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spaceABSTRACT
Conventional crosswell direct-arrival traveltime to- mography solves for velocity in a 2-D slice of the subsur- face joining two wells. Many 3-D

aspects of real crosswell surveys, including well deviations and out-of-well-plane structure, are ignored in 2-D models.  We  present  a  3-D approach
to crosswell tomography that is capable of handling severe well deviations and multiple-profile datasets.

Three-dimensional pixelized models would be even more seriously underdetermined than the pixelized models that have been used in 2-D
tomography. We, therefore, employ a thinly layered, vertically discontinu- ous 3-D velocity model that greatly reduces the number of model
parameters. The  layers are separated by 2-D in-  terfaces represented as 2-D Chebyshev polynomials that  are determined using a priori
structural information and  remain fixed in the traveltime inversion.  The  velocity  in  each layer  is also  represented as  a 2-D Chebyshev
polynomial. Unlike pixelized models that provide lim- ited vertical resolution and may be overparameterized horizontally, this 3-D model
provides vertical resolution comparable to the scale of wireline logs, and reduces the degrees of freedom in the horizontal parameterization to
the expected in-line and out-of-well-plane horizontal resolution available in crosswell traveltime data.

Ray tracing for the nonlinear traveltime inversion is performed in three dimensions. The 3-D tomography

spaceproblem is regularized using penalty constraints with a continuation strategy that allows us to extrapolate the velocity
field to a 3-D region containing the 2-D cross- well profile. Although this velocity field cannot be ex- pected to be accurate
throughout the 3-D region, it is at least as accurate as 2-D tomograms near the well plane of each 2-D crosswell profile.
Futhermore, multiple-profile crosswell data can be inverted simultaneously to re- solve better the 3-D distribution of velocity
near the profiles.

Our velocity parameterization is quite different from pixelized models, so resolution properties will be differ- ent.
Using wave-modeled synthetic data, we find that near horizontal raypaths have the largest mismatch be- tween ray-
traced  traveltimes  and  traveltimes estimated  from  the  data.  In  conventional  tomography,  horizontal  raypaths are
essential for high vertical resolution. With our model, however, the highest resolution and most accurate inversions are
achieved by excluding raypaths that travel nearly parallel to the geologic layering. We perform this exclusion in both a
static and model-based manner. We apply our 3-D method to a multiple-profile crosswell survey at the Cymric oil field
in California, an area of very steep structural dips and significant well tra- jectory deviations. Results of this multiple-
profile 3-D tomography correlate very well with the independently- processed single profile results, with the advantage
of an improved tie at the common well.

space

spaceINTRODUCTION

Crosswell direct arrival traveltime tomography for a single profile between two wells is inherently a 2-D problem. Al- though the subsurface of
the Earth is three dimensional, the energy recorded in a crosswell dataset that influences direct arrival traveltimes has traveled mostly through a
quasi–2-D region close to a 2-D surface joining the wells. Because the

spacevelocity in this quasi–2-D region is all that we can hope to determine from the traveltime data, approaches to crosswell
tomography have generally attempted to determine a velocity profile defined on a planar 2-D slice. Many 3-D aspects of the
geometry either have to be ignored in a planar 2-D model or included with great effort. Most wells are not perfectly straight
and vertical. Each well separately may not even stay within a single plane, and it is not uncommon for two wells together to
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spacebe far from coplanar. In these situations, the quasi–2-D region of the subsurface influencing the crosswell traveltimes is not close to any 2-D
plane. Even if the two wells are coplanar, energy can travel along paths out of that plane if there is out- of-plane dip in the structure or out-of-
plane velocity variation near the wells.

Multiple-profile crosswell tomography can be handled as a suite of separate single-profile 2-D problems, each providing the  velocity field on a 2-D
slice of the subsurface. Incorporating several separate 2-D profiles into one consistent 3-D model is not  easy,  however, particularly when there are
misties between profiles at wells involved in more than one profile.  The  2-D profiles can be extended beyond the well planes using inter- polation,
extrapolation, or least-squares fitting to construct a 3-D model that is approximately consistent with all of the 2-D profiles. In most multiple-profile
situations, these 2-D profiles are not dense enough to get an accurate 3-D model.

Crosswell tomography in realistic geometries thus faces a serious difficulty. Because of the 3-D aspects of the  problem mentioned above, we
need to have a 3-D velocity field to trace rays accurately, but the traveltime data determine only one (or several) 2-D slices of the velocity field.

We present here a strategy for overcoming this difficulty. Instead of a two-stage process of determining 2-D slices and then extrapolating them to
obtain a 3-D model, we will deter- mine the 2-D profiles and their extrapolation to 3-D together simultaneously, obtaining directly a 3-D velocity model.
Much of this 3-D velocity model will be inaccurate because there are insufficient data to determine it accurately. But the parts in the quasi–2-D regions
between the wells will be recovered as accu- rately as they would be using a 2-D approach. Two-dimensional tomograms can be extracted from this 3-D
model: the rays tell us where the 2-D surfaces are, and these surfaces can be pro- jected onto nearby planes for display purposes.

Our  strategy  is  able  to  handle  well  deviations  and  out-of-  plane  dip,  and  works  effectively  for  both  single-profile  and  multiple-profile
tomography problems. The  four aspects of our strategy that we discuss in detail in this paper are the following. First, we parameterize our
velocity model in a manner appro- priate for this combined tomography and extrapolation, using a priori structural information to help determine
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870 Washbourne et al.
the extrap- olation. Second, the ray tracing is performed in three dimen- sions in the tomography algorithm. Third, we regularize the severely
underdetermined 3-D tomography problem in a way that solves the quasi–2-D problems accurately. Fourth, we edit the traveltime data to remove
errors due to the inconsistencies between ray-traced traveltimes and picked traveltimes when large velocity contrasts generate rays that follow
head waves. Each of these four aspects plays an important role in the overall success of our strategy.

Conventional  crosswell  direct-arrival  traveltime  tomogra-  phy  is  quite  sensitive  to  the  choices  of  model  parameteri-  zation  and/or  the
regularization (smoothing) of the inver- sion, and provides limited resolution (Michelena and Harris, 1991; Pilkington and Todoeschuck, 1991;
Williamson and Worthington, 1993; Michelena 1993; Rector and Washbourne, 1994). When using pixelated or gridded models, the system of
equations describing the tomographic problem can often be un-  derdetermined (Dines and Lytle,  1979). The  traveltime data are  usually
insufficient in number and angular coverage to resolve fine-scale lateral variations; thus, a pixelized formulation with a

spaceregular grid often introduces more degrees of freedom than the data can support (Michelena and Harris, 1991). The
unresolved parts of the problem, primarily high-frequency horizontal vari- ations in the model, are unstable and can become
amplified by noise in the data (Squires and Cambois, 1992). Consequently, substantial work has been done in devising
appropriate model parameterization and regularization schemes (Michelena and Harris, 1991; Squires et al., 1994; Bube and
Langan, 1994, 1997, 1999; Carrion et al., 1995; Nemeth et al., 1997; Lazaratos and Marion, 1997). Phillips and Fehler (1991)
give an overview of  popular methods, including constraining model parameter up-  dates  and  smoothing  least-squares
solutions.

In this study, we describe a new 3-D model parameterization. We depart from the conventional pixelated model and adopt
the approach of Lazaratos and Marion (1997). They employ a thinly layered, vertically discontinuous 2-D velocity model,
sparsely noded in thehorizontal direction. Limiting thenumber of parameters in the horizontal direction makes the traveltime
inversion problem better conditioned by removing degrees of freedom that the traveltime data cannot resolve. The fine ver-
tical source and receiver spacing of modern crosswell surveys, however, can provide high vertical resolution.  The  parame-
terization of Lazaratos and Marion achieves vertical resolu- tion comparable to wireline logs, much higher than is evident in
most pixelated inversions.  Thus,  a layered parameteriza-  tion is clearly more effective for sedimentary sections than the
pixelated approach.

While Lazaratos and Marion’s (1997) model parameteri- zation was effective in two dimensions, the ability to handle crosswell
geometries in the presence of steep structural dips or well deviations requires 3-D traveltime modeling capability. We extend their
approach to 3-D models, modifying it appro- priately for use with either single-profile or multiple-profile crosswell surveys. Like
Lazaratos and Marion, we use a thinly layered, vertically discontinuous velocity model; our layers are separated by 2-D interfaces
represented as third-order 2-D Chebyshev polynomials. Instead of nodes in the horizontal di- rections, we again use third-order 2-D
Chebyshev polynomials to represent the horizontal variation of velocity within each layer. The small number of parameters devoted
to horizontal resolution is consistent with both the low horizontal resolution expected in the plane of the wells and the even lower
hori- zontal resolution expected as we move away from the quasi– 2-D regions that influence the crosswell traveltimes. Although
third-order Chebyshev polynomials cannot fully capture the horizontal variation of velocities across an abrupt discontinu- ity such
as a fault, they represent a reasonable approximation to the potential horizontal resolution available in direct arrival traveltime
tomography (Williamson and Worthington, 1993; Rector and Washbourne, 1994).

There are many examples of using surfaces for ray trac-   ing and traveltime inversion. Chiu et al. (1986) and Chiu and Stewart
(1987) employ polynomials to represent surfaces of arbitrary geometry for the inversion of surface reflection and vertical seismic
profile data, but model velocity as homoge- nous between layers. Guiziou et al. (1996) use triangular mesh surfaces to represent
arbitrary structure for the inversion of surface reflection data.

Grechka and McMechan (1996) use Chebyshev polynomi- als to represent both the velocity model and raypaths through it.
One particular advantage of this parameterization is that

spacetraveltime and derivatives of traveltime can be calculated explicitly, and thus raypaths can be found efficiently using, for  example, conjugate
gradients or the Newton method. The  Grechka and McMechan parameterization was designed to represent smoothly varying heterogeneities,
however, and may lose applicability in the presence of discontinuities or hetero- geneities at crosswell scales.

The problem of estimating 3-D velocity structure from mul- tiple crosswell profiles has only recently been addressed. In general, published
work in this  area involves independently processing a set of 2-D profiles, and then performing some type of geostatistical interpolation or
extrapolation to fit 3-D pop- ulation distributions of parameters (e.g., slowness). Hyndman and Harris (1996) propose resolving “multi–2-D”
structure by co-inverting multiple profiles with a statistical scheme that limits the variations in slowness populations. Eppstein and Dougherty
(1998a) present a method for 3-D modeling requir- ing decomposition into independent 2-D slices; the final 3-D distribution is recovered by
statistical operations on the in- dependently processed slices. The  geometry for the synthetic example they present consists of twelve vertical
boreholes that effectively surround the 3-D model. Eppstein and Dougherty

spacesubsurface. The model consists of two parts: a structural part made of vertically discontinuous layers that mimic geologic
contours, and a functional part that for traveltime tomography is used to represent slowness (reciprocal velocity). Both the
structural part (surfaces) and the functional part (subsurface parameters) are specified by Chebyshev polynomials.

Figure 1 is a schematic showing a vertical slice through our model parameterization. Each of the surfaces Zi(x, y) is repre-
sented by a third-order 2-D Chebyshev polynomial. The slow- ness within each layer (bounded by a surface above and below)
is specified with a similar third-order 2-D Chebyshev polyno- mial,  Si(x,  y).  This type of stratification is “earth-like,” with
high vertical resolution (Lazaratos and Marion, 1997). Further, the polynomials can represent velocity varying laterally in two
dimensions with relatively few parameters.  The combination allows the specification of velocity, and other quantities of in-
terest, anywhere within a particular 3-D volume. Hence, we are able to obtain estimates of 3-D velocity fields from multiple
profile crosswell data.

The 2-D Chebyshev polynomials are a limited tensor product of 1-D Chebyshev polynomials, keeping only terms of up to
third order. Equation (1) shows the form of the polynomials:
space(1998b) present a variant of their approach when there are fewer boreholes.

In the next two sections, we describe our 3-D model formu-

spaceF (x, y) = + C

space0 + C1x + C2y + C3xy + C4(2x  − 1)
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spacelation in detail and the efficient calculation of traveltimes by
space+ C5(2y
space− 1) + C6(2x
space− 1)y + C7(2y
space− 1)x
space3-D ray bending. We then describe a continuation strategy to smoothing constraints for our 3-D model parameterization— an approach to
regularization that greatly improves resolution. Using wave-modeled synthetic traveltimes, we find thatthe reg- ularization parameters with this
approach can be decreased an order of magnitude relative to standard weighted least-squares regularization. This removes, as much as possible,
the effects of the type and level of regularization from the tomographic results. Also using wave-modeled synthetic traveltimes, we demonstrate
how the limitation of certain offset ranges in the data corresponding generally to head waves—raypaths travel- ing nearly parallel to geologic
layering—improves the robust- ness and resolution of crosswell tomographic inversion when applied with our model parameterization. In the
final sections of the paper, we demonstrate the continuation strategy with an acoustic finite-difference synthetic example, and use real data to
illustrate the simultaneous resolution of a single 3-D model from a multiple-profile crosswell survey at the Cymric oil field in California, an area
of steep structural dips and significant well trajectory deviations.

The effects of anisotropy in real crosswell seismic data should be included in the modeling and inversion of traveltimes (Saito, 1991; Chapman
and Pratt, 1992; Pratt and Chapman, 1992; Michelena, 1993; Michelena et al., 1993; Williamson, 1993a,b; Grechka and McMechan, 1996, Bube and
Meadows, 1998). Our formulation can be modified to include anisotropy in the mod- els (Washbourne et al., 1999). In this paper, we restrict our
attention to the isotropic case.

MODEL FORMULATION

We focus on modeling for traveltime tomography of cross- well data. The model framework introduced here has also been used for crosswell
reflection imaging (Jervis et al., 2000), and can be extended for other quantities of interest in the

space+ C8(4x − 3x ) + C9(4y − 3y). (1)

FIG. 1. Schematic of common earth model geometry (vertical slice through 3-D model).

spaceThe coefficients C0 through C9 weight the contributions of the orders of the polynomial. We have a constant term (C0), two first-order terms
(C1 and C2), three second-order terms (C3 through C5), and four third-order terms (C6 through C9). By weighting the coefficients it is possible to fit
surfaces of varying spatial smoothness. These ten coefficients provide essentially cubic variability in structure and velocities. Although certainly
insufficient to represent some scales of geologic heterogene- ity, a large class of real world crosswell problems can be adequately treated with this
representation.

The  structural part of the model is constrained to be geologi-  cally realistic by fitting the surfaces to horizon picks from wire- line log
correlations in the wells. Constraining the geometry of the surfaces is the key factor in creating high-resolution images. In fact, Michelena et al.
(1995) showed that if the surfaces are  not constrained, the resolution can be significantly degraded.  The  coefficients  for  the  Chebyshev
polynomials are found by singular value decomposition of the log correlation data. Figure 2 shows a real example of different order surfaces fit to
horizon picks from a series of five deviated wells in Chevron’s Buena Vista Hills field in Kern  County,  California (Langan et al., 1998). The
horizon picks from wireline logs are shown as the three boxes in each well in Figure 2a. Zero-order surfaces are horizontal, and would be used
only in the absence of a pri- ori geologic orwell-log information about structure. First-order

2

3 3
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spacesurfaces are constant dip and plunge planes, appropriate when there is limited well-log information available (Figure 2b).
Second- and third-order surfaces are appropriate when there exists a priori information from a number of neighboring wells in
areas of structural complexity, as in Figures 2c and 2d.

The model used for tomography is obtained by interpolating the initial surfaces to a nominal vertical spacing of less than 1
m. Figure 3 demonstrates an elevation view of a series of surfaces in the vicinity of a pair of deviated wells that for clarity
have been interpolated to the coarser nominal spacing of 5 m. After this initial interpolation of the a priori “horizon pick”
surfaces, the structural part of the model remains unchanged throughout the traveltime inversion procedure; only the velocities
in the layers between the structural surfaces can change. Ultimately crosswell reflections (or other types of data) could be used
to refine the structural part of the model.

TRAVELTIME CALCULATION AND RAY TRACING

The type of ray tracing used in  crosswell tomography has been studied extensively (Langan et al., 1985; Virieux and Farra,
1991). Many early crosswell tomography stud- ies assumed raypaths were straight (Dines and  Lytle,  1979; Scales, 1987;
Phillips and Fehler, 1991), but recognized the nonlinearity of raypath with velocity. Iterative solutions to

space

FIG. 2. Chebyshev polynomial surfaces fit to horizon picks in deviated wells: (a) horizon picks, (b) first-
order surfaces fit to horizon picks, (c) second-order surfaces fit to horizon picks, and (d) third-order surfaces
fit to horizon picks.

spacethe tomographic problem require ray tracing for accuracy (Bregman et al., 1989), particularly when strong velocity inho- mogeneities are
present. Although the “shooting method”— propagation of rays by successive application of Snell’s law at interfaces or cell boundaries—has
widespread use, high wavenumber fluctuations in velocity can cause it to fail (Luo and Schuster, 1991). This has the effect of destabilizing iter-
ative solutions for the tomography problem that rely on ray tracing (Phillips and Fehler, 1991).

Another alternative is to use the finite difference solution of the eikonal equation (Vidale, 1988), with raypaths calculated to be locally normal
to wavefronts (Ettrich and Gajewski, 1998). This technique uses specification of velocity on a grid, and requires many more nodes horizontally
than can be resolved by the inversion of crosswell direct arrival traveltimes. In addi- tion, the computational overhead to obtain accurate raypaths
through high vertical resolution models is large even in two dimensions, and for three dimensions becomes prohibitively expensive for iterative
ray tracing.

The “bending method,” in contrast, is a two-point pertur- bative approach that relies on Fermat’s principle of least time (Julian and Gubbins,
1977). The two-point method can provide solutions where a propagator method can fail. Chiu et al. (1986) point out another clear advantage of
the bending method: it can be expected to operate faster than the shooting method for 3-D problems. Grechka and McMechan (1996) employ the
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FIG. 3. Elevation view of surfaces in the vicinity of a pair of deviated wells interpolated to nominal spacing of 5 m.

spacebending method with a Chebyshev polynomial parameteriza- tion for both velocities and raypaths, and they note that the
resulting explicit form for traveltime is advantageous. We ob- tain similar algorithmic advantages with our parameterization,
including analytic calculation of traveltime and derivatives of traveltime. The individual third-order Chebyshev polynomials
are continuously differentiable laterally throughout the model, and the small number of parameters required improves the sta-
bility and robustness of both the forward problem (ray tracing) and the inverse problem (velocity inversion).

There are two assumptions involved in the forward modeling and traveltime calculation: (1) slowness within a layer is a
func- tion of x and y, but invariant of z; and (2) raypaths are straight lines between layer boundaries. These assumptions hold
to first order because layer spacing is chosen small compared to wave- length for most crosswell data. The traveltime integral
for a single layer is given by equation (2), and is calculated in para- metric form in Appendix A. The corresponding geometry
is shown in Figure 4.

B

t S(x, y) dl, (2)
A

where t  is the traveltime, S(x,  y)  is the polynomial slowness within the layer, A and B are the intersection locations of the
raypath with the surfaces that bound the layer, and dl is a dif-
ferential element of length along the path from  A to  B. The
total traveltime for a ray intersecting many layers is given by the sum over the individual segments.

To trace rays with the bending method, we start with the straight ray connecting source and receiver, and minimize trav-
eltime by iteratively finding perturbations to the raypath. Due to the vertical stratification of the model, z on the surfaces is a
function of  x  and  y,  and the dimensionality of the problem is reduced to solving only for the updates to  x  and  y  at the
intersections of the raypath with the surfaces.

Using Newton’s method to solve the nonlinear ray-tracing problem yields an elegant structure for the successive lin- earized
problems. According to Fermat’s principle, we want the raypath with the minimum traveltime. Thus to compute first ar-
rivals, the objective function that we minimize is traveltime, and derivatives of this functional with respect to the intersection
lo- cations can be determined in closed form. These partials only involve terms from adjacent layers, and the Hessian matrix
of

=

{
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FIG. 4. Schematic of geometry for traveltime calculation within a layer.

spacesecond derivatives is therefore band-diagonal and symmetric with nonzero elements in only three super-diagonals. The lin- ear systems are
quickly solved using matrix decomposition or factorization. The derivatives and linear system used for ray tracing are shown in more detail in
Appendix A.

VELOCITY INVERSION AND THE CONTINUATION STRATEGY

A simple definition of tomography is the reconstruction of a field from line integrals through the field (Dines and Lytle,  1979; Woodward,
1992). As many researchers have noted (e.g.  Scales, 1987; Bregman et al., 1989; Phillips and Fehler, 1991), the line integrals for traveltime
tomography (raypaths)  are  nonlinear with respect to the field we seek to reconstruct (ve-  locity  distribution).  Therefore,  most tomography
algorithms linearize the problem around a background velocity and itera- tively seek updates to the velocity. For a particular source and receiver
geometry and velocity parameterization, traveltimes are modeled by computing line integrals through the veloc- ity field. Then a system of
equations is solved that relates the sensitivity of traveltime with respect to changes in the veloc- ity parameterization (Fre´chet derivatives) to the
predicted er- ror of the modeled traveltimes. In general the £2 norm (least squares) of the error is minimized, but other norms have also been used
(Scales and Gersztenkorn, 1988; Bube and Langan, 1997, 1999).

In our formulation of the linear system for traveltime in- version, we exploit the analytic form of the expression for traveltime [Appendix A, equation
(A-7)] in the calculation of the Fre´chet derivatives. In each layer, we have to solve for ten coefficients, which is fewer parameters than we need for    a
convenient pixelized or gridded model with equivalent lat- eral resolution. For example, a third-order polynomial in one dimension can be represented
by 4 grid points, so an evenly spaced Cartesian grid with similar lateral resolution requires 16 grid points for the 2-D horizontal variables. Although the
choice to use Chebyshev polynomials results in fewer model parameters and thus a more well-conditioned inverse, using polynomials requires that some
type of regularization be ap- plied within the inversion scheme in order to avoid extreme variations in velocity in areas of the model that have poor ray
coverage.

The  subject  of constraints or regularization for  crosswell  tomography has been extensively covered (see,  for example, Meyerholtz et al.,  1989;
Michelena and Harris, 1991; Peterson and Davey,  1991; Phillips and Fehler, 1991; Squires and Cambois, 1992; Michelena, 1993; Bube and Langan,
1994, 1999; and many others). Michelena (1993) and Squires et  al. (1994) point out that for 2-D pixelized inversion, the null-space (con- sisting
primarily of the high-wavenumber horizontal compo- nents of slowness) is unstable and can be amplified by noise in the data if left unconstrained.

While some type of constraints are necessary, care must be exercised in choosing the proper implementation, be- cause  the regularization will
overprint inversion results. Con- volutional quelling (Meyerholtz et al., 1989) is an example of this—where for weighted least squares, off-
diagonal terms  of  the  weighting  matrix  affect  the  solution  similar  to  a  2-D nearest-neighbor  smoothing  function.  Certainly  some  of  the
“regularization overprint,” which in general amounts to

spacesmoothing, may be preferable to what Phillips and Fehler (1991) describe as high-wavenumber fluctuations in velocities,
but we should exercise care in order to achieve the maximum resolution that can be obtained from the traveltime data. This
implies using the minimum constraints that are required to stabilize the problem.

Bube and Langan (1994, 1999) describe the effect of em- ploying regularization as changing an ill-posed problem into a
“nearby well-posed problem.” The difficulty is to implement regularization such that the solution to the “nearby” prob- lem
remains very nearly a solution to the original problem. Bube and Langan (1994, 1999) solve separate iterative nonlin- ear
problems for fixed regularization, successively decreasing the level of the constraints until the data, not the regulariza- tion, is
in control. They call this “smoothing constraints with a continuation strategy,” and refer to each of the fixed regular- ization
problems as a “continuation  step.” The  key idea they present is to use the final solution from the previous “step” (fixed
regularization problem) as  the initial  model  for  the it-  erative solution  to  the next,  less  regularized,  problem (Bube and
Langan, 1994, 1999). Others have proposed similar ideas,  including Williamson (1990), who successively increases the
number of pixels, and Nemeth et al. (1997), who use a very similar philosophy and call it “dynamic smoothing.”

Bube and Langan (1994, 1999) apply the smoothing con- straints as penalties that force model smoothness. The penal- ties
are applied by adding rows to the system of equations used in the inversion, similar to Tikhonov regularization (Tikhonov and
Arsenin, 1977).  For the common earth model introduced here, vertical or horizontal smoothness is achieved by forcing the
appropriate derivative of slowness to be small. The  vertical penalty is computed using numerical differences of polynomial
coefficients in adjacent layers, and horizontal penalties can be applied directly to the polynomial coefficients in closed form.
For the crosswell 3-D problem, we apply two horizontal penal- ties, one for derivatives along the interwell plane (tangential),
and one for derivatives perpendicular to the interwell plane (normal).  Application of the horizontal penalties prevents ex-
treme variations in velocity in areas where there is little ray coverage.

The overall continuation strategy is to reduce the penalties, forcing model smoothness gradually as the inversion process
proceeds. In general, the fixed iterative nonlinear problem in each continuation step is considered “solved” when the ob-
jective function has reached a minimum for that level of reg- ularization. Usually, it requires more nonlinear iterations to reach
a minimum when the regularization is weak. Ultimately, the penalties can be made very small, and the data itself will control
the inversion results. Further, we understand the physi- cal correlation of regularization for the continuation approach. Where
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there is no data controlling the values of model parame- ters (the “null space” of the traveltime problem), the penalties force
the model to be smooth.

SYNTHETIC MODELS

To  investigate  the  resolution and  sensitivity  of  our  crosswell  tomography approach,  we inverted traveltimes picked from a
synthetic  dataset created using a  fourth-order in space,  second- order  in time 2-D acoustic wave-equation finite-difference al-
gorithm (Kelly et al., 1976). To give our inversion method a

spacenontrivial test, we chose to use wave equation modeling to generate synthetic data with a typical crosswell frequency spec- trum (center
frequency 700 Hz).

To characterize both the vertical and horizontal resolution of the method, we created two models, both with fine vertical structure, but one
simulating the presence of a vertical fault. Both models are shown in Figure 5, and we will refer to them hereafteras the“1-D model” (Figure 5b),
and the“fault model” (Figure 5c). The velocity models were created from a blocked well log from the McElroy oil field in West Texas  (Harris  et
al., 1995). Figure 5a shows the sonic velocities from one of the wells in McElroy field. Both the 1-D and fault  models were created from the log
with a minimum layer thickness of
0.6 m, and both show the 30-m thick low-velocity reservoir zone at approximately 870 m depth.  The  models also demonstrate rapid vertical
velocity variations. Velocities range from 3650 to 7000 m/s, as at McElroy field. The fault model is very similar to the 1-D model except for the
30-m depth interval from 840 to 870 m. Over this range, the model simulates a vertical fault 60 m from the left well with a vertical throw of 6 m.

The crosswell geometry used to create the synthetic data was identical for both models, and consisted of evenly spaced sources and receivers over a
depth range of 730 to 915 m. Source/receiver spacing was 1.5 m, with 121 positions simulated in each well for a total of 14641 traces. We estimated
traveltimes from the finite-difference modeled data in a manner consistent

spacewith the approach used on real data collected with comparable frequencies and geologic conditions. Although our modeling did
not  incorporate  all  the  effects  observed in  real  crosswell  data  sets  (e.g.,  source  and  receiver  radiation  patterns,  shear  waves,
conversions, tubewaves, etc.), it does contain some more critical aspects of real wave behavior such as the Fresnel zone and wide-
angle (head wave) effects. Because of some of these effects, it was impossible to estimate traveltimes for certain parts of the dataset,
primarily those corresponding to the up- per part of the model. Figure 6 shows the traveltimes picked from the finite-difference data
for the 1-D model in source- receiver coordinates. We could not determine traveltimes for the white area that corresponds to shallow
source and receiver depths because of waveform complexity.

THE EFFECTS OF APERTURE LIMITATION

For real crosswell data, the waveforms in the vicinity of the first arrivals for small vertical offsets are usually very com-
plex (for this paper, “offset” is defined as source depth minus receiver depth).  For horizontal layering, the direct arrivals at
small offsets have raypaths that travel nearly parallel to the lay- ering and, for moderate velocity contrasts, the first arrivals are
generally head waves. It is common practice for many of these nearly horizontal rays to be excluded from crosswell tomogra-
phy because the traveltimes cannot be determined (Michelena

space
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FIG. 5. Synthetic McElroy models: (a) sonic log velocities from a well in McElroy field, (b) 1-D model, and

(c) fault model.

spaceet al., 1995). Our approach, however, is to discard intentionally certain angle/offset ranges in the data that correspond to these nearly
horizontal rays in order to improve the efficiency of our tomography algorithm.

Figure 7 shows two common offset gathers from the 1-D model (Figure 5b) acoustic finite-difference data, one small offset (offset 45 m, angle from
the horizontal 14◦), and one large offset (offset 90 m, angle 28◦). Red and blue lines in Figure 6 show the locations of the gathers in source-receiver
coordinates. In Figure 7, traveltimes estimated from the syn- thetic data and traveltimes ray traced through the true model
are shown with lines. In Figure 7a (small offset), the difference between the ray-traced times (upper line) and the hand-picked times (lower line)
is clear. This figure illustrates the angular or offset dependence of the mismatch between ray-theoretical traveltimes and traveltimes picked from
wave-modeled data. For the smaller angles/offsets, there is a large mismatch be- tween ray-traced and wave-modeled times. This is due to the
fact that in the presence of even moderate velocity contrasts, arrival times for the near offsets are multivalued, and show evidence of both direct
and head wave energy.  Inclusion of this multivalued data into ray-theoretical traveltime tomogra- phy introduces the necessity to discriminate
between the first- arrival and other arrivals (e.g., the direct arrival). This gener- ates at least three alternatives for the tomographic problem for
realistic crosswell seismic waves:

1) Consistently determine traveltimes on the first-arriving energy—what Woodward (1992) refers to as “Fermat path” arrivals. This can be
exceptionally difficult because

FIG. 6. Traveltime map for the 1-D model finite-difference syn- thetic data. The red line marks the 14◦  or 45-m offset shown in Figure 7a, the blue line
the 28◦ or 90-m offset shown in Fig- ure 7b. Traveltimes could not be determined for the white area because of waveform complexity.

spacehead-wave arrivals often have very little energy, and waveforms are very complex due to interaction between head
waves and other types of arrivals.

2) Consistently determine traveltimes on the direct-arriving  energy,  develop forward modeling that can generate mul-
tivalued arrival times, and select the direct arrival. The same difficulties in estimating traveltimes apply as in (1).

3) Avoid using the offset ranges “contaminated” by wave- form complexity caused by multiple arrivals in the vicinity of
Fermat path arrivals.

As noted earlier, we employ the bending method for ray tracing.  This makes it very difficult to model direct arrivals in the
presence of  velocity  contrasts  that  generate  head  waves  because the raypath  perturbations we calculate  are  designed  to
minimize traveltime. These perturbations lead directly to Fermat paths, or first arrivals, which are head waves in the presence
of even moderate velocity contrasts for small offsets. We chose to employ the third alternative for our formulation, and avoid
the offset ranges that are contaminated by head- wave energy.

Avoiding multivalued arrivals in the vicinity of the Fermat path arrivals can be accomplished several ways. The simplest
method is to exclude certain angle/offset ranges from the data used in the inversion, as was done by Lazaratos and Marion
(1997). We call this the “static” or fixed exclusion method. An- other possibility would be to generate rays as usual, and then
check for the condition of rays going “postcritical” at each in- terface. Then, any ray determined to be a head wave could be
eliminated from the traveltime inversion. This is a “model- based” or dynamic approach to the exclusion of head waves. We
first show results achieved by the simple static exclusion of fixed angle/offset ranges in the data, and demonstrate that both
vertical and horizontal resolution are degraded by includ- ing the small angles/offsets. Then we examine the model-based
approach to excluding head waves and find that the recov- ered vertical spatial bandwidth increases relative to the static
method.

In Figure 8, we show the results of including successively more data from small angles/offsets in the inversion. For each of the
three examples shown, all parameters controlling the inversion were identical, the only thing changed was the an- gle/offset range
included in the inversion. Figure 8a shows the

=
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best tomogram generated by including all angles between 20◦ and 40◦. Figure 8b shows the tomogram for the angle range 10◦

to 40◦, and Figure 8c shows the 0–40◦ tomogram. For this
example, limiting the angles to the range 20–40◦ gave the best results.

This is confirmed by the model rms difference between each tomogram and the true model. We compute the rms difference
after filtering both the tomogram and the true model in the vertical  direction with a lowpass Butterworth filter with spatial
frequency cutoff 0.667 1/m (wavelength 1.5 m.). The  Nyquist spatial frequency for the layer spacing is 0.833 1/m (wave-
length 1.2 m). In addition to computing the 2-D model rms, we have also calculated model rms for vertical slices through the
tomograms at three locations: at the wells, one-quarter of the distance between wells, and one-half of the distance be- tween
wells. These separate vertical slice rms measurements give some indication of horizontal variability for results that would
ideally be entirely one dimensional. Table 1 shows these rms values and also includes the number of data (rays) used

space

FIG. 7. Two offset gathers from the finite-difference data for the 1-D model shown in Figure 5b: (a) offset  45 m
or 14◦, (b) offset 90m  or 28◦. Traveltimes estimated from the data and ray traced in the true model are shown
with lines. For the small offsets (a), the difference between ray-traced (upper line) and hand-picked (lower line)
traveltimes is clear.

=
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FIG. 8. Comparison of results for static head wave exclusion with various angular apertures: (a) 20–40◦, (b) 10–40◦,

(c) 0–40◦. Color scale and log plots as in Figure 5.

spacefor each inversion. Note that in addition to the tomograms shown in Figure 8, Table 1 includes data for two additional angle ranges: 15–40 ◦

and 5–40◦.
The 2-D rms model mismatch for the 0–40◦ tomogram (Figure 8c) is 50% higher than for the 20–40◦ tomogram (Fig- ure 8a). For the tomograms that

include the small angles/offsets (Figures 8b and 8c), there is considerably more horizontal variability than for the 20–40◦ tomogram (Figure 8a). The

Table 1.  Number of data points and both 2D and vertical slice model rms differences from the true model (in meters/second), for various aperturetomograms inverted from the 1D model synthetic data. Prior to calculation of rms differences, the to mograms and the true model were Butterworth
lowpass spatial filtered to remove wavelengths shorter than 1.5 m (layer spac ing is 0.6 m).

Aperture (◦)

one-quarter across
Vertical rms 357.0 361.4 377.0 489.2 539.8

one half across

spacemaximum variability between the three vertical rms values in Table 1 for the 0–40◦ tomogram is approximately 10% of
the 2-D rms; for the 20–40◦ tomogram, it is only 2% of the 2-D rms. Although the 0–40◦ tomogram has nearly twice the data

as
the  20–40◦  tomogram (11861 rays  compared to  5640  rays),  it  shows considerably  degraded resolution both  horizontally  and
vertically. The fine-scale vertical and horizontal fluctuations evident for the full aperture tomogram (Figure 8c) illustrate  the effect
of including near offsets or small angles into the traveltime inversion.

For wave-modeled data, we expect both horizontal and ver- tical resolution to degrade away from the wells due to Fresnel
zone effects (Williamson and Worthington, 1993; Vasco et al., 1995). However, for our best static head-wave exclusion tomo-
gram (Figure 8a), the combination of the layered parameteri- zation, the horizontal smoothness constraints, and limiting the
small angles have overcome the resolution limits imposed by
wave behavior. The  increased lateral variability in the 0–40◦ to-  mogram (Figure 8c) is evidence that the horizontal
smoothness
constraints alone do not determine this outcome. The smooth- ness constraints are identical across all panels in Figure 8; thus
the constraints are sufficiently weak to allow lateral variability such as in Figure 8c. We therefore conclude that it is primarily
the layered parameterization and the exclusion of small an- gles from the inversion that enable consistent resolution as a
function of position within the tomogram.

space

20–40 15–40 10–40 5–40 0–40

Number of data points 5640 7256 8804 10309 11861
2-D rms 352.3 354.4 369.0 471.5 533.1
Vertical rms at wells 353.6 350.9 360.5 459.2 581.6
Vertical rms 350.6 354.1 369.0 471.4 523.1
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FIG. 9. Best dynamic head-wave exclusion tomogram (a) compared to best static head-wave 

exclusion tomogram (b) (same as Figure 8a). Color scale and log plots as in Figure 5.

spaceMODELBASED EXCLUSION OF HEAD WAVES

The dynamic method for excluding head waves is consider- ably different from the static method of simply limiting certain angle or offset
ranges from the inversion. For the model-based method, we begin with a pool of eligible rays (confined to some reasonable angle range, in this
case 20–40◦). Each ray is a can- didate for the inversion and, after ray tracing, the geometry at each interface is examined to determine if the
computed ray has become “postcritical” (incidence angle exceeding crit- ical angle). Any ray found to travel as a head wave (a ray which  spends
more than a small percentage of its distance con- nected with postcritical refractions) is then excluded from the inversion.

The constant initial velocity model generates straight rays and, for the first iteration, all of the candidate data is used  in  the inversion. However,
as velocity contrasts develop, large numbers of rays can be excluded from the inversion. For the inversion of the 1-D model synthetic data, nearly
75% of rays traced through the final model travel for some distance as head waves and would be discarded from the inversion for the dy- namic
approach. Figure 9 compares the final tomogram from inversion of the 1-D model synthetic data using model-based head-wave exclusion (Figure
9a) with the best tomogram from the static head-wave exclusion (Figure 9b,  shown previously as Figure 8a). Examination of the log tracks,
which plot the true model (red lines) together with the velocities from the edges of the tomogram (blue lines), demonstrate a significantly im-
proved fit for the dynamic method relative to the static method.  The 2-D rms (307.2 m/s) calculated using the procedure dis- cussed above is
improved 13% from the best static result in Table 1.

Figure 10a shows the average vertical amplitude spectra of the two tomograms: the best tomogram for the dynamic head- wave exclusion
method (Figure 9a) and the best static method tomogram (Figure 9b). “Best” here refers to the tomogram with the smallest rms difference from
the true model after ap- plying the vertical lowpass filter as above. Vertical amplitude spectra for Figure 10a are calculated after averaging over
hor-  izontal position. A three-point running average filter was also  applied to the amplitude spectra. Figure 10a shows that the ver-  tical
bandwidth is considerably higher for the dynamic model- based approach to excluding head waves. Moreover, the lower rms error for the model-
based approach indicates that this in- creased vertical frequency content is an improvement in signal, not noise.

The percentage of rays that travel as head waves is related to the “roughness” of the model. In order to quantify model roughness,  we use the
equivalent width of the amplitude spec-  tra (after Bracewell, 1978). The  equivalent width of a strictly  positive function like an amplitude
spectrum is defined as the width of a boxcar of the same area having the same peak value. To calculate equivalent width for the tomogram ver-
tical wavenumber spectrum, we integrate amplitude over fre- quency and then divide by the peak amplitude (for tomograms this is the dc
component at zero frequency). Figure 10b plots the percentage of rays that travel for part of the interwell dis- tance as head waves versus the
equivalent width of the av- erage vertical wavenumber spectrum of the interwell velocity field as the inversion proceeds. Also shown is the 2-D
model rms (computed as described above) for the complete nonlin- ear iterations used to generate Figure 9 (both for the dynamic

spaceand static head-wave exclusion methods). Figure 10b illus- trates that, for this 1-D model, the percentage of head waves
generated is proportional to our equivalent width measure of model roughness. The fractions of data shown as head waves in
Figure 10b were discarded from the inversion to generate Figure 9a.

For our model-based head-wave exclusion approach, we lose the ability to monitor the data error term as in con- ventional
tomography. We no longer have a stable set of data from which to generate an error norm that is consistent across  iterations.
However, it is also very important to recog- nize that the fundamental consistency of the dataset (travel- times corresponding
to energy propagating as waves) and the forward modeling (traveltimes from ray theory appropriate for high-frequency energy
propagation) deteriorates with in- creasing model roughness because the forward modeling will increasingly propagate rays as
head waves. Continuing to in- clude data whose associated forward modeling is increasingly inconsistent will lead to artifacts
in tomograms. For an ap- proach to regularization such as the continuation strategy, this is particularly problematic because
the increasing inconsis- tency of the data and the forward modeling will in general
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FIG. 10. (a) Vertical bandwidth of best tomograms for the static (dark line) and dynamic (light line) head-wave exclusion
meth- ods, and (b) percentage of rays traveling as head waves as a function of the equivalent width of the vertical spectrum,
and 2-D model rms for both the dynamic method and the static method of head-wave exclusion.

spacebe inversely proportional to the level of applied smoothing constraints.
Figure 10b also shows the model rms as a function of the equivalent width of vertical wavenumber spectrum for both head-wave exclusion

approaches. The static method neither reaches as small a 2-D model rms nor achieves the same level of model roughness as the dynamic method.
By excluding the increasing number of head waves (as the iterative inversion proceeds), the dynamic method is able to recover more vertical
bandwidth and achieve the smaller model residuals.

DEMONSTRATION OF THE CONTINUATION STRATEGY

In Figure 11, we illustrate the continuation approach for the synthetic data discussed above. In the figure, the values of the tomogram at both
edges of the model are plotted like logs for comparison with the true model. The tomogram values are shown in blue, the true velocity values are
shown in red. Start- ing from a constant initial velocity (usually the average velocity for all included rays), we show the first, third, and fifth
“contin- uation steps.” The true model is one dimensional; thus, we are interested in vertical resolution. The first continuation steps resolve the
lowest frequency components, and successive con- tinuation steps resolve successively higher frequency parts of the model. The regularization
parameters for vertical and hor- izontal smoothness are decreased by a factor of 10 at the end of each continuation step (determined empirically
to give rea- sonable convergence rates while not changing the problem a great deal between successive continuation steps).

spaceBy successively solving a series of five fixed regularization problems, we have decreased the constraints by two orders
of  magnitude from their initial level. However, if we start the pro-  cess with the regularization level used in the fifth
continuation step, the model quickly diverges (see Bube and Langan, 1994, 1999). Figure 12 shows the results of starting the
inversion, again from the same constant initial average velocity, and using fixed regularization at the level equivalent to the
fifth contin- uation step. In this figure, the tomogram from the fifth contin- uation step—shown previously in Figure 11c—is
included as Figure 12b for comparison.

VERTICAL AND HORIZONTAL RESOLUTION

The  choice of model parameterization for the crosswell traveltime tomography problem effectively controls the tradeoff
between vertical resolution and lateral resolution (Goudswaard et al., 1998). Our choice to use Chebyshev poly- nomials to
represent  horizontal  structure  limits  the  ability  to  resolve lateral variations. One can select an appropriate model
parameterization enabling higher lateral resolution at the cost of degraded vertical resolution. Goudswaard et al. (1998) use a
parameterization that fixes vertical structure and allows lateral variation, and is therefore able to resolve effectively the lateral
position of a vertical fault between wells.

We have chosen to improve vertical resolution at the cost of horizontal resolution; therefore, the lateral resolution for the
fault model is poor. Figure 13 shows the best tomogram for the synthetic data generated from the fault model. Here, best
refers
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FIG. 11. Tomograms illustrating the continuation approach: (a) one continuation step, (b) three continuation 
steps, and (c) five continuation steps. Color scale and log plots as in Figure 5.

spaceto the tomogram with the smallest filtered 2-D rms difference from the true model. Vertical bandwidth suffers compared to the best result for
the 1-D model because of the contribution from rms difference in the faulted area of the model. Figure 13 also shows the true model for
comparison. The inversion does a reasonable job recovering a smoothed lateral variation cen- tered at the fault.

SIMULTANEOUS INVERSION OF MULTIPLEPROFILE CROSSWELL DATA: REAL DATA EXAMPLE

One advantage of the model parameterization discussed above is that the data from multiple crosswell profiles can be used simultaneously to resolve a
single 3-D velocity distribu- tion. This ability is demonstrated on multiple crosswell sur- veys collected in Chevron’s Cymric field, located in the San
Joaquin  Valley,  California. At Cymric, the reservoir rock is high-porosity, low-permeability siliceous shale, and to produce the heavy oils from the
formation usually requires enhanced oil recovery processes such as steam injection (Langan et al., 1999).  The  goal of the crosswell surveys was to
monitor (in three dimensions) the steam movement.

In the survey area (a region roughly 50 m 50 m), there are four significantly deviated wells: an injector well, not used for the crosswell survey,
and three temperature observation (TO)

spacewells. The wells occupy the limb of an anticline, and there is significant structural dip in the area, ranging to as high as 70 ◦.
The steep dips combined with the deviated wells make it very challenging to image the profiles successfully using traditional
2-D crosswell technology.

Four snapshots between two crosswell profiles were acquired between May 1997 and May 1998. Elevation and plan views
of the four wells are shown in Figure 14. Figure 14a shows the horizon picks from wireline log correlations and the Cheby-
shev polynomial surfaces fit to them. In Figure 14b, each arrow indicates a crosswell profile with the point of the arrow at the
receiver well. The figure also shows a map view of the well tra- jectories over the acquisition depth range of 213 to 426 m,
with the top of this zone marked by a cross. The  wells are very close together, with the average profile distances over the
depth in- terval logged 27 (TO4 TO2) and 21 (TO4 TO3) m.

The Cymric Pilot Project used cyclic steam injection to en- hance oil recovery. Several days of high-pressure injection are
followed by month-long periods during which reservoir pressure is depleted by production. Laboratory measurements made at
Chevron indicate that both increasing steam sat- uration and increasing temperature result  in lower seismic velocities  for
Cymric reservoir rock (Langan et al., 1999). Al- though we are unable to separate these effects, we can im- age the combined
result with 3-D traveltime tomography. The
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FIG. 12. Comparison of (a) tomogram using fixed regularization with (b) tomogram from
the fifth continuation step. Regularization level is equivalent for both tomograms. Color
scale and log plots as in Figure 5.

spacefirst crosswell snapshot (May 1997) was acquired at the end of the production phase of the fifth cycle, with reservoir pres- sure depleted.  The
second snapshot (August 1997) occurred during the injection phase of the seventh cycle. The last two snapshots were acquired several cycles later, at the
end of an injection phase (April 1998) and about two weeks into the fol- lowing production phase (May 1998). From analysis of this pressure data, we
expect the combined effects  of  tempera- ture and steam—seismically evident as reduced velocities in the  vicinity of the injector well—to be small for
the first survey, building for the second survey, most noticeable for the third survey, and somewhat reduced but still evident for the final snapshot.

Figure 15 shows constant depth slices (XY  planes) through the 3-D tomograms from each of the four time snapshots. This type of areal
resolution is  impossible  for  conventional  2-D tomography without some method of interpolation/ extrapolation between wells. The  3-D
tomograms resolve the low-velocity trend appearing in the later snapshots (particu- larly the last two) as well defined and clearly surrounding the
injector well (marked “INJ” in the figure). The  velocity color scale shows the slowest velocities (1,067 m/s) as dark blues, and the highest
velocities (2,743 m/s) as reds. We believe that the significant changes in character between the second and third time snapshots are due to the
combined effects of steam satu-

spaceration and temperature increase in the vicinity of the injector well. The XY planes shown in Figure 15 are from a depth of
330 m. This correlates very well with the approximate depth of the perforations in the injector well (325–350 m). Again, this
type of result can not be generated by conventional 2-D meth- ods, and reflects one of the more significant advantages of a
fully 3-D model parameterization.

In Figure 16, we compare the results from the simultaneously processed 3-D multiple-profile inversion with results from the
independently processed single-profile inversions.  The  tomo- grams are plotted as “sections”  to  illustrate  the  nature  of the
velocity  tie  between the  two profiles  at  the  common well.  The  independently  processed single  profiles  (Figure  16b)  and the
simultaneously processed multiple profiles (Figure 16a) are quite similar in character.  The  main effect of performing multi- ple
profile inversion is to smooth the tomograms slightly in the vertical direction and to guarantee the tie across the common well. We
believe that the vertical smoothing is due to slight depth statics between the two profiles at the common well that do not affect the
single profile results.

CONCLUSIONS

We have presented a 3-D model formulation and inver- sion strategy for crosswell direct arrival traveltimes capable of
space
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FIG. 13. Results from the fault model: (a) best tomogram and (b) true model. Color scale 
and log plots as in Figure 5.

spacehandling well deviations and multiple-profile crosswell data- sets. We obtain high vertical resolution, comparable to the vertical  resolution of
wireline logs. By comparison, traveltime tomography performed using conventional pixelized models with the maximum aperture available in the data
may produce results with much lower vertical resolution.

The key idea is to parameterize the model as thinly layered and vertically discontinuous, with few degrees of freedom later- ally in each layer.
We use a simple Chebyshev polynomial rep- resentation for surfaces and the velocities between surfaces, re- sulting in many fewer parameters
than required for traditional pixelized models. We have also incorporated a continuation strategy to smoothing constraints, which maximizes the
contri- bution of data to the solution, and minimizes the “overprint” of regularization.

A second major idea contributing to high vertical resolu- tion is the limitation of certain angles/offsets in the inversion

spacethat correspond to raypaths traveling nearly parallel to geo- logic layering. These raypaths are not required for high verti-
cal resolution when the model is parameterized with horizontal layers.

We used two methods for the exclusion of  head  waves from traveltime inversion: a static approach that limits a fixed range of
angles/offsets, and a model-based approach where any ray determined to travel as a head wave is excluded. For
the static method, the angle range of 20–40◦ (with respect to
layer interfaces) produces the best results for a synthetic wave- modeled dataset. Including smaller angles/offsets in the inver-
sion degrades both the vertical  and the lateral  resolution of the tomograms because the traveltimes determined for these
angles/offsets are often inconsistent with the ray theory upon which the tomography is based. Using the model-based ap-
proach to exclude head waves results in a tomogram with con- siderably broader vertical bandwidth and smaller model rms.

space
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FIG. 14. Cymric crosswell geometry: (a) elevation view of wells, horizon picks, and surfaces fit to horizon picks;
(b) map view showing well trajectories over the depth interval of the crosswell survey (temperature 
observation wells are marked TO, and the injector well is marked INJ).
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FIG. 15. Depth slices at 330 m through the four snapshot 3-D tomograms. Color scale as in Figure 16; wells are 
marked as in Figure 14.

spaceFor the static approach—and by extension any conventional tomography—the increasing inconsistency between the data and the forward
modeling with increasing model roughness does not allow resolution of the vertical bandwidth required for smaller model residuals.

A key advantage of our 3-D model parameterization is that  we can model crosswell datasets from areas of steep structural  dips and/or
significant well trajectory deviations. We are able to apply the data from multiple crosswell profiles simultaneously to the resolution of a single 3-
D velocity distribution.
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APPENDIX A
CALCULATION OF TRAVELTIME AND LINEAR SYSTEM OF EQUATIONS USED FOR RAY TRACING

Parametric traveltime calculation
space

The line integrals for traveltime in our model are calcu-

lated in parametric form. The equations for the 2-D third-
space£ = 

r
(x − x )2 + (y − y )2 + (z − z )2

l 
1

2 2 1
space

lated in parametric form. The equations for the 2-D third-Chebyshev polynomials and the traveltime within a single layer

space= [σ (δx  + δy  + δz )] 2 , (A-5)

spaceare repeated here from equations (1) and (2):

S(x, y) = C0 + C1x + C2y + C3xy + C4(2x 2 − 1)
spacedl

dσ 
= (δx

space+ δy
space1

+ δz ) 2 .

space+ C5(2y2

3
space− 1) + C6(2x 2

space− 1)y + C7(2y2

3
space− 1)x

spaceThe traveltime integral then becomes
{ 1

2 2 2
 

space+ C8(4x
{ B

t 
=

 
A

space− 3x ) + C9(4y

space− 3y), (A-1)
spacet = (δx

space+ δy
space+ δz ) 2

spaceS(σ ) dσ. (A-6)
0

space

t 
=

S
(x, y)dl. (A-2)

spaceHere, C0 through C9 are the polynomial coefficients, and A and B have the coordinates (x1, y1, z1) and (x2, y2, z2), according to Figure 4. First, we
express x , y, and z in parametric form:

x = x1 + σδx δx = (x2 − x1),
space
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2 −  1 2 1)
2

2 1
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0

1 1
+ C1 (x1 + x2) + C2 (y1 + y2)spacey = y1 + σδy δy = (y2 − y1),space(A-3) 2
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 C

Finally, after integration over σ , the traveltime within a 
single layer becomes

2
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space+ C3  
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(x1y2 + x2y1)l

spaceThe parameter σ ranges from 0 to 1, and by substitution we
can replace equation (A-1) with one that involves only σ 
and the constants (x , y ,δx,δy):
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The variable £ is the length along the straight-line segment of the ray,  and we find the required change of variable to the parameter σ for the
integral:
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We  can observe from the form of this equation that partial derivatives of traveltime can be calculated in closed form. In
particular the derivatives with respect to the ten slowness

spacecoefficients, used for the velocity inversion, are very simple to determine.
For a ray that passes through n layers, the total traveltime is then

n

T = ti. (A-8)
i =1

The linear system of equations used for ray tracing

As described earlier, ray tracing is performed via the bending method. We can take advantage of the structural stratification of the model, and
treat z as a function of x and y on each of the surfaces that a ray intersects. We then only need to solve for updates to x and y at each surface. For
each ray, we first organize the x and y intersections for the n layers the ray passes through into a vector of length 2n:

X = (x1, y1, x2, y2,..., xn, yn). (A-9)

We solve the minimization problem by using Newton’s method to find the critical points of the objective function. In each iteration, we have the
following linear system:

spacewith respect to elements of X more than two indices apart is zero. The Hessian matrix of second derivatives of traveltime
is therefore symmetric and band-diagonal, with nonzero ele- ments in only three super-diagonals. Table A-1 shows the form of
the Hessian. For the derivatives with respect to the inter- section of the ray with the i th layer, only the seven elements within
the dashed lines in Table A-1 need to be calculated.

Table A1. Hessian matrix of second derivatives of travel time. For the derivatives with respect to the intersection of the  ray  withthe  ith  layer  (the  segment  from  (xi, yi, zi)  to (xi+1, yi+1, zi+1)),  only  the  seven  elements  within  the  dashed  lines need to be
calculated.

space∂2T

∂ Xi∂ X j

space∂T
L'l 뺭 뺭뺭  @ X j = − 

∂ X  
, (A-10)

spacewhere L'l  뺭  뺭 뺭   @X is the vector of updates to the x and y
intersections,  and we must calculate both the first and second
partial deriva- tives of traveltime with respect to the elements
of  X  . Due to the form of equation (A-7), only contributions
from adjacent  layers remain in the partial derivatives.  Any
second derivative
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