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Network surveillance algorithms are becoming increasingly important as the ability to 

monitor a wide variety of data is rapidly expanding.  Traffic metrics are usually count 

data that display a non-stationary pattern in their mean structure.  We propose to model 

traffic counts using a generalized linear mixed model to capture these features.  We then 

develop three tracking statistics proposed for anomaly detection.  Two of the statistics are 

derived variants of a Bartlett-type sequential probability ratio approach, which itself is 

not computationally tractable.  The first of these variants is based on an approximation to 

the integrated likelihood while the second is based on the concept of h-likelihood.  We 

also consider a tracking statistic that is an exponentially weighted moving average.  We 

investigate the properties of the three tracking statistics from the point of view of false 

alarm rate and detection power, and compare the proposed tracking statistics with current 

literature.  Our comparisons show that the two Bartlett-type probability ratio variants are 
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preferred choices as SPC tools for network surveillance.  Computational aspects of the 

three procedures are also discussed 
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Chapter 1  

 

Introduction  

 

      The health of a network is crucial for providing the services it delivers.  Intuitively, 

one could anticipate that monitoring various network traffic metrics would provide 

opportunities to detect problems and signal alarms as appropriate.  Barford et al. (2002) 

mentioned that a common technique for handling network surveillance is periodically 

plotting data and using locally authored rules to determine if those data appear to be 

consistent with expectations.  One of the problems with this approach is that the rules are 

often ad hoc and heavily rely on the expert knowledge of network operators. Another 

problem is the manual nature of the procedure which greatly limits the scope of 

monitoring that could be done.  Statistical process control (SPC) methods could 

potentially develop automatic monitoring algorithms with some optimal properties such 

as minimal detection delay. However, special features of network traffic make the 

development of SPC tools very complicated.  Brutlag (2000) points out that any statistical 

model for network traffic should at least capture a likely non-stationary mean structure 

and take into account that most streams of network traffic are discrete correlated data.  
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With these complex characteristics, using simple SPC tools on network traffic metrics 

would not be appropriate.  

      Motivated by our own real network traffic data traces, we derived a GLR based 

change point detection method in conjunction with the use of a generalized linear mixed 

model (GLMM) for network counts.  In the current era of data acquisition capabilities, it 

is reasonable to expect access to in-control historical data, and we incorporate use of that 

type of data into our proposed solutions.  In chapter 2, related work on network 

monitoring and classic change point methods are discussed. In chapter 3, we introduce 

our GLMM for describing network traffic.  In chapter 4, tracking statistics and their 

implementation details are proposed followed by an illustrative example in a normal 

linear mixed model context and comparison of ILR, JLR and EWMA with Lambert and 

Liu’s method in chapter 5.  We investigate the performance of each method with respect 

to false alarm rate (FAR) and power in chapter 6. We conclude in chapter 7 with a 

discussion of implementation issues, including how a practitioner might determine if the 

amount of historical data on hand is sufficient to proceed with the use of our tracking 

statistics, and also how much computational complexity is required to implement the 

proposed tracking statistics.  Chapter 8 provides a summary and discussion of our 

proposed algorithm with recommendation among the three tracking statistics. 

Suggestions for future work are described in chapter 9.  
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Chapter 2  

 

Literature Review 

 

2.1 Related Network Surveillance Work  

      Problems that utilize SPC tools are generally referred to as change point detection 

problems.  In general, attempts to solve change point detection problems can be classified 

into two groups, classical or Bayesian. Among the classical approaches, the goal is to 

control the FAR when the process is in-control and maximize the speed of detection 

when there is an anomalous event. The change point is considered fixed but unknown.  

Many commonly implemented change-point detection methods such as the Shewhart 

Chart, cumulative sum (CUSUM) algorithms, exponentially weighted moving averages 

(EWMA) and generalized likelihood ratio (GLR) algorithms fall into the classical 

approaches category.  These methods are studied extensively by many authors.  Details of 

those methods can be found in references such as Montgomery (1996) and Basseville and 

Nikiforov (1993).  Bayesian approaches consider that the change point is a random 

variable and aim to minimize the expected value of a loss function.  For example, 

Shiryaev (1963) and Roberts (1966) independently presumed each post-change 
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observation has a positive constant cost and sought to minimize ( )|E N v N v− ≥ where 

v is the change point and N is the stopping time.  

      We now discuss some of the SPC methods that have been proposed specifically for 

network anomaly detection. Feather et al. (1993) use historical data to establish in-control 

thresholds for the data stream.  The thresholds are obtained by a scheme based on mean 

and variance estimates for each time point.  The degree of anomalous behavior is then 

determined by how far a new observation is from the estimated mean in terms of the 

variance.  Observations are scored on the basis of five anomaly values (2 , 1,0 , 1, 2)− − .  

For instance, if it is between 3 and 6 standard deviation away it is scored an anomaly 

value of 1, and so on.  Similarly, other metrics are scored and then a fault feature vector 

is encoded that represents the current behavior of the system.  This vector is input into a 

pattern matching system to determine if it resembles a pattern that is a-priori known to be 

associated with a specific fault.  Because daily patterns are assumed to repeat themselves, 

the templates of means and standard deviations are updated every day to adapt to network 

churns.  The adequacy of this approach will rely heavily on how consistently a given fault 

will reproduce the same pattern, and also on the depth of the library of fault patterns.  In 

addition, the thresholds are estimated using variance estimates that do not address 

potential correlations in the data. 

       Thottan and Ji (1998) presume the data stream can be divided into batches of data 

that follow piece-wise normal-theory auto-regressive models. Let { }
1

n

t t
Y

=  denote the 

sequence being monitored. A sequence of 
b
N  (they use 10)

b
N =  observations makes up 
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a batch. Suppose { }
9

n

t t n
Y

= − and { } 10

19

n

t t n
Y

−

= − are observations from two adjacent batches. An 

AR(1) model is used to describe the observations within each batch. Then residual errors 

{ }
9

n

t t n
ε

= − and { } 10

19

n

t t n
ε −

= − are obtained from the two AR(1) models and are considered to 

follow 2

1
(0, )N σ  and 2

2
(0, )N σ respectively. A hypothesis test of the form 

 2 2

0 1 2
:H σ σ=  versus 2 2

1 1 2
:H σ σ≠  

was performed using a generalized likelihood ratio test statistics  

 2 2

1 2
ˆ ˆ2( 1)(log log )

b
Nλ σ σ= − −   

where 2

1
σ̂ and 2

2
σ̂ are the maximum likelihood estimates. Using a threshold H , a change 

between the two batches is observed if Hλ > . The threshold H is chosen experimentally 

using two data sets of network traffic to achieve a maximum fault detection rate with a 

low false alarm rate for those two data sets.  They claim this threshold works well other 

data sets they examined. The adequacy of this approach will rely heavily on the 

plausibility that observations within a batch can be modeled as a stationary normal-theory 

process, and also on the delicate balance between having a batch size large enough to fit 

the hypothesized model and the incurred detection delay by waiting for that amount of 

data to accrue.   

      Lambert and Liu et al (2006) propose an approach which they suggest simultaneously 

addresses the non-stationarity, discreteness and autocorrelation of network stream.  By an 

example from real data, they suggested network counts could reasonably be assumed to 

follow a negative binomial distribution and that autocorrelation in the data can be ignored 
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if each observation is allowed to have its own mean.  The authors used iterated Hanning 

smoothing methods on eight weeks of minute counts to provide empirical evedence the 

counts behave like independent random variables conditional on their means.  By 

iteration number 360 of Hanning smoothing, the first five estimated autocorrelation 

coefficients of the counts get close to zero. Even though they show that autocorrelations 

become negligible using iterative Hanning smoothing method, they propose a different 

method, interpolation of grid values, to estimate the mean values.  Detailed procedure is 

summarized below.  

      Let
1
, ,

n
y y…  denote the observations in time order. First, the author argued that 

1
, ,

n
y y…  follow independent Poisson distributions conditional on their means.  

 
1 1

1

, , | , ~ ( )
n

n n t
t

y y Poissonµ µ µ
=
∏… …  

where
1
,

n
µ µ… are the corresponding means and variances of Poisson distributions.  

Second, they argue that replacing the means 
1

{ }
n

t t
µ = with estimates and ignoring the 

uncertainty in the estimates would give unrealistically short tails and hence too many 

false alarms.  Therefore they incorporate uncertainty about the means by treating the 

means
1
,

n
µ µ…  as random variables.  For simplicity, they use a gamma distribution for 

the conditional Poisson means.  Together, a conditional Poisson distribution for the count 

t
y  and a Gamma ( ),

t t
α β distribution for the conditional mean

t
µ of the count imply that 

the marginal distribution of 
t
y is negative binomial.  Third, the mean and variance of 

negative binomial distribution are estimated by interpolating the grid values.  Here a grid 

is a similar idea to a time slot that we will introduce later.  Basically, it is assumed that 
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observations have a similar mean and variance within each grid.  However, they do not 

clearly mentioned how to get the grid values.  Based on the meaning of grid values, we 

assumed the grid means and variances are calculated using all available historical data for 

each grid.   

      To simplify the terminology, a cycle of 24  hours (grids) is used.  Within each hour, 

there are *
60 ( )m minute counts, and each of them has a different mean and variance.  

There are *
24( )h pairs of grid values for the mean and variance.  Historical data and 

interpolation are then used to obtain the mean and variance of each observation at each 

time point.  By design, the interpolation is unbiased in the sense that arithmetic average 

of the M interpolated means for an hour equals the stored grid value 
h
U  for the hour, and 

the average of the M  interpolated variances equals the grid value
h

V  .  The interpolation 

is carried out like this.  Take three consecutive hours, ( 1,0],  (0,1],  (1, 2]−  and define the 

quadratic interpolation coefficients , ,A B C  by  

( )0
2

1* *
1

1 1

3 2

A B
At Bt c dt C U

m m
−−

 + + = − + = 
 

∫  

( )1
2

0* *
0

1 1

3 2

A B
At Bt c dt C U

m m

 + + = − + = 
 

∫  

( )2
2

1* *
1

1 1

3 2

A B
At Bt c dt C U

m m

 + + = − + = 
 

∫ . 

Solve for , ,A B C  gives,  

 
( )*

1 0 1
2

2

m U U U
A

− − +
=   
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                                                          ( )*

0 1
B m U U−= −   

                                                          
( )*

1 0 1
2 5

6

m U U U
C

− + −
=  . 

Let *
( 1) /q m m= − and *

/r m m= Then the interpolated mean
,

ˆ
h m

µ  at time t

corresponding to minutem  of hour h is, 

2

,
ˆ ( )

r

h m
q
At Bt c dtµ = + +∫  

                          2 2

* * *
( ) ( )

3 2

A B C
r rq q r q

m m m
= + + + + + . 

Using stored variance grid values
1 0 1
, ,V V V−  in place of 

1 0 1
, ,U U U−  gives an estimated 

variance 2

,
ˆ
h m

σ .   

      After establishing the reference distribution for each observation, the tracking statistic 

and threshold is constructed as follow.  Let us suppose that large counts suggest abnormal 

network behavior.  Let (.)
t
F be the marginal cumulative distribution function ( c.d.f.) of 

t
y .  For each count 

t
y , calculate ( )

t t
F y , and then define a  normal score 1

Φ ( ( ))
t t t

Z F y
−= . 

An EWMA tracking statistic based on the normal scores is proposed as follows 

 ( ) 1
1

t t t
S w S wZ−= − +   

for a weight of w . An alarm is raised if 
t w

S Lσ> , where / (2 )
w
w wσ = − . The paper use 

0.25,  3.68w L= =  which gives an average run length of 1  false alarm per 10,000 counts, 

approximately one false alarm per week for a metric measured each minute.  It is very 

easy to develop a threshold for this tracking statistic because no matter how the reference 

distributions change, if the motivating assumptions hold, the inputs of the EWMA 
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tracking statistic are always conditionally independently distributed standardized normal 

random variables.  

      The main problem with Lambert and Liu’s method is centered on the estimated 

reference distributions. Even the reference distributions are updated at the end of each 

cycle to keep up with the network churn, the updating mechanism in the approach 

inherently lags behind the real-time monitoring period and our simulation results in 

Chapter 4 shows this can severely inflate the conditional FAR. 

      Jeske et al. (2009) propose a non-parametric CUSUM approach.  The authors 

acknowledge that network data are correlated and exhibit non-stationarity in the mean 

structure.  They choose a certain length of time interval as a time slot, such that the 

counts within each time interval can be considered identically distributed.  It is assumed 

autocorrelations can be removed within a timeslot through the use of a suitable 

application dependent transformation.  The timeslot structure is assumed to repeat itself 

as cycles in the network stream, and hence the distribution for each interval could be 

estimated by collecting enough historical cycles of counts.  A CUSUM tracking statistic 

based on the empirical probability integral transformation is used for change point 

detection. In this way, the procedure becomes asymptotically distribution free.  The 

tracking statistic is built as follows. First, K  cycles within a sliding window of historical 

data need to be collected { , 1, , 1, , 1, , }ijk iH Y i m j n k K= = = =… … …  where
i
n denote the 

number of observation within time slot i .  The author’s premise is that under normal 

operating situation, after the transformation to remove autocorrelation, the data within 

timeslots independently follow heterogeneous distribution function
1

{ }
m

j j
F = .  The 
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transformed CUSUM (TC) tracking statistics is defined as ( if only consider large 

observations are abnormal )  

 ( )
1

ˆmax{0,?
n

n n n
T T F Yτ α−= + −  

where α  is a suitably chose reference value with (0,1)α ∈ .  Consider an arbitrary 

observation 
n

Y which maps to timeslot
n

τ .  Here ( )ˆ
n

n
F Yτ  is the empirical c.d.f of 

n
Y  and 

is estimated in the following way.  Let 
( ) 1{ } n

n

n

k k
X

τ
τ = denote the ordered historical data 

associated with timeslot
n

τ . Define ( )0 0
n

Xτ = and ( )1n
n

n

X
ττ +

= ∞ , it follows that 

 ( )( ) ( )( ) ( )( )0 1

ˆ / | ,     0,1,
i i i i ii i

i t t
P F Y t n H F X F X t nτ τ τ τ ττ τ+= = = − = … .  

If the depth of the historical data as measured by 
n

nτ  is sufficiently large, the distribution 

can be approximated by  

( )( ) ( )0

ˆ / | 1 / 1 ,   0, .
i i i ii

P F Y t n H n t nτ τ τ τ= = ≈ + = …  

Then the random variable ( )ˆ
n

n
F Yτ  is an approximately discrete uniform variable and the 

transformed CUSUM tracking statistics is asymptotically distribution free.  

      Potential limitations in this approach are that the transformation approach for dealing 

with autocorrelations leaves edge effects in the correlation structure and the assumption 

of homogeneity within pre-defined timeslots may not always be tenable. 

 

 

 

 



11 

 

2.2 Classical CUSUM Algorithm for Statistical Process Control 

      Classical statistical process control methods use sequence of independent 

observations { }
1i i

Y
∞

=
 to detect a departure from in-control situation.  When the process is 

in-control, observations are considered independent identically distributed (i.i.d.) random 

variables with known in-control density function
0
f .  Subsequent to the change, 

observations are considered i.i.d. from an out-of control distribution with density function

1
f .  Algorithms are designed to raise a signal at the earliest possible time after enough 

evidence in the observations has accumulated to confidently declare that a change from 

0
f  to

1
f  has occurred.  The algorithm by Page (1954) uses the tracking statistic 

1 1

11 1
0 0

( ) ( )
log min 0, log

( ) ( )

n kj j

n
k nj j

j j

f y f y
S

f y f y≤ ≤= =
∑ ∑

  = −  
   . 

An alarm is raised the first time the tracking statistic
n

S  exceeds a threshold,H , which is 

chosen to achieve a specified average run length (ARL) under the null.  Formally, the 

stopping time 
a
t  is expressed as { }inf 1:

a n
t n t H= ≥ ≥ .  This algorithm is known to be 

optimal [see Lorden (1971) ] in the sense that among all algorithms with a specified 

average run length under 
0
f  , say 

0
ARL , it achieves the asymptotic lower limit of the 

expected stopping time.  More simply said, it minimizes the average run length under
1
f , 

say
1

ARL .  An alternative, computationally useful, recursive form of the tracking statistic 

is [ ]( )1 1 0
max 0 , log ( ) / ( )

n n n n
S S f y f y−= + . Detailed derivation of this recursive form is 



12 

 

provided in section 2.2.2.  After the algorithm alarms, the most recent time at which the 

tracking statistic was zero is an estimate of the time the change occurred.  

      Most commonly, Page's CUSUM algorithm is presented in the context where the in-

control distribution is 2

0
( , )N µ σ  and the out-of-control distribution is 2

0
( , )N dµ σ σ+ , 

with 0d > .  Here, the targeted shift is expressed as a multiple of the process standard 

deviation and the constant d  is referred to as the shift, expressed as units of the standard 

deviation.  The tracking statistic simplifies to [ ]1 0
max 0 , ( )

n n n
S S X Dµ−= + − − , where 

/ 2D dσ= , and the increment to the CUSUM can be seen as the deviation of null-

centered observations from one-half of the targeted shift.  A similar representation can be 

derived for the case where 0d < . 

      In order to use Page's CUSUM algorithm, the pair of functions 
0 1

( , )f f  must be 

completely specified.  Once given, the threshold H  can be obtained through a search 

procedure where null sample paths for 
n

T  are simulated and used to estimate 
0

ARL  for 

alternative choices of H .   

2.2.1 Classic CUSUM in a Recursion Form 

      We show the Page CUSUM   

1 1

11 1
0 0

( ) ( )
log min 0, log

( ) ( )

n kj j

n
k nj j

j j

f y f y
S

f y f y≤ ≤= =
∑ ∑

  = −  
  

 

has a convenient recursion form  

 1

1

0

( )
max 0, log

( )

n

n n

n

f y
S S

f y
−

 
= + 
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with 
0
0S = .  We prove this in two different ways. 

Proof 1: Let *

n
S denote the proposed recursion from of 

n
S . We must show that *

n n
S S= for 

all 1n ≥ .  First consider the case 1n = ,  

1 1 1 1

1

0 1 0 1

( ) ( )
log min 0,log

( ) ( )

f y f y
S

f y f y

 
= −  

 
. 

If 1 1

0 1

( )
log 0

( )

f y

f y
< , then 1 1 1 1

1

0 1 0 1

( ) ( )
log log 0

( ) ( )

f y f y
S

f y f y
= − = , *

1
0S = , so we have 

1 1

*
S S= . 

If 1 1

0 1

( )
log 0

( )

f y

f y
≥ , then 1 1

1

0 1

( )
log

( )

f y
S

f y
= , and again

1 1

*
S S= . 

Therefore, in the case 1n = , it’s clear that
1 1

*
S S= . Suppose 

1 1

*
S S=  for 1, 2n m m= − ≥ , 

it will be shown as below that *

n n
S S=  still holds for n m= . 

                         * * 1

0

( )
max 0, log 0

( )

m

m m

m

f y
S S

f y

 
= + = 

 
 

                          
1 1

11 1
0 0

( ) ( )
log min 0, log

( ) ( )

m mj j

m
k mj j

j j

f y f y
S

f y f y≤ ≤= =
∑ ∑

  = −  
    

                               
1

1 1 1 1

1 11 1 1
0 0 0 0

( ) ( ) ( ) ( )
log min 0,   log , log log

( ) ( ) ( ) ( )

m k mj j m m

k mj j j
j j m m

f y f y f y f y

f y f y f y f y

−

≤ ≤ −= = =
∑ ∑ ∑

  = − + 
  

. 

If * 1

1

0

( )
log 0

( )

m

m

m

f y
S

f y
− + < , then  

           * * 1

1

0

( )
max 0, log 0

( )

m

m m

m

f y
S S

f y
−

 
= + = 

 
. 
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Since we assume that, *

n n
S S= holds for 1n m= − ,then * 1

1

0

( )
log 0

( )

m

m

m

f y
S

f y
− + <  is 

equivalent to 

                                                    1

1

0

( )
log 0

( )

m

m

m

f y
S

f y
− + <  

i.e.                        
1

1 1 1

1 1
1 10 0 0

( ) ( ) ( )
log min 0,   log log 0

( ) ( ) ( )

m k
j j m

k m
j jj j m

f y f y f y

f y f y f y

−

≤ ≤ −
= =

  − + < 
  

∑ ∑  

i.e.                                  
1 1

1 1
1 10 0

( ) ( )
log min 0,   log

( ) ( )

m k
j j

k m
j jj j

f y f y

f y f y≤ ≤ −
= =

  <  
  

∑ ∑ . 

Under this condition, 

1 1 1

1 1 1 1 1
0 0 0

( ) ( ) ( )
min 0,   log , log log

( ) ( ) ( )

k m mj m m

k m j j j
j m m

f y f y f y

f y f y f y≤ ≤ − = = =
∑ ∑ ∑

   = 
  

. 

Then we have  

1
1 1 1

1 1
0 0 0

( ) ( ) ( )
log log log 0

( ) ( ) ( )

m mj m m

m
j j

j m m

f y f y f y
S

f y f y f y

−

= =
∑ ∑= − + = . 

So when 1

1

0

( )
log 0

( )

m

m

m

f y
S

f y
− + < ,  

*
0

m m
S S= = . 

If * 1

0

( )
log 0

( )

m

m

m

f y
S

f y
+ ≥ , then  

* * 1

1

0

( )
max 0, log

( )

m

m m

m

f y
S S

f y
−

 
= + 

 
 

                                                          * 1

0

( )
log

( )

m

m

m

f y
S

f y
= + . 
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Similarly to the previous condition, we know * 1

1

0

( )
log 0

( )

m

m

m

f y
S

f y
− + ≥  is equivalent to  

 
1 1

1 1
1 10 0

( ) ( )
log min 0,   log

( ) ( )

m k
j j

k m
j jj j

f y f y

f y f y≤ ≤ −
= =

  >  
  

∑ ∑ . 

Then , 

 
1 11

1 1 1 11 1 1
0 0 0

( ) ( )( )
min 0,   log , log min 0,   log

( ) ( ) ( )

k m kj jm

k m k mj j j
j m j

f y f yf y

f y f y f y≤ ≤ − ≤ ≤ −= = =
∑ ∑ ∑

      =   
      

. 

So we have   

1 1
1 1 1

1 11 1
0 0 0

( ) ( ) ( )
log min 0,   log log

( ) ( ) ( )

m mj j m
m

k mj j
j j m

f y f y f y
S

f y f y f y

− −

≤ ≤ −= =
∑ ∑

  = − + 
  

 

                                    1

1

0

( )
log

( )

m

m

m

f y
S

f y
−= +  

                                    * 1

1

0

( )
log

( )

m

m

m

f y
S

f y
−= +  

                                    *

m
S= . 

Therefore, when *

n n
S S=  holds for 1, 2n m m= − ≥ , we have shown that *

n n
S S=  still 

holds for n m= . With *

n n
S S=  holds for 1n = , we have *

n n
S S=  holds for all n  by 

induction. 

Proof  2: Another way of proving the results is now presented.   

1
1 11

11 1
0 0 0

( ) ( )( )
log min 0, log

( ) ( ) ( )

n kj jn
n

k nj j
j n j

f y f yf y
S

f y f y f y

−

≤ ≤= =
∑ ∑

  = + −  
  

  

   
1

1 1 11

1 11 1 1
0 0 0 0

( ) ( ) ( )( )
log min 0, log , log

( ) ( ) ( ) ( )

n k nj j jn

k nj j j
j n j j

f y f y f yf y

f y f y f y f y

−

≤ ≤ −= = =
∑ ∑ ∑

  = + −  
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1

1 1 1 11

1 1 1 11 1 1 1
0 0 0 0 0

( ) ( ) ( ) ( )( )
log min 0, log ;    if min 0, log log  

( ) ( ) ( ) ( ) ( )

0                           ;     otherwise

n k k n
j j j jn

k n k nj j j j
j n j j j

f y f y f y f yf y

f y f y f y f y f y

−

≤ ≤ − ≤ ≤ −= = = =

       = + − <∑ ∑ ∑ ∑    =        



 . 

But the side condition is saying  

 
1 1

1 11 1
0 0

( ) ( )
log min 0, log 0

( ) ( )

n k
j j

k nj j
j j

f y f y

f y f y≤ ≤ −= =

  − >∑ ∑ 
  

 

which is equivalent to  

 1

0

1

( )
log 0

( )

n

n

n

f y
S

f y
− + >  

then we have 

 
0 0

1

1 1

1

( ) ( )
log ;   if log 0

( ) ( )

  0      ;      otherwise

n

n n

n

n nn

f y f y
S S

f y f yS
−−

 + + >= 



 

                                             1

1

0

( )
max 0, log

( )

n

n

n

f y
S

f y
−

 
= + 

 
. 

2.2.2 Classic CUSUM from a Likelihood Ratio Perspective 

      The previously described setting could be viewed as the following hypothesis test 

setting 

0 1 2 0

1 1 2 1 0

1 1

: , ,..., ~

: , ,..., ~

      , ,..., ~

n

k

k k n

H Y Y Y f

H Y Y Y f

Y Y Y f

−

+

 

Under the null hypothesis, there is no change in the underlying distribution for all the 

observations. In the alternative hypothesis, the underlying distribution
0
f changes to

1
f at a 

particular unknown time point , 0,1,..., 1k k n= + .  If a likelihood ratio test is used, 
0
H
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will be favored when the likelihood ratio 0

0 1

L

L ∩

 is too small, i.e. when 0 1

0

log
L

L

∩  is too big, 

where 

                      
0 0

1

( )
n

j
j

L f y
=

∏=  

 { }1 0

0 1 0 1 1 0
1 1 1 1 1

max ( ) ( ) , . . ( ) 1 and ( ) 1.
k n n

j j j j
k n j j k j n j

L f y f y s t f y f y
−

∩ ≤ ≤ + = = = + =
∏ ∏ ∏ ∏= = =

 

      In the following we will show that 0 1

0

log
L

L

∩ is equivalent to the CUSUM defined by 

Page (1954) , 

 
1 1

11 1
0 0

( ) ( )
log min 0, log

( ) ( )

n kj j

n
k nj j

j j

f y f y
S

f y f y≤ ≤= =
∑ ∑

  = −  
  

. 

 

Proof:                          
{ }1

0 1
1 1 1

0 1

0
0

1

max ( ) ( )

log log
( )

k n

j j
k n j j k

n

j
j

f y f y
L

L f y

−

≤ ≤ + = =∩

=

∏ ∏

∏
=  

                                                 
{ }1 1

0 1 1
1 1 1 1 1

0
1

max ( ) ( ) / ( )

log
( )

k n k

j j j
k n j j j

n

j
j

f y f y f y

f y

− −

≤ ≤ + = = =

=

∏ ∏ ∏

∏
=  

                                                 
{ }1 1

1 0 1
1 11 1 1

0
1

( ) max ( ) / ( )

log
( )

n k k

j j j
k nj j j

n

j
j

f y f y f y

f y

− −

≤ ≤ += = =

=

∏ ∏ ∏

∏
=  

                                                  
1

1 0

1 11 1
0 1

( ) ( )
log max log

( ) ( )

n kj j

k nj j
j j

f y f y

f y f y

−

≤ ≤ += =
∑ ∑

  = +  
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1

1 0

2 11 1
0 1

( ) ( )
log max 0, log

( ) ( )

n kj j

k nj j
j j

f y f y

f y f y

−

≤ ≤ += =
∑ ∑

  = +  
  

 

                                                   
1 1

11 1
0 0

( ) ( )
log max 0, log

( ) ( )

n kj j

k nj j
j j

f y f y

f y f y≤ ≤= =
∑ ∑

  = +  
  

 

                                                   1 1

11 1
0 0

( ) ( )
log min 0, log

( ) ( )

n kj j

k nj j
j j

f y f y

f y f y≤ ≤= =
∑ ∑

  = −  
    

                                                   
n

S= . 

2.2.3 Classical CUSUM Extension  

      We note here in a more generally situation, even if 
1 2
, ,

n
Y Y Y…  follows different 

distributions respectively 
1 2
,

n
F F F… with density functions

1 2

0 0 0
, ,

n
Y Y Y
f f f… , as long as the 

inputs 
1 2
, ,

n
Y Y Y… are independent, in order to test the following hypotheses,  

1 2

1 2 1

1

0 0 0

0 1 2

0 0 0

1 1 2 1

1 1 1

1

: , ,..., ~ , ,

: , ,..., ~ , ,

      , ,..., ~ , ,

n

k

k k n

n Y Y Y

k Y Y Y

k k n Y Y Y

H Y Y Y f f f

H Y Y Y f f f

Y Y Y f f f

−

+

−

+

…

…

…

 

the CUSUM based on LR perspective  

 

1 1

0 0
11 1

( ) ( )
log min 0, log

( ) ( )

j j

j j

n kY j Y j

n
k nj j

Y j Y j

f y f y
L

f y f y≤ ≤= =
∑ ∑

  = −  
  

 

will have a recursion form as below, 

1

1 0

( )
max 0, log

( )

j

j

Y j

n n

Y j

f y
S S

f y
−

  = + 
  

. 

 For example, a sequence of counts can be considered independently following a negative 

binomial distribution with its own mean. A possible out-of-control situation is that the 
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means shift up from some time point.  As long as the counts could still be assumed to be 

independent, this extended CUSUM could be used for a change-point-detection in this 

sequence.  

2.2.4 Classical CUSUM Interpreted as a Repeated SPRT 

      Besides Page’s original derivation of the classic CUSUM, there is another thread of 

theoretical work to provide insight on the CUSUM algorithm, namely, the sequential 

probability ratio test (SPRT) by Wald (1945).  

Summary of Wald’s SPRT 

      Wald’s SPRT uses data sequentially to test a simple null hypothesis 
0

H versus a 

simple alternative hypothesis
1
H .  The data are independently observed in sequential 

order with known density function 
0
f  under the null hypothesis and a known density 

function 
1
f  under the alternative hypothesis.  A probability ratio is calculated 

sequentially at each time a new observation is available 

1

1 0

( )

( )

n

i

n

i i

f y

f y=

Λ = ∏ . 

When 
n

Λ become equal or less than a predetermined cutoff point A , the null hypothesis 

0
H will be accepted.  When 

n
Λ become equal or greater than a predetermined cutoff point 

B, the alternative hypothesis 
1

H  will be accepted. Otherwise, data collection continues 

until a decision between 
0

H and 
1

H is made.  Usually, it is easier to work with log
n

Λ , 

1

1 0

( )
log log

( )

n

i

n

i i

f y

f y=

Λ =∑ . 
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Let 1

0

( )
log

( )

i

i

i

f y
Z

f y
= .  Then 

1

log
n

n i

i

Z

=

Λ =∑ , and we could consider that the test is based on 

a cumulative sum of 
i

Z .  If the null hypothesis 
0

H is true, the expected value of
i

Z  is 

negative. As observations accumulated, log
n

Λ  tends to drift downward and eventually 

will cross the lower boundary A . In the opposite situation, if the alternative hypothesis
1

H

is true, log
n

Λ  tends to drift upwardsand eventually cross the upper boundary B . The 

upper and lower boundary values are chosen according to the desired Type I errorα and 

Type II error β  .  Approximately values are,  

 
1

log ,     log
1

A B
β β

α α
−= =

−
. 

Wald and Wolfowitz (1948) proved that, the SPRT minimize the expected number of 

observations required before a decision is a made when a change from 
0
f to

1
f  has 

occurred. Wald’s SPRT is the optimal test for  simple versus simple hypotheses test.  

CUSUM and Wald’s SPRT 

      As shown in section 2.2.2, Page’s CUSUM has the recursion form  

 1

1

0

( )
max 0, log

( )

n

n n

n

f y
S S

f y
−

 
= + 

 
. 

Page recognized that this CUSUM could be viewed as a repeated Wald SPRT with a 

slight difference from the original Wald SPRT.  The difference is Wald SPRT will stop 

when a decision is made.  But for the purpose of change-point detection in a monitoring 

process, we are not interested in ultimately accepting
0
H , i.e. deciding the process is in 
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control. We want to stop and take a look at the process when there is evidence of out of 

control. Thus we want to repeat Wald’s test when the lower bound is encountered. 

      The choice of lower and upper bound for each Wald test is also different from the 

original Wald test. In change point detection, the average run length during an in-control 

period is of more interest than Type I and Type II error for one hypothesis test. Intuitively 

Page suggested the optimal lower bound for the Wald test statistic should be zero when it 

is used for change point monitoring.  This result was formally proved by Shiryaev(1961), 

Lorden(1971), Moustakides(1986), Ritov (1990).  Once the SPRT statistic becomes 

negative, it is reset to zero and a new Wald SPRT begins.  This means that previous 

observations will be ignored and only new observations going forward are used to 

calculate the new SPRT statistic. With this definition, a tracking statistic for repeated use 

of Wald SPRT can be written in the following form of 
n

g  

 { } 1

1

0

( )
max 0,   log max 0,   log

( )

n

n n n

n

f y
g g

f y
−

 
= Λ = + 

 
. 

It can be seen this is the same as the recursion form of the CUSUM  

                                                       1

1

0

( )
max 0, log

( )

n

n n

n

f y
S S

f y
−

 
= + 

 
. 

       

The upper boundary of the repeated SPRT is computed to control the average run length 

under 
0

H  
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2.3  GLR Algorithm for Change-Point Detection 

       Another intensively studied area for change point detection is the generalized 

likelihood ratio (GLR) approach.  Using the setting for change-point detection as before, 

finite sequence of observations 
1

{ }
n

t t
Y =  are either already in hand, or will be sequentially 

collected.  Unlike CUSUM, GLR detection algorithms generally do not specify an out-of-

control distribution.  Instead, they seek to identify any type of change that occurs.  

Hinkley (1970), Hawkins (1977), Worsely (1979), Siegmund (1986), James et al. (1988) 

discussed this problem at length in the context of normal models.   

      The GLR algorithm is defined within a parametric setting.  Let ( ; , )f y θ ξ  denote a 

class of distributions for the observations, indexed by a (possibly vector-valued) 

informative parameter θ  which is the parameter of interest and a (possibly vector-valued) 

nuisance parameter ξ .  The null hypothesis 
0

H  is that 
0

θ θ=  for the entire sequence, 

while the alternative hypothesis 
1

H  is that 
0

θ θ=  for 1 t k≤ ≤  and then 
1

θ θ=  for 

1k t n+ ≤ ≤ . Here, {1 , 2 , , 1}k n∈ −…  is unknown, and the most typical case also has 
1

θ  

unknown.   

      Three cases are usually treated, depending on whether the parameters of interest 
0

θ ,

1
θ  and nuisance parameter ξ are considered known.  In case 1, when 

0
θ  is known and 

1
θ  is unknown, the generalized likelihood ratio test (GLRT) statistic of 

0
H  vs. 

1
H  of  can 

be obtain as follow, 
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 1

0 0 1 1
1 1

1

1 0
1

sup ( ; , ) ( ; , )

maxlog
( ; , )

k n

i i
i i k

n n
k n

i
i

f y f y

g
f y

θ
θ ξ θ ξ

θ ξ
= = +

≤ ≤

=

∏ ∏
=

∏
 

                                              
1

1 1

1
0 0

( ; )
maxsup log

( ; )

n
i

i kk n
i

f y

f yθ

θ
θ=≤ ≤

 
=  

 
∑  . 

The critical point for 
N

g  can be more simply obtained through the use of Monte-Carlo 

methods, simulating values of 
N

g  under
0

H .  

In case 2 when both the 
0

θ  and 
1

θ are unknown, the LRT statistic becomes 

0 1

* 1 1

1  , 0 0

( ; , )
max sup log

( ; , )

n i

i kn
k n

i

f y
g

f yθ θ

θ ξ
θ ξ=

≤ ≤

 
= ∑  

 
. 

In case 3, with the presence of nuisance parameters, GLR approach is based upon the 

maximization of the likelihood ratio with respect to the all unknown parameters. Suppose 

the hypotheses testing problem is composite for the parameter of interestθ  : 

 { } { }0 0 1 1 1
: ,  versus : ,

o
H Hθ ξ θ ξ= Θ ∈Ξ = Θ ∈Ξ  . 

To solve this hypotheses testing problem, the GLR algorithm is  

0 0 0

1 1 1

1 0
 ,**

1

0 1
 ,

sup ( ; , )

maxlog
sup ( ; , )

n

i
i k

n n
k n

i
i k

f y

g
f y

θ ξ

θ ξ

θ ξ

θ ξ
=∈Θ ∈Ξ

≤ ≤

=∈Θ ∈Ξ

 ∏ 
=  

 ∏ 
 

. 

The critical point for *

n
g and **

n
g cannot be simulated using Monte-Carlo methods due to 

unknown parameters under null hypothesis.  Under certain distribution assumption of the 

monitored observations, distribution of tracking statistics in case 2 and case 3 can be 

determined analytically when.  Otherwise, asymptotic distributions need to be obtained to 
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set threshold for GLR tracking statistics.  We will show an example for case 3 under the 

normal distribution context. Let 
1

{ }
n

t t
Y = be a sequence of independent normal random 

variables with mean 
1
,...,

n
µ µ  respectively and a common unknown variance 2σ . Here the 

mean value is the parameter of interest and variance is treated as a nuisance parameter. 

The hypotheses being tested for a change point detection problem is set up as follows, 

                     
0 1 2
: ...

n
H µ µ µ µ= = = =  versus 

1 1 2 1
: ... ...

k k n
H µ µ µ µ µ+= = = ≠ = =  

where k  is the unknown change point. The means before and after change are both 

unknown. The likelihood function under 
0
H  is  

 ( )2 /2 2 /2 2 2

0
1

( , ) (2 ) ( ) exp ( ) / (2 )
n

n n

i

i

L yµ σ π σ µ σ− −

=
= − −∑   

and the MLE of µ  and 2σ  is  

1

1
ˆ

n

i

i

y y
n

µ
=

= = ∑  

2 2

1

1
ˆ ( )

n

i

i

y y
n

σ
=

= −∑ . 

Under the alternative hypothesis, the likelihood function is  

 { }2 /2 2 /2 2 2 2

1 1 1 1 1 1
1 1

( , , ) (2 ) ( ) exp ( ) ( ) / (2 )
k n

n n

n i i n
i i k

L y yµ µ σ π σ µ µ σ− −

= = +

 = − − + −∑ ∑     

and the MLE of 
1

µ ,
n

µ   and 2

1
σ are  

 
1

1

1
ˆ

k

k i
i

y y
k

µ
=

= = ∑   
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1

1
ˆ

n

n n k i
i k

y y
n k

µ −
= +

= = ∑
−

  

 ( )2 2 2

1
1 1

1
ˆ ( ) ( )

k n

i k i n k
i i k

y y y y
n

σ −
= = +

= − + −∑ ∑  . 

It is then easy to show the likelihood ratio test is based on   

 

1/2

2

** 1

1 1 2 2

1 1

( )
max

( ) ( )

n

i
i

n k n
k n

i k i n k
i i k

y y

g

y y y y

=

≤ ≤ −
−

= = +

 −∑ =  
− + −∑ ∑ 

 

 . 

Let 2 2

1

( )
n

i

i

V y y
=

= −∑  denote the total sum of squares between all the observations and  

2 2 2

1 1

( ) ( )
k n

k i k i n k
i i k

V y y y y −
= = +

= − + −∑ ∑  be the within-group sum of squares of observations 

split by change point k  , simple algebra will show 

                                    2 2 2

1 1

( ) ( )
k n

k i k i n k
i i k

V y y y y −
= = +

= − + −∑ ∑   

 2 2

1 1

( ) ( )
k n

i k i n k
i i k

y y y y y y y y −
= = +

= − + − + − + −∑ ∑   

                                        

2 2

1 1 1 1

1 1
( ) ( )

k k n n

i i i i
i i i k i k

y y y y y y y y
k n k= = = + = +

   = − − − + − − −∑ ∑ ∑ ∑   −   
 

                                        
2 2

2

1 1

1 1
( ) ( )

k n

i i
i i k

V y y y y
k n k= = +

   = − − − −∑ ∑      −
.  

Since it is easy to show that 
1 1 1

0 ( ) ( ) ( )
n k n

i i i
i i i k

y y y y y y
= = = +

= − = − + −∑ ∑ ∑   
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We can write 

                                     
2

2 2

1

( )
( )

k

k i
i

n
V V y y

k n k =

 = − −∑  −
  

 [ ]22 1
( ( )

( )
k k n k

V nky k ky n k y
kn n k

−= − − + −
−

  

                                           [ ]22 ( )
k n k

k n k
V y y

n
−

−= − −  

                                           2 2

k
V Q−≜  . 

Then the generalized likelihood ratio test statistics can be written as  

 **

1 1

max 1
k

n
k n

k

Q
g

V≤ ≤ −

 
= + 

 
 . 

Worsley (1979) treat 

** 1/2

1 1

max ( 2)
kW

n
k n

k

Q
g n

V≤ ≤ −
= −  

as the generalized likelihood ratio test statistic for 
0
H  versus 

1
H .  Note that within 

normal context, 2
~ (0, )

k
Q N σ  under 

0
H and 2 2

/
k
V σ  follows a 2χ  distribution with 

2n −  degrees of freedom. With 
k
Q  independent of 

k
V  , 1/2

( 2) /
k k

n Q V−  has a t  

distribution with 2n −  degrees of freedom.  Let w

H  denote the threshold for the test 

statistic **W

n
g .  Using a Bonferroni inequality,   
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1 1
1/2 1/2 1/2

1 1 11

max ( 2) ( 2) ( 2)
n n

k k kw w w

k n kk
k k k

Q Q Q
P n H P n H P n H

V V V
α

− −

≤ ≤ − ==

     
− > = − > ≤ − > =∑     

     
∪

  

a conservative threshold w

H for level α  test can be obtained through the upper 
2( 1)n

α
−  

quartile of the t  distribution with 2n −  degrees of freedom.  Worsley (1979) illustrated 

the exact values and Bonferroni approximations are very close for small n  andα when 

10n <  and 0.1α ≤ .  In other cases, the threshold needs to be simulated under the null. 

      As we’ve shown here, even in a simple example with normal observations, using 

GLR tracking statistics and obtaining the threshold are not that straight forward.  Chen 

and Gupta (2000) summarize analytical derivations for different normal distribution 

contexts.  They also present derivations for multivariate normal settings, regression 

settings, gamma distribution settings, and Poisson distribution settings.  

 

2.4 H-likelihood 

Random effects are often used in models that describe temporal or special correlated data. 

For instance, correlated network data, clustered epidemiology data, longitudinal data in 

economics and survival analysis frequently use random-effect models.  To save intensive 

computation effort for inference of parameters in this kind of models, Lee and Nelder 

(1996) proposed to use an h-likelihood in the form  

 ( , | , , ) log ( | ; , ) log ( ; )
h

L L y f y fν β φ θ ν β φ ν θ= = +
ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶɶ ɶ
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where ( | ; , )f y ν β φ
ɶ ɶ ɶɶ

 denote the conditional density of y
ɶ

 given random effects ν
ɶ

, 

( ; )f ν θ
ɶ ɶ

denotes the density function of ν
ɶ

, β
ɶ

 is the vector of fixed effects, φ
ɶ

is the 

dispersion parameter and θ
ɶ

denotes the parameters for random effect ν
ɶ
.  

One of the attractive features of h-likelihood, compared to marginal likelihood, is to 

obtain parameter estimates for both the fixed effects and random effect without a 

computation demanding procedure. Even though inference on fixed effect can be made 

using marginal likelihood that integrates out the random effects, it is computationally too 

intensive.  
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Chapter 3 

 

 GLMM for Non-stationary Correlated Counts 

 

3.1 Real Data of Motivation 

      Figure 1 shows two weeks of network data that are 5-minute counts of the number of 

live users on a particular network server. The data is provided by the VMware Company 

and it shows a clear weekly pattern.   

 

Figure 1. Two weeks of 5-minute Counts for Number of Users with Strong Daily Pattern  

From Monday to Friday, the counts have a similar pattern with slight difference in 

magnitude, while Saturdays and Sundays have different patterns and dramatically 
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reduced magnitudes.  Other types of networks will likely have similar patterns. Motivated 

by these observations, we propose to use a flexible GLMM model to describe the data 

stream. 

 

3.2 Notation and Generalized Linear Mixed Model 

      To model network counts, we use a GLMM that captures a daily/weekly pattern 

through a non-stationary mean structure and autocorrelations through the random effects 

that appear in the associated link function.  We emphasize that although we suggest using 

a negative binomial GLMM, the tracking statistics we subsequently propose are 

applicable to a larger class of GLMMs that could apply to a variety of other types of 

applications.       

      We suppose the data stream can be organized as cycles that exhibit a timeslot 

structure.  Let m  denote the number of timeslots and let 
1

{ }
m

i i
n =  denote the number of 

observations within the timeslots.  For example, if the data shows a weekly pattern as in 

Figure 1, then cycles correspond to weeks and the 168 hours during the week could be 

viewed as timeslots.  If data are available every minute, then each 
i
n would be a 

maximum of 60, depending on what (if any) observations might be missing.  

Alternatively, adjacent hours might be grouped together to form a smaller number of 

timeslots and larger 
i
n  values.   

      Let 
ij
Y  be the j-th observation from the i-th timeslot.  Our negative binomial GLMM 

model is constructed as follow.  Let 
ij

β  denote a fixed effect for time slot i  and 



31 

 

observation j  and let 
i

S  denote a common random effect for all of the observations in the 

i-th time slot. Conditional on all the random effects ( ),

i m
S S S

′= ⋯
ɶ

 , the counts are 

independently distributed as negative binomial with mean 
ij

µ and dispersion parameter κ .  

For simplicity, we have assumed the same dispersion parameter for each timeslot, though 

that is not a critical assumption.  That is, the conditional probability function of 
ij
Y  is 

given by 
( )

( | , )
( 1) ( )

ij

ij

y

ij ij

Y ij ij

ij ij ij

y
f y

y

κ
κ µ κµ κ

κ µ κ µ κ
   Γ +

=       Γ + Γ + +   
, where a link function 

( )g ⋅  is selected such that  ( )
ij ij i

g Sµ β= + .  There is a lot of flexibility in choosing a 

model for 
ij

β .  If the counts do not vary too much within each timeslot we could take 

ij i
β β= .  If we assume a linear trend within each time slot, then we could take 

0 1ij i i
jβ β β= + .  A smooth function for fixed effects in the entire cycle can also be 

considered. But the smoothness will be broken due to the presence of random effects in 

the proposed GLMM.  On the other hand, the abruptness between discontinuous fixed 

effects on the edge of each timeslot is eased by the inclusion of random effects in the 

GLMM.  Therefore, we are not using a smooth function for the fixed effects in later size 

and power studies.  

      We assume S
ɶ

 follows a multivariate normal distribution with mean 0 and covariance 

matrixG . Let θ
ɶ

 denote parameters needed to specify the covariance matrix G .  The G  

matrix influences the autocorrelation between observations from the same timeslot and 

from different timeslots within the same cycle. This connection will be made more 
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explicit in section 3.4.  The choice of G will vary from application to application, but our 

proposed tracking statistics are sufficiently general to accommodate the many options for 

G that are available.  Indeed, the flexibility in G is a compelling feature of using a 

GLMM to describe network data.      

 

3.3 Model Sanity 

      To verify the applicability of the proposed GLMM, we considered eight Mondays of 

traffic from the network server discussed in section 3.1. We considered each hour as a 

time slot and tried fitting a negative binomial GLMM with a linear trend in each time slot 

using a log-link mean function. We chose a heterogeneous AR(1) covariance structure for 

the G  matrix with parameter 2( , )θ σ ρ=
ɶ ɶ

.  Parameter estimates for the model were 

obtained using the method of pseudo likelihood described in Wolfinger (1993).  Because 

the fitted κ  was large, we used the reduced Poisson GLMM as the fitted model.  The 

estimated intercepts and slopes for the linear trend fixed effects are shown in Table 1, the 

heterogeneous variances are also reported in Table 1 and and correlation parameter 

estimate was ˆ 0.84ρ = .  The fitted model reveals sharp differences in the intercepts, as 

expected, and five of the slopes are statistically significant.  The overall incremental 

value of adding a linear trend is debatable.  More important is the benefit achieved by 

fitting a heterogeneous variance structure.  

      In Figure 2, the light gray lines represent observed counts from the eight Mondays.  

The dark black lines are obtained from the fitted model by generating 1000 cycles of data 

and then extracting the lower and upper 10th percentiles of the counts at each time point.  
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We can see that the percentile lines nicely capture the eight traces of observed data with 

13% of the observed data points falling outside the percentile limits. 

Table 1. Intercepts, Slopes and Variances for Each Hour from Fitted Poisson GLMM 

 

Hour Intercept 

Slope 
2
ˆ
i

σ  Hour Intercept 

Slope 
2
ˆ
i

σ  Estimate p-value Estimate p-value 

1 2.040 -0.001 0.907 0.000 13 4.100 -0.013 0.006 0.001 

2 2.090 -0.014 0.125 0.008 14 3.930 -0.021 <.0001 0.010 

3 2.000 -0.003 0.462 0.001 15 3.620 -0.009 0.195 0.034 

4 1.830 0.064 <.0001 0.001 16 3.500 -0.016 0.001 0.056 

5 2.920 0.052 <.0001 0.030 17 3.180 -0.019 0.001 0.141 

6 3.570 0.019 <.0001 0.012 18 2.780 -0.026 <.0001 0.256 

7 3.860 0.008 0.111 0.005 19 2.330 -0.016 0.037 0.168 

8 4.010 0.002 0.389 0.008 20 2.260 -0.008 0.373 0.112 

9 4.050 -0.008 0.027 0.007 21 2.210 -0.006 0.303 0.000 

10 3.950 0.005 0.085 0.006 22 2.200 -0.010 0.241 0.000 

11 4.050 0.002 0.701 0.006 23 2.350 -0.036 <.0001 0.142 

12 4.070 0.000 0.934 0.008 24 2.090 -0.009 0.396 0.016 

 

 
 Figure 2. Eight Mondays of Observed Data with Upper and Lower 10

th
 Percentiles of 

Data Generated from Fitted GLMM 

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Hour

C
o
u
n
ts

1 3 5 7 9 11 13 15 17 19 21 23



34 

 

3.4 Correlation Structure  

      Consider the data in a single cycle. Let
uv
g  denote the element on the thu  row and 

thv column of the m m×  matrix G.  

      The covariance of counts within the same timeslot is  

cov( , ) cov( , | ) cov ( | ), ( | )
ij ij ij ij i ij i ij i

Y Y E Y Y s E Y s E Y s′ ′ ′   = +    . 

Give random effects, counts are independent, so  

                             
cov( , ) 0 cov ( | ), ( | )

ij ij ij i ij i
Y Y E Y s E Y s′ ′ = +    

                                               
cov exp( ),exp( )

ij i ij i
s sβ β ′ = + +   

                                          [ ]exp( )cov exp( ),exp( )
ij ij i i

s sβ β ′= + . 

Since 
i
s follows normal distribution mean zero variance

ii
g , exp( )

i
s follows a log-normal 

distribution with mean 
1

exp( )
2

ii
g  and variance [ ]exp( ) exp( ) 1

ii ii
g g − . So we have  

 [ ]cov( , ) exp( ) exp( ) 1
ij ij ij ij ii ii

Y Y g gβ β′ ′= + + − . 

Variance of count 
ij
Y  could be obtained by  

       var( ) var( | ) var ( | )
ij ij i ij i
Y E Y s E Y s   = +     

                     ( ) ( ) ( )1
exp exp2 var exp

ij i ij i ij i
E s s sβ β β

κ
   = + + + + +    

 

       ( ) [ ] ( ) [ ] ( ) ( )1
var( ) exp exp( ) exp 2 exp(2 ) exp 2 var exp

ij ij i ij i ij i
Y E s E s sβ β β

κ
= + +     

                  ( ) ( ) ( ) ( )1
exp / 2 exp 2 2 exp 2 exp 1

ij ii ij ii ij ii ii
g g g gβ β β

κ
= + + + + + −     
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                 ( ) ( ) ( ) ( )1
exp 2 exp / 2 exp exp 1

ij ii ij ii ii ii
g g g gβ β

κ
 = + − − + + − 
 

 . 

And finally the correlation of counts from the same time slot is,  

( )cov ,
( , )

( ) ( )

ij ij

ij ij

ij ij

Y Y
corr Y Y

VAR Y VAR Y

′
′

′

=  

( ) ( )

exp( ) 1

1 1 1 1
exp (1 )exp 1 exp (1 ) exp 1

2 2

ii

ij ii ii ij ii ii

g

g g g gβ β
κ κ′

−=
     − − + + − − − + + −     

     

 . 

With an AR(1) covariance structure of parameter ( )2
,σ ρ for the random effects, the 

correlation between of counts within the same timeslot ( , )
ij ij
Y Y ′ could be written as 

( )
( ) ( )

2

2 2 2 2

exp( ) 1
,

1 1 1 1
exp exp 1 exp exp 1

2 2

ij ij

ij ij

corr Y Y
σ

κ κβ σ σ β σ σ
κ κ

′

′

−=
 +  +    − − + − − − + −     

     

. 

For the case when counts are from different timeslot,  

 [ ]cov( , ) exp( )cov exp( ),exp( )
ij i j ij i j i i

Y Y s sβ β′ ′ ′ ′ ′= + . 

Using multivariate log-normal property,  

 [ ] ( ) ( )1
cov exp( ),exp( ) exp exp( ) 1

2
i i ii i i ii
s s g g g′ ′ ′ ′

 = + − 
 

 

  so the covariance of counts from different timeslot is  

 ( ) ( )1
cov( , ) exp ( ) exp( ) 1

2
ij i j ij i j ii i i ii
Y Y g g gβ β′ ′ ′ ′ ′ ′ ′

 = + + + − 
 

.  

The correlation of counts from different timeslots is 
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( ) ( )

exp( ) 1
( , )

1 1 1 1
exp (1 )exp 1 exp (1 )exp 1

2 2

ii

ij i j

ij ii ii i j ii ii

g
corr Y Y

g g g gβ β
κ κ

′
′ ′

′ ′ ′ ′ ′ ′

−=
     − − + + − − − + + −     

     

. 

With an AR(1) covariance structure of parameter ( )2
,σ ρ for the random effects, the 

correlation between of counts within differenct timeslots ( , )
ij i j
Y Y ′ ′ could be written as 

( )
( ) ( )

2 | |

2 2 2 2

exp( ) 1
,

1 1 1 1
exp exp 1 exp exp 1

2 2

i i

ij i j

ij i j

corr Y Y
σ ρ

κ κβ σ σ β σ σ
κ κ

′−

′ ′

′ ′

−=
 +  +    − − + − − − + −     

     

. 

 If we examine this formula closely, we can see that aside from the fact that counts 

further away from each other have diminishing correlation, it is also evident that larger 

fixed effects will lead to a higher correlation.  Although the special case 0ρ =  may not 

have broad applicability in network monitoring contexts, even here we can see the model 

allows correlation amongst observations within the same timeslot.  Finally, when the 

dispersion parameter κ  goes to infinity, the negative binomial distribution will reduce to 

Poisson and the correlations will reach their maximum values. 
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Chapter 4  

 

Proposed Tracking Statistics 

Three tracking statistics are proposed 1) Integrated Likelihood Ratio (ILR), 2) Joint 

Likelihood Ratio (JLR), and 3) Exponential Weighted Moving Average (EWMA).  We 

assume K  cycles of historical data are available to characterize in-control characteristics 

of the data stream, and that the historical data are updated with a sliding window 

mechanism to account for network churn.  Montes de Oca et al. (2010) discusses the 

implementation of a particular updating scheme.  The in-control parameters of interest 

could be assumed known with sufficient amount of historical data. In chapter 5 we give 

guidelines on the amount of historical data that is necessary to largely mitigate the effect 

of estimation errors associated with the model parameters.  Consequently, we use the 

estimated parameters from the historical data as the true in-control values when 

calculating and calibrating the in-control characteristics of the tracking statistics. 

      Two of our proposed tracking statistics, ILR and JLR represent repeated Bartlett-type 

sequential probability ratio tests (SPRT). Taking into account the complexity of network 

traffic that was discussed earlier, the Bartlett-type SPRT itself would be too 

computationally demanding to use in practice.    In particular, the high dimensional 

integration is required to get the integrated likelihood, and then the subsequent 



38 

 

maximizations of that function would be quite formidable. Our third tracking statistic is 

similar to Lambert and Liu (2006) in the sense that it is a EWMA based on normal scores.  

A major difference is that during the monitoring period we use predicted random effects 

to adjust for real-time variations and thereby hope to achieve a more robust FAR.  The 

rest of this chapter provides derivation details, comparisons and discussion for our three 

tracking statistics.   

 

4.1 Integrated Likelihood Ratio ( ILR ) Tracking Statistic 

     Denote the current set of observations during the monitoring cycle by
1

{ }
n

t t
Y = .  For 

each t, let ( , )
t t
i j  respectively correspond to the timeslot and observation within timeslot 

indices for
t
Y .  In the context of the GLMM notations introduced in section 3.2, the 

conditional distribution (given the random effects) of 
t

Y  is negative binomial with mean 

t t
i j

µ  and dispersion parameter κ .  Suppose K  cycles of historical data are available

1
, ,

K
X X…
ɶ ɶ

.  Our null hypothesis is that the 
1

{ }
n

t t
Y =  observations are in-control and we 

represent this by the situation that the fixed effects β
ɶ

  in the GLMM have not changed 

relative to the historical data.  Let 
0

β
ɶ

 denote the pre-specified in-control value of β
ɶ

, 

possibly obtained through analysis of the historical data.  The alternative hypothesis we 

consider is that fixed effects change from 
0

β
ɶ

to
0

cβ
ɶ

.  Formally, our hypothesis is 

0 0
:H β β=
ɶ ɶ

 versus 
1 0
:H cβ β=
ɶ ɶ

, where c is a specified constant which represent the 

minimum degree of change, we call it the inflation factor,  that is desired to be detected.  
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    Let
0

( ; , , )
k k

L x β κ θ
ɶ ɶɶ

 denote the integrated likelihood of the historical data in cycle k . 

For the monitoring cycle, let
1 0

( , ; , , )
n

L y y β κ θ…
ɶɶ

 denote the in-control integrated 

likelihood.  The corresponding out of control likelihood during the monitoring cycle is

1 0
( , ; , , )

n
L y y cβ κ θ…

ɶɶ

 .  With the presence of unknown nuisance parameters, a Bartlett-

type sequential probability ratio test (SPRT) statistic can be set up as follows 

 

 

1 0 0
,

1

1 0 0
,

1

max ( , ; , , ) ( ; , , )

max ( , ; , , ) ( ; , , )

K

n k k

kBLR

n K

n k k

k

L y y c L x

T

L y y L x

θ κ

θ κ

β κ θ β κ θ

β κ θ β κ θ

=

=

 
 
 =
 
 
 

∏

∏
ɶ

ɶ

…
ɶ ɶ ɶɶ ɶ

…
ɶ ɶ ɶɶ ɶ

 . 

The integrated likelihoods for both the historical cycle and the monitoring cycle involve 

high-dimension integration over the joint distribution of the random effects, which are 

not generally going to be distributed independently.  The integrated likelihoods in both 

the numerator and denominator of BLR

n
T  also need to be maximized over nuisance 

parameters after the integrated likelihoods are obtained.  In addition, it is difficult to 

compute the threshold under the null due to unknown nuisance parameters. The 

challenging computational aspects make the BLR test statistic generally intractable.  

However, it does inspire practical variations that we now develop. 

     First, since the historical data is likely to be substantial, we suggest approximating the 

maximizations associated with the BLR by using the in-control historical data to obtain 

estimated parameters.  Substituting these values as true values into the numerator and 

denominator of  BLR

n
T   yields the following approximate BLR testing statistic  
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( )0

1 0 1

1 0

0

1

| , , ( | )
( , ; , , )

( , ; , , )
( | , , ) ( | )

t

t

n

Y t S

nABLR t

n n

n

Y t S

t

f y c s f s d s
L y y c

T
L y y

f y s f s d s

β κ θβ κ θ
β κ θ β κ θ

=

=

= =
∏∫

∏∫
ɶ

ɶ

… ɶ ɶ ɶ ɶɶ
ɶɶ

…
ɶɶ

ɶ ɶ ɶ ɶɶ

 , 

which is the integrated likelihood ratio under 
1
H and 

0
H  the for the monitoring period.   Note 

that with this approximation, we are assuming the nuisance parameters behave relatively 

the same under the null and alternative hypotheses.  Negative values of log ABLR

n
T  favor 

0
H  and would suggest no inspection of the network is needed, whereas when this 

quantity becomes large and positive it suggests an out-of-control situation where network 

inspection is needed.  We suggest a sequential tracking statistic by the resetting the 

ABLR testing statistic (to zero) when it becomes negative and starting again with a test of 

0
H  vs. 

1
H .  The motivation for thinking about using a repeated Bartlett-type SPRT as a 

change-point problem stems from the interpretation of Page’s CUSUM as a repeated 

Wald SPRT[see, for example, Basseville and Nikiforov (1993)].   Specifically, our ILR 

tracking statistic is defined as follows  

*

*

* * * *

0

* * * *

0

( | , , ) ( | )

max 0,  log  .
( | , , ) ( | )

t

n

t

n

n

Y t S
t rILR

n n

Y t S
t r

f y c s f s d s

T
f y s f s d s

β κ θ

β κ θ
=

=

∏∫

∏∫

 
 =  
 
 

ɶ

ɶ

ɶ ɶ ɶ ɶɶ

ɶ ɶ ɶ ɶɶ  

Here, 
n
r  is the index of the first observation of the monitoring cycle after the most recent 

reset and *

0
β
ɶ  

and *

ɶ
s represent the fixed effects and random effects that correspond to 

observations { }
n

n

t t r
Y = .  Defined this way, the ILR tracking statistic achieves two attractive 

features.  First, by resetting it prevents a large negative run during a sustained in-control 
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period that would otherwise delay an alarm when an out-of-control situation emerges. 

Second, since the number of observations in the monitoring cycle that are used at any 

given time is 1
n

n r− +  , the dimension of the required integration to evaluate the test 

statistic is significantly reduced and will often only require a few of the correlated 

random effects. 

        Pushing practicality a bit more, the integrals in the numerator and denominator of 

ILR

n
T  could be approximated using a Laplace approximation.  First, let *

0
( )h s
ɶ

denote the 

joint likelihood function in the integral in the denominator of ILR

n
T .  That is, 

 
*

* * * *

0 0
( ) ( | , , ) ( | )

t

n

n

Y t S
t r

h s f y s f sβ κ θ
=
∏=

ɶɶ ɶ ɶ ɶɶ

. 

Let * *

0 0
( ) log ( )l s h s=
ɶ ɶ

and
2 *

1 * 0

0 *2

( )
( )

l s
A s

s

− ∂=
∂ ɶ

ɶ

.  Use a Taylor expansion of *

0
( )l s
ɶ

 around 

* *

0
=

ɶ ɶ
s s  we have 

 * * * * 1 * * *

0 0 0 0 0 0 0

1
( ) ( ) ( ) ( )( )

2
l s l s s s A s s s

−′≈ − − −
ɶ ɶ ɶ ɶ ɶ ɶ ɶ

  

where *

0

ɶ
s  is the value of *

ɶ
s  that makes gradient of *

0
( )l s
ɶ

 equal zero and maximize the 

joint likelihood.  Then  

                                * * * * * 1 * * * *

0 0 0 0 0 0 0

1
( ) exp ( ) ( ) ( )( )

2
h s d s l s s s A s s s d s

− ′≈ − − − 
 

∫ ∫
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

                                   

                                ( )*
*

1/2/2* * * *

0 0 0
max ( | , , ) ( | ) 2 ( )

i

n

n
n

Y i S
s

i r

f y s f s A sβ κ θ π
=

 
=  

 
∏

ɶ
ɶ ɶ ɶ ɶɶ

. 

Similarly, we could start with 
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 *

* * * *

1 0
( ) ( | , , ) ( | )

t

n

n

Y t S

t r

h s f y c s f sβ κ θ
=

= ∏
ɶɶ ɶ ɶ ɶɶ

 ,  

let 
2 *

1 1

1 *2

( )l s
A

s

− ∂=
∂ ɶ

ɶ

  and *

1
s

ɶ
 be the value of *

ɶ
s  that could makes gradient of 

* *

1 1
( ) log ( )l s h s=
ɶ ɶ

 vanish.  Then 

                      * * * * * 1 * * * *

1 1 1 1 1 1 1

1
( ) exp ( ) ( ) ( )( )  

2
h s d s l s s s A s s s d s

− ′≈ − − − 
 

∫ ∫
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

  

                     ( )*
*

1/2/2* * * *

0 1 1
max ( | , , ) ( | ) 2 ( )

t

n

n n

Y t S
t rs

f y s f s A sβ κ θ π
=
∏ =  
 ɶ

ɶ
ɶ ɶ ɶ ɶɶ

 . 

Putting the two Laplace approximations back into the tracking statistic, we can and 

approximated ILR

n
T  as follow 

( )
*

*

*
*

* * *

0

* *

0 0 1 1

* * *

0

max ( | , , ) ( | )
1

max 0,  log + log ( ) log ( )  
2

max ( | , , ) ( | )

t

n

t

n

n

Y t S
t rsAILR

n
n

Y t S
t rs

f y c s f s

T A s A s

f y s f s

β κ θ

β κ θ

=

=

∏

∏

  
    = − 
   

   

ɶ

ɶ

ɶ ɶ ɶɶ

ɶ ɶ

ɶ ɶ ɶɶ

. 

      In our later simulation study, we use AILR tracking statistic mitigate the potentially 

high-dimension integration that would otherwise be required.   

      The threshold for the AILR tracking statistic can be obtained by using the historical 

data to estimate the in-control distribution of AILR

n
T .   More precisely, the procedure to 

get threshold is laid out in Algorithm 1. 
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Algorithm 1: Determining threshold H for ILR 

1) Use historical data to fit an appropriate GLMM  

2) Simulate a cycle of data 1, ,n N= …  from the fitted GLMM where N is cycle 

length. 

3) Run AILR

n
T   along the cycle and obtain the maximum value of { }

1

N
AILR

n
n

T
=

  

4) Repeat steps (2) – (3)
1

B  (we use
1
1000B =  ) times and set the threshold H for this 

set of historical data to be the ( )1 α−  percentile of the 
1

B maximum values. 

 

4.2 JLR Tracking Statistic 

      The JLR test of 
0
H  v.s. 

1
H  uses the h-likelihood [see section 2.4] rather than the 

integrated likelihood.  The idea is to replace the random effects in the monitoring period 

by predictions rather than by integrating them out. In particular, we propose the following 

tracking statistic, 

                              
*

*

*
*

* * *

0

* * *

0

max ( | , , ) ( | )

max 0,  log

max ( | , , ) ( | )

t

n

t

n

n

Y t S
t rsJLR

n
n

Y t S
t rs

f y c s f s

T

f y s f s

β κ θ

β κ θ

=

=

∏

∏

  
    =  
   

   

ɶ

ɶ

ɶ ɶ ɶɶ

ɶ ɶ ɶɶ

. 

      The numerator is the joint density of observed counts and random effects maximized 

over the random effects under the alternative hypothesis.  The denominator is the same 

joint density maximized over the random effects under
0
H .  Threshold estimation and 

parameter updating procedures are exactly the same as was described for ILR

n
T  test 

statistics.  A key difference between ILR

n
T  and JLR

n
T  is that the latter utilizes predictions 
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for the actual random effects realized during the monitoring period whereas ILR averages 

out the random effects with respect to the distribution of all possible values.  

     However, comparing AILR

n
T  with JLR

n
T , the difference is just the increment 

( )* *

1 0 0 1
log ( ) log ( ) / 2A s A s−

ɶ ɶ
. We learn from a simulation study reported in section 6.1 

that this difference between AILR and JLR is very small relative to the magnitude of both 

tracking statistics.  Figure 3 is an illustrative graph of AILR and JLR for the same set of 

simulated observations from a negative binomial GLMM with fixed effects generated 

from the following smooth function  

sin( 2.27 /1440) sin(12 /1440)
exp( ) 1.87 0.0066 3804 119

π πβ − = + − 
n n

n
e e  , 

G  chosen to have an AR(1)  structure with 2
( , ) (0.1, 0.7)σ ρ = , and dispersion parameter 

100κ = .  It can be seen that the two tracking statistics are very close to each other. 

Therefore, we expect ILR and JLR might perform similarly with respect of false alarm 

rate and detection power.  

Figure 3.  JLR and AILR tracking statistics for one simulated cycle to illustrate that their 

difference is quite small.  
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4.3 EWMA of Normal Scores 

      Our EWMA tracking statistic is related to the previously discussed work of Lambert 

and Liu (2006) [see section 2.1].  A key difference, however, is that we will use 

predictions of the random effects from the monitoring period to improve the accuracy of 

the conditional means and variances of the negative binomial distributions for each of the 

observation.  Every time a new observation 
n
y  is gathered during the monitoring cycle, 

we maximize the joint conditional in-control likelihood 
*

* * *

0
1

( | , , ) ( )
t

n

Y t S
t

f y s f sβ κ θ
=
∏

ɶɶ ɶ ɶɶ

 

over *
s

ɶ
.  This step is the same as maximizing the joint likelihood under the null 

hypothesis in the JLR tracking statistic.  Later in this section, we will propose a strategy 

to optionally reduce the dimension of this optimization.  Conditional on the random effect

n
i
s , the observation 

n
y  is conditionally independent negative binomial random variables 

with mean 
,

exp( )
n n n
i j i

sβ +  and dispersion parameterκ .  Let 
n

F  denote the conditional 

distribution of 
n

Y  which can be calculated as  

 
,

0

( ) ( | , , )
n

n n n n

y

Y n n i j i
b

F y P Y b sβ κ
=
∑= = .  

We estimate this distribution with ˆ ( )
n
Y n
F y by replacing 

,

n n
i j

β  and κ  with estimates from 

the historical data and
n
i
s with its predictor, obtained as described above. If large 

observations imply network degradation, the EWMA tracking statistic is defined as  

 
1

(1 ) −= − +EWMA

n n n
T w T wZ  , 
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where 1 ˆ( ( ))
n n n

Z F y
−= Φ , (0,1]w∈  and 1−Φ  is the inverse of the normal c.d.f.. If small 

counts imply network degradation, then n
Z is redefined as 

1 ˆ(1 ( ))
n n n

Z F y
−= Φ − .  Note 

that with either definition of 
n

Z ,  the tracking statistic will always tend to become large 

during an out-of-control situation.   

      During an in-control monitoring cycle the input variables 
n

Z can be regarded as 

approximately conditionally independent identically distributed (0,1)N  random variables 

and a threshold can be obtained to achieve a given conditional FAR as is done in the 

context of classical EWMA implementations [see, for example, Robinson and Ho (1978) , 

Vardeman and Jobe (1998) ].  However, the parameters 
,

n n
i j

β  and κ  that are involved in 

the estimated conditional distribution ˆ
n

F   will need to be updated as the historical data 

gets updated.  

     Returning to the issue of finding predictions for the random effects during the 

monitoring cycle, we suggest the following strategy which shares similar motivation as in 

Xie et al. (2013) to reduce the optimization dimension.  Taking into account that 

observations are not only correlated within each time slot but also between timeslots, all 

previous observations 
1 1
,...,

n
y y − contain information about the random effect 

corresponding to
n
y .  Because the correlation of the random effects decays, not all 

random effect
1
, ,

n
i

s s…  are equally influential.  We take advantage of that by only 

utilizing those closest to the time slot 
n
i .  We suggest that a sliding window scheme of q  
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timeslots 1, ,
n n
i q i− + …  could be used when predicting

n
i
s . Depending on the strength of 

the correlation between random effects, which can be estimated by analysis of historical 

data, q  can be relatively small if the correlation vanishes quickly. 

      Since 
n

Y is discrete, a continuity correction is needed when approximating the in-

control distribution of 
n

Z by (0,1)N .  Failure to use a continuity correction will result in 

conditional FARs that are too high.  We suggest a continuity correction through adding a 

random uniform (0,1)U variable 
n

U to the observed counts 
n
Y and calculate the c.d.f of 

this modified observation, 
n n n

W Y U= + , given by 
1

0

( ) ( )
n n

W n Y n
G w F w u du= −∫ .  The 

integral could be easily approximated through a standard numerical integration method.  

Using the continuity correction implies using EWMA

n
T  after replacing 1 ˆ( ( ))

n n n
Z F y

−= Φ with 

1 ˆ( ( ))
−= Φ

n n n
Z G w . 
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Chapter 5 

 

Discussion about ILR, JLR and EWMA 

 

5.1 An Example of using ILR for Normal Distributed Observations 

      An example is provided here to illustrate the implementation of ILR and the 

relationship between ILR and classical SPC approaches when the observations can be 

assumed as normally distributed.  

      Consider a sequence of data { }
1

n

t t
Y

=
 which has the timeslot structure described in 

section 3.2 such that the pair ( , )
t t
i j represents the timeslot and time point corresponding 

to observation 
t

Y , 1,2,...,
t n
i i= , 1,2,...,

t i
j n= . Assume that 

t
Y is conditionally 

independent random ( )2

, ,Normal ,
t t t
i j e i

µ σ given random effect 
t
i
s  and 

,

t t
i j

µ is obtained 

through the following link function
, ,

t t t t t
i j i j i

sµ β= + , where 
,

t t
i j

β the fixed effect and 
t
i
s is a 

random effect from 2

,
(0, )

t
s i

N σ . The hypotheses test for a change-point detection problem  

is set up as follows 

1 1 1 1 1

0 0 2 2 0 0 2 2

0 1 1 , , , , , ,
: ,..., ~ ( ; , , ), , ( ; , , )

n n n n n
n Y i j e i s i Y n i j e i s iH Y Y f y f yβ σ σ β σ σ…   



49 

 

1 1 1 1 1

0 0 2 2 0 0 2 2

1 1 1 , , , , , ,
: ,..., ~ ( ; , , ), ( ; , , )

k k k k kk Y i j e i s i Y k i j e i s iH Y Y f y f yβ σ σ β σ σ…  

             
1 1 1 1 1

1 1 2 2 1 1 2 2

1 1 , , , , , ,
,..., ~ ( ; , , ), , ( ; , , )

k k k k k n n n n nk n Y k i j e i s i Y n i j e i s iY Y f y f yβ σ σ β σ σ
+ + + + ++ + … , 

which means the fixed effects in the link function changed to a different set of value after 

time point k . For this example, assume infinite historical data is available, so all 

parameters are known. It is also assumed that fixed effects in the out-of-control situation 

are known.  

      From a classical SPC perspective, the vector of the observations
1

( ,..., )
n

Y Y Y ′=
ɶ

can be 

considered having a marginal distribution of multivariate normal with mean 

1 1
, ,

( ,..., )
n n

i j i j
β β β ′=
ɶ

and variance covariance matrix ( )2 2

, ,
i i

e i n s i n
diag I Jσ σ Σ = +  , with 

1,2,....,
n

i i=  , where 
i
n
I is a 

i
n dimensional diagonal matrix and 

i
n
J is an 

i
n by 

i
n matrix 

with each element equals 1. With Cholesky decomposition, ′Σ = ΓΓ , a vector of 

transformed observations 1
Z Y

−= Γ
ɶ ɶ

can be obtained which follows multivariate normal 

1
( , )

n
Iβ−Γ

ɶ

. One attractive property of Cholesky decomposition, we call it the invariant 

property here, is that when a new observation 
1n

Y +  is available, the element 
1
,...,

n
z z in the 

new transformed observation 
1 1

( ,..., )
n

z z + is the same as when only n observations is 

available. This property makes sure a sequential change-point algorithm can be applied to 

this transformed sequence of observations { }
1

n

t t
Z =

. Notice that observations in { }
1

n

t t
Z =

can 

be considered as identically distributed normal random variables, extended CUSUM in 

section 2.2.3 could be applied directly with a tracking statistic  
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1

1 0

( )
max 0, log

( )

n

n

Z n

n n

Z n

f z
S S

f z
−

  = + 
  

.  

Now if we want to directly apply the ILR tracking statistic to this change-point detection, 

we have the integrated likelihood for { }
1

n

t t
Y

=
in the most general form as follow 

 

{ }/22 2 2 1/2 2 2

, , , , ,2
1 1

,

1
( ) (2 ) exp ( ) (2 ) exp / (2 )

2

in t
it

t t t t t t t t t t

t t
t

ni
n

e i i j i j i s i i s i i
i j

e i

L y y s s dsπσ β πσ σ
σ

−∞ −
−∞

= =

   = − − − −∏ ∑ ∫ 
    ɶ

 

        /2 1/2 11
(2 ) exp ( ) ( )

2

n

y yπ β β− − − ′= Σ − − Σ − 
 ɶ ɶ ɶ ɶ

 

        /2 1 11
(2 ) exp ( ) ( )

2

n

n
z I zπ β β− − − ′∝ − − Γ − Γ 

 ɶ ɶɶ ɶ

 

         
1

( ) ( )
n

Z

t

L z f z
=

= = ∏
ɶ

 

Due to the fact that ILR tracking statistic will be reset to zero when it becomes negative, 

we use *
y

ɶ

and *
z

ɶ
to denote the observations after the most recent resetting and 

n
r denote 

the time point after the most recent resetting. Finally, the ILR tracking statistic can be 

written as  

0

1

( )

max 0,  log  
( )

t

n

t

n

n

Z t
t rILR

n n

Z t
t r

f z

T
f z

=

=

∏

∏

 
 =  
 
 

 

where 0

t
Z
f and 1

t
Z
f denote the distribution of 

t
Z under the null and the alternative 

respectively. This is of the same form of a repeated Wald SPRT tracking statistics. Based 

on the discussion in section 2.2.4, classic CUSUM can be also interpreted as repeated 
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Wald SPRT with lower bound zero, we can have a equivalent from of ILR tracking 

statistic as  

1

1 0

( )
max 0,  + log

( )

n

n

Z nILR ILR

n n

Z n

f z
T T

f z
−

  =  
  

, 

which is exactly the same as the tracking statistics obtain from a classical SPC 

perspective. Therefore, we show in this example, that within normal distribution context, 

the ILR tracking statistic is exactly the same as the tracking statistic that would be 

obtained from a classical SPC approach. 

 

5.2 Compare AILR, JLR and EWMA with Lambert and Liu’s method 

In this section we compare the proposed AILR, JLR and EWMA algorithms with the 

method described in Lambert and Liu (2006) (LL).  Similar to their setting, a day with 24 

hours (timeslots) and 60 one-minute counts in each hour is considered as a cycle. The 

counts ,  1,2, 1440
t
Y t = … in a cycle are independently generated from a negative binomial 

GLMM with conditional means 
t

µ  of the form log( )
t

t t i
sµ β= + .  Here, the fixed effect 

t
β  is calculated from a smooth function similar to that used in Lambert and Liu (2006).  

In our case, we fit the smooth function using the eight traces of VMware Monday data 

displayed in Figure 2.   The fitted smooth function is  

 sin( 2.27 /1440) sin(12 /1440)
exp( ) 1.87 0.0066 3804 119

t t

t
e e

π πβ − = + −   , 

with the means obtained from this function is displayed in Figure 5 as follows. 
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Figure 4. The Fitted Smoothed Function 

The random effects within a cycle are generated from a multivariate normal distribution 

with mean 0
ɶ

 and an AR(1) covariance matrix 2
( , )σ ρ .  For our comparison we assume 

infinite historical data are available.  Thus, true parameter values are available to 

calculate the tracking statistics which is sufficient to make our point without 

complications associated with how much historical is needed to get accurate parameters.  

Thresholds are chosen for each algorithm to achieve a target false alarm rate of 10%.                                           

Table 2. FAR Comparison of AILR,JLR, EWMA and LL 

κ  50 50 50 
2σ  E-10 0.001 0.005 

ρ  0.4 0.4 0.4 

AILR 0.099 0.085 0.102 

JLR 0.104 0.103 0.096 

EWMA 0.098 0.096 0.097 

LL 0.101 0.194 0.625 

     

 Table 2 shows FAR estimates based on simulating 1000 in-control sample paths for each 

of the four methods.  By construction, the AILR, JLR and EWMA algorithms achieve the 
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target FAR value.  The interesting finding in Table 2 is that the LL method has inflated 

FAR values when 2σ  deviates away from zero.  In fact, the LL method is only designed 

for the case 2
0σ = .  The introduction of random effects into the model, which adds 

flexibility when wanting to account for normal network churn and evolution, causes 

variation in the conditional means that cannot be accounted for in the LL method.  

Because of this finding, we will only focus on the size and power properties of AILR, 

JLR and EWMA tracking statistics in the following chapter.  
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Chapter 6 

 

Simulation Analysis of Size and Power 

 

6.1 Size Analysis 

      Because the threshold computed for AILR and JLR methods depend on the estimated 

parameters associated with the in-control GLMM,  the FAR observed during a 

monitoring cycle will be conditional on that set of historical data.  Likewise, because the 

transformation associated with the EWMA method depends on the fitted model, it too 

will also have an FAR that is conditional on the historical data.  Clearly, the more cycles 

of historical data that available to estimate the in-control parameters, the more precise a 

conditional FAR will be relative to its target value.   

     To compare the tracking statistics with respect to how quickly they calibrate to 

varying levels of historical data, we examined the distributions of their conditional FARs 

for different depths of historical data.  In order to do this, it was necessary to define a 

feasibility criterion for what a satisfactory distribution of conditional FARs would look 

like.  The criterion we used was that for a target FAR of 10% we should have at least 90% 

of the conditional FARs between 7% and 13% and at least 95% of the conditional FARs 
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between 6% and 14%. A similar criterion can be defined for any other target FAR level.  

Two simulation studies were carried out as follows.  First, we chose a week as a cycle 

and assumed that counts are gathered every five minutes.  The counts were modeled with 

a negative binomial GLMM using a AR(1)  covariance structure for the random effects.  

We considered eight scenarios for the parameters 2
( , , )κ σ ρ  by choosing {50 ,100}κ ∈ , 

2
{ 0.01,0.001}σ ∈  and { 0.4 , 0.7 }ρ ∈ .  For the fixed effects, we used the smooth 

function in section 5.2 for each of the five weekdays, and then decreased that function by 

50% for each of the two weekend days. 

      The second simulation study assumed the same weekly cycle and 168-hour timeslot 

structure as described above, but the five-minute counts were modeled with a Poisson 

GLMM, again using a AR(1)  covariance structure for the random effects.   Four 

scenarios for the covariance parameters were considered, as per the combinations of 

2
{ 0.01, 0.001}σ ∈  and { 0.4 , 0.7 }ρ ∈ .  Fixed effects for the five weekdays were taken 

to be identical and modeled with a linear trend according to the intercepts and slopes 

shown in Table 1. The fixed effect for each time point obtained from Table 1 is then 

lowered by a constant to generate a sequence of counts with lower magnitude.   Fixed 

effects for the weekend days were again reduced 50% relative to the weekdays.  

     The main difference between the negative binomial setting and the Poisson setting is 

that expected value of the counts ranged between 9 and 70 in the former as compared to 

between 2 and 22 in the latter.  In this way, the two studies reflect metrics of a different 

nature.  The reason that 2σ  in the Poisson study was chosen to be smaller than in the 
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negative binomial setting was to keep the conditional means of the Poisson counts from 

overlapping with the conditional means of the negative binomial counts. A piecewise 

linear GLMM is fitted for each scenario in both the Negative Binomial and Poisson settings. 

Algorithm 2 summarizes the steps used for executing the simulation studies.  As 

mentioned earlier, the threshold is fixed for EWMA, and is a function of w.  We chose 

0.25=w  , for which 1.45=H , thus eliminating the need for step 2.   

Algorithm 2: Evaluating conditional FAR for AILR, JLR and EWMA tracking statistics  

1) Choose a scenario for the parameters of the in-control distribution 

Generate K  cycles (we use 20K = and 30 ) of historical data 

2) Determine the threshold H  as described in Algorithm 1 (we use target FAR = 

10%) 

3) Simulate 
2

B (we use 
2
1000=B ) cycles of monitoring data using true 

parameters  

4) Run ILR

n
T , JLR

n
T , EWMA

n
T tracking statistics along each simulated cycle 

5) Record the conditional FAR  as the proportion of the
2

B cycles that alarmed  

6) Repeat step (1) – (5) M  times (we use 25M = ) 

7) Summarize the distribution of the M conditional FARs and get the mean of 

them as the unconditional FAR 

 

In the negative binomial and Poisson settings, GLMMs with linear trend in each timeslot 

is fitted. Based on the conditional FAR results and power results obtained later, this 

model works well for the both settings.   Figure 5 shows that for the negative binomial 

setting with parameters 2
( , , ) ( 50 , 0.001, 0.4 )κ σ ρ = , the conditional FAR from EWMA 

tracking statistic achieved the feasibility criterion with 20 weeks of historical data, while 
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the AILR and JLR need 30 weeks of historical data to achieved the feasibility criteria.  

Figure 6 shows that with 30 weeks of historical data, all three methods consistently 

achieve the feasibility criterion.   

 

Figure 5. Conditional FAR for EWMA, AILR and JLR with 20 weeks and 30 weeks of 

historical data in one of the negative binomial Setting  
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Figure 6. Conditional FAR for EWMA, AILR and JLR 30 weeks of historical data 
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affected by accuracy of parameter estimation from GLMM.  The AILR and JLR methods 

are constructed to detect a fault that corresponds to an inflation parameter of 1.1c =  for 

the negative binomial setting and 1.2c =  for the Poisson setting.  Two sets of fault are 

injected in the data stream. One set of faults starts on Monday morning 7 a.m., which is a 

timeslot where counts begin to increase toward their daily maximum. The second set of 

faults is injected at 12 p.m. on Friday which is a time period that could be considered as a 

peak period.  Injected faults have two different durations, 60 observations and 120 

observations, and injected faults vary with respect to the magnitude of their inflation 

factors of the fixed effects.  We consider {1.05,  1.07, 1.085, 1.1,  1.13,  1.16 } for the 

inflation parameter of the fixed effects as anomaly events for the negative binomial 

setting and {1.08,  1.1,  1.12, 1.2, 1.22, 1.24}c = for the Poisson setting, which 

approximately correspond to increases of the in-control timeslot mean values by 

20%,  30%,  40%,  50%,  60{ %,  80% } , respectively. 

      For one of the eight negative binomial scenarios, Table 3 shows detection rates where 

each conditional detection rate is based on 1000 sample paths.  As one would expect, the 

detection rate is larger when the inflation factor or duration of the fault is larger.  We also 

see that the detection rate is larger for faults introduced earlier in the week (Monday) 

compared to later in the week (Friday).  AILR and JLR are quite similar in their detection 

rates, and both are substantially better than EWMA.  Also shown in Table 3 is the 

average detection time for all of the faults that are detected.  Here again we see there is 

not much difference between AILR and JLR.  Recall that in section 4.2 we anticipated 

this similarity between AILR and JLR.   
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Table 3. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
100, 0.01,  0.7κ σ ρ= = =  

 
Negative Binomial   AILR JLR EWMA 

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 6am 60 obs 1.05 30.5 0.24 30.3 0.25 18.8 0.03 

    1.07 26.8 0.56 27.3 0.59 17.5 0.11 

    1.085 22.7 0.8 24.8 0.71 12.7 0.19 

    1.1 17.1 0.94 18.3 0.92 13.4 0.39 

    1.13 9.2 1.00 10.2 1.00 10.4 0.74 

    1.6 5.1 1.00 5.8 1.00 6.7 0.96 

  120 obs 1.05 48.4 0.4 41.4 0.37 35.4 0.04 

    1.07 40.8 0.77 38.9 0.75 27.5 0.11 

    1.085 30.1 0.94 29.7 0.93 21.4 0.24 

    1.1 20.9 0.99 21.3 0.99 18.7 0.39 

    1.13 9.1 1.00 11.3 1.00 14.5 0.79 

    1.16 5.1 1.00 5.5 1.00 7.9 0.98 

Fri 12 pm 60 obs 1.05 20.8 0.2 19.2 0.18 10.3 0.04 

    1.07 18.0 0.45 16.4 0.48 8.7 0.16 

    1.085 19.1 0.71 13.1 0.73 7.3 0.32 

    1.1 8.7 0.91 9.4 0.9 6.5 0.54 

    1.13 3.3 0.99 4.1 1.00 4.1 0.91 

    1.16 1.6 0.99 1.8 1.00 2.7 1.00 

  120 obs 1.05 32.4 0.27 34.4 0.23 18.8 0.05 

    1.07 23.7 0.6 29.1 0.57 10.2 0.18 

    1.085 19.1 0.86 21.6 0.85 9.8 0.35 

    1.1 14.3 0.94 10.4 0.95 8.4 0.56 

    1.13 4.1 0.99 3.4 1.00 4.4 0.92 

    1.16 1.9 1.00 1.7 1.00 2.8 1.00 

 

Simulation results for the other scenarios are reported in Appendix C. Under scenarios 

with 2
0.01σ = , power results consistently show the same finding, namely that the 

performances of AILR and JLR are nearly identical and far superior to EWMA. In other 

scenarios, the detection rates of the three tracking statistics are comparable, but AILR and 

JLR have faster detection time than EWMA.  
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Chapter 7  

 

Implementation Aspects  

 

      Computation time is another essential property of online change-point detection 

algorithm that especially affects the applicability of the algorithm and detection power.  

In this section, we will report detailed breakdown of computation time for the proposed 

algorithm using AILR, JLR and EWMA tracking statistics.  In our change-point detection 

algorithm, there are three main steps. Step 1 is to fit the GLMM and obtain estimated 

parameters for fixed and random effects of the in-control situation.  With the estimated 

parameters on hand, step 2 is to simulate the sample path of AILR or JLR tracking 

statistics and extract the threshold H  for AILR and JLR for a target FAR.  Step 3 is to 

apply the threshold to the observation from live network stream and raise an alarm when 

the tracking statistic goes across the threshold.  The first two steps are offline 

computation and step 3 is on-line process. 

      Under the simulation scenario described in section 6.1, average computation time of 

those 3 steps are shown in Table 4.  Step 1 is performed by SAS 9.2 on a computer with 
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8GB installed memory and Intel® Core™ CPU @ 2.50GHz.  Step 2 and 3 are R 

processes that run on a single core of a 4-core, 16GB memory with Intel Xeon CPU at a 

processing speed of 2.4GHz.  Total number of cycles of historical data is chosen to be 30, 

which is the depth that yields desirable conditional FAR for AILR and JLR tracking 

statistics.  

      The computation time of step 1 is influenced by the depth of historical data and also 

number of time slots in each cycle.  Less cycles of historical data or less time slots in 

each cycle will lead to less computation time to fit the GLMM.  In the following table, 6 

hours are the average computation time for 30 cycles of historical data with 168 timeslots 

in each cycle for the negative binomial scenarios, but it only needs 15 minutes on average 

for Poisson scenarios.  This difference is due to the fact that the likelihood function of 

negative binomial scenario has one more dispersion parameter κ  to be estimated and the 

dispersion parameter involves in multiple terms of the likelihood in a non-linear way 

which make the likelihood maximization more complicated than the Poisson scenarios 

      Comparing the two distributions settings in our simulation analysis, there is also a big 

time difference for step 2.  It only takes about half an hour on average to get the threshold 

for AILR and JLR in the negative binomial settings. But in the Poisson scenarios, it takes 

33 hours on average to obtain the threshold for JLR and 53 hours for AILR.  This is due 

to the fact that Poisson scenarios have smaller counts so the tracking statistics do not 

reset as often as in negative binomial scenarios.  

      In step 3, both settings require negligible time, a small fraction of a second, to process 

each new observation even though negative binomial takes much less time than the 
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Poisson settings. Due to the fact that AILR need to do additional determinant calculation 

than JLR, it takes a little bit longer time in step 3.  

      Note the EWMA tracking statistic does not require updating the threshold at the end 

of each cycle. The threshold does not require parameter estimates so it only need to be 

obtained offline once using standardized normal random variables, which saves a portion 

of offline preparation time than AILR and JLR.  

Table 4. Breakdown of Computation Time Using AILR, JLR and EWMA 

Negative Binomial AILR  JLR  EWMA  

Step 1: SAS Estimation  6 hours  6 hours  6 hours  

Step 2: Find H ( 1000 iterations  )  35 min  32 min  --  

Step 3: Process a new Observation  1.04E-03 sec  9.52E-04 sec  9.95E-05 sec  

Poisson AILR  JLR  EWMA  

Step 1: SAS Estimation  2 hours  2 hours  2 hours  

Step 2: Find H ( 1000 iterations )  2.7 hours  2.5 hours  --  

Step 3: Process a new Observation  4.82E-03 sec  4.64E-03 sec  4.61E-04 sec  

 

       When the offline preparation time is very long, for example in our Poisson 

simulation setting, and there is a certain time period in each cycle that are unlikely to 

experience network problems or with a low cost of not detecting anomaly events, we 

suggest starting the offline calculation for the next monitoring cycle at the beginning of 

this period instead of waiting to the end of a cycle, and then use the data from 

corresponding time period in the last cycle to complete a new cycle for GLMM fitting 

and threshold simulation. Another option to reduce the offline preparation time is by 

using multiple processers in step 2. The iterations can be performed separately on 

different processors which would significantly cut down the computation time in a 

scenario like our Poisson simulation setting.  
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Chapter 8 

  

Summary and Future work 

      We proposed a change-point detection method with three choices of tracking statistics, 

AILR, JLR and EWM to monitor non-stationary correlated discrete data in network 

traffic. Compared with Lambert and Liu’s algorithm, our methods demonstrate 

satisfactory false alarm rates and good tolerance for negligible change in the non-

stationary mean structure in network traffic.  Based on simulation studies of size and 

power, we find that AILR and JLR tracking statistics demonstrate better performance 

than EWMA with competitively strong detection ability.  Therefore, if historical data are 

enough to obtain a satisfactory conditional FAR, we would not recommend using EWMA 

tracking statistics.  With the approximation of integrals in AILR tracking statistics, AILR 

and JLR only differ by a tiny number but it requires additional determinants computation.  

Moreover, according to our power analysis, the JLR has comparable fault detection 

ability of AILR.  Based on these findings, we recommend JLR tracking statistic among 

all the three proposed ones.   

      Obviously, the assumptions of conditional distributions for network counts are not 

necessarily limited to negative binomial and Poisson distribution. AILR, JLR and 
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EWMA algorithms could be easily extended to other suitable distributions for real 

application.  The assumption we have for constructing the GLMM is that data are 

correlated within the same cycle but independent from cycle to cycle. Further 

investigation could be placed on different correlation structures and also correlated cycle 

of data.  One of the challenges for correlated cycles of data is that estimation of fixed and 

random effects become more complicated.   An example of Poisson data with random 

effects correlated between cycles is demonstrated in Appendix A.   Covariance structure 

of random effects which is required in the parameter estimation is calculated.  It also 

hints the computation intensity of handling correlated cycles of data.   

     Simulation studies of different depth of historical data indicate that EWMA tracking 

statistics requires less historical data than AILR and JLR tracking statistics to obtain a 

desired false alarm rate.  As shown in section 6.1, with 20 weeks of historical data, an 

average of 11% false alarm rate could be achieved using EWMA.  However, AILR and 

JLR tracking statistics require 30 weeks of historical data to yield desired conditional 

FARs.  This is partially due to the fact that EWMA use the parameter estimates from 

GLMM in a different way.  Only in the monitoring week, conditional distributions of 

counts rely on the GLMM parameter estimates from historical data.  In contrast, 

thresholds for AILR and JLR need to be obtained with parameter estimates from the 

GLMM, which makes the performance of these two tracking statistics heavily depend on 

depth of historical data.    

      Typical practitioners will not have any idea of how many cycles of historical would 

be needed to provide adequate conditional FAR. Suppose W  cycles of in-control 
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historical data are available to the practitioner, we suggest the following procedure to 

determine the adequacy of the depth of historical data.  

Algorithm 3: Sanity Check for Depth of Historical Data 

1. Use all W cycles of historical data and fit the GLMM 

2. Bootstrap M (we use 25M = ) sets of W cycles of data from the fitted GLMM 

3. Fit another GLMM to each of the M sets of data, find a threshold and calculate 

conditional FAR respectively for each of the M sets of data.  

4. If those M  conditional FARs satisfy the feasibility criteria introduced in section 

6.1, then call W cycles is sufficient. Otherwise, gather more historical data and 

repeat this procedure. 

 

Based on some findings of the size studies, we learned that if smooth fixed effects are 

used to generated data, which better represent the true nature, piecewise linear GLMM fit 

the data very well and yield satisfactory conditional FARs. A proposed method is as 

follows. In Algorithm 3 step 1, we suggest that a practitioner estimate the smooth fixed 

effects by the interpolation as in Lambert and Liu’s method, and then fit a GLMM with 

piecewise linear fixed effects to obtain other nuisance parameters. Specifically, let 

, 1,2,..,
ijw

X i m= 1,2,...,
j

j n= , 1,2,...,w W= denote the observation in timeslot i , time 

point j and historical cycle W . In step 1, suppose that the practitioner decides to use a 

Poisson GLMM with a log-link function for the means and AR(1) structure for the 

random effects.  First, the overall mean , 1,2,...,
i

U i m= for each timeslot can be estimated 

by taking the average of observations in timeslot i from all W cycles.  Using the 

interpolation method introduced in section 2.1, smooth mean *

ij
β  for each time point can 
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be obtained.  However, with a log-link function, the smooth fixed effect for each time 

point should be *log( )
ij

β .  Second, assume the fixed effects are known and fit a piecewise 

linear Poisson GLMM and obtain the estimates for covariance parameter 2
( , )σ ρ of the 

random effects. In step 2, generate M set of W cycles of data from the Poisson GLMM 

with smooth fixed effects and covariance parameter estimates obtained in step1. In step 3, 

fit a GLMM with non-smooth fixed effects such as piecewise linear and obtain 

conditional FARs.  If the conditional FARs satisfy the feasibility criteria, the practitioner 

could claim the amount of historical data is sufficient.  
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Appendix  

 

A. GLMM and Covariance structure for Random Effects in Correlated-

Cycle Context 

      Consider the situation that network traffic are not only correlated within each week 

but also correlated between weeks. A generalized linear mixed model can also be adopted 

for this kind of structure.  To incorporate the correlation between weeks, the random 

effects will also be assumed to be correlated between weeks.  In particular, suppose the 

network counts are modeled with a Poisson generalized linear mixed model, which 

means for the counts 
tk
Y ,which matches the i th observation in the j th timeslot of the k

th week, 1,2,i I= … 1,2,j J= … , 1,2,k K= … given the mean ijkµ , the counts are 

independently following Poisson distribution with mean ijkµ .  The link function of the 

Poisson GLMM is  

 ( ) ( )log ijk j k
sµ β= +  

where we assume the simplest case that all timeslot have the same fixed effect β , ( )j k
s is 

the random effect for timeslot i of week k .  For different cycles, the vectors of random 

effect ( ) ( ) ( )( )1 2
, , ,

k k J k
s s s

′
… form a multivariate time series 
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1( ) 1( ) 1( )1

2( ) 2( ) 2( )2

( ) ( ) ( )

0 0 0

0 0 0

0 0 0

0 0 0

k k k

k k k

J k J k J kJ

s s

s s

s s

εα
εα

εα

      
      
      = +
      
      

      

⋮ ⋮ ⋮⋱
 

      Suppose the error term have an AR(1) type of covariance structure, then the random 

effects within each week and between weeks are all correlated, which would make the 

counts have correlation within week and also between week.  The covariance structure of 

the error term could also take on other forms in application, here we would like to have a 

structure that make the correlation decreases as the time distance increase within a week 

and at the same time, the correlation of random effects from the same timeslot of 

different week have higher correlation than the that of random effects from different 

timeslot of different week.  

      Next, we can have a more clear idea of how the correlation structure looks like. Let
k

ε
ɶ

denote the error vector with variance-covariance matrix Ω , 
k
s

ɶ
denote the random vector 

of cycle k with variance-covariance matrix Σ ,  

                 ( )

2 1
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2 3 4
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J
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J J J
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⋯

⋯

⋮ ⋮ ⋱ ⋮ɶ ɶ
 

and A denote the coefficient matrix in the multivariate time series , 
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1

2

0 0 0

0 0 0

0 0 0

0 0 0
J

α
α

α

 
 
 Α =
 
 
 

⋱
 

Take variance on both sides of the time series we have  

 ′Σ = ΑΣΑ + Ω  

To obtain a analytical form of Σ , a proposition could be used here: 

Proposition: Let , ,and A B C be matrices whose dimensions are such that the product of 

ABC exist. Then 

 ( ) ( ) ( )vec ABC C A vec B′= ⊗ i  

Where ⊗ is Kronecker Product, vec is the vector operator that if A is an ( )m n× matrix, 

then ( )vec A  is an ( )1mn× column vector obtained by stacking the columns of A ,one 

below the other, with the column ordered from left to right, i.e. 

 ( )

11

21

11 12

31

21 22

12

31 32

22

32

        

a

a
a a

a
A a a vec A

a
a a

a

a

 
 
  
  = =   

   
   

 
 

 

Apply this proposition to ′Σ = ΑΣΑ + Ω we have  

 ( ) ( ) ( ) ( )vec vec vecΣ = Α ⊗ Α Σ + Ω  

So that  

 ( ) ( ) ( )1

vec I vec
−Σ = − Α ⊗ Α Ω  

With  
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1

1

1

1
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J
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I

α α

α α
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α α

α α

α α
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 −
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− Α ⊗ Α =  
− 
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  − 

⋱

⋱

⋱
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and  

 ( ) ( )2 1 2 1 2

1 1 1
J J J J

vec σ ρ ρ ρ ρ ρ ρ− − − − ′Ω = ⋯ ⋯ … ⋯  

We could get the formula of the ( ),i j element of Σ  as follows, 

 ( ) 2

cov ,
1

i j

ik jk

i j

s s

ρ σ
α α

−

=
−

 

In the parameter estimation stage for this GLMM model, suppose the total number of 

historical data available is K . Then the covariance matrix for all random effect is  

 ( ) ( ){ }11 12 1 1 2 11 12 1 1 2
, , , , , , , , , ,

J K K JK J K K JK
D E s s s s s s s s s s s s

′= … … … … … …  

It could be written in block of matrices that could be expressed by Σ and Α that we 

defined before as follow 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2

1 2

K

K

K K K K

E s s E s s E s s

E s s E s s E s s
D

E s s E s s E s s

′ ′ ′ 
 ′ ′ ′ =
 
  ′ ′ ′ 

⋯
ɶ ɶ ɶ ɶ ɶ ɶ

⋯
ɶ ɶ ɶ ɶ ɶ ɶ
⋮ ⋮ ⋱ ⋮

⋯
ɶ ɶ ɶ ɶ ɶ ɶ
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Since we know that  

 ( )
t t

E s s′ = Σ
ɶ ɶ

 

 ( ) ( )( )1 1

u

t t u t u t t t u t u
E s s E s sε ε ε− − − − + −′ ′= Α + + +⋯

ɶ ɶ ɶ ɶ ɶ ɶ ɶ
 

                                                             ( )( )u u

t u t u
E s s− −′= Α = Α Σ

ɶ ɶ
 

The covariance matrix for all random effects in the historical weeks could be written as  

 

1

2

1 2

K

K

K K

D

−

−

− −

Σ ΑΣ Α Σ 
 ΑΣ Σ Α Σ =
 
 Α Σ Α Σ Σ 

⋯

⋯
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B. Pseudo-likelihood  

      In GLMM , consider a vector of observations y
ɶ

of length nwith mean µ
ɶ

 

y µ ε= +
ɶɶ ɶ

 

and a differentiable monotonic link function ()g  such that  

( )g X Zµ α β= +
ɶ ɶɶ

 

Hereα
ɶ

is a vector of unknown fixed effects in the link function whereas β
ɶ

is a vector of 

unknown random effects with mean 0
ɶ
and unknown covariance matrix D .  Given µ

ɶ

, the 

error term ε
ɶ
have mean0

ɶ
and variance 

1/2 1/2
var( ) R RRµ µε =

ɶ ɶɶ
 

For example, if we assume the observations follow a Poisson distribution, then 

var( ) ( )diagε µ=
ɶ ɶ

 

and we have  

( )R diagµ µ=
ɶ ɶ

, 
n n

R I ×= . 

When the random effects are highly correlated, the marginal likelihood function of y
ɶ

involves high dimension integration of the random effects.  The merit of pseudo-

likelihood is to estimate the fixed effect α
ɶ

and the variance-covariance matrix for random 

effect without the direct computation of high dimension integration.  The pseudo-

likelihood is constructed by several analytic and probabilistic approximations of the exact 

likelihood and parameters will be iteratively estimated.  
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The first approximation is an analytic approximation of the unknown mean vector µ
ɶ

 

using first order Taylor expansion.  

      Suppose α̂
ɶ

and β̂
ɶ

 are known estimates of α
ɶ

and β
ɶ

, then estimate of µ
ɶ

 through the 

known link function ()g  is, 

 ( )1 ˆˆˆ g X Zµ α β−= +
ɶ ɶɶ

 

which is a vector consisting of evaluations of function 1
g

− at each component of the 

vector ˆˆX Zα β+
ɶ ɶ

.  The first order Taylor expansion of µ
ɶ

at value µ̂
ɶ

is as follow 

 1 1ˆ ˆ ˆˆ ˆ ˆˆ( ) ( ) ( ) ( )g X Z g X Z X Z X Zµ α β µ α β α β α β− − ′= + ≈ + + + − +
 

i
ɶ ɶ ɶ ɶɶ ɶ ɶ ɶɶ ɶ

 

where 1 ˆˆ( ) ( )g X Zα β− ′ +
ɶ ɶ

is a diagonal matrix with the i -th element as 1 ˆˆ( ) ( )
i i

g X Zα β− ′ +
ɶ ɶ

. 

Here 
i

X is the i -th row vector in the X matrix, 
i

Z is the i -th row vector in the Z matrix.  

The second approximation to obtain pseudo-likelihood is to apply a probabilistic 

approximation to the error term with a Normal distribution.  Let ε̂
ɶ
 be the approximation 

to ε
ɶ
which satisfies y µ ε= +

ɶɶ ɶ

using the Taylor approximation of µ
ɶ

, we have  

 1 ˆ ˆˆ ˆ ˆˆ ( ) ( )( )y g X Z X Z X Zε µ α β α β α β− ′= − − + + − +
ɶ ɶ ɶ ɶɶ ɶ ɶ ɶɶ

 

Following Laird and Louis (1982) and Lindstrom and Bates (1990), approximate the 

conditional distribution of ε̂
ɶ
 givenα

ɶ
and β

ɶ

with a Normal Distribution which have the 

same first and second moments as | ,ε α β
ɶ ɶ ɶ

.  In particular, we assume that | ,ε α β
ɶ ɶ ɶ

is 

( )1/2 1/2
0,Normal R RRµ µ

ɶ ɶɶ
.  
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For each component ˆˆ
i i

X Zα β+
ɶ ɶ

 in ˆˆX Zα β+
ɶ ɶ

, we could write  

 ˆˆˆ( )
i i i

g X Zµ α β= +
ɶ ɶ

 

So  

 ( )1 1ˆˆ ˆ( ) ( ) ( ) ( )
i i i

g X Z g gα β µ− −′ ′+ =
ɶ ɶ

 

Also, with simple derivation and transformation, we know that  

 
1

1
ˆ ˆ( ( ))

ˆ ˆ1 ( ) ( ( )) ( )
ˆ ˆ
i i

i i

i i

g g
g g g

µ µ µ µ
µ µ

−
−∂ ∂ ′ ′= = = i  

Then 

 1 1 1ˆˆ ˆ( ) ( ) ( ) ( ( ))
ˆ( )

i i i

i

g X Z g g
g

α β µ
µ

− −′ ′+ = =
′ɶ ɶ

 

Put this relationship back into the Taylor approximation of ε̂
ɶ
, for each component 

î
ε
ɶ

we 

could write  

 
1 ˆˆ ˆˆ ( )

ˆˆ( )
i i i i i i i

i i

y X Z X Z
g X Z

ε µ α β α β
α β

= − − + − +
′ +ɶ ɶ ɶɶ ɶ ɶɶ

ɶ ɶ

 

Move the part with ˆ
i i
y µ−
ɶ ɶ

to the one side and multiply both sides by ˆˆ( )
i i

g X Zα β′ +
ɶ ɶ

 , i.e. 

ˆ( )
i

g µ′ , we have 

 ˆˆ ˆˆ ˆ ˆ( )( ) ( ) ( )
i i i i i i i i i

g y g X Z X Zµ µ µ ε α β α β′ ′− = + + − +
ɶ ɶ ɶɶ ɶ ɶɶ

 

We can write 

 ˆˆ ˆˆ ˆ ˆ( )( ) ( ) ( )g y g X Z X Zµ µ µ ε α β α β′ ′− = + + − +
ɶ ɶ ɶɶ ɶ ɶɶ ɶ
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As we assumed that givenα
ɶ

and β
ɶ

, ε̂
ɶ
follows ( )1/2 1/2

0,Normal R RRµ µ
ɶ ɶɶ

, now the left hand 

side would also follow Normal distribution  

 ( ) ( )1/2 1/2ˆˆˆ ˆ ˆ ˆ( ) | , ,    ( ) ( ) g y Normal X Z X Z g R RR gµ µµ µ α β α β α β µ µ′ ′ ′− + − +
ɶ ɶ

∼
ɶ ɶ ɶɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

 

where ˆ( )g µ′
ɶ

is a diagonal matrix with the i -th element as ˆ( )
i

g µ′
ɶ

.  

The last approximation, which is related to the iteratively estimating parameters fixed and 

random effects, is to use µ̂
ɶ

for µ
ɶ

in the variance matrix 1/2 1/2
R RRµ µ

ɶ ɶ

.  Now if substitute 

ˆˆX Zα β+
ɶ ɶ

in the mean of Normal distribution with ˆ( )g µ
ɶ

 and define  

 ( )ˆ ˆ ˆ( ) ( )v g g yµ µ µ′= + −
ɶ ɶɶ ɶ ɶ

. 

It could be verified that 

 ( )1/2 1/2ˆ ˆ| , ,    ( ) ( ) v Normal X Z g R RR gµ µα β α β µ µ′ ′+
ɶ ɶ

∼
ɶ ɶ ɶɶ ɶ ɶ ɶ

 

The Gaussian log-likelihood corresponding to the linear mixed model for v is 

 ( ) ( )11 1
( , , , ) log log2

2 2 2

n
l D R v V v X V v Xα α α π−′= − − − − −
ɶ ɶ ɶ ɶ ɶ ɶ

 

where  

 1/2 1/2ˆ ˆ( ) ( )V g R RR g ZDZµ µµ µ′ ′ ′= +
ɶ ɶɶ ɶ

 

The log likelihood can be maximized analytically for α
ɶ

, resulting the log likelihood as 

follow 

 ( )( )11 1
( , ; ) log 1 log 2 /

2 2 2

n
l D R v V V nγ γ π−′= − − − +

ɶ ɶ ɶ

 

where  
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 ( ) 11 1
v X X V X X V vγ

−− −′ ′= −
ɶ ɶɶ

 

      In summary, pseudo-likelihood approach is to approximate the exact likelihood 

function of y
ɶ

  with an analytic approximation of the unknown mean vector µ
ɶ

, a 

probabilistic approximation to the error term with a Normal distribution and numeric 

approximation of µ
ɶ

to avoid high-dimension integral computation for the exact 

likelihood function of y
ɶ

.  Combined with numerical methods, the final goal of 

estimating the fixed effects and covariance parameter for random effects will be achieved.  
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C. Power Study Results 

 

 

Table 5. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
100, 0.001,  0.7κ σ ρ= = =  

 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 22.8 0.92 19.2 0.97 28.1 0.75 

    1.07 13.8 1.00 10.2 1.00 15.7 0.99 

    1.085 8.8 1.00 7.2 1.00 10.3 1.00 

    1.1 6.6 1.00 5.1 1.00 7.1 1.00 

    1.13 4.1 1.00 3.3 1.00 4.4 1.00 

    1.6 3.0 1.00 2.3 1.00 3.2 1.00 

  120 obs 1.05 31.7 1.00 22.0 0.98 35.7 0.89 

    1.07 14.1 1.00 10.7 1.00 16.5 1.00 

    1.085 9.2 1.00 7.5 1.00 9.9 1.00 

    1.1 6.7 1.00 5.1 1.00 7.0 1.00 

    1.13 4.2 1.00 3.6 1.00 4.4 1.00 

    1.16 3.0 1.00 2.3 1.00 3.2 1.00 

Fri 12 am 60 obs 1.05 16.5 0.97 15.8 0.98 24.6 0.81 

    1.07 6.4 1.00 6.0 1.00 13.2 1.00 

    1.085 3.7 1.00 3.2 1.00 8.8 1.00 

    1.1 2.6 1.00 2.5 1.00 4.3 1.00 

    1.13 1.7 1.00 1.7 1.00 2.4 1.00 

    1.16 1.2 1.00 1.2 1.00 1.6 1.00 

  120 obs 1.05 21.4 0.99 20.8 0.99 28.9 0.93 

    1.07 6.7 1.00 6.6 1.00 13.1 1.00 

    1.085 3.8 1.00 3.9 1.00 8.8 1.00 

    1.1 2.6 1.00 2.9 1.00 4.5 1.00 

    1.13 1.7 1.00 1.6 1.00 2.1 1.00 

    1.16 1.2 1.00 1.2 1.00 1.6 1.00 
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Table 6. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
100, 0.01,  0.4κ σ ρ= = =  

 

  
AILR JLR EWMA  

Start 

Time 
Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 32.1 0.32 32.0 0.39 27.7 0.05 

    1.07 30.2 0.72 28.4 0.77 24.8 0.14 

    1.085 25.2 0.90 22.8 0.94 26.5 0.30 

    1.1 20.3 0.98 17.6 0.99 23.7 0.48 

    1.13 12.2 1.00 9.5 1.00 17.7 0.86 

    1.6 8.1 1.00 5.7 1.00 10.4 1.00 

  120 obs 1.05 53.0 0.55 51.4 0.61 50.4 0.09 

    1.07 41.3 0.95 36.8 0.96 51.0 0.21 

    1.085 27.7 0.99 25.0 1.00 39.5 0.43 

    1.1 20.7 0.99 17.3 1.00 37.1 0.64 

    1.13 12.4 1.00 9.8 1.00 24.1 0.96 

    1.16 7.9 1.00 5.8 1.00 10.4 1.00 

Fri 12 am 60 obs 1.05 28.4 0.32 25.0 0.33 19.2 0.05 

    1.07 23.1 0.71 20.5 0.78 17.7 0.13 

    1.085 16.3 0.93 14.9 0.94 15.4 0.27 

    1.1 10.3 0.99 9.5 1.00 14.4 0.45 

    1.13 4.2 1.00 3.4 1.00 9.9 0.86 

    1.16 2.5 1.00 1.8 1.00 5.1 1.00 

  120 obs 1.05 44.4 0.46 40.9 0.47 36.7 0.05 

    1.07 32.8 0.91 29.0 0.88 29.5 0.18 

    1.085 20.4 0.98 17.1 0.98 27.9 0.33 

    1.1 11.2 1.00 9.83 1.00 20.6 0.55 

    1.13 4.2 1.00 3.4 1.00 12.1 0.90 

    1.16 2.5 1.00 1.6 1.00 4.9 1.00 
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Table 7. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
100, 0.001,  0.4κ σ ρ= = =  
 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 25.2 0.91 26.5 0.90 27.5 0.86 

    1.07 12.6 1.00 13.4 1.00 15.3 0.92 

    1.085 8.8 1.00 8.9 1.00 10.0 1.00 

    1.1 6.5 1.00 6.5 1.00 7.1 1.00 

    1.13 4.2 1.00 4.1 1.00 4.5 1.00 

    1.6 2.9 1.00 3.0 1.00 3.2 1.00 

  120 obs 1.05 29.4 0.98 29.5 1.00 33.8 0.97 

    1.07 13.3 1.00 13.3 1.00 15.2 1.00 

    1.085 9.0 1.00 8.5 1.00 10.1 1.00 

    1.1 6.4 1.00 6.4 1.00 7.3 1.00 

    1.13 4.1 1.00 4.2 1.00 4.5 1.00 

    1.16 3.0 1.00 3.1 1.00 3.1 1.00 

Fri 12 am 60 obs 1.05 17.5 0.93 16.4 0.92 15.4 0.87 

    1.07 6.5 1.00 6.6 1.00 6.4 0.98 

    1.085 3.6 1.00 3.8 1.00 4.3 1.00 

    1.1 2.6 1.00 2.6 1.00 3.2 1.00 

    1.13 1.7 1.00 1.6 1.00 2.2 1.00 

    1.16 1.2 1.00 1.2 1.00 1.7 1.00 

  120 obs 1.05 21.0 0.99 21.1 0.96 17.7 0.88 

    1.07 6.4 1.00 6.5 1.00 6.5 1.00 

    1.085 3.6 1.00 3.9 1.00 4.2 1.00 

    1.1 2.5 1.00 2.6 1.00 3.1 1.00 

    1.13 1.7 1.00 1.6 1.00 2.2 1.00 

    1.16 1.2 1.00 1.2 1.00 1.7 1.00 
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Table 8. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
50, 0.01,  0.7κ σ ρ= = =  

 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 32.5 0.36 32.8 0.29 26.1 0.05 

    1.07 27.7 0.82 28.5 0.78 22.6 0.14 

    1.085 24.7 0.91 23.4 0.94 16.8 0.27 

    1.1 19.2 0.95 18.1 0.99 15.3 0.48 

    1.13 10.2 1.00 11.2 1.00 11.8 0.79 

    1.6 5.9 1.00 7.3 1.00 7.9 0.97 

  120 obs 1.05 53.6 0.65 51.4 0.61 38.1 0.08 

    1.07 42.0 0.89 36.8 0.86 29.9 0.15 

    1.085 31.2 0.43 25.0 1.00 26.2 0.32 

    1.1 22.4 0.82 17.3 1.00 23.5 0.50 

    1.13 11.2 0.95 9.8 1.00 15.7 0.85 

    1.16 6.2 1.00 5.8 1.00 12.8 0.07 

Fri 12 am 60 obs 1.05 21.5 0.31 25.0 0.33 11.1 0.22 

    1.07 17.2 0.59 20.5 0.78 8.3 0.38 

    1.085 12.8 0.82 14.9 0.94 7.1 0.62 

    1.1 9.4 0.95 9.5 0.98 5.0 0.93 

    1.13 3.8 1.00 3.4 1.00 3.3 1.00 

    1.16 2.2 1.00 1.8 1.00 14.3 0.43 

  120 obs 1.05 36.9 0.36 40.9 0.47 12.7 0.20 

    1.07 28.3 0.68 29.1 0.88 26.2 0.07 

    1.085 20.5 0.96 17.1 0.98 14.9 0.23 

    1.1 12.1 0.98 9.8 1.00 9.3 0.61 

    1.13 4.1 1.00 3.4 1.00 5.3 0.93 

    1.16 2.0 1.00 1.6 1.00 3.2 1.00 
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Table 9. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
50, 0.001,  0.7κ σ ρ= = =  
 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 27.9 0.80 27.9 0.83 28.1 0.75 

    1.07 15.7 0.99 15.8 1.0 15.7 0.85 

    1.085 10.4 1.00 10.5 1.00 9.3 1.00 

    1.1 7.9 1.00 7.5 1.00 7.1 1.00 

    1.13 4.9 1.00 4.9 1.00 5.4 1.00 

    1.6 3.6 1.00 3.5 1.00 4.2 1.00 

  120 obs 1.05 35.4 0.97 34.8 0.96 35.7 0.89 

    1.07 16.6 1.00 16.4 1.00 18.5 1.00 

    1.085 10.5 1.00 10.8 1.00 11.9 1.00 

    1.1 7.8 1.00 7.7 1.00 10.0 1.00 

    1.13 5.0 1.00 4.9 1.00 7.0 1.00 

    1.16 3.6 1.00 3.5 1.00 4.4 1.00 

Fri 12 am 60 obs 1.05 19.4 0.80 19.5 0.89 22.3 0.77 

    1.07 8.8 0.99 8.8 1.00 11.4 0.93 

    1.085 5.1 1.00 5.0 1.00 8.1 1.00 

    1.1 3.5 1.00 3.5 1.00 6.7 1.00 

    1.13 2.2 1.00 2.1 1.00 3.4 1.00 

    1.16 1.6 1.00 1.6 1.00 2.3 1.00 

  120 obs 1.05 25.0 0.89 25.1 0.89 29.7 0.81 

    1.07 8.6 0.99 8.7 1.00 13.5 0.98 

    1.085 5.0 1.00 5.0 1.00 9.2 1.00 

    1.1 3.5 1.00 3.5 1.00 6.3 1.00 

    1.13 2.2 1.00 2.2 1.00 3.3 1.00 

    1.16 1.6 1.00 1.5 1.00 2.1 1.00 
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Table 10. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
50, 0.01,  0.4κ σ ρ= = =  

 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 32.8 0.35 33.8 0.38 33.0 0.06 

    1.07 28.5 0.72 28.9 0.72 30.5 0.17 

    1.085 22.8 0.91 21.9 0.91 26.3 0.31 

    1.1 20.0 0.99 18.4 0.99 25.9 0.53 

    1.13 12.3 1.00 10.8 1.00 19.1 0.88 

    1.6 6.7 1.00 6.5 1.00 11.1 0.99 

  120 obs 1.05 52.7 0.62 50.3 0.62 53.6 0.08 

    1.07 37.1 0.95 35.2 0.98 48.5 0.20 

    1.085 24.5 1.00 28.6 1.00 43.7 0.47 

    1.1 18.6 1.00 18.2 1.00 38.3 0.77 

    1.13 14.1 1.00 13.5 1.00 24.0 0.91 

    1.16 6.3 1.00 6.0 1.00 10.4 1.00 

Fri 12 am 60 obs 1.05 30.9 0.36 23.2 0.37 19.5 0.07 

    1.07 25.5 0.75 21.9 0.74 16.9 0.18 

    1.085 17.2 0.93 16.3 0.94 16.2 0.34 

    1.1 10.7 0.99 7.9 1.00 14.7 0.53 

    1.13 4.1 1.00 4.1 1.00 9.2 0.89 

    1.16 2.5 1.00 2.2 1.00 5.4 1.00 

  120 obs 1.05 46.2 0.43 41.7 0.47 42.4 0.11 

    1.07 34.2 0.86 29.4 0.89 33.5 0.29 

    1.085 23.2 0.97 18.3 0.99 24.2 0.70 

    1.1 14.0 1.00 10.4 1.00 21.3 0.97 

    1.13 6.2 1.00 4.0 1.00 10.0 1.00 

    1.16 3.5 1.00 2.1 1.00 4.7 1.00 
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Table 11. Performance Comparison of AILR, JLR and EWMA in the Negative Binomial 

Setting with 2
50, 0.001,  0.4κ σ ρ= = =  
 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.05 27.3 0.85 26.7 0.88 29.3 0.75 

    1.07 14.3 0.99 11.4 1.00 15.7 0.85 

    1.085 10.9 1.00 8.4 1.00 9.3 1.00 

    1.1 7.4 1.00 6.0 1.00 7.1 1.00 

    1.13 4.9 1.00 4.6 1.00 5.4 1.00 

    1.6 3.6 1.00 3.6 1.00 4.2 1.00 

  120 obs 1.05 32.0 0.98 32.1 0.98 35.7 0.89 

    1.07 14.9 0.99 11.6 1.00 18.5 1.00 

    1.085 10.0 0.99 10.1 1.00 11.9 1.00 

    1.1 7.6 1.00 5.8 1.00 10.0 1.00 

    1.13 4.8 1.00 3.9 1.00 7.0 1.00 

    1.16 3.6 1.00 3.5 1.00 4.4 1.00 

Fri 12 am 60 obs 1.05 18.0 0.86 14.3 0.89 22.3 0.77 

    1.07 8.3 0.99 8.3 0.99 11.4 0.93 

    1.085 5.1 0.99 5.0 1.00 8.1 1.00 

    1.1 3.6 0.99 3.6 1.00 6.7 1.00 

    1.13 2.2 0.99 2.2 1.00 3.4 1.00 

    1.16 1.6 1.00 1.6 1.00 2.3 1.00 

  120 obs 1.05 21.5 0.91 22.4 0.91 29.7 0.81 

    1.07 8.2 0.99 8.5 1.00 13.5 0.98 

    1.085 5.0 1.00 4.9 1.00 9.2 1.00 

    1.1 3.6 1.00 3.5 1.00 6.3 1.00 

    1.13 2.3 1.00 2.2 1.00 3.3 1.00 

    1.16 1.8 1.00 1.7 1.00 2.1 1.00 
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Table 12. Performance Comparison of AILR, JLR and EWMA in the Poisson Setting with 
2

0.01,  0.7σ ρ= =  
 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.08 27.2 0.41 28.2 0.37 18.0 0.05 

    1.1 24.0 0.50 25.0 0.52 15.0 0.08 

    1.12 20.0 0.79 21.4 0.76 14.2 0.19 

    1.2 6.0 1.00 6.4 1.00 7.1 0.92 

    1.22 4.7 1.00 5.0 1.00 5.3 1.00 

    1.24 3.9 1.00 3.8 1.00 4.3 1.00 

  120 obs 1.08 38.4 0.54 42.8 0.51 34.0 0.03 

    1.1 35.8 0.72 37.9 0.68 20.4 0.08 

    1.12 22.4 0.87 29.5 0.88 27.1 0.20 

    1.2 5.6 1.00 6.4 1.00 8.3 0.98 

    1.22 4.6 1.00 4.8 1.00 6.4 1.00 

    1.24 3.9 1.00 3.88 1.00 5.3 1.00 

Fri 12 am 60 obs 1.08 16.7 0.33 16.6 0.29 8.6 0.06 

    1.1 13.2 0.49 15.7 0.45 8.8 0.13 

    1.12 10.7 0.71 13.0 0.67 7.5 0.33 

    1.2 2.4 1.00 2.6 1.00 4.1 1.00 

    1.22 2.0 1.00 1.9 1.00 3.5 1.00 

    1.24 1.6 1.00 1.5 1.00 3.2 1.00 

  120 obs 1.08 22.6 0.37 25.4 0.33 11.9 0.07 

    1.1 23.5 0.50 20.8 0.49 9.7 0.15 

    1.12 10.4 0.76 17.3 0.73 8.6 0.35 

    1.2 2.6 1.00 3.1 1.00 4.1 1.00 

    1.22 2.0 1.00 1.9 1.00 3.6 1.00 

    1.24 1.6 1.00 1.5 1.00 3.2 1.00 
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Table 13. Performance Comparison of AILR, JLR and EWMA in the Poisson Setting with 
2

0.001,  0.7σ ρ= =  
 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.08 28.2 0.72 26.6 0.80 25.4 0.81 

    1.1 22.2 0.93 20.9 0.95 21.4 0.94 

    1.12 11.9 1.00 12.0 1.00 11.3 1.00 

    1.2 3.6 1.00 3.7 1.00 5.0 1.00 

    1.22 3.1 1.00 3.1 1.00 4.5 1.00 

    1.24 2.7 1.00 2.6 1.00 4.0 1.00 

  120 obs 1.08 38.4 0.82 34.3 0.92 38.7 0.91 

    1.1 24.3 0.98 21.7 1.00 28.9 0.98 

    1.12 12.3 1.00 12.6 1.00 12.9 1.00 

    1.2 3.6 1.00 3.7 1.00 5.1 1.00 

    1.22 3.0 1.00 3.1 1.00 4.4 1.00 

    1.24 2.7 1.00 2.6 1.00 4.1 1.00 

Fri 12 am 60 obs 1.08 37.0 0.81 29.2 0.79 23.2 0.76 

    1.1 14.8 0.92 14.5 0.91 17.8 0.88 

    1.12 7.4 0.99 7.9 0.99 8.0 1.00 

    1.2 1.6 1.00 1.7 1.00 3.2 1.00 

    1.22 1.4 1.00 1.4 1.00 3.0 1.00 

    1.24 1.2 1.00 1.2 1.00 2.8 1.00 

  120 obs 1.08 20.1 0.69 23.3 0.76 23.0 0.76 

    1.1 16.1 0.90 15.9 0.93 18.8 0.94 

    1.12 7.1 0.99 7.5 1.00 7.1 1.00 

    1.2 1.6 1.00 1.7 1.00 4.2 1.00 

    1.22 1.4 1.00 1.4 1.00 4.0 1.00 

    1.24 1.2 1.00 1.2 1.00 2.8 1.00 
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Table 14. Performance Comparison of AILR, JLR and EWMA in the Poisson Setting with 
2

0.01,  0.4σ ρ= =  
 

  
 

AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.08 28.5 0.41 30.0 0.45 25.5 0.04 

    1.1 25.0 0.62 27.5 0.61 26.5 0.08 

    1.12 19.1 0.83 23.4 0.84 25.7 0.22 

    1.2 5.9 1.00 6.7 1.00 10.1 0.99 

    1.22 4.5 1.00 5.1 1.00 7.0 1.00 

    1.24 3.9 1.00 4.1 1.00 5.1 1.00 

  120 obs 1.08 38.8 0.67 40.9 0.63 41.4 0.05 

    1.1 35.0 0.87 38.8 0.84 43.2 0.12 

    1.12 24.6 1.00 26.7 0.96 34.5 0.25 

    1.2 5.8 1.00 6.4 1.00 10.1 1.00 

    1.22 4.6 1.00 5.2 1.00 7.0 1.00 

    1.24 3.8 1.00 4.1 1.00 5.2 1.00 

Fri 12 am 60 obs 1.08 18.2 0.53 21.0 0.46 20.3 0.02 

    1.1 22.0 0.73 24.8 0.72 14.9 0.07 

    1.12 15.5 0.86 16.5 0.87 14.0 0.24 

    1.2 2.4 1.00 3.0 1.00 4.6 1.00 

    1.22 1.9 1.00 2.0 1.00 3.3 1.00 

    1.24 1.6 1.00 1.6 1.00 2.6 1.00 

  120 obs 1.08 31.1 0.57 32.6 0.53 20.5 0.03 

    1.1 29.2 0.81 30.8 0.86 22.1 0.06 

    1.12 22.0 0.92 21.3 0.96 16.2 0.25 

    1.2 2.5 1.00 2.9 1.00 4.7 1.00 

    1.22 2.0 1.00 2.0 1.00 3.3 1.00 

    1.24 1.6 1.00 1.5 1.00 2.7 1.00 
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Table 15. Performance Comparison of AILR, JLR and EWMA in the Poisson Setting with 
2

0.001,  0.4σ ρ= =  
 

  
AILR JLR EWMA  

Start Time Duration Increment(c) Det Time Det Rate Det Time Det Rate Det Time Det Rate 

Mon 7am 60 obs 1.08 25.4 0.80 25.6 0.84 25.3 0.81 

    1.1 19.0 0.98 19.4 0.98 21.8 0.93 

    1.12 11.4 1.00 11.8 1.00 13.2 1.00 

    1.2 3.7 1.00 3.7 1.00 7.0 1.00 

    1.22 3.1 1.00 3.0 1.00 5.1 1.00 

    1.24 2.6 1.00 2.6 1.00 4.2 1.00 

  120 obs 1.08 33.5 0.95 32.1 0.97 32.8 0.91 

    1.1 20.5 0.98 19.9 1.00 24.1 1.00 

    1.12 11.6 1.00 11.6 1.00 19.0 1.00 

    1.2 3.6 1.00 3.6 1.00 7.1 1.00 

    1.22 3.0 1.00 3.0 1.00 5.7 1.00 

    1.24 2.6 1.00 2.7 1.00 4.2 1.00 

Fri 12 am 60 obs 1.08 19.3 0.75 18.1 0.73 17.2 0.74 

    1.1 14.5 0.94 13.4 0.94 14.7 0.93 

    1.12 7.7 1.00 7.3 1.00 7.3 0.35 

    1.2 1.6 1.00 1.7 1.00 3.2 1.00 

    1.22 1.3 1.00 1.3 1.00 2.7 1.00 

    1.24 1.2 1.00 1.2 1.00 2.2 1.00 

  120 obs 1.08 24.8 0.82 25.5 0.82 22.7 0.84 

    1.1 15.6 1.00 15.4 0.96 13.3 1.00 

    1.12 7.2 1.00 7.5 1.00 8.3 1.00 

    1.2 1.7 1.00 1.6 1.00 3.1 1.00 

    1.22 1.4 1.00 1.3 1.00 2.6 1.00 

    1.24 1.2 1.00 1.2 1.00 2.2 1.00 
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