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ABSTRACT OF THE DISSERTATION

Looking Into the Past: Identifying Genetic Mutations and Introgression Events that
Shaped Human Adaptation

by

Ali Akbari

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control)

University of California San Diego, 2018

Professor Vineet Bafna, Chair
Professor Siavash Mirarab, Co-Chair

Professor Glenn Tesler, Co-Chair

Adaptation is the central evolutionary process and is at the core of some of the greatest

challenges facing humanity. HIV would likely cause nothing more than a harmless fever without

the ability of the virus to adapt and eventually destroy the immune system. Cancer would be much

more straightforward to treat if not for its ability to adapt to anti-cancer drugs. Malaria could be

treated with cheap drugs such as Quinine instead of being one of the world’s worst killers. In

disease and health, we are in an arms race without fully understanding the rules of engagement.

Humans have also adapted to live in harsh ecological niches, allowing them for example to digest
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milk sugars in adulthood, and to live at high altitudes with debilitating lack of Oxygen.

Over 83 million people live at altitudes above 2,500 meters (8,200 ft) where the oxygen

levels are 25% lower than at sea level. If not adapted, residing for a long time at such a harsh

environment with low oxygen level can be fatal. One of the most striking example of high-altitude

adaptation is the adaptation of Tibetan highlanders, where the favored genetic material is intro-

gressed from archaic humans similar to Denisovans. Introgression is the introduction of genetic

material into a population via interspecies mating. The complex pathways involved in hypoxia

tolerance also inform upon our ability to understand ischemic diseases (stroke, cardiovascular

diseases), and new molecular targets for these diseases. Therefore, this natural human experiment

is a wonderful system to work with.

When adaptation is genetic (inherited by offspring of adapted individuals), it leaves

a variety of detectable signatures in genomes. Together with recent developments in DNA

sequencing technologies in past decades, methods for detecting genomic regions under selection

from population genomic data, have been actively developed. In contrast, little work has been

done to identify the favored mutation in a selective sweep. Pinpointing the favored mutation

among tens of thousands of other, hitchhiking, mutations is like a needle in a haystack problem.

Identifying the favored mutation can provide a more precise picture of the origin of the

selection; and allows people to do functional studies to improve the overall understanding of

diseases. For example, adaptation to chronic hypoxia at high altitude can suggest targets for

cardiovascular and other ischemic diseases. Also, identifying the favored mutation gives a high

resolution picture revealing complicated evolutionary scenarios like multiple favored mutations

and adaptive introgression.

Here in this dissertation, we address the challenging but important problem of pinpointing

the favored mutation in a selective sweep. We break the problem into smaller parts and very

carefully craft them to accurately identify the favored mutation in a selective sweep, and also

distinguish adaptively introgressed haplotypes from other models of selection.

xiv



Chapter 1

Introduction

The human DNA can be thought of as a book that each of us inherited from our parents,

with a complete set of genetic instructions. This book is written out in three billion letters using a

4 letter alphabet denoted by {A, C, G, T}. It would take thirty years of non-stop typing to create

such a gigantic book. In making a copy for our children, we change or mutate about one hundred

letters of our book at random. Most of these mutations are neutral but sometimes they can have a

significant effect, either harmful or beneficial. For example, a few fortuitous mutations allowed

adults to become lactose persistent – gain an ability to digest milk sugar (lactose) properly after

weaning. Through selection, about one-third of human populations are now lactose persistent.

Many studies have shed light on the genetic bases of the lactose persistence and there are a few

mutations, in different populations, that are associated with lactose persistence. The spread of

these mutations is probably due to natural selection – an adaptive response to the availability of a

dairy products in cultures that domesticated milk-producing herds [3].

The advancement in DNA sequencing technology is accelerating our understanding of

complex biological systems, and as Dobzhansky famously said “Nothing in biology makes sense

except in the light of evolution.” The ever growing resolution of genetic variation within popula-

tions, due to the genomic data influx, empowers scientist to address fundamental evolutionary

1



questions. In the field of population genetics, since its foundation in the early twentieth century,

scientists have been standing on the shoulders of mathematical geniuses – like Fisher, Wright, and

Haldane – to understand the forces that determine evolution, by using theoretically determined

quantitative models. During the past decades, population genetics has been experiencing a great

resurgence of interest due to availability of high resolution genomic data through space (different

geographically located populations) and time (ancient populations). This massive amount and

complexity of genomic data is creating a new set of questions that require new computational

techniques.

Together with recent developments in genomics and computational power, we are able to

look deeper into the past through the lens of population genomics like never before. Analyzing the

pattern of similarity between different genomic sequences, using proper computational methods,

has dramatically improved our understanding of the origin of humans and prehistoric population

trends. Now in the light of these advancements, we can see that the Y-chromosomal Adam and

mitochondrial Eve1 of modern humans lived, a few hundred thousand years ago, in Africa [4, 5].

Modern humans migrated out of Africa and spread across the globe, over the past 100 thousand

years, and experienced many different habitats, and along the way encountered other archaic

humans like Neanderthals2. There is solid scientific evidence showing that introgression – the

transfer of genetic information from one species to another as a result of interbreeding – happened

from archaic humans like Neanderthal to modern humans; and approximately 2% of the genome

of non-African populations are introgressed from archaic humans like Neandertals [6].

Eventually, transition of modern humans’ lifestyle from hunting-gathering to practicing

agriculture and pastoralism, increased the ability to support large populations and led to rapid

population growth during the past few thousand years [7]. New conditions introduce new

1 The Y-chromosome is normally present only in males and inherited solely from the father. The mitochondrial
DNA is a tiny portion of the DNA that is inherited solely from the mother. Therefore, the most recent common
ancestor of living humans with respect to Y-chromosome (respectively, mitochondrial DNA) is called Y-chromosomal
Adam (respectively, mitochondrial Eve). Y-chromosomal Adam and the mitochondrial Eve are not required to have
lived at the same time.

2 Neanderthals went extinct a few thousand years after they met modern humans.
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challenges, and those who respond better, tend to survive and reproduce more due to natural

selection. It was not always easy for modern humans to adjust to new environment with new

constraints for survival [8]. One of the examples of natural selection at work in modern humans

is the adaptation to living at high altitudes, over 2,500 meters or 8,200 ft, where the oxygen level

decreases ∼25% compared to the sea level.

More than 83 million people all around the globe live permanently at high-altitude where

low oxygen level makes most people sick [9]. If not adapted, residing for a long time at such

a harsh environment can be fatal3. Most of the people living at high-altitudes for generations

have been adapted and do not have any problem regarding the constant exposure to the low

oxygen level. Many studies have shed light on the genetic bases of these adaptation in different

populations, using genomes of many individuals of highlanders [10–13]. One of the most striking

examples of high-altitude adaptation is the adaptation of Tibetan highlanders [14], where the

favored genetic material is introgressed from archaic humans similar to Denisovans4.

The selection pressures for adapting to new environments have led to changes in the

pattern of genetic variations of populations. Human genetic data have revealed a multitude of

genomic regions believed to be evolving under positive selection in response to different selective

pressure (such as dairy consumption, high-altitude, malaria, and many others) [8]. During the

past decades, methods for detecting genomic regions under selection from population genetic

data have been actively developed (Figure 1.1). In contrast, little work has been done to pinpoint

the specific mutation favored by selection.

In this dissertation, we address the challenging but important problem of characterizing

the favored allele in a selective sweep. We break the problem into smaller parts and very carefully

craft them to accurately identify the favored mutation in a selective sweep and also distinguish

3 Chronic mountain sickness (CMS or Monge’s disease) is a disease that occurs in long-term high-altitude
residents, and it can lead to heart failure.

4 The Denisovans are an extinct archaic humans closely related to Neandertals. No one had suspected such a
population existed until the DNA extracted from a tiny finger bone was sequenced. The finger bone belonged to a
girl who lived about 41,000 years ago, in the Denisova cave in Siberia.

3
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Figure 1.1: Timeline of selection tests. Methods to detect the region under selection have been actively developed
during the past decades, together with the advent of deep sequencing, and some gained popularity. Each of these
tests exploits a variety of genomic signatures, and can be fit into one or more of categories shown in the blue box.
In contrast, little work has been done to identify the favored mutation in a selective sweep. In this dissertation, we
address the challenging but important problem of characterizing the favored allele in a selective sweep.

adaptively introgressed haplotypes from other models of selection. Pinpointing the favored

mutation can provide a window into genetic adaptation and evolution, and improve the overall

understanding of diseases. For example, adaptation to chronic hypoxia at high altitude can suggest

targets for cardiovascular and other ischemic diseases [10, 11].

1.1 Background

Analysis of the genomic data requires advanced data science skills, but also deeper insight

into the underlying processes generating the data. Here I provide a short introduction to some of

the technical terms used throughout this dissertation.

Neutral theory. The neutral theory of evolution is at the center of evolutionary studies

at the molecular level [15]. The neutral theory holds that most variation at the molecular level –

changes in genetic material itself – is neutral and best explained by a stochastic process called

4



genetic drift, rather than natural selection. Allele5 frequency changes are random in genetic drift

and can lead to the fixation of some alleles and the loss of others. In contrast, in natural selection,

allele frequency changes are forced in a specific direction due to the selective pressure. The

neutral theory does not deny that natural selection occurs, but assumes only a tiny fraction of

genomic mutations are adaptive – have significant impact on reproduction and survival.

Wright-Fisher model. The Wright-Fisher [16] model is a mathematical model of genetic

drift, that assumes a fixed population-size with non-overlapping generations and the ancestors

of the present generation are obtained by random sampling with replacement from the previ-

ous generation. The basic form of the model overlooks many realistic details like mutation,

recombination6, selection, population structure, and so forth.

Coalescent theory. Given two haplotypes7 descended from a common ancestor in a

generation in the past, the coalescent model [16–18] traces the ancestry of these two haplotypes,

backwards in time, to the point where these two lineages coalesce in that generation. The

coalescent model describes the ancestral relationships of samples and the time of coalescent

events by a stochastic process. The model approximates the Wright-Fisher model, when the

sample size is much smaller than the population size. Advanced models of coalescent theory

include complex evolutionary and demographic models. The model has been widely used to

simulate theoretical population [19] and provided a theoretical framework to infer population

genetic parameters, such as migration, recombination, and population size [7].

Selective sweep. Genetic data from diverse human populations have revealed a multitude

of genomic regions believed to be selective sweeps in response to a selective pressure. A mutation

is favored when its carriers have higher fitness relative to non-carriers. A selective sweep can

occur when a favored mutation rapidly increases in frequency due to natural selection. In the

neighborhood of the favored mutation, neutral mutations on the same lineage as the favored

5 An allele is a variant at a specific locus of the genome.
6 Recombination is the rearrangement process of DNA pieces to produce new combinations of alleles.
7 A haplotype is a set of DNA variations on a chromosome that are inherited together.
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mutation hitchhike (are co-inherited) with the favored mutation, and increase in frequency. This

hitchhiking effect leads to a loss of genetic diversity, increase in the linkage disequilibrium (LD)8,

and distortion in the pattern of allele frequencies [21–23].

Hard sweep. The classical model for selection, and the one that has received most

attention, is the hard sweep model, in which a single mutation conveys higher fitness immediately

upon occurrence, and rapidly rises in frequency, eventually reaching fixation.

Soft sweep. Recently, the soft sweep model has generated significant interest [24–29]. A

soft sweep occurs when multiple sets of hitchhiking alleles in a given region increase in frequency,

rather than a single favored haplotype. Soft sweeps may take place by one or more of the fol-

lowing mechanisms: (i) selection from standing variation: a neutral segregating mutation, which

exists on several haplotypic backgrounds, becomes favored due to a change in the environment;

(ii) recurrent mutation: the favored mutation arises several times on different haplotypic back-

grounds; or, (iii) multiple adaptations: multiple favored mutations occur on multiple haplotypic

backgrounds. Several methods have been developed for detecting soft sweeps, as well as for

distinguishing between soft and hard sweeps [28–33]. Throughout the dissertation, we restrict

our attention to soft sweeps arising from standing variation.

Adaptive introgression. Introgression is the introduction of genetic material into a popu-

lation via interspecies mating. Comparisons of DNA from archaic and modern humans suggest

that archaic hominins (like Neanderthals and Denisovans) interbred with modern humans [34–41],

and approximately 2% of the DNA in most of non-African modern populations comes from

archaic hominins [6]. Adaptive introgression occurs when the introgressed haplotype is advanta-

geous in the admixed population and rapidly rise in frequency due to positive selection. Adaptive

introgression can create an evolutionary shortcut and lead to a faster response to selective pressure

compared to classic models of selection [41]. The EPAS1 locus in Tibetans highlanders is a

striking example of adaptive introgression from a Denisovan-like archaic hominin [14]. The

8 Linkage disequilibrium is the nonrandom association of alleles at different loci [20].
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putative favored haplotype is at high frequency only in Tibetan highlanders in response to the

hypoxic environments at high altitude. In chapter 5, we present a novel method to identify the

adaptively introgressed haplotype without knowing the archaic samples.

1.2 Dissertation overview

Methods for detecting genomic regions under selection from population genetic data have

been actively developed [42–63], and exploit a variety of genomic signatures (see Figure 1.1).

Allele frequency based methods analyze the distortion in the site frequency spectrum [42–46];

Linkage Disequilibrium (LD) based methods use extended homozygosity in haplotypes [47, 48];

population differentiation based methods use difference in allele frequency between populations;

and finally, composite methods [56, 57] combine multiple test scores to improve the resolution.

Recently, a lack of rare (singleton) mutations has been used to detect very recent selection [58].

Together with the advent of deep sequencing, these methods have identified multiple regions

believed to be under selection in humans and other organisms, and provide a window into genetic

adaptation and evolution [64–73].

In contrast, little work has been done to identify the favored mutation in a selective sweep.

The high LD around the favored locus makes it easier to detect the region under selection [47, 48],

but harder to pinpoint the favored mutation [28]. Grossman et al. [56] note that different selection

signals identify overlapping but different regions, and a composite of multiple signals (CMS) can

localize the site of the favored mutation. An alternative strategy is to use functional information

to annotate SNPs and rank them in order of their functional relevance. However, the signal of

selection is often spread over a large region, up to 1–2 Mbp on either side [28], and the high LD

makes it difficult to pinpoint the favored mutation.

Most approaches that capture signatures of selective sweeps in population genomics data

do not identify the specific mutation favored by selection. In this dissertation, we address the
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challenging but important problem of characterizing the favored allele in a selective sweep. We

break the problem into smaller parts and very carefully craft them to accurately identify the

favored mutation in a selective sweep and also distinguish adaptively introgressed haplotypes

from other models of selection. Following shows the step-by-step procedure:

Predicting carriers of the favored mutation. In Chapter 2, we present a haplotypic

score, HAF (Haplotype Allele Frequency), that can be used to separate carrier haplotypes

from non-carriers without knowledge of the favored mutation. The HAF score, assigned to

individual haplotypes in a sample, naturally captures many of the properties shared by haplotypes

carrying a favored allele. The HAF score is well-correlated with the relative fitness of individual

haplotypes, and is very effective at predicting carriers of selective sweeps. We provide a theoretical

framework for computing expected HAF scores under different evolutionary scenarios, which lay

the mathematical foundation for the next steps.

Identifying the favored mutation in a small region. In Chapter 3, using properties of

the HAF score, we present the SAFE (Selection of Allele Favored by Evolution) score to identify

the favored mutation in a small region (∼50 kbp), with few or no recombinations. The SAFE score

tends to be maximized for the favored mutation in a small region, but shows decaying performance

when larger regions are investigated, due to the proportional increase of recombination events

with region size.

Identifying the favored mutation in a large region. In Chapter 4, to address the more

general case of large regions under selection, we present iSAFE (integrated Selection of Allele

Favored by Evolution), which uses the SAFE score as a building block to pinpoint the favored

mutation within a 5 Mbp around the region under selection. iSAFE exploits coalescent based

signals in ‘shoulders’ [28] of the selective sweep (genomic regions proximal to the region under

selection, but carrying the selection signal) to rank all mutations within a large (∼5 Mb) region

based on their contribution to the selection signal. iSAFE proved to be very powerful to pinpoint

the favored mutation in a selective sweep. iSAFE does not require knowledge of demography, the
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phenotype under selection, or functional annotations of mutations.

Identifying adaptively introgressed haplotypes. Finally, in Chapter 5, using the iSAFE

score as the main feature of a supervised learning approach, we present a method, CHAI (Capturing

Haplotypes Adaptively Introgressed), to identify adaptively introgressed haplotypes in human

populations without having knowledge of the archaic samples.

1.3 Summary

Methods to detect the region under selection have been actively developed during the

past decades. However, the identification of the favored allele in a selective sweep is a long-

standing problem in population genomics. In my doctoral dissertation we address this challenging

but important problem, using a step-by-step procedure. We show that statistics obtained from

the coalescent structure of a region under a selective sweep can indeed pinpoint the favored

mutation, and also distinguish adaptively introgressed haplotypes from other models of selection.

Pinpointing the favored mutation can provide a window into genetic adaptation and evolution,

and improve the overall understanding of diseases. For example, adaptation to chronic hypoxia at

high altitude can suggest targets for cardiovascular and other ischemic diseases.
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Chapter 2

Predicting carrier haplotypes of the

favored mutation

Methods for detecting the genomic signatures of natural selection have been heavily

studied (Figure 1.1, [42–63]), and they have been successful in identifying many selective

sweeps. For most of these sweeps, the favored allele remains unknown, making it difficult to

distinguish carriers of the sweep from non-carriers. In this chapter we present a new statistic, the

Haplotype Allele Frequency (HAF) score. The HAF score, assigned to individual haplotypes

in a sample, naturally captures many of the properties shared by haplotypes carrying a favored

allele. We provide a theoretical framework for computing expected HAF scores under different

evolutionary scenarios, and we validate the theoretical predictions with simulations. Using both

simulated and real data, we show that the HAF score is well-correlated with the relative fitness of

individual haplotypes, and is very effective at predicting carriers of selective sweeps. Later, in

Chapters 3 and 4 we use some properties of HAF score distribution and present a new statistics

to pinpoint the favored mutation in a selective sweep.

10



2.1 Motivation

With advances in genome sequencing, we now have an opportunity to more completely

sample genetic diversity in human populations, and probe deeper for signatures of adaptive

evolution [61–63]. Genetic data from diverse human populations in recent years have revealed a

multitude of genomic regions believed to be evolving under recent positive selection [64–73].

Methods for detecting selective sweeps from DNA sequences have examined a variety of

signatures, including patterns represented in variant allele frequencies as well as in haplotype

structure. Initially, the problem of detecting selective sweeps was approached primarily by

considering variant allele frequencies, exploiting the shift in frequency at ‘hitchhiking’ sites linked

to a favored allele relative to non-hitchhiking sites [21, 22]. The site frequency spectrum (SFS)

within and across populations is often used as a basis for such inference [42–46]. Methods based

on haplotype structure have been developed using a variety of approaches, including the frequency

of the most common haplotype [74], the number and diversity of distinct haplotypes [75],

the haplotype frequency spectrum [76], and the popular approach of long-range haplotype

homozygosity [47–49].

In general, haplotype-based methods seek to characterize the population with summary

statistics that capture the frequency and length of different haplotypes. However, the haplotypes

are related through a genealogy, and relationships among them are inherently lost in such analyses.

In addition, data on the site frequency spectrum can be lost or hidden in analyses focused on

haplotype spectra. In this paper, we connect related measures of haplotype frequencies and the

site frequency spectrum by merging information describing haplotype relationships with variant

allele frequencies. Our main contribution is a statistic that we term the haplotype allele frequency

(HAF) score, which captures many of the properties shared by haplotypes carrying a favored

allele.
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2.2 Methods

Consider a sample of haplotypes in a genomic region. We assume that all sites are biallelic,

and at each site, we denote ancestral alleles by 0 and derived alleles by 1. We also assume that all

sites are polymorphic in the sample. The HAF vector of a haplotype h, denoted c, is obtained by

taking the binary haplotype vector and replacing non-zero entries (derived alleles carried by the

haplotype) with their respective frequencies in the sample (Fig 2.1a). We define the HAF score

of c as:

HAF(c) = ∑
j

c j (2.1)

where the sum proceeds over all segregating sites j in the genomic region. The HAF score of a

haplotype amounts to the sum of frequencies of all derived alleles carried by the haplotype.

Below, we start with a theoretical explanation of the behavior of the HAF score under

different evolutionary scenarios, validating our results using simulation. While our theoretical

derivations make use of coalescent theory, and explicitly use tree-like genealogies, we note that

HAF scores can be computed for any haplotype matrix including those with recombination events.

Our results on simulated and real data imply that the utility of the HAF score extends to cases

with recombination as well as other evolutionary scenarios.

2.3 Results

Theoretical modeling of HAF scores

We consider a sample of n haploid individuals chosen at random from a larger haploid

population of size N. Let µ denote the mutation rate per generation per nucleotide, and let

θ = 2NµL denote the population-scaled mutation rate in a region of length L bp. We consider both

constant-sized and exponentially growing populations. For exponentially growing populations, let

N0 denote the final population size, let r denote the growth rate per generation, and let α = 2N0 r
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Figure 2.1: The HAF score. Genealogies of three samples (n = 6) progressing through a selective sweep, from left
to right. Neutral mutations are shown as red circles, and are numbered in red; the favored allele is shown as a red star.
The HAF score of each haplotype is shown below its corresponding leaf, in black. For the rightmost haplotype in (a),
the binary haplotype vector h is shown along with its HAF-vector c, and HAF score. Vector wall lists the frequencies
of all mutations. (a) The favored allele appears on a single haplotype. At this point in time, both the genealogy
and the HAF score distribution are largely neutral. (b) Carriers of the favored allele are distinguished by high HAF
scores (in large part due to the long branch of high-frequency hitchhiking variation); non-carriers have low HAF
scores. (c) After fixation, there is a sharp loss of diversity causing low HAF scores across the sample.

the population-scaled growth rate. Let ρ denote the population-scaled recombination rate. In

our theoretical calculations, we assume no recombination (ρ = 0), and we derive expressions for

the HAF score. We use simulations to demonstrate the concordance of theoretical and empirical

values of the HAF score, and show that the values are robust to the presence of recombination

(see Methods section of Ronen et al. [1] for parameter choices).

Expected HAF score under neutrality

First, we assume that the genomic region of interest is evolving neutrally, the population

size remains constant at N, and that the ancestral states are known or can be derived. In a sample

of size n, let c(v) denote the HAF vector c for the vth haplotype (v ∈ {1, . . . ,n}). Let ξw be the
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number of sites with derived allele frequency w. We only consider polymorphic sites in the

sample, so the frequency is in the range w ∈ {1, . . . ,n− 1}; a mutation present in all or none

of the haplotypes in the sample would not be detectable. Each of the ξw sites of frequency w

contributes w to the HAF score of each of the w haplotypes with the mutation, and contributes 0

for each of the other n−w haplotypes. The mean of the HAF scores of all n haplotypes in the

sample is
1
n

n

∑
v=1

HAF(c(v)) =
1
n

n−1

∑
w=1

ξw ·w ·w =
1
n

n−1

∑
w=1

ξw ·w2. (2.2)

Under the coalescent model, [77, Eq. (22)] shows that E[ξw] = θ/w for all 1 ≤ w ≤ n−1. By

averaging over all haplotypes in all genealogies, the expected HAF score is computed as

E[HAF] =
1
n

n−1

∑
w=1

E[ξw] ·w2 =
θ

n

n−1

∑
w=1

w =
θ(n−1)

2
. (2.3)

HAF score dynamics in selective sweeps

We now consider the dynamics of HAF scores in a population undergoing a selective

sweep. Fig 2.2 illustrates the HAF score dynamics in a single simulated population undergoing a

hard sweep. Initially (leftmost, time 0) the HAF scores of carriers and non-carriers of the favored

allele are similar. As the sweep progresses (times 100–500), carrier HAF scores increase. Soon

after fixation (time ∼500), we observe a sharp decline in HAF scores, followed by slow and

steady recovery due to new mutation and drift (times 600–50,000).

Below, we provide a theoretical description of the HAF score dynamics during an ongoing

selective sweep, as well as empirical validation using simulations. As the selective sweep

progresses, the value of the HAF score of haplotypes carrying the favored allele increases.

Consider n haplotypes sampled from a fixed population of N haploid individuals under a selective

sweep and assume that there is no recombination.

We let ν denote the fraction of carrier haplotypes in the sample. When ν≤ 1/n (i.e., 0

or 1 carrier haplotypes), there is no selection going back in time, and the time to MRCA can be
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Figure 2.2: Schematic of HAF score dynamics. We consider HAF scores in 50 kb segments, examining n = 200
haplotypes sampled from a constant-sized (N = 20000 haploids) population, evolving with population-scaled
mutation rate θ = 48, selection coefficient s = 0.05, and no recombination (ρ = 0). We do forward simulations,
with time t = 0 at the onset of selection and t increasing towards the present time. Snapshots of generations are
shown at specific times indicated at tick marks on the x-axis. Note that these times are increasing but neither
consecutive nor regularly spaced. Each selected generation is depicted as a tall thin rectangle. The number in each
rectangle is the frequency of the favored allele (carriers). A few rectangles are shown for each phase of a simulated
population undergoing a selective sweep. Each point within a rectangle represents the HAF score of a randomly
chosen haplotype. Red points represent carriers of the favored allele and blue points represent non-carriers. Points
are scattered randomly on the x-axis within each rectangle, but all points within the same rectangle represent the
same generation at the time indicated by the tick mark on the x-axis, regardless of their horizontal position within the
rectangle. Darker shades of red or blue indicate a higher density of points at that level. The dotted line represents the
expected HAF score in the neutral population.

computed using the neutral Wright-Fisher model [16]. The expected HAF scores for carriers and

non-carriers are identical (Eq. (2.3)). At the time when ν first equals 1, there are no non-carriers,

and the HAF scores are given by the exponential growth model (See Figure 3 of Ronen et al. [1]).

Below, we model the HAF scores for all intermediate values of ν.

Let HAFcar (respectively, HAFnon) denote the HAF score of a random haplotype carrier

of the favored allele (respectively, a non-carrier) when a fraction ν of the n sampled haplotypes

carry the favored allele. In S1 Text of Ronen et al. [1], we show that under strong selection

(Ns� 1) and no recombination (ρ = 0),

E[HAFcar]≈ θn
(

ν+1
2
− 1

(1−ν)n+1

)
, (2.4)

E[HAFnon]≈ θn
(

1
2
+

1
2n
− 1

(1−ν)n+1

)
. (2.5)
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Figure 2.3: Dynamics of expected HAF score during a selective sweep. For each (θ,n,ν) with θ ∈ {24,48},
n ∈ {20,50,100,200}, ν ∈ { 1

n ,
2
n , . . . ,

n−1
n }, s = 0.01, and N = 20,000, we plotted the mean value of HAF/(θn) over

1000 trials, for both carriers and non-carriers, and compared against the theoretical values (Eqs. (2.4), (2.5)).

In Figure 2.3, we simulated selective sweeps for a variety of parameters and compared their

trajectories against these results. The results show a tight correspondence between theory and

empirical observations.

2.4 Summary and discussion

In this chapter we only focused on the behavior of the HAF score in a constant population

size. In the Ronen et al. [1], we provide a theoretical framework for computing expected HAF
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scores under different evolutionary scenarios, including variable population size, and we validate

the theoretical predictions with simulations. In the same paper, as an application of HAF score

computations, we develop an algorithm (PreCIOSS: Predicting Carriers of Ongoing Selective

Sweeps) to identify carriers of the favored allele in selective sweeps, and we demonstrate its

power on simulations of both hard and soft sweeps, as well as on data from well-known sweeps

in human populations.

This chapter introduced a new perspective on the genetic signatures of selective sweeps.

From identifying and characterizing sweeps in a population sample — the topic of typical studies

of selective sweeps — we progress to considering the role of individual haplotypes within an

ongoing sweep. Using both simulated and real data, we show that the HAF score is well-correlated

with the relative fitness of individual haplotypes, and is very effective at predicting carriers of

selective sweeps. Later in the Chapter 3, we use some properties of HAF score distribution, for

carrier and non-carrier haplotypes, and present a new statistic to identify the favored mutation in

a small window (∼50 kbp).
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Chapter 3

Identifying the favored mutation in a small

region

Methods to identify signatures of selective sweeps in population genomics data have

been actively developed (Figure 1.1, [42–63]), but mostly do not identify the specific mutation

favored by the selective sweep. We present SAFE (Selection of Allele Favored by Evolution),

a method that uses a statistic derived solely from population genetics signals to pinpoint the

favored mutation in a small region (∼50 kbp). SAFE was tested extensively on simulated data;

the median SAFE rank of the favored mutation in a 50kbp region was 1 out of ∼250 variants, and

the favored mutation was in the top 5 in 91% of simulations. In comparison, the median ranks of

iHS (integrated Haplotype Score) [47] and SCCT (Selection detection by Conditional Coalescent

Tree) [59] were 6 and 3, respectively. SAFE does not require knowledge of demography, the

phenotype under selection, or functional annotations of mutations. The more general case of large

regions (∼5 Mbp) under selection is addressed in Chapter 4.
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3.1 Motivation

Human genetic data have revealed a multitude of genomic regions believed to be evolving

under positive selection. Methods for detecting regions under selection from genetic variations

exploit a variety of genomic signatures: allele-frequency-based methods analyze the distortion in

site frequency spectra [42–46], linkage-disequilibrium-based methods use extended homozygosity

in haplotypes [47, 48], other methods use differences in allele frequency between populations, and

finally, composite methods combine multiple test scores to improve resolution [56, 57]. Recently,

a lack of rare (singleton) mutations was used to detect very recent selection [58].

The signature of a selective sweep can be captured even when standing variation or

multiple de novo mutations create a ‘soft’ sweep [24–29] of distinct haplotypes carrying the

favored mutation. When paired with deep sequencing data, these methods have identified multiple

regions believed to be under selection, and can provide a window into genetic adaptation and

evolution and improve the overall understanding of diseases [64–73]. For example, adaptation

to chronic hypoxia at high altitude can suggest targets for cardiovascular and other ischemic

diseases [10, 11].

However, the regions encompassed by the selective sweep can be very large (up to a

few megabases), making it difficult to pinpoint the favored mutation and conduct follow-up

investigations. Not much work has been done to identify the favored mutation in a selective

sweep. Grossman et al. [56] note that different selection signals identify distinct but overlapping

regions, and a composite of multiple signals (CMS) can localize the site of the favored mutation.

An alternative strategy is to rank single-nucleotide polymorphisms (SNPs) on the basis of their

functional annotations. However, the signal of selection is often spread over regions of up to 12

Mbp on either side [28], and the high linkage disequilibrium makes it difficult to pinpoint the

favored mutation.

In Chapter 2 we showed that the haplotype allele frequency (HAF) score is a haplotypic
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score that can be used to separate carrier haplotypes from non-carriers without knowledge of the

favored mutation [1]. In this chapter, using properties of the HAF score, we developed a method,

SAFE, that tends to be maximized for the favored mutation in a small region (50 kbp), but shows

decaying performance when larger regions are investigated. In Chapter 4, we will further refine

our method to address the more general case of large regions (∼5 Mbp) under selection.

3.2 Methods

We consider only biallelic sites, taking as input a binary SNP matrix with each row

corresponding to a haplotype h, each column to a site e. Entries in the matrix correspond to the

allelic state, with 0 denoting the ancestral allele, and 1 denoting the derived allele. A haplotype

‘contains/carries a mutation e’ if it has the derived allele at site e.

In Chapter 2 we discussed that the HAF score is a haplotypic score that can be used to

separate carrier haplotypes from non-carriers without knowledge of the favored mutation. The

HAF score for a haplotype h (HAF(h)) is the sum of the derived allele counts of mutations in h

(Figure 3.1). It has been shown that, when h is a carrier of the favored allele, HAF(h) increases

with the frequency of the favored mutation (Eq. 3.6), in contrast to HAF scores of non-carriers

(Eq. 3.7), and this can be used to separate carrier haplotypes from non-carriers without knowing

the favored mutation.

Denote two haplotypes as ‘distinct’ if they have different HAF scores. For any mutation e,

let fe denote the mutation frequency, or the fraction of haplotypes carrying the mutation. Let κ(e)
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(Figure 3.1) denote the fraction of distinct haplotypes that carry mutation e.

κ(e) =

∣∣∣∣⋃
h
{Mh,e ·HAF(h)}

∣∣∣∣−1∣∣∣∣⋃
h
{HAF(h)}

∣∣∣∣
=

# of distinct haplotypes carrying mutation e
# of distinct haplotypes in sample

. (3.1)

Similarly, let φ(e) denote the normalized sum of HAF scores of all haplotypes carrying the

mutation e.

φ(e) =
∑h[Mh,e ·HAF(h)]

∑h HAF(h)

=
sum of HAF scores of haplotypes carrying mutation e

sum of HAF scores of all haplotypes
. (3.2)

We observe empirically that in a region evolving according to a neutral Wright-Fisher model [16],

κ(e) and φ(e) are both estimators of fe. Moreover, empirical results (see Supplementary Fig-

ure C.1) suggest that the expected value of φ(e)− κ(e) is 0, and variance is proportional to

fe(1− fe). Based on these observations, we define the SAFE score of mutation e as

SAFE(e) =
φ(e)−κ(e)√

fe(1− fe)
. (3.3)

Empirically, SAFE(e) behaves like a Gaussian random variable, with mean 0, under neutrality

(Supplementary Figure C.1), and it can be used to test departure from neutrality. However, its real

power appears during positive selection, when SAFE scores change in a dramatic, but predictable

manner (Figure 3.1). Assuming a no recombination scenario (only for visual exposition), label

mutations as ‘non-carrier’ if they are carried only by haplotypes not carrying the favored allele.

The remaining mutations can be labeled as ‘ancestral’, if they arise before the favored mutation,
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Figure 3.1: Characterization of the SAFE method. (a) The HAF score for haplotype h is the sum of the derived
allele counts of the mutations on h. Carriers of the favored mutation have a higher fraction of the total HAF score of
the sample (high φ) and fewer distinct haplotypes compared with non-carriers (low κ). (b) Schematic genealogy
under a selective sweep. Mutations on haplotypes carrying the favored mutation can arise before the favored mutation
(ancestral to favored) or after the favored mutation (descendant to favored). Right, simulations showing φ versus
κ values for each variant under neutral evolution or a selective sweep (1,000 simulations; favored allele frequency
ν = 0.5, and default values for other parameters; see Supplementary Note B.1). The joint distribution of φ and κ in a
selective sweep changes in a dramatic but predictable manner that separates non-carrier, descendant, and ancestral
mutations from the favored mutations. The SAFE score presents a normalized difference of the two statistics, φ and
κ.

or ‘descendant’, if they arise after (Figure 3.1). Representing each mutation as a point in a

2-dimensional plot of φ,κ values, these classes are clustered differentially (Figure 3.1b). The

selective sweep reduces the number of distinct haplotypes carrying the favored mutation (lower

κ), leaving non-carrier mutations with an increased fraction of distinct haplotypes (higher κ). On

the other hand, increased HAF scores in carrier haplotypes reduces the proportion of total HAF

score contributed by non-carrier haplotypes (lower φ). In contrast, the favored mutation has high

positive value of φ−κ due to high HAF scores for carriers (higher φ), and the reduced number

of distinct haplotypes among its descendants (lower κ). As we go up to ancestral mutations, the

number of non-carrier haplotype descendants increase, and κ grows faster than φ. As we go down

to descendant mutations, there is a reduction in the already small number of distinct haplotypes.

However, φ decreases sharply, reducing φ−κ (see Figure 3.1). Thus, we expect that the mutation

with the highest SAFE score is a strong candidate for the favored mutation.
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Theoretical and empirical modeling of the SAFE

To explain the behavior of the SAFE score in pinpointing the favored mutation, we

describe a collection of theoretical and empirical observations that can be summarized as follows:

1. Under neutrality, φ(e) and κ(e) are (biased) estimators of fe.

2. λ f (1− f ) is a biased estimator for variance of (φ−κ), where λ is a positive constant.

3. The two points above allow the use of SAFE score as a statistic that empirically follows a

Gaussian distribution with mean 0 under neutrality.

4. For a population evolving under selection, φ and κ move in opposite directions. Specifically,

for the favored mutation e, φ(e) increases, while κ(e) decreases. The SAFE score tends to

be maximized for the favored mutation e.

We elaborate on these points below.

Behavior of φ,κ under neutrality, constant population size.

Consider a sample of size n selected from a population evolving neutrally according to

the Wright Fisher model [16] (constant population size, random mating, discrete generations, no

recombination), with scaled mutation rate θ. From Eq. 2.3, the expected HAF score is,

E[HAF] =
θ(n−1)

2
. (3.4)

Therefore, the fraction of the total HAF score of f n randomly chosen haplotypes is

approximately f . A mutation e with derived allele frequency also has f n descendants (carriers).

However, to compute the sum of the HAF scores, we must consider a random coalescent process

with a condition that carriers coalesce to a common ancestor before any carrier coalesces with

a non-carrier. This is harder, even though conditional coalescent processes have been studied

extensively (e.g., Wiuf and Donnelly [78]).
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Empirical analysis on neutral coalescent simulations conditioned on the mutation e having

f n carriers reveals that (Supplementary Figure C.1a)

E[φ(e)| f ]≈ f .

While κ has not been studied previously, it is closely related to the fraction of distinct haplotypes

in the sample. Empirically, for a mutation e, with f n descendants, we observe that (Supplementary

Figure C.1a)

E[κ(e)| f ]≈ f .

and, for all e (Supplementary Figure C.1b),

E[φ(e)−κ(e)]≈ 0 . (3.5)

Distribution of SAFE scores in a neutrally evolving population.

The discussion above suggests that E(SAFE(e)) = 0 for all derived alleles e. Additionally,

empirical observations suggest that λ f (1− f ) is a biased estimator for variance of (φ−κ), where

λ is a positive constant. We observed empirically that the distribution of the SAFE score of derived

alleles in a neutrally evolving population is therefore approximated by a Gaussian distribution

with mean 0 and unknown variance λ (see Supplementary Figure C.1b).

Behavior of φ,κ, and SAFE in a population under selection with a constant population size.

The dynamics of HAF score for a haplotype carrying the favored mutation in an ongoing

selective sweep was analyzed in Chapter 2. It increases dynamically upto fixation of the favored

allele, and then decreases dramatically. Formally, let HAFcar (respectively, HAFnon) denote the

HAF score of a random haplotype carrier of the favored allele (respectively, a non-carrier) when

a fraction f of the n sampled haplotypes carry the favored allele. In Chapter 2 we showed that
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under strong selection (Ns� 1) and no recombination,

E[HAFcar]≈ θn
(

f +1
2
− 1

(1− f )n+1

)
, (3.6)

E[HAFnon]≈ θn
(

1
2
+

1
2n
− 1

(1− f )n+1

)
. (3.7)

Because of the separation between carriers and non-carriers, the HAF scores can be used to predict

the carrier of ongoing selective sweeps without knowledge of the favored allele [1]. Moreover,

for the favored allele e with f n descendants, in a hard selective sweep that is not very close to

fixation, we can approximate φ(e) as

φ(e)≈ f nE[HAFcar]

f nE[HAFcar]+ (1− f )nE[HAFnon]
≈ f 2 + f

f 2 +1
= f +

f 2(1− f )
f 2 +1

≥ f . (3.8)

For a population undergoing a positive natural selection with favored mutation e, φ(e) over-

estimates the favored allele frequency f (Figure 3.1 and Eq. 3.8). On the other hand, κ(e)

underestimates f (Figure 3.1). Therefore, we expect the distribution of (φ−κ) for the favored

allele to be skewed in positive direction.

3.3 Results

We performed extensive simulations to test SAFE on samples evolving neutrally and

under positive selection. We varied one parameter in each run (see Supplementary Note B.1),

including window size (L = 50 kbp), number of individual haplotypes (n = 200) chosen from a

larger effective population size (N = 20,000), scaled selection coefficient (Ns = 500), and initial

and final favored mutation frequencies (ν0 = 1/N, and ν).

Only a few tests have been developed to identify or localize the favored mutation: Com-
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posite of Multiple Signals (CMS) [56], and Selection detection by Conditional Coalescent Tree

(SCCT) [59]. CMS combines statistics from different selection tests, including the integrated

Haplotype Score (iHS) [47], so as to localize the signal. In order to develop a unified probabilistic

model, CMS expects control populations as input, as well as demographic models, and cannot

be used directly on data based solely on coalescent simulations. Therefore, we compared SAFE

against iHS and SCCT to obtain a baseline comparison here. The median SAFE rank of the

favored mutation in a 50kbp region was 1 out of ∼250 variants (left panel of Figure 3.2), and the

favored mutation was in the top 5 in 91% of simulations. In comparison, the median ranks of

iHS and SCCT were 6 and 3, respectively. The comparisons to CMS using simulated models of

human demography are described later, in Chapter 4.

Figure 3.2: SAFE performance. Performance (favored mutation rank) of SAFE compared with that of iHS and
SCCT on 50 kbp windows with 1,000 simulations per frequency bin and default parameter values (Supplementary
Note B.1) for a fixed population size with ongoing selective sweeps. The plot on the left combines all allele
frequencies, and that on the right shows median and mean ranks for replicates divided into four bins. CDF,
cumulative distribution function.

While standing variation, ν0 > 1/N, generally weakens the selection signal, the per-

formance of SAFE remains relatively robust to variation in ν0. The median SAFE rank of the

favored allele is at most 3 out of∼250 variants in all cases except when ν0≥ 1000/N (Figure C.2).
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Similarly, the performance is robust to selection pressure, with only a slight degradation at weak

selection (Ns = 50) (Figure C.2) where the median rank goes to 9 (3.5%-ile), while for Ns≥ 200

the median rank is at most 2. As expected, the performance improves with increasing sample

size (Figure C.2). We also tested SAFE on a model of European demography and observed

similar results (Figure C.2). These tests used L = 50 kbp, chosen so as to minimize the effects of

recombination.

Next, we tested SAFE with increasing window sizes, and observed that while the median

rank of the favored mutation increases with increasing window size, the percentile rank improves

up to 80kbp and then degrades to 3%-ile around 1Mbp (Figure C.2). The deterioration for larger

windows is due to most haplotypes becoming unique and κ estimate f correctly, even for favored

mutations of selective sweeps, while we expect it to underestimate the f for the favored mutations.

Consequently, the estimator κ is no-longer useful for pinpointing the favored mutation.

3.4 Summary and discussion

The SAFE score performs very well in identifying the favored variant within a small

window (Figure 3.2); but the performance decays in larger windows (Figure C.2). The deteri-

oration for larger windows is due to most haplotypes becoming unique, and κ losing its utility

in pinpointing the favored mutation. However, the selective sweep signal is known to extend to

large, linked regions, as far as 1Mbp on either side of the favored allele [28]. These ‘shoulders’

of selective sweeps are helpful in identifying the region under selection, but make it harder to

pinpoint the favored mutation. To address the more general case of large regions under selection

in Chapter 4, we present a method, that is using SAFE score as a building block, to pinpoint the

favored mutation even when the signature of selection extends to 5 Mbp, by exploiting the signal

from shoulders of the selective sweep.
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Chapter 4

Identifying the favored mutation in a large

region

Methods to identify signatures of selective sweeps in population genomics data have

been actively developed (Figure 1.1, [42–63]), but mostly do not identify the specific mutation

favored by the selective sweep. We present iSAFE (integrated Selection of Allele Favored by

Evolution), a method that uses a statistic derived solely from population genetics signals to

pinpoint the favored mutation even when the signature of selection extends to 5Mbp. iSAFE was

tested extensively on simulated data and in human populations from the 1000 Genomes Project

(1000GP), at 22 loci with previously characterized selective sweeps. For 14 of the 22 loci, iSAFE

ranked the previously characterized candidate mutation among the 13 highest scoring (out of

∼ 21,000 variants). Three loci did not show a strong signal. For the 5 remaining loci, iSAFE

identified previously unreported mutations as being favored. In these regions, all of which involve

pigmentation related genes, iSAFE identified identical selected mutations in multiple non-African

populations suggesting an out-of-Africa onset of selection.
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4.1 Motivation

Genetic data from diverse human populations have revealed a multitude of genomic

regions believed to be evolving under positive selection [8, 63]. We consider a regime where a

single, favored, mutation increases in frequency in response to a selective pressure. The favored

mutation either exists as standing variation at the onset of selection pressure, or arises de novo,

after the onset. Neutral mutations on the same lineage as the favored mutation, hitchhike (are

co-inherited) with the favored mutation, and increase in frequency, leading to a loss of genetic

diversity.

Methods for detecting genomic regions under selection from population genetic data

exploit a variety of genomic signatures. Allele frequency based methods analyze the distortion in

the site frequency spectrum [42–46]; Linkage Disequilibrium (LD) based methods use extended

homozygosity in haplotypes [47, 48]; population differentiation based methods use difference

in allele frequency between populations; and finally, composite methods combine multiple test

scores to improve the resolution [56, 57]. Recently, a lack of rare (singleton) mutations has been

used to detect very recent selection [58]. The signature of a selective sweep can be captured even

when standing variation or multiple de novo mutations create a soft sweep [24–29] of distinct

haplotypes carrying the favored mutation. Together with the advent of deep sequencing, these

methods have identified multiple regions believed to be under selection in humans and other

organisms, and provide a window into genetic adaptation and evolution [64–73].

In contrast, little work has been done to identify the favored mutation in a selective sweep.

Grossman et al. [56] note that different selection signals identify overlapping but different regions,

and a composite of multiple signals (CMS) can localize the site of the favored mutation. An

alternative strategy is to use functional information to annotate SNPs and rank them in order of

their functional relevance. However, the signal of selection is often spread over a large region, up

to 1–2 Mbp on either side [28], and the high LD makes it difficult to pinpoint the favored mutation.
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Here, we propose a method, iSAFE (integrated Selection of Allele Favored by Evolution), that

exploits coalescent based signals in ‘shoulders’ [28] of the selective sweep (genomic regions

proximal to the region under selection, but carrying the selection signal) to rank all mutations

within a large (5Mb) region based on their contribution to the selection signal. iSAFE does not

depend on knowledge of the specific phenotype under selection, and does not rely on functional

annotations of mutations, or knowledge of demography.

4.2 Methods

iSAFE: integrated Selection of Allele Favored by Evolution

In Chapter 2 we discussed that the HAF score is a haplotypic score that can be used to

separate carrier haplotypes from non-carriers without knowledge of the favored mutation. In

Chapter 3, using properties of the HAF score, we developed the SAFE score (Figure 3.1) to

identify the favored mutation of an ongoing selective sweep in a small region (∼50 kbp). The

SAFE score tends to be maximized for the favored mutation in a small region, but shows decaying

performance when larger regions are investigated (Supplementary Figure C.2). To address the

more general case of large regions (∼5 Mbp) under selection, we developed the iSAFE score,

which uses a two-step procedure to identify the favored variant. In the first step, the best candidate

mutations in small (low-recombination) windows are identified on the basis of the SAFE score.

Then, the SAFE scores of all variants over all windows are combined to assign an iSAFE score to

each variant in the large region.

Consider a sample of phased haplotypes in a genomic region. We assume that all sites

are biallelic and polymorphic in the sample. Thus, our input is in the form of a binary SNP

matrix with each row corresponding to a haplotype and each column to a mutation, and entries

corresponding to the allelic state, with 0 denoting the ancestral allele, and 1 denoting the derived

allele. The output is a non-negative iSAFE score for each mutation, with the highest score
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Figure 4.1: The Ψ matrix. The Ψe,w matrix for a 5-Mbp region around the LCT gene in the 1000GP FIN population
shows that the ‘shoulder’ of selection can extend for a few megabase pairs. The blue circle indicates the location of
putative favored mutation rs4988235.

corresponding to the favored mutation.

For larger regions, we considered a set of 50% overlapping windows of fixed size (300

SNPs). Define S as the set of all SNPs, and W as the set of all sliding windows. For each window,

we applied SAFE and chose the mutation with the highest SAFE score. Let S1 ⊆ S denote the

set of selected mutations. Mutations in S1 are likely to contain either the favored mutation itself

or mutations linked to it. For mutation e ∈ S , and window w ∈W , let Ψe,w ′ denote either the

SAFE score of e when e is inserted into window w ′ ∈W , or 0, whichever is larger (Figure 4.1).

As different windows have different genealogies due to recombination, Ψe,w ′ is relatively high

when e is the favored mutation and the genealogies of w,w ′ are identical or very similar, but

not otherwise. In contrast, the SAFE score of a non-favored mutation e is relatively low when

inserted in other windows. Define the weight of a window w ∈W as

α(w) =
∑e∈S1 Ψe,w

∑w ′∈W ∑e∈S1 Ψe,w ′
. (4.1)

Windows that contain the favored mutation and those sharing its genealogy are expected to have
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Figure 4.2: Illustration of the iSAFE method. Different genomic windows (w) have different genealogies because
of recombination. The SAFE score of a non-favored mutation e is relatively low when it is inserted in other windows.
In contrast, the SAFE score of the favored mutation is likely to be dominant over those of other mutations. Identical
haplotypes in each window are colored similarly.

high α values. We define the iSAFE score of a mutation e ∈ S as:

iSAFE(e) = ∑
w∈W

Ψe,w ·α(w). (4.2)

A cartoon illustration of the iSAFE method

Figure 4.2 provides a cartoon illustration of the iSAFE method. In this simplified toy

example, W = {w1,w2,w3} and S1 = {N,F, �}, whereF denotes the favored mutation and is

located in w2. We note the following:

• ΨF,w2
is high for the favored mutationF. However, ΨN,w1 and Ψ�,w3 may be high even

for hitchhiking mutations (N,�) due to the genealogies of w1 and w3. Thus SAFE score by

itself may not be a reliable predictor over a large region containing multiple windows.
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• When a non-favored mutation is inserted in a window with a different genealogy, it is

not likely to have a high SAFE score. When F and N are inserted into window w3,

ΨF,w3
> ΨN,w3 because F separates carriers from non-carriers and has high values for

φ(F) and low values for κ(F). On the other hand, κ(N) is higher because its descendants

include non-carriers which are typically distinct haplotypes. Similarly ΨF,w1
> Ψ�,w1

because φ(�) is lower in w1. In other words, the weighted sum of ΨF,w over all windows

w is likely to dominate other mutations.

• Similarly, the window containing the favored mutation (w2) has the appropriate genealogy,

and is likely to give a high score to multiple candidate mutations.

MDDAF: Maximum Difference in Derived Allele Frequency

Not surprisingly, iSAFE performance deteriorates when the favored mutation is fixed, or

near fixation (ν > 0.9 in Supplementary Figure C.3e). To handle this special case, we include

individuals from non-target populations, using a specific protocol (see Supplementary Note B.3).

For a mutation, define the Maximum Difference in Derived Allele Frequency score (MDDAF) as

MDDAF = DT −min(DNT ) , (4.3)

where DT is the derived allele frequency in the target population and min(DNT ) is the minimum

derived allele frequency over all non-target populations. Simulations of human population

demography under neutral evolution (Supplementary Figure B.1), shows P(MDDAF> 0.78|DT >

0.9) = 0.001 (see Supplementary Figure C.4). Therefore, when we observe the rare event of

high frequency mutations in target (DT > 0.9) with MDDAF > 0.78, we add random outgroup

samples to the data to constitute 10% of the data (see Supplementary Note B.3).
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Figure 4.3: SAFE versus iSAFE. SAFE and iSAFE performance (rank distribution of favored mutation) as a
function of window size with 1,000 simulations per bin. Median and quartile values decay with increasing window
size in SAFE, whereas iSAFE is robust to increases in window size.

4.3 Results

Simulations

iSAFE, unlike SAFE, is specifically designed to exploit signal from the shoulders of

the sweep (Figure 4.2). iSAFE showed consistently high performance as the window size was

increased from 250 kbp to 5 Mbp (Figure 4.3). The median rank remained between 3 and 5 for

windows up to 5 Mbp in size, and the performance remained robust to a large range of parameters

(Supplementary Figs. C.2, C.3). iSAFE showed greatly improved performance compared with

that of iHS and SCCT, placing the favored mutation within the top 20 in 88% of cases, in contrast

to iHS (39%) and SCCT (34%), for an ongoing selective sweep with fixed population size

(Supplementary Figure C.3d).

iSAFE scores are not based upon likelihood computations, and the distribution of scores

depends upon largely unknown factors including demography, time since onset of selection,

selection coefficient, and other parameters. Nevertheless, they can be used to rank order the

mutations. Additionally, iSAFE scores are normalized and can be compared across samples. We

found distinct differences in performance below a score threshold of 0.1. The median rank of
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Figure 4.4: iSAFE performance. (a) The cumulative distribution function (CDF) of the favored mutation rank
(left) and peak distance (right) for iSAFE and CMS scores. (b) Rank and peak distance distributions of the favored
mutation as a function of favored allele frequency (ν) in the target population (EUR). In the (b), the dashed (dotted)
line represents the median (quartiles). All data are based on 1,000 simulations of 5-Mbp genomic regions using a
model of human demography (Supplementary Note B.2). The time of onset of selection was chosen at random from
the distribution in Supplementary Figure B.1, after the out-of-Africa event, in the EUR (target) population lineage.
When the onset of selection is before the EUR-EAS split (>23 kya), both EUR and EAS are under selection. kya,
kiloyears ago.

the favored mutation is 4 when peak iSAFE score exceeds 0.1 versus a median rank of 10 along

with a longer tail, when peak iSAFE score is below 0.1 (Supplementary Figure C.5). Empirically

computed P values (see Supplementary Note B.4) on iSAFE indicate good performance when P

value < 1e-4 (Supplementary Figure C.5).

Not surprisingly, iSAFE performance deteriorates when the favored mutation is fixed, or

near fixation (ν > 0.9 in Supplementary Figure C.3e). To handle this special case, we include

individuals from non-target populations, using a specific protocol (see Supplementary Note B.3).

With this inclusion, performance remained unchanged for ν < 0.9 and dramatically improved

for high frequencies, including when the favored mutation was fixed in the target population

(Supplementary Figure C.3e). We also tested iSAFE against CMS, using a model of human

demography. Although CMS showed excellent performance in localizing the favored mutation,

iSAFE scoring greatly improved its ranking. For example, iSAFE ranked the favored mutation

within the top 20 in 94% of the simulations of a 5-Mbp region (Figure 4.4 and Supplementary

Figure C.6), in contrast to CMS, which gave a top-20 ranking in 35% of cases.
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1000 Genomes Project data

In testing instances of previously characterized sweeps in 1000GP data, we note that

performance is difficult to characterize due to many complicating factors. Multiple sweeps could

be occurring in response to different selection events, including background selection in the same

region; or polygenic selection may also dilute the selection signal at any one locus. Moreover,

the favored mutation is well-characterized in only a few instances. We looked for genes/regions

that showed the signature of a selective sweep in one of the 1000GP sub-populations, and had

additional evidence pointing to the favored mutation. We identified 22 genes with some evidence,

but only 8 ‘well characterized’ cases with additional support for the favored mutation (Table 4.1).

We used iSAFE to rank all variants (∼21,000) in a 5Mbp region surrounding the gene.

Among the 8 well characterized cases, (Table 4.1 and Figure 4.5), iSAFE ranked the candidate

mutations as 1 in five cases (SLC24A5, EDAR, LCT, TLR1, ACKR1) and ranked the remaining

cases as 2 (ABCC1), 4 (HBB), and 13 (G6PD).

We checked whether the other 14 loci [56, 79–82] under selection showed strong iSAFE

signals (Supplementary Note A). We checked to see if the other 14 regions under selection showed

a strong iSAFE signal. In 3 of the 14 regions (FUT2, F12, ASPM; Supplementary Figure A.1), we

only observed weak signals, and did not make a prediction (peak iSAFE < 0.027). In other loci,

iSAFE ranked the candidate mutations as 1 in the SLC45A2/MATP (CEU population), MC1R

(CHB and JPT populations), and ATXN2/SHB3 (GBR population) loci (Figure 4.6), and as 7,

8, and 12 in the PSCA (YRI population), ADH1B (CHB and JPT populations), and PCDH15

(CHB and JPT populations) loci, respectively. In each case, the iSAFE scores were high with the

exception of PSCA (peak iSAFE = 0.04, Supplementary Figure A.1).

The other five putative selected loci struck us as interesting in that the mutations with

the top iSAFE rankings had high scores but were distinct from the reported candidate mutations

(Figure 4.6 and Supplementary Note A). Many of these loci are involved in pigmentation and

determine skin, eye, and hair color. For example, the tyrosinase gene (TYR), which encodes
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an enzyme involved in the first step of melanin production, is considered to be under positive

selection with a nonsynonymous mutation rs1042602 as a candidate favored variant [79]. A

second intronic variant, rs10831496, in GRM5, 396kbp upstream of TYR, has been shown to

have a strong association with skin color [83]. In contrast, iSAFE ranks mutation rs672144 at the

top not only in the CEU population sample (iSAFE = 0.48, P value�1.3e-8), but also in EUR,

EAS, AMR, and SAS (iSAFE >0.5, P value�1.3e-8; Figs. 4.6, 4.8), consistent with a signal

of selection present in all populations except AFR. It might not have been reported previously

because it is near fixation in all 1000GP populations except AFR (Figure 4.8). We plotted the

haplotypes carrying rs672144 and found that two distinct haplotypes carry the mutation, both

remaining high frequency, maintained across a large stretch of the region, suggestive of a soft

sweep with standing variation (Fig 4.7). A similar analysis applied to genes TRPV6, KITLG,

OCA-HERC2, where in each case, the top iSAFE mutations were identical across all non-African

populations (Supplementary Note A.2), and supported an out-of-Africa onset of selection. In the

one remaining gene (CYP1A2/CSK; Figure 4.6; Supplementary Note A.4), the top ranked iSAFE

mutation rs2470893 was previously found significant in a genome wide association study [84],

and was tightly linked to the candidate mutation. To summarize, iSAFE analysis ranked the

candidate mutation among the top 13 in 14 of the 22 loci, did not show a strong signal in 3, and

identified plausible alternatives in the remaining 5. See Supplementary Note A for more detailed

analysis of these 22 loci.
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Table 4.1: iSAFE on 8 well characterized selective sweeps. We used iSAFE to rank all variants (∼21,000) in a
5Mbp region surrounding the gene. Among the 8 well characterized cases, (Figure 4.5), iSAFE ranked the candidate
mutations as 1 in five cases (SLC24A5, EDAR, LCT, TLR1, ACKR1) and ranked the remaining cases as 2 (ABCC1),
4 (HBB), and 13 (G6PD). Number of haplotypes in CEU, CHB, JPT, FIN, and YRI populations are 198, 206, 208,
198, and 216, respectively. Computation of empirical P value is provided in Supplementary Note B.4.

Gene
Target

Population
Candidate
SNP ID

Candidate
SNP Function Frequency Selective Advantage

iSAFE
Rank P

Selection
Reference

Functional
Reference

SLC24A5 CEU rs1426654 Missense 1 Light skin pigmentation 1 <1.3e-8 [56] [85]
EDAR CHB+JPT rs3827760 Missense 0.87 Hair and teeth 1 <1.3e-8 [56] [86, 87]

LCT/MCM6 FIN rs4988235 Intron 0.59 Lactase persistence 1 <1.3e-8 [32] [88, 89]
TLR1 CEU rs5743618 Missense 0.77 Sepsis, leprosy, tuberculosis 1 1.0e-5 [90] [91]

ACKR1/DARC YRI rs2814778 5′UTR 1 Malaria resistance 1 2.8e-5 [92] [93]
ABCC11 CHB+JPT rs17822931 Missense 0.93 Cold climate, earwax, body odour 2 <1.3e-8 [94] [94]

HBB YRI rs334 Missense 0.14 Malaria resistance 4 1.6e-4 [95] [96]
G6PD YRI rs1050828 Missense 0.21 Malaria resistance 13 7.3e-6 [32] [97]

Figure 4.5: iSAFE and CMS on 8 well-characterized selective sweeps. We used iSAFE to rank all variants
(∼21,000) in a 5Mbp region surrounding the gene. Among the 8 well characterized cases, (Table 4.1), iSAFE ranked
the candidate mutations as 1 in five cases (SLC24A5, EDAR, LCT, TLR1, ACKR1) and ranked the remaining cases
as 2 (ABCC1), 4 (HBB), and 13 (G6PD). The rank of the putative favored mutation in the 5-Mbp region is shown in
the top left corner in each plot. cM, centimorgan.
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Figure 4.6: iSAFE scores for regions under selection. Top-ranked iSAFE candidates that match reported favored
mutations (putative favored) or are newly suggested by iSAFE (iSAFE candidate) are indicated. All datasets consisted
of a 5-Mbp window around the selected region, unless one side reached the telomere or centromere.

Figure 4.7: The GRM5-TYR region. The mutation rs672144 was ranked first by iSAFE and is very well separated
from other mutations in the surrounding 5 Mbp, in all non-African populations, with high confidence (iSAFE score
> 0.5, P� 1.3e-8 ; Figure 4.8). (a) All 5,008 haplotypes (2,504 samples) from 1000GP carrying core mutation
rs672144 (red/blue) are conserved over a longer distance than haplotypes in non-carriers (gray), which is a signal of
selection [47]. (b) Global frequencies of haplotypes carrying (red/blue) and not carrying (gray) mutation rs672144
are consistent with out-of-Africa selection on standing variation (soft sweep), with mutation rs672144 as the favored
variant.
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Figure 4.8: iSAFE on the GRM5-TYR locus. The Tyrosinase (TYR) gene, encoding an enzyme involved in the
first step of melanin production is present in a large region under selection. A nonsynonymous mutation rs1042602
(blue) in TYR gene is reported as a candidate favored variant. A second intronic variant rs10831496 (red) in GRM5
gene, 396 kbp upstream of TYR, has been shown to have a strong association with skin color. In contrast, iSAFE
ranks mutation rs672144 (turquoise) as the top candidate for the favored variant region out of 22,000 mutations (5
Mbp; see Section A.2). (a) This variant was the top ranked mutation not only in CEU (Fig 4.6), but also the top
ranked mutation for EUR, EAS, AMR, and SAS. The signal of selection is strong in all populations (iSAFE > 0.5, P
� 1.3e-8 for all of) except AFR, which does not show a signal of selection in this region. We plotted the haplotypes
carrying rs672144 in all 5008 haplotypes (2504 samples) of 1000GP and found (Fig 4.7) that two distinct haplotypes
carry the mutation, both with high frequencies maintained across a large stretch of the region, suggestive of a soft
sweep with standing variation. (b) Frequency of derived alleles of rs10831496, rs672144, and rs1042602, are shown
in red, turquoise, and blue, respectively. iSAFE candidate (rs672144) may not have been reported earlier because it is
near fixation in all populations of 1000GP except for AFR ( f = 0.27). (c) Each row is a haplotype and each column
is a variant in EUR populations of 1000GP. In total we have 1006 haplotypes (503 samples). Carrier haplotypes
of derived alleles of rs10831496, rs672144, and rs1042602, are shaded by red, turquoise, and blue, respectively.
For making the plot sensible, we removed low frequency SNPs fEUR < 0.2 and SNPs that are near fixation in the
whole 1000GP, f1000GP > 0.95. The previously suggested candidates rs1042602, rs10831496 are fully linked to
rs672144, but not to each other. The EUR haplotypes can be partitioned into 4 clusters. Each of the 4 haplotypes
show high homozygosity, suggestive of selection. However, rs1042602 can only explain the sweep in clusters C1+C2.
rs10831496 can only explain C1+C3. Only rs672144 explains all 4 clusters, providing a simpler explanation of
selection in this region.
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4.4 Summary and discussion

The identification of the favored allele in a selective sweep is a long-standing problem in

population genomics. Our results suggest that statistics obtained from the coalescent structure of

a region under a selective sweep can indeed pinpoint the favored mutation. iSAFE performance

remained robust to a range of simulation parameters, including initial frequencies (standing

variation) and the frequency of the favored mutation at the time of sampling. Although most

results in this paper were obtained for human populations, iSAFE can be easily extended to other

populations, as it is not highly parameterized.

An important challenge was that regions undergoing a selective sweep also present a

signal far away from the favored mutation, making it harder to pinpoint the favored mutation. We

observe that when a true favored mutation is inserted into a shoulder region, it gets higher SAFE

scores on average, in contrast to the insertion of a hitchhiking mutation. The iSAFE technique

uses this idea to exploit the shoulders and rank mutations according to the weighted sum of their

SAFE scores in all windows.

We also use a cross-population technique in a limited manner by using the frequency

differential of mutations in high frequency scenarios to get representative non-carrier haplotypes

in the sample, and show its power in identifying nearly fixed favored mutations. We do assume

a model with a single, favored variant, and future work could contribute to identify multiple

interacting loci favored by selection. Finally, in Chapter 5, we use the iSAFE score as the main

feature of a supervised learning approach to identify adaptively introgressed haplotypes in human

populations without having knowledge of the archaic samples.
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Chapter 5

Capturing haplotypes adaptively

introgressed

We present CHAI (Capturing Haplotypes Adaptively Introgressed), a method that enables

researchers to accurately identify the adaptively introgressed haplotypes without knowledge of

the archaic samples. The CHAI method is an extension of iSAFE, a novel method we proposed

in Chapter 4 to accurately pinpoint the favored mutation in a large region (∼ 5 Mbp) by using a

statistic derived solely from population genetics signals. Results on both simulations and real

data are very promising.

5.1 Motivation

There is a growing body of evidence showing that introgression – the transfer of genetic

information from one species to another as a result of interbreeding – happened from archaic

hominins like Neanderthals and Denisovans, into modern humans. Approximately 2% of the

genome of non-African populations are introgressed from archaic hominins like Neandertals [6].

A striking aspect of introgression is it can provide an evolutionary shortcut for adaptation to

44



changing selection pressures. The most well known example of adaptive introgression (AI) is

at the EPAS1 locus in Tibetan highlanders, where the favored haplotype was introgressed from

Denisovan-like archaic hominins, and carriers of the introgressed haplotype adapted better to the

hypoxic environment at high altitudes [14, 98].

These discoveries have spurred the sequencing of archaic hominin genomes [34–37], along

with the development of methods that detect introgression [6, 37, 99] by comparing the reference

human sequence to the genomes of the archaic hominins. An introgressed haplotype at high

frequency, relative to other populations, can be a signal of adaptive introgression. Introgression

increases LD and also distorts the pattern of allele frequency distribution, which both are used by

statistics such as integrated haplotype score (iHS) [47] and Tajima’s D [42] to detect region under

selection. Therefore, using standard tests of selection on region with introgression can easily lead

to false inference of selection [39]. Racimo et al. [41], consider the joint dynamic of selection

and introgression and also incorporate the reference archaic hominin genome sequences to detect

adaptive introgression.

However, several recent studies indicate introgression in African populations from un-

known archaic hominins [100–103]. The number of archaic honinin species remains unknown.

It is feasible that introgression from unknown archaic homins has also helped humans adapt

as they migrated out of Africa. Even in the absence of a reference hominin genome, methods

like S∗ [104, 105] and Sprime [106] have been developed that use linkage disequilibrium (LD)

patterns to detect introgressed haplotypes. However, there is no current test for AI without

knowledge of archaic reference.

Here, we present CHAI, a method to capture adaptively introgressed haplotypes without

knowledge of archaic samples. CHAI uses a supervised-learning approach to score each mutation

according to its probability of being adaptively introgressed. It is designed to minimize false

inference due to confounding by other events, including hard/soft sweeps and adaptation on

regions with an active recombination suppressor mechanism (RSM), for example, due to a
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Figure 5.1: Pattern of iSAFE in different evolutionary scenarios. Evolutionary scenarios explaining mutations
fully-linked to the favored mutation in a selective sweep. (a) Hard sweep. (b) Soft sweep on standing variation.
(c) Adaptive introgression (AI). (d) Recombination suppressor mechanisms (RSM) like chromosomal inversion with
balancing selection. tb is the length of the branch where the mutation arises and tc is the coalescent time of carriers
of the mutation. Red-shaded area showing the spread of the favored mutation after the onset of selection pressure.
The lower graphs are showing the pattern of iSAFE signal on a large window (∼5 Mbp) around the favored mutation
and trees are showing a simplified genealogy of different scenarios on a small window (∼50 kbp) around the favored
mutation.

chromosomal inversion event.

Given a population sample of n individuals, and a candidate mutation, CHAI is inferred

using only 3 features. First, and most important, it uses the iSAFE [2] (“integrated selection

of allele favored by evolution”) score for identifying the favored mutation in a selective sweep.

Second, it uses tb, the length of the branch where the mutation arises. Third, it uses tc, the time to

coalescence of the subset of haplotypes carrying the mutation. For each SNP, the CHAI score is

defined as the probability estimate of a Logistic Regression classifier with a quadratic decision

boundary [107, 108], and iSAFE, ta, and tb as features.

5.2 Methods

We showed, in Chapter 4 with an extensive analysis, that the iSAFE score gives a sharp

peak, usually with the favored mutation on top, in a region under hard/soft selective sweep. iSAFE
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treats each SNP as a binary classifier, carriers and non-carriers. If two SNPs are fully-linked

together (in complete linkage disequilibrium) they get the exact same iSAFE score regardless

of their position in the window. This unique feature of the iSAFE score helps to identify the

haplotype under selection in scenarios more complex than a hard/soft selective sweep, such as

adaptive introgression. The pattern of iSAFE signal in a region undergoing a recent adaptive

introgression is flattened as the branch length of the favored mutation is longer (higher tb), and

all the mutations on this branch get the exact same iSAFE score as the favored mutation (see

Figure 5.1). We utilize this pattern to distinguish recent adaptive introgression from a hard/soft

selective sweep.

Confounding factors. As described, we look for long branch lengths tb – the length of

the branch where the mutation arises (see Figure 5.1). Such long branch length could also arise

due to recombination suppressor mechanisms (RSM) like chromosomal inversion with balancing

selection (Figure 5.1d). However, this is only true (high tb) if the inversion happened a long time

ago. By incorporating the tc – an estimate of the time to coalescence of the subset of haplotypes

carrying the mutation – we are able to rule out these cases as tc is high for old adaptation and low

for a recent adaptation.

Estimating branch length. Let H denote a subset of haplotypes carrying a mutation in a

sample of size n, and m denote number of mutations fully-linked to it (the number of mutations

shared by all, and only the haplotypes in H). Let w be the minimal region demarcated by these m

fully-linked mutations and assume within this, usually small, region is recombination free. Define

tb as length of the branch where the mutation arises (Figure 5.1). We assume mutations occur as a

Poisson process along all branches [109] (constant molecular clock). Therefore, we estimate tb

by:

tb ≈
m
µl
, (5.1)

where l is the length of region w in bp and µ is mutation rate per bp per generation.
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Estimating coalescent time. Let tc denote the coalescent time – the time to the most

recent common ancestor (MRCA) – of the haplotypes in H (Figure 5.1a). Then an estimator [109,

110] of tc is

tc =
∑h∈H xh

µl · |H|
, (5.2)

where xh is number of mutations on haplotype h that are polymorphic in H, and |H| is number of

haplotypes in H (cardinality of set H).

CHAI: Capturing Haplotypes Adaptively Introgressed

We usually do not know the favored mutation. Therefore, we calculate iSAFE, ta, and

tc scores for all mutations in the target region. As mentioned before, iSAFE treats each SNP as

a binary classifier, carriers and non-carriers, and if two SNPs are fully-linked together they get

the exact same iSAFE score regardless of their position in the window. Similar to iSAFE, if two

SNPs are fully-linked together they get the exact same tb and tc scores regardless of their position

in the target window. Because two fully-linked SNPs are on the same branch and consequently

their branch length tb is identical; also, their carrier haplotypes are the same, which leads to

identical carriers-coalescent-time tc. This unique feature helps to identify the haplotype under

selection in scenarios more complex than a hard/soft selective sweep, like adaptive introgression

and adaptation on a recombination suppressor mechanisms like chromosomal inversion.

The combination of these three scores (iSAFE, tb, and tc) provides enough information to

identify adaptively introgressed haplotypes without having archaic samples. iSAFE tends to be

maximized for the favored mutation. In an adaptive introgression, the branch length score tb of

the favored mutation is expected to be large compared to hard/soft selective sweeps. Such long

branch length could also arise due to recombination suppressor mechanisms like chromosomal

inversion with balancing selection, if happened a long time ago. Therefore, we are able to rule

out these cases by incorporating the carriers-coalescent-time tc.
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In a recent adaptive introgression, we expect the favored mutation, and all other fully-

linked mutations that represent the favored haplotype, to have significantly high iSAFE (to capture

the favored haplotypes and rule out neutrals), high tb (to rule out hard/soft sweeps), and low

tc (to rule out recombination suppressor mechanism). We use a supervised learning approach

to combine information of these three scores and devise the CHAI score to capture adaptively

introgressed haplotypes. For each SNP, the CHAI score is defined as the probability estimate of a

Logistic Regression classifier with a quadratic decision boundary [107, 108], and iSAFE, ta, and

tb as features.

5.3 Results

Simulation. CHAI is a reference-free method for detecting adaptive introgression. An

introgressed haplotype at high frequency, relative to other populations, can be a signal of adaptive

introgression. The Sprime method is proposed by Browning et al. 2018 [106] and predicts

introgressed alleles without a reference archaic sequence. Sprime is similar to S∗ [104, 105], with

a superior performance. As an evaluation for our method (CHAI) we designed the following

experiment. We simulated 5 different scenarios including, adaptive introgression (AI), adaptation

on recombination suppressor mechanisms (RSM), hard sweep, soft sweep, and neutral. As

Sprime is not specifically designed to capture adaptive introgression we assume that we know the

region is under selection and simply use Sprime to capture introgression. Therefore, if Sprime

maximum value in the 1 Mbp region around the selected locus is above a specific threshold (5%

FDR in neutral scenario) we label the region as adaptive introgression. For each scenario we

simulated 1000 replicates. Figure 5.2 shows CHAI is very powerful in detecting the AI and

distinguishing it from other evolutionary scenarios, specially RSM. CHAI detected AI in 94% of

the cases compared to 30% for Sprime with default parameters (max f req = 0.01). The rate of

false inference of RSM for CHAI was 3% compared to 23% for Sprime with default parameters.
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Figure 5.2: CHAI performance. We simulated 5 different scenarios including, adaptive introgression (AI),
adaptation on recombination suppressor mechanism (RSM), hard sweep, soft sweep, and neutral. As Sprime is
not specifically designed to capture adaptive introgression we assume that we know the region is under selection
and simply use Sprime to capture introgression. Therefore, if Sprime maximum value in the 1 Mbp region around
the selected locus is above a specific threshold (5% FDR in neutral scenario) we label the region as adaptive
introgression. For each scenario we simulated 1000 replicates. As you can see, CHAI is very powerful in detecting
AI and minimizing the false inference of other evolutionary scenarios, specially RSM. We tested Sprime for different
max f req ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}, a parameter of Sprime method that specifies the maximum
frequency of an introgressed variant in the outgroup with default value 0.01 (boldfaced).

EPAS1 locus. CHAI performance on simulated data is very promising (Figure 5.2). As

an evaluation with real data (see Section B.5), we applied CHAI on EPAS1 locus in Tibetans

highlanders (TIB) [14]. We used 38 whole genome sequences of TIB provided by Lu et. al. [111].

Figures 5.3a,b show iSAFE and CHAI scores for all SNPs in 3 Mbp region around EPAS1 locus

in Tibetan highlanders. In this region, 173 SNPs (spanning ∼300 kbp region chr2:46567916-

46870805) have CHAI > 0.98 and predicted to be adaptively introgressed. These SNPs include

the five SNPs (turquoise color in Figures 5.3a-c) used in Huerta-Sánchez et al. 2014 [14], that

led them to conclude this segment of genome is adaptively introgressed from an archaic hominin

like Denisovans. Figure 5.3c shows the frequency of these SNPs in TIB population and also in

EAS, EUR, and AFR super-populations of the 1000GP (left panel), and the state of the derived

alleles in the Denisova and Altai, Vindija33.19, and Mez1 Neanderthals (right panel). The median

frequency of these 173 SNPs is 0% for EUR and AFR, 2% for EAS, and 76% for TIB. The values
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on top of right panels in Figures 5.3c,d are the proportion of the derived alleles (excluding missed

ones) in the corresponding archaic sample which can be considered as a measure of similarity.

These 173 SNPs are 47% match to Denisova compared to 20%, 19%, and 18% match to Altai,

Vindija33.19, and Mez1 Neanderthals, respectively. This observation is consistent with the claim

that this haplotype is adaptively introgressed from an archaic hominin similar to Denisovans.

The iSAFE top candidate haplotype (set of fully-linked SNPs) have 41 fully-linked SNPs

around TMEM247 (chr2:46657114-46730100), 45 kbp down stream of the EPAS1. One of these

41 SNPs is missense (rs116983452; orange color in Figure 5.3). Figure 5.3d shows the frequency

of these 41 SNPs in super-populations of the 1000GP (left panel), and the state of the derived

alleles in the archaic samples (right panel). For this missense SNP, Denisova has the derived

allele and all three Neanderthals have ancestral allele. The derived allele frequency of this SNP

is 76% (TIB), 2% (EAS), and 0% (EUR and AFR). This observation suggests the missense

SNP rs116983452 is a potential candidate for being the favored mutation driving this adaptive

introgression and it is likely introgressed from an archaic hominin similar to Denisovans.

5.4 The story of LCT locus

The selective sweep in LCT locus in European populations is probably the most famous

example of positive selective sweep. The signature of the selection in this region is very strong

and extends to a few Mbp on each side of the sweep (See Figure 4.1). Almost all of the selection

tests (see Figure 1.1) pick this region in European with a high confidence. The putative favored

mutation rs4988235 is top iSAFE candidate in FIN population, joint with five other fully-linked

SNPs rs182549, rs12465802, rs56369224, rs6730157, and rs7570971. These six SNPs span

779 kbp region chr2:135837906-136616754 surrounding the LCT gene. This SNPs represent the

famous favored haplotype associated with the lactose persistence in European populations. CHAI

scores for these SNPs is zero that suggests the selective sweep driven by these putative favored
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haplotype is not adaptively introgressed. Frequency of these SNPs are 59% in FIN and 0% in

CHB populations. This putative favored haplotype in FIN population does not exist in CHB

population and not surprisingly its corresponding iSAFE scores are zero in CHB (see Figure 5.5a).

However, the iSAFE score in LCT region in CHB population shows signal of selection with a

high confidence (see Figure 5.5b). Our analysis suggests LCT locus have been target of multiple

selection events in human population. Some of these candidate favored haplotypes are adaptively

introgressed. We elaborate on this below.

Distinguish multiple selection events at the same locus

iSAFE treat each SNP as a binary classifier, carriers and non-carriers of the derived

allele, and it represent how well the SNP can explain the pattern of haplotype homozygosity

in its neighboring region. Carriers/non-carriers of the favored mutation are supposed to have

high/low haplotype homozygosity, respectively. In Figure 5.4 we demonstrate that we cannot

distinguish multiple selective sweeps in the same region when their genomic distance is very

close (a few hundred kbp), just by looking at the iSAFE signal as a function of their genomic

position. However, by looking at iSAFE signals in frequency domain we might be able to detect

and distinguish multiple selective sweeps.

For each SNP, when the frequency distance to the favored mutation increases (LD to the

favored mutation decreases), we expect a predictable decay in its iSAFE score (see the right

panels in the upper part of the Figure 5.4). Therefore, hitchhikers of the favored mutation are

expected to have a predictable distribution of the iSAFE score as a function of frequency distance

to the favored mutation (gray shade in the right panels of the Figure 5.4). Sometimes, this pattern

is violated when there are more than a single selective sweep in the same region and we utilize this

pattern to distinguish different sweeps (see the right panels in the lower part of the Figure 5.4).
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Multiple selection events at LCT locus

The putative favored haplotype in FIN population (represented by rs4988235) does not

exist in CHB population and not surprisingly its corresponding iSAFE scores are zero in CHB.

However, the iSAFE score in LCT region in CHB population shows signal of selection with a

high confidence (Figures 5.5, 5.6). In Figure 5.4 we showed when two selections occur near each

other sometimes their signals can be distinguished by their iSAFE scores in the frequency domain

even when their signals as a function of chromosomal position are not separable. In Figure 5.5,

we looked at the pattern of iSAFE signal in FIN, CHB, JPT, and combined FIN+CHB+JPT

samples of 1000GP. The right panels of Figure 5.5 (iSAFE score in frequency domain), along

with Figure 5.4, imply that pattern of signals in LCT locus is consistent with the pattern of

multiple selections. The coloring of these SNPs are based on the significance of their iSAFE score

(P value < 1e-4) in FIN, CHB, and JPT populations. Following we summarize our observation

and predictions based on analyzing the LCT locus in 1000GP population using our methods.

The blue (FIN only). The blue sweep, in Figure 5.5, is the well-characterized selective

sweep associated with lactose persistence in European population and our analysis suggests it

is not adaptively introgressed. The blue SNPs shows signal of selection in FIN population and

combined FIN+CHB+JPT samples. The putative favored mutation (rs4988235; blue square in Fig-

ure 5.5) is ranked first by iSAFE in both (FIN and FIN+CHB+JPT). This blue signal disappears in

East Asian populations (CHB and JPT). The CHAI score for blue-favored haplotype (represented

by rs4988235) is zero. Therefore, the CHAI method suggests that the well-characterized selective

sweep in European population (blue SNPs in Figure 5.5) is not an adaptive introgression.

The yellow (shared). The yellow sweep, in Figure 5.5, is shared between CHB, JPT, and

FIN populations and the CHAI method suggests it is an adaptive introgression, perhaps from an

unknown archaic hominin. Yellow SNPs have the dominant signal of selection in East Asian

population (CHB and JPT) and this signal also exist in European (FIN) where these yellow SNPs

are linked to, and dominated by, the blue sweep. As you can see, in the left panel of Figure 5.5
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for combined FIN+CHB+JPT, the blue and yellow signals are clearly separated in frequency

domain. This yellow-haplotype is the top iSAFE candidate in CHB and JPT populations and

is predicted to be adaptive introgression (CHAI ≈ 1) in CHB, JPT, and FIN populations. The

iSAFE candidate haplotype in CHB population includes 124 fully-linked SNPs that are also

highly-linked in FIN population with significant iSAFE scores (Figures 5.5, 5.6). 71 (out of 124)

of these SNPs are missed in archaic genome sequences (the Denisova and Altai, Vindija33.19, and

Mez1 Neanderthals). Only 2 SNPs (out of remaining 53 SNPs, 4% match) are in derived state in

the Mez1 Neanderthal sample and all other are in ancestral state in all other archaic samples (0%

match). This observation suggests that this haplotype is not introgressed from archaic hominin

like Neanderthals and Denisovans. However, as this haplotype also exists in AFR population in

low frequency (∼ 32%), it could be introgressed from an unknown archaic hominin, perhaps in

Africa.

The red (CHB only). The most interesting result in this region is for the red SNPs that

are specific to CHB population. Our analysis suggests the red sweep, in Figures 5.5, is an adaptive

introgression in CHB population from a Neanderthal-like archaic hominin. We elaborate on this

below.

Adaptive introgression from Neanderthals at LCT locus

We further investigate the red haplotype in Figure 5.6. The CHAI score predicts this hap-

lotype as adaptive introgression (Figure 5.6a). The iSAFE signals as a function of chromosomal

position, for yellow and red SNPs are not separable (Figure 5.6b). However, in the frequency

domain the red and yellow signals are well-separated (Figure 5.6c) and the red haplotype shows

signal of a new sweep in CHB population. The solid-box shows the red haplotype in Figure 5.6a-c.

The shared sweep (yellow sweep in Figures 5.5, 5.6) is also demarcated by dashed-box. As we

mentioned before, this shared-yellow sweep is predicted by CHAI to be an adaptive introgression

but it does not match to any of the archaic genome sequences. However, it can be introgressed
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from an unknown archaic hominin.

In contrast, the red haplotype not only is predicted by CHAI method to be adaptively

introgressed (Figure 5.6a), but also it is highly similar to the Vindija33.19 Neanderthal with 94%

match. The upper panel of Figure 5.6d shows frequency of 149 SNPs on the red haplotype that

have CHAI≈ 1 only in CHB population (solid-box). The lower panel of Figure 5.6d shows the

state of the alleles in three Neanderthals (Altai,Vindija33.19, and Mez1) and the Denisova. These

SNPs have median frequency zero in FIN, EUR, and AFR populations and 0.01 and 0.07, 0.26 in

SAS, JPT, and CHB, respectively. We showed this haplotype have a signal of new selection (red

SNPs) in CHB population near an older sweep that is shared between European and East Asian

populations (yellow SNPs). Interestingly, derived alleles of these SNPs match in 94%, 73%, 65%,

and 41% of the cases, if not missed, with Vindija33.19, Altai, Mez1, and Denisova, respectively.

Based on these observations, the red haplotype is a candidate for a recent adaptive introgression

in CHB population on LCT locus from a Neanderthal-like archaic hominin.

To sum up, these observations suggest LCT locus seems to be target of multiple selection

events in human population (see Figure 5.5). Some of these candidate favored haplotypes are

adaptively introgressed. Comparison to the genome of archaic sample confirm that a haplotype

(red haplotype in Figures 5.5, 5.6) is adaptively introgressed from an archaic hominin like

Neanderthals into the CHB population.

5.5 Summary and discussion

Together with recent advancement in ancient genome sequencing technologies and avail-

ability of archaic hominin genome sequences, different methods have been proposed to infer

introgressed segments of the genome. An introgressed haplotype at high frequency, relative to

other populations, can be a signal of adaptive introgression. However, introgression increases

LD and also distorts the pattern of allele frequency distribution. Therefore, using standard test of
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selection on region with introgression can easily lead to false inference of selection.

The CHAI method captures adaptively introgressed haplotypes without knowledge of

archaic samples. Our results suggest that statistics obtained from the coalescent structure of

a region under a selective sweep can detect favored haplotypes in human populations that are

introgressed from archaic hominins without knowledge of archaic reference. CHAI is a supervised

machine learning approach that is designed to minimize false inference of other types of selection,

including hard/soft sweeps and adaptation on recombination suppressor mechanisms (RSM) like

chromosomal inversion. All the data used in this Chapter are provided in Section B.5.
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Figure 5.3: Adaptive introgression at EPAS1 locus in Tibetan highlanders. (a, b) The iSAFE and CHAI scores
for all SNPs in 3 Mbp region around EPAS1 locus in Tibetan highlanders. The span of EPAS1 gene (chr2:46525050-
46611799) is shaded by red. (c) Frequency of 173 SNPs (chr2:46567916-46870805) with CHAI > 0.98 in Tibetan
Highlanders (TIB, red) and three 1000GP super populations EAS (brown), EUR (blue), and AFR (gray). The state
of the allele in three Neanderthals (Altai, Vindija33.19, and Mez1) and the Denisova are shown in the right panel.
(d) The iSAFE top haplotype have 41 fully-linked SNPs around TMEM247 (chr2:46657114-46730100), 45 kbp
down stream of the EPAS1. One of these 41 SNPs is missense (rs116983452; orange color) and only exists in the
Denisova. The values on top of right panels in (c, d) are the proportion of the derived alleles (excluding missed
ones) in the corresponding archaic sample which can be considered as a measure of similarity. (a-c) Turquoise color
represents the five SNPs used in Huerta-Sánchez et al. 2014 [14], that led them to conclude this segment of genome
is adaptively introgressed from an archaic hominin like Denisovans.
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Figure 5.4: Distinguish multiple selections. When two selections occur near each other their signals interfere and
usually not separable by looking at their signals as function of their chromosomal position. However, if these sweeps
have difference in frequency, sometimes they can be distinguished by their iSAFE score in the frequency domain
(regardless of their chromosomal position in the target region). Here we show a few examples of single selective
sweep (top three rows) versus multiple selections (bottom three rows). Panels between dotted lines represent an
independent simulation. The gray shade (in right panels) show the expected distribution of SNPs if there is only one
selective sweep. The black-dashed curve represent the 99 percentile of the distribution, conditioned on derived allele
frequency (DAF). These distributions are derived by 100 simulations to mimic the dominant sweep (sweep with
highest iSAFE score). As you can see in these examples a significant deviation from the expected distribution (gray
shade and black-dashed line) can be a signal of extra selective sweep, while in a single selective sweep SNPs do not
deviate significantly from the expectation. The red circles are favored mutations.
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Figure 5.5: Multiple selections at LCT Locus. In Figure 5.4 we showed when two selection occur near each other
sometimes their signals can be distinguished by their iSAFE score in the frequency domain even when their signals
as a function of chromosomal position are not separable. Right panels, along with Figure 5.4, imply that this pattern
of signals is consistent with the pattern of multiple selections on LCT locus. The coloring of these SNPs are based
on the significance of their iSAFE score (P value < 1e-4) in FIN, CHB, and JPT populations. For example, the blue
SNPs only shows a signal of selection in FIN population and they represent the well-characterized selective sweep
associated with Lactose persistence in European population and this strong signal is observed in FIN population and
combined FIN+CHB+JPT populations with the putative favored mutation (rs4988235; blue square) being ranked
first by iSAFE score in both (FIN and FIN+CHB+JPT). This blue signal disappears in East Asian populations (CHB
and JPT). Yellow SNPs have the dominant signal of selection in East Asian population (CHB and JPT) and this
signal also exist in European (FIN) where these yellow SNPs are highly linked to, and dominated by, the blue SNPs.
As you can see, in the bottom-right panel for combined FIN+CHB+JPT, these two signals (blue and yellow) are
clearly separated in frequency domain. The red SNPs are specific to CHB population and we explain them in detail
in Figure 5.6. These SNPs show signal of a new sweep in CHB population with a zero or close to zero frequency in
non-Asian populations of 1000GP and surprisingly this haplotype not only predicted by our method to be adaptively
introgressed but also it is highly similar to the Vindija33.19 Neanderthal (94% match). There is also a turquoise
signal that is shared between JPT and FIN populations and dominated by the blue signal in European. The gray shade
(in right panels) show the expected distribution of SNPs if there is only one selective sweep. The black-dashed curve
represent the 99 percentile of the distribution, conditioned on derived allele frequency (DAF). These distributions are
derived by 100 simulations to mimic the dominant sweep (sweep with highest iSAFE score).
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Figure 5.6: Adaptive introgression at LCT locus. (a) The CHAI and (b) iSAFE scores for all SNPs in 3 Mbp
region around LCT locus in CHB population of 1000GP. The gray-shaded region is the location of LCT gene. (c)
The iSAFE score as a function of derived allele frequency (DAF) suggests multiple selections are happening in this
locus. The yellow signal represents a sweep that is shared between all non-African populations and the red signal is
only in CHB population (see Figure 5.5). The gray shade in (c) shows the expected distribution of SNPs if there is
only one selective sweep. The black-dashed curve represent the 99 percentile of the distribution, conditioned on
derived allele frequency (DAF). These distributions are derived by 100 simulations to mimic the dominant sweep
(sweep with highest iSAFE score). (d) Frequency of 149 SNPs that have high CHAI score only in CHB population
(red SNPs). The state of the allele in three Neanderthals (Altai,Vindija33.19, and Mez1) and the Denisova are shown
in the lower panel. These SNPs have median frequency zero in FIN, EUR, and AFR populations and 0.01 and 0.07,
0.26 in SAS, JPT, and CHB, respectively. Interestingly, derived alleles of these SNPs match in 94%, 73%, 65%,
and 41% of the cases, if not missed, with Vindija33.19, Altai, Mez1, and Denisova, respectively. Based on these
observations, this red haplotype is a candidate for a recent adaptive introgression in CHB population on LCT locus
from a Neanderthal-like archaic hominin. Besides, LCT locus seems to be target of multiple selection events in
human populations (see Figure 5.5). The values on the right y-axis of the lower panel in (d) are the proportion of the
derived alleles (excluding missed ones) in the corresponding archaic sample which can be considered as a measure
of similarity.
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Appendix A

Supplementary notes: iSAFE results on

selective sweeps in human populations

A.1 Well characterized selective sweeps

We examined 8 well characterized selective sweeps with strong candidate mutation.

These loci are LCT, SLC24A5, TLR1, EDAR, ACKR1/DARC, ABCC11, HBB, and G6PD

[56, 88, 90, 94, 95, 97]. iSAFE results for these loci are summarized in Figure 3b and Figure 8

and Table 4.1.

We also examined 14 other loci reported to be under selection with one or more candidate

favored mutations [32, 56, 79, 80, 82].

A.2 Pigmentation genes

SLC45A2/MATP. This region is involved in human pigmentation pathways and is a

target of selective sweep in European population [79]. A nonsynonymous mutation rs16891982

is associated with light skin pigmentation and is believed to be the favored variant [56, 79]. This
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mutation is also ranked first by iSAFE out of ∼21,000 mutations (5 Mbp) in CEU population

with a significant score (see Figure 3c, iSAFE = 0.32, P < 1.3e-8). This mutation is almost fixed

in European; frequency in AFR, EAS, SAS, AMR, and EUR is 0.04, 0.01, 0.06, 0.45, and 0.94,

respectively.

MC1R. The MC1R gene is implicated in many skin color phenotypes, including red hair,

fair skin, freckles, poor tanning response and higher risk of skin cancer. It is is a target of positive

selection in East Asian populations, with a non-synonymous mutation (rs885479) suggested as

a candidate favored mutation [80]. This mutation is ranked first by iSAFE in CHB+JPT (see

Figure 3c, iSAFE = 0.24, P = 1.4e-6) out of ∼16,000 mutations (2.8 Mbp). The putative selected

region is 300 kbp away from the telomere of chromosome 16.

GRM5-TYR. The Tyrosinase (TYR) gene, encoding an enzyme involved in the first step

of melanin production is present in a large region under selection. A nonsynonymous mutation

rs1042602 in TYR gene is reported as a candidate favored variant [79]. A second intronic

variant rs10831496 in GRM5 gene, 396 kbp upstream of TYR, has been shown to have a strong

association with skin color [83].

In contrast, iSAFE ranks mutation rs672144 as the top candidate for the favored variant

region out of ∼22,000 mutations (5 Mbp). This variant was the top ranked mutation not only in

CEU (iSAFE = 0.48, P� 1.3e-8), but also the top ranked mutation for EUR, EAS, AMR, and

SAS (see Figure 3c and Figure 10). The signal of selection is strong in all populations (iSAFE

> 0.5, P� 1.3e-8 for all of) except AFR, which does not show a signal of selection in this region.

It may not have been reported earlier because it is near fixation in all populations of 1000GP

except for AFR ( f = 0.27), as seen in Figure 10. We plotted the haplotypes carrying rs672144

and found (Figure 3d) that two distinct haplotypes carry the mutation, both with high frequencies

maintained across a large stretch of the region, suggestive of a soft sweep with standing variation.

The previously suggested candidates rs1042602, rs10831496 are fully linked to rs672144

(Figure 10c), but not to each other. The EUR haplotypes can be partitioned into 4 clusters
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(Figure 10c). Each of the 4 haplotypes show high homozygosity, suggestive of selection. However,

rs1042602 can only explain the sweep in clusters C1+C2. rs10831496 can only explain C1+C3.

Only rs672144 explains all 4 clusters, providing a simpler explanation of selection in this region.

GTEx eQTL analysis on TYR gene for the tissue ‘Skin - Sun Exposed (Lower leg)’ showed

P = 0.61 for rs1042602, P = 0.15 for rs10831496, and P = 0.08 for rs672144. While the P value

does not rise to a level of significance due to sample size issues, it is indicative of a regulatory

function for the mutation.

OCA2-HERC2. This region is suggested as a target of selection in European [56, 79,

112], and several mutations in this region are associated with hair, eye, and skin pigmentation. For

example, rs12913832 is considered to be the main determinant of iris pigmentation (brown/blue)

and is also associated with skin and hair pigmentation and the propensity to tan [79]. rs1667394

is also linked to blond hair and blue eyes [112]. Some other mutations, many fully linked,

(rs4778138, rs4778241, rs7495174, rs1129038, rs916977) are also associated with blue eyes [112].

This region is also suggested to be a target of selection in East Asia with rs1800414 suggested as

a candidate for light skin pigmentation in that population. We applied iSAFE on this region to all

1000GP super-populations.

iSAFE selected a single variant rs1448484 in OCA2 (with high confidence, P < 1.34e-8

for EUR, EAS, AMR and P = 2.13e-6 for SAS) as the favored variant in all 1000GP populations

(EUR, EAS, SAS, AMR) except for AFR that showed no signal of selection in this region (see

Figure 11 and Figure 3c). This variant is close to fixation in all populations except for AFR,

where ν = 20% (see Figure 11). iSAFE result along with the frequency pattern of the top ranked

variant, suggests an out of Africa selection, probably on light skin color, on this region. The other

candidate variants are all ranked high, and tightly linked with the top-ranked variant (Table A.1).

KITLG. This genomic region has been linked to skin pigmentation [113] in European

and East Asian populations, and shows a strong signature of selective sweep on regulatory regions

surrounding the gene in all non-African populations [80], with a candidate variant rs642742, that
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is associated with skin pigmentation [113].

iSAFE analysis identified the same mutations gaining the top rank in multiple populations

(Figure 12). Top rank mutations in EUR, SAS, EAS, and AMR populations are shown in

Table A.2. The top ranked mutation in EUR and CEU populations (rs405647) was ranked 1, 2, 3

in AMR, SAS, and EAS, respectively, and is tightly linked to rs642742 (D′ = 0.92). Mutation

rs661114 is ranked 2 in EUR, 5 in CEU, 6 in SAS, and 20 in AMR, and lies in a region with

H3K27 acetylation that is associated with enhanced expression.

TRPV6. This region has been reported a target of selection in CEU population [32].

TRPV6 is involved in calcium absorption. It has been suggested that “Individuals with lighter

skin pigmentation might have produced too much 1,25-dihydroxyvitamin D, resulting in an

increased intestinal Ca2+ absorption. Thus, to reduce the risk of absorptive hypercalciuria with

kidney stones, the derived haplotype would have spread only among individuals with lighter

skin pigmentation” [114]. iSAFE suggests 10 strongly linked mutations located along a 9 kbp

region located 84 kbp downstream of TRPV6 (see Figure A.5). These mutations are ranked in the

top 10 in all non-African populations (Table A.3). There is no signal of selection in this region

in AFR. The pattern of selection in this region in global population along with the confidence

and consistency of iSAFE results in all non-African populations is consistent with an out of

Africa selection on this region with the favored mutation being near fixation in all non-African

populations (Figure 13).

A.3 Population specific selection: East Asian

PCDH15. This gene plays a role in development of inner-ear hair cells and maintaining

retinal photoreceptors and is reported to be under selection in East Asian and a nonsynonymous

mutation rs4935502 is proposed to be the favored variant [56]. This mutation is ranked 12 by

iSAFE in CHB+JPT (see Figure 9, iSAFE = 0.45, P < 1.34e-8). All top mutations are highly
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linked.

ADH1B. “The ADH1B gene encodes one of three subunits of the Alcohol dehydrogenase

(ADH1) protein, a major enzyme in the alcohol degradation pathway that catalyzes the oxidization

of alcohols into aldehydes.” This region is a target of positive selection in East Asian popula-

tion [32]. A non-synonymous mutation in this gene is associated with Alcohol dependence [115].

We tested this gene in CHB+JPT populations. iSAFE rank, in 2 Mbp around ADH1B gene, for

the candidate mutation (rs1229984) is 8 (see Figure 9). The top rank mutation is an upstream

mutation (rs3811801) 5 kbp upstream of the candidate mutation rs1229984 and highly linked to it

(D′ = 0.99). The second rank mutation (rs284787) is a 3′-UTR of ADH7 which is shown to be

associated with Upper Aerodigestive Tract Cancers in a Japanese Population [116].

A.4 Population specific selection: UK

The UK Biobank project was recently investigated for regions under selection. The regions

were reported as a target of a recent selection by analyzing the structure of UK Biobank and

Ancient Eurasians [82]. We applied iSAFE on GBR (British in England and Scotland) population

in 1000GP to check if the favored mutation could be confirmed.

ATXN2-SH2B3. Galinsky et al. proposed a nonsynonymous mutation (rs3184504) as a

candidate that is associated to blood pressure [117]. We tested this region in GBR population

of 1000GP. This candidate mutation is jointly ranked first with two other mutations rs7137828,

rs7310615 (see Figure 3c, iSAFE = 0.27, P = 1.6e-7). rs7137828 is an intronic mutation in

ATXN2 that is associated with Primary Open Angle Glaucoma that is a leading cause of blindness

worldwide [118]. The other first rank mutation (rs7310615) is associated with blood expression

levels of SH2B3 [119]. Surprisingly, all of the top 10 mutations, ranked by iSAFE have a known

association to a phenotype (Table A.4), and are highly linked (Figure A.6).
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CYP1A2/CSK. We tested a 5 Mbp region around these genes in GBR population of

1000GP. The proposed mutation rs1378942 by [82] with frequency 0.69 in GBR population is

ranked 89 by iSAFE (iSAFE = 0.13, P = 7.0e-5). The top-ranked mutation rs2470893 (Figure 3c,

iSAFE = 0.16, P = 2.7e-5) is between CYP1A1 and CYP1A2 with frequency 0.40 in GBR

and is associated with Caffeine metabolism [84]. rs2470893 and rs1378942 are in a strong LD

(D′ = 0.91).

FUT2. The signal of selection on 5 Mbp around this region in GBR population is very

weak (Figure 9), with peak iSAFE = 0.026, P = 0.009. There is a very weak peak in 400 kbp

around FUT2 gene (chr:49077276-49475876). The stop gained mutation rs601338 proposed as a

candidate mutation by [82] is ranked 4 (P = 0.1).

F12. The signal of selection on 5 Mbp around this region in GBR population is very weak

(Figure 9, peak iSAFE = 0.027, P = 0.008). The proposed mutation rs2545801 has a very weak

signal (P = 0.2).

A.5 Other genes

PSCA. This gene has been reported as a target of selection in YRI population [32]. A

5′UTR mutation rs2294008 proposed as a candidate favored mutation in this region that is

associated with urinary bladder and gastric cancers [120, 121]. The signal of iSAFE in 5 Mbp

around this gene in YRI population is weak (see Figure 9, peak iSAFE = 0.04, P = 2.4e-3). The

proposed mutation rs2294008 is ranked 7 in 5 Mbp region surrounding this region. The local rank

in 400 kbp around this gene is joint-first with 8 other mutations including rs2976392 which is

also associated with diffuse-type gastric cancer [121]. Other mutations are rs2978979, rs2920279,

rs2978980, rs2920282, rs2294010, rs2717562, rs2978982. This 9 mutation are fully linked in

YRI population in a 20 kbp region that cover PSCA from upstream regulatory region to its down

stream (chr8:143757286-143776668, GRCh37/hg19).
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Figure A.1: iSAFE on targets of selection. iSAFE on 5 Mbp regions reported to be under selection. Putative
favored mutation is shown in blue square when it is among iSAFE top rank mutations, and in blue triangle when
the signal of selection is very weak (peak iSAFE� 0.1). The right axis is empirical P value (see Section B.4).
(a,b) PCDH15 and ADH1B loci with 207 samples (414 haplotypes) from CHB+JPT populations. (c) PSCA locus
with 108 samples (216 haplotypes) from YRI population. (d,e,f) ASPM, FUT2, and F12 loci with 91 samples (182
haplotypes) from GBR population.

ASPM. This gene is reported to be a target of weak selection in GBR population [32].

The signal in 2 Mbp around this gene is very weak (see Figure 9, peak-iSAFE = 0.025, P = 0.01).

The proposed mutation rs41310927 has a very weak signal (P = 0.4). However, we do see a

strong iSAFE signal 1.3 Mbp away from the ASPM gene.
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Figure A.2: iSAFE on the OCA2-HERC2 locus. The mutation rs1448484 is the iSAFE top rank mutation in all
the population of 1000GP except African that does not show any signal of selection in this region. rs12913832 is a
candidate favored mutation for the selection in European, proposed by Wilde et al. (2014) [79]. Table A.1 provides
iSAFE rank of some other candidate mutations associated with pigmentation in this region (see Section A.2).
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Figure A.3: iSAFE on the KITLG locus. iSAFE top rank mutations (circles) and candidate mutation rs642742
(blue triangle) proposed by Miller et al. (2007) [113]. See Section A.2 and Table A.2 for more details.
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Figure A.4: iSAFE on the TRPV6 locus. 10 mutations (rs11772526, rs4725602, rs11763225, rs7796010,
rs11762011, rs13239916, rs4145394, rs10808023, rs10808021, and rs4726591) are highly linked and are top
10 iSAFE candidate mutations in all the 1000GP populations except for AFR where there is no signals of selection.
See Section A.2 and Table A.3 for more details.
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Figure A.5: SNP matrix of TRPV6 top candidates. Haplotypes of top 10 iSAFE mutations, and the proposed mu-
tation (rs4987682) by [32], in 5 Mbp around TRPV6 in 2504×2 haplotypes of 1000GP are shown. These mutations
are sorted by their iSAFE rank from left to right. iSAFE top 10 mutations span a 9 kbp region(chr7:142476441-
142485399, GRCh37/hg19). White is derived and black is ancestral allele.

Figure A.6: SNP matrix of ATXN2-SH2B3 top candidates. Haplotypes of top 20 iSAFE mutations in 5 Mbp
around ATXN2-SH2B3 in GBR population are shown. These mutations are sorted by their iSAFE rank from left to
right. They span a 1.07 Mbp region around ATXN2-SH2B3 region (chr12:111833788-112906415, GRCh37/hg19).
White is derived and black is ancestral allele. Most of these mutations are associated to a phenotype (see Table A.4).
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Table A.1: iSAFE rank of putative favored variants of OCA2-HERC2. iSAFE rank of candidate mutations
proposed by [79, 112] in 1 Mbp region around OCA2-HERC2 that are associated with eye, hair, and skin pigmentation.
Number of haplotypes in CEU, CHB, and JPT populations are 198, 206, and 208, respectively. Computation of
empirical P value is provided in Section B.4.

ID Association Population iSAFE Rank P
rs916977 Blue eye CEU 15 4.1E-5

rs1667394 Blue eye & blond hair CEU 16 4.3E-5
rs1129038 Blue eye CEU 21 6.2E-5
rs12913832 Blue eye, skin & hair CEU 21 6.2E-5
rs4778138 Blue eye CEU 70 1.6E-4
rs4778241 Blue eye CEU 72 1.8E-4
rs1800414 Skin CHB+JPT 122 2.6E-3

Table A.2: KITLG candidate variants. iSAFE rank of top mutations in 2 Mbp around KITLG gene. sorted by
their Mean Reciprocal Ranks, calculated over EUR, SAS, EAS, and AMR. Only those with Mean Reciprocal Rank
greater than 0.1 are shown (the candidate mutation rs642742 proposed by [113] is also reported in the last row).
Frequency and iSAFE score for this region in all the 1000GP populations are provided in Figure12. Number of
haplotypes in CEU, EUR, SAS, EAS, and AMR populations are 198, 1006, 978, 1008, and 694, respectively.

ID
iSAFE Rank

EUR
iSAFE Rank

SAS
iSAFE Rank

EAS
iSAFE Rank

AMR
Mean Reciprocal Rank
EUR, SAS, EAS, AMR

iSAFE Rank
CEU

rs405647 1 2 3 1 0.71 1
rs496859 4 1 2 12 0.46 7

rs61942772 10 57 1 94 0.28 22
rs560859 2 4 152 20 0.2 5
rs661114 2 6 151 20 0.18 5

rs11105020 8 3 32 5 0.17 23
rs10506957 17 22 46 2 0.16 2
rs7979311 5 5 156 20 0.11 3
rs1907702 22 20 45 3 0.11 8
rs642742 30 49 64 166 0.02 94

Table A.3: TRPV6 candidate variants. iSAFE rank of top mutations in 5 Mbp around TRPV6 gene, sorted by their
Mean Reciprocal Ranks, calculated over EUR, SAS, EAS, and AMR. Number of haplotypes in CEU, EUR, SAS,
EAS, and AMR populations are 198, 1006, 978, 1008, and 694, respectively.

ID
iSAFE Rank

EUR
iSAFE Rank

SAS
iSAFE Rank

EAS
iSAFE Rank

AMR
Mean Reciprocal Rank
EUR, SAS, EAS, AMR

iSAFE Rank
CEU

rs11772526 4.0 1.0 1.0 1.0 0.81 4.0
rs4725602 1.0 4.0 1.0 2.0 0.69 1.0
rs11763225 1.0 4.0 5.0 2.0 0.49 1.0
rs7796010 4.0 1.0 3.0 6.0 0.44 4.0
rs11762011 4.0 3.0 3.0 6.0 0.27 4.0
rs13239916 4.0 6.0 6.0 4.0 0.21 4.0
rs4145394 3.0 8.0 10.0 5.0 0.19 1.0
rs10808023 8.0 7.0 7.0 8.0 0.13 4.0
rs10808021 9.0 10.0 8.0 8.0 0.12 10.0
rs4726591 10.0 9.0 9.0 10.0 0.11 4.0
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Table A.4: ATXN2-SH2B3 candidate variants. iSAFE rank of top 20 mutations in GBR population (182 hap-
lotypes) of 1000GP in 5 Mbp around ATXN2-SH2B3 region and their association to diseases. Computation of
empirical P value is provided in Section B.4.

ID Rank P Gene Function GBR Frequency Association Reference
rs3184504 1 2.2e-7 SH2B3 missense 0.5 Blood pressure and hypertension, Coronary artery disease, & more [122]
rs7137828 1 2.2e-7 ATXN2 intron 0.5 Primary open-angle glaucoma [118]
rs7310615 1 2.2e-7 SH2B3 intron 0.5 Fibrinogen levels [119]
rs597808 4 2.7e-7 ATXN2 intron 0.49 Systemic lupus erythematosus [123]

rs4766578 5 3.0e-7 ATXN2 intron 0.51 Vitiligo [124]
rs10774625 5 3.0e-7 ATXN2 intron 0.51 Systemic lupus erythematosus, Retinal vascular caliber [123]
rs653178 7 3.1e-7 regulatory 0.5 Blood pressure and hypertension, Myocardial infarction, & more [122]

rs11065979 8 4.4e-7 intergenic 0.47 Cancer (pleiotropy) [125]
rs17630235 9 4.6e-7 TRAFD1 downstream 0.43 Body mass index [126]
rs11065987 10 4.9e-7 intergenic 0.45 Tetralogy of Fallot, Coronary artery disease, & more [127]
rs11065991 10 4.9e-7 BRAP intron 0.45
rs10774624 12 5.2e-7 RP3-473L9.4 intron,nc 0.52 Rheumatoid arthritis [128]
rs2013002 13 8.2e-7 ALDH2 upstream 0.44

rs11066309 14 1.1e-6 PTPN11 intron 0.45
rs11066188 15 1.5e-6 0.43
rs17696736 16 1.5e-6 NAA25 intron 0.46 Ischemic stroke, Type 1 diabetes, & more [129]
rs11066301 17 1.9e-6 PTPN11 intron 0.46 Hematological parameters [130]
rs11066320 17 1.9e-6 PTPN11 intron 0.46
rs11066283 19 2.1e-6 RPL6 downstream 0.46
rs11513729 20 2.2e-6 MAPKAPK5-AS1 downstream 0.45
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Appendix B

Supplementary notes

B.1 Default simulation parameters

Neutral and sweep samples were generated with the simulator msms[131]. By default,

simulated populations are haploid with sample size of n = 200 haplotypes from a larger effective

population of N = 20,000 haplotypes, each of length L, with default values of 50 kbp for SAFE

and 5 Mbp for iSAFE. For human populations, a mutation rate of approximately µ = 2.5×10−8

mutations per base pair per generation [81, 132] and a recombination rate of approximately

r = 1.25×10−8 per base pair per generation [133] have been proposed. For SAFE simulations,

we used a scaled mutation rate θ = 2Nµ = 1 mutation per kilobase pair per generation and scaled

recombination rate ρ = 2Nr = 0.5 crossovers per kilobase pair per meiosis to approximate human

rates. The rates were scaled linearly by L. In the case of positive selection, the default scaled

selection strength of the favored allele was set at Ns = 500, with the favored mutation located at a

random position uniformly distributed on the range [1, L]. The default value for favored mutation

starting frequency ν0 was 1/N (hard sweep), and the frequency of the favored mutation ( ν ) at

the time of sampling was a random value uniformly distributed on the range [0.1, 0.9]. We used

the default parameters for all simulations unless otherwise stated.
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B.2 A model of human demography

We simulated the demography of 1000GP AFR, EUR, and EAS populations with the pa-

rameters shown in Figure B.1, based on a popular demographic model of human population [134].

In the case of positive selection, the selection coefficient was set to s = 0.05, and the starting

favored allele frequency ν0 = 0.001. The time of onset of selection was chosen at random (using

the distribution in Figure B.1) after the out-of-Africa event, in the lineage of the EUR population

(as the target population). When the onset of selection was before the split of EUR and EAS

(>23,000 years ago), both populations (EUR and EAS) were under selection.

Figure B.1: Simulation of selection on human demography. (a) A model of human demography described by
Figure 4 and Table 2 of Gravel et al. (2011) [134]. The model assumes an out-of-Africa split at time TB , with a
bottleneck that reduced the effective population from NA f to NB , allowing for migrations at rate mA f−B. The African
population stays constant at NA f up to the present generation. The model assumes a second split between European
and Asian populations at time TEuAs , with a bottleneck reducing the Asian and European populations to NAs0 and
NEu0 respectively. The bottleneck was followed by exponential growth at rates rAs and rEu , as well as migrations
among all three sub-populations, leading to current populations from which East Asian (EAS), European (EUR), and
Africans (AFR) individuals were sampled. We used default values for simulation parameters not assigned. (b) We
simulated 1000 selective sweeps on 5 Mbp region based on the model of human demography, and with selection
coefficient s = 0.05 and starting favored allele frequency ν0 = 0.001. The selection happens in a random time, after
the out of Africa in the lineage of EUR population (as the target population). When the onset of selection is before
split of EUR and EAS (> 23 kya), both (EUR and EAS) are under selection.
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B.3 Adding Outgroup Samples

Simulation of human population demography under neutral evolution (Figure 14), shows

P(MDDAF > 0.78|DT > 0.9) = 0.001 (Figure 15) making it a rare event to have high MDDAF

score even when the frequency is high in the Target population. Therefore, when there is a high

frequency mutation (DT > 0.9) with MDDAF > 0.78 in the target population, we add random

outgroup samples to the data to constitute 10% of the data. For analysis on real data, where

we looked at 1000GP populations, we randomly selected outgroup samples from non-target

populations of 1000GP.

In Figure 3c, we compared the performance of iSAFE with or without having the option of

using outgroup samples; we simulated 5 Mbp of human genome based on the human demography

model described in Figure 14. The selection happens in a random time, with a distribution given

in Figure 14b, after the out of Africa in the lineage of EUR population (as the target population).

When the onset of selection is before split of EUR and EAS (> 23kya), both (EUR and EAS) are

under selection. When we have random sample option, we use the MDDAF criterion to decide

whether we should use random sample or not. In case of adding random sample, we add a random

subset of individuals from EAS+AFR to constitute 10% of the data (200 haplotypes from EUR

and 22 from EAS+AFR).

The performance of iSAFE for sweeps with ν < 0.9 did not change with or without having

outgroup sample option (Figure 3e). When frequency of the favored mutation is near fixation

(ν > 0.9) having the outgroup sample option is helpful and increase the performance of the

iSAFE. When the sweep is fixed (ν = 1), iSAFE is no longer capable of detecting the favored

mutation without having outgroup samples because the favored mutation is no longer a variant

in the target population. However, with the outgroup sample option, iSAFE can successfully

pinpoint the Favored mutation even in a fixed selective sweep (see Figure 3e).
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B.4 Computing empirical P values for iSAFE

We applied iSAFE on a neutrally evolving simulated population with window size of 5

Mbp, based on the European demography shown in Figure B.1. A P value was calculated on

the basis of the empirical distribution of iSAFE on these simulated populations. We limited the

number of samples to ∼74,800,000 for efficiency, and this allowed us to get a P value as low as

1.34×10−8 for an iSAFE score of 0.304. Scores higher than this cutoff were considered to have

P < 1.34×10−8.

B.5 Data availability

For all the following datasets, the genome build is GRCh37/hg19. We downloaded the

phased haplotypes of the 1000GP [135](phase 3) dataset from ftp.1000genomes.ebi.ac.uk/vol1/ftp

/release/20130502/. The ancestral allele dataset from Ensembl [136] (release 75) was down-

loaded from ftp.ensembl.org/pub/release-75/fasta/ancestral alleles/. The physical position was

converted into genetic position using the HapMap II [137] genetic map downloaded from ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20110106 recombination hotspots/ . We

used VCF files of archaic samples provided by Prüfer et. al. [138], available at cdna.eva.mpg.de

/neandertal/Vindija/VCF/ . For analyzing the EPAS1 region in Tibetans highlanders (TIB), we

used 38 whole genome sequences of TIB provided by Lu et. al. [111]
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Appendix C

Supplementary figures

Figure C.1: Empirical SAFE distribution. (a) φ and κ as estimators of f . Empirical analysis, with 10,000 neutrally
evolving population (about 3 million SNPs) with default parameter set, shows that φ and κ are (biased) estimators of
allele frequency f ( f = i/n for all integers i ∈ [1,n−1] ). (b) The top panel is the SAFE score Probability Density
Function (PDF) of 10,000 neutrally evolving population (about 3 million SNPs with minor allele frequency > 0.05)
with default parameter set. The bottom panel is Quantiles of the SAFE score against the quantiles of the Normal
distribution. The coefficient of determination (R2 = 0.9997) for the QQ-plot shows that Gaussian distribution is a
good approximation to the SAFE score distribution.
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Figure C.2: SAFE evaluation. Performance of the safe score evaluated in different scenarios with 1000 simulations
per bin. In each panel, we change one parameter and other parameters have their default values (see Section B.1).
The fixed population size N = 20,000. The dashed (dotted) line represents median (quartile). In the bottom-right
panel, white represents the result for a fixed size population model with default parameters and gray represents a
model of human demography for EUR population (see Section B.2). The onset times of selection was post-bottleneck
(23 kya-current) epochs.
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Figure C.3: iSAFE evaluation. (a,b,c) Performance of iSAFE measured by rank of the favored variant and the
distance of the favored variant from the peak in 1000 simulations per bin. The dashed (dotted) line represents median
(quartile). (d) Performance of iSAFE compared to iHS and SCCT measured by rank of the favored variant in 5000
simulations on 5 Mbp region around ongoing hard sweeps (ν0 = 1/N; 0.1 < ν < 0.9) with a fixed population size
(N = 20,000) and default values for other simulation parameters. In the left panel, for any rank r on the x-axis, the
y-intercept represents the proportion of samples where the favored allele had rank ≤ r. In the right panel, solid
(dashed) lines represent the mean (respectively, median) value of the favored allele rank. (e) iSAFE performance
upon addition of outgroup samples. No deterioration is seen for low frequencies of the favored variant, but iSAFE
performance improves dramatically when favored mutation is near fixation or fixed. The dashed (dotted) line
represents median (quartile). This comparison is based on 1000 simulations of 5 Mbp genomic regions simulated
using a model of human genome based on the human demography (Section B.2). The time of onset of selection
was chosen at random (using the distribution in Figure B.1) after the out of Africa event, in the lineage of EUR
population (as the target population). When the onset of selection is before split of EUR and EAS (>23kya), both
(EUR and EAS) are under selection.
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Figure C.4: Maximum difference in derived allele frequency (MDDAF). We simulated 25,000 instances of AFR,
EUR, and EAS populations, based on a model of human demography (see Online Methods; Supplementary Figure
14). (a) The MDDAF score of mutations as a function of derived allele frequency in the target population DT . (b)
Distribution of the MDDAF score for mutations with DT > 0.9. (c) Empirical P value of the MDDAF score for
mutations with DT > 0.9. The dashed-red lines represent the value 0.78, where MDDAF, given DT > 0.9, has a P
value less than 0.001.

Figure C.5: Peak iSAFE. (a) Empirical analysis, with 5000 simulations on 5 Mbp region with a wide range of
selection strength (Ns ∈ [10, 50, 100, 200, 300, 400, 500, 1000]), shows difference in performance of iSAFE beyond
a score threshold of 0.1 for peak value of iSAFE. (b) Rank of favored mutation as a function of peak iSAFE score
(Bottom x-axis) or P value (top x-axis; see Section B.4) for the same data in part a. Each gray dot represents the
favored mutation of a simulation using a wide range of selection coefficients. The performance deteriorates for
iSAFE scores below 0.1. The dashed (dotted) line represents median (quartile).
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Figure C.6: Demo I: iSAFE versus CMS in a model of human demography. Comparing iSAFE and CMS
signals in a model of human demography (see Section B.2). Solid-horizontal lines separate replicates based on the
favored allele frequency (ν) in EUR as the target population, and dotted-vertical lines separate different replicates.
The rank of the favored mutation (solid-red circle) for each test is shown on the top-right corner.
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Figure C.7: Demo II: iSAFE without outgroup samples. iSAFE on ongoing hard selective sweeps (ν0 = 1/N)
with different favored allele frequency (ν) in 5 Mbp region. The position of the favored mutation selected from range
[2.5 Mbp, 5 Mbp]. Other simulation parameters are the default values for fixed population size (see Section B.1) and
outgroup samples are not available.
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Figure C.8: Demo III: iSAFE and selection strength. iSAFE on 5 Mbp region with different selection strength,
Ns ∈ [0, 100, 200, 500, 1000]. Left panels shows the Ψe,w matrix. Middle panel shows the iSAFE score as a function
of the variant position. Right panel show the derived allele frequency as a function of iSAFE score.
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