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 Gut chemosensing: implications for disease pathogenesis
[version 1; referees: 2 approved]
Christopher J. Berg , Jonathan D. Kaunitz1,2

Medical Service, West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
Departments of Medicine and Surgery, UCLA, Los Angeles, CA, USA
David Geffen School of Medicine at UCLA, Los Angeles, CA, USA

Abstract
The ability of humans to sense chemical signals in ingested substances is
implicit in the ability to detect the five basic tastes; sweet, sour, bitter, salty, and
umami. Of these, sweet, bitter, and umami tastes are detected by lingual
G-protein-coupled receptors (GPCRs). Recently, these receptors were also
localized to the gut mucosa. In this review, we will emphasize recent advances
in the understanding of the mechanisms and consequences of foregut luminal
chemosensing, with special emphasis on cell surface GPCRs such as the
sweet and proteinaceous taste receptors (TASRs), short- and long-chain fatty
acid (FA) receptors, and bile acid receptors. The majority of these luminal
chemosensors are expressed on enteroendocrine cells (EECs), which are
specialized endocrine cells in the intestine and pancreas that release gut
hormones with ligand activation. These gut hormones are responsible for a
wide variety of physiologic and homeostatic mechanisms, including glycemic
control, appetite stimulation and suppression, regulation of gastric emptying,
and trophic effects on the intestinal epithelium. Released from the EECs, the
gut peptides have paracrine, autocrine, and endocrine effects. Additionally,
EECs have unique direct connections to the enteric nervous system enabling
precise transmission of sensory data to and communication with the central
nervous system. We will also describe how gut sensors are implicated in gut
hormone release, followed by examples of how altered gut chemosensing has
been implicated in pathological conditions such as metabolic diseases
including diabetes and obesity, functional dyspepsia, helminthic infections,
colitis, gastric bypass surgery, and gastric inflammation and cancer.
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Introduction to gut chemosensing
Chemosensors are proteins expressed on the cell surface that, when 
activated by small molecule ligands, generate neurohormonal 
responses that have profound effects on homeostatic mechanisms. 
In this review, we will emphasize recent advances in the understand-
ing of the mechanisms and consequences of foregut luminal chem-
osensing, with special emphasis on cell surface G-protein-coupled 
receptors (GPCRs) such as the sweet and proteinaceous taste recep-
tors (TASRs), short- and long-chain fatty acid (FA) receptors, and 
bile acid receptors. The functions of these GPCRs and identification 
of their respective ligands were elucidated by cloning, deorphani-
zation, and subsequent molecular and functional characterization. 
The majority of these luminal chemosensors are expressed on ente-
roendocrine cells (EECs), which are specialized endocrine cells in 
the intestine and pancreas that release gut hormones with ligand 
activation. These gut hormones are responsible for a wide variety 
of physiologic and homeostatic mechanisms, including glycemic 
control, appetite stimulation and suppression, gastric emptying, 
and trophic effects on the intestinal epithelium. Released from the 
EECs, the gut peptides have paracrine, autocrine, and endocrine 
effects. Additionally, EECs have unique direct connections to the 
enteric nervous system in the form of neuropods, specialized cellu-
lar appendages that facilitate directed release of gut hormones onto 
enteric nervous cells, enabling precise transmission of sensory data 
to and communication with the central nervous system1,2.

We will also describe how gut sensors are implicated in gut hor-
mone release, followed by examples of how altered gut chemo-
sensing has been implicated in pathological conditions such as  
metabolic diseases including diabetes and obesity, functional  
dyspepsia, helminthic infections, colitis, gastric bypass surgery, 
and gastric inflammation and cancer. Not intended as an exhaustive 
review, our aim is to introduce the concept that the pathogenesis of 
diverse diseases and pathological conditions is linked by the common 
phenomenon of hormone release in response to the activation of 
specific receptors by luminal components.

Chemosensors
Taste receptors
Overview. While the locus of taste reception has been attributed 
to the lingual sensors for centuries, recent studies have identified 
which sensors are activated by specific tastants. Of the five basic 
tastes (sweet, salty, bitter, sour, and savory [umami]), the sensa-
tions of sweet, umami, and bitter are conveyed by two GCPR 
families, whereas salty and sour tastes are sensed by ion-specific  
channels3. A new and striking discovery is that some lingual TASRs, 
especially the GCPRs expressed on non-lingual tissues, including 
small bowel, liver, skeletal muscle, brain, and central nervous sys-
tem, are involved in hormone release4,5. Within the gastrointestinal 
tract, two families of taste receptors (TAS1R and TAS2R) sense 
umami, sweet, and bitter tastes. These GPCRs are associated with 
the specific G-protein α-subunits α-gustducin and α-transducin, 
which mediate gustatory signal transduction pathways6.

The first taste receptor family (TAS1R) is composed of three  
members—TAS1R1, TAS1R2, and TAS1R3—that form two het-
erodimers. The TAS1R1/TAS1R3 complex, known as the umami 
receptor, is a broad-spectrum receptor whose ligands include  

L-glutamate and other amino acids. Conversely, the TAS1R2/
TAS1R3 complex, known as the sweet taste receptor, has broad 
specificity for sweet compounds, including carbohydrates, polyols, 
and non-nutritive sweeteners (NNS)7–9. The TAS2R receptor family, 
composed of some 25 different receptor subtypes specific to bitter-
tasting molecules, is thought to have evolved for the detection of 
toxic substances8,10.

Both TAS1R1/TAS1R3 and TAS1R2/TAS1R3 are GPCRs coupled 
to a heterotrimeric G-subunit composed of α-gustducin and Gβγ 
subunits. Upon binding of the appropriate ligand, the activated 
G-subunit interacts with phospholipase C, releasing ATP via the 
inositol trisphosphate (IP

3
)/diacylglycerol (DAG)/Ca2+ pathway7. 

The subsequent increase in cytoplasmic Ca2+ activates the cation 
channel TRPM5, which potentiates the effect of taste receptor 
activation9. Within the gastrointestinal tract, the TAS1R2/TAS1R3 
complex colocalizes with the gut peptide hormones glucagon-like 
peptide 1 (GLP-1), peptide YY (PYY), gastric inhibitory peptide 
(GIP), ghrelin, and cholecystokinin (CCK) in EECs, with subse-
quent gut peptide release following receptor activation8. Similarly, 
sweet sensing by TAS1R2/TAS1R3 is important for the release of 
incretins GLP-1 and GIP and the expression of the glucose trans-
porters SGLT-1 and GLUT-2 in the enterocytes4,5.

Artificial sweeteners and TAS1R. NNS, which are high-affinity  
ligands for TAS1R2/TAS1R3 without caloric content, were previ-
ously thought to be a ‘healthy’ alternative to sugar. Nevertheless, 
by a variety of mechanisms, including the dissociation between  
sweetness and the caloric content, alteration of the gut microbi-
ome, and interactions with intraluminal nutrient sensors such as the  
sweet taste receptors, NNS may cause previously unappreciated 
metabolic and hormonal alterations5,11. The influence of NNS 
on gut, exocrine, and endocrine organs through interaction with 
sweet taste receptors has been previously reported in vitro and 
in animal models, although the clinical implications have been  
controversial5,12–15. Studies conducted in in vitro models have pro-
vided data to demonstrate that NNS dose-dependently release 
GLP-1, suggesting that NNS may contribute to the treatment of 
obesity or type 2 diabetes via incretin release14. Nevertheless, the 
administration of NNS to animal models, particularly swine and 
mice, has effects similar to those of glucose such as increased 
expression of the intestinal sodium-coupled glucose transporter 
SGLT-1 with consequent increased glucose uptake16. Furthermore, 
administration of the NNS erythritol and aspartame to diet-induced 
obese mice increased adiposity and insulin secretion, with no dif-
ferences in food intake or weight gain, suggesting that activation 
of taste receptors by NNS affects energy utilization and lipolysis13. 
In human subjects, administration of sucralose prior to a glucose 
bolus increases serum glucose and insulin concentrations, presum-
ably through the activation of sweet taste receptors with subsequent 
increased expression of SGLT-1 and GLUT2 on intestinal epithe-
lial cells and pancreatic β-cells, respectively12. Extrapolation of 
these data may support the contribution of long-term ingestion of 
NNS with progressive insulin resistance and development of type 2  
diabetes mellitus. Conversely, a recent small study of lean and 
obese individuals administered the natural polyol NNS xylitol and 
erythritol reported increased gut peptide secretion, particularly 
GLP-1 and CCK in vivo, along with prolonged gastric emptying15. 
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Interestingly, erythritol administration did not affect plasma  
insulin or glucose concentrations, whereas xylitol administration 
had a far smaller effect than did glucose. These results indicate  
that NNS have a spectrum of effect sizes, likely due to variant affin-
ities for intraluminal chemosensors. Similar results have yet to be 
replicated in an in vitro study.

Taste receptors in non-gastrointestinal tissue. Recently, there has 
been much interest in the expression of taste receptors in tissues 
and organs not typically associated with taste sensing. Taste recep-
tors are expressed in pancreatic, liver, skeletal muscle, cardiac, and 
central nervous system cells4,14,17,18. New research has shown that 
muscle regulatory factors important for myogenesis and myoblast 
differentiation, specifically MyoD and myogenin, upregulate the 
expression of TAS1R3 in muscle cells17. These new findings, along 
with the previously documented increased autophagy of skeletal 
muscle, liver, and related cells in TAS1R3 knockout mice, further 
suggest that muscle cell differentiation affects organ homeostasis 
through TAS1R3 expression alteration17. One hypothesis explain-
ing the increased observed autophagy in muscles cells in TAS1R3 
knockout mice is that the sensors regulate the rate of autophagy in 
muscle cells during protein deprivation (e.g. starvation), as skeletal 
muscle is the largest depot of available amino acids17. In another 
recent study, besides verifying that the TAS1R1/TAS1R3 complex 
is expressed on cardiac myocytes and fibroblasts, the authors also 
recognized that certain TAS2Rs have increased expression on car-
diac myocytes in times of starvation, further supporting the extra-
gustatory functions of taste receptors, especially with regard to 
metabolic regulation. Surprisingly, expression of the TAS1R1/R3 
complex was not increased with starvation19.

Dietary modification and taste receptors. The effects of dietary 
modification on the expression of taste receptors and their associ-
ated G-protein subunits have been previously described for a vari-
ety of diets20,21. Changes in receptor expression may be related to 
diet-related alterations of the luminal content rather than to the diet 
itself20. In a recent study, de Giorgio et al. reported a significant 
up-regulation of α-gustducin- and α-transducin-expressing cells 
in the foregut of pigs fed a short- and long-term high-protein diet, 
further supporting the growing body of evidence that luminal nutri-
ent sensing by TASR complexes affects hormonal and metabolic 
regulation22.

Taste receptors and the immune response. Tuft cells (also known 
as brush cells) are another type of luminal sensory cell. Although 
long identified as being a type of gut chemosensing cell similar 
to umami and bitter taste receptors, their contribution to immu-
nomodulation was only recently described23. Recently, it was 
reported that the tuft cell population increased in mice that suf-
fered from helminth infection. Upon further investigation, it was 
discovered that the tuft cells initiated a type II immune response 
against the parasitic infection via the cation channel TRPM5, 
likely from the activation of GCPR taste receptors24. Through 
this study, it was determined that tuft cells are important for 
defense against intestinal parasitic infections, in that taste recep-
tors, sensing parasites, release IL-25 which increases the rate of 
proliferation of tuft cells as well as initiates a type II immune 
response24.

Fatty acid sensors
Overview. Similarly to the receptors that recognize sweet and 
savory molecules, there are several receptors expressed on EECs 
that detect intraluminal lipids belonging to a growing number 
of deorphanized GPCRs whose importance is currently being 
investigated and elucidated25. The free FA receptors (FFARs) FFA1 
(GPR40) and FFA4 (GPR120) sense long-chain FAs, whereas 
FFA2 (GPR43) and FFA3 (GPR41) detect short-chain FAs (SCFAs). 
FA ligands activate FFARs, releasing gut peptides such as CCK, 
GLP-1, and PYY, and also interact with FFARs expressed in the 
enteric nervous system26. Also integral to the FA signal transduc-
tion pathway is the membrane-bound glycoprotein receptor CD36, 
which often colocalizes with other FA receptors. CD36 is hypoth-
esized to recognize a wide variety of FAs at lower concentrations 
than do other FA receptors. Some have hypothesized that CD36 
is necessary for the detection of physiologic concentrations of 
FAs, whereas other receptors, such as GPR120 downstream to 
CD36, are activated by higher concentrations of FAs27. CD36 
knockout models display decreased preference to fatty foods 
compared to their wild-type counterparts28. Moreover, CD36 helps 
to mediate FA absorption in the duodenal mucosa29.

Since the activation of FA receptors such as GPR40 expressed on 
pancreatic β-cells by specific agonists increases the rate of insu-
lin secretion, GPR40 agonists have been investigated as a prom-
ising new therapeutic class for type 2 diabetes mellitus. A recent 
Japanese clinical trial reported similar reductions in hemoglobin 
A1c with the administration of TK-875, a synthetic GPR40 ago-
nist, as compared with glimepiride (a sulfonylurea) with less 
risk of hypotension30. Non-metabolizable analogues of gut pep-
tides, particularly the incretins GLP-1 and GIP, are approved for 
use in the treatment of type 2 diabetes mellitus and obesity in 
the form of non-metabolizable GLP-1 receptor agonists and 
inhibitors of the principal peptide hydrolytic enzyme dipeptidyl 
peptidase (DPP)-IV31, reflecting the emerging interest in the thera-
peutic potential of gut hormones9. Also, synergistic improvement 
in glucose metabolism can be achieved by combining GPR40 
agonists with DPP-IV inhibitors, which prolong the plasma half-
life of GLP-132.

Luminal lipid sensors and functional dyspepsia. The luminal sens-
ing of SCFAs, a major product of bacterial fermentation of indigest-
ible fibers, has gained recent interest due to the nexus between small 
intestinal bacterial overgrowth and mucosal immune function. It 
was reported for the first time that the activation of duodenal lumi-
nal SCFA sensors increases the secretion of luminal bicarbonate 
via receptor-specific pathways26. Activation of FFA1 and FFA3, 
whose agonists are LCFAs and SCFAs, respectively, increased the 
rate of mucosal bicarbonate secretion through a GLP-2-dependent 
pathway. Moreover, FFA2 increased the rate of bicarbonate release 
via 5-hyroxytryptamine (5-HT) and muscarinic neural pathways26. 
Diseases like irritable bowel syndrome and functional dyspepsia 
are associated with small intestinal bacterial overgrowth, which 
significantly increases the amount of intraluminal SCFAs. Addi-
tionally, the functional dyspepsia symptoms of bloating and altered 
bowel habits improve with the administration of 5-HT antagonists, 
supporting the hypothesis that functional dyspepsia symptoms are 
directly related to the dysregulation of SCFA sensing and 5-HT 
release26.
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There have been exciting developments in the areas of SCFA 
sensing as it relates to colonic immune function. In a recent 
murine study, SCFA diet supplementation, and therefore an 
increased luminal concentration of SCFAs, was associated with 
an increase in colonic regulatory T cells and expression of the key 
anti-inflammatory cytokine IL-1033. Additionally, in mice with 
induced colitis, supplementation with SCFAs decreased the 
severity of colitis manifestations, an effect not observed in GPR43 
knockout mice, suggesting that intraluminal detection of SCFAs 
is a key element of the connection between intestinal immune 
function and the gut microbiota.

Duodenal expression of free fatty acid receptors and obesity. 
Recent studies have suggested that the rate of post-prandial gut 
peptide secretion is decreased in obesity, suggesting dysregulation 
of nutrient sensing and subsequent gut hormone release that affects 
energy intake in obesity29,34. A recent human study examining the 
difference in duodenal FA receptors among lean, overweight, and 
obese individuals noted that the density of FA receptors and EECs 
correlated with body mass index (BMI). Specifically, the authors 
reported increased expression of duodenal CD36 and GPR120 
with decreased density of GLP-1- and CCK-containing EECs with 
increasing BMI. This study further suggests the importance of nutri-
ent sensing in the development of metabolic derangements29. Inter-
estingly, a recent study indicated that high-fat-diet-induced obese 
mice had decreased CD36 expression on taste cells and decreased 
fat preference compared to mice fed standard chow27. This discord-
ance may suggest tissue-specific regulation of taste sensor expres-
sion or that alterations in nutrient sensing may contribute to the 
metabolic dysregulation associated with obesity.

Bile acid sensors
Overview. Bile acid receptors are non-nutrient chemosensors that 
help to mediate the release of the incretins GLP-1 and PYY, hor-
mones that improve the response of EECs to glucose. The GPCR 
bile acid receptor TGR5 (GPBAR1) is expressed in a variety of 
tissues, including small intestine EECs, pancreatic β-cells, thyroid 
gland, brown adipose tissue, immune cells, and cardiomyocytes35. 
Bile acid receptors contribute to bile acid homeostasis, glycemic 
control, and energy expenditure as well as to immunoregulation36. 
Additionally, the metabolic improvements following bariatric 
bypass surgery (duodenal-jejunal bypass and Roux-en-Y gastric 
bypass) are hypothesized to be due in part to alterations of the 
composition and amount of bile acids that reach the distal small 
intestine, which are thought to interact with enteroendocrine L cells 
in an as-yet-unidentified manner and stimulate GLP-1 and PYY 
secretion7,37. Furthermore, post-surgical alterations of the luminal 
content are hypothesized to contribute to the magnitude of post-
operative weight loss and improvements in glucose regulation via 
changes in gut hormone release. Candidate contributors to meta-
bolic improvements include the incretins GLP-1 and PYY, leptin, 
and bile acid receptors37. TGR5 has also been implicated in duo-
denal mucosal protection owing to the increased rate of duodenal 

bicarbonate secretion in response to luminal TGR5 ligands via a 
GLP-2 pathway38. Additionally, TGR5 activation decreases the 
release of many pro-inflammatory cytokines in response to lipopol-
ysaccharide (LPS) via inverse modulation of the NF-κB signaling 
pathway36.

TGR5 and gastric inflammation. Helicobacter pylori, a major cause 
of gastric and duodenal ulcers and a carcinogen associated with 
gastric adenocarcinoma and lymphoma, utilizes a type IV secre-
tion system to initiate an inflammatory response via the delivery of 
the virulence factor cytotoxin-associated gene A (CagA)39. CagA 
activates the Ras-Raf-MEK-ERK kinase cascade, which serves to 
phosphorylate other protein kinases and gene-regulatory proteins 
such as NF-κB and activator protein-1 (AP-1). Activation of these 
transcription factors increases the release of the pro-inflammatory 
cytokines IL-8, CXC-chemokine ligand 2, and human β-defensin-2, 
among others39. A recent murine study reported that TGR5 over-
expression and subsequent ligand activation inhibits LPS-mediated 
gastric inflammation by blunting the pro-inflammatory response to 
the small molecules IP-10, TNF-α, and MCP-1 via inhibition of the 
NF-κB signaling pathway40. These results suggest that TGR5 addi-
tionally protects against gastric inflammation and that TGR5 may 
be a potential therapeutic target for inflammatory and malignant 
gastric disease. Similarly, TGR5 knockout mice were more sus-
ceptible to LPS-induced gastritis, presumably due to the decreased 
inhibition of the NF-κB signaling pathway and thus greater inflam-
mation. Moreover, activation of TGR5 significantly inhibits STAT3 
phosphorylation and transcriptional activity in gastric cancer cells, 
which suggests that TGR5 is a potential tumor suppressor via sup-
pression of the STAT3 pathway, a commonly constitutively active 
pathway in cancer cells41.

Conclusions
Luminal chemosensors are integral for the proper functioning of the 
gastrointestinal tract and are important for integrating gut and endo-
crine hormonal responses to changes in the luminal content and 
for communicating with the central and enteric nervous systems. 
Furthermore, these chemosensors are also implicated in altering 
nutrient palatability and sensitivity and in modulating inflamma-
tory pathways, the dysregulation of which may contribute to dis-
eases such as obesity, diabetes, and functional dyspepsia. This brief 
review highlighting some of the new advances in understanding 
luminal nutrient sensors underscores the need for continued inves-
tigations into the potential clinical and therapeutic applications of 
these receptors.
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