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NUCLEAR FUSION: 1 (1961) 101—120

FLUCTUATIONS OF A PLASMA (I)

NORMAN ROSTOKER

JOHN JAY HOPKINS LABORATORY FOR PURE AND APPLIED SCIENCE

GENERAL ATOMIC DIVISION OF GENERAL DYNAMICS CORPORATION

SAN DIEGO, CALIFORNIA

We consider a fully ionized plasma. At time t the state of the system is represented by a point
X in the phase space of all the particles. We define DsdXdX' . . .dXM as the joint probability
that at time t the system will be in (X, dX), at time t' in (X', dX'), etc. A systematic procedure
has been developed for calculating any desired moment of Ds as an expansion in the discreteness
parameters e, m, and \jn. Spectral densities and autocorrelation functions can thus be obtained
without any "StoBzahlansatz" or Markoffian assumption. A comprehensive treatment of a plasma
in thermal equilibrium has been carried out. A large class of non-equilibrium states may exist
in a hot plasma for sufficient time to be considered stationary. Fluctuations have been calculated
for the class of spatially homogeneous states of an infinite plasma. It is of some interest that
thermal equilibrium relationships such as Kirchhoff's radiation law and the fluctuation-dis-
sipation theorem survive. As an application we have calculated the degree of excitation of the
collective modes such as plasma waves, ion oscillations, etc. For distribution functions which
approach instability as some parameter is varied, the energy for some modes becomes very large
and ultimately becomes infinite as instability is approached.
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1. Thermal equilibrium with Coulomb interactions F m. e x a m p l e 0(xt)=Yqnd (*-*,), the charge

1.1 INTRODUCTION

The state of a plasma at time t is represented by
a point in phase space X = (xv Vj); (x2, v 2 ) . . . (x,,, v,,)
where xn> vn are position and velocity of the n-th
particle. For an ensemble of systems Dx (X, t) dX
means the probability that at time t a system will
be in the volume element (X, dX) of phase space.
Dx (X, t) determines the expectation value for the
measurement of any observable at position x and
time t, i. e.,

<0(x, t)) = JDi (Xt) 0 (xt) dX. (1)

density; £q,,\nd(x—x«), the current density, etc.
n

If a plasma is in thermal equilibrium, (0 (xt)) = 0 for
these quantities. However there are spontaneous
fluctuations so that

(x, t)) = Ji>i (X, t) O2 (xt) dX (2)

It is possible to make more sophisticated measure-
ments of fluctuating quantities whose expectation
values are not determined by D1(Xt). We shall be

* Research on controlled thermonuclear reactions is a joint program carried out by General Atomic and the
Texas Atomic Energy Research Foundation.
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N. ROSTOKER

concerned in particular with the auto-correlation
function, see, e.g. LAX [1]:

1/4

C(T) = lim -^r\dtO(t)O(t
T/2

• J '
- T / 2

(3)

8+ {p) is the Laplace transform of the function 0+ (r)
where

C+(T) = C(T) ( T > 0 )

- 0

and the spectral density
772

S{a)) = lim -^-{ (dtdf (4)

S~ (p) is the Laplace transform of the function C~ (T)
where

C-(T) = C(T) (T<0)

= 0 (r>0).

For example;
y + ioo

lim -^

- T / 2

To determine the expectation value of quantities
like 0 (t) 0 (f), the state of the system at time t is
insufficient. It is necessary to consider a more general
description of the plasma that involves D2(Xt\
X' t') dX dX', the probability that at time t the
system will be in (X, dX), and at time t' in (X', dX').
In terms of this function the expectation value is

(0 (0 0 («')> =JD2 (Xt; X' t') 0 (t) 0 (0 dX dX'. (5)

For a stationary random process this will depend
only on r = t' — t so that

= -^- f(2 co e J » T ^ - f d oi' [d x' e j <»' - ») *' /S (o>')
— 00 — 00 0

00 00

= -^jd to' 5 (o)') Jd T' ej»'T' 6 (T' — T)

(T>0)

(C(T))=(O(t)O(t + (6)

Laplace transforms will be employed in most cal-
culations. To express 8 (co) and C (T) in terms of
Laplace transforms, consider the identity

oo oo

S (co) = -j^rfd oi'idt ei(^'~ «"><£ (co') .

= 0 ( T > 0 ) .

Since C (T) is an even function of T,

8+ (p) is regular in the right half of the p-plane and
S~ (p) is regular in the left half.

According to Eq. (4), S (co) must be real if a) is
real. S+ (ico) is, however, complex; the real and im-
aginary parts satisfy a dispersion relation.

• 00 — 00 Im [8+ (i «>)] = - P f - ^ — Re [S+ (i a))] (8)

Now, or

= TC d (to' —eo)+ i P — ^
' t o

Re

1 ^ ' - " ) ' =7r<5(co' — co) — i P—^— ,
O} CO

where P means the principal part. Let

The real and imaginary parts of S+ (ico) are Hilbert
transforms. An alternative way of writing Eqs. (8) is

l im f#+(ieo')rf
—7-i i—

= 0 , (9)

in which it is clear that the equality exists because
of the fact that 8+ (ico) is regular in the lower half
of the co-plane (or S+ (p) is regular in the right half of
the p-plane). Similarly

then

c s~ (
lim —r±(ico) dco' ,.

co + i A
(10)

')dco'

because S~ (ico) is regular in the upper half of the
co-plane.

The spectral density and auto-correlation function
can be generalized to include spatial fluctuations and
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FLUCTUATIONS OF PLASMAS

also different components of a tensor. The spectral
density is defined as

=lim-^rJ \dxdx' dtdt'J \
xOa{xt)Op{x't')

= lim -~ - 01 (k, co) O(,(Kw) (11)

which is Hermitian. The auto-correlation function is

v r- FT
( 1 2 )

The symmetry properties of these quantities are

£ M (k, co) = # ; a ( k , o>) =£«%(— k,— co)
C0lp(T)r)==Cpa(—T>—T).

The total fluctuation is symmetric, i.e.,

(0,0) = J (k, co)

(13)
VT

For a spatially homogeneous plasma and a stationary
random process <Oa (xt) Op (x + r, t + T)) depends only
on r and r so that Ca/J (r, T) = (O« (x«) 6^ (x + r, t + T)>.
A systematic procedure will be developed for cal-
culating Ca.p. Fourier transforms will be employed
for the spatial co-ordinates and Laplace transforms
for the time. The result will be obtained in the form

= 0

(t>0)

(T < 0) .

The previous discussion of the two-sided Laplace
transforms may be applied to infer a Hermitian and
an anti-Hermitian spectral density.

cr+ /!,- 4 , ,\ u a P Vn» *"/ i 1

= 8^ (— k, — i M) = [8}a (k, i co)] *

The Hermitian spectral density is

i8fa/,(k,tt)) = i8fi/,(k,ifl>)+[^a(k>i«))]»

There is also an anti-Hermitian spectral density

which is simply related to the Hilbert transform of
the Hermitian spectral density. If 2 8£p(ls., ico) is

symmetric, the real part will be the spectral density
and the imaginary part will be its Hilbert transform.

We shall begin with a plasma consisting of electrons
and randomly distributed positive ions of infinite
mass. Only Coulomb forces will be considered. The
calculations will be progressively generalized to include
ions of finite mass, constant external magnetic field,
the complete electromagnetic field and relativistic
modifications. In Section 1 we shall consider only
Coulomb interactions and thermal equilibrium.

1.2 JOINT PROBABILITY FUNCTIONS

Ds (Xt; X't';-- -X(*)tO) dX dX'- - - d l « means
the joint probability that at time t the system will
be in (X, dX), at time t' in {X'} dX') etc. The entire
system is trivially Markoffian so that all functions Ds

can be expressed in terms of Dx and D2. D2 (Xt; X' t')
satisfies the Liouville equation in the variables X' t',

dt'

N

n=\

N

X/| d\n'

and the initial condition

D 2 {Xt; X' t') = £>! (Xt) d (X' — X)

where
N

6 (Xf— I ) = f l ^ (*'„-x») * ( • ' » - v,,).

Coulomb forces only are considered and the ions
are omitted from the problem in the usual way. For
present purposes it is sufficient to determine

(Xt t; Xi' t') = (Xt; X' t')

(16)

where all coordinates are integrated out except Xi, X/.
The method consists of taking moments of the Liou-
ville equation to produce chains of equations. The
chains are solved by an expansion procedure in which
the parameters of expansion are e, morl/% as discussed
previously by ROSTOKER and ROSENBLTJTH [2]. The
determination of Wtj is very directly related to the
previously discussed problem of test particles in a
plasma [2].

Let

ip x t; X' t') = VJD2 (Xt; X' t') (dX)N~K (17)

ip satisfies the Liouville equation in (X';f) and the
initial condition

.y>(XLt;X' t') =VDt (X' t) d (X't — Xx). (18)

Assuming that Dx (Xt) is symmetric with respect to
the interchange of the co-ordinates of any two particles
it follows that y> is also symmetric except for particle
one, i.e., particle one is a singled-but test particle.
We have thus reduced the problem to the previously
discussed test-particle problem except that we have
different initial conditions for the present case.
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The s-body functions may be defined as follows:

/, {Xx --Xs;t)= Vs [DX (Xt) {dX)N~s
x \ ! _i_ i k v 2 h _ i(k-yj (n/k) U ( k , p ) \ i

\ P + i k - V i l (fcJ,D)2e(k,p) J/

N
= V'L(X1t;X't')dX1' dX's + 2--dX'

J

Qs(Xxt;Xx'--X/,t')

= V*jy,(X1t;X't')dX's+1—dX'N.(19)

We note that

W1X (Xx t; Xx t') = QX {Xx t; Xx t')

WX2 (Xx t; X2' t')=Fx (Xx t; X> t').

By taking moments of the Liouville equation, coupled
chains of equations are obtained for Fs, Qs. These
chains have previously been terminated by expanding
in terms of the discreteness parameters [2]. For our
present purposes we need to know Wfl Wfl W$.
The equations for these functions are as follows:

( 2 0 )

fc r f(v')d\'

V fik-df/dv'dy'n \ i V fik-df/dv'd(k,p)=l ^ j p + i k . y >

1.3 FLUCTUATIONS OF ELECTRIC FIELD

Consider first the total fluctuation

a{xt) E {xt)) =

/, n

_ 2 f ^ 1 8 1 , , „
Jda;a|x—xx| dxp |x—xx| ' ^

 x' x

)dxa |x—xj Sx/3 |x—x2|
/<JV ls ^ * ^ 7

i t is dear that to obtain the lowest order result
consistently, fx is required to lowest order and /2

to first order. Substituting the thermal equilibrium
functions we obtain the result

W12 {Xx t; X2 t) =/2< (Xx, X2 ; t) = / (vx) / (v2) .

EM( 0 ) means the macroscopic-field

E^f(x , t ) = nej -Q-^r I x / x /1 / (V2 ) dX2 = 0 .

d

The term [1 + ()fc XD)2]"1 comes from the terms in
Eq. (24) where l^=n. These terms can be neglected
for &̂ > 1/LD, but are quite important for k<^ I/LD-
The energy associated with a given k can be obtained
from

<E • E> r dk © 1
~ 8 ^ ~ = J (2TT)3 T 1 + (JcLD)2 * ^ ^

The energy per degree of freedom in the electric field
is evidently 0/2 for 1CLD<^ 1 and much less for

i 4_v \ w w ( X t - X ' t ' \ e 2 d f(v'
7 / 12 x 2 ~ m 8v2'

 n 2 8x7

t; X2't)= -

n rWV(Xlt;X3't')dX3> I = ( )

To obtain the spectral density consider the ensemble
^erage

( 2 2 )

In the above equations V J dx« |x-xx | dxp' | x ' - x / |
W[0

l
)(Xxt;X1't')dX1dX1'

The solutions of these equations are

W[^(XX t; X\ t') = Vf (vx) d [x\- xx-\x (*'-1)] 6 (v\- \x)

W[°2
)(Xxt;X2't')=f(vx)f(v2') (23)

:xt; X2' t') = f (vx) f Mj-^r eik- (V- ^)

'~l) Wpk{vx, v2')

x'—xa

WaUx t-X 't r)dX dX '

After substituting from Eq. (23) and carrying out
t h e i n t e g r a t i o n s > t h e r e s u l t i s

y + ioo

)t nf

where
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FLUCTUATIONS OF PLASMAS

According to the definitions of Eqs. (12.1) and (14)

Si,(k,p) = (4TTef n-;/• E ^ 0 ) e \ ^ • (26)
+ -i P

The spectral density is therefore

lA. \2 ka.kp 2 TT Re[C/(k, i co)]
= (4Tie) n—^--j |e(k, i o>)|2

and the Hilbert transform of $a p is an odd function of co,

oo oo

(27) -oo™ - o o "

kakp du)U(k,ico)

w-PLANE

If Ave define vM = k-v/fc and

l—w'ik)dm'

=— {—= exp — -—.- \- —

1 f 1 I i / o i l / a i \ 3 \

(28)

When JCLD^> 1, | e (k, co) |2 ̂  1; when JCLD<^ 1 and
k v

= Re'

Fig. 1 Contour of integration used in evaluating the
integral of Eq. (30).

The most convenient contour of integration is
illustrated in Fig. 1. In the lower half of the co-plane
U (k, ico)/e (k, ico) has no poles. On the boundary
circle co = Reie

k 1
lim U (k, i co) — -

lim e (k, i co) = 1

(29)

In this case the denominator exhibits a resonance
at oj = cop. The spectral density $a/? (k, co) must satisfy
the relation

(Sap (k, co) - ^ - = (Ea (x t) Ep (x t))k

— oo

oo

J_ C F{— co/k)
k J"

Therefore
0 = 0

kakp 1

or which agrees with Eq. (25) since e {k, 0) is equal to

| e (k , i« ) | 2 , = 1 + (kLD)* • (30)

By using the asymptotic forms for e (k, ico) the
integration can easily be carried out and we obtain

For a plasma consisting of electrons and ions,
Eqs. (26) and (27) apply if we define U and e as follows:

(32)

F(—tolk)dto
(kLD>l)

(kLD<l).

k* ) p + ik -v '

By carrying out the integration approximately, making
use of asymptotic forms, it is apparent that only
values of k for which weakly damped plasma oscilla-
tions exist are fully excited to the energy 0/2 per
mode. I t is possible to carry out the integration
exactly by a contour method, but this gives less
physical insight. From Eq. (27) it is apparent that
$a p (k, w) must be an even function of co. Since

ojpf- = 4 7i n e2 / mj.

1.4 SUPERPOSITION OF DRESSED PARTICLES

Consider the Vlasov equation

d& 8f
e « ~ r Y ' e x ~ 1 ~ m e x e v = 0 (33)
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where Thus

Suppose a U = - o o , /(«) = (mj2n 0)T e x p [ _ m
and an external charge density of order e is switched
on adiabatically; i.e., With the change of variable ro = k v 1 this becomes

g e x t = l i m g(k., (0)6* < » - * * > ' e i k " x . /w fx,\jp (xt\\ (A-r\2Vi(
dkdt0 kgkfi 2TZ F(—talk)

If Eqs. (33) are solved in the usual way, the result is j n agreement with Eq. (27).

0 ( X M _ * 7 C g ( k , 0>) i ( q , f + k - X ) / Q 4 \
v ' ' &2e(k,ift>) V ' 1.5 FLUCTUATION-DISSIPATION THEOREM

a n Consider the Vlasov equation

a/

I t is therefore clear that e (k, ico) may be interpreted
as a dielectric constant. Suppose that at t= — oo, / = /<<» = (m/27c 0 )T

For a test charge Qext=—e d (x—xo — \ot) and exp (— mv2/2<9) and the electric field is switched
Q (k, o)) = — e e-1 k • x» <5 (f0 + k • v0). The electric field at o n adiabatically, i.e.,
a point x due to a fully "dressed" test particle at
x'=xo + \ot with velocity v' = v0 is E = lim E\\ (k/fc) e^w - i*)*e i k - x .

f dk i i k
E(x,X') ^ 4 T c e J ( 2 ^ 3 e l k ' ( x " x / ) p e ( k ) _ i k . v 0 - (35) i t is assumed that E is of order e so that / = /W + /(i)

If we imagine the particles of the plasma immersed
in a dielectric medium characterized by e (k, ico), then 8f (*> , d_f_M e_^ g/(°) _ Q
the Coulomb electric field due to a particle is effectively St dx m d\
replaced by Eq (35). If this is done the particles can A f t e r SQM for / (1) ^ ^ ^ c u r r e n t d e n g i ig

then be regarded as statistically independent in the determined
following sense:

<Ea(xt)Ep(x't')> j(xt) = -nej\ fW (xv; t) d\ + T^-^r

dk ,, , -, , / > k»ka The result for the current amplitude is
QP (t — t) QI K • (X — X) ** r r

^ ^ dv f(v) ^ ?'» = (1 /Z»)J 5II
X I : * . (36)

J (p + ik • ^ ^ ( k , — ik-v^l2 where
Therefore ,

= (4 TO)2 n —^—rj- 4 j
± Z L i- [Ime + i

r» p (K 1 ml

| J ( — / i ) i p f dco>F(-c»'lk) \ * £ ( K ' 1 W ) |

x ( | e ( k , i c o ) | 2 "•" re J ( w ' — w ) | e ( k , i o ) ' ) | 2 j " Since — Im e = (k LD)~2 (njk) co F {— ojjk), the spectral
~°° density of the electric field fluctuations may be

This is the same as the previous result and was expressed as
obtained by "dressing the particles" and neglecting
,, , ., , . ~ TTHD/V J. v ut\ J.I. ^as (k, co) = 2 & rn fca ksk2. (37)

the contribution from FJ2' {Xx t; X2 t), the cor- p v ' " Pl v '
relation of different particles.* Similarly in the cal-
culation of IQ KIRCHHOFF'S RADIATION LAW

{Eai{xt)Eji{\t))=^Dl{Xt)^Eai{x,xi)Ep{x,Xn)dX T h e energy density of the electrostatic field is
In

<E(x<) • E (xt)) fdkda) w . .
we can neglect the terms l^n, or assume /2 (Ax X21) = g^ = J /2TTU W \K> W )
= / (vi) f (v*) provided E (x, xn) is replaced by E (x, Xn).
* This method of obtaining the spectral density of wtlc \— ^7zne2 * ^(—co/fc)

electric field fluctuation was first pointed out to the ' ' ̂  p k~ \e (k, ito)|2 '
author by W. B. Thompson of the Atomic Energy
Research Establishment, Harwell, United Kingdom, in From the previous problem, the absorption coefficient
a lecture given at General Atomic in January 1960. may be defined as follows: the power absorption is
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FLUCTUATIONS OF PLASMAS

The absorption coefficient is

a(k, co) = 3 7rRe(l/zM) = — 2co Ime (k, i co)

According to Kirchhoff 's law, we should expect that
the emission per unit volume from the plasma would be

e (k, co) = PF(k, co) a (k,co)
0 m» FH-co/k)

~ (fc^)4 F | ( k i ) | 2 '

That this is the case can be seen by a direct calculation
of the emission. The force on a test particle of velocity
v' is from Eq. (35),

= - 4 7c e2 f d k k
J (2TV)3 A;2

( 2 T I ) 3 &2e(k,— i k - v ' )

k I m e (k, — i k • v ')
| e (k , — i k - v ' ) | 2 "

The rate at which the particle loses energy is
v'-F(v') which is therefore the rate of emission of
energy from one particle. For a plasma in equilibrium
there are nf (v1) particles in {X', dX') so that the
total emission per unit volume is

dk
f { v )

k v ' Ime(k, —ik • v')
|e(k, — ik • v')

If we change the: variable of integration to co =
the result is

dkdco ., .
( k ^

k-v'

where e (k, co) is given by Eq. (38). Kirchhoff's law
has previously been stated for plasma waves [2] in
the form

e{k)=0 2eL(k) (39)

where EL{1C) is Landau's damping coefficient. This
result is recovered if we integrate Eq. (38) over co
for ICLD^ 1. Eq. (38) is more general than Eq. (39)
in that it applies to all wavelengths including ICLD ̂ > 1
in which case plasma waves are very strongly damped.

1.7 FLUCTUATIONS OF CURRENT DENSITY

The current density is j = — e ^ V , 6 (x — xn). The

ensemble average of {ja (x t) jp (x' t')) is calculated
making use of Eq. (23). The result is

. (40)

The real part of 2 S£p (k, ico) is the spectral density

2TT

k \e(k, i ^ '

We note that S\\ (k, co) differs from the corresponding
quantity for the electric field by a factor of (co/47c)2.
This could have been anticipated because the spectral
density is essentially an ensemble average of the
square of Fourier components. According to Maxwell's
equations ico Q (k, co) + i k-j (k, co) =0 , ik-E(k, co) =
= 4TU Q (k,co), or k-j (k, co) = — (ico/47i) [k-E (k, co)].
The relationship between the spectral densities is
thus apparent.

The above result can also be obtained by a super-
position of independent dressed test particles as in
Section 1.4. The current density at x due to a dressed
test particle with X1 — (x1; vx) is

j (x, Z x ) = —e vt 6 (x — xt) — n e \ \ df (x, \,t)d\

where [2]
s 11 i\ 4Tie2 f dk . . ( v v ,
d j x, v, t) = e1 k • <x-x i )

k - a / ( « ) / 8 v

Eq. (41) may be obtained as follows:

= ^ \h(x, Xx) jp(x/ X,1)

Substituting W||(°) from Eq. (23) we obtain the same
result for 2 Re 8£fi (k, ico) as Eq. (41).

A fluctuation dissipation theorem exists for the
current density that involves a different dissipation
tensor from that previously employed for the electric
field fluctuations. It is defined as follows:

1L = 0

V2&=4:Ken\jf{x,Y,t)dY— 11.

At t = — oo, / = /(°) (v) and an external electric field
of order e is switched on adiabatically, i.e.,

i k • xEext(x£)=lim E(kco)

We can calculate the conduction current as

j (X«) = — nef\fa){xY,t)dv

where

and
j a (k, co) =cra/3 (k, ico) Ep (k, co)

The theorem for current fluctuations is

(42)

or
tf (k, co) = 2 6 Re [cra/S (k, ico)].
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1.8 FLUCTUATIONS WITH A CONSTANT MAGNETIC FIELD

The calculations in this case follow the same pattern
as in the case of zero magnetic field. The only new
feature is the addition of the term — (e/ra c) (v xB) •
• (d fjc v) to the Vlasov equations. The resultant spiral
unperturbed orbits make the calculations considerably
more involved. However, no new techniques are
required so that we shall simply discuss the results.

The dielectric constant is

J»2(k1a)i[k.8fldy],l

where

= k2 11
dvz

n 8f
a dv±

[k

We note that
oc = e B/mc.

e(k,0) =
[kLDy<

as in the case of zero magnetic field. The other function
required to express the results is

-l p + 1 [k • V]n

n

with this definition

e (k, p) = 1 + (* LD)"* [1 — {n p/Jfc) U (k, p)].

The joint probability functions are as follows

where r = ? — t and

v (?) = —v1± sin (p1 + coc T) OX

+ Vx JL COS (/?! + OJc t) Cy + Vlz Gz

x (?) = xL+a [cos (/?! + coc r) — cos ^ J ) c^
+ a [ s i n (p! + coc r) — s i n fix] cy + vlzr cz.

W{$ (X, t; X2' ?) = / (Vl) f M

exp {— i [k± a2 cos (02 — a) — fcj_ ax cos (/?! — a)]}

X

n
a,) J,

e {k, 0)

[p + i (k • v2),g

exp {i [n2 (f}2 —
 a) — ni (Pi — a)]}

W l I 1 7—T To 1 I I •

Most of the previous results for zero magnetic field
are recovered in the following sense; results that
depend only on k and p remain formally the same,
but with the new definitions of U (k, p) and e (k, p).
The expressions that contain position and velocity
coordinates are formally similar with the exception
of the Bessel-function sums and the angular factors
produced by the spiral orbits. For example, the electric
field at x due to a fully dressed particle at position x
and velocity v' is

e (k, - i [k • v']«) • (45)

This is to be compared with Eq. (35). The spectral
density of electric field fluctuations can be calculated
in the manner of Eq. (36).

= £JX (x,

The result for S^p (k, co) - 2 Re Sip (k, ico) is

a n \ iA v9 k<xkp 2n Ref7(k, ico)SK B (k, ct>) = (4 n e)2 n —~ -r- , ., . . 'p v ' v ' K4 k | e(k, ico) |2

which is formally the same as Eq. (27).
As in Section 1.5, a resistance can be defined. The

only modification is the addition of the Lorentz force
term to the Vlasov equation. The result is formally
the same, i.e.,

_ (4 Tie)2n n -p U(k, ico)
r " ~ k20 k | e ( k , i c o ) |2

(44) so that, as before,

Similarly the formal expressions for Kirchhoff's
in Section 1.6 are unaltered.

The current density fluctuations are somewhat more
involved so that a more detailed discussion will be
given. The ensemble average is

j (x',n> =

d (x'

$ (X, t; X,' t)d(x- xx)

x1')\1y1'dX1dX1'

(Xx t; X{ ?) d (x — xx)

x2') vx v2' dXx dX2'. (46)

Wn and W12 are given by Eq. (44). It is convenient
to express all vectors and tensors in terms of the unit
vectors

^ k / f c , e2 = and e 3 =

The cartesian components of k, v and B are (Jc± cos a,
fc^sina, kz)\ (—v^sin/?, w^cos/?, vz); and (0,0, B).
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Therefore \ = vl di + v2 e2 + v3 e3

where «1 = v - e 1 = y- [&* v*— &_L V ± s m (/?— <*)]

Vp^1111—v i cos (6 — a)

^ »±sin(^ — a).

We can associate with these components certain
symbolic components

FLUCTUATIONS OF PLASMAS

Placing p = ia>, the result for aap is

oo

_ ^ dv/(°)(«)»8 % ( — T ) e l k [ x ( - T ' - x l e - ' ' T d T

f (1 y /(0) (v\ v

(kLD)2e(k,p) J / v ; a

v2(") = ivlJn' (k±a)IJn(k±a)

ft 1

t
/ , , \ ft 1

itVz~

The purpose of the symbolic components is to express
quantities like va exp [1 fc^cos (/5 — a)] in terms of
Bessel-function sums. For example,

v exrj fi k a cos (6 a)l

= 2 J J"(/ci a ) e i " ( " ~ * + nl2) &* Vz ~~ kl-v± sin ̂  ~ a^ Ik

The result for Eq. (46) is

°°
f ik-v ' (—T)e i k t x ' ( - T >- x Je-P

dv/(°)(v) V(—T)e i k ' f x ' ("T )

X

X

T h e o r b i t f u n c t i o n s x ' {r)> y. ( T ) a r e g i v e n b y E q > ( 4 4 )

A f t e r m a k i n g B e s g e l f u n c t i o n expansions and carrying
o u t t h e a n g u ] a r i n t e g r a t i o n S 5 w e find t h a t 8+? (k> p) =

=@ Voip (k, p) which is the fluctuation dissipation
theorem.

I n o r d e r t 0 establish a superposition principle, con-
sider the Hermitian spectral density

flf7fl (k, co) = 8£fi (k, ico) + [^ a (k, io)]*

and substitute

where

into Eq. (47). The result is
X 2 ; #£/» (*, V) e« 0/!

a/? >§aP (k, 0 ) = 2nne21 d v /<°> («)

n e ( lft)

1 ^ \
/ " _ L _ t t .

w h e r e

A conductivity tensor is denned as follows:

V — T c n e j ^ j / w J .

At £ = — 00, / == /(°) (v) and the external field

is switched on adiabatically, E is of order [e].
The linear response is calculated and

[a) + kv (")

This can be put in a more suggestive form by intro-
ducing the effective velocity

(5Fa(k,ico) = —

in terms of which

U (x, t) - - nejva

= j a (k , co) e^

jo, (k, ro) == oap (k, ico) Ep (k, co).

SaP(k,(o) = 2nne2jd\f(°)(v)2JJn2(k1a)d[co + kv1(")]

X ^ . . ^ J [ V , , ,_^^ . (49)

We shall now obtain this result by superposing
independent dressed test particles. The current density
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at x0 due to a dressed test particle at X can be found two-body correlation function. For example the one-
by solving the test particle problem [2]. body distribution function will be a solution of

= -evad(x0-x)-nejvOLdfdy

where

I«(k,i;) = _ce-ifc-L<'«*</J-«>^T Jn (kL a) &"(?-« +nl'
n

.. i ... V,<»)

dv "nW"'" '[^'(m) — ̂ " ) — iA] J

X {««(») —

We can now compute

<i(M)J(l'O>

The result is

- - . • f / w

X [vpW —

The Hermitian spectral density clearly agrees with
Eq. (49). The anti-Hermitian spectral density is the
Hilbert transform of the Hermitian spectral density
so that the superposition of dressed test particles
gives completely equivalent results.

2. Non-equilibrium states with Coulomb forces

2.1 INTRODUCTION

A hot plasma may exist in a state quite different
from thermodynamic equilibrium for a substantial
length of time. Indeed, it is upon this fact that the
hope for fusion power is based. Such states are ap-
proximately stationary and it is of some interest to
consider fluctuations.

The states about which we shall examine fluctuations
are stationary in the sense of our expansion. They
will be adequately described for our present purposes
by specifying the one-body distribution function to
lowest order. This in turn uniquely determines the

>) dX'

We shall consider only spatially homogeneous so-
lutions /(°) = /(0) (v). There are two restrictions on
the function /(°) (v). First of all, there must be no
current density

because the magnetic field term is absent in Eq. (1).
Second, the secular equation

£ (k, p) = 1 — ^ - ^ ' 8 ^ Y d\ = 0 ,

must have no roots in which p has a positive real
. (50) p a r t ie> t h e g t a t e / ( 0 ) ( v ) m u s t b e s t a b l e

The two-body correlation function satisfies the
equation

Hi;dx X — X

(2)

This equation determines P (X, X') when /1(°) (v) is
given [3]. This information is sufficient to determine
the auto-correlation function and spectral density for
any quantity such as electric field or current density.
Calculations will be made for a plasma consisting
of electrons and infinite-mass ions, electrons and finite-
m a s s i o n s a n d t h e n a constant magnetic field will be
added.

2.2 JOINT PROBABILITY FUNCTIONS

This treatment will be quite similar to Section 1.2.
It is however more convenient to introduce condi-
t i o n a l probability functions for our present purposes, so
that we shall repeat some of the previous discussion.
The function D%{Xt; X't') satisfies the Liouville
equation in the co-ordinates X', t' and the initial
conditions

7M_n

The function C (Xt | X't') is defined by integrating
o u t all initial co-ordinates but one, i.e.,

/ i

where

I * I %•' t') = Vj D2 (X t; X' t') {dX)

(3)

- v N-I
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C (Xxt I X't') satisfies the Liouville equation in (X', t')
and the initial condition

C (Xxt \X't)= V Dx (X' t) d (X\~ Xx)\fx (Xlt t). (4)

The s-body functions are defined as in Section 1:

Ft(Xxt\Xt'—X't + l,t')

= VsJG {Xxt | X't') dXx' dX's+2--dXN'

Qt{Xxt\Xx'--X/,t')

= Vs \C (Xxt\X't') dX's + 1--dXN'

is (X,-- Xs; t)=V'JD1 (Xt) (dX)"-'

The initial conditions for one- and two-body functions
are as follows

Qx (AY t) =•• V 6 (AY— XX)

Q2

F2 (X2'

= Vd (Xx'—Xx) f2 (Xv X2'; t)\jx (X, t)
= f2(X1X2';t)lf1(X1t) (5)
= / , (Xx, X2', X3'; 0/A (X, t).

(The abbreviated notation Qx (Xx t') will be employed
instead of Qx (Xr t \ Xx' t') wherever this can be accom-
plished without confusion.)

Fs and Qs are determined by taking moments of
the Liouville equation and then expanding; i.e.,

where the parameter of expansion is e, m, or l/n. This
procedure has been carried out in detail for the test-
particle problem [2]. Essentially the same equations
apply to the present problem. However the initial
conditions are different in the present case; in partic-
ular we do not wish to assume that the field particles
are initially in thermal equilibrium. It is assumed that
a partial specification of the initial density in phase
space Dl(Xt) is given in terms of its moments. For
a spatially homogeneous plasma

/2 (Xx A V H / x (Vl *) / x (v2

+ /^o) (Vl) P (X2 Xs) + / / » (v2) P (Xlt X3)

P (Xv X2) is firs:t order in the expansion parameter,
symmetric with respect to the interchange of Xx and
Xv and depends on the spatial co-ordinates only as
x2—xx. It is determined by /jW (\x) according to
Eq. (1). It is convenient to introduce a conditional
probability denned by

P(XltXt)=fx^{vx)G(Xx\Xt) (7)

For present purposes it is necessary to calculate Qx
to zero order and Fx to first order. The required initial
conditions are from Eqs. (5) and (6)

(8)

The zero-order functions satisfy the differential equa-
tion

e
m.

where

The solutions are

«') d X2'.

Qx™ (X1't') = Vd[x1'-xl-y1 (t'-t)] d (vZ-vJ

^ ( 0 ) ( A 7 ' ' H / I ( 0 ) ( V 2 ' ) . (10)

The equation for the first order contribution to Fx is

y/ ax.- x

(11)
This is the usual equation for the field particle distri-
bution [2] except for the term St {-̂ i}. The form of
this collision operator is

-P(X2',Xs';t')dX3'.
8x2' |x2'-x3'| d\._

P (X2, X3';t') depends only on x2'—x3' so that
Stj^j} is independent of spatial co-ordinates.

The solution of Eq. (11) subject to the initial con-
dition of Eq. (8) is obtained in the usual way [2] by
integrating along the characteristic or unperturbed
orbits and making use of Fourier and Laplace trans-
forms. The result is

x} dt"

d3k i

y + i oo

ik
y — loo

1 r Ok (vx1v)
J (p + ik-vf

(6) In this expression,
(12)

V f ik-a/<°>/0v
(k,p) - 1 ^ ——
v r/ k2 J p + i k •p + i k • v

and Gk (vx | v2) is defined such that

dv

The particular moments of D2 (Xt; X't') that are
usually required are

WtJ (Xit; X/ t') = V*JD2(Xt; X't^idX)^1 (dX')N~K

The only two independent moments are

Wxx (Xxt; Xx't')=fx (X1t)Qx (Xxt | Xx't'),

Wxt {Xxt; X2't2)=f1 (Xxt) Fx (Xxt\ X2't').

I l l
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We shall require WX1 only to zero order and W12 to
first order. The results for these quantities are as
follows

After carrying out the integrations as far as possible,

\Mli \Xl) J?j X̂ I )) =

(Xti; Xx't') = d [x.'-
6 [V l ' -V l ]

, (t'-t)]
(13)

where x = t'— t, r = x'— x and

£* 1 / 1 \ I A \ O O * * **•

A;4

X
t

i) J St
U p + i k - v j J p + i k -

v 1! 2

k2 «(k,p)
/i(0)(vi) ,

+ ik v "•"
rx, v) dv
ik • v

where

To achieve a more manageable form the following
quantities are introduced

I, v.) =

k • 8 /(°)/a T2

e(k, p)
• v r /(o)vi

A;2 L p + i k - v x

k-v) J|

U (k, p) = — * . — A,fe (v) = n Pk (v, v') d v' .

jrms of thes

S+(k,p) = (47c)

In terms of these quantities

, kk 1

and P k (v 1 ,v 2 )= / 1 <° ) (v J )^ (v 1 |v 2 ) .
With the present restriction to a spatially homogen-
eous plasma, there is never any contribution from
W!f» or the first three terms of Wig. They will
henceforth be simply omitted.

For some applications additional moments are
required of D2 (Xt; X't') such as

and

+ ] i mimr v ( v = ) ^ i
^ O - ' i ( w + k • v 2 - i A ) |

(14)
The independent functions are W12X, W122 and W123

which are obtained by a simple generalization of the
procedure employed to calculate Wxl and JF12. The
problem is one of two singled-out test particles, which
to the order considered in the present calculations,
do not interact. The results are as follows

where the interpretation of the integral is such that

lim
v 2 -

= 7i i 6 (ft) + k • v2) +
ra + k-V.

2, t; X,' t') = F/x«» (vx) /,<«> (v2)

6 [Xl'—Xl—Vl (t'-t)] 6 [ V / - V J

(Xv

d[\2'—x2— v 2 (t'—t)] d (\2— v2)

(Xv X2, t; X,'«')=/!«» (v8
#) P (Xlt X2)

To make any further progress we must make use of
some of the properties of the pair distribution func-
tion Pk (v1? V2). The Fourier transform of Eq. (2)
is

lim [k • (v2 — Vi) — i X] n Pk (\v v2)

After dividing by k • (v2— vx)— i A and integrating over
v2 we obtain an integral equation for hk (vx)

; X 3 ' t ' ) . . . (15)
In the latter expression we have omitted terms such
as fx

(0) (v3') /x
(0) (v2) fx

a) (vj), which give no contri-
bution for a spatially homogeneous plasma.

2.3. ELECTRIC FIELD FLUCTUATIONS

The ensemble average is calculated as in Section 1.3: Let Hk (u) =\dyhk(\)d{u — k- v/Jfc), multiply Eq. (17)

<E(x«)E(xY)> by !) and integrate over \ v The result is

i,»
8 x I x — x/1 8 x ' I x ' — X/i7|^XdZ'

V J d x | x — X j | 3 X I x — x x |

|x —x ,

Hk (—<o/k) - * . ([1 — e (k, i co)] Re U (k, i co)
e (K, i (o) K1 / J \ > /

^ I n u (k, i eo) Y U (k, i co)

hk*(x2)d\2
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We can now substitute this result into Eq. (16) and
obtain:

= (4 7u)

e Im e Im e |

Since S+ is a symmetric dyadic, the spectral density is

S(k,o>) = 2ReS+(k,ico)

k 2 . [Re k, i to) I m H f c ( - a , / k ) )
A;4 k \ | e (k, i co) |2 Im e /"

It has been previously established by LENARD [3] that
Im Hk (—co\k)--=§. The final result is therefore

u . .

S(k, co) = 2u ReE/(k, ito)
k I e (k, i to) |2 (19)

This is formally the same as Eq. (27) in Section 1. The
previous derivation can easily be generalized to apply
to a plasma consisting of electrons and ions. Eq. (19)
still applies with the following new definitions

(20)

Fig. 2 Asymptotic forms for U and e in various regions
of co, k space.

i) Plasma wave region: If k <\\Le and co >kve,
the asymptotic forms are as follows:

J=e~*

L=<,~
<o \ 2

since
to . to
—^>^— .

kvi kve

where coPj
2 = 4 7r we2/m; and the summation is over

particle species.
To indicate some of the features of non-equilibrium

states, the electrostatic energy per degree of freedom
will be calculated. That is

where

<E(x,0-E(x,Q> _ f dkclco
8* ~ J ~(2^

where cop
2 = cope

2 + cop,-
2. The denominator in Eq. (21)

has a resonance at co = a>p. The result obtained from
integrating across this resonance is

(23)

ii) Ion wave region: If kL\ < 1 and kve> co >kvi,
the asymptotic forms are as follows

n Re C/(k,i to)
(21)

+
2 [kuj

and the energy per degree of freedom is defined as

©(k)
(22)

Consider for example, a plasma in which the electron
and ion distribution functions are

£(«,

/e(0)(V)=(-
27T0. exp[—

+ - - —
2 k6 I v L

The resonance now takes place at

The resonant width is

(24)

where 0.- <̂  0e. Asymptotic forms for U and e can
be employed in various regions of co, k space as illus-
trated in Fig. 2. The following definitions are employed

ev^ = Oe
1

which remains sufficiently small for approximate
integration as long as 0e > 0; and kLi < 1. The
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result obtained from integrating across the ion reso-
nance is
@(k)

X
(kLe

(25)

If kLe <l, then 0 {k)^0e {kLe)
2, provided that

me/ra,- > {OejOi) exp (— 0e\0\) and 0 (k)^.0i (kLe)
2

for the other direction of the inequality. For kLer^l,
0 {k)^.\0e or \0i according to the sign of the same
inequality. For kLe > 1 the exponential terms will
eventually dominate and 0(k)c^.0i. For moderately
high electron temperature, the energy/degree of free-
dom increases monotonically with k from zero to
\0i- For very high electron temperature there is a
maximum in the neighborhood of kLe~l which is
about \0e-

Another case of interest is where there is a small
number of runaway electrons. For example,

fe(°)(v) =
[l-(Anln)]

exp —

An
exp

r 1
L 2

=d{v + Vi). (26)

For simplicity the ions are assumed to have infinite
mass. If nYi — YeAn there will be no current as
required for a spatially homogeneous plasma. The
requirement for stability is

The validity of the present calculations is restricted
to cases where Eq. (27) is satisfied. However we can
consider the energy per mode as A n increases up to the
limit given by Eq. (27). Asymptotic forms for U and e
can be employed for various regions of co, kz space as
indicated in Fig. 3. The z-axis is taken to be in the
direction of V<?, and we consider only modes for which
iCx — *Cy ~~~ w .

T> rr/7 - x exp L 2 \kzvj J
An 1

For co >kzv0 and kz

e(k,ico)\2

<Lf i * (_î _ L ^ 2
 eXp I — I

co2 J "• 2 I fc*«0 \ kzvj v\_ 2

— kzVe cop2 An
kzvx n(kzv1)

2 -exp
> — k2

V.-v,
Fig. 3 Asymptotic forms for U and e in various regions
of co, kz space.

A resonance takes place at LO = (JOP of width

Aco

kzv 6 X P | —"2\**«o/
n2 An

kzvx n(kzv1)
2

Provided kz <cop/v0 and Anjn <̂  (wj/Fe)2, then
Aco/cop < 1 so that the resonance is sharp. The
result obtained from integrating across the resonance is
given in Eq. (28), at bottom of page. The latter
term of Eq. (28) comes from the region of kz>0, co<0
where the first exponential always dominates. As
long as kz P cop\Ve or kz < cop/Ve the first expo-
nential dominates and 0 (kz) ̂  0e. However when
kz = tOpK Ve — v-J ̂  cop\ Ve, then

@(kz) ©e

2 — 4

exp
X 1 +

—2"(Fe/v0)2

exp — (An/71) (v (vJVe)

(29)

As long as Eq. (27) is satisfied, this result remains
finite. However the energy for modes in the neigh-
borhood of kz^.coPIVe becomes very large and ulti-
mately infinite as

An tv1\2(Ve\ I" 1 / W 1
> exP —JTI I •

n \vo! \«o/ L 2 \ « 0 / J
2.4. THEOREMS RELATING TO FLUCTUATIONS

The electric field due to a test charge is defined as
follows:

(30)

ijdfdY].

Q{kz) exp -
v0An\ r (cop-kzVeY

I e x P I — ^~7T To

exp - 2k2

,2 \ l — kz V kzvA An vo\t— exp —-—e-L %-- (28)
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This differs from the thermal equilibrium problem in
that St {/}, the collision term for the field particles
does not vanish. However, for a spatially homogeneous
plasma it is independent of position, and can be neg-
lected because it only drives the k = 0 modes. The cal-
culation is therefore identical to the thermal equili-
brium problem formally. The electric field at a point x
due to a fully dressed test particle at xx with velocity

IS

E (x, i k

, - ik-v)

and the superposition theorem is retained i.e.,

<E (x, t) E (x'«')>

(x, Xx) E (x', X,') TT<0) (X.t; X / t') dX1 dXx'

leads to Eq. (19) for S (k, co).
For the same reason the calculation of r,| =

— [47i/(co | e |2)] Im e (k, ico) in Section 1.5 remains
formally correct. Therefore the fluctuation-dissipation
theorem takes the form

where
S (k, co) = 20 (k, co) ry (k, co) k k/fc2

£) . , . 4rc2ne2 co Re £7 (k, ico)
k2 k Im e (k, ico)

(31)

Consider for example, the case of electrons and ions at
different temperatures:

0 (k, Co) = 0eX
ime\-L f 1 / co \21 l@e\- [ I

+
(32)

If 0e = 0i it is clear that 0 (k, co)=0e = 0i- Many
limiting cases are possible for 0e^0x. For example, if
0e>0i, then 0 (k, co)^0i for co<kvi and 0 (fc, co) ^
^ (9e for co>kve. It is clear that for non-equilibrium
states the fluctuation-dissipation relation is not very
useful.

The previous calculation of the absorption coeffi-
cient in Section 1.6 also remains formally correct, i.e.,

Q (k, co) = — 2co Im e (k, ico).

According to Kirchhoff's law we should expect that the
emission per unit volume from the plasma would be

e (k, co) = o (k, co) W (k, co)
4:nne2 2 n co Re U (k, i co) Im e (k, i co)

k e(k, ico) I2

(33)

The force on a test particle is — eE (xx, Zx) so that
the spontaneous emission from nfm (Vj) test particles
per unit volume is

, , , ,. k • y' I m e (k. i co)
V ' k2 | e (k, i co) |2

Since Re U (k, ico) = [/ (v') dv' d (co + k • v'/Jfc), this

reduces to
d k f d co ,i

—

where e (k, co) is given by Eq. (33). In a situation where
instability is approached, Re e-+0, Im e->0 so that
e (k, co) — ôo. However, the emission

remains finite. For example if //(0) (v) is given by
Eqs. (26), the result from integrating across the reso-
nance at co—cop is

which remains finite when kzg^.copjVe and

2.5. FOKKER-PLANCK EQUATIONS

The fact that Im Hk — 0 is sufficient to determine
Im hk (vx) in Eq. (17) and the collision operator

cZk 4;rk
( 3 5 )

is therefore determined as shown by LENARD [3]. It
is however instructive to obtain this result by the
present methods.

The number of particles in (X1, dX') at time t is

/ (X\ t') = £d [x' — *,' (0] d [v' — v,/ (t')] (36)
n

where xn' (f), \n' (f) describe the orbit of the n'h

particle. / (X', t') satisfies the equation

with

Eq. (37) can be integrated along the unperturbed linear
orbits and the result can then be substituted back
into Eq. (37) to obtain

(38)
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The next step is to take the ensemble average of each
term in the equation. Thus

J2Jd(x'-xn')d(\'-Yn)D(Xt;X"t";Xft')dXdX"dX'

= nf1(X',t')

where jx is the usual one-body function.

f V 8

/#«
'—X;'

X 6 (v'—Yn) D (Xt; X"t"; X' t') dXdX"dX'
= n2 e \4-r , , * ,, d [x' — v' (f —t)— xx]J 3x | x — x2 | L v ' 1J

X 6 (\' — Y1) W12 (Xxf, X2' t') dXx dX2'

Making use of Eq. (13) we finally get the result

d v' Pfe (v, v')
r'—v) » p

As usual, it is assumed that this expression goes to its
asymptotic form, determined by the pole at p = 0,
in a time sufficiently short compared to observable
times, that the asymptotic form is always a good
approximation. Thus

<E(xT)/[x'-v'(*'-«), •';«]>
i m\s '\f ^ k Ime(k;—ik-v')

In the second term on the right hand side of Eq. (38),
it is necessary to make use of Eqs. (15), the probability
distributions for two singled-out particles. The result is

< E ( x T ) E [ x ' + v ' ( r — O ; t " ] f [ x ' +Y {f— t'),\';t"])

= nC+ [v' {t'—t"), t'—t"] /x<°) (v')

where

C+ J ( 2 T T ) 3 J 2 n i

and S+ (k, p) is given by Eq. (16). The form of the
Fokker-Planck equation is therefore

where

,) dy'

C+(r,
0

T)=C(r,r)
= 0

i (T>0)

(T<0)

C (r, T ) = C ( — r , — T). If most of the integral comes
from values of T less than any observable time, we
can use the asymptotic value; i.e.,

—t

jdr C+ (V'T, T) ^ y

Now, substituting from Eq. (19), the final result is

d k f Im e k , ,„w ,,
st{/} = ^ J ( 2 « ) » l T(k,-ik-v')|2

Re £7 kk df^
A;2

Although this is in a different form, the result is iden-
tical to that of Lenard. The purpose of the present
calculation has been simply to express the Fokker-
Planck coefficients in terms of the electric field fluc-
tuations.

There is another problem in which at t = 0 all par-
ticles but one have the distribution function /(0) (v)
which is spatially homogeneous. One particle is singled
out and initially has the arbitrary distribution func-
tion Q (X). The lowest order one-body function for
the singled-out particle is

(X, t) =JQ (Xo) d[X-X0 (t)] dX0 (41)

where 6 [X—X0(t)] = 6 (x—xo—\ot) 6 (v—v0). The
first order equation for W is

The determination of St {W} has previously been
accomplished in the case where the field particle
distribution is Maxwellian [2]. The equations previous-
ly employed are applicable with some alterations that
will be cited. The collision operator takes the form

S t { T f J = L 3
1 ' m dym dy

~ FWJ (42)
dy J

with

F = — nefE (x, x') df {X, X'; t) dX'

T = — neJE (x, x') G (X, X'; t) dX'.

df is determined by the equations

In this case the only additional term is St {/(0) (v')}
given by Eq. (40). Since it only drives the k = 0 modes,

so that C+ can be replaced by C in the integration, it can be omitted and the result is formally the same
C is a symmetric dyadic in the present case so that as before.
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G is determined by the equations: [k-V]n= kzVz

ir -1 J l ^ ! i -L
\n - Kz 8vz + a

6

m 8x' p+l[k-\]n

(44)

V'2 A {X, x ' ; t) = 47cweJ*G (X, X';t)d\',

and

Y>(s ,Z ' )= — 4-

Quantities analogous to ̂  (vx) and £T/j (^) in Section 2.3
are introduced as follows:

(2

hk(y)=jnPk(\,\')dv'

where &fe (v') is given by Eq. (17). It is a straightfor-
ward matter to solve these equations and show that

(45)

The coefficients are the same as before. This is a
Fokker-Planck equation of the classic type where the
coefficients do not contain the dependent variable.
/(0) (v) is required to be spatially homogeneous, but
W(0) (Xt) is not.

2.6 FLUCTUATIONS WITH A CONSTANT MAGNETIC FIELD

The calculations follow the same pattern as in the
case of zero magnetic field. The details of the calcula-
tions will be omitted here. The velocity coordinates
(x±,(3, vz) will be employed where the magnetic field
is taken to be in the z-direction. The spatially homo-
geneous one-body function /<0) (vj_,vz) is independent
of 0.

The joint probability functions are as follows:

The results for the electric field fluctuations are then
formally the same as the zero magnetic field case
including the theorems discussed in Section 2.4. For
example,

S+(k,ico)

where the present definitions of e and H apply and

p+i[k-v]n

It has been established, that Im H (u) — 0 in the pre-
sence of a magnetic field, ROSTOKER [4]. Therefore

and

S n \ r* \o o kk 2TC ReU(k,iw) ,
(k, (JO) = (4n)2 ne2 -J-T--= . ., . . .„ (49)v J v ' k* k e(k, no 2 v '

S (k,
^LpJ_^l_S(kla,'). (50)

(46)
where x = t'— t and

x (T) = x + a [cos (/3 + a>c T) — cos fji] ex

+ a [sin (/? + cocT) — sin/?] ê  -f- vzrcz

It should be noted that Eqs. (48), (49) and (50) imply
an explicit expression for Re H (u)

Re H (u)
Im e

Ree(k, — ifctt)1 Re 17

_ 1 P J .

I m

rft*' Re C/(k, — i ku'
'/—u | e (k,—iA;t*')|2

(51)

dk r dp pT + ik.r

where r = x'—x, 1s. = (k±,at.,lcz),

Wpk (v, v') = (1/ri) exp [— i lcL a' cos {§'— a)]

y Jn' (k± a') .n, .M, (/J,_ a)

^ p+i[k-v'V

By means of the procedure employed in Section 2.5,
the Fokker-Planck equation for a spatially homoge-
neous plasma with a constant magnetic field is
obtained. The result is

3

me
(52)

k2

i[k-v]n

fd\" nPk (v, v") e-
ik±a

y
Jn(^j.a")i""ein"( r-a )

]}•

| ^

«7w(fejLo)iweiw(^-g)

e (k, - i [k • v]n)
(53)
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and r (T) = x (T) — x where x (T) is given in Eq. (47).
It should be noted that C (r (T); T ) ^ C (r (—T); — T)
so that the limits of the r-integration in Eq. (52)
may not be changed from (0, oo) to (— oo, oo). Instead
we have

where

jdrC(T(r);j)

~ (58)

X S + (k, — i [k • v],i). (54)

where S+ (k, ico) is given by Eq. (48) or Eqs. (49)
and (50). The only dependence on a is through the
operators

and E (x, X), C [r (T), T] are the same as in Eq. (52).
In this case however wW {X, t), the lowest order one-
body function for the singled-out particle is arbitrary
so that Sw(°>/apV0.

The collision operator can be expressed as

St {w} =-{—^-v
K } m \v± dv±

k- -5- = -cos
d\ v i

d
+ z~dv7'

(55)

so that the a-integrations can easily be carried out.
This accomplishes the following reduction of the
Fokker-Planck equation

. . O 1 47re2 C dk I m v^I", 8 "I T 0 / , .
*•'•' m J (2K)3 k2 *-*\_ 8\\n

X \HeU(k,— i[k-v]n)
I. \e(k,-i[k.v]n)\*

where

Re£/(k,i^)-|r 81 1
|£(k,ito')i2 JL s v v /

(56)

_ , a w d k± Jn' (k± a) d
— Kz-^T. r — -5—— -t-i-a dv v±_ Jn(k±a) dp'

Since 8 /(°)/d /3 = 0 for a spatially homogeneous plasma,
the result is simply

dk 1s t m - - —f——
° y> m ) (2TC)3 k2

where

- Imhniv^v,) = | £ ( fc>_i
1

[k.Y]n) |2{/(0)(v)Imfi

. (57)

This result has been obtained previously [4]. We note
that the terms involving the Hilbert transform of
the spectral density have all dropped out, not because
of symmetry of C [r (T), T], but because /(°) (v) is
independent of ft. In the case of a test-particle problem
the Fokker-Planck equation takes the form

~dv2
 zzdv.

dV p

v±dv± dv±
TeQ d*w(°) 1 d

1 ldTep dTZQ

dvz } dp J "

The coefficients in this collision operator are obtained
from Eq. (56).

Jn
2(k±a) Ime

n

C dk 1 V-T n J 2 (k
Fg — 4tne2 y j — " ~

p J (2TT)3 k2^J a \e(k, — i

a) Ime

|£(k,-i[k.v],,yp

|e(k, - i[k-v], ,) | a

n

These coefficients are the same as in the spatially
homogeneous case. The additional coefficients are

„ . 9C dk k± \~iJn(k±a)Jn'(k±a)'Ree
if e = 4 n e -79—\3 ~T%'2-i —i—TT-— • r I ^ — . ,2—

n

.„ /* dk k\2 \-r \Jn'(
On) —- 7 —r L

* J ( 2 T C ) 3 A;5 ̂ ^ e ( k
n

dk k 1 Y-T n

X
C dco
J w + [k • v],,

o* Ret/(k,ico)
|e(k,icu)i

(2neiop)
2 r dk k±kzJ

dw' ReC/(k,ia))
h [k • v]n |e(k,ico)|2' "
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2.7 DIFFUSION IN THE PRESENCE OF A CONSTANT

MAGNETIC FIELD

Consider the test-particle problem where the lowest
order one-body function is

w<°) (X' t')

= d [X' - X (T)] 8 {V\~ V±) d (VZ' - VZ) d(P'-P + COc T)

and x (T) is given in Eq. (43). This function simply
describes the motion of the test particle on its unper-
turbed orbit. We shall be interested in the quantity

<r±
2> =jw(X't')dX'r±

2

where
T±

2=[x'-x(r)]2-\-[y'-y(T)]2.

If w (X' t') = wW (X' t'), it is clear that <r±
2> = 0. The

collision operator, however, has the effect of spreading
out the distribution function so that if w (X' t) =
— ivW + w(l\ then <r^2)^0. To calculate w^-\ we
integrate Eq. (58) along the unperturbed orbits:

w<V (X' t') =
t"

where

w(0) ( f ) = <5 {*'+ a' (cos [p'+coc (t" — t')] — cos/5') —
— x — a (cos [/? + coc (t" — t)] — cos ft)}

>' <5 {y' -\- a' (sin [^' + coc (t" — t')] — sin /?') — y
— a (sin [P1 + coc (t" — t)] — sin P)}

xd[z'+ vz' {t"—t')—z — vz (t" — t)]

X (^i- — ^±) ĵ ^Vz> v^ fi^p' — p — cOc (f t)] .

(60)

Eq. (59) is employed for St {u;(°>}. To calculate (Q±
2)

we first carry out the coordinate integration, then the
velocity integration and finally the time integration.
It will be apparent that only two terms in St {w(0>>}
produce anything so that the others will be omitted.

t' In oo

(r±
2) =jdt"jd(]'jv±'dvL'

t 0 0

X [{a' (cos [fi' + coc (t" - t')] - cos£')

- a (cos \jp + coc (t" - t)] - cos UP + coc (? - t)])}2

+ {a' (sin [pf + (oc (t" - t)] - sin0')

- a (sin [p 4- oic (t" - t)] - sin \fi + oic (f - t)])}2]

\ J- 00 O , 1 O , rj, O
X I v

V — P — Wc («' - 01 •

Now integrate by parts twice. It is apparent that the
only contributions obtain when rj_2 is differentiated
twice. The result is therefore

= \dt» - C0S

(61)

for t'—1^> l/coo In terms of the electric field
fluctuations

= — UrC(T(r);r)dr,

where

C ( F ( T ) , T ) - (E(xOE(x + r(T),« + T)>.

Therefore (r±2) = D(tr—t), where the diffusion co-
efficient is

<E± (xQ • B ± (x + r (T), t (62)

and

An elementary derivation of a formula similar to
Eq. (62) has previously been given by SPITZER [5].
Eq. (62) is, in fact, the same as Spitzer's formula for
a zero-velocity test charge; i.e., r ( r ) = 0 .

Spitzer has discussed the effect of an instability
of the collective modes of oscillation on the diffusion
coefficient D. I t is a qualitative discussion because
his formula is not explicit and because non-linear
effects are considered. The present calculations do
not include non-linear effects since they are restricted
to stable distribution functions. However we may
consider a distribution function that approaches
instability when some parameter is varied such as
that given by Eq. (26). Only a zero velocity test
charge will be considered so that

D =
'kne2 c2 kj_2 / R e U (k, — i o>c)

Ik5 e (k, - i coc) |

R e U (k, i o)c)

| e (k, i toc) |2 (63)

where

ReC7(k, i ii c) = -~— ^Tsexp =f icocT —
— oo

— (k± a0)
2 (1 — cos(iicx)

I -t- lOOcT + 1 kzVeT -
An+ — exp

— (fcj.a,)2(l — COSCOCT)1 (64)

exp ico c r ]

2(l - cosco.r)]

-\ 1—5-)
0

where 1 / Z>0
2 = cop

2 / w0
2.

(65)
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We assume that a)p>coc and (A njn) {VQJVX)2<^ 1.
A n is the parameter to be varied to ultimately pro-
duce instability. Eq. (63) can be evaluated by con-
sidering various regions of k-space in which U and e
have simple asymptotic forms. For example if k> l/£0>
e^l , Re U^llV2nv0

2 and

In
— 3 ;T 5 / 2

mv0

(66)

where kma,x is the usual cut-off at the inverse of the
closest distance of approach. This is the usual classical
result. Now consider the contribution from the region
kao<l where

Re , ±io- * i_L=e r_l
1**1 lV27rv0

2 ^ [ 2
An (±C0c-kzVe)

2

An
kz\v, T

It is more convenient to carry out the integration
in spherical coordinates i.e., kz = kju, k± = kvl—fx2,
dl/L = 2nk2 dkdju. There is a resonance for /j,2 = cof/atp2

that is sufficiently narrow to permit approximate
methods of integration as long as kaQ <4 1 and
(Anjn) {vQlvx)

2<^ 1. After integrating across the
resonance

D = an
2e2

I/do

—(-F«.'f*
nv0 \copl J

0

k2dk X (67)

An 1 (cop- kVe\

exp
f 1
L 2

w0\3^n f 1
v1; w r L 2

kVe\
2

If An/n = O, the result is small compared to Eq. (66).
However, if

vA* VeVe \ 1 VeV
"^"eXPL~2 vo\

An
n

the denominator in Eq. (67) becomes infinite for
k^,oipjVc. We may therefore expect significant contri-
butions to the diffusion coefficient from the collective
modes when they become unstable. The present
formalism is not suitable for calculating the diffusion
coefficient under these circumstances, since it diverges.
It should be possible to treat the linear phase of
instabilities by an extension of the present formalism
in which the time-dependence of the Fokker-Planck
coefficients is retained.
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