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Abstract

This �nal report describes the application of computer vision techniques to the lateral and

longitudinal control of an autonomous highway vehicle.

In the part of the project we focused on an analysis of the vehicle's lateral dynamics and the

design of an appropriate controller for lateral control and investigated various static feedback

strategies where the measurements obtained from vision, namely o�set from the centerline and

angle between the road tangent and the orientation of the vehicle at some look-ahead distance,

are directly used for control. The role of the look-ahead, its relation to the vision processing

delay, longitudinal velocity and road geometry was crucial on the design of the control and their

experimental evaluation.

We carried out a thorough analysis of the e�ects of changing various important system

parameters like the vehicle velocity, the lookahead range of the vision sensor and the processing

delay associated with the perception and control systems. We also present the results of a series

of experiments that were designed to provide a systematic comparison of a number of control

strategies. The control strategies that were explored include a lead-lag control law, a full-

state linear controller and input-output linearizing control law. Each of these control strategies

was implemented and tested at highway speeds on our experimental vehicle platform, a Honda

Accord LX sedan.

For the longitudinal control problem, we investigated the possibility of using stereo vision

to provide the range information, in conjunction with a scanning laser radar sensor. The vision

based tracking system utilizes a layered architecture wherein the bottom layer computes motion

in both images using a simple correlation algorithm, and the upper level performs stereo �xation

and reconstruction using an algorithmdesigned for active vision systems. We present some initial

results comparing the quality of range measurements provided by a vision system with the laser

radar system.

We report the results from the experimental demonstration of the system as part of the

National Automated Highway Systems Consortium (NAHSC) Demonstration which took place

in August 1997 in San Diego. The overall system was demonstrated as a part of the main

highway scenario as well as part of a small public demonstration of the vision based lateral

control on a highly curved test track.
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1 Introduction

This report describes the work and research results carried out under MOU-306. Within this

proposal we explored the feasibility of the use of visual sensing as a part of the Advanced Vehicle

Control System (AVCS). The basic theoretical foundation on which this work was based had been

developed under a previous program [39]. In this phase of the research program we demonstrated

improved versions of the proposed algorithms, real-time implementations and a novel stereo tracking

algorithm for longitudinal control. The integration of the vision subsystem with the vehicle control

subsystem enabled us to perform real-world experiments with vision as an integral component of

the vehicles control system.

The experimental part of the work has been carried out in collaboration with Honda R&D North

America Inc. and Honda R&D Company Limited who provided us with three Honda Accords and

a team of Honda engineers responsible for the low-level control of steering and throttle actuators

as well as maintenance and overall organization leading towards the �nal demonstration which was

part of NAHSC DEMO 1997 in San Diego.

Following the NAHSC Demo we carried out thourough analysis of the data aquired during

numerous experiments and compared the performance of the various control strategies. The con-

trol strategies that were examined include a lead lag control law, a full-state linear controller and

input-output linearizing control law. Each of these control strategies was implemented and tested

at highway speeds on our experimental vehicle platform, a Honda Accord LX sedan. These exper-

iments allowed us to verify the accuracy and e�cacy of our modeling and control techniques.

The problem of steering a car along a curved road can be divided into two parts: sensing and

control. The sensing part involves the extraction of relevant features in the time-varying images

and the control part deals with the design of the steering control law. Di�erent aspects of steering

problem have been examined in the past, both in the engineering and the psychophysics literature.

Several sensing technologies have been proposed for use in an Advanced Vehicle Control Sys-

tem, including vision, magnetic sensors and active range sensors. Some of the most inuential

work on visually guided control of autonomous vehicles has been done by E.D.Dickmanns and his

colleagues [26]. In their system vision was used to provide input for both lateral and longitudinal

control of the vehicle on free roads as well as in the presence of other vehicles. The basic approach

was to recursively estimate a set of road and vehicle state parameters which included the horizontal

and vertical curvature of the road, the vehicle heading angle, the slip angle and the lateral o�set of

the vehicle with respect to the road. A dynamical model of the vehicle captured their knowledge
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about the motion of the vehicle and served as a tool for both fusion of sensor data, design of control

strategies and prediction of the e�ects of control input on the evolution of the measured data.

In the United States one of the leading e�orts has been the CMU NavLab Project [36] which has

employed a variety of di�erent sensing and control strategies including a neural network based lane

following algorithm called ALVINN. A number of other groups throughout the country explored the

possibility of using visual sensing for vehicle guidance both in outdoor and indoor environments [37,

33] concentrating primarily on the lane keeping or path following modality on the free roads.

For vision-based lateral control we undertook to explore a strategy which uses direcly the informa-

tion from the vision at some look-ahead distance. Taking into account the vehicle dynamic model,

we formulated the vision dynamics as well as the control objective at the look-ahead distance.

This resulted in the development of simpler control strategies Within this setting we evaluated a

variety of feedback strategies including lead-lag control, state feedback via pole-placement and I/O

linearization. We also implemented observer schemes which provided estimates for the curvature of

the roadway which allowed us to incorporate a feedforward component into our control laws. This

feedforward component was particularly crucial on highly curved roads.

In case of vision-based algorithms for longitudinal control, in spite of the fact that the context

of highways and vehicles is clearly very structured, we avoided using direct scene models in the

low-level tracking algorithms, and this distinguishes our work from that of Dickmanns's group [5],

for instance. We draw on the large amount of work on scene reconstruction from multiple images

in unstructured scenes, in particular the work on robust motion segmentation [22], and a�ne

reconstruction [20]. These approaches are able to take advantage of the redundant information

in images, because they latch onto whatever features are available, whereas model-based methods

are restricted to the features associated with the chosen model. Redundancy is a vital issue here,

because vision is a massively redundant sensor, and approaches which negate this aspect are likely

to be discarded in the long term. Because we reconstruct the geometry of the lead vehicle, the

algorithms generalize naturally to other vehicle types.

Section 1 presents the basic equations that we have used to model the dynamics of our vehicle and

our sensing system and discusses some of the consequences of this model. Section 2 describes the

strategy used to extract lane markings from the video imagery and section 3 describes the design

of an observer that we use to estimate the states of our system and the curvature of the roadway.

Section 4 describes the various control strategies that we implemented on our experimental platform
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and section 5 presents the results of the experiments that we carried out with these controllers.

Section 6 contains description of a vision subsystem for longitudal control and obstacle detection.

Section 7 contains the conclusions that we have drawn from these experiments. A brief description

of our experimental vehicle is provided in section 8.

1.1 Vehicle Dynamics

The dynamics of a passenger vehicle can be described by a detailed 6-DOF nonlinear model [34].

Since it is possible to decouple the longitudinal and lateral dynamics, a linearized model of the

lateral vehicle dynamics is used for controller design. The linearized model of the vehicle retains

only lateral and yaw dynamics, assumes small steering angles and a linear tire model, and is

parameterized by the current longitudinal velocity. Coupling the two front wheels and two rear

wheels together, the resulting bicycle model (Figure 1.1) is described by the following variables and

parameters:

v linear velocity vector (vx, vy), vx denotes speed

�f ; �r side slip angles of the front and rear tires

_ yaw rate

�f front wheel steering angle

� commanded steering angle

m total mass of the vehicle

I total inertia vehicle around center of gravity (CG)

lf ; lr distance of the front and rear axles from the CG

l distance between the front and the rear axle lf + lr

cf ; cr cornering sti�ness of the front and rear tires.

A simple linear model captures the interaction of the tires with the road surface as follows:

Ff = cf�f

Fr = cr�r (1)

where the side slip angles �f and �r between the steering angle and the tire velocity can be expressed

as functions of the vehicles kinematic parameters:

�f = �f � arctan(
vy + lf _ 

vx
) � �f �

vy + lf _ 

vx

�r = � arctan(
vy � lr _ 

vx
) �

�vy + lr _ 

vx
(2)
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vx

vy FfFr

f

f

lr lf

y

x

Figure 1: The motion of the vehicle is characterized by its velocity v = (vx; vy) expressed in the vehicle's

inertial frame of reference and its yaw rate _ . The forces acting on the front and rear wheels are Ff and Fr,

respectively.

Following Newton law's the net lateral force F and the net torque � at the center of the gravity

are:

F = Ff + Fr = ma = m( _vy + vx _ )

� = Ff lf � Frlr = I � (3)

Choosing _ and vy as state variables the lateral dynamics of the vehicle have the following form:

2
6664

_vy

� 

3
7775 =

2
6664

�

cf+cr
mvx

cr lr�cf lf
mvx

� vx

�lfcf+lrcr
I vx

�

lf
2cf+lr

2cr
I vx

3
7775

2
6664

vy

_ 

3
7775+

2
6664

cf
m

lfcf
I 

3
7775 �f (4)

This linear model for the lateral dynamics and yaw rate is usually referred to as the bicycle

model.

1.2 Vision Dynamics

The additional measurements provided by the vision system (see Figure 2) are:

yL the o�set from the centerline at the lookahead,

"L the angle between the tangent to the road and the vehicle orientation

Where L denotes the lookahead distance of the vision system as shown in Figure 2. The

equations capturing the evolution of these measurements due to the motion of the car and changes

in the road geometry are:

_yL = vx "L � vy � _ L (5)

_"L = vx KL �
_ (6)
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x

y

L

yL

L

vx

vy

Figure 2: The vision system estimates the o�set from the centerline yL and the angle between the road

tangent and heading of the vehicle "L at some lookahead distance L.

Where KL represents the curvature of the road.

1.3 Combined Model

We can combine the vehicle lateral dynamics and the vision dynamics into a single dynamical

system of the form:

_x = Ax+ B u+ Ew

y = C x

with state vector x = [vy; _ ; yL; "L]
T , output y = [ _ ; yL; "L]

T and control input u = �f . The road

curvature KL enters the model as an exogenous disturbance signal w = KL.

The resulting combined model is captured in Equations (7) and (8).

2
66666666666666664

_vy

� 

_yL

_"L

3
77777777777777775

=

2
66666666666666666664

�

cf+cr
mvx

�vx +
cr lr�cf lf
mvx

0 0

0 0 0 0

�lf cf+lrcr
I vx

�

lf
2cf+lr

2cr
I vx

0 0

�1 �L 0 vx

0 �1 0 0

3
77777777777777777775

2
66666666666666664

vy

_ 

yL

"L

3
77777777777777775

+

2
66666666666666664

cf
m

lf cf
I 

0

0

3
77777777777777775

�f +

2
66666666666666664

0

0

0

vx

3
77777777777777775

KL (7)
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y =

2
66666666666664

0 1 0 0

0 0 1 0

0 0 0 1

3
77777777777775

2
66666666666666664

vy

_ 

yL

"L

3
77777777777777775

+

2
66666666666664

0

0

0

3
77777777777775

�f (8)

1.4 Analysis

The goal of our analysis is to understand how the behavior of the vehicle varies as a function of

important system parameters. In order to do this, we will consider the transfer function V (s)

between the steering angle, �f , and the o�set at the lookahead, yL. This transfer function can be

obtained from the state equations in the usual manner and has the following form:

V (s) =
yL(s)

�f (s)
=

1

s2

n1s
2 + n2s+ n3

d1s
2 + d2s+ d3

(9)

Notice that the transfer function has a pair of poles �xed at the origin along with two poles

and two zeros which characterize the dynamic behavior of the vehicle. The coe�cients of the

denominator of this expression, and hence, the poles of the system depend upon the vehicle velocity

vx. While the numerator terms depend on both the vehicle velocity and the lookahead distance L.

Velocity Figure 3a shows the root locus of the transfer function V (s) for various values of the

vehicle velocity vx assuming a �xed lookahead distance, L, of 10 meters. As the velocity is increased

from 10 m/s to 30m/s the poles and the zeros of the transfer function move towards the right half

plane and the system becomes less stable.

Lookahead Figure 3b shows how the zeros of the transfer function V (s) are a�ected by changes in

the lookahead distance L. As the lookahead distance is increased the zeros of the transfer function

move closer to the real axis which improves their damping ratios. The poles of the transfer function

are una�ected by L since this parameter only appears in the numerator of V (s).

Delay Another parameter which a�ects the behavior of the closed loop lateral control system is

the latency associated with the vision system. This can be modeled as a pure delay element with

transfer function D(s) = e�Tds which is placed in series with the vehicles transfer function V (s).

The processing delay Td in our implementation was 57 milliseconds.
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Figure 3: (a) Root locus of V (s) for velocities vx = 10,15,20,30m/s and �xed look-ahead distance

L = 10m. Increasing the velocity vx moves both the poles and zeros towards the imaginary axis.

(b) Increasing the look-ahead distance L moves the zeros of the transfer function closer to the real

axis, which improves their damping. Once they reach the real axis, further increasing of look-ahead

doesn't have any e�ect on damping. The poles of the transfer function are not a�ected by changes

in L since the parameter appears only in the numerator of V (s).

The interplay between the lookahead distance L and the processing delay Td can be demon-

strated quite e�ectively in the frequency domain. Ideally the overall system should have in�nite

gain margin and about 40-60� phase margin at the crossover frequency. Bode diagrams of V (s) and

V (s)D(s) in Figure 4 demonstrate the e�ect of look-ahead both in the absence (a) and presence

(b) of the delay.

Increasing the look-ahead distance adds substantial phase lead at the cross-over frequency. In

the presence of processing delay the look-ahead is still able to provide non-zero phase margin for

the combined system. For a particular setting of v = 20m/s and L = 20m, the maximum processing

delay one can a�ord to tolerate before bringing the phase margin to zero is Tdmax = 0.39s, at slower

velocities the maximum allowable delay becomes larger. Since the delay adds an additional phase

lag over the whole range of frequencies the system bandwidth is clearly limited. From this analysis

we can conclude that the delay in our system can be compensated by the additional phase lead

provided by increasing the look-ahead distance.
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Figure 4: (a) Bode plot V (s) for varying look-ahead L = 5,10,15,20m at v = 20m/s with no delay.

Increasing the look-ahead adds substantial phase lead at the crossover frequency. (b) The presence

of the delay adds an additional phase lag over the whole range of frequencies. The look-ahead of

20m is still able to provide 27.7� phase margin. When the look-ahead decreases to 10m the phase

margin in the presence of delay diminishes and the system becomes unstable. Choosing larger

look-ahead is more crucial in the presence of delay.

2 Lane Recognition

The lane recognition module is responsible for recovering estimates for the position and orientation

of the car within the lane from the image data acquired by a forward looking CCD video camera.

This camera is mounted inside the passenger compartment near the rear view mirror as shown

in Figure 5 . The roadway is modeled as a at surface which implies that there will be a simple

projective relationship between the coordinates of points on the image plane and the coordinates of

their correspondents on the ground plane [23]. This relationship is captured in Equation (10) where

the image plane coordinates are denoted by (u; v) and the ground plane coordinates are denoted

by (x; y).

0
BBB@

x

y

1

1
CCCA / H

0
BBB@

u

v

1

1
CCCA (10)

The 3 by 3 homography matrix, H , can be recovered through an o�ine calibration procedure. This

model is adequate for our imaging con�guration where a camera with a fairly wide �eld of view

(approximately 30 degrees) is used to monitor the area immediately in front of the vehicle (4 - 25
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Figure 5: View from inside the automated Honda accord showing the mounting of the cameras

meters).

The �rst stage of the lane recognition process is responsible for detecting and localizing possible

lane markers on each row of the input image. The lane markers are modeled as white bars of a

particular width against a darker background. Regions in the image which satisfy this intensity

pro�le can be identi�ed through a template matching procedure. It is important to remember that

the width of the lane markers in the image changes linearly as a function of the image row. This

means that di�erent templates must be used for di�erent rows.

Once a set of candidate lane markers has been extracted, a robust �tting procedure based on

the Hough transform is used to �nd the best �t straight line through these points on the image

plane. A robust �tting strategy is essential in this application because on real highway tra�c scenes

the feature extraction procedure will almost always return extraneous features that are not part

of the lane structure. These extra features can come from a variety of sources, other vehicles on

the highway, shadows or cracks on the roadway, other road markings etc. and can confuse naive

estimation procedures based on least squares techniques.

The Hough transform procedure considers a set of candidate straight lines on the image plane

and computes a score for each one which indicates how well the line conforms to the lane markers.

The contribution of a given image measurement to this score is based upon the distance between

the edge marker and the candidate line. The candidate line with the best overall score is returned

by the lane recognition system. >From these measurements it is a simple matter to compute an

12



a. b.

Figure 6: These �gures show the performance of the lane extraction system on a typical input

image

estimate for the lateral position and orientation of the vehicle with respect to the roadway at a

particular lookahead distance, L, by making use of Equation (10).

The lane �nding system is implemented on an array of TMS320C40 digital signal processors

which are hosted on the bus of an Intel-based industrial computer. The system processes images

from the video camera at a rate of 30 frames per second with a latency of 57 milliseconds. This

latency refers to the interval between the instant when the shutter of the camera closes and the

instant when a new estimate for the vehicle position computed from that image is available to the

control system. This system has been used quite successfully in all of our experiments and was

particularly adept at �nding di�cult lane markings like \Bott's dot" reectors on a concrete surface

(see Figure 6).

3 Observer Design

In order to estimate the curvature of the roadway we have chosen to implement an observer based

on a slightly simpli�ed version of the dynamic system given in Equations 5 and 6. More speci�cally,

in this formulation the vehicles lateral velocity, vy , is neglected and the yaw rate _ is treated as an

input. The resulting system is given in Equation (12).

_x0 = A0(vx)x
0 +B0 _ (11)

y = C0

x
0 (12)
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where x0 = [yL; "L; KL]
T , y0 = [yL; "L]

T , A0(vx) =

2
6664

vx �L 0

0 0 vx

0 0 0

3
7775, B

0 =

2
6664

�L

�1

0

3
7775 and C 0 =

2
4 1 0 0

0 1 0

3
5.

Note that the state vector x0 includes the road curvature KL. This di�erential equation can be

converted to discrete time in the usual manner by assuming that the yaw rate, _ , is constant over

the sampling interval T .

x
0(k+ 1) = �(vx)x

0(k) + � _ (13)

Equation (13) allows us to predict how the state of the system will evolve between sampling intervals.

Measurements are obtained from two sources: the vision system provides us with measurements

of yL and "L, while the on-board �ber optic gyro gives us measurements of the yaw rate of the vehi-

cle, _ . Our use of the yaw rate sensor measurements is analogous to the way in which information

from the proprioceptive system is used in animate vision. The measurement vector y0 is used to

update an estimate for the state of the system x̂
0 as shown in the following equation:

x̂
0+(k) = x̂

0�(k) + L(y0(k)� Cx̂0�(k)) (14)

where x̂0�(k) and x̂0+(k) denote the state estimate before and after the sensor update respectively.

The gain matrix L can be chosen in a number of ways [28], depending on the assumptions one

makes about the availability of noise statistics and the criterion one chooses to optimize. In our

case, the gain matrix was chosen to minimize the expected error of our estimate in the steady state

using the function dlqe available in Matlab. The covariances of both the process and measurement

noise were estimated by analyzing the data collected by our sensors during trial runs with the

vehicle.

4 Controllers

The goal of all of the control schemes presented in the sequel is to track the roadway by regulating

the o�set at the lookahead, yL, to zero. Passenger comfort is another important design criterion

and this is typically expressed in terms of jerk corresponding to the rate of change of acceleration.

For a comfortable ride, no frequency above 0.1-0.5 Hz should be ampli�ed in the path to lateral ac-

celeration [29]. Additional performance criteria may be speci�ed in terms of the maximal allowable

o�set yLmax as a response to a step change in curvature and in terms of bandwidth requirements

on the transfer function F (s) =
yL(s)

KL(s)
between the o�set at the lookahead and the road curvature.
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4.1 Lead-lag Control

Analysis of the transfer function given in Equation (9) revealed that at speeds of up to 15 m/s

with a lookahead of around 10 meters one can guarantee satisfactory damping of the closed loop

poles of V (s) and compensate for the processing delay of the vision system using simple unity

feedback control with proportional gain in the forward loop. As the velocity increases, the poles of

the transfer function move toward the real axis and become more poorly damped which introduces

additional phase lag in the frequency range 0.1-2 Hz. Since further increasing the lookahead does

not improve the damping, gain compensation alone cannot achieve satisfactory performance. A

natural choice for obtaining additional phase lead in the frequency range 0.1-2 Hz would be to

introduce some derivative action, however, in order to keep the bandwidth low an additional lag

term is necessary. One satisfactory lead-lag controller has the following form:

C(s) =
0:09s+ 0:18

0:025s2 + 1:5s+ 20
(15)

where C(s) is a lead network in series with a single pole. The above controller was designed for

a velocity of 30 m/s (108 km/h, 65 mph), a lookahead of 15 m and 60 ms delay. The resulting

closed loop system has a bandwidth of 0.45 Hz with a phase lead of 45� at the crossover frequency.

A discretized version of the above controller taking into account the 33 ms sampling time of the

vision system was used in our experiments.

Since increasing the speed has a destabilizing e�ect on the vehicle transfer function, V (s),

designing the controller for the highest intended speed guarantees stability at lower speeds and

achieves satisfactory ride quality. In order to tighten the tracking performance at lower speeds

individual controllers can be designed for various speed ranges and gain scheduling techniques used

to interpolate between them.

4.2 Full State Feedback

Given that the vehicle can be modeled as a linear dynamical system it seems natural to consider

standard full state linear feedback laws of the form u = Kx. A controller was designed for velocity

of 20 m/s and a lookahead of 6 meters. The gain matrix, K, was chosen using pole placement

techniques such that the two poles of the system that were originally at the origin were moved to

a conjugate pair with a damping ratio � = 0:707 and a natural frequency !n = 0:989 rad/s. The

other two poles of the system were left unchanged. These pole locations were chosen so that the

resulting system would satisfy our step response and bandwidth requirements. Since it is assumed

that the full state of the system can be estimated at each instant, a smaller lookahead distance can

be employed in this design without sacri�cing stability.
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In the resulting linear control law, the gain associated with the lateral velocity term vy was

small so we chose to neglect this component of the controller. Estimates for the remaining state

variables, yL, "L, and _ are obtained from our observer and the yaw rate sensor.

One problem with this controller design is that it fails to account for the latency of the vision

system. These types of delay elements are di�cult to account for in a state space formulation. One

way to compensate for the latency is through the use of a Smith Predictor which would use the

delayed estimate for the system state and the system model to estimate the current state of the

system. Unfortunately, this approach is notoriously sensitive to errors in the model.

4.3 Input-Output Linearization

Input-ouput linearization is typically used to linearize nonlinear systems by state feedback as de-

scribed in [35]. The application of this technique to our bicycle model is not, strictly speaking,

linearization by state feedback since the bicycle model is already linear. Nonetheless, this technique

can be applied to render the model independent of the vehicles longitudinal velocity, vx. In this

case the feedback law has a zero canceling e�ect instead of a linearizing one and makes the vehicle

dynamics poles unobservable.

If the bicycle model of Equation 7 is rewritten in the form:

_x = f(x) + g(x)�f (16)

yL = h(x) (17)

the control law required to linearize this system can be obtained by di�erentiating the yL output

twice with respect to time. 1 The resulting control law has the form given in equation 19

�f =
1

LgL
1
f h(x)

(�L2
fh(x) + u) (18)

=
�1

b1 + lb2
((

l

Izvx
(lrcr � lfcf)�

1

mvx
(cf + cr))vy + (

1

mvx
(crlr � cf lf)�

l

Izvx
(l2fcf + l2rcr))

_ + u)(19)

where Lig denotes the i-th Lie derivative along g.

Employing this control law yields a second order equation of the form �yL = u. Once the system

has been reduced to this form we can employ the same lead-lag control law described in Section 6.1

to compute a control input u which will stabilize the system and achieve the desired performance

goals.

1Two di�erentiations are required since the relative degree of the system is 2
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Figure 7: Lane change maneuver

4.4 Feedforward Control

The estimate for road curvature returned by the observer can be used as part of a feedforward control

strategy. The steady state steering input, �ref , that is required to track a reference curvature, KLref ,

can be computed from the state equations by setting [ _vy; � ; _yL; _"L]
T to 0.

�ref = Kref (l�
(lfcf � lrcr)v

2
xm

crcf l
) : (20)

This feedforward control component can be added to any of the control schemes that have been

described. The feedforward control law allows the system to anticipate changes in curvature ahead

of the car and improves the transient behavior of the vehicle when entering and exiting curves.

The e�ectiveness of the feedforward term will, of course, depend on the quality of the curvature

estimates supplied by the observer.

4.5 Lane Change Maneuvers

Lane change maneuvers are accomplished by supplying a reference trajectory, yL(t), as an input to

the lateral control systems. This reference trajectory is a simple �fth order spline which smoothly

moves the vehicle from one lane to another as shown in in Figure 7. The curvature of the reference

trajectory is also supplied as an additive input to the feedforward control law.

5 Vision for longitudinal vehicle control

Another modality of the automated vehicle is a longitudinal control system which combines both

laser radar and vision sensors, enabling throttle and brake control to maintain a �xed distance to

a lead car. Currently, steering control can be driven by a combination of lane tracking described in

the previous section and magnetometers detecting magnetic \nails" in the road, and longitudinal

control achieved using the laser radar sensor. In our work we explored possibility of using vision

17



which can potentially provide higher bandwidth (30/60Hz) output than is available from the laser

radar system [9].

Our approach combines shape reconstruction (2D planar reconstruction rather than the usual

3D) from stereo/motion with motion estimation, using recently developed robust and e�cient

feature matching methods. The resulting algorithm runs at 3-5Hz, and frame-rate performance

(30Hz) is achieved by combining this with a normalized cross-correlation algorithm for stereo and

motion computation, which runs in parallel. Employing these quite sophisticated tools we are

capable to e�ectively track a vehicle over an extended time, i.e. a period measured in minutes

rather than frames.

We shall assume that the viewed vehicle is an a�ne projection of a planar object. We shall not

assume any knowledge of the camera calibration for the purpose of tracking the vehicle. Thus we

have possibly the simplest available imaging model. The lead vehicle presents its rear end to the

cameras, with little change in orientation, which might otherwise induce the 3D cues that we are

ignoring. The depth relief is also small, since only the rear of the car is visible. The smallest range

we are considering in our experiments is 10m, so that cars of size 2m will subtend an angle of at

most 10o, justifying the assumption of parallel projection from scene to image. The results at the

end of this paper will demonstrate that these minimalist assumptions are appropriate.

5.1 Visual tracking

In order to track an object over an extended time, it is necessary to compute the position of the

object, which in this context may only be computed by integrating the velocity over time. Since

there are inevitable errors in the computed velocities, these errors will tend to accumulate over

time. Thus we can expect the computed position to drift. The drift problem can be eliminated in

correlation trackers by �xing the template used for correlation, converting it into a position-based

tracker; however then the tracker will work only for a short time, because relatively small motions,

especially rotations, will break the tracker, although Shi & Tomasi [18] suggest a partial solution

to that problem through an a�nely deformable template. Correlation with a �xed template forms

the lower level of our tracker, and we use it in such a way that a single template is used for only a

short period of time.

Feature tracking algorithms have the capability to allow the position of an object to be accu-

rately estimated over an extended time. This aspect is of vital importance in the context of sensing

for control, where the sensor is required to return accurate error feedback during the whole period

of the control task. Moreover we have demonstrated in previous work [1] that vehicle tracking using

features can be made robust both to partial occlusion of the vehicles and to lighting changes in
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the environment. The major problems that have to be overcome when tracking features are the

fragmentary nature of the data (features appear, disappear and change shape) and the integration

of feature data from multiple images in a statistically valid manner. We now describe briey some

of the problems. More detailed description can be found in [13].

5.2 Fixation/Scene Reconstruction

In [17] a �xation technique was described that allows a single \�xation point" to be chosen from

a cluster of tracked features, in a way that is robust to losing track of individual features, while

allowing the same object point to be �xated over time.

While we have a simpler problem, with a �xed camera and a 2D scene representation, similar

principles apply. The \�xation point" here refers to the point chosen as representative of the

vehicle for the purpose of estimating its position, and hence its range. Maintaining scene structure

explicitly within a reconstruction algorithm stabilizes the computation of motion over time, so a

logical extension of the �xation point transfer algorithm is to recursively update the structure of

the tracked object, and employ the improved motion estimates to perform �xation point transfer.

This is the method we have implemented. The reconstruction technique detailed below is a 2D

a�ne version of the Variable State Dimension Filter (VSDF) algorithm [14]. The VSDF is a general

algorithm for visual reconstruction that deals naturally with fragmentary data and combines data

from multiple images in a near-optimal manner.

5.3 2D A�ne Reconstruction

The 2D a�ne projection from scene to image can then be written in its most general form as

0
@x
y

1
A =

0
@M1X M1Y

M2X M2Y

1
A
0
@X
Y

1
A+

0
@ tx
ty

1
A or z =MX+ t: (21)

Here z is the image point, X is a 2D scene point, and M , t constitute the camera matrix

parameters, which we will term the motion parameters because they represent the camera/scene

motion over time. The 2D a�ne reconstruction problem for point features is: given z
(j)

i for multiple

features i in multiple images j, determine the motion M (j), t(j) and structure Xi. We employ the

variable state dimension �lter algorithm which achieves virtually the same accuracy as previously

used batch algorithms [20], but has the advantages of being recursive, not requiring complete data,

and allowing new features to be added to the reconstruction as they appear and discarded features

to be removed.
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Given the recursively computed scene reconstruction, the transfer of the �xation point into

the new stereo pair with computed motion parameters Ml; tl and Mr; tr is simply zfl = MlXf +

tl; zfr = MrXf + tr: The transferred positions zfl, zfr are now converted via triangulation to

3D world coordinates to be interpreted as a range measurement. We choose Xf to be the centroid

of the structure vectors computed from the initial batch computation of the 2D reconstruction.

5.4 Stereo/Temporal Matching

A major issue with all reconstruction techniques is their reliance on high quality, essentially outlier-

free input data. The method that has recently been proposed to achieve this is to select a set of

feature matches that are globally consistent, in the sense of satisfying the rigidity constraint.

We follow [21] and apply the RANSAC algorithm of Fischler & Bolles [7] to compute a large

subset of feature matches consistent with a single set of 2D transformation parameters. Part of

the stereo matching algorithm is also an algorithm for enforcing uniqueness of individual matches.

Both algorithms are described in more detail in [13].

5.5 Layered Tracking

The frame-rate (30Hz) performance of the tracker results from the coordination of two separate

tracking algorithms, a frame-rate correlator which computes the motion in both images, and the

corner feature-based �xation algorithm, which runs at 3-5Hz depending on the size of the region

used for the corner detection (maximum 140�100 pixels). The two processes run on separate C40s,

and are coordinated in such a way that the correlator is always using an image region centered

around the latest �xation point for the correlation. The two processes communicate whenever the

�xation algorithm has any results to pass on. In addition, the laser radar provides the �xation

algorithm with the initial bounding boxes around the vehicle, so the radar may be considered a

third layer of the tracker. This provides the system with a great deal of robustness. If the correlator

fails for any reason (usually due to not �nding a motion with a high enough correlation score) it

simply waits for the �xation algorithm to provide it with a new template/position pair. If the

�xation algorithm fails, then it also must wait for the laser to provide it with a new bounding box

pair.

6 Implementation

Figure 8 shows the major components of our autonomous vehicle control system which was im-

plemented on the Honda Accord LX shown in Figure 9. This system takes input from a range
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Figure 8: System Diagram

Figure 9: The Honda Accord LX sedan used in our experiments

of sensors which give it information about its own motion, (speedometer, yaw rate sensor and ac-

celerometers), its position in the lane, (vision system and magnet nail sensors), and its position

with respect to other vehicles in the roadway (the laser radar system).

All of these sensor systems were interfaced to an Intel-based industrial computer which ran the

QNX real time operating system. All of the control algorithms and most of the sensor processing

were performed by the host computer. The real-time lane extraction operation was carried out

on a network of TMS320C40 Digital Signal Processors which was hosted on the bus of the main

computer.

The experimental setup for the vision-based tracker for longitudinal control is illustrated in

Figure 10. The o�-line version of the tracking algorithm was tested on approximately 20 minutes

of synchronized video and laser radar [9].

7 Experimental Results

In order to compare the various feedback strategies we implemented them on our experimental

vehicle and collected data from a number of trial runs. Our test track was a 7 mile oval (see

Figure 11) and our experiments were run at speeds of approximately 75mph to simulate actual
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Figure 10: The experimental setup.

highway conditions. Each experimental trial lasted at least 5 minutes, long enough to explore

how each controller fared on the straight sections, the curved sections and the transitions between

them. Figures 11 and 12 describe the performance of tested control strategies without and with

the feedforward term.

Figures 11a, 11b and 11c indicate the tracking performance of the lead-lag, full state feedback

and I/O linearization controllers respectively, that is they indicate the o�set of the centerline of

the road at a distance of 15 meters ahead of the vehicle in case of lead-lag and I/O linearization

and 6 meters in case of full state feedback controller. Since the controllers are designed to regulate

this quantity to zero, this is an appropriate value to monitor.

Figures 11d, 11e and 11f indicate the velocity pro�les during these runs while Figures 11g, 11h

and 11i denote the lateral acceleration experienced at the center of gravity of the vehicle. The

plots indicate a steady state o�set for all of the controllers in the curved sections of the track; this

is expected since all of the controllers have to produce a non-zero steering control e�ort on these

sections based on feedback. The lead-lag controllers tracking performance is superior to that of the

other two control strategies. For the full-state feedback controller there is a noticeable overshoot

during transition between curved and straight segments and its performance degrades when the

velocity increases above the value considered in the design. One possible approach to improving

the transient behavior of this controller would be to increase the lookahead distance used in the

design. Because the lookahead distance used for the full state feedback controller was smaller the

o�set measurements are less noisy. The tracking performance of the I/0 linearized controller is

quite good at lower velocities but the ride becomes a little rougher at higher velocities.

The plots in Figure 12 demonstrate the e�ect of the feedforward control term on the overall

tracking performance for all tested control strategies. The �rst row of plots indicates the tracking

performance measured in terms of the o�set at the lookahead, the second row depicts the curvature
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estimate used in the feedforward term, which was provided by the observer, the third row denotes

the velocity pro�les of the experiments and the last row shows the lateral acceleration pro�les.

Notice that the steady state o�set in the curved sections was essentially eliminated. The o�set

plots all exhibit a slight overshoot during transitions in curvature until the curvature estimates

converge. The lateral acceleration pro�le of the Input/Output linearizing controller is somewhat

better than that of the other two indicating a smoother ride in this case. In the case of full

state feedback controller the spikes in the o�set measurements and the lateral acceleration pro�le

correspond to the lane change maneuvers which the vehicle performed at lower speeds (50 mph).

For the tracking algorithm we selected an initial window surrounding the lead vehicle, although

subsequent processing was completely automatic. Figure 13 show some example images, with the

tracking results superimposed. The corner features are shown as small crosses, white for those

matched over time or in stereo, and black for unmatched features. The black and white circle

indicates the position of the �xation point, which ideally should remain at the same point on the

lead car throughout the sequence. The white rectangle describes the latest estimate of the bounding

box for the vehicle.

We have attempted here to summarize signi�cant aspects of our data. Images 1 and 2 show

the �rst stereo pairs in the sequence, where the vehicle is close (17m) to the camera and range

estimates from stereo disparity may be expected to be accurate. By contrast images 421 and

422 were taken when the vehicle was 60m from the camera (the greatest distance achieved during

the sequence). Here we can predict that depth estimates from stereo will be unreliable, since the

disparity relative to in�nity is only a few pixels and so di�cult to measure. It will still be feasible

to use the change in apparent size measured by the motion processing to obtain reasonable range

estimates. We computed the range and bearing estimated from the laser radar range �nder and

plot them together with the corresponding data collected from the vision algorithms in �gures 14

and 15. Depth from stereo is computed by inverting the projection of the �xation point at each

image pair and �nding the closest point of intersection of the two resulting space rays. The cameras

are very roughly calibrated.

The results for the real-time version of the algorithm, in a simple scenario wherein the lead car is

stationary and the following car moves backwards and forwards, are shown in �gure 16. Depth from

stereo is computed by inverting the projection of the �xation point at each image pair and �nding

the closest point of intersection of the two resulting space rays. Figure 16 shows the comparison of

the vision and laser radar data in a 200 second segment of data. There is clearly an o�set between

the graphs, due to a calibration error, which we could correct fairly easily. The vision data is quite
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Figure 11: This �gure presents a side by side comparison of the results obtained when our test

vehicle was driven on an oval track under each of the control schemes that were implemented. The

�rst column of plots correspond to data collected under the lead-lag control scheme, the second

to the full-state feedback controller and the third to the I/O linearization method. Figures a, b

and c indicate the tracking performance of the controllers, that is they indicate the o�set of the

centerline of the road at a distance of 15 meters ahead of the vehicle in the case of lead-lag and I/O
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Figure 12: These plots demonstrate the e�ect of the feedforward control term on the overall track-

ing performance for all tested control strategies. The �rst row of plots indicates the tracking

performance measured in terms of the o�set at the lookahead, the second row depicts the curvature

estimate used in the feedforward term, which was provided by the observer, the third row denotes

the velocity pro�les of the experiments and the last row shows the lateral acceleration pro�les.

Notice that the steady state o�set in the curved sections was essentially eliminated. The o�set
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noisy; this is partly due to the small baseline (26cm) used for triangulation to obtain the range

measurements, and again this could be improved by increasing the baseline. A comparison of the

heading angle is shown in �gure 17.

The software was written using the C library \Horatio" which has been developed at Oxford and

Berkeley for the purpose of supporting e�cient computer vision applications. HTML documenta-

tion for Horatio may viewed from the �rst author'sWWWhome page at http://www.cs.berkeley.edu/�pm/,

and the complete library may also be downloaded from that site.

8 Conclusions

This report has presented an analysis of the vision-based lateral control task and an investigation of

how the characteristics of this problem change as a function of important system parameters such as

vehicle velocity, lookahead distance and processing delay. We have also discussed the results of our

experiments with three di�erent feedback control strategies; lead-lag control, full state feedback

and input-output linearization. Our experiments indicate that all three of the feedback control

strategies that we implemented provided acceptable performance on the lateral control task with

the lead lag control law yielding the best tracking performance of the three. The data also shows

that the curvature feedforward component de�nitely improves the tracking performance of all three

control strategies. It allows the system to eliminate steady state tracking errors when following a

curve and it minimizes the transient response of the system to changes in curvature.

The strategy behind the design of the feedback control laws was based on the observation that

the behavior of our system was dominated by the two poles at the origin, since the other two poles

are well behaved as long as the lookahead distance is large enough. This allowed us to design

controllers for the highest intended operating velocity, which would operate satisfactorily in the

whole range of lower velocities. However this approach sacri�ces some performance criteria at

lower velocities.

We have demonstrated an approach for vision based lateral and longitudinal vehicle control.

The vision based lane tracking system used a robust �tting strategy which allowed us to overcome

1 421...

Figure 13: Example stereo-pairs from the tracking sequence.
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Figure 15: Comparison of bearing estimates from laser radar and vision.

spurious lane markings and other distracting features that are common on CALIFORNIA highways.

Closed-loop simulations and careful analysis revealed the importance of the look-ahead information

provided by the vision system, both in the presence of the delay caused by processing of the

visual information and changes in the vehicle dynamics with increasing speed. The delay plays

an important role in the system and should be taken into account explicitly in case of output

feedback strategies, such as the ones we presented. We showed that su�ciently large look-ahead

and appropriate choice of gain can compensate for the additional phase lag introduced by delay

and vehicle dynamics at lower velocities. At higher velocities additional lead action was introduced

in order to achieve desired phase margin. Introducing a real-time observer process into the system

not only reduced the noise inherent in the system's sensor measurements, but also provided an

accurate estimate of the current vehicle state, circumventing the delay in the vision system and

permitting the implementation of more advanced state-space based controllers. The curvature of

the road was incorporated into the observer process and the estimates were used for feedforward

control strategies. The presence of the feedforward term improved tracking performance in curved

road segments.

The information about the vehicle ahead for longitudinal control was provided by a stereo vision

algorithm in conjunction with a scanning laser radar sensor. The vision algorithm is built on
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Figure 16: Comparison of range estimates be-

tween stereo vision and laser radar from a

real-time run.
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Figure 17: Comparison of heading estimates

between stereo vision and laser radar from a

real-time run..

�xation and reconstruction algorithms designed for active vision systems, which combine stereo

and motion cues. The current version of the algorithm has been implemented on a network of

C40 DSP's and preliminary results indicate that the range estimates are comparable with the laser

radar system. The layered approach to vehicle tracking that involves the use of a simple correlation

tracker and a more sophisticated temporal/stereo reconstruction algorithm was designed to take

advantage of the merits of the two approaches. Correlation tracking is easy to implement in real

time, but is not suitable for extended tracking. Temporal/stereo reconstruction is more suited

to extended tracking, but it involves a large and variable amount of computation. By utilizing

both approaches in parallel, we have achieved a real-time tracker that can maintain tracking and

compute the distance to the vehicle for a long period of time.

The resulting system has been tested extensively during the development time and during the

NAHSC Demonstration in August 1997 in San Diego when the system was operational for 4 days.

We have completed a thorough analysis and comparison of the tested vision based control stategies

for lateral control.
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