials presented in this thesis have either been published by the thesis’
author or are currently in submission. The author has made principal contributions to
all stages of the conception and production of the published, under publication and sub-
mitted works mentioned below.

A major part of the content of Chapter 2 has been published as

O. Askarisichani, J.N. Lane, F Bullo, NE Friedkin, AK Singh, and B Uzzi.
”Structural balance emerges and explains performance in risky decision-
making.” Nature Communications volume 10, page 2648, (2019).
DOI: https://doi.org/10.1038/s41467-019-10548-8

A large part of Chapter 3’s content is accepted and currently under publication as

O. Askarisichani, A.K. Singh, F. Bullo, and N.E. Friedkin. ”The 1995-
2018 Global Evolution of the Network of Amicable and Hostile Relations
Among Nation-States.” Communications Physics, vol. 3, p. 215, Nov
(2020).

Finally a major part of Chapter 4’s content is currently in submission and its arXiv
version is also available. This study can be referred as

O. Askarisichani, Elizabeth Y. Huang, Koa K. Sato, Noah E. Friedkin,
Francesco Bullo, and Ambuj K. Singh. ”Expertise and confidence explain
how social influence evolves along intellective tasks.” submitted (2020).

Both Nature Communications and Communications Physics are under Nature publica-
tions, are open access and do not require obtaining explicit permission for the reuse of
the above mentioned content in this dissertation.

Three other related papers to this dissertation, which due to limit on pages, are briefly
described in the introduction are published and can be referred as

Ye, Wei, O. Askarisichani, AT Jone, AK Singh. ”DeepMap: Learning
Deep Graph Representations.” IEEE Transactions on Knowledge and
Data Engineering (TKDE) (2019).
DOI: https://doi.org/10.1109/TKDE.2020.3014089

Dang, X-H, O. Askarisichani, and AK. Singh. ”Learning Multiclassi-
fiers with Predictive Features that Vary with Data Distribution.” In 2018
IEEE International Conference on Big Data (Big Data), pp. 673-682.
IEEE, (2018).
DOI: https://doi.org/10.1109/BigData.2018.8622407

xi

https://doi.org/10.1038/s41467-019-10548-8
https://doi.org/10.1109/TKDE.2020.3014089
https://doi.org/10.1109/BigData.2018.8622407


V Amelkin, O Askarisichani, YJ Kim, TW Malone, AK Singh, ”Dynamics
of Collective Performance in Collaboration Networks.” Journal of PLOS
ONE, 13(10): e0204547 (2018).
DOI: https://doi.org/10.1371/journal.pone.0204547

xii

https://doi.org/10.1371/journal.pone.0204547


Abstract

Explainable Models of Performance on Networks

by

Omid Askarisichani

Networks model complex systems in myriad applications, including social media, finance,

and political systems. In such settings, nodes often represent people, artificial agents,

or political parties while edges portray their relationships. Interpersonal relationships

change due to a person’s cognitive biases, societal roles, and what their in-group per-

ceptions are. These relationships impact one’s task performance. Often times, there is

a need to estimate the underlying relationships and forecast their changes. This disser-

tation is at the intersection of machine learning, network science, and social science. In

our studies, we use graph theory, natural language processing, and convex optimization

to extract information on how to improve the performance of individuals in financial and

social systems.

First, by leveraging data, we study how the patterns of change in positive and negative

relationships may impact the performance of stock traders. We build upon theories from

sociology, namely structural balance theory—which describes the dynamics that govern

the sentiment of interpersonal relationships—and assess the impact on stock traders’

profitability. Our studies show traders trade best when their social network at their

workplace is structurally balanced.

Second, we show a generalization of structural balance theory that describes the

dynamics of relationships among countries over more than two decades. We capture

their dynamics using a time-varying Markov model, pinpoint the international shocks,

and international conflicts. We also present rigorous proof for the convergence rate of

xiii



the proposed model.

Third, we collect data from human subjects answering trivia questions in teams of

four. After individually answering a question, subjects collaborate on a final answer

through a chat system. The participants are periodically asked to assess their appraisals

of each other. We seek to find underlying factors that contribute to the awarded ap-

praisals. We report that expertise and social confidence are the two most salient factors

in determining the amount of influence one may receive. Furthermore, we build a model

using message content, message times, and individual task performance to estimate the

interpersonal influence matrix. Our experimental results demonstrate that the proposed

neural network model surpasses baseline algorithms.
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Chapter 1

Introduction

In the current world, objects and individuals rarely function in isolation. Most objects

are connected to each other and most individuals interact with one another. Scientists

represent theses connections and interactions as graphs or as so-called, networks. Such

networks are comprised of interactive components that dynamically modify their con-

nections. Nowadays, networks are everywhere. From computers on the world wide web

to the neural networks of brain cells, complex networks among entities are ubiquitous.

It is incontrovertibly axiomatic that networks play pivotal roles in both society and the

natural world. Social networks such as Facebook and Twitter connect people from all

around the globe, protein-protein interaction networks aid with cancer treatment, and

interconnected home appliances help our lives to be more enjoyable and efficient. There-

fore, the network analysis and modeling has attracted much attention in recent years and

has welcomed researchers from a incredible range of disciplines.

Abundant researches focus on networks among humans. Us humans are a social

species. Every day, we tend to work together, consult with each other, and achieve

more by building efficient and multi-dimensional teams. Teams are now a basic unit of

knowledge work. Organizations increasingly rely on teams, as work has become complex
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enough to require a wide variety of skills and expertise from a group of individuals

[19]. Scientific knowledge is increasingly produced by teams of researchers instead of

an individual author [20]. Research shows that teams produce better outcomes than

individuals alone for complex knowledge work. It is also found that science research by

teams has been more impactful and novel than solo work [21, 22].

There are many practical and challenging problems regarding network science of teams

and performance: How the group dynamics, sentiment, and their appraisals can deter-

mine the group’s success? How does work/life balance impact success? How do individu-

als become influential within a team and to what extend is influence affected by cognitive

biases and heuristics? How do interpersonal networks evolve along sequences of tasks?

Can we estimate these dynamics and determine the right intervention? Our goal is to

compose a set of explainable models to understand and eventually increase the chance of

individual’s and organization’s success, estimate the dynamics of relationships, and help

managers intervene in the teams they manage.

Luckily, the current era is rife with conversation data available for analysis. The

number of social and communication platforms have skyrocketed and softwares such as

Facebook Messenger, Instagram, and WhatsApp to name but a few have attracted mil-

lion of users in the past decade. People exchange emails and Instant Messages (IM)

everyday. Aside from personal usage, many companies and businesses use private plat-

forms for their work chat such as Instant Bloomberg and Slack. Hence, there exist an

immense amount of communication data available. Globally, as of 2019, a staggering

293.6 billion emails were sent each day and there exists currently now over 4 billion email

users worldwide [23]. The average office worker receives around 121 emails every work-

day [23]. Today’s business culture truly is in emails, with 86% of professionals naming

email as their preferred means of business communication and email ranked as the third

most influential source of information for business to business audiences [23]. Moreover,
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statistics show Americans send roughly 26 billion text messages every day [24]. Aside

from the data, research in Natural Language Processing (NLP) has offered an unprece-

dented opportunity for analyzing conversation data. Word embedding models [25, 26],

self-attention mechanism [27, 28] and pre-trained deep neural network models for text un-

derstanding [18] have paved the way for data-driven research in conversation mining. In

this dissertation, we rely on numerous communication data to tackle research questions.

Despite the availability of field data that has made the research on team networks

plausible, the complexity of these data sometimes impede scientists to draw meaningful

conclusion. To overcome this challenge, one needs to be able to conduct human subject

experiment studies and collect data using specifically designed protocols. There exists a

software called Platform for Online Group Studies (POGS) designed for such purposes

to gather written responses to questions, and collect the chat logs of team discussions. It

also has the ability to constrain group discussions to a prespecified network topologies to

test and validate different hypothesis by composing groups of different sizes. Chapter 4

is the compendium of a specifically designed and implemented protocol using POGS

to collect logs from teams of four individuals answering trivia questions over multiple

rounds. Thanks to POGS, this experimental data presents an unprecedented opportunity

to measure how the interpersonal influence system of teammates changes over time and

how the dynamics are related to individual performance and communication.

Research in the field of networks can be split into studies on static networks, and

studies on dynamic networks. Time is the key difference as static networks do not

change over time, while dynamic networks do. In what follows, we introduce impactful

and pertinent studies in the two subfields.
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1.1 Static Networks

Static networks are the most common type of networks. They are simple yet powerful

tools for many problems. The research in static networks goes back to the renowned

Euler’s Seven Bridges problem [29]. A network G is represented by G(V,E) where V

stands for a set of nodes and E for a set of edges. Nodes can represent nonliving entities

such as buildings, cities, or countries as well as living entities such as individuals, group

of individuals or parties. Edges represent the connection and relation among nodes and

can be directed or undirected. For instance, a flight from city A to city B would be

represented as a directed edge; however, the proximity of two city would be represented

as an undirected edge. Edges, so-called ties, can be weighted, for instance an edge weight

could be the distance between two cities in the scale of miles. In a network, when edge

weights are only signs (positive or negative), that is called a signed network.

Analysis of static networks is usually involved with node or edge centrality metrics [30,

31, 32, 33]. Degree, the easiest centrality metric, is the number of edges connecting to a

node. Betweenness centrality measures the extent to which a vertex lies on paths among

nodes. High amount of betweenness for a node depicts that node is involved with a large

proportion of shortest paths in the network. Closeness centrality of a node is calculated

as the reciprocal of the sum of the length of the shortest paths between the node and all

other nodes in the graph. Nodes with a high closeness metric have the shortest distances

to all nodes and in a way lie in the center of the network. Eigenvector centrality or so-

called prestige score is computed based on the idea of connection to high-scoring nodes

contribute higher than connection to low-scoring ones. This metric for a node is large

when that node is connected to many nodes which themselves have high scores. This

centrality metric is extremely popular and pragmatic. PageRank algorithm [34] that is

used in Google Search is one of the variants of eigenvector centralities.

4



Introduction Chapter 1

Real networks often are very large. For example, at the time of this dissertation,

Facebook social network has 2.7 billion nodes. To make qualitative and quantitative

conclusion about networks it is common to consider a subset of nodes in the network.

The network only inducing that subset of nodes is called a subgraph. Subgraphs are

not only easier to interpret compared to the entire network, but also they can reveal

nontrivial information about the underlying network.

To analyze and model the dynamics of networks, a common approach is to study

the subgraphs. In this dissertation, we track subgraphs in network snapshots, model the

dynamics, and predict the network states. This is a general problem on static networks

that is called subgraph mining. Scientists often search for specific structural pattern that

satisfies a desirable properties such as structural anomaly [35]. Another pattern could

be based on the frequency of subgraphs. For instance, Yan et al. [36] introduced an

efficient model to search for the most frequent subgraph [37]. On the other hand, those

subgraphs which are far less frequent than usual may include prominent information.

It has been shown there exists a set of subgraphs in several real networks that their

frequency differ statistically from randomized networks with the same number of nodes

and edges, in-degree and out-degree distribution. These subgraphs are called motifs and

they are found to be the distinctive in classification of different types of networks, solely

based on their connectivity information [38]. Similarly, in another study, we also use the

subgraph structure for graph classification purposes [39].

1.2 Dynamic Networks

Many systems are represented as networks comprised of interactive components that

dynamically modify their connections. Dynamic network science encompasses early works

on random graphs such as Erdős Rényi networks to complex models of physics, socio-
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economic, and deep neural networks. In this literate, many studies introduce mathemati-

cal models that generate realistic dynamic network formation. Notable network formation

models are Erdős Rényi networks [40], Watts-Strogatz [41], and Barabási-Albert [42].

A more recent network generating model, so-called Forest Fire [43] was introduced to

mimic the phenomenon of network densification and shrinking diameters from real net-

work structures. Aside from network formation, many studies focus on estimating the

evolution of network structures from empirical data. One specific type of dynamic net-

works, which is the focal attention of this dissertation, are dynamic signed networks. In

this dissertation, we intend to study signed relational networks such as friendship among

finance traders, trust among Bitcoin traders, and allyship among world nations which

evolve over time. Dynamic signed networks provide a suitable framework for such stud-

ies. We briefly describe this subfield in network science and focus on the theories related

to the context of this dissertation in the following.

1.2.1 Dynamic signed networks

Edges in signed networks usually represent like/dislike, trust/distrust, or friend-

ship/enmity. Depending on the network, they may also reflect praise/blame or influ-

ence/negative influence. Connections and signs in these networks can naturally change

over time. There is a rich body of work on analysis, modeling, and control on dynamic

signed networks.

There exist many examples of dynamic signed networks, especially in social networks.

Recent world events have rekindled interest in social networks of positive and negative

relations. Examples prevail across geopolitics, national elections, social media, and reli-

gious groups where polarization is frequent. The local topologies of positive and negative

relations in these networks can have profound implications on individual performance.
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Evidence strongly indicates that people experience mental discomfort or cognitive dis-

sonance when they hold contradictory beliefs, and when it is present, individuals are

motivated to reduce it to restore cognitive consistency [44]. If unresolved, cognitive dis-

sonance in one’s interpersonal sentiment network can lead to biased, suboptimal and

undesirable behaviors [45, 46]. Yet despite the potential negative consequences of cogni-

tive dissonance on one’s performance, little is known about the patterns that characterize

the formation, change, and dissolution of relationships over time, and what changes in

personal affective relationships are associated with improved performance. For exam-

ple, people tend to prefer others who are similar to them, but dissimilar individuals are

more likely to hold non-overlapping knowledge that can lead to informational advantages

and more successful outcomes [21]. Consequently, it is not surprising that collaboration

networks are often homophilous and based on prior relationships, rather than diverse in

composition [47, 48] [49].

In such networks, positive and negative interpretations of links between people have

been modeled as scientists see these links through social science lens. Hence, researchers

introduced their mathematical models inspired from multiple social psychological theo-

ries. In this regard, one of the extensively studied theories is Structural Balance The-

ory [50]. Since, this dissertation heavily focuses on Structural Balance Theory, in the

following subsection, we delineate a comprehensive literature review on this subject.

1.2.2 Structural Balance Theory

The theory of social balance, so-called structural balance theory, is first proposed

by Heider in 1940s [50]. This theory has been utilized to describe the social dynamics

processes in networks and has been advocated by countless scholars from different disci-

plines such as sociology, computer science, and psychology [51]. Heider originally defined
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structural balance theory as the theory of attitude change [50, 52]. Heider’s study was

the cornerstone for a flock of upcoming publications in this subject. Cartwright and

Harary [53] published an impactful study that provided empirical support for balance

theory as well as macro-structure analysis which has been relevant up to this date. Since

then, numerous researchers have studied, generalized, and designed empirical experi-

ments on structural balance theory [54, 55, 56]. The theory is usually addressed to the

activity of individuals in appraising positively or negatively other individuals in their so-

cial networks. This activity automatically locates individuals in a network environment

of people who they see as allies (friends, advisors, supporters) or competitors (detrac-

tors, foes, combatants). The theory of structural balance posits that individuals alter

their sentiments on the basis of a bipolar attraction toward some configurations of sen-

timents and repulsion from other configurations. The theory has deep roots in social

sciences [57] and social psychology [52]. It has been applied in variety of disciplines,

including psychology [58], consumer-branding [59], and sports [60]. Other applications

include international relationships [61, 62], virtual worlds [63], and even social relation-

ships among animals [64]. The common theme in all these publications is studying the

subgraph structure in networks.

Similar to study of motifs [38], scientists ascertained that subgraphs of three nodes

are sufficient and descriptive building blocks for signed networks. In the literature, a

subgraph of three is called a triad. Triads not only provide a local viewpoint to the ties

in the network; but also they enjoy a sufficient complexity that multiple theories have

been needed to be developed to describe their behavior. Structural balance theory is

one of impactful theories that focuses on the study of triads in networks. The theory

proposes a systematic dynamic on triads with four simple rules. It claims that these rules

orchestrate most of the dynamics that happen in signed networks over time. The four

rules, also known as Heider’s axioms, are:
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1. A friend of a friend is a friend

2. A friend of a foe is a foe

3. A foe of a friend is a foe

4. A foe of a foe is a friend

where friendship depicts a positive and foeship depicts a negative tie. For every triad,

if all of above axioms hold, that triad is considered structurally balanced. Expanding these

rules to networks, a network is considered structurally balanced where every triad in that

network is structurally balanced. It is widely known that violation of these axioms leads to

cognitive dissonance and eventually creates an effort to resolve contradiction and reduce

discomfort in the social network. That is the reason that structural balance theory

describes dynamics of the networks. This theory posits networks change toward more

balanced states over time. The major development of structural balance theory was set

in motion with Cartwright and Harary’s [53] formal definition of attractive and repulsive

sentiment configurations. Cartwright and Harary extended the fundamental study by

Heider with allowing network to be undirected. Their approach, which has become the

standard model of structural balance, assumes a complete sentiment network in which

all individuals have either a positive or negative sentiment of any other individual in the

network.

Cartwright and Harary’s model is defined on fully connected networks; therefore, any

triad of three individuals in the network must entail six positive or negative signed inter-

personal sentiments. We know the configuration of these six sentiments must be one of

16 types. The classical structural balance theory model, which satisfies Cartwright and

Harary’s criterion of structural balance, permits only two of the 16 feasible types, known

as balanced triads. On this basis, a network topology must converge to be either a com-
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plete network of all-positive sentiments or a network partitioned into two subgraphs with

no negative within-subgraphs sentiments and all negative between-subgraphs sentiments.

These converging structures are called a network’s Macro-structure [65]. More precisely,

macro-structure of a signed network is the the structure that the network moves toward

when time goes to infinity. Extensions of balance theory posit different macro-structures.

Table 1.1 shows the details about classical models and Table 1.2 the details about gen-

eralized models. Both tables include the corresponding citation, macro-structure, and

criteria for each model.

Model name Classical Heider [52, 66] Classical Cartwright & Harary [53]

Criteria Axioms 1, 2, 3, 4
All cycles should
have even number
of negative edges

Edges Complete Incomplete

Network Undirected
Undirected and
directed

Macro-structure

One or two all
positive clique(s)
and all negative
edges in between

One or two all
positive subgraph(s)
and all negative
edges in between

Table 1.1: Classical structural balance theory models from literature, their rules, and
the corresponding macro-structures.

The macro-structures for these models are determined via theoretical studies using

either simulation, i.e. Kulakowski et al. [15] or rigorous mathematical proofs, i.e. Marvel

et al. [70]. In a relevant study, Altafini et al. [71] used structural balance theory to model

opinion dynamics in signed networks and arrived at the same macro-structures. Moreover,

Johnson et al. [65] and the survey article by Zheng et al. [51] provide a comprehensive

image including a set of pertinent references and corresponding macro-structures for the

models mentioned in Table 1.2 and Table 1.1. All these models of balance theory have

been frequently applied in the area of network science.

One of the common applications for structural balance theory is sign prediction.
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Model name Clustering [67] Ranked clustering [68] Transitivity [69]

Criteria Axioms 1, 2, 3

Axiom 1 but
forbidding the triad
with one singly
positive edge

Axiom 1

Edges Complete Complete Complete
Network Undirected Directed Directed

Macro-structure

One or multiple
cliques of all positive
insides and all negative
edges in between

All subgraphs become
multiple pointed
subgraphs of positive
and negative

All subgraphs
become
transitive

Table 1.2: Generalized structural balance theory models from literature, their rules,
and the corresponding macro-structures.

Using this theory, Leskovec et al. [72] published a computer science targeted article in

which predict sign of unknown edges in three large scale social networks. Additionally,

another application is to offer reasonable explanations for various social phenomena, e.g.

the cascade effect of feeling, opinion and belief diffusion in teams [73], and the political

conflicts among international nations [74].

1.3 Markov Models

Markov models are one of the most versatile and powerful tools in network science.

Their simplicity paves the way for facilitated mathematical derivation and eventually

solving problems from different fields. Markov property claims that the state of the

system at time t only depends on the state at time t − 1. In other words, knowledge of

only one step prior is sufficient in Markov chains. This means in order to determine the

state at time t, we do not need any information about the system from time 1 to t− 2.

Due to Markov property, in signed networks, one can study the transition of triads from

subsequent time stamps and compute the Markov probability matrix for triads [75]. A

Markov transition matrix for triads would shed light on the systematic dynamics that
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governs the network structure over time.

Another prominent feature of Markov models is stationary distribution. When time

goes to infinity, the system reaches to a state, which is so-called stationary distribution.

This state can be computed using the left eigenvector of corresponding to eigenvalue

equals to 1 for the row-stochastic Markov transition matrix. Note also that it has been

proved an ergodic, aperiodic and irreducible Markov chain has a unique and absorbing

stationary distribution [76]. In other words, stationary distribution of Markov model

provides the convergence point of the system. This feature lays out an important view

of the system especially for forecasting and for intervention if needed. Another related

concept is the mixing time of a Markov chain. Mixing time quantifies how far a Markov

chain is from its stationary distribution. More precisely, a fundamental feature about

Markov chains is that a finite-state, irreducible and aperiodic chain has a unique station-

ary distribution, and regardless of the initial state, the distribution of states in the chain

converges to the corresponding stationary distribution as time tends to infinity [77].

1.4 Network science of teams

This dissertation focuses on analysis of task performance in multiple datasets of net-

worked teams. Team performance is commonly considered an output of the input-process-

output (I-P-O) model [78], the widely known conceptual framework for studying groups.

Research based on the I-P-O model tends to assume that inputs such as group compo-

sition, lead to processes, which in turn lead to outcomes such as performance [79]. One

apparent input factor of team performance is the task-related proficiency of the team

members, and has been studied in various disciplines. In computer science and engi-

neering, a large number of studies focus on optimal team design, with team optimality

typically being defined in terms of the skill coverage of team members [80, 81, 82] or team
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members’ skill diversity [83]. Similarly, much of social scientific research focuses on the

impact of cognitive abilities of team members upon the team’s performance [84, 85]. How-

ever, the team members’ proficiencies define the potential for good team performance,

constraining rather than defining the actual performance.

The empirical studies as early as the 1949 work of Deutsch [86] have shown that

collaboration and cooperation are important contributors to team performance. More

recently, Barron has shown in her study [87] of the performance of small teams of stu-

dents on solving mathematical problems that equally competent teams can perform very

differently depending on how these teams’ members work together. Similarly, Devine and

Philips [88] have shown the lack of connection between the variance of team members’

cognitive abilities and the team performance; an analogous result has been reported by

Shim and Srivastava [89] in their study of massively multiplayer online role-playing games.

The discrepancy between team members’ individual abilities and the team’s performance

is attributed to team processes, which mediate the translation of inputs to outputs [84].

The critical dependence of team performance outcomes upon the team process is also

assumed in existing works on transactive memory systems [90], where team performance

depends on team members’ efficiently learning each other’s capabilities, and has also

been recently studied by Grand et al. [91] in the context of tasks the success on which

heavily depends on efficient knowledge sharing. Thus, in studying team performance, it

is essential to investigate the team process, defined as the actions and interactions team

members engage in while working on tasks.

In an empirical study [92] related to this field, we have focused on the analysis of the

dynamics of the team process for the purposes of understanding and predicting team per-

formance. Using an experimental study of teams of individuals performing a battery of

tasks, we addressed questions such as: What are the factors defining team performance?

And how can we best predict the performance of a given team on a specific task? While
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the team members’ task-related capabilities constrain the potential for the team’s suc-

cess, the key to understanding team performance is in the analysis of the team process,

encompassing the behaviors of the team members during task completion. We extend the

existing body of research on team process and prediction models of team performance.

Specifically, we analyze the dynamics of historical team performance over a series of tasks

as well as the fine-grained patterns of collaboration between team members, and formally

connect these dynamics to the team performance in the predictive models. Our major

qualitative finding is that higher performing teams have well-connected collaboration

networks—as indicated by the topological and spectral properties of the latter—which

are more robust to perturbations, and where network processes spread more efficiently.

Our major quantitative finding is that our predictive models deliver accurate team per-

formance predictions—with a prediction error of 15-25%—on a variety of simple tasks,

outperforming baseline models that do not capture the micro-level dynamics of team

member behaviors. We also show how to use our models in an application, for optimal

online planning of workload distribution in an organization. Our findings emphasize the

importance of studying the dynamics of team collaboration as the major driver of high

performance in teams.

In another study [93] for modeling the performance of teams, we used the data from

groups of five individuals playing the online multiplayer battle arena video game, League

of Legends. The game has five tiers of difficulty for players to join based on their skills

and experience. we investigated the novel problem of training multiple classifiers and

discovering succinct sets of features that vary smoothly across clusters of teams within

these tiers. We presented a novel learning framework by training multiple classifiers and

imposing smoothness constraints among them. We developed two algorithms formulated

in the dual and primal forms of Support Vector Machines (SVM), and showed that our

solution in the dual form is straightforward, while the solution in the primal form requires
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a relaxation of the hinge loss function. This relaxation is technically involved; however,

the final solution can be effectively optimized and achieved through the approach of

gradient descent. We demonstrated the performance of our novel learning framework

on two important real-world applications of online team-task performance, and of the

highway road traffic network. The empirical results demonstrate that our framework not

only outperforms existing methods in term of prediction accuracy, but more importantly

it can effectively discover succinct sets of smoothly varying features that truly capture

and reflect the variation in the underlying data distribution. Such patterns considerably

enhance our understanding regarding the mechanism behind the observed data.

1.5 Overview of the Present Work

This dissertation consists of three major parts contributing to dynamic networks

study in longitudinal or experimental settings: we study structural balance theory in

risky decision-making, generalize structural balance theory in international networks,

and estimate interpersonal influence in groups.

In Chapter 2, we study a longitudinal dataset of day traders in a firm existed in New

York City. In this chapter, we analyze a financial institutional over a two-year period

that employed 66 day traders, focusing on links between changes in affective relations and

trading performance. Traders’ affective relations were inferred from their IMs (> 2 million

messages) and trading performance was measured from profit and loss statements (> 1

million trades). We find that triads of relationships, the building blocks of larger social

structures, have a propensity towards affective balance, but one unbalanced configura-

tion resists change. Further, balance is positively related to performance. Traders with

balanced networks have the ”hot hand,” showing streaks of high performance. Research

implications focus on how changes in polarization relate to performance and polarized
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states can depolarize.

In Chapter 3, we extend previous study from Chapter 2 by allowing null ties in a much

larger longitudinal dataset of countries using over two decades curated data. In Chap-

ter 3, we construct the networks of international amicable and hostile relations occurring

in specific time-periods in order to study the global evolution of the network of such inter-

national appraisals using Integrated Crisis Early Warning System (ICEWS). We present

an empirical evidence on the alignment of Structural Balance Theory with the evolution

of the structure of this network, and a model of the probabilistic micro-dynamics of the

alterations of international appraisals during the period 1995-2018. Also remarkably, we

find that the trajectory of the Frobenius norm of sequential transition probabilities, which

govern the evolution of international appraisals among nations, dramatically stabilizes.

We buttress our study by replicating above findings with an analysis of two additional

smaller-scale finance datasets. These datasets are two Bitcoin trust networks collected

over five years with thousands of users.

In Chapter 4, we study interpersonal influence in small groups of individuals who

collectively execute a sequence of intellective tasks. We observe that along an issue

sequence with feedback, individuals with higher expertise and social confidence are ac-

corded higher interpersonal influence. We also observe well-performing individuals are to

better recognize experts in their team. Based on these observations, we introduce three

hypotheses which we provide empirical and theoretical support for. In this chapter, we

report empirical evidence for longstanding theories of Transactive Memory Systems, So-

cial comparison, and Confidence heuristic regarding the origins of social influence and

team efficiency. Moreover, we propose a cognitive dynamical model inspired by these

hypotheses to describe the process by which individuals adjust interpersonal influences

in intellective tasks. We provide rigorous analytical results on its asymptotic behavior

and demonstrate its accuracy in predicting the influence on the empirical data. Lastly,
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we propose a novel approach using deep neural networks on a pre-trained text embedding

model for predicting the influence of individuals. Using message contents, message times

and individual correctness collected from teams during tasks, we are able to accurately

predict the self-reported influence in every round. Extensive experiments verify the ef-

fectiveness of the proposed dynamical and machine learning models in comparison with

the baseline methods such as structural balance, and reflected appraisal model.

In Chapter 5, we conclude by summarizing the studies from previous chapters and

introduce open problems that are pertinent to the studies in this dissertation.
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Classical Structural Balance in

Finance Networks

In this chapter, we design methods for data-driven analysis of social network dynamics

in risky decision-making. For such analysis, it is particularly important to be able to

analyze the dynamics over a long period of time. The overall goals of this chapter is to

find a simple yet powerful model that describes the changes that govern social networks

in risky environments and to identify a generalized coordination process that leads an

individual to perform intelligently in these situations.

For this purpose, we use a unique dataset collected from a day trading firm in New

York. This dataset encompasses both trading and communication logs for over two

years. For every single day, we know all trading timestamps, quantity and price as well

all instant messages exchanged among the employees. In this company, we know there

exists a complete social network of financial day traders that collaborate with others

in ad hoc teams. They all know each other as the firm only has 66 employees. The

individual’s trading performance in this dataset is particularly straightforward as day

traders do not hold stocks over days. They start and end everyday with cash which
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makes their performance, which here is their daily profit, distinctly easy to track. Due

to their risky and stressful work environment, positive and negative attitudes are formed

quite easily and naturally.

To study the underlying dynamics among friends and enemies in this firm, we use

structural balance theory, which is rooted in several theories of sociology and social

psychology. Structural balance is a theory that examines how networks of positive or

negative interpersonal sentiments evolve toward stable topologies. Contrary to the vast

popularity of this theory, its theoretical advancements and dynamic predictions of net-

work state changes have rarely been tested with empirical investigations of longitudinal

data. Moreover, the implications of these network changes on task-performance metrics

have not been examined.

The key result of this chapter, that enables answering the above stated questions, is

using Markov transition matrix to track the probability transition of subgraphs with three

nodes in subsequent social networks among traders. To this end, our statistical analyses

reveal that a network of interpersonal sentiments does indeed move toward structural

balance and that these movements are associated with task performances in competitive

risky decision-making environments. Further, we find positive empirical relationship

between balanced network structure and individual performance. As high balanced is

associated with lower cognitive dissonance, this data shows that this company reaps the

benefits when conflict among its employees is reduced. The findings of this study apply to

individuals who engage in extensive high-risk decision making, particularly in situations

where polarization is common, such as politics or in the military.

The chapter is organized as follows. In Section 2.1, we motivate and informally

define the problem, provide a review of existing works in network dynamics modeling

of structural balance theory, and briefly introduce this chapter’s three contributions.

Section 2.2 provides the necessary preliminaries. Section 2.3 is dedicated to the design of
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the core concept of this chapter—Extracting the dynamical social network among traders

and computing the Markov transition probability matrix on triads. The experimental

results are illustrated in Section 2.4. We conclude in Section 2.5 with a discussion and

a summary of the results of this chapter, and point out potential directions for future

research.

2.1 Introduction

Recent world events have rekindled interest in social networks of positive and neg-

ative relations. Examples prevail across geopolitics, settings where firms compete on

new standards of innovation, national elections, social media, religious groups, and

many other situations where polarization is frequent. Despite the many real-world

settings where interpersonal riffs among collaborators can arise and potentially under-

mine performance [94, 95, 96, 97], research on how positive and negative relationships

among collaborators change and how those changes relate to performance is relatively

nascent [98, 99, 100]. Newly available data on the electronic communications among

networks of individuals enables an opportunity to measure changes in interpersonal sen-

timents and their relationship with changes in performance of the system [101, 102].

Polarization is common when positive and negative relations persist in a social net-

work. Polarization is frequently associated with cognitive dissonance in people’s interper-

sonal sentiment networks [103, 104]. When cognitive dissonance exists, individuals are

motivated to restore cognitive consistency due to the mental comfort that unresolved ten-

sions create [44]. If left unresolved, cognitive dissonance can lead to biased, suboptimal

and undesirable behaviors [45, 46] that negative impact performance. Yet despite the im-

petus to restore balance in one’s interpersonal sentiment networks, little is known about

the patterns that characterize the formation, change and dissolution of relationships over
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time and how these micro-level reconfigurations are related to performance.

2.1.1 Related Work

Social networks have profound implications on people ranging from happiness to

health [105, 106], access to information and resources [107, 108], advice [109], decision-

making [110], socioeconomic status [111], and task performance [112]. Social balance

is a theory that is addressed to the activity of individuals in appraising positively or

negatively other individuals in their social networks. This activity automatically locates

individuals in a network environment of people who they see as allies (friends, advisors,

supporters) or competitors (detractors, foes, combatants), and people who see them as

allies or competitors. The theory of structural balance posits that individuals alter their

sentiments on the basis of a bipolar attraction toward some configurations of sentiments

and repulsion from other configurations. The theory has deep roots in sociology [57] and

social psychology [52]. It has been applied in variety of disciplines, including psychol-

ogy [58], consumer-branding [59], sports [60], virtual worlds [63], and social animals [64].

Structural balance theory (SBT) provides an analytical framework for measuring

and predicting how polarized sentiments among collaborators change and relate to per-

formance. SBT characterizes every individual relationship as being either positive or

negative in sentiment and is classically defined on directed networks [52, 53, 65, 75].

Positive sentiments include ally, friend, or supporter relationships and negative senti-

ments include competitor, foes, or detractor relationships. On the basis of four rules of

interaction, SBT posits whether relationships will remain polarized (unbalanced) or will

reconfigure, i.e., become “balanced.” The four rules are: a friend of a friend is a friend,

a friend of an enemy is an enemy, an enemy of an enemy is a friend, and an enemy of a

friend is an enemy. These four rules disaggregate a network of ties into 16 different types
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of triads of relationships. Triads can be characterized as balanced or polarized. Two of

the 16 feasible triads are considered structurally balanced and balanced configurations

have a propensity for stability. Polarized configurations are prone to dissolution and

reorganization. Aggregating local triads provides non-intuitive implications for a group’s

macrostructure. A group’s network topology moves towards either a complete network

of all-positive sentiments or a network partitioned into two subgroups with no negative

within-group sentiments and all negative between-group sentiments. Implicit in SBT is

that stable configurations should support higher performance than polarized, unstable

configurations. Thus, by examining micro patterns of sentiment changes, SBT enables

understanding of how interpersonal relationships evolve and how these configurations

either enable or hinder performance.

A sequence of generalizations followed, reviewed in [65], toward a SBT model in

which 9 of 16 triad types are permissible and the remainder set of 7 are forbidden

based on one or more violations of transitivity (if A likes B, and B likes C, then A

likes C) in a triad’s configuration of sentiments. This line of advancement was associated

with empirical investigations of networks in field-settings as in [113], which evaluated

whether the distribution of observed triads over the 16 feasible types indicated a bias

toward a set of SBT model-specific permitted triads. The current frontier of work on

SBT is focused on modeling advancements of the temporal evolution of sentiment net-

works [103, 104, 73, 114, 70, 74, 115]. These temporal models are motivated by the idea

that field-setting networks are undergoing transformations in which positive sentiments

are being converted to negative sentiments, and vice versa, toward the attractor state

of structural balance. Investigations of longitudinal data on sentiment networks in field-

settings, relevant to these dynamical models, are rare [104, 63, 72]. Moreover, despite

evidence that social networks affect performance in task-oriented groups [112], there have

been limited opportunities to examine the effects of structural changes on performance

22



Classical Structural Balance in Finance Networks Chapter 2

over time. This chapter reports findings from the most extensive set of longitudinal data

yet assembled to evaluate the theory’s prediction of an evolution toward structural bal-

ance, and to investigate whether sentiment network states are linked with changing task

performance metrics. Our investigation draws on a unique dataset from a financial trad-

ing firm to test dynamic predictions and to evaluate whether sentiment network states

are linked with task performances in a competitive risky decision-making environment.

2.1.2 Contributions

Our contributions in this chapter are threefold.

1. We find a tendency for the sentiment network to steadily transition into states of

greater balance over time, that is, with toward fewer violations of SBT predictions

than expected in a suitability randomized network.

2. Using Markov Chain analysis, we find that only certain types of triads tend to

transition from states that violate SBT predictions to states with no violations.

3. We find that an individual trader’s degree of structural balance is positively asso-

ciated with the trader’s performance. There is temporal evidence that structural

balance and performance are mutually reinforcing. Trader performance increases

as the degree of a trader’s embedding in classical balanced triads increases, after

accounting for individual trader differences and market uncertainty.
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2.2 Preliminary

2.2.1 Structural Balance Triads

Table 2.2.1 describes the 16 triad types. We use the classical SBT model definition

of structural balance and operationalizations of positive and negative edges (see 2.3 for

details). Its four axioms are: (A1) A friend of a friend is a friend, (A2) A friend of

an enemy is an enemy, (A3) An enemy of a friend is an enemy, and (A4) An enemy of

an enemy is a friend. The more general terms ”positive” and ”negative” relationships

(sentiments) are often substituted for the metaphorical terms ”friend” and ”enemy” in

practice. Thus, each triad entails six positive or negative sentiments. Only positive

sentiments are displayed. A triad type with at least one violation of these axioms is a

“forbidden” triad. It can be shown that in a sentiment network with no violations of any

of these four axioms, only two types of triads may exist: 300 and 102. We refer to these

two types as “permitted” triads.

Fig. 2.2 conceptualizes how Markov Chain analysis is used to compute the state

transition probabilities for the 16 triad types in Table 2.2.1. Here we show the steps

involved in computing the transition probability from the unbalanced or polarized triad

state 210 to the balanced triad state 300 over time period (t, t+ 1).

2.3 Methods and Materials

2.3.1 Trade Data and Trader Performance

We observed all of the dynamic sentiment network of day traders at an anonymous

trading firm from October 1, 2007 to March 31, 2009. Day traders keep short-term

positions and do not hold inventories of stocks; they enter and exit positions each day,
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Triad Type Triad Label A1 A2 A3 A4

300

102

003 X

120D X

120U X

030T X X X

021D X X

021U X X

012 X

021C X X

111U X X

111D X X

030C X X

201 X X X

120C X X X

210 X X X

Table 2.1: SBT’s 16 types of triads. Triads have 6 positive or negative sentiments (only
positive sentiments are displayed) and are characterized by three numbers: the number
of mutual (M), asymmetric (A), and null (N) ties, and symbols that discriminate triads
with identical MAN numbers – transitive (T), up (U), down (D), and cyclic (C).

25



Classical Structural Balance in Finance Networks Chapter 2

normally between 9:30 AM and 4:00 PM. We observed these traders trading ∼4,500

different stocks over various exchanges, which suggests that they sample a large part of

the market. As in most trading firms, traders do not trade every day of every week for

various reasons. We analyzed all of the > 1 million intra-day stock trades of these day

traders and their > 2 million instant messages exchanged across their networks. The

performance data were calculated using standard industry metrics.

2.3.2 Instant Messaging Communication Networks

To identify IM’s containing social information, we used a dictionary-based approach,

comprised of terms from the NASDAQ stock exchange and IG trading glossary to differen-

tiate between IM’s containing financial and personal information. To classify information

exchanges, we tagged all IM exchanges that contained at least one word from the finan-

cial dictionary. The average IM is ∼6 words in length, consequently each one represents

important information about the likely instrumental or social intent of the IM. A sam-

ple of 1,000 IM’s were selected at random to validate the classification method. In the

validation method, an IM tagged as having at least one word from the dictionary were

read by a research assistant who agreed or disagreed that the IM represented an financial

rather than a social IM.

After extracting the content of all messages to isolate social communications from

instrumental communications, we used [1]’s method of estimating the strength of a so-

cial relationship from digital communication data. The method identifies positive edges

between traders by comparing pairwise communication intensity levels in the observed

social network vs. a statistical null-model of IM communication, where the observed

pairwise level of IM exchange was randomized 10,000 times. For every period, an edge

was defined as positive if the total number of IM’s exchanged between two traders ex-

26



Classical Structural Balance in Finance Networks Chapter 2

ceeded the random intensity scores at the p < 0.01 level of significance. Following prior

research, edges between traders that are below the threshold are defined as non-positive

or negative ties [1, 116].

Albeit balance theory research has defined non-positive edges as negative, we con-

ducted a robustness test within our setting. To check the validity of our measurement to

misclassifying ties as negative when they should be positive, we purposefully converted

multiple (10,000 replicas) 5% samples at random in the observed data from negative to

positive edges. The reported results were robust to these measurement tests suggesting

that the definition of an edge’s polarity is robust to significant measurement. Changing

the polarity of edges at random in the preceding way up to 20% did not change the

statistical significance or pattern of reported results.

The data setting meets the requirements of mutually acquainted individuals, for which

traders develop positive and negative sentiments towards each other, not neutral atti-

tudes [52, 53, 75, 103]. This assumption is consistent with the cognitive science literature

on the automaticity of attitudes [117, 118, 119, 120] and instantaneous formation of im-

pressions [121], as well as the communication literature examining ease of relationship

formation over electronic communication [122, 123], for which use of computer screens is

essential to day traders’ work activities. Prior research examining negative ties as avoid-

ance behaviors has also measured the absence of an edge as a negative tie [124, 125]; we

use this approach to be consistent with the prior work.

In addition to the volume method, we used a simple threshold cutoff to define an

interpersonal relationship, where the presence of an edge corresponded to a trader sending

at least 1, 5, or 10 messages to another trader, respectively. Our findings are robust to

methods and thresholds (Fig. 2.2(a)).
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2.3.3 Measure of Classic Structural Balance

To quantify structural balance of the firm over time, we divided the entire observation

period into six quarterly intervals, t, and defined a measure to capture the degree of

balance at each quarter. For each period, we computed the ratio of balanced triads to

the total number of possible triads with the measure, bt. We used the “classic” model

of structural balance, for which balanced triads were defined as the count of 300 and

102 triad types because both configurations satisfy all of Balance Theory’s four rules

(Table 2.2.1). To verify our selection of quarterly time intervals, we also analyzed the

data using monthly, bi-monthly, biweekly and weekly time intervals and the results were

robust to period interval (Fig. 2.1). The distribution of triads, transition matrices, and

stationary distributions were similar in these results except that in biweekly and weekly

periods, there were more 003 triads, and the probability transition to the 003 triad is

higher, which is expected given the the smaller time interval (i.e., 5 or 10 business days),

during which traders can IM each other. On average, traders exchange messages with

two to three other contacts each week.

To ensure that our observed triadic network configurations could not be explained by

chance, we constructed null models to compare the observed likelihoods of the balanced

triads in the network, b̂t, to randomized networks, bt, using [38], with dyadic and triadic

configurations.

2.3.4 State Transition Probabilities

For each consecutive observation period, (t, t + 1) , we compute Tij(t), which is the

number of triads of type i that moved to type j from period t to t+ 1. Thus, row i sums

to Ti·(t), which is the number of triads of type i at time t, while T·j(t+ 1) is the number

of triads that have transitioned to type j at time t + 1. Using Tij(t + 1), the transition
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Figure 2.1: The aggregated stochastic Markov transition matrix of all periods together,
with (a) quarterly, (b) biweekly and (c) weekly periods (i.e. the quarterly matrix shows
the average of all matrices given in Fig. 2.3). Other designations are as Fig. 2.3). The
transition probabilities are robust regardless of the choice of the period interval.
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probabilities, pij(t) can be estimated to obtain the transition probability matrix. These

quantities can be arranged in a matrix and normalized by the sum of every row. There-

fore, we have row-stochastic transition matrix P where each pij(t) is conditional on i only,

and not on prior states occupied by the triad. By the Markov property, they are identical

for all triads, and they converge to a stationary distribution. The stationary distribution

of a Markov chain is the probability distribution that a system remains unchanged as

time progresses. Mathematically, it is computed as the normalized left eigenvector cor-

responding to the eigenvalue of 1 of the row-stochastic transition matrix [76, 126]. We

compute it for every transition between two subsequent periods (Fig. 2.2(b, c)). The

stability ratio examines the the likelihood for every transition in the observed transition

matrix to happen by chance. It compares every element of the observed matrix (16× 16

elements) to the corresponding element of 10,000 transition matrices computed on ran-

domized networks [38] to determine the ratio of transitions in the observed matrix that

are statistically significant for each transition period (Table 2.4.2).

Furthermore, we derive a triad count ratio, cxt, for each triad configuration, x, in

each period, t, to examine the distance between the current state and the stationary

probability distribution for each triadic configuration and each period. Specifically, for

each of the 16 triadic configurations, x, the triad count ratio is computed as the number

of triads with configuration x over the total number of triads for the given period. For

each transition period, we compute the triad count ratio, cxt for each of the 16 triad

types and compare it to the corresponding triad count ratio in the stationary probability

distribution. A high degree of similarity between the two ratios indicates that ties are

being reconfigured in a consistent manner that moves the system towards the stationary

probability distribution.

Although the sentiment networks are fundamentally dynamic, our state transition

analysis is insensitive to traders’ entrances and exits. To extract communication networks
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in each period, we only take into consideration those traders who have traded in the

respected time. Then for every two subsequent period, we compute transitions of triads

for traders who exist in both communication networks.

2.3.5 Network Triads Comparing from Observed to Random-

ized Networks

We compare the structural patterns of interconnections in our observed networks to

randomized networks [38]. For a stringent comparison, we use randomized networks that

had the same single-node in- and out-degree characteristics as the corresponding node in

the real network, as well as the same dyadic subgraphs as the real network [38]. This is

attained through repeatedly swapping randomly chosen pairs of connections (S1↔ T1,

S2 ↔ T2 is replaced by S1 ↔ T2, S2 ↔ T1). Swapping is prohibited if either of the

connections S1 ↔ T2 or S2 ↔ T1 already exist or these edges share nodes. The same

procedure is applied for mutually connected pairs of nodes. Unlike the Milo & colleagues’

work[38], in this chapter, [52], the network is fully connected, and we focus specifically

on 16 directed and signed triad configurations with exactly 3 nodes. Also networks are

not static but dynamic and we focus on the transition of triads over time. Results show

that the triad probabilities in the randomized network are significantly different than the

observed network (p < 0.01).

2.3.6 Structural Balance and Performance

We define a trader with a hot hand as a trader that made better than average profits

over the quarterly observation period where high and low profit was split at the mean

profit. To examine the robustness of the association between balance and individual

relative performance (i.e., hot hand) to other potential influences, we perform the same
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analysis with controls, as stated in the text.

2.4 Experimental Results

2.4.1 Trading Firm Network

We analyzed the starting, developmental, and ending states of the sentiment net-

work of a medium-sized trading firm over a two-year period. A trading firm employs

stock traders who invest the firm’s money in the stock market with the expectation of

maximizing the firm’s return on invested capital. Day traders typically open new po-

sitions each day, trade those positions during the day, and then sell off all holdings by

the end of the day. Consequently, a day trader’s performance is measured on a day-

to-day basis. Relationships in the firm are flat and non-hierarchical. All traders are at

the same administrative level/rank and have relative autonomy in choosing the stocks

they trade within the constraints of making money for the firm. Traders voluntarily

form attachments with other traders to gain information relevant to their trading per-

formance [127, 128, 129, 130, 131, 132, 133]. Typically, because relationships affect a

trader’s performance and create opportunities to celebrate victories and commiserate

losses, traders with ongoing attachments trust and like one another [134, 127, 135, 136].

To measure relationships among traders, we analyzed 128, 323 instant messages, in-

cluding content, as well as 14, 259 trades of the dynamic sentiment network of stock

traders in the firm from October 2007 to March 2009 [1]. We extracted all social mes-

sages from the instant messages using content analysis because they are indicators of

individuals’ interpersonal, rather than instrumental relationships. On average, traders

sent 228.82± 40.22 IM’s per quarter to 5.98± 0.48 contacts, with a closeness centrality

score of 0.15± 0.04. The network had an average clustering coefficient of 0.35± 0.04.
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The complete record of IM exchanges and trades provides empirical advantages over

prior work, including (i) a novel application of SBT to utilitarian relationships, in contrast

to pure friendships [137, 104, 63], (ii) a minimization of self-report and mono-method

biases [138], and (iii) extensive high resolution longitudinal data. All data are taken

directly from the firm’s servers, which archive all communication and trading data per

SEC regulations. The Institutional Review Board of Northwestern University approved

the study (See 2.3 for data and measurement details).

2.4.2 Markov Transitions

Fig. 2.3 shows the Markov transition probability matrix for each quarterly period

of the likelihood of transition between any two triadic configurations states. Each row

represents a transition out of a state i and each column represents a transition into a state

j; stability of a state is represented by the diagonal (see 2.3 for details). For example,

the propensity for the non-balanced triad number 210 in the last row to transition to the

triad number 300 in the first row of all matrices is ∼ 0.3. The transition probabilities

highlight three important insights and demonstrate support for the tenets of SBT in

dynamically measured settings.

First, the Markov transition probabilities are relatively stable across transition peri-

ods, as indicated by the high degree of similarity between the triad count ratios, cxt, for

each state and their corresponding stationary distributions. This is supported by the low

L2-Norm distances of stationary probability distribution from the average distribution

and steady stability ratios in the subsequent periods (Table 2.4.2), where the stability

ratio denotes the proportion of transitions in the observed transition matrix that were

statistically significant compared to the randomized transition matrices for each period.

The stability ratios for each transition period indicate that traders reconfigure attach-
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Triad 210
(not balanced)

a)

b)

c)

Triad 300
(balanced)

t t+1
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:  #transitions from triad i to triad j

Figure 2.2: Illustrative figure showing state transition probabilities from unbalanced
or polarized triad state (210) to balanced triad 300. a) For each period, we extract
a directed graph of social IM’s among traders, and identify interpersonal relations by
comparing the observed relations against a statistical null-model based on Wuchty
et al. 2011 [1]. b) We compute transition probabilities between periods for each
observed triad. In this example, we demonstrate the configuration of sentiments for
three illustrative nodes and compute the corresponding Markov transition probability
from triad 210 to 300. c) We repeat for each triad in each period, resulting in a 16
state (triad) Markov Chain capturing the complete transition probabilities between
states and periods (See 2.3).
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ments in a consistent manner over time such that the overall system maintains a stable

transition probability distribution and that the observed transitions are not likely to be

explained by chance (Table 2.4.2). See 2.3 for methodological details and measurement

robustness checks.

Second, examining the final stationary probability distributions associated with each

triad configuration (Table 2.4.2), we find that the probability associated with being in

one of the remaining 13 unbalanced states, excluding the null triad (Table 2.2.1), is just

0.03. This compares to a 0.22 probability of being in one of the two classical balanced

states (and a ∼0.97 probability of being in balanced states allowed based on Davis et

al. [67]). In this chapter, we only use Davis’ theoretical deductions from his formal model.

Also, we find the distributions of triads are consistently a close match to the stationary

distribution over periods. Therefore, the system has very low occurrences of unbalanced

states (i.e., near zero) at each period of analysis and is consistent with SBT’s predictions

by Heider et al. and Davis et al. [139, 67].

Third, we observe a strong propensity for stability in the ”classic” balanced states,

300 and 102, as well as the null triad state, 003 (Table 2.2.1), indicating that the trader

network has a tendency towards clustering into two or more subgroups [67]. Heider

predicted this finding in his seminal work [139]. In particular, Heider writes ”if two

negative relations are given, balance can be obtained either when the triad relationship

is positive or when it is negative, though there appears to be a preference for the positive

alternative.” [139, 67]. Davis subsequently introduced the formal theoretical model, which

he called ”clustering” [67] that allows for the triad 003. Finally, the overlooked prediction

by Heider and Davis in balance theory [139, 67], turns out to have empirical support

in a longitudinal field setting. Further, it suggests that once a triad enters the states of

300 or 102, it has a low probability of transitioning out of its current state. Thus, once

traders have reconfigured their ties to a state of structural balance, they remain in these

35



Classical Structural Balance in Finance Networks Chapter 2

Transition L2-Norm Stability Ratio
Period Distance of Randomized Networks

1-2 0.07 0.84
2-3 0.08 0.92
3-4 0.06 0.94
4-5 0.05 0.91
5-6 0.20 0.83

Table 2.2: Stability of transition probabilities. L2-Norm distance of the stationary
probability distribution from their average is relatively stable. Each state is defined as
a vector of 16 probabilities. Stability test shows that at least 83% of transitions in each
observed Markov chains are statistically significant compared to the ones computed
from randomized networks.

Triad Type 300 102 003 120D 120U 030T 021D 021U 012 021C 111U 111D 030C 201 120C 210

Stationary Probability 0.02 0.20 0.75 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00

Table 2.3: Stationary distribution of the average Markov chain over all periods. The
stationarity of the null triad state suggests that forbidden triads remain in the network.

balanced configurations. Similarly, the stationarity of the null triad state suggests that

the network of positive attachments remains relatively sparse over time.

2.4.3 Balance in Randomized Networks

To test whether the observed triad states can be explained by chance interactions

among the traders, we compare the likelihood of observing each triad relative to the

corresponding triad in 10,000 suitably randomized networks (See 2.3), for each of the

6 time periods, shown in Fig. 2.4. Informed by the stationary probability distributions

(Table 2.4.2), of particular interest is the likelihood of observing the classical balanced

(i.e., 102 and 300) and null (i.e., 003) triads in the actual network compared to the

randomized networks. Examining Fig. 2.4, we find that while both balanced triad states

are significantly more likely to occur in the actual network compared to the randomized

network, our actual network has a lower occurrence of null triads than a randomized
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Figure 2.3: Stochastic Markov transition matrices of observing a given transition,
pij(t) over the period (t, t + 1) for all traders. Row values correspond to transitions
out of a triad, column values correspond to transitions into a triad, and diagonals
correspond to triad stability probabilities. Probabilities are stable across different pe-
riods and different threshold-based methodologies. Transitions occur from unbalanced
to balanced triads but not vice versa. The presence of such transitions suggests once
traders have reconfigured their ties to a state of structural balance, they remain in
these balanced configurations.
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Figure 2.4: The difference in the number of standard deviations of the observed net-
work from 10,000 suitably randomized networks. Warm colors mean more probable
than random, while cold colors mean less probable. The observed networks are sta-
tistically and significantly more balanced than randomized networks.

network would suggest. The figure is computed unrelated to transition probabilities, yet

shows the high significance of balanced triads. Accordingly, Fig. 2.4 confirms that the

underlying assembly rules of balance theory influence the reconfiguration of interpersonal

sentiments in the network towards increased balance, beyond what a random network

would imply.

Further, Fig. 2.5 compares the observed degree of classic balance over time bt to the

expected b̂t of the randomized network and validates that the observed, bt is significantly

higher than the expected b̂t derived from the randomized network, for all observed time

periods. Actual networks consistently showed significantly higher balance than the ran-

domized networks. This finding shows that the observed triad states are not explained

by chance interactions. That said, we find that the overall ratio of classically balanced

triads decreases over time. This decline corresponds to the 2008-09 financial crash and

aligns with prior work suggesting that a communication network tends to ”turtle up”

during periods of uncertainty [136].
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Figure 2.5: Comparison of the observed balance in the system, bt to the expected b̂t
(CI is shown) in each time period indicates that the observed system is in a greater
state of balance than would be expected in a comparable randomized network.

Thus, the relative likelihood of occurrence of the remaining unbalanced states in our

observed network, while small, display significant differences between the structures in

the network and those of a randomized network. These structural differences reflect the

underlying dynamics of our particular context, as well as the social norms associated

with instant messaging communication. However, despite these noted discrepancies, the

stationary probability distributions (Table 2.4.2) confirm that the unbalanced configura-

tions occur with very low probabilities and do not detract from the overall trend towards

structural balance in the system. Notably, although unbalanced triads are moving to-

wards greater balance, these transitions occur slowly; hence, few forbidden triads (201

and 021) remain within our observation period (Table 2.4.2).

An untested premise of SBT is that balance positively relates to performance [140].
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Existing research indicates that ceteris paribus persons choose professional attachments

they like and trust (”lovable fools”) over more skillful attachments (”competent jerks”)

because ongoing attachments create lock-ins that lead persons to value the good rela-

tionships over performance [47, 134, 48].

2.4.4 Balance and Performance

We investigated the untested link between structural balance and trader performance

by regressing an individual’s trading performance on their balance bit. Balance of trader

i at period t is trader i’s ratio of classically balanced triads (i.e., configuration 102 or

300 in Table 2.2.1) to total triad configurations in period t. Individual monthly perfor-

mance, profit it was assessed by measuring whether trader i does better or worse than

their mean individual-level performance across all time periods, i.e., whether a trader’s

structural balance is related to getting a ”hot hand” in the market [141]. We use monthly

performance because unlike the first set of analyses examining structural balance, where

our focus was the long-term reconfigurations of interpersonal relationships, our focus

here is on the near-term implications of balance on day traders’ performance. Formally,

our outcome variable is whether trader i performs better (profitit >
1
N

∑N
t′=1 profitit′) or

worse than their individual-level mean profit across all periods, where N is the number

of periods. This variable is coded as pit = 1 or pit = 0, respectively. In our regres-

sion models we control for other factors influencing trading success, including market

volatility (1=high, using the standard measure of the VIX), trader fixed effects, period

fixed effects, average trade value ($), active trading days, trader’s degree centrality and

IM’s sent. Trader balance is measured as the log of balance. A Logit(pit) = β0 + β1(bit)

regression was used to test the relationship and further validated with a non-parametric

regression. The non-parametric regression imposes no distributional assumptions on the
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Figure 2.6: Hot hand Logit regression social balance significance, P < 0.001. This
figure shows the results of 10,000 null models randomizing the networks, point O rep-
resents coefficient from the observed networks, dots in the middle of oval represent
those of randomized networks and the color shows their distribution. The coefficients
for the observed model are significantly different from randomized networks with the
same in and out degree distribution. It depicts the observed balance-hot hand rela-
tionship cannot be explained by chance.

data or misspecification errors and provides a stringent test of the hypothesis by using

10-fold cross validation and bootstrapped standard errors [142, 143]. To ensure that the

regression results are not due to chance, we compared the reported coefficients to those

expected by chance. The results indicate the observed regressions coefficient cannot be

explained by chance (Fig 2.6).

Balance is significantly and positively associated with a trader’s performance for both

the Logit and non-parametric regression (p < 0.001) (Fig 2.7). The relationship is robust

to controls for market uncertainty, time period fixed effects, and individual trader effects

(average trade value, number of active trading days, degree centrality), for each period

(Fig 2.7a). This result demonstrates that traders typically perform best, i.e. benefit from

a ”hot hand”, when they have relatively high balanced relationships. In fact, balance
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presents a superlinear effect. This strong positive relationship holds for over 75% of

the data. The change from medium to high balance is associated with an almost 30%

increase in profits. For the bottom 25% of the data, a change in a trader’s level of

balance has no association with their trading performance (Fig 2.7b). This suggests

that low levels of balance are unrelated to trading success but from medium to high

levels of balance, any increase in balance is positively and significantly associated with

increases in performance. Our result is consistent with synergy theory [144] and the

classic Morrissette et al. study [145]; however, to the best of our knowledge, this is the

first time the relationship has been tested on a longitudinal dataset.

2.5 Conclusion and Future Works

Balance theory provides an explanation for why interpersonal sentiment networks

shift towards states of structural balance. Little quantitative work has tested the the-

ory’s underlying premise in dynamic networks or the presumed link between balance and

performance. We analyzed a social network of day traders at a hedge fund using the

full corpus of instant message exchanges to infer positive and negative interpersonal at-

tachments over a two year time period. Our conclusion is that sentiment networks tend

toward attractor states in which violations of the SBT theory’s four axioms are removed

more frequently in the observed network than expected by chance. However, there are

novel findings about the temporal process of balance. We find that already balanced tri-

ads tend to be highly stable. Thus, once a triad transitions to a balanced state, it tends

to remain in balance due to high probability of self-transition for balanced triads [67]

(see Fig. 2.3). For unstable triads, different triads have different transition propensities

and certain forbidden triads persist in the system, i.e., the null triad, which had been

predicted by Heider [139], and introduced in a subsequent balance theory model by Davis
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a) Fixed effects Logistic Regression
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Figure 2.7: Positive classical structural balance and having the ”Hot Hand.” (a) Shows
coefficient estimates from an individual trader and period fixed effects for Logit re-
gression (b) Margins plot of the predicted relationship between the level of structural
balance and having the hot hand based on the non-parametric regression. Values
are means and 95% CI. Balance presents a superlinear effect. Positive relationship
represents 75% of data. Traders trade best (i.e., have the hot hand) when their bal-
ance is relative high. The increase from medium to high balance has relatively high
association of profits of nearly 30%. x-axis is reported as elog(balance).
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et al.[67].

The development of structural balance theory has strictly focused on the structure

and evolution of sentiment networks. This focus is motivated by a beautiful correspon-

dence between its elementary axiom set and the macro-topology of a sentiment network.

An untested premise of SBT is that it is related to performance, an implication with im-

portant consequences for the organization and economics of teams, networks, and other

collectives. Research on organizations suggests that individuals choose balance at the

expense of talent because individuals favor liking and trust (”lovable fool”) over talent

and skills (”competent jerk”) [47]. By contrast, our test found that the hot hand is more

likely to take place when an individual is in structural balance than out of structural

balance. One explanation for the finding is that high balance and talent are not mu-

tually exclusive. If balanced relationships result in more trustworthy information even

if not with the best informed or most skillful individual, they may reduce verification

costs. In our context, lower verification costs can mean trading is more responsive to

market opportunities [127]. Further, balanced ties may offer more social support, re-

ducing the emotional highs and lows that undermine risky decision-making or periods of

poor trading [146, 147]. In particular, both the information needs of successful trading

decisions, facilitated through instant e-communication, and the emotive nature of trad-

ing relationships emphasize the need to develop balanced ties to support collaboration

and communication among traders over individualism or isolation. Conversely, traders

with more strained relationships may need to expend a greater proportion of their energy

managing their non-cooperative relationships. In our study, we find evidence suggesting

that the expulsion of energy towards managing non-cooperative relationships can detract

from people’s abilities to effectively utilize their balanced relationships. More broadly,

beyond the context of risky decision-making, these findings suggest that future research

should further investigate the mechanisms by which balanced ties might improve or hin-
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der other performance outcomes such as creativity and innovation, negotiations, conflict

resolution, and pro-social behavior. For example, balanced ties might weaken the creative

tensions that promote breakthroughs in science, art, and philosophy [148].

Building on our findings, future work might begin to investigate exogenous drivers

of network dynamics. SBT theory has been endogenously focused on internal group dy-

namics. How and whether external forces are related to balance has been left largely

unaddressed despite evidence that external conditions affect how people value and inter-

pret their relationships. Our regression analysis showed that balance was sensitive to the

overall volatility in the market. Experiments could be devised to explore the mechanisms

by which interpersonal attachments change over time in complex collectives that include

social hierarchy, norms and rules for interaction that force the mixing of friend and enemy

relationships, or where relationships are utilitarian in nature first.
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Chapter 3

Generalized Structural Balance in

International Networks

Chapter 2 provides empirical support for the emergence of structural balance theory

in a longitudinal setting. The experimental results use classical definition of structural

balance [52] since there are a small number of traders and due the work environment,

they all know each other. Thus, the assumption for fully connected social network, which

is one of the requirements for classical balance theory, is acceptable. However, in a large

network, this assumption is no longer valid. Large social networks are naturally sparse.

Analyzing the sparse networks require an extension of structural balance theory. This

chapter builds upon Chapter 3 and extend the study of triads [149] to large and sparse

networks.

To study balance theory on sparse networks, we use a publicly available dataset

containing timestamped relationship among many countries in world for more than two

decades. This dataset provides a familiar setting based on the literature for testing

generalizations of balance theory as many researchers have modeled the relationships

among countries using balance theory [150, 151, 152, 153]. Additionally, the dataset
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in this chapter is significantly longer than the dataset used in Chapter 3. This factor

makes it possible to study the dynamics of Markov transition matrices over time. From

the literature including the study in Chapter 3, it is unknown what are the underlying

changes in the transition matrices of triads and whether one can use time-varying Markov

chains and model the dynamics using a convex optimization scheme.

The key result of this chapter, that enables answering the above stated questions is

that we define 138 sparse triads and track their distributions in longitudinal, dynamical,

and sparse networks of countries, as well as two datasets of Bitcoin trust networks.

We compute the empirical Markov transition matrices of sparse triads. We introduce

methods for model-driven estimation of evolution in signed networks using generalization

of balance theory. Lastly, we detect shocks in the dynamical networks among countries

using time-varying Markov models.

The chapter is organized as follows. In Section 3.1, we motivate and informally define

the problem, provide a review of existing works in analysis of network dynamics among

countries, literature on structural balance theory, and briefly introduce this chapter’s

four contributions. Section 3.2 provides the necessary preliminaries including definition

of symbols and extensions for balance theory. Section 3.3 is dedicated to the design of

the core concept of this chapter—Extracting the the networks, computing the empirical

Markov transition probability matrix, and estimating the transition matrices via the

proposed objective function using convex optimization. The experimental results are

illustrated in Section 3.4. We conclude in Section 3.5 with a discussion and a summary

of the results of this chapter, and point out potential directions for future research.
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3.1 Introduction

Networks of relationships such as like/dislike, trust/distrust, and praise/blame among

individuals or collective actors may alter over time. The investigation of the topology of

such signed appraisal networks, their evolution over time, and the development of models

of their evolution have attracted sustained interdisciplinary interest. The conducted work

posits that changes in the structure of appraisal networks are based on tensions generated

by particular configurations of appraisals [52] that violate transitivity (a friend of a friend

is a friend), and perhaps other such rules (an enemy of an enemy is a friend, a friend of

an enemy is an enemy, an enemy of a friend is an enemy). Appraisal networks may arise

in small groups of individuals, in communities, or in very large-scale networks composed

of collective actors that are organizations or nations with alliances and animosities.

3.1.1 Related Work

In this chapter, we investigate large-scale appraisal networks of collective actors where

nodes represent nations, states, or regions of a country [51, 61, 62, 150, 3, 154, 155]. The

motivations for exploiting such data include an understanding of the origins of war,

the formation of alliances, and the balance of powers. Similarly motivated research

includes [3, 51, 61, 62, 150, 154, 155]. Some of this research on international appraisals

has been guided by a network science theory of structural balance [52, 53] in which

signed networks evolve toward either a network of all positive appraisals or a network

composed of two components of actors with all positive within-component appraisals and

all negative between-component appraisals. Gellman et al. [152] used structural balance

theory to analyze the origins of WWI, and Antal et al. [153] similarly used balance

theory to explore the evolution of major changes among the protagonists prior to WWI

during the period 1872 to 1907. Moore et al. [151] used balance theory to analyze the
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conflict over Bangladesh’s separation from Pakistan in 1972. Harary et al. [150] also

analyzed international relations among nations and different states of equilibrium and

disequilibrium, using structural balance theory for the crisis in the Middle East in 1956.

Harary et al. [150] showed how ten countries, after each international shock, sought a

new equilibrium alignment consistent with what balance theory predicts.

Structural balance theory has deep roots in sociology [57] and social psychology [52].

Its applications include research on consumer-branding [59], sports [60], virtual worlds [156],

and social animals [64]. It posits that networks of positive or negative interpersonal ap-

praisals evolve towards stable topologies [53, 52, 67, 69, 65]. The formal development

of structural balance theory was set in motion with Cartwright and Harary’s [53] defi-

nition of attractive and repulsive configurations. Their approach, which has become the

standard model of structural balance, assumes a complete appraisal network in which

all individuals have either a positive or negative appraisal of any other individual in the

network. Thus, any three individuals’ interpersonal appraisals of one another must be

one of 16 configurations some of which are posited to generate tensions that trigger a

structural change. Notably, the classical structural balance theory model, which satisfies

Cartwright and Harary’s criterion of structural balance, permits only 2 of the 16 feasible

types. On this basis, a group’s network topology must be either a complete network of

all-positive appraisal or a network partitioned into two antagonistic subgroups with no

negative within-group appraisals and all negative between-group appraisal. The theory

asserts that a network of positive and negative interpersonal relations evolves towards

either a cohesive group or to a partition into two antagonistic subgroups [70, 74].

Despite numerous theoretical advancements and empirical studies on balance theory,

the dynamic predictions of network state changes have rarely been tested with empirical

investigations of longitudinal data [156, 149]. There have been a large number of empirical

studies on static networks [157, 158, 159]. Longitudinal studies have been limited to small
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populations of actors and to a small number of temporal states of the network [51, 160].

In contrast, this chapter presents results on the most extensive set of longitudinal data

yet assembled that allows research on the question of whether the evolution of appraisal

networks is mainly driven by reductions of intransitive relations.

To tackle those shortcomings in the literature, we use Integrated Crisis Early Warning

System (ICEWS) dataset that is a comprehensive, automated, and validated system

to monitor national, sub-national, and internal crises [161]. Its event data is publicly

available and consists of coded interactions between socio-political actors (i.e., friendly

or hostile actions between individuals, groups, sectors, and nation-states). Geographical-

temporal metadata are extracted and associated with the relevant events within a news

article. The data structure is a list of events. Every event has an occurrence date, a source

actor, and a target actor. Every event is also annotated with a value in the [−10,+10]

interval that indicates the orientation of the source to the target actor: −10 (completely

offensive) to +10 (completely supportive). For instance, the news event “Japan said on

Tuesday it had halted economic aid to Yugoslavia in line with Western efforts to end

the fighting there” is coded as a directed edge from Japan to Yugoslavia with weight

−5.6, that is calculated based on the content of the news and the type of event (which in

this case was ”reduce or stop economic assistance”). Generally, the actors have political

positions in a particular country, such as government administration, military, police,

etc. In our analysis, we consider every country as a node and focus our analysis on

international events in which the source and target nodes belong to different countries.

In the span of 23+ years from 1995-01-01 to 2018-09-30, the ICEWS data includes

250 countries and 8,073,921 international events, each of which are positive or negative

appraisals generated from a source country to some other target country. Each appraisal

is a value in the interval [−10,+10] that indicates the orientation of the source to the

target actor in a news event that occurred at particular time: −10 (completely offen-
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sive) to +10 (completely supportive). The event data present positive, negative, and null

international edges. The null edges are either a source-target news event that cannot

be given a sign or an indicator that no source-target news event has been published.

Precisely, there are 5,974,283 positive international edges (74%), 1,333,646 negative in-

ternational edges (17%), and null instances of 765,992 neutral edges (with weight zero)

(9%). In the ICEWS data, null relations appear when there are neither amicable nor

hostile events between two countries. While it may be assumed that all countries are

aware of each other’s existence, such awareness need not be coupled with an amicable or

hostile relation.

Unlike classical balance theory’s prediction [53], our empirical evidence does not sup-

port the prediction that a network of friends and enemies must evolve either to a network

of all friends or to a network of composed two antagonistic components of actors with

all positive within-component appraisals and all negative between-component appraisals.

Instead, the evidence supports the conclusion that the evolution of appraisals is mainly

driven by reductions of intransitive relations among actors, which allow the emergence of

complex network topologies with more than two mutually antagonistic sets of countries

and hierarchically structured positive relations between countries [162]. Intransitive rela-

tions occur when there is evidence of a positive chain of international relations i
+−→ k

+−→ j

and evidence of a negative i
−−→ j relation. Such intransitive relations are assumed to

be sources of international tensions that lead to transformations of positive relations to

negative relations, and vice versa.

Furthermore, the empirical evidence does not support balance theory’s assumption

that every actor has either and positive or negative orientation to every other actor,

and a line of research has developed that relaxes this assumption [53, 163, 164, 165, 54,

166, 55, 62, 104]. In large-scale networks, incomplete networks that include indifference

relations are the rule. In this chapter, to the best of our knowledge, for the first time in
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a longitudinal setting, we are able to address three important limitations of the line of

research on the evolution of international appraisals have has been motivated by struc-

tural balance theory. These data provide a unique opportunity to (i) construct networks

of international amicable and hostile relations among nation-states that occur in specific

time-periods and (ii) investigate the global evolution of the network of such international

appraisals over a lengthy span of time.

3.1.2 Contributions

Our contributions in this chapter are as follows. In this chapter, we advance the line

of research on the evolution of the network of amicable and hostile relations among

countries, and also the basic science on structural balance theory. To the best of our

knowledge, this chapter reports empirical findings from the largest longitudinal data yet

assembled on structural balance theory.

1. We address the existing lacuna on balance theory dynamics in large-scale networks

that include null (indifference) relations. In networks that include large numbers of

null relations, we find startling evidence of changes in international relations that

are predominately restricted to only 10 types of configurations in the possible set of

138 configurations of null, positive, or negative relations among any three countries.

2. We find surprising evidence that does not comport with balance theory’s prediction

of a general tendency toward configurations of international relations that do not

violate the theory’s assumptions. Instead, we find a trajectory that involves a

short period of increasing numbers of violations of balance theory’s expectations, as

indifference relations convert to negative or positive relations, followed by a longer

trajectory that involves decreasing numbers of violations of transitive relations.

This is an artifact of the dataset from year 1995 to 2006 as due to increasing
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relationships among countries, the number of positive ties increases and therefore

temporarily the number of intransitive triads increases. However, by investigating

the Markov transition matrices of triads during the entire course of this evolution,

we find that balanced triads are likely to stay balanced and those unbalanced triads

are likely to transition to balanced ones.

3. We introduce a novel convex optimization model with a convergence guarantee

for quantitatively estimating time-varying Markov chains of the transitions of the

structure of international relations. Empirical Markov transition matrices show

diminishing variability over our longitudinal data and emergent dynamic stability.

4. We conclude with evidence suggesting that the evolution of the network structure

toward dynamic stability is subject to disturbances that appear to be related to

disruptive international events and changes in the global economy. This finding

provides a empirical support on a longitudinal setting for earlier research regarding

the effect of global trades on international conflicts [3].

3.2 Preliminary

3.2.1 Definitions

In Table 3.2.1, we summarize the major notations used throughout the present section.

In Table 3.2, we provide formal definitions for balanced triads in sparse networks inspired

from three aforementioned historical models.
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Symbols Definition

V The set of nodes in a network
E The set of edges in a network
eij Directed edge from node i to node j
At Adjacency matrix of directed and signed network at time t
Pt Markov transition probability matrix from time t to t+ 1

P̂t Empirical Markov transition probability matrix from time t to t+ 1

P̃t Estimated time-varying Markov transition probability matrix
T The number of available time periods

Table 3.1: Summary of basic symbols.

Balance Model Heider Axioms Structural Equation (condition)

classical [53] A1, A2, A3, A4

∀i, j, k ∈ V, for every combination:

if eik 6= 0 and ekj 6= 0

then eij = eikekj should be valid

clustering [67] A1, A2, A3

∀i, j, k ∈ V, for every combination:

if eik 6= 0 and ekj 6= 0

and (eik > 0 or ekj > 0)

then eij = eikekj should be valid

transitivity [69] A1

∀i, j, k ∈ V, for every combination:

and eik > 0 and ekj > 0

then eij = eikekj should be valid

Table 3.2: Sparse balance theory conditions. Definitions of sparse structural balance
theory that generalize existing definitions of balance. Transitivity is the most general
model that only requires the first axiom. V represents list of nodes in the network
and eij represents the directed edge from node i to node j. For every three nodes
of i, j, k and any combinations of which in the network, the condition should hold to
be considered structurally balanced. Fig. 3.2 shows all 138 triads and if each triad is
considered balance under any of these definitions.
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3.2.2 Generalized Structural Balance

Classical balance theory assumes a fully connected network [52, 67, 65, 104]. While

it is rational to make that assumption for small networks [75], in this chapter, due to the

scale of the networks, the assumption of classical balance theory breaks as in networks

with hundreds of nodes, it is unlikely that all nodes are aware of every other node. Even

if they are, they may not need to communicate, work, or trade with each other. In such

cases, there is no tension toward changing the configuration of appraisal relationships.

Since classical balance cannot model the behavior of such large communities, we introduce

a generalization of balance theory called sparse balance theory. We generalize three

definitions of balance, based on the above axioms, to networks with null edges. Assume

eij represents a directed edge from node i to node j. The value of eij can have negative,

positive or zero (null) value. Out of 138 possible triads, 93 are transitive-balanced (67%),

44 are cluster-balanced (32%), and 24 are classical-balanced (17%). Remarkably, we

find a large set of forbidden triad types are transitioning to a relatively small set of

permissible triad types (Fig. 3.7). In balance theory literature, the concept of sparse

balance theory has been before addressed as incomplete awareness [167, 165]. The concept

has been motivated by the empirical evidence that affective relations are signed but

seldom complete — actors may be neutral toward each other or there may be null or

unobserved edges. Cartwright and Harary [53] define balanced cycles on networks with

missing edges such that the only condition is as cycles containing an even number of

negative edges. In this chapter, we extend the analysis of networks with null edges to

the general case of sparse triads (formal definitions in Table 3.2). Assume every directed

edge e has value ∈ {−1, 0,+1}. For every three distinct nodes i, j, k, to be considered as

a balanced triad, the following condition, for any permutation of the nodes is needed.
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3.3 Methods and Materials

3.3.1 Network Extraction

Networks are extracted by aggregating edges in predetermined periods. If the period

length is too short we would not obtain sufficient information, while too long periods

would decrease the granularity of the observations. We use 12 weeks (∼1 quarter) as

the period duration. Note, Fig. 3.5 shows results based on transition matrices are robust

with respect to the choice of period length. Consequently, for ICEWS dataset, we have

103 networks. For a given network, the appraisal between nodes i and j is determined

by the sign of summed edge weights of all directed edges observed between them (edge

(i, j)), during that time period, as described by

Aij(tk) = sign

( ∑

tk≤t≤tk+1

wij(t)

)
, (3.1)

where A(tk) shows the adjacency matrix of directed and signed network at time at period

tk.

3.3.2 Empirical Markov Transition Matrices

We use Maximum Likelihood estimation (MLE) for estimating empirical Markov tran-

sition matrices. Pt represents a Markov transition probability matrix from time t to t+1.

More precisely, for each consecutive observation period (t, t+ 1), we compute Pij(t), the

number of triads of type i that moved to type j from period t to t+ 1. In fact, for every

three nodes in the network, we find the corresponding triad type, at time t and time t+1,

say triad type i and triad type j, respectively. Then increment the number of transitions

happening from Pij(t)← Pij(t) + 1. Thus, row i sums to Pi?(t), the number of triads of

type i at time t, while P?j(t+ 1) is the number of triads that have transitioned to type j
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at time t+ 1. Using the transition matrix Pij(t+ 1), the transition probabilities can be

estimated to obtain the transition probability matrix. These quantities can be arranged

in a matrix and normalized by the sum of every row. Therefore, we have row-stochastic

transition matrix P where each Pij(t) is conditional on i only, and not on prior states

occupied by the triad. By the Markov property, they are identical for all triads, and they

converge to a stationary probability distribution.

It is implicit in the evolution of structural balance that the triads share edges in a

network and that might affect the estimating the empirical Markov transition probabil-

ities. However, based on Markov property, the only requirement is that the next state

only depend on the current state as we compute the transition probability matrix from

two consecutive time periods. This phenomenon introduces additional structures in the

transition matrix. As a consequence, some transitions can rarely happen as some entries

of the transition matrix will be close to zero. We mitigate this potential dependency

among triad transitions by applying smoothness which also helps to estimate the correct

transition matrix with fewer number of data points.

3.3.3 Estimating Time-varying Markov Transition Matrices

Estimating Markov transition matrices via counting the observed transitions only

takes into account the subsequent periods and therefore does not take advantage of any

other similarity among transition matrices. The goal is to have a method that while

keeping the Markov attribute of the system, allows for transition matrices to trans-

fer information based on the existing assumptions in the literature, such as applying

smoothness to estimate a more accurate set of transition probability matrices. Hence, we

use time-varying Markov chains to capture the most out of the observed transitions in

the data. The length of the longitudinal data, in this chapter, entails having statistical
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sufficiency to apply a nonparametric convex method to accurately estimate the transition

probability matrices directly from the data.

Model Formulation

For a network At at time t, we count the occurrences of each of three nodes, and

classify each into one of 138 possible triads. T represents the number of available time

periods and there exists T networks.

There are m entities (triads in a dynamic network), that in parallel, change states for

T periods of time. As discussed before, there are 138 triad types. The empirical Markov

probability transition matrix from time t − 1 to t, represented as P̂t, is computed as

follows

P̂t =

m∑
r=1

1
{
S
(r)
t = j, S

(r)
t−1 = i

}

m∑
r=1

1
{
S
(r)
t−1 = i

} , (3.2)

where each P̂t is a 138× 138 Markov transition matrix and there exist P̂1, . . . , P̂T−1 as

empirical transition matrices. m represents the number of possible sub-graphs of three. 1

shows indicator function which in this equation depicts counting the number of transitions

from time t − 1 to time t. S
(r)
t shows the type of triad (state) of sub-graph r at time t.

In Eq. 3.2, the numerator accounts for the number of transitions from triad type i to j,

and the denominator captures the number of transitions from triad type i to any triads.

Fig. 3.5 shows the average empirical Markov transition matrices for different choice of

period length. Now, we formalize an optimization problem to account for potential error

in each empirical transition matrix as being optimized to be close to the true underlying
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time-varying Markov transition matrix as

Pt ∼ P̂t. (3.3)

The algorithm considers these empirical transition matrices as the input, and esti-

mates all latent transition matrices, simultaneously. By definition, a Markov transition

matrix, Pt : 138 × 138, should be ergodic, aperiodic and irreducible. Simply put, in

the considered Markov chain, it should be possible to be in any state and also should

be possible to get to any state from any state. Thus, there are T probability Markov

transition probability matrices and every Pt needs to satisfy

0 < (Pt)ij ≤ 1, ∀i, j ∈ {1, . . . , 138} and t ∈ {1, . . . , T − 1}. (3.4)

By definition, Markov transition probability matrices should be row-stochastic —

every row is sum up to 1. That is

1TnPt = 1Tn . (3.5)

Regarding the objective function, based on previous studies dealing with time-varying

Markov chains [168], we make an assumption that subsequent transition matrices are

similar to each other; the changes happen smoothly.

Pt ∼ Pt−1. (3.6)

Optimization Problem

To estimate all unknown transition matrices simultaneously (T − 1 matrices of size

138×138), we setup an appropriate optimization problem; we shall solve the optimization
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problem using convex optimization methods.

P̃1, . . . , P̃T−1 =

arg min
P1,...,PT−1

1
2T−1

T−1∑
t=1

∥∥∥P̂t −Pt

∥∥∥
2

F
+

T−1∑
t=2

ψ

(
Pt −Pt−1

)
,

subject to (Pt)ij > 0, ∀i, j ∈ [1, 138],

(Pt)ij ≤ 1, ∀i, j ∈ [1, 138],

1TnPt = 1Tn ,

(3.7)

where function ψ represents regularization terms for time-varying transition matrices

estimation. This function is defined as ψ(X) = λ1‖X‖1 + λ2‖X‖2 for any matrix X ∈

R138×138. These terms together penalize both the magnitude and number of changes in

the Markov transition matrices between periods. In this equation, Pt : t = 1, . . . , T − 1

are the variables to be estimated using convex optimization, P̂t : t = 1, . . . T are the

empirically estimated transition matrices using counting each triad’s transitions, and

P̃t : t = 1, . . . , T −1 are the estimated transition matrices. The values of P̃t are shown in

Fig. 3.7. More precisely, using function ψ in Eq. 3.7, we apply two forms of smoothness

on subsequent Markov transition matrices: l2-norm (Frobenius norm), also called group

lasso that enforces a small amount of change in transition matrices, and l1-norm, also

called fused lasso that induces a sparse solution with respect to the changes in matrices.

In optimization literature, this criterion is called sparse group lasso [169]. Together they

encourage subsequent Markov transition matrices to only deviate from each other with

small values and in only a few cells.

This formulation allows for learning a separate model for each transition between

time periods while inferring information globally across all periods. Non-parametric

estimating all transition matrices together via an optimization problem decreases the
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chance of overfitting. This method also allows for finer time windows than otherwise, and

provides a better inference granularity in time. Consequently, even with few observations

of the data, we end up with an accurate estimation for time-varying transition matrices.

Algorithm 1 illustrates the steps for estimating the time-varying Markov chains.

The problem in Eq. 3.7 is convex. The reason is that the objective function is a

summation of two norms which are convex, all of the inequality constraints are convex,

and all equality constraints are affine. Therefore, the problem is convex [170], it has a

globally optimal solution, and we solve this equation by a convex optimization solver,

CVXPY [171].

Algorithm 1 Time-varying Markov algorithm. Non-parametric estimation of all time-
varying transition matrices simultaneously using a convex objective function.

Input: Signed directed networks over time {A}Tt=1

Output: Estimated transition matrices {P̃}T−1t=1

Tune the hyper-parameters λ1, and λ2
for time starting from t = 2 to T − 1 do

P̂t := zero matrix[138, 138]
for every triplet of nodes i, j, k in set of nodes V do

triad1 := type(At−1(i, j, k))
triad2 := type(At(i, j, k))
P̂t[triad1, triad2] := P̂t[triad1, triad2] + 1

end

P̂t := P̂t/
(
1Tn P̂t

)

end
Solve the convex optimization problem in Eq. 3.7

Model Comparison

In order to test the predictability of the estimated transition matrices, we predict

unseen proportion of the unseen triads using the proposed algorithm as compared to

competitive baseline methods. For instance, assume we have T periods. We hold out the

proportion of triads at time T and train on periods of 1 up to T − 1 using Algorithm 1.
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Consequently, the estimated transition matrix for time T − 1 to T is multiplied with

proportion at T − 1 to give us the predicted proportion at T . We apply one step-

ahead forecast, for multiple times, in each time retraining the model up to the last held

out time. To this end, we have a more descriptive picture of the prediction power of the

proposed method. As the forecast metric, we compute Root Mean Squared Error (RMSE)

of the difference between the predicted proportion with the ground truth. Random

prediction is neglected due to its significantly worse accuracy compared to other baselines.

Consequently, we compare our forecast to a baseline of simply predicting the last time

steps proportions, and versus an average of all preceding time steps’ proportions.

In this dataset, we modify the proposed model in Eq. 3.7 to apply the optimization

only on a desired time window with length δ. This hyperparameter would be tuned

to determine how many past transition matrices are used for optimizing the current

time points. The reason is long-range interactions in the objective function could cause

unwanted effects if the dynamics are changing so heavily over time. Especially, when we

observe in Fig. 3.9 the changes are dramatically decreasing over time. Using two years as

the time window (δ = 8), we compare the proposed model using Time-varying Markov

model to the baselines in Fig. 3.1.

Fig. 3.1 depicts that the proposed algorithm outperforms the baselines and makes ac-

curate forecasts of the proportion of triads in the subsequent time period in the ICEWS

dataset. Baselines consist of predicting last proportion of triads (Last Proportion), aver-

age of previous proportions of triads (Average Proportion), and using previous Markov

Transition matrix without applying time-varying estimation to estimation the current

proportion (Time-invariant Markov). The proposed Time-varying Markov model clearly

surpasses the baselines in almost every year forecast. We also apply on a validation set

of the periods, to carefully tune the hyperparameters of algorithm 1. In this chapter, we

also set λ1 = 0.01 and λ2 = 0.005.
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Figure 3.1: Model comparison. Root Mean Square Error (RMSE) of different baseline
algorithms and the proposed Time-varying Markov model (dashed blue) in predicting
unseen triad proportions in Integrated Crisis Early Warning System (ICEWS) dataset
(the smaller RMSE the better). Average Proportion (dash-dotted orange) computes
the average of each triad type proportion up to the current time. Last Proportion (solid
green) assumes the new proportion is exactly the last one, and due to the origin of
being smooth, it is highly competitive. The proposed Time-invariant Markov (dotted
red) chain method minimises the RMSE thus providing the most accurate proportion
of triads. The results show that the proposed method almost for every year surpassed
the baselines’ accuracy in forecasting the proportion of the triads.
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3.3.4 Details and Proofs for Time-varying Markov Model

Fig. 3.2 shows all 138 sparse triads. The title includes (B) and (N) whether if each

triad is balanced with respect to classical-, clustering-, and transitivity-balanced, respec-

tively. These definitions are generalizations based on the literature when we require

different subset of Heider’s axioms [52] (Friend of friend is friend and etc.). The classical

version is the most restrictive by requiring four axioms while transitivity requires only

one axiom and is the least restrictive.

In the following of this section, we provide proofs for the time-varying Markov model.

Settings: There are n = 138 states, named l1, . . . , ln. There are m entities (triads in

the network), that in parallel, change states for T + 1 periods of time. Each empirical

Markov probability transition matrix, P̂t, is computed as follows

P̂t(i, j) =

m∑
r=1

1
{
S
(r)
t = j, S

(r)
t−1 = i

}

m∑
r=1

1
{
S
(r)
t−1 = i

} (3.8)

where each P̂t is a n×n matrix and there exist P̂1, . . . , P̂T . m represents the number

of possible sub-graphs of three. 1 shows indicator function which in this equation depicts

counting the number of transitions from time t−1 to time t. S
(r)
t shows the type of triad

(state) of sub-graph r at time t.

Assumptions: The assumption is that there is an error in empirical transition matrices

such that

P̂t = P0,t + zt (3.9)

where P0,t : t = 1, . . . , T are the true unknown transition matrices, P̂t, t = 1, . . . , T
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Figure 3.2: Total 138 sparse triads. Title of each triad shows its #ID, and whether
if it is balanced with respect to classical-, clustering-, and transitivity-balanced, re-
spectively. The title includes (B) if it is balanced, and (N) if not, for every definition.
Notably there exists 24 triads out of 138 ones which are classically-balanced. 44 triads
out of 138 are clustering-balanced. Also, 93 triads out of 138 are transitivity-balanced.
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the empirical transition matrices, and zt, t = 1, . . . , T are i.i.d sub-Gaussian errors with

zero mean. The probability transitions are between [0, 1]; thus, it is easy to show that

the error is bounded as there exists a value for M,σ > 0 such that

P (|zi| > t) ≤ M exp(−t2/(2σ2)) ∀t > 0, i = 1, . . . , n.

Hence, zt is sub-Gaussian. In our results, we also find empirically support for in-

dependence of errors as the Pearson correlation of every cells for subsequent estimated

matrices are very small and more than 70% are not statistically significant (p ≥ 0.05).

We also assume the total variation [172] of matrices does not grow too quickly [173],

where each P0,t is a matrix with n2 dimensions, for the constant value of n = 138

TV (P0,t) =
T∑

i=2

||P0,t − P0,t−1||1,1 ≤ n2CT = O(T ). (3.10)

We empirically report the above equation for our data is approximately 0.04T , and

indeed is O(T ).

Problem definition: Instead of having a model for one Markov transition matrix and

fit that to the entire period, we define a convex optimization problem to predict all

transition matrices altogether using trend filtering for nonparametric regression [174].

P̃1, . . . , P̃T = arg min
P1,...,PT

1
2T−1

T−1∑
t=1

||P̂t − Pt||2F + λ1
T−1∑
t=2

||Pt − Pt−1||1,1 + λ2
T−1∑
t=2

||Pt − Pt−1||2,1,

subject to (Pt)ij > 0, ∀i, j ∈ [1, n]

1TnPt = 1Tn

(3.11)

where P̃t : t = 1, . . . , T are the estimated transition matrices. λ1 and λ2 are the

66



Generalized Structural Balance in International Networks Chapter 3

hyperparameters which are tuned by applying Grid Search with 5-fold cross-validation.

Convexity Proof

The objective function is a summation of three norms which are convex, all of the

inequality constraints are convex, and all equality constraints are affine [170]. Therefore,

the problem is convex, it has a globally optimal solution [170]. Thus, we solve this

equation by a convex optimization solver, CVXPY [171].

Convergence Rate Proof

For the sake of simplicity, in the following section, we only take into account l1−norm

smoothness in the optimization problem.

Convergence Rate Theorem:

T−1∑

t=1

||P̃t − P0,t||2F = OP

(
n2(nullity(∆) +M

√
log rCT )

)
. (3.12)

Proof: Since the objective function in Eq. 3.11, in previous proof is shown to be

convex; thanks to the optimiality of argmin, P̃ , the solution of the optimization problem

minimizes the objective function more than any other matrix, say X,

objective(P̃ ) ≤ objective(X).

We use Eq. 3.11 and rewrite it as

1

2T − 1

T−1∑

t=1

||P̂t−P̃t||2F+λ1

T−1∑

t=2

||P̃t−P̃t−1||1,1 ≤
1

2T − 1

T−1∑

t=1

||P̂t−Xt||2F+λ1

T−1∑

t=2

||Xt−Xt−1||1,1.
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As a matter of fact Xt, could be replaced by P0,t as follows

1

2T − 1

T−1∑

t=1

||P̂t−P̃t||2F+λ1

T−1∑

t=2

||P̃t−P̃t−1||1,1 ≤
1

2T − 1

T−1∑

t=1

||P̂t−P0,t||2F+λ1

T−1∑

t=2

||P0,t−P0,t−1||1,1.

After multiplying both sides by 2 and expanding the previous inequality by using the

assumption in Eq. 3.9, we have

T−1∑

t=1

||P0,t+zt−P̃t||2F+2λ1T
T−1∑

t=2

||P̃t−P̃t−1||1,1 ≤
T−1∑

t=1

||P0,t+zt−P0,t||2F+2λ1T
T−1∑

t=2

||P0,t−P0,t−1||1,1.

Then, we can write

T−1∑

t=1

||(P0,t−P̃t)+zt)||2F+2λ1T
T−1∑

t=2

||P̃t−P̃t−1||1,1 ≤
T−1∑

t=1

||zt||2F+2λ1T
T−1∑

t=2

||P0,t−P0,t−1||1,1.

By expanding the power in term
T−1∑
t=1

||(P0,t − P̃t) + zt)||2F from above inequality, we

have

T−1∑

t=1

||P0,t − P̃t||2F +
T−1∑

t=1

||zt||2F + 2
T−1∑

t=1

zTt (P0,t − P̃t) + 2λ1T
T−1∑

t=2

||P̃t − P̃t−1||1,1

≤
T−1∑

t=1

||zt||2F + 2λ1T
T−1∑

t=2

||P0,t − P0,t−1||1,1,

where rearranging the terms yields
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T−1∑

t=1

||P̃t−P0,t||2F ≤ 2
T−1∑

t=1

zTt (P̃t−P0,t)+2λ1T
T−1∑

t=2

||P0,t−P0,t−1||1,1−2λ1T
T−1∑

t=2

||P̃t−P̃t−1||1,1.

Using orthogonal decomposition on the left term we have

T−1∑

t=1

||P̃t − P0,t||2F =
T−1∑

t=1

||zt||2R⊥ +
T−1∑

t=1

||P̃t − P0,t||2R, (3.13)

where the null space term is of the order

T−1∑

t=1

||zt||2R⊥ = O(n2nullity(∆)), (3.14)

and the row space term of inequality Eq. 3.13 is rewritten as following

T−1∑

t=1

||P̃t−P0,t||2R ≤ 2
T−1∑

t=1

zTt PR(P̃t−P0,t)+2λ1T
T−1∑

t=2

||P0,t−P0,t−1||1,1−2λ1T
T−1∑

t=2

||P̃t−P̃t−1||1,1.

In the first term we use PR = ∆†∆ where ∆ ∈ Rr×n is an arbitrary linear operator,

with r rows. We have

T−1∑

t=1

||P̃t−P0,t||2R ≤ 2
T−1∑

t=1

zTt ∆†∆(P̃t−P0,t)+2λ1T
T−1∑

t=2

||P0,t−P0,t−1||1,1−2λ1T
T−1∑

t=2

||P̃t−P̃t−1||1,1.

(3.15)

Based on Hölder’s inequality [175], we know for any p, q ≥ 1 such that 1
p

+ 1
q

= 1 then

for any two functions f and g the following inequality always holds

‖fg‖1 ≤ ‖f‖p‖g‖q.
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By applying Hölder’s inequality on the term zTt ∆†∆(P̃t − P0,t) from Eq. 3.15, with

p =∞ and q = 1, we see

zTt ∆†∆(P̃t − P0,t) ≤ ||zTt ∆†∆(P̃t − P0,t)||1 ≤ ||(∆†)T zt||∞||∆(P̃t − P0,t)||1,

in which ∆(P̃t−P0,t) = (P̃t− P̃t−1)− (P0,t−P0,t−1). We can rewrite the inequality as

zTt ∆†∆(P̃t − P0,t) ≤ ||(∆†)T zt||∞||(P̃t − P̃t−1)− (P0,t − P0,t−1)||1. (3.16)

We claim that variation in every step from its previous value has the same sign in the

ground truth and the estimated matrix. In other words, sign of P0,t−P0,t−1 and P̃t− P̃t−1
are always the same. Thus, we can use the inequality ||x− y|| ≤ ||x+ y|| where xy ≥ 0.

Therefore, we have

zTt ∆†∆(P̃t−P0,t) ≤ ||(P̃t− P̃t−1)− (P0,t−P0,t−1)||1 ≤ ||(P̃t− P̃t−1)+(P0,t−P0,t−1)||1

Based on triangle inequality (||x+y||1 ≤ ||x||1 + ||y||1 for any x, y), we know the right

term in previous equation is

zTt ∆†∆(P̃t − P0,t) (3.17)

≤ ||(∆†)T zt||∞
∥∥∥(P̃t − P̃t−1) + (P0,t − P0,t−1)

∥∥∥
1

≤ ||(∆†)T zt||∞
(
||P̃t − P̃t−1||1 + ||P0,t − P0,t−1||1

)
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Note zt are all independent, and thus their summation is treated as a constant.

Therefore, using equations Eq. 3.16 and Eq. 3.17 and after applying summation, we have

T−1∑

t=1

zTt ∆†∆(P̃t − P0,t) ≤
T−1∑

t=1

||(∆†)T zt||∞
( T−1∑

t=2

||P̃t − P̃t−1||1 +
T−1∑

t=2

||P0,t − P0,t−1||1
)
.

By picking the right value for λ1 ≥ 1
T

T−1∑
t=1

||(∆†)T zt||∞, then above equation can

simplified as

T−1∑

t=1

zTt ∆†∆(P̃t − P0,t) ≤ λ1T
T−1∑

t=2

||P̃t − P̃t−1||1 + λ1T
T−1∑

t=2

||P0,t − P0,t−1||1.

Consequently, we use above inequality in Eq. 3.15, and rewrite it as in the following

T−1∑

t=1

||P̃t − P0,t||2R

≤ 2λ1T
T−1∑

t=2

||P̃t − P̃t−1||1 + 2λ1T
T−1∑

t=2

||P0,t − P0,t−1||1

+ 2λ1T
T−1∑

t=2

||P0,t − P0,t−1||1,1 − 2λ1T
T−1∑

t=2

||P̃t − P̃t−1||1,1.

And thereupon

T−1∑

t=1

||P̃t − P0,t||2R ≤ 4λ1T
T−1∑

t=2

||P0,t − P0,t−1||1,1. (3.18)

Similar to previous studies [176], we know ||(∆†)T zt|| = OP(M
√

log r) by a standard

result on the maximum of Gaussians (derived using the union bound, and Mills’ bound
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on the Gaussian tail), where M is the maximum l2−norm of the columns of ∆†. Thus,

for the hyperparameter λ1 we know

λ1 ≥
1

T

T−1∑

t=1

||(∆†)T zt||∞ = OP(
M

T

√
log r).

And based on the total variation growing condition in Eq. 3.10 and the aforementioned

choice of λ1, inequality in Eq. 3.18 gives the below inequality

T−1∑

t=1

||P̃t − P0,t||2R ≤ 4(
M

T

√
log r)Tn2CT = 4n2MCT

√
log r. (3.19)

The convergence rate for the entire problem, by using Eq. 3.19 and Eq. 3.14, would

be the big o probability of the following

T−1∑

t=1

||P̃t − P0,t||2F ≤
T−1∑

t=1

||P̃t − P0,t||2R⊥ +
T−1∑

t=1

||P̃t − P0,t||2R

≤ n2nullity(∆) + 4n2MCT
√

log r,

And thus,

T−1∑

t=1

||P̃t − P0,t||2F = OP

(
n2(nullity(∆) +M

√
log rCT )

)
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3.4 Experimental Results

3.4.1 Empirical Dynamic Networks

To investigate the evolution of the international appraisals, these data are disag-

gregated into time periods. Each time period is associated with the subset of published

events that occurred during the period. Each network is comprised of 62,250 (2502−250)

directed positive, negative, and null edges among the 250 countries. A particular source-

target ordered pair of countries may be associated with multiple events during a particular

time period, and we take the sign of the summed value of these multiple events as the

measure of the orientation of the source to the target. Hence, for 3 month periods,

we have 101 snapshots of signed and directed networks among countries. We attend to

different definitions of period length as a check on the robustness of our findings.

We find that the network structures are in the class of classical core-periphery (also

called center-periphery) structures [177, 178]. Such structures of n nodes are composed

of one strong component of k nodes (the core) in which one or more paths of positive

appraisals exits from every member of the core to every other member of the core. The

remaining set of n − k nodes (the periphery) is composed of nodes each which has at

least one positive appraisal to a node (or nodes) in the core. We find, in the first period

of the data, that there are exactly 111 countries in the core and 23 countries in the

periphery. These peripheral countries were Afghanistan, Angola, Guinea, Haiti, Sierra

Leone, Zimbabwe, Bolivia, Paraguay, Rwanda, Armenia, Azerbaijan, Congo, Grenada,

Guatemala, Guyana, Kuwait, Malawi, Mozambique, Nicaragua, Nigeria, Panama, Sudan,

Timor-Leste. We find that over time (in about 4 years), all of the first period peripheral

countries moved into the core. That is, the size of the core grew to n = 134 and was

maintained as a single strong component of 134 nodes. The remaining 116 countries do

not exist in all network periods. Thus, we focus on the network dynamics of these 134
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countries in our analysis. Using quarterly periods, the percentage of positive ties in the

core increases from 4% to 18%, and the percentage of negative ties increases from 1% to

4%. This trend is shown in Fig. 3.3 (a).

This theory predicts an evolution of the structure of signed networks toward a state

in which all violations are eliminated. In this theory, triads —subsets of three nodes—

are considered the building blocks of relationships. Every possible triad of three countries

among the core countries (134 countries) involves six edges. Classical structural balance

theory assumes the absence of null edges, as every edge can be only positive or negative.

In this case, there are 16 possible type of triads [75, 104, 149, 70, 179]. As large networks

are rarely fully connected, in this chapter, we consider an generalization of structural

balance theory in which each edge is either positive, negative or null. We call it sparse

structural balance theory. In this model since null arcs are allowed, there are 138 possible

types of triads (Fig. 3.2 shows total 138 possible triads). The underlying idea behind

this generalization is that at any given time, if an edge has not been existed until now,

it means there exists no social tension between those two nodes and that edge should

not be considered as a violation by the balance theory axioms. To follow a tremendous

literature on structural balance theory, we extend it on sparse networks using three

existing models classical [53], clustering [67], and transitivity [69] (from least to most

general respectively). Each model permits different triad set to be considered structurally

balanced. The extension of these models are formally defined in Methods. Unlike the

past research in sparse balance theory [180, 181], our study is more general, concise, and

uses a set of more detailed and longitudinal real-world datasets.

Remarkably, we find that 91% of the 392,084 observed triads in 23+ years are con-

centrated on only 10 triad types (out of 138). Fig. 3.3 (d) displays this operative set of

triad types (most frequent triads). The types 6, 8 and 9 include one or more violations

of transitivity, and the others do not. Fig. 3.3 (c) shows the average distribution of oper-
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ative triads over time and Fig. 3.3 (b) depicts the temporal trajectory of the percentage

of transitive triads. It is evident that structural balance does not always increase. Our

finding based on Fig. 3.3 (b) is that after a decrease of structural balance during the

first periods, the network’s trend is toward greater balance since 2006 onward. The main

basis of the initial decline are conversions of null relations to positive relations and the

associated proliferation of intransitive triad 9 configurations. Overtime, many of these

violations of transitivity are then resolved by conversions to triads that do not violate

transitivity (triads 1, 4 or 10). This increase in the number of triads 6, 8 and 9 before 2006

is not due to any particular major global occurrences but in fact is the inherent property

of inception of many connections among countries around this era. After analyzing the

Markov transition matrices of all these triads, we find there is a high probability for

transitioning from all these three not balanced triads to the balanced triads consistently

using any period length. This shows staying in these not balanced triads is temporary.

Also, looking at distribution of triads (Fig. 3.3 (c)), we see only about 8% of triads

(summation of volume of triads 6, 8 and 9) to be not-balanced over course of more than

two decades. The evidence for this result is highlighted in our Markov chain analysis to

which we now turn.

3.4.2 Markov Model on Dynamic Networks

Here, we present a Markov model of the dynamical system of the temporal transitions

of the networks’ triads that is not restricted to the operative set of triad types. This

model provides a deeper image of the probabilistic micro-dynamics of the alterations of

international appraisals during the 1995-2018 span of the available data. Fig. 3.4 shows

the average probability transition matrix of the 138 possible triad types from 103 networks

aggregated over a three-month period (seasonally). Interestingly, most of probabilities in
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Figure 3.3: Network dyads and triads over time. This figure presents the dynamics of
Integrated Crisis Early Warning System (ICEWS) network over time. a) Proportion
of positive and negative dyads (edges) over time in the strongly connected component.
b) Proportion of balanced triads over 23+ years. The three lines represent different
subsets of Heider axioms as structural balance criteria in which they all show a similar
trend. Triads are counted in networks built by aggregating three months of news
articles. We find that changing the period length to monthly, biweekly and weekly
does not change the trend in this figure. c) Average proportion of triads over 23+
years. Error bars correspond to one standard deviation and are computed using
n = 103 network snapshots of quarters. d) The set of ten operative triads (most
frequent triads out of 138 possible ones).
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this matrix are very close to zero and the dynamics of the system can be described only

by a few states. For the sake of visualization, we can focus on the operative set of 10 triad

types (described in Fig. 3.3 (e)) and we show their transition probabilities in Fig. 3.5

(a). The probability transition matrix is robust with respect to the choice of period. In

Fig. 3.5, each panel shows the transition matrix for period lengths: (a) seasonally (b)

monthly (c) biweekly (d) weekly. The probability transition matrices look very similar.

Quantitatively, the Pearson correlation between the flatten format of transition matrix

in (a) with (b), (a) with (c), and (a) with (d) is 0.99, 0.98, and 0.86, respectively where

all are statistically significant (p < 0.05). Based on these transition matrices, one can

see the triads 1, 4, 9 and 10 have large self-transition probabilities (high probability of

transitioning from 1 to 1) and, thus, are most likely to persist. More precisely, Fig. 3.5

(e) shows the stationary distribution of the Markov process. The summation of balanced

triads in the stationary distribution is larger than 0.85. It appears that regardless of

the definition of period, the Markov model predicts our empirical finding of a network

evolution toward structural balance.

3.4.3 Time-varying Markov Model on Dynamic Networks

Our results show that the probability of transitions to and remaining in balanced

states are statistically significant in every period over the 23+ year data span. This

motivates us to apply a more holistic and time-varying Markov model in which the

transition matrix can smoothly change and is learned via a convex optimization scheme

(see Methods for details). Fig. 3.6 describes the analysis pipeline of this model. Our

Fig. 3.7 results further support the conclusion that structural balance drives the dynamics

of the system. All unbalanced triads have an estimated high mean probability and small

standard deviation on transitions into balanced triads, and the balanced triads have an
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Figure 3.4: Transition matrix for the all triads. Average probability transition matrix
in the Integrated Crisis Early Warning System (ICEWS) dataset. The average is
computed from 101 transition matrices between states which are the 138 possible
sparse triads (Fig. 3.2 depicts all these triads). The transition matrix is row-stochastic
and its elements falls into (0, 1]. This figure shows there exist only a small number
of triad transitions as most elements of this matrix are close to zero. It also depicts
most transitions only happen toward a few of triads. The transition matrix for the
top ten most frequent triads is further analysed in Fig. 3.5.
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Figure 3.5: Transition matrix for the core triads. Average probability transition ma-
trix only for the core triads ( 3.3) in the Integrated Crisis Early Warning System
(ICEWS) dataset by aggregating dynamic networks of a) seasonally b) monthly c) bi-
weekly d) weekly period. The transition matrix is row-stochastic and its elements falls
into (0, 1]. There are 138 possible triads; only the sub-matrix of the 10 operative tri-
ads is shown (given in Fig. 3.3 (e)). Panel e) shows probability stationary distribution
of the transition matrices, with the different aforementioned periods. The stationary
distribution shows the state of the system under the condition that the Markov model
persists. It appears that the probability transition matrix and stationary distribution
are robust with respect to choice of period length.
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estimated high mean probability and small standard deviation of remaining balanced.

Note the distinctive separation of the transition probabilities.

Applying this experiment on other datasets we posit this result not only holds in our

focal network of international relations, but also in two longitudinal datasets on financial

Bitcoin trust networks [182, 183]. Table 3.3 provides details about all datasets including

the Bitcoin trust networks and Fig. 3.8 shows the results in all datasets. Results show

although international and financial networks are very different, our findings on transition

toward balance generalize across all three datasets. Therefore, it appears that transitions

toward balance are ubiquitous (i) regardless of the definition of balance, (ii) regardless

of the setting (international news networks or financial networks), and (iii) regardless of

the type of actor (individuals or countries).

To buttress the finding of high transition probability toward and staying in more

balanced triads, we apply our experiments on two other datasets. We report the results

of the time-varying Markov model on estimating the underlying probability transitions

for all three datasets: Integrated Crisis Early Warning System (ICEWS), Bitcoin Alpha,

and Bitcoin OTC.

Bitcoin Alpha trust weighted signed network: This is a who-trusts-whom net-

work of people who trade using Bitcoin on a platform called Bitcoin Alpha. Since Bitcoin

users are anonymous, there is a need to maintain a record of users’ reputations to pre-

vent transactions with fraudulent and risky users. Members of Bitcoin Alpha rate other

members on a scale of -10 (total distrust) to +10 (total trust) [182, 183].

Bitcoin OTC trust weighted signed network: Very similar to the previous

dataset, Bitcoin OTC is another platform for trading Bitcoin and has similar trust edges

over time [182, 183]. The statistics about all datasets are depicted in Table 3.3.

Figure 3.7 shows the evidence for the network dynamic toward balance for these

three datasets. The probability of transitions from unbalanced to balanced triads is
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Figure 3.6: Pipeline description. Estimation of transition probability matrices be-
tween balanced and unbalanced triads over a sequence of time periods. This figure
illustrates the preprocessing steps, the optimization problem, and the results. Step 1:
for all time periods t from 1 to T − 1 (where T is the maximum number of periods in
that dataset), each edge is labeled using aggregated majority in that period as posi-
tive (+) or negative (-). Step 2: we compute the proportion of triads in every period
and estimate the transition matrix at time t as the unknown matrix that multiplied
by the vector of proportion of triads at period t gives the corresponding vector at
period t + 1. Step 3: we estimate all transition matrices together using a time-vary-
ing Markov model. This step ensures that the results provide a holistic view of the
available longitudinal data. Step 4: we visualize the probability of transition from
balanced and unbalanced triads in time-varying estimated transition matrices. By
allowing null ties, there are 138 types of triads. Pt represents the unknown transition
matrix at time t and P̂t represents the empirically estimated transition matrix at time
t, and P̃t represents the time-varying estimated transition matrix at time t. The four
quadrants of P̂t show the average estimated transition probabilities (see Methods for
details). The result of this experiment is shown in Fig. 3.7.
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Figure 3.7: Probability of kinds of transitions. Estimated transition probability for
a) transitivity-, b) clustering-, and c) classical-balanced and -unbalanced triads in
Integrated Crisis Early Warning System (ICEWS) dataset (the pipeline is described
in Fig. 3.6). The Y-axis indicates the kind of transition and the X-axis shows the
estimated probability (computed by solving Eq. 3.7), the box is the interquartile
range of the probability distribution, the orange line is the median and green dot is
the average of the distribution, and the whisker shows minimum and maximum of the
range of the distribution. This figure shows that the probability of transitions from
unbalanced triads to balanced ones is significantly higher than the opposite transitions.
Also, the probability of remaining balanced is more likely than the probability of
remaining unbalanced. These findings hold regardless of the definition of balance. Box
plots are computed using n = 103 network snapshots of quarters. Fig. 3.8 extends
this analysis to two Bitcoin datasets showing that movement toward balance is not a
peculiarity of the ICEWS dataset.
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Name Integrated Crisis Early Warning System (ICEWS)
#Nodes 250
#Edges 8,073,921
#Positive edges 32,029 (90%)
#Negative edges 3,563 (10%)
Edge weight -10 to +10
Spans through 1995-01-01 to 2018-09-30 (23+ years)

Name Bitcoin Alpha
#Nodes 3,783
#Edges 24,186
#Positive edges 22,650 (94%)
#Negative edges 1,536 (6%)
Edge weight -10 to +10
Spans through 2010-11-07 to 2016-01-21 (5+ years)

Name Bitcoin OTC
#Nodes 5,881
#Edges 35,592
#Positive edges 32,029 (90%)
#Negative edges 3,563 (10%)
Edge weight -10 to +10
Spans through 2010-11-08 to 2016-01-24 (5+ years)

Table 3.3: Datasets’ Information. Brief statistics about the datasets used in this chapter.
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significantly higher than transitions from balanced to unbalanced triads. The probability

of remaining balanced is more likely than the probability remaining unbalanced. These

findings are most strongly expressed in the data on transitivity-balance. This especially

strong expression of transitivity-driven evolution is consistent with its status as the most

important axiom of structural balance theory [52, 69].

Interestingly, Figure 3.7 shows that transition toward and staying in structurally

balance hold regardless of the definition of balance and the setting (international or

financial networks), but notably, they have the strongest expression with transitivity-

balance.

3.4.4 Qualitative Relation with Exogenous Shocks

The transition matrices are stable over time, as measured by the Frobenius norm

difference of consecutive matrices (Fig. 3.9). Interestingly, the Frobenius norm of tran-

sition matrices declines smoothly over time. We call this phenomenon, the stability of

the dynamics. This finding is aligned with the fact that the number of wars per pair of

countries in the past 50 years was roughly a 10th as high as it was from 1820 to 1949.

Fig. 3.9 (a) suggests that the disruptions to this trend are associated with important

shocks such as the September 11th, 2001 attacks (9/11).

3.4.5 Quantitative Relation with International Trade Activity

Additionally, inspired by previous research [3, 4, 5, 6, 7], using the data on interna-

tional trades among nations since 1995, in Fig. 3.9 (b), we find a statistically significant

correlation between the Frobenius norm difference of consecutive matrices and inverse

of global trades. World trade data shows the global trades among all countries in world

as of the percentage of each countries’ GDP, which is extracted from The World Bank
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Figure 3.8: Probability of kinds of transitions in different datasets. Estimated transi-
tion probability for classical-, clustering-, and transitivity-balanced and -unbalanced
triads in all three datasets (the pipeline is described in Fig. 2.2 and datasets in Ta-
ble 3.3). The x-axis shows the estimated probability (computed by solving Eq. 3.7),
the box is the interquartile range of the probability distribution, the green dot is the
average and the orange line is the median of the distribution, and the whisker shows
minimum and maximum of the range of the distribution. This figure shows that
the probability of transitions from unbalanced triads to balanced ones is significantly
higher than the opposite transitions. Also, the probability of remaining balanced is
more likely than the probability of remaining unbalanced. Surprisingly, these findings
are robust with respect of multiple definitions of balance and different settings. Box
plots are computed using n = 103 network snapshots for Integrated Crisis Early Warn-
ing System (ICEWS) dataset, n = 66 network snapshots for Bitcoin Alpha dataset
and n = 66 network snapshots for Bitcoin OTC dataset.
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national accounts data (see Data Availability for details). The stability of dynamics and

global trades are correlated in past 23+ years (Pearson correlation coefficient of 0.88 (p <

1e-07)). Fig. 3.9 shows that as relationships among countries have become stable over

the years, the volume of trades has been increased.

Moreover, our causality test shows evidently the more global trades there are, the

more stable the relational dynamics become and vice versa over the course of two decades.

Granger causality test [2] shows an statistically significant effect of global trades on the

stability of the dynamics (p < 1e-03), and also shows a feedback effect (p < 1e-02). The

causality tests are found to be statistically significant using both F-test and chi2-test

with #lags = 1.

This result simply means as the relations among countries become more stable, they

are more willing to trade for economical benefits, and on the other hand when they

internationally trade with one another, they are willing to have a stable relationship

with one another. In this chapter, stability is captured with Markov transition matrices

of triads over the course of two decades. This finding comports with the seminal study by

Jackson et al. [3] and its finding on stabilizing the international conflicts by the decrease

of the number of wars among nations as the same rate as the increase in global trades.

3.5 Conclusion and Future Works

Balance theory has triggered a literature of efforts to specify the mechanisms that

alter interpersonal appraisal networks [52, 53, 103] towards states of structural balance.

This theory is also associated with research on international relations. However, despite

the need for longitudinal data to recover the underlying dynamics of balance theory, such

investigations have been rare. We have leveraged an extensive longitudinal dataset to

advance the research on the evolution of the network of global international relations, and
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Figure 3.9: International relationship stabilization. a) The Frobenius norm difference
of consecutive empirical transition matrices (blue line) becomes stable over time cor-
responding to the Markov chain of triads becoming stable over time. Most global
exogenous events (red dots) such as wars trigger disturbances in the dynamics of re-
lationships. b) Comparison of the Frobenius norm difference of consecutive empirical
transition matrices (full blue line), versus international trades in % of each country’s
GDP (dashed red line) highlights a reverse relation between changes in the system
and international trades. We find Frobenius norm difference of consecutive empirical
transition matrices and international trades are statistically and negatively correlated
(Pearson coefficients r = −0.88 and p < 1e-07). Moreover, we find the international
trades statistically Granger cause [2] the stability of relationships among countries
(p < 1e-03). This result means the more international trades existed the less changes
in the relationships among countries have happened. Aligned with this finding, earlier
research [3, 4, 5, 6, 7] also claimed increased trades have decreased countries’ incentive
to attack each other, leading to a stable and network of alliances. Statistical signifi-
cance is computed using n = 23 years of global trades and Frobenius norm difference
of transition matrices.
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the basic science on balance theory. We find consistently high probabilities of transition

toward and remaining in balanced triads and not vice versa. We believe that balance

theory’s prediction of a structural evolution toward balanced states is sound. Also, we find

that the network dynamics of international relations over the past 23+ years have been

toward structural stability, consistent with balance theory expectations, with occasional

shocks of large scale international events on the trajectory of the global network.

A future direction to improve the predictability of the proposed model is to remove

the Markov assumption in the modeling. We can let models find the best number of pre-

vious periods which should be taken into account for predicting the proportion of triads.

Recursive neural networks, such as Long short-term memory (LSTM) networks [184],

theoretically can model the non-Markovian aspect inherent in the data.
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Chapter 4

Interpersonal Influence Estimation

in Small Group Networks

Chapter 2 and Chapter 3 both provide empirical support for the emergence of structural

balance theory in signed networks. These networks have edges with positive and negative

sign. More precisely, Chapter 2 deals with fully connected signed networks (+/-) where

Chapter 3 deals with sparse signed networks (+/-/null). However, if allowed for contin-

uous values on edge weights, these networks would contain more information to analyze.

Such entities are called influence networks. Therefore, by building upon Chapter 2 and

Chapter 3, in this chapter, we focus on dynamic influence networks which instead of signs

contain real values as edge weights. Similar to financial and international datasets used

in Chapter 2 and Chapter 3, respectively, the dataset for influence networks in this chap-

ter represent relationships and attitudes among individuals; however, in a much richer

representation.

To study the dynamics of influence networks, in this chapter, we collect data from

human subjects answering trivia questions in teams of four. After individually answering

a question, subjects collaborate on a final answer through a chat system. The participants
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are periodically asked to assess their appraisals of each other. We seek to find underlying

factors that contribute to the awarded influence. Moreover, we address the influence

estimation problem and compare the proposed models with standard baselines.

The key result of this chapter, that enables answering the above stated questions

is that we introduce three hypotheses rooted in several theories of sociology and social

psychology. These hypotheses claim that social influence originates from individual ex-

pertise, social confidence, and ability to recognize and compare other experts. Later,

we not only provide statistically significant empirical evidence for the aforementioned

hypotheses; but also we bake them into a proposed dynamical model and demonstrate

its accuracy and efficiency on empirical data.

The chapter is organized as follows. In Section 4.1, we motivate and informally de-

fine the problem of influence estimation, provide a review of existing works related to

hypotheses on interpersonal influence and prediction models, and briefly introduce this

chapter’s three contributions. Section 4.2 provides the necessary preliminaries including

definition of symbols, the introduced cognitive science hypotheses, and the experimen-

tal design which is used for human subject data collection in this chapter. Section 4.3

is dedicated to the design of the core concept of this chapter—predicting the interper-

sonal influence matrix using dynamical and machine learning models and mathematically

proving their correctness and convergence. The experimental results are illustrated in

Section 4.4. We conclude in Section 4.5 with a discussion and a summary of the results

of this chapter, and point out potential directions for future research.

4.1 Introduction

Inevitably, relationships among collaborating actors evolve over time, with people

changing their opinions or appraisals of one another. Such relationships form a net-
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work structure called an influence/appraisal network [185, 186, 187, 188, 189, 190] with

signed edges that may portray trust/distrust, friendship/enmity, and like/dislike [51].

In our study, we use the terms influence and appraisal interchangeably. Investigations

of the evolution of such networks draw on a rich body of literature on opinion dynam-

ics. DeGroot et al. [191], and Friedkin et al. [186] propose widely-established models of

opinion change and the conditions of consensus formation. Altafini et al. [192]’s model

considers diverging opinions under antagonistic interactions. Such models are surveyed

in Proskurnikov et al. [193]. Influence system specifications play a pivotal role in all of

these studies. Note that these opinion dynamic models assume the influence network of a

group is given a prior. Our goal is to quantitatively estimate the influence network among

individuals in a group, where the influence network within the group is represented by a

row-stochastic matrix. The estimation of this matrix paves the way for solving problems

such as influence maximization [194, 195]; viral marketing [196, 197]; personalized rec-

ommendation [198]; feed rankings [199]; target advertisement [200]; selecting influential

tweeters [201, 202]; and selecting informative blogs [203].

4.1.1 Related Work

Classic studies of the antecedents of interpersonal influence include French and Raven’s

work [204] on the bases of social power, and cognitive biases research [205] showed that

individuals are accorded influence based on their job titles, past performance, friends’

opinions, etc. There has also been mathematical modeling of the endogenous evolution

of appraisal networks. Friedkin et al. [206] showed how reflected appraisal mechanisms

elevate or dampen the self-weights of group members along a sequence of issues. Jia et

al. [189] proposed the DeGroot-Friedkin model, where the appraisal network evolves as

a function of the social power within the group. Jia et al. [207] also studied how over
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time, the coevolution of appraisal and influence networks leads to a generalized model of

structural balance theory [52, 70, 208, 55, 156, 149]. Mei et al. [16] modeled collective

learning in teams of individuals using appraisal networks, where the appraisal dynamics

change as a function of the performance of individuals within the team.

Research on transactive memory systems (TMS) [209, 11, 12, 10] provide an ap-

proach to formation of influence systems. A TMS is characterized by individuals’ skills

and knowledge, combined with members’ collective understanding of which members

possess what knowledge [210, 12, 211]. As members observe the task performances of

each other, their understanding of “who knows what” tends to converge to an accurate

assessment, leading to greater coordination and integration of members’ skills. Empirical

research [209, 11, 12, 10] across a range of team types and settings demonstrate a strong

positive relationship between the development of a team TMS and team performance.

The research indicates for the purpose of improving self performance, individuals tend to

find experts via demonstrability in their group during intellective tasks [212, 213]. Un-

like judgemental issues, for intellective tasks there exists a demonstrable mathematical

or verbal correct answer that can be distinguished by high-performing teammates [212].

Research in social comparison theory has shown that individuals tend to evaluate their

own abilities by biased comparisons with their peers. In particular, Woods [214] describes

several motivations behind biased social comparison such as self-esteem protection [215],

lack of appropriate incentives [216], or the existence of dominant individuals who skew

member contributions [217, 218]. Davison et al. [218]’s experimental results show that

low-performing individuals tend to overestimate (resp. underestimate) low-performers

(resp. high-performers), i.e. high-performing individuals are better able to recognize

other experts than low-performing individuals. To study such psychological cognitive

biases, several scientists have conducted group experimental studies by self and peer

evaluations [217, 219, 220].
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Research on confidence heuristics [13, 14] has shown that the more self-confident

individuals are, the more influence they are accorded by others. London et al. [221]

find that “the single significant behavioral difference between persuaders and persuadees

was in the expression of confidence”. Confidence heuristics is defined based on a social

and psychological norm, whereby more confidently expressed arguments signal better

information, allowing an efficient revelation of information and decision-making based on

expressed confidence [13].

We build on the above three lines of research. Although the problem of estimating

social power [189, 222], and influence networks have been studied before [223, 224, 225],

existing research lacks empirical studies as they are mostly based on theory and grounded

on simulation-based analyses [16]. Moreover, previous studies on influence estimation has

focused on proxies of influence such as propagation of hashtags, quotes, and retweets [225,

226, 227, 228, 229, 230]. An impactful study by Almaatouq et al. [231] finds that social

influence is significantly correlated with confidence and correctness. However, no esti-

mation method is proposed that mathematically formulates how these factors contribute

to the underlying dynamics of influence. Furthermore, we find these two factors alone

do not lead to the most accurate predictions of self-reported influence for small teams

with static networks in this empirical setting. Studies on the empirical estimation of

the weighted network of who-influences-whom are rare [232, 233]. In the present work,

we probe more deeply into the foundations of the links between individual performance,

self-confidence and social comparison on interpersonal influence. Our work bridges the

gap between empirical and simulation-based results by utilizing sociology-inspired mech-

anisms and machine-learning based models to estimate the social influence in groups.

Overall, to the best of our knowledge, this study is the first to estimate the influence

matrices in a text-based shared media among individuals, collected from a human subject

experiment, where teammates communicate via a broadcast system to solve intellective
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tasks.

4.1.2 Contributions

Our contributions in this chapter are threefold.

1. We find empirical support for widely established theories in psychology, sociology

and management regarding the effect of TMS [209, 11, 10], confidence heuristics [13,

14] and social comparison theory [218, 214] on individuals’ influence over their

teammates.

2. We introduce a novel cognitive dynamical model based on the aforementioned the-

ory regarding how influence is accorded from others. This cognitive model is val-

idated against the empirical data and can be used to estimate influence matrices

using past reported influence matrices and individual performance. We provide

analytical and simulation results on the asymptotic behavior of the model for the

case with identically performing individuals.

3. We propose a machine learning-based model for estimating influence networks using

any features such as individual performance, past influence matrices, and commu-

nication contents as well as communication timestamps. Extensive experiments

show that our proposed neural network model surpasses all baseline algorithms

with statistical significance on multiple merits.

4.2 Preliminary

4.2.1 Definitions

Table 4.1 summarizes the major notations used throughout the present manuscript.
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Symbols Definition

n Number of individuals in a team
N Number of teams
T The number of available time periods (game rounds)
1n n-dimensional column vector of ones
In n× n-dimensional identity matrix
M = {Mij} Nonnegative and row stochastic influence matrix for

every (ij) ∈ edges with M1n = 1n.
M (t) Ground truth influence matrix for any given team at

time t
M (m,t) Ground truth influence matrix for team m at time t

M̂ (m,t) Estimated influence matrix for team m at time t
A Connectivity (weighted adjacency) matrix
K Cardinality of feature set
W,B Weight and Bias matrices being being evaluated in

the linear model
vL(X) Stationary distribution of matrix X
diag(x) A matrix with diagonal entries of vector x and zero

everywhere else
Xij Element at row i and column j in matrix X
Xi,. Row i in matrix X
X.,j Column j in matrix X
Tr(X) Trace of square matrix X

Table 4.1: Description of notations.
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4.2.2 Hypotheses

The following hypotheses motivated from past research are empirically supported by

our experimental results:

Hypothesis 1 Individuals with higher expertise are accorded higher interpersonal influ-

ence from the group.

Hypothesis 2 Individuals with lower expertise have diminished ability to recognize ex-

perts in the group.

Hypothesis 3 Individuals with higher confidence are accorded higher interpersonal in-

fluence from the group.

In this experiment, subjects read and answer every question individually. Ergo, the

individual performance (expertise) can be measured by the ratio of correct answers one

gives individually, prior to seeing others’ answers and the discussion phase. Assuming

individuals can potentially keep track of others’ expertise by recalling their answers or

their chat messages, we study if individual expertise plays a prominent role in the amount

of social influence one receives.

4.2.3 Experimental Design

We collected data for 31 teams comprising four human members each. Each team

is presented with 45 trivia questions sequentially. Questions fall into three categories of

Science and Technology, History and Mythology, and Literature and Media. The team

members first answer individually before their answers are revealed to the team. Then,

they are asked to collaborate on a single unanimous response. The design incorporates a

multi-part incentive for subjects to seek the correct answer on each question: an evolving
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team performance score; an option to consult with one of four available AI-agents after

the team discussion (the AI-agents may or may not provide a correct answer) which,

if exercised, must lower the team’s performance score regardless of whether provides a

correct or incorrect answer; and feedback to each team on correct and incorrect answers.

This multi-part incentive structure operated to concentrate the attention of the team on

the evaluation of the relative expertise of their members. Fig. 4.1 shows the stages of

experiments for every question.

Subjects are 
instructed to read 
the multiple choice 
question and 
respond individually.

Stage 10 30 60 120

Individuals' chosen 
answers are 
revealed to the 
group and chat 
becomes enabled.

Submit button is enabled 
and the group needs to 
reach a consensus to be able 
to submit their answer 
before the time expires.

Stage 2 Stage 3

Correct answer is 
revealed and the group 
score is reported.

(seconds)

Figure 4.1: Experimental setup for every intellective question. Questions take two
minutes and encompass three stages: subjects answer individually, observe everyone’s
answers, and discuss their takes. Lastly, the platform reveals the correct answer.

This experimental setting tests the participants’ intellective memory. Every team has

two minutes to answer each question and then the platform reveals the correct answer

immediately after a team submits their answer. Thus, they are provided with immediate

feedback on their performance after every response. The experiment is run on the Plat-

form for Online Group Studies (POGS). Each team receives the questions in the exact

same order. Each experiment is conducted in nine rounds of five intellective questions

each. The teams are surveyed after each round.

At the end of each round, subjects are asked to record the influence of their team-

mates in their decision-making process as a percent value, such that the sum of all values

adds up to 100. Every subject assumes they are given a total of 100 chips and instructed

to distribute these chips to indicate the relative importance of each member in deter-
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mining their own final answer on all past problems. Thus, the number of chips that a

subject allocates to a particular member should indicate the extent to which that member

provided information that they personally found useful and cause them to modify their

approach to the problem or final solution. The number of chips that subjects allocate to

themselves should indicate the extent to which their final answer was not affected by the

conversation. If an individual felt that all conversations so far provided no influence to

their choice of answer, then they would put 100 besides their own name. If the conver-

sation caused them to abandon their approach to the problem, then they are instructed

to put zero beside their own name and allocate all the chips to one or more of the other

members.

After normalization, the self-reported interpersonal influences form a row-stochastic

influence matrix for every round, containing only non-negative entries (in a row-stochastic

matrix every row sums up to one). The platform ensures that in each inquiry, the reported

influence matrix has non-negative entries and is row-stochastic. The platform collects

a log of all the instant messages including time of message and content during every

question, the individual and group answers, and the self-reported influence matrices.

Since the platform displays the correct answer to every question immediately after

the group submits its response, attentive subjects can use the individual responses and

text discussion to keep track of which individual teammates may have expertise in one

or more areas over the course of the experiment. Thus, along the problem sequence, the

team may solve problems more efficiently and also more accurately.

4.3 Methods and Materials

Here, we provide mathematical formulation regarding how the proposed dynamical

model, linear, and deep neural network model alongside baselines efficiently frame and
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solve the influence matrix estimation problem.

4.3.1 Proposed cognitive dynamical models

We propose various discrete time dynamical models that characterize the evolution of

the influence network based on various sociological concepts. Let the simplex be defined

as ∆n = {x ∈ R≥0 |1>nx = 1}. Given an estimate of a previous row-stochastic influence

matrix M̂ (t) and an estimate of normalized or perceived expertise x(t) ∈ ∆n, our models

are in the general form

M̂ (t+1) = T
(
M̂ (t), x(t)

)
for t ≥ 1,

where M̂ (t) denote the influence matrix estimate at time t. Let M̂
(t)
d = [M̂

(t)
11 , . . . , M̂

(t)
nn ]>

denote the vector of self-influence weights. Consider the normalized expertise and per-

ceived expertise, defined as follows. Normalized expertise ȳ(t) ∈ ∆n is defined as

ȳ(t) =
(
1>n y

(t)
)−1

y(t) (4.1)

and perceived expertise ŷ(t)(y(t), M̂
(t)
d ) ∈ ∆n is defined as

ŷ(t)(y(t), M̂
(t)
d ) =

(
M̂

(t)>
d y(t)

)−1
diag

(
M

(t)
d

)
y(t). (4.2)

Then depending on the model, x(t) is equal to either ȳ(t) or ŷ(t). Our proposed models

use also a scaling parameter τ ∈ (0, 1) that can be adjusted to change the time-scale of

the dynamics. If we have information on past reported influence matrices and expertise

levels of team members, these models can be used to predict future influence matrices.

• Differentiation model (D model): Motivated by Hypothesis 1, this model assumes
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individuals assign influence based on the unweighted, normalized, cumulative correctness-

rate, where individuals who perform better are accorded higher influence. The model uses

the normalized expertise [4.1] and is defined for all i, j ∈ {1, . . . , n} as

M̂
(t+1)
ij = (1− τ)M̂

(t)
ij + τ ȳ

(t)
j , (4.3)

which reads in matrix form as M̂ (t+1) = (1− τ)M̂ (t) + τ1nȳ
(t)>.

• Differentiation, Reversion model (DR model): Motivated by Hypotheses 1 and 2,

this model is based on the D model and assumes high-performing individuals are accorded

more influence and low-performing individuals tend to assign influence weights uniformly

amongst team members. The model uses the normalized expertise [4.1] and is defined

for all i, j ∈ {1, . . . , n} as

M̂
(t+1)
ij = (1− τ)M̂

(t)
ij + τ

(
ȳ
(t)
i ȳ

(t)
j +

(
1− ȳ(t)i

) 1

n

)
, (4.4)

which reads in matrix form as

M̂ (t+1) = (1− τ)M̂ (t) + τ
(
ȳ(t)ȳ(t)

>
+

1

n

(
1n − ȳ(t)

)
1>n

)
.

• Cognitive model based on Differentiation, Reversion, Perceived exper-

tise model (DRP model): Motivated by Hypotheses 1, 2 and 3, this model is an

extension of [4.5], where everyone’s expertise is misevaluated based on their own self-

confidence. The model then uses the perceived expertise [4.2] to learn how much influ-

ence is accorded to one another. Fig. 4.8 depicts for both single-round and multi-round

prediction, using all three hypotheses baked in this model provides the most accurate
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and consistent estimation. This model is defined for all i, j ∈ {1, . . . , n} as

M̂
(t+1)
ij = (1− τ)M̂

(t)
ij + τ

(
ŷ
(t)
i ŷ

(t)
j +

(
1− ŷ(t)i

) 1

n

)
. (4.5)

The following Lemma states that the D, DR, and DRP model are well-posed and the

dynamics ensures that row-stochastic matrices are mapped to row-stochastic matrices

without needing to normalize at each time step.

Lemma 1 (DRP model preserves row-stochasticity) Consider the D model Eq. [4.3],

DR model Eq. [4.4], and DRP model Eq. [4.5] with τ ∈ (0, 1) and y(t) = y = [0, 1]n. If

M̂ (1) is row-stochastic, then M̂ (1) remains row-stochastic for all t ≥ 1 under the D and

DR model.

If additionally, there exists at least one i such that M
(1)
ii > 0 and ȳ(t) ∈ (0, 1)n, then

the DRP model is well-posed for finite t and M̂ (t) remains row-stochastic for all t ≥ 1

under the DRP model.

Proof: Let M̂
(t)
d = [M̂

(t)
11 , . . . , M̂

(t)
nn ]> ∈ [0, 1]n denote the vector of self-influence

weights of the influence matrix at time t ≥ 1. Per our assumptions, y>M̂ (0)
d > 0.

Additionally, the dynamics of the Differentiation, Reversion, Perceived expertise (DRP)

model guarantee that M̂
(t)
ii > 0 for all i ∈ {1, . . . , n} and finite time t since M̂

(t)
ii ≥

(1 − τ)M̂
(t−1)
ii ≥ 0. For the simplicity in notation, we define a new variable z(t) =

(
y>M̂ (t)

d

)−1
diag(y)M̂

(t)
d . Recall, M̂ (1)1n[n] = 1n[n] from our assumptions. Based on the

definition of variable z, we know z(t) = 1n[n]>ŷ(t)(y, M̂ (t−1)
d )> =

(
y>M̂ (t)

d

)−1
y>M̂ (t)

d = 1.
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Then, we have

M̂ (t+1)1n[n] = (1− τ)M̂ (t)1n[n] + τ
(

diag(z(t))z(t)>1n[n] +
1

n
diag

(
1n[n]− z(t)

)
1n[n]>1n[n]

)

= (1− τ)1n[n] + τ
(

diag(z(t)) + diag(1n[n]− z(t))
)

= (1− τ)1n[n] + τ1n[n] = 1n[n].

Additionally M̂
(t+1)
ij ≥ 0 for all i, j ∈ {1, . . . , n}. Therefore, M̂ (t) remains row-stochastic

for all time t ≥ 1.

Given constant expertise y, it is clear that the affine D and DR models converge.

Additionally, in simulations, we observe that the DRP model convergence behaviors to

a unique equilibrium. In particular, the next Lemma rigorously shows that the DRP

model converges to the uniform-weighted influence matrix, for y = c1n where c > 0.

Lemma 2 (Equilibrium and convergence of DRP model) Consider the DRP model [4.5].

Assume for τ ∈ (0, 1), constant uniform expertise values y(t) = c1n with c > 0, M̂ (1) row-

stochastic, and that there exists at least one i such that M
(1)
ii > 0. Then limt→∞ M̂ (t) =

1
n
1n1

>
n .

4.3.2 Proposed linear model

Using machine learning models we can take advantage of all available data to esti-

mate influence matrices. Combining text, connectivity network, expertise, and historical

appraisals produce a multi-dimensional prediction model. We have N teams of n in-

dividuals that go through T times (rounds). To have a general format, we assume all

aforementioned features fall into matrix format (shown by X
(m,t)
k for team m at time t) or

vector format (shown by x
(m,t)
k . For instance, Text embedding and connectivity networks

are matrix features, and expertise is represented as a vector. We want to learn weight
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variables that combine the features. In total, we assume there are K matrix variables,

shown as Wk, and there are K ′ vector variables shown as wk′ . Ergo, a convex objective

function for estimating the influence matrix is defined as follows,

min
Wk: k=1 to K,
wk′ :k

′=1 to K′,
B

N∑

m=1

T∑

t=1

(

‖
K∑

k=1

X
(m,t)
k Wk +

K′∑

k′=1

x
(m,t)
k′ wTk′ + B−M(m,t)‖2F

)

+ λ
( K∑

k=1

‖Wk‖1,1 +
K′∑

k′=1

‖wk′‖1 + ‖B‖1,1
)
,

Subject to
N∑

m=1

T∑

t=1

K∑

k=1

X
(m,t)
k Wk +

K′∑

k′=1

x
(m,t)
k′ wTk′ + B ≥ 0,

1Tn
( N∑

m=1

T∑

t=1

K∑

k=1

X
(m,t)
k Wk +

K′∑

k′=1

x
(m,t)
k′ wTk′ + B

)
= 1Tn .

(4.6)

where M(m,t) is the ground truth influence matrix, self-reported by the members of team

m at time t. Depending on the application, for the history of the influence matrix, we

may use only the first matrix, the average of all previous ones, or only the previous

matrix. Variables to be calculated via optimization are the n × n weight matrices Wk

and n × 1 weight vector wk′ . B is the n × n bias matrix also to be estimated. We also

use an l1-norm regularization to introduce sparsity to the estimated parameters that is

commonly used in many real applications and also decrease the potential search space

and therefore provides efficiency for the optimization solver.

Lemma 3 The problem in Eq. [4.6] is convex.
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Proof: With respect to variables Wk for any k = 1 to K and B, the loss function
N∑
m=1

T∑
t=1

∥∥∥
K∑
k=1

X
(m,t)
k WT

k + B −M(m,t)
∥∥∥
2

F
is a summation of multiple squared Frobenius

norms. The regularization term
K∑
k=1

‖Wk‖1,1 + ‖B‖1,1 is also a summation of l1−norms.

All of which are convex functions [170]. Both constraints
N∑
m=1

T∑
t=1

K∑
k=1

X
(m,t)
k WT

k + B ≥ 0

and 1n[n]T
( N∑
m=1

T∑
t=1

K∑
k=1

X
(m,t)
k WT

k + B
)

= 1n[n]T are linear combination of variables and

hence affine functions. To this end, all of the inequality constraints are convex, and all

equality constraints are affine. Therefore, the problem is convex, it has a globally optimal

solution, and we can solve this equation with a convex optimization solver, CVXPY.

Based on the application, when only the probability distribution and the order of

influence toward others is more important than exact values, we use cross-entropy as the

loss function and KL divergence as the metric. In such a case, we can formulate the

matrix estimation problem as the estimation of each row, which is a discrete distribution

comprised of four numbers. Cross-entropy for two probability distribution of p and q is

defined as H(p, q) = −
n∑
i=1

pi log qi. in this chapter, the two probabilities are

p = Mi,. ∀i ∈ [1, n]

q = M̂i,. = σ(Oi,.) = σ(WTXi,. + b) ∀i ∈ [1, n]

where σ represents Softmax function.

Lemma 4 The optimization problem using the cross-entropy loss function on corre-

sponding rows of two matrices M and M̂ can be written as
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min
W,b

−
N∑

m=1

T∑

t=1

n∑

j=1

n∑

k=1

M
(m,t)
j,k

(
X

(m,t)
j,k Wk,j + bj

− log
n∑

l=1

exp
(
X

(m,t)
j,k Wk,j + bj

))
+ λ

(
‖W‖1 + ‖b‖1

) (4.7)

The loss function using cross-entropy can be derived, step by step, as follows,

Proof: The objective function using cross-entropy can be derived, step by step, as

follows,

loss =
N∑

m=1

T∑

t=1

n∑

j=1

H(M
(m,t)
j,. , M̂

(m,t)
j,. )

=
N∑

m=1

T∑

t=1

n∑

j=1

−
n∑

k=1

M
(m,t)
j,k log M̂

(m,t)
j,k

= −
N∑

m=1

T∑

t=1

n∑

j=1

n∑

k=1

M
(m,t)
j,k log σ(O

(m,t)
j,k )

= −
N∑

m=1

T∑

t=1

n∑

j=1

n∑

k=1

M
(m,t)
j,k log

exp(O
(m,t)
j,k )

n∑
l=1

exp(O
(m,t)
j,l )

= −
N∑

m=1

T∑

t=1

n∑

j=1

n∑

k=1

M
(m,t)
j,k

(
O

(m,t)
j,k − log

n∑

l=1

exp(O
(m,t)
j,l )

)

= −
N∑

m=1

T∑

t=1

n∑

j=1

n∑

k=1

M
(m,t)
j,k

(
X

(m,t)
j,k Wk,j + bj − log

n∑

l=1

exp(X
(m,t)
j,k Wk,j + bj)

)
.
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Therefore, it results to

objective = loss + λ

(
‖W‖1 + ‖b‖1

)

= −
N∑

m=1

T∑

t=1

n∑

j=1

n∑

k=1

M
(m,t)
j,k

(
X

(m,t)
j,k Wk,j + bj − log

n∑

l=1

exp(X
(m,t)
j,k Wk,j + bj)

)

+ λ

(
‖W‖1 + ‖b‖1

)

The final equation for the objective function is the same as Eq. [4.7].

The problem in Eq. [4.7] does not require any constraints to solve the convex opti-

mization. First, because the Softmax function (σ) in this equation provides a discrete

distribution in the format of vectors (all fall into [0, 1] and sum up to 1). Second, since

here we format the data points as vectors and not as matrices.

Lemma 5 The problem in Eq. [4.7] is convex.

Proof: With respect to variables W, b, the problem is a summation of an affine

function (−X(m,t)
j,k Wk,j), log-sum-exp term (log

n∑
l=1

exp(X
(m,t)
j,k Wk,j+bj)) and two l1−norms

regularization terms
(
− λ (||W ||1 + ||b||1)

)
. It has been proved mathematically that the

expression log
∑

exp(r) for any real r is convex in Rn [170]. In here, r is an affine

function −X(m,t)
j,k Wk,j with respect to variables W, b. Hence, the problem is a summation

of an affine and two convex terms which preserves convexity and produces a convex

function [170]. Therefore, the minimization problem is convex, it has a globally optimal

solution, and we can solve this equation with the aforementioned convex optimization

solver.
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4.3.3 Proposed deep neural network-based model

We can also learn the mapping defined by the three weight matrices as deep encoders

in a two-tower model [8]. In this regard, we apply end-to-end models to estimate the

social influence matrices using multi-layered encoders from raw features to an influence

matrix. This is described in Fig. 4.2. Each encoder is comprised of three fully connected

Exponential Linear Unit (ELU) [234] layers, initialized by He et al. [235] Normal initial-

ization, such that it draws samples from a truncated normal distribution centered on 0

with a standard deviation of
√

2
f

where f is the number of input units in the weight

tensor. We use Dropout [236] after each fully connected layer to decrease overfitting.

Then, all three outputs are concatenated and fed to another three fully connected layers

with the same activation function to decrease the dimensionality of embedding vectors to

an n× n matrix M̃ (m,t), n being the number of individuals. Finally, cosine similarity of

the two matrices M (m,t) and M̃ (m,t) is computed and the error is back-propagated using

stochastic gradient descent.

The deep method description is shown in Fig. 4.2. In this figure, the weights matrices

in Eq. [4.6] are framed as a layers of deep neural networks. This model creates a non-

convex problem; however, arguably with the abundance of data, a more effective model.

Fig. 4.3 shows an example of input features to the convex-based model. It shows a

set of input features for predicting an influence matrix in a given time from the data.

Response network, sentiment and emotion are networks extracted from time of text

messages represented as 4×4 connectivity matrix, text embeddings are shown as 4×784

matrix, and individual performance (expertise) is individual correctness rate which is a

1× 4 vector.
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  Data:
● Self-report appraisals
● Time of messages
● Message texts
● Individual performance

C A H

3-layered encoder 3-layered encoder 3-layered encoder

Fully connected layer

Categorical cross entropy for 
every row of two matrices

A Robustly Optimized 
BERT Pretraining 
Approach (Liu'19)

Compute the error based on the groundtruth and backpropagate

f(C) g(A) h(H)

Network 
generation

p

3-layered encoder

l(p)

Figure 4.2: Deep learning model architecture. A deep encoder model in a two-tower
framework [8] for learning the three mappings of connectivity network, content of
messages, and history of appraisals. The final layer computes the cosine similarity
with the ground truth influence matrix and back-propagates the error using Stochastic
Gradient Descent (SGD).

Reply duration 
matrix

Sentiment
matrix

Emotion 
(dominance)

matrix

Text embedding
matrix

Individual 
performance 

vector

Influence matrix

Input features (independent variables)  Output
(dependent variable)

Figure 4.3: An example for one row in the supervised learning problem of estimating
influence matrix.
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4.3.4 Baseline dynamical models

• Constant appraisal model: This is a basic model which assumes the influence matrix

remains constant over time. The model reads in matrix form as M̂ (t+1) = M (t), or defined

element-wise, for all i, j ∈ {1, . . . , n} as

M̂
(t+1)
ij = M̂

(t)
ij . (4.8)

• Reflected appraisal model: The reflected appraisal model is based on the model

proposed in Mei et al. [16]. The self-influence estimate M̂
(t+1)
ii increases relative to M̂

(t)
ij

if the expertise of individual i, y
(t)
i , is larger then average team expertise observed by

individual i,
∑n

i=1 M̂
(t)
ik y

(t)
k . If M̂

(t)
ii increases, then the interpersonal weights M̂

(t+1)
ij for

all j 6= i are decreased so that M̂ (t+1) remains row-stochastic. The reflected appraisal

model is defined element-wise for all i, j ∈ {1, . . . , n} and t > 0 as

M̂
(t+1)
ii = M̂

(t)
ii + M̂

(t)
ii (1− M̂ (t)

ii )
(
ȳ
(t)
i −

n∑

k=1

M
(t)
ik ȳ

(t)
k

)
,

M̂
(t+1)
ij = M̂

(t)
ij − M̂ (t)

ii M̂
(t)
ij

(
ȳ
(t)
i −

n∑

k=1

M̂
(t)
ik ȳ

(t)
k

)
,

(4.9)

which reads in matrix form as

M̂ (t+1) = M̂ (t) + diag
(
(In − M̂ (t))ȳ(t)

)
diag(M̂

(t)
d )(In − M̂ (t)).

• Structural balance theory: Structural balance theory is a long-established theory

describing the dynamics that govern the sentiment of interpersonal relationships. Re-

searchers have consistently delivered various theoretical [70, 208, 55, 52] and empirical

support [162, 149, 156] for the emergence of this phenomenon in myriad settings. in this

chapter, we use a generalized Structural balance theory model (SBT) that is inspired by
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earlier research Kulakowski et al. [15]. It predicts the dynamic of influence as introduced

in the following

M̂
(t+1)
ij =

1

n− 2

n∑

k=1, when k 6=i, k 6=j
M̂

(t)
ik M̂

(t)
kj . (4.10)

4.4 Experimental Results

In this section, we start with statistics from the logs in the human subject experiment

and we study the dynamics of influence matrices. Then, we study factors leading to

influence and eventually provide efficacy results of the proposed models to estimate the

influence matrix in every round.

The experimental logs show that most teams reached a consensus when answering

the questions. Every team reached a consensus on average 42 times on the sequence of 45

questions posed to them. All self-reported influence networks are found to be unilaterally

connected and the majority are strongly connected. More precisely, out of 279 influence

matrices reports, only six (∼2%) are not strongly connected which happen only when

one person assigns all their influence to only themselves. Almost all of the not strongly

connected cases were reported early in the experiment. With respect to the convergence

of influence, in the last round, in 90% of the teams, at least half of the subjects reported

the same ranking order of influences for all members including themselves. Additionally,

we observe that in ∼74% of the teams the influence assignments converge to a single

person as being the most influential unanimously reported by the team, and that ∼23%

of the teams converge to two individuals as being equally the most influential members.

4.4.1 Origins of interpersonal influence

Qualitatively, we can look at the dynamics of every subject’s appraisal of every subject

over time. For example, Fig. 4.4 show a team of four subjects and the amount of influence
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every team member assigns to everyone over the course of time. It is clear that on

aggregate and over time the individuals found member #2 to be the most accurate and

therefore they reported member #2 to be the most influential person. Also, we know after

answering all questions, member #2 was more accurate than anybody else (correctness

rate for member #1= 49%, member #2= 70%, member #3= 36%, and member #4=

58%). This is an example of the emergence of the first hypothesis. This figure illustrates

how the interpersonal appraisal reflects the underlying expertise and how teammates

were able to uncover that expertise early on in the experiment.

To quantitatively test the two hypotheses, we define two terms based on the influence

matrix: confidence and persuasiveness. The individual perception (local) definition of so-

cial confidence and persuasiveness for person i take into account column i of the influence

matrix. However, the team perception (global) definition uses the stationary probabil-

ity for person i (index i of the left dominant eigenvector of the influence matrix). The

stationary distribution, also known in the literature as the eigenvector centrality [237],

takes into account the connectivity level in the network for infinite length paths and

hence provides a more general point of view.

Confidence is provided in Eq. [4.11]. The local definition for persuasiveness is Eq. [4.12],

and the global definitions for persuasiveness is given in Eq. [4.13]. To compute the per-

suasiveness we consider the reflective relative appraisal matrix C, which is defined by

removing the diagonal elements from matrix M and re-scaling to be row-stochastic. An-

other term defined in the following is expertise which is the proportion of questions every

member individually answers correctly.

• Expertise: Individual correct answer rate (individual accuracy or individual per-

formance) — the proportion of questions one has individually answered correctly

until any given time (#correct answers
#answers

).
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Figure 4.4: Dynamics of the influence matrix in one team. M shows a 4× 4 influence
matrix for this team. Every panel shows how much every subject reports others
influenced them over time. in other words, it shows the amount of appraisal every
person assigns to team members including themselves over time. After answering
all questions, we observe that member 2 is the most accurate (correctness rate for
member #1= 49%, member #2= 70%, member #3= 36%, and member #4= 58%).
This figure illustrates the team’s interpersonal appraisals reflect the accuracy of the
team members, which was ascertained early on in the experiment.
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• Confidence: Self-appraisal — the amount of influence one assigns to oneself at any

given time.

M
(t)
ii . (4.11)

• Persuasiveness : Appraisal by others — the amount of influence everybody else is

assigning to a particular team member at any given time.

The local perception (accumulative):

1

n− 1

∑

j, j 6=i
M

(t)
ji . (4.12)

The global perception (eigenvector):

(
vL(C(t))

)
i
, (4.13)

where C(t) = diag
(
(M(t) −D(t))1n

)−1(
M(t) −D(t)

)
is a relative interpersonal in-

fluence matrix and D(t) is a diagonal matrix with the diagonal entries of influence

matrix M(t).

• Mean reversion: Reversion to the mean (uniformity) in the appraisals that an

individual holds of their teammates:

Di =
n∑

j=1

||Mij −
1

n
||22, (4.14)

For the sake of abbreviation, throughout this chapter, we use the aforementioned

terms. The empirical distribution of the expertise shows that individuals are more ac-

curate than a random guess (on average individuals have about 50% correct rate when

the expected value is 25% for four-choice questions). Also, we found controlling for the
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Figure 4.5: Empirical distribution of social confidence and persuasiveness, and exper-
tise for every person at the end of the experiment. Empirical distribution of individu-
als’ expertise at the end of experiment (after answering 45 questions) shows individuals
on average answer better than random (25%). It also shows different definitions do
not change the distribution of these features.

difficulty of the questions does not change the correctness rate distribution.

Fig. 4.5 shows the distribution of persuasiveness and confidence. The empirical dis-

tribution of confidence and persuasiveness shows that on average people tend to assign

influence uniformly to their teammates, including themselves. This means that for our

experiments on groups of four, a matrix with 0.25 in every element can be a competitive

baseline for estimating influence matrices. Also, the distributions show that individuals

tend to give greater influence to themselves than to others. Moreover, as we observe the

empirical distributions for both local and global perceptions are similar in this dataset,

we use them interchangeably.
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Correlation study of interpersonal influence

To study the relationship between expertise and persuasiveness, we compute the cor-

relation between the amount of persuasiveness with expertise after answering all ques-

tions. We use the final influence matrix reported by every team and their expertise at

the end of the experiment. Note that, this data satisfies correlation, regression, and

causation studies’ requirements since the amount of influence one reports for themselves,

other teammates report about that person, and their individual correct answer rate are

independent and identically distributed.

Here, we report empirical evidence for all the aforementioned hypotheses. Pearson

correlation results show that there is a statistically positive correlation between expertise

(performance) and average amount of influence one receives (r-value = 0.35 and p-value <

2e − 4). This is the statistical evidence for Hypothesis 1. This finding is an empirical

result for the seminal research in the theory of TMS [10, 11, 12]. We provide an empirical

evidence for Hypothesis 2 via predicting mean reversion (Eq. [4.14]) using expertise in the

following subsection. Finally, we also find that there is a statistical positive correlation

between persuasiveness and confidence (r-value = 0.22 and p-value < 2e−2). This is the

statistical evidence for Hypothesis 3. This is also aligned with past research in confidence

heuristics [13, 238, 239, 240, 14]. The result is quite surprising since in this experiment

individuals communicate only through chat and nonetheless the expertise and the self-

confidence impacted people’s judgment stronger than any cognitive biases. Also, our

experiments show the type of definition for persuasiveness does not change the sign of this

relationship, nor its statistical significance. Thus, due to the large correlation between

global and local perceptions of persuasiveness, the similarity of their distributions, and

more straightforward local definition, we use its local definition in the rest of the chapter.

Fig. 4.6 demonstrates the Pearson correlations of every pair of metrics defined in
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Figure 4.6: Pearson correlation (r-value) of metrics on influence and expertise at the
end of the experiment and after answering all questions with statistical significance
of p-value < 0.018. All metrics are formally presented in Definitions. The threshold
for p-value is chosen using Benjamini-Hochberg (BH) procedure with False Discovery
Rate of 5% [9]. For example, persuasiveness for every subject in the final reported
influence matrix vs. the expertise by the same subject has r-value = 0.35 and p-value
¡ 2e-4. This result shows that expertise is statistically correlated with the amount
of appraisal one would receive by others in a team; this phenomenon is consistent
with research on Transactive Memory System (TMS) [10, 11, 12]. Surprisingly, this
also shows in about two hours with indirect performance exposure, team members
are still able to uncover each other’s expertise. Moreover, confidence and appraise by
others are also statistically correlated which is aligned with the research in confidence
heuristics [13, 14].

Definitions. In this figure, all correlations are statistically significant as their correspond-

ing p-values have been corrected using the Benjamini-Hochberg (BH) procedure [9] with

False Discovery Rate of 5% has the required p-value < 0.018 as the statistical significance

threshold. Note that global persuasiveness is the stationary probability of the influence

matrix after removing its main diagonal (defined in Eq. [4.13]).
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Predicting Mean reversion Feature-set 1 Feature-set 2
Intercept 0.10 *** 0.10 ***
Individual performance 0.07 ** 0.08 ** (VIF: 1.21)
Team performance -0.004 (VIF: 1.21)

Log-likelihood: 384.4
AIC: -764.8
BIC: -754.4

Log-likelihood: 384.4
AIC: -762.8
BIC: -747.2

Table 4.2: Regression result for predicting mean reversion. The statistical significance
demonstrated in regards of p-value: *** p < 0.01, ** p < 0.05. This result shows the
individual performance (expertise) statistically and positively is of predictive of mean
reversion.

Regression study of interpersonal influence

Although the correlation between pairs of variables provides a simple view of their

relationship, we can utilize a regression model to not only take into account multiple

variables but also their interactions. This would incontrovertibly draw a more robust

and general picture of the aforementioned metrics. Hence, here we intend to estimate

one’s average influence reported by their teammates at the end of the experiment. We use

the Generalized Linear Model (GLM) method to solve the regression problem. Table 4.3

shows the coefficients and their statistical significance in three least-squares problems

(each column shows a separate test).

The empirical evidence for Hypothesis 2 is obtained via regression on expertise and

mean reversion. Table 4.2 shows the regression results for predicting mean reversion for

every individual. Our results show the more expert one individual is, the more different

than equal they appraise their teammates as the expertise is positively and statistically

significant of predictive power of the reversion to the mean (p − value < 0.05) in all

teams. It also shows this is a individual feature as the team average performance is

not statistically significant while individual performance stays statistically significant. In

fact, this result is the motivation behind using expertise as a weighted average in the

cognitive dynamical model described in the next section.

117



Interpersonal Influence Estimation in Small Group Networks Chapter 4

Feature-set 1 Feature-set 2 Feature-set 3 Feature-set 4
Intercept 0.13 *** 0.19 *** 0.12 *** 0.12 ***

Expertise 0.20 ***
0.17 ***
(VIF: 1.05)

0.17 ***
(VIF: 1.11)

Confidence 0.14 ***
0.11 ***
(VIF: 1.05)

0.12 ***
(VIF: 1.06)

Response network
out-degree

0.00
(VIF: 2.63)

Sentiment network
out-degree

0.00 **
(VIF: 2.54)

LL: 162.86
AIC: -321.7
BIC: -316.3

LL: 162.90
AIC: -321.8
BIC: -316.4

LL: 168.12
AIC: -330.2
BIC: -322.1

LL: 170.18
AIC: -330.4
BIC: -316.8

Table 4.3: Regression result for predicting persuasiveness. Generalized Linear Model
(GLM) regression coefficients and their statistical significance in estimating local per-
suasiveness at the end of the experiment (after answering 45 questions). Statistical
significance is portrayed with *** for p < 0.01 for ** and p < 0.05. The amount
of Variance Inflation Factor (VIF) is provided in parenthesis; this factor estimates
how much the variance of a regression coefficient is inflated due to multicollinearity
in the model. It is known [17] that statistical results remain significant in models
with multicorrelated independent variables when VIF < 5. Evidently, the findings are
robust. Taking into account the interactions of all variables, we find that expertise
and confidence are consistently statistically predictive of persuasiveness. Networks
are extracted from the time and the content of chat messages among individuals and
defined in the ”Feature-set from logs” part.
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Table 4.3 shows that introducing more variables in columns has increased log-likelihood,

Bayesian Information Criterion (BIC), and Akaike Information Criterion (AIC). It shows

that expertise has a consistently positive and statistical predictive-power on persuasive-

ness (the empirical evidence for Hypothesis 1). The statistical significance is robust even

after adding many more variables shown in the rightmost column. Also, confidence has a

positive statistical predictive-power to predict persuasiveness (the empirical evidence for

Hypothesis 3). However, its coefficient (importance) is less than the expertise (aligned

with research in confidence heuristics [13]). This result is found when the platform pro-

vides immediate feedback for every question. If no feedback is provided or there is no

right or wrong answer (i.e. judgmental questions), people might use confidence as a more

substantial metric in their appraisal distribution.

Causality study of interpersonal influence

To study the order of the effects by confidence, persuasiveness, and expertise and to

what extent their effect is supported by data, we propose to use a forecasting causality

test. Here, we use Granger causality — a statistical concept of causality that is based

on prediction [241, 242, 243]. According to Granger causality, if a signal X2 ”Granger-

causes” (or ”G-causes”) a signal X1, then past values of X2 should contain information

that helps predict X1 above and beyond the information contained in past values of

X1 alone. Thus, instead of ”Granger-cause” a more appropriate word might be ”prece-

dence” [244]. Its mathematical formulation is based on linear regression modeling of

stochastic processes [241, 242, 243].
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X1(t) =

q∑

j=1

αjX1(t− j) + c1 + E1(t)

X1(t) =

q∑

j=1

αjX1(t− j) +

q∑

j=1

βjX2(t− j) + c2 + E2(t)

(4.15)

Eq. [4.15] shows the linear regression version of Granger causality which is used in

this chapter. The idea behind Eq. [4.15] is that if the variance of the model from E1 to

E2 is reduced by the inclusion of the X2 terms in the second equation, then it is said

that X2 G-causes X1. In other words, X2 G-causes X1 if coefficients β are jointly and

significantly different from zero. This can be tested by performing an F-test.

To study the causality of the aforementioned variables, we compute expertise, confi-

dence, and persuasiveness in every round. Thus, in this data, for every person, we have

three time series with nine data points. For every person, we compute Granger causality

of these time series and study what percentage of change in individuals’ expertise, con-

fidence, and persuasiveness have statistical causal effects. Note that the exact number

of lags, which were statistically significant, could uncover the precedence of these vari-

ables. That plausibly opens the door to studying the order of different effects, such as

hypotheses 1 and 2, leading to social influence.

Applying statistical tests on three time series per individual is pregnant with false

discovery and is absolutely crucial to adjust our results. Ergo, in the following results,

obtained p-values are adjusted using Benjamini-Hochberg (BH) [9] controlling procedure

with false discovery rate (FDR) of 5%.

Fig. 4.7 depicts empirical evidence for Hypothesis 1 and 3. Fig. 4.7 shows multiple

Granger causality tests on the effect of confidence, persuasiveness, and expertise on one

another. These results are obtained after applying the BH procedure with FDR=5%
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Figure 4.7: Granger causality result. This figure shows the proportion of statistically
significant Granger causality of timeseries of confidence, persuasiveness and exper-
tise in all teams. The p-values have been corrected using Benjamini-Hochberg (BH)
procedure with False Discovery Rate of 5% has required p-value < 0.03 as statistical
significance threshold.

that has required p-value < 0.03 as a statistical significance threshold. Even though the

time series are relatively short (only nine data points), this result shows that in most

individuals there is statistical causation from confidence to persuasiveness and vice versa

over time. The results also show there is a causal relationship from expertise to confidence

(aligned with confidence heuristics) and also persuasiveness (TMS [11]). Note that unlike

the correlation experiment that was taking into account only the final influence report

and expertise, these results are computed from time series of influence and performance

for every individual during the course of the experiment.

Next, to study the order of effects given in Fig. 4.7, we use the proportion of sta-

tistically significant Granger causality applying different lags. Every lag depicts five

questions, as we inquire about their influence matrix every five questions. In this regard,

we test the causality once using lag=1 and then by using lag=2. We analyze the pro-

portion of statistical significance only with lag=1 and the rest that needs at least two
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previous time data points (lag=2). Thus, we sort the effects based on the descending

order of the proportion of lag=1 as an estimate for the underlying order. From the effects

in Fig. 4.7, Expertise −→ Confidence seems to the fastest (as it has the most number of

statistical significance effects with lag=1 compared to the rest of the effects). Afterward,

Confidence −→ Persuasiveness and Expertise −→ Persuasiveness both come very close

to each other. And at last, Persuasiveness −→ Confidence seems the slowest among all.

in other words, the order shows that the expertise of individuals quickly impacts their

confidence. Both their confidence and their expertise then lead to persuasiveness. How-

ever, it seems that confidence has a slightly faster effect. This is perfectly aligned with

the past research in confidence heuristic [13] and means that people have an immediate

effect by social power and confidence, indeed faster than expertise. However, still, after

some time (two lags in this experiment) expertise as a heuristic would be more prominent

in the amount of persuasiveness (as 70% of individuals have this causal relationship after

maximum two lags). In the end, persuasiveness can also lead to confidence; however,

although it happens very often, it happens slower than the aforementioned effects. The

delay of the persuasiveness affecting confidences could be because the platform shares

individuals’ answers with everyone but does not disclose their appraisals of each other.

Therefore individuals must learn their confidence from persuasiveness through multiple

discussions with their teammates.

4.4.2 Influence matrix estimation

Studying the problem of estimating the influence matrix is novel and challenging. Our

data present an unprecedented opportunity to understand team behavior and estimate

the interpersonal influence system of teammates. Even though this is a large set of states

to estimate, there are a few constraints that make this task feasible. The matrix is
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row-stochastic, and all elements fall into [0, 1].

Influence matrix estimation is an applicable problem. Estimating individuals’ influ-

ence directly from their communication logs and individual performances are useful in

any team-based organization. Studying the longitudinal dynamics of a team influence

system is rife with information about team behavior. In this experiment, the estimation

method is applied for every team in every round using a history of influence matrices,

text embeddings, and estimated expertise before that round. Using explainable ma-

chine learning and dynamical models, we also attempt toward uncovering the underlying

predictive power of different features and mechanisms leading to higher interpersonal

influence in teams.

Before studying models to estimate influence matrices, we need a set of measures

(metrics) to gauge the accuracy of the estimated influence matrices with the ground

truth ones. Here, we use two classical metrics: Mean Square Error (MSE) and the

Kullback-Liebler (KL) divergence. Together they portray two different measures of ac-

curacy. MSE pays more attention to the exact estimation of each number in the matrix

while KL divergence on each row of the influence matrix focuses on the similarity of the

distributions. The MSE and KL divergence of two row-stochastic matrices M and M̂

with n rows are defined as follows,

MSE(M, M̂) = 1
n
‖M− M̂‖2F = 1

n

n∑

i=1

n∑

j=1

|Mij − M̂ij|2, (4.16)

KL(M, M̂) = 1
n

n∑

i=1

DKL(Mi,.‖M̂i,.) = 1
n

n∑

i=1

( n∑

j=1

Mij log
Mij

M̂ij

)
. (4.17)

Depending on the application, one may choose any of these metrics. To showcase the

generality of our proposed models, we present results on both metrics (Fig. 4.10).
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We propose three models with a spectrum of explainability: (i) A black-box deep

learning model which is the most accurate, (ii) A white-box linear model using convex

optimization that explains substantial features leading to interpersonal influence (Ta-

ble 4.9), (iii) A cognitive dynamical model which postulates an underlying mechanism.

This dynamical model unlike the other two machine learning models does not require

much training data as it only has one scalar hyperparameter to choose from. In the

following, we introduce the results of estimation using these models.

Influence matrix estimation: cognitive dynamical models

We propose discrete-time dynamical models, of the form M̂ (t) = T (M̂ (t−1), x(t−1)),

that are formulated such that established sociological concepts are baked into their equa-

tions. These non-machine learning models only take the history of past local influence

weight information and individuals’ performance values. These models can be used to

provide a single or multi-round forecast of the influence matrices for successive rounds of

the experiment.

Our results compare the accuracy of various dynamical models, which are described

below in the Materials and Methods section. The models are a baseline model, model

based on Hypothesis 1, model based on Hypotheses 1 and 2, and model based on Hypothe-

ses 1, 2 and 3. The models assume that individuals can observe each other’s expertise,

which they take into account when readjusting the influence weights assigned to one

another.

We consider single-round and multi-round forecast, to compare how the models per-

form when using the previous round’s influence matrix versus only the initial round’s

influence matrix. The single-round forecast predicts the influence matrix at rounds t ≥ 2

using the reported influence matrix from the previous round M (t−1) and the expertise

y(t). Note that for the single-round forecast, the prediction comes from the following
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modification to the dynamics, M̂ (t) = T (M (t−1), y(t−1)). Fig. 4.8 (left) illustrates the

error of a given model. The multi-round forecast predicts M̂ (t), for any t ≥ 2, using the

initial reported influence matrix M (1) and the previous round’s expertise values y(t−1) as

inputs. The following details how the dynamical models are modified to give multi-round

forecasts. To estimate M̂ (2), the map T (M (1), y(1)) is used. For subsequent rounds t ≥ 3,

the estimate for M̂ (t) comes from T (M (t−1), y(t−1)). In summary, the ground truth influ-

ence matrix data is propagated over a sequence of rounds to predict the influence matrix

at future rounds. Fig. 4.8 (right) illustrates the error of a given model.

Overall for the single and multi-round forecast, we observe increased estimation ac-

curacy for the models that capture more hypotheses. For the single-round forecast, we

observe that the accuracy increases for later rounds since individuals adjust influence

weights less as the experiment goes on. However, the accuracy for later rounds does

not give significant improvements compared to the constant baseline model, since the

influence weights remain relatively constant for rounds t ≥ 4. For the multi-round fore-

cast, as expected, we see that the accuracy decreases for predictions of later rounds; yet

consistently provides the most accurate predictions of the influence matrices regardless

of whether the model is given the most up-to-date ground truth values. In subsequent

sections, we also show that the cognitive dynamical model gives competitive predictions

compared to the machine learning models.

Influence matrix estimation: machine learning models

Here, we describe machine learning models to predict the influence matrix at every

round. These powerful models are able to take multiple features extracted from the logs

of the experiment and learn a mapping to estimate the corresponding influence matrix.

In order to learn such mappings, they require training data. Thus, we use a portion of

collected logs as the training and apply the trained model on the unseen logs.
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Figure 4.8: Cognitive model evaluation. The mean squared error (MSE) and the
Kullback-Leibler (KL) divergence for different dynamical models over nine rounds of
influence matrix estimation. Differentiation (D model) takes into account hypothesis
1. Differentiation, Reversion (DR model) is inspired by hypotheses 1 and 2. Differ-
entiation, Reversion, Perceived (DRP model) uses hypotheses 1, 2, and 3. For the
models, we use the hyperparameter τ = 0.4. In this figure boxes show the interquartile
range of the errors, the whiskers show minimum and maximum of the range of the
distribution. In each box, the dot shows the average and the line shows the median
of the portrayed distribution. Left: Single-round forecast error of various dynamical
models for predicting the influence matrix one round ahead. The models estimate
M̂ (t) using the expertise ȳ(t−1) and the reported influence matrix from the previous
round M (t−1). Right: Multi-round forecast error of various dynamical models for
predicting the influence matrix multiple rounds ahead. The models estimate M̂ (t)

using the expertise ȳ(t−1) and the initial ground truth M (1) influence matrix reported
by individuals. For rounds t ≥ 2, the dynamics use the predicted influence matrix
from the previous round M̂ (t−1), instead of M (t−1). For rounds t ≥ 4, the influence
network remains relatively constant, so the cognitive dynamical model offers incre-
mental improvements to the baseline models for single-round forecast. However, this
model gives significant improvements in accuracy from baseline models for all rounds
in multi-round prediction.
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In order to predict the influence matrix at time t, we use time and content of text

messages from the broadcast communication logs until time t, individual correct percent

until time t, and reported influence matrices before time t in the following.

• Connectivity networks: In broadcast communication logs, the time between two mes-

sages can reveal a directed and weighted evolving network structure among teammates.

This approach implies a basic assumption: if a message B appears on a chat log close

enough in time to an earlier sent message A, then B is likely a response to A; and, the

larger the time gap between two messages is, the less likely the later message is a response

to the earlier message. For a message m occurring at time m.time on the log, we define

the set of its responses and the connectivity networks as follows

R(m) = {r | m.time < r.time ∧ t1 ≤ r.time−m.time ≤ t2

∧ r.sender 6= m.sender}

Aij =
∑

p.sender=i
q.sender=j
q∈R(p)

weight(p, q), (4.18)

We define the weights in the connectivity networks (given in Eq. [4.18]) in three

different ways. First is Response network in which the weights in the network, similar

to Amelkin et al. [92], are calculated based on the duration a response as weight(p, q) =

e−γ|p.time−q.time|. This networks represents the responsiveness of every individuals toward

every other member. The likelihood of a message being a response degrades with the

increase of the time gap between the two messages. Second is Sentiment network in which

we use Valence Aware Dictionary and sEntiment Reasoner (VADER) as the sentiment

analysis toolbox [245] on words in the response message as weight(p, q) = sentiment(q).

Third is the Emotion network in which Affective norms for English words (ANEW) are
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used as the emotion analysis toolbox [246] that examines arousal, valence, and dominance

of words in the response message. The weight for emotion network is computed as

weight(p, q) = emotion(q). In all networks, the summation is performed over all suitable

pairs (p, q) of messages p and q in a team’s chat log. Thus, these networks are represented

as a n× n matrix with float values and no self-loop.

• Message content embeddings: We use natural language processing to analyze the con-

tent of messages. The text embeddings for sentences [28] are generated from a pre-trained

sentence embedding model by the last layer of the encoder in the state-of-the-art model,

a Robustly Optimized BERT Pretraining Approach (RoBERTa) [18, 27], is generated.

• History of influence matrix: Previous influence matrices.

• Expertise: Individual correctness rate.

We propose a linear maximum likelihood estimation model using convex optimization

and a deep neural network model. Fig. 4.2 shows the architecture of the neural network

model (see Methods and Materials for details). They both similarly intend to find a

linear or nonlinear combination of the aforementioned input features to estimate a row-

stochastic influence matrix. We compare the proposed models to the baseline models

with a variation of different input features. All models are trained with 80% of the data

and tested on the withheld 20%. To compute the statistical significance, we draw 1000

bootstraps with replacement from the hold-out test set.

Due to the application, for every round, we can assume we only have access to the

first influence matrix, and we need to predict all influence matrices in future rounds

with that. Hence, in Fig. 4.9, we use only the first influence matrix with expertise, text

embeddings, and so forth, in every round, to predict a 4 × 4 influence matrix. It shows

the average of Mean Square Error (MSE) for the estimated influence matrix from the

ground truth influence matrix (reported by individuals) in every round for every team.

MSE is defined on two matrices in Eq. [4.16].
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The numbers in parenthesis show the standard error for MSE bootstraps. Fig. 4.9

depicts linear and neural network-based models consistently surpass other baselines with

any sets of features. Also, it shows the proposed models are powerful as the more features

are introduced, the more accurate they can get. Fig. 4.9 also shows the statistical signif-

icance of the proposed models as we can also see by adding more 2.58 times of standard

deviation still neural network works better than all other models. All numbers from this

figure are shown in Table 4.4.
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Figure 4.9: Improvement in machine learning models by adding more features. Av-
erage of Mean Square Error (MSE) of estimated influence matrix from the ground
truth in the test set of influence matrices. Titles show the list of features fed to the
models. The error bar shows the standard deviation in 1000 bootstrap on test error.
Both machine learning models improve when given more features from the logs.

In another setting, for every round, we assume we have access to the previous influ-
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Features
Models Random

baseline
First

baseline
Uniform
baseline

Average
baseline

Linear
model

NN
model

expertise
0.0305

(0.00007)
0.0176

(0.00008)
0.0110

(0.00005)
0.0106

(0.00004)
0.0106

(0.00005)
0.0102

(0.00004)
expertise,
first influence matrix

0.0305
(0.00007)

0.0176
(0.00008)

0.0110
(0.00005)

0.0106
(0.00004)

0.0093
(0.00005)

0.0079
(0.00003)

expertise,
first influence matrix,
response network

0.0305
(0.00007)

0.0176
(0.00008)

0.0110
(0.00005)

0.0106
(0.00004)

0.0093
(0.00005)

0.0072
(0.00003)

expertise,
first influence matrix,
response network,
sentiment network,
emotion network

0.0305
(0.00007)

0.0176
(0.00008)

0.0110
(0.00005)

0.0106
(0.00004)

0.0093
(0.00004)

0.0070
(0.00003)

expertise,
first influence matrix,
response network,
sentiment network,
emotion network,
content embedding

0.0305
(0.00007)

0.0176
(0.00008)

0.0110
(0.00005)

0.0106
(0.00004)

0.0090
(0.0004)

0.0069
(0.00003)

expertise,
first influence matrix,
response network,
sentiment network,
emotion network,
content embedding,
average of previous
influence matrices

0.0305
(0.00007)

0.0176
(0.00008)

0.0110
(0.00005)

0.0106
(0.00004)

0.0067
(0.00005)

0.0066
(0.00003)

Table 4.4: Improvement in machine learning models by adding more features. Average
of Mean Square Error (MSE) of estimated influence matrix from the ground truth in
the test set of influence matrices reported by individuals. The number in parenthesis
shows the standard error in 1000 bootstrap on test error.
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ence matrix and expertise to predict the current influence matrix. For this setting, there

are more baselines that we can compare our proposed models against. Fig. 4.10 (left)

shows MSE divergence error for models using previous influence matrix and expertise.

Similarly, the neural network-based model surpasses all baselines and provides statisti-

cally significant lower MSE. It is worth mentioning that proposed linear model (Eq. [4.6])

is competitive with the proposed neural network model (Fig. 4.2). Also, interestingly,

the proposed cognitive dynamical model (Eq. [4.5]) which does not require any training

and is described by a mechanism that postulates past research in social psychology works

significantly better than other baselines and competitively close to the proposed machine

learning models. Note that both machine learning models use optimization methods for

training that requires multiple steps to converge.

Fig. 4.10 shows MSE and KL divergence of the estimated influence matrix from the

ground truth reported by individuals. MSE is defined on two matrices in Eq. [4.16] and

KL divergence in Eq. [4.17]. MSE and KL divergence provide two different perspectives

regarding the efficacy of influence estimation. MSE formulation emphasizes the exact

values in matrices. While KL divergence attends to the discrete probability distribution in

corresponding rows of two matrices. Fig. 4.10 shows no matter which error measurement

we use, two proposed models work efficiently compared to all baselines. It also depicts

the neural network-based model surpasses all other models. The problem formulation

for MSE of influence matrices is provided in Eq. [4.6], and for probability distribution

estimation in every row of influence matrices is given in Eq. [4.7] (see Methods and

Materials).

For more details on the results shown in Fig. 4.10, Table 4.5 and Table 4.6 depict

MSE of basic baselines and estimation models, respectively. Similarly, Table 4.7 and

Table 4.8 show KL divergence of basic baselines and estimation models, respectively. All

algorithms use use previous influence matrix and expertise. Note that neural network-
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Figure 4.10: Comparison of all models. Mean squared error (MSE) and Kull-
back–Leibler (KL) divergence of single-round influence matrix prediction for baseline
algorithms and the proposed models. Evaluations are applied on 1000 bootstraps of
the holdout test dataset (20% of the entire data). All models have access to the ex-
pertise and previous influence matrix for every team. The box shows the interquartile
range of the errors, the whisker shows minimum and maximum of the range of the
distribution, and the dots show the outliers. Baseline models: Random baseline is
a randomly generated row-stochastic matrix. First predicts a team’s first influence
matrix to be unchanged. SBT baseline uses the generalized Structural Balance The-
ory [15]. Uniform predicts a matrix with all elements as 1

n . Average predicts a team’s
row-stochastic average influence matrix to be the most accurate prediction for any
influence matrix. Reflected baseline uses reflected appraisal mechanism for predic-
tion [16]. Constant predicts the influence matrix to be unchanged from last measured
one. Proposed models: Cognitive model based on Differentiation, Reversion, Per-
ceived expertise model DRP takes into account the aforementioned hypotheses ( 1, 2,
3) to predict influence matrices. Moreover, Linear model using convex optimization
(Linear) and Neural Networks model (NeuralNet) are proposed to learn important
features from the logs to estimate influence matrices. The figure depicts the proposed
models outperform baselines. Surprisingly, this figure shows the reflected appraisal
model does not surpass the baseline of considering previous influence matrix to be
unchanged (Constant model). Also interestingly, this figure shows that the cognitive
dynamical model works competitively with the learning models showing the power
behind our empirically proven hypotheses.
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Features
Models Random

baseline
First

baseline
Uniform
baseline

Average
baseline

Constant
baseline

previous influence matrix
0.0305

(0.00007)
0.0176

(0.00008)
0.0110

(0.00004)
0.0106

(0.00005)
0.0073

(0.00007)
previous influence matrix,

expertise
0.0305

(0.00007)
0.0176

(0.00008)
0.0110

(0.00004)
0.0106

(0.00005)
0.0073

(0.00007)

Table 4.5: MSE of estimated influence matrix using basic baselines from the ground
truth in the test set of influence matrices reported by individuals. The number in
parenthesis shows the standard error in 1000 bootstrap on test set.

Features
Models SBT

model

Reflected
appraisal

model

Linear
model

Cognitive
DRP

-based
model

Neural
network
-based
model

previous influence matrix
0.0172

(0.00007)
N/A

0.0061
(0.00005)

N/A
0.0059

(0.00003)
previous influence matrix,

expertise
0.0172

(0.00007)
0.0073

(0.00007)
0.0059

(0.00005)
0.0709

(0.0006)
0.0058

(0.00003)

Table 4.6: MSE of estimated influence matrix using estimation models from the ground
truth in the test set of influence matrices reported by individuals. The number in
parenthesis shows the standard error in 1000 bootstrap on test set. This table also
depicts the proposed learning models (neural network-based, linear, and cognitive
DRP-based) outperform baselines.

based model surpasses all baselines and provides statistically and significantly lower error

rates.

Table 4.9 sheds light on the importance of every feature set in the linear model

optimized using convex optimization which was trained with 80% of the data. This table

shows entry-wise l1-norm of estimated parameters in Eq. [4.6]. The values in table 4.9

are sorted from most to least important top to bottom. This result shows the previous

influence matrix is the most important feature used to predict the next influence matrix.

Interestingly, it also shows expertise is the second most of predictive power and text

embedding is third. It shows sentiment, emotion, and quick responsiveness (response

network) network are far less substantial in the estimation. It is worth mentioning that
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Features
Models Random

baseline
First

baseline
Uniform
baseline

Average
baseline

Constant
baseline

previous influence matrix
0.3431

(0.0008)
0.1908

(0.0009)
0.0818

(0.0003)
0.0709

(0.0006)
0.0707

(0.0006)
previous influence matrix,

expertise
0.3431

(0.0008)
0.1908

(0.0009)
0.0818

(0.0003)
0.0709

(0.0006)
0.0707

(0.0006)

Table 4.7: KL divergence of estimated influence matrix using basic baselines from the
ground truth in the test set of influence matrices reported by individuals. The number
in parenthesis shows the standard error in 1000 bootstrap on test set.

Features
Models SBT

model

Reflected
appraisal

model

Linear
model

Cognitive
DRP

-based
model

Neural
network
-based
model

previous influence matrix
0.1540

(0.0008)
N/A

0.0494
(0.0003)

N/A
0.0479

(0.0003)
previous influence matrix,

expertise
0.1540

(0.0008)
0.0709

(0.0006)
0.0482

(0.0003)
0.0478

(0.0003)
0.0459

(0.0003)

Table 4.8: KL divergence of estimated influence matrix using estimation models from
the ground truth in the test set of influence matrices reported by individuals. The
number in parenthesis shows the standard error in 1000 bootstrap on test set. This
table also depicts the proposed learning models (neural network-based, linear, and
cognitive DRP-based) outperform baselines.
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l1-norm of estimated parameters
Previous influence matrix 0.2137 ± 0.0027
Expertise 0.0239 ± 0.0027
Message content embedding 0.0111 ± 0.0003
Message sentiment 0.0078 ± 0.0010
Message emotion 0.0050 ± 0.0007
Message responsiveness 0.0041 ± 0.0004

Table 4.9: Features importance in predicting influence. Entry-wise l1-norm of esti-
mated parameter matrix in linear model given in Eq. [4.6] which is trained with 80%
of the data. This table shows the importance of each features in the proposed linear
model. The embeddings [18], sentiments, and emotions all are computed from the
message text content; however, responsiveness is computed from the timestamps of
the messages.

due to the origin of memory questions, there is only a brief chat happening for many of

the members since they simply do not know the answer. That is probably the reason

that text embedding is not as important as the correct answer rate.

4.4.3 Parameter tuning

Here, we provide the results of three different methods used to find an appropriate

range for the time window. The first method uses the connectivity network. In order

to determine values for λ, γ, and an appropriate time window, we attain values of the

average mean square error of a 10-fold cross validation of the network. By plotting the

mean square errors in a heatmap for every value of λ and γ, we are able to compare

which values of the parameters gave the lowest error. In Fig. 4.11, we find that with

λ = 0.2 and γ = 1, we achieve an average mean squared error value of 0.8560 at the

window [1, 18]. This finding is both reasonable and supported by our network, which

helps us ensure that our results use parameters that are conducive to our application.

The next method takes the approach of using labeled data and finding the error of

different windows. To accomplish this, we labeled 98 messages from team 7 with either
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a 0 or a 1, where a 0 indicates that a message was not a response to a previous message

and a 1 indicates that the message was a response. We then recorded the predictions of

what different time windows would label the data as. For example, if we were looking

at a window of [2, 10] and a message was labeled with a 1 and was sent 2 to 10 seconds

after any other message, we would classify it as correctly labeled by the window. We

did this for each message and calculated precision, recall, F1 score, Receiver Operating

Characteristic (ROC) score, and accuracy. To make sense of our findings, we took the

best F1 score, shown in Fig. 4.12, out of all of the windows and found that [1, 21] had

the best F1 score of 0.75. Other metrics like recall and ROC score had similar results, as

the best window for recall was [1, 21] and the best window for the ROC score was [1, 21]

with values 0.9783 and 0.7103 respectively.

Our last method took a similar approach for as the previous method, but with the

labels of data as time windows themselves rather than binary labels. That is, the new

labels told that messages within the time window were direct responses to the message,

giving more control over indicating which messages are responses. We recorded which

messages were correctly classified over different time windows and found similar results

to the second method, where the best F1 score gave an optimal window of [1, 18], as seen

in Fig. 4.13.

Eventually, consulting with all tuning experiments, we chose [1, 18] as the time win-

dow.

4.5 Conclusion and Future Works

Interpersonal relationships change due to a person’s cognitive biases, societal roles,

and what their in-group perceptions are, among other factors. These relationships can

be modeled as an influence matrix, where weighted edges signify positive or negative
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Figure 4.11: Heatmap of MSE of varying time windows attained by applying the linear
model using convex optimization model on the response network.
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Figure 4.12: Heatmap of the F1 score of varying time windows attained by labeling
98 messages from team 7.
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Figure 4.13: Heatmap of the F1 score of varying time windows attained by labeling
the same 98 messages from team 7 with window sizes rather than binary labels.
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appraisals between people. Being able to estimate these influence matrices has important

applications such as marketing advertisements, creating successful political campaigns,

and improving the efficiency of communication among team members. This idea of

influence matrix estimation has been studied previously but with simulated data or a

focus on estimating the total amount of influence from organizations or websites rather

than estimating separate values between individuals.

We collected data from human subjects answering trivia questions in teams of four.

After individually answering a question, they then collaborated to agree on a final answer

through a chat system. The participants were periodically asked to assess their appraisals

of each other. We built a machine learning-based model using text content, the time of

messages, and individual task performance to estimate the collective influence matrix. In

total, we sought to find underlying factors that contribute to the awarded influence. We

used convex optimization and neural network models alongside baselines from dynamical

models and sociology literature to test our hypothesis. From these findings, we conclude

that task performance and higher values of confidence were the two most salient factors

in determining the amount of influence one receives in collaborative group settings. We

hope this chapter on estimating underlying influence systems in a collaborative environ-

ment will spur the establishment of connections with a variety of fields and advance an

interdisciplinary understanding of the design of social experiments. We believe the prag-

matic implications will be of great use to any individual or organization that manages

teams or networks of collaborators.
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Conclusion

In the following, we summarize studies from previous chapters and propose future direc-

tions by introducing pertinent open problems in the field.

5.1 Summary of Chapter 2

Chapter 2 addresses a long-standing debate concerning Structural Balance Theory.

Structural Balance Theory (SBT) has been applied across disciplines since the 1940s

and continues to grow in prominence in fields that study social networks, conflict, and

change. This chapter addresses specifically the absence of dynamic, real-world analyses

of structural balance and the relationship between a system’s balance and performance.

This chapter examines a unique dataset that tracks all e-communications (timing and

content) between 66 stock traders as they actively traded within a hedge fund over a

continuous 2 year period. These data present an unprecedented opportunity to measure

how balances of sentiments change over time and how this change in time is related to

trading performance. Our models use Markov transition probability matrices, nonpara-

metric regression analyses, and social network null models. We believe the topic of the
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chapter will be of great interest across the sciences and reduce errors in the application

of SBT. The pragmatic implications will be of great use to any individual or organization

that manages teams or networks of collaborators. Our analyses provide the following

novel theoretical and empirical findings:

• For the first time, it tests the relationship between balance structures and perfor-

mance on a longitudinal dataset.

• This chapter shows the emergence of structural balance on the largest longitudinal

and field-setting data in the literature.

Contrary to the axioms of SBT, we find that:

• Forbidden relationships exist and persist.

• Stability occurs as much as change.

• Self-correction in teams is limited.

Pragmatic Contributions:

• Decision-makers in balance are 30% likelier to have higher performance than when

they are out of balance.

• Forbidden triads persist and can cripple a team or network unless actionable inter-

ventions are applied.

5.2 Summary of Chapter 3

In Chapter 3, we propose an extension for structural balance theory to sparse networks

and test it on the largest longitudinal dataset yet addressed in empirical research on

structural balance. We analyze 23 years of data on public international appraisals of
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nations, and we present evidence that this network of appraisals evolves as predicted by

a theory of structural balance. With dynamic real-world analyses of structural balance,

our research provides empirical findings on long-standing debates in the interdisciplinary

field of work on structural balance theory. Interest in this theory has been motivated by

its attention to social conflict and social change.

Our findings are listed below:

• We find that disturbances in this evolution are associated with major economic

events. Remarkably, the trajectory of the Frobenius norm of sequential transition

probabilities that govern the evolution of the network dramatically stabilizes.

• We provide unexpected results regarding this theory, introduce a novel convex

optimization method to estimate the dynamics of data, and provide mathematical

proof for its optimality and convergence rate.

• we buttress the above findings with an analysis of two additional smaller-scale

finance datasets.

• Contrary to the classic axioms of structural balance theory, we find that the main

driver of the evolution toward structural balance is the reduction of violations of

transitivity (a friend of a friend is a friend).

• An important pragmatic contribution of the chapter is finding that the proposed

time-varying Markov model, using sparse structural balance, usefully pinpoints

international shocks, and international conflicts.
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5.3 Summary of Chapter 4

Chapter 4 uses a unique dataset about 124 human subjects split into groups of four,

playing a team-based game of trivia questions for two hours; we collect individual an-

swers before the discussion, team answers after discussion, e-communications (timing

and content), and answers to questions and appropriately designed questionnaires. This

data presents an unprecedented opportunity to measure how the interpersonal influence

system of teammates changes over time and how the dynamics are related to individ-

ual performance and communication. Our quantitative models rely upon concepts from

cognitive psychology and machine learning to estimate social influence over time.

This chapter addresses long-standing debates on the effects of transactive memory

systems (TMS), cognitive heuristics and biases, and influence systems on group decision

making. As established in the literature, TMS posits individuals tend to learn over time

who is good at what in their team. Key open questions involve understanding how the

influence system of a team depends upon the transactive memory system and to what

extent higher influence is assigned to experts. Our analyses provide the following novel

theoretical and empirical findings.

We find

• Statistically significant empirical support for the theory transactive memory sys-

tems, social comparison, and confidence heuristic in teams collaborating on tasks

with immediate feedback.

• A novel dynamical model, motivated by the hypotheses from social and psychologi-

cal science that is validated against the dataset and is used to estimate interpersonal

influence matrices using individual performance.

• A set of rigorous analytical results on the asymptotic behavior of the proposed
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model.

• A novel maximum likelihood estimation model with rigorous loss derivation that

outperforms all baselines in estimating the influence matrices in team tasks.

Pragmatic Contributions are:

• Individuals in a communication-based system with feedback can efficiently learn

their teammates’ skills even without direct access to each others’ expertise.

• Our proposed dynamical and neural network model can be used in a chat-based

platform with access to individuals’ performance to accurately estimate the social

influence among group members (who-influence-whom and to what extent).

5.4 Future Directions

This dissertation opens up a number of avenues for future research, particularly, in

dealing with signed networks. Similar to the studies in this dissertation, team networks

and socio-economic networks would be in focal target of the open problems.

Impact of social life on work performance: An extension to the study in Chapter 2

is to study other aspects of social life on work performance in risky-decision making. One

popular aspect is work/life balance. There are multiple studies in this matter; however,

there is no study quantifying the impact of work/life balance on longitudinal trading

performance. To this end, we can study the social and work communication networks

among traders in a company.

Relational ties can often be multidimensional in nature, comprising both social and

economic components. Prior research suggests that such ’multiplex’ ties can be the

conduits of trust and reciprocity, and as a consequence can critically shape organizational
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and market outcomes [247, 248, 249]. To test such ideas, extant research has typically

emphasized network structure and relied on data collected from affiliation surveys (i.e.

self-reported perceptions of ties), or through the use of trace data (e.g. organizational

records) to create network snapshots. We can focus on the content of ties to provide a

dynamic perspective on multiplexity.

Assume we have a larger finance dataset, similar to the one presented in Chapter 2.

We can utilize this data from a real-world organizational social network, comprising of

instant messages exchanged by employees of a hedge fund over years to investigate the

relationship between sociability (i.e. the ratio of expressive and instrumental commu-

nication) and the task performance of organizational experts. Methodologically, depart

from past studies in two important ways, we can analyze tie type at the conversation

level, and we can utilize emergent machine learning techniques to analyze the content of

conversations. Moreover, it would be of high interest to apply Granger causality on the

timeseries of work/life ratio and trading profit for individuals. Using this method, we

can also estimate the amount of the delay of the aforementioned effect.

Signed networks embedding using structural balance theory: Network embed-

ding models are extremely popular in the network science literature. Particularly, since

the inception of Graph Convolutional Network (GCN) [250], a large attention has been

devoted to apply well-studied deep neural networks models and convolutional networks

to graphs. These models have led to state-of-the-art performance for a variety of applica-

tions such as recommender systems [251], semi-supervised classification [250], and traffic

prediction [252], to name but a few.

Although many of social networks are signed, the number of network embedding stud-

ies on signed networks are far fewer [253, 254, 255, 256] than on unsigned networks. The

reason is the two tricks that are used in network embedding studies, meaning combin-
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ing the neighborhood and generating random walk, are not easily applicable on signed

networks. Thus, there is a need for a well-established theory such as structural balance

theory to be used for defining the signed network embedding. There are a few studies

that take advantage of balance theory in signed network embedding [255, 233]; however,

most of which are not using the correct definition of sparse triads as the building block

in the convolutional aggregation unit. One can use the three definitions of balanced

sparse triads laid out in Chapter 3 alongside other social theories such as status theory

for defining balanced and unbalanced sparse triads. These triads would be useful for

encoding these triads as subgraphs in two hop neighborhood of every node in the graph

when computing graph convolution function. Sign prediction in static network (similar

to [72]) is an application for such models. Additionally, there are many opportunities for

studying dynamical signed network embedding in longitudinal setting which have been

rarely addressed in the literature. One can use the datasets and sparse triads definitions

from Chapter 3 to define embedding method for signed networks in longitudinal setting.

Experimental study on structural balance theory: Despite the rich literature on

structural balance theory, there is no specifically designed experimental subject study to

quantitatively measure the accuracy of this theory on different task types within different

team size. Abimbola et al. [257] introduces a card game as a group problem solving task

based on Heider’s balance theory. It conceptualizes problem solving as a progression

towards increasing structural balance and describes an experimental method and stim-

ulus for studying group problem solving based on this conceptual framework. Harari et

al. [258] uses a series of verbally described interpersonal situations as stories based on

Heider’s model to be assessed by subjects as a function of certain situational conditions

and predispositional interpersonal values. However, none of the aforementioned stud-

ies directly take into account people’s interpersonal influence. Boss et al. [259] applies
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Heider’s model to a sport-specific situation where two individuals are partner in a two-

person game (e.g., doubles in tennis) with the shared task of still winning an almost lost

set. In their study, they do not deal with teams of three or larger which is the building

block of balance theory. Morrissette et al. [145] study the relationship between team

performance and structural balance theory in a experimental study with groups of three

subjects. They used Cartwright and Harary definition for balance using the normalized

number of cycles with even number of negative edges. They found balance has a positive

but weak relationship with team performance. Their study only takes into account one

time opinion inquiry.

Based on the literature, the open problem would be to execute experimental study

and collect longitudinal answers (multi-step inquiries), in teams of size three or more

individuals. More precisely, we may give judgemental or intellective tasks to subjects

and collect their interpersonal influence, and appraisal toward each others’ answers. This

is aligned with Heider’s POX model [66]; however, unlike studies in the literature, this

dataset would shed light on the dynamic of interpersonal influence and opinion appraisals

in experimental study in teams. The compendium dataset will be extremely valuable for

the literature since the experimental subject study on longitudinal balance theory is rare.

Lastly, if collected using POGS, we can take advantage of the unprecedented opportunity

of accessing the communication logs as well as opinion change logs, social influence, and

teammates’ appraisals.

Interpersonal influence estimation: There are many practical open problems to ex-

tend the study in Chapter 4. First, we can study the network control problem in which

one tries to guide the team to achieve the maximum level of their wisdom of crowd.

For this purpose, one needs to design a protocol to collect data via experimental study

such that researchers can manipulate the network structure of team communication in
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the midst of running an experiment. Second, the type of tasks can be different than

intellective. For instance in judgemental tasks, subjects tend to communicate more since

everybody has an opinion and usually there is no right or wrong answer. The interper-

sonal influence accorded by subjects could be drastically different in these types of tasks

compared to the ones from intellective tasks. Third, an A/B testing for cognitive bi-

ases such as demographic features, social confidence, and over confidence can be further

tested on teams if we have groups of exposed and control. One example would be not

provide feedback for subjects and study whether social confidence is sufficient for people

to find experts in their team or not. Another example is to what extent individuals have

negative bias against a stochastic Artificial intelligence agent as part of their team.
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