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EPIGRAPH

The important thing is not to stop questioning. Curiosity has its own reason for

existing. One cannot help but be in awe when he contemplates the mysteries of

eternity, of life, of the marvelous structure of reality. It is enough if one tried

merely to comprehend a little of this mystery every day. Never lose a holy

curiosity.

- Albert Einstein
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b impact parameter of lens
rE Einstein ring radius
u impact parameter in terms of rE

uthresh u when the magnification is equal to Athresh
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U∗ projected star radius in terms of rE
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of sight
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t̂ time it takes for the lens to cross the projected
star radius

tevent duration of the microlensing event
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ρ local dark matter density
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a scale factor of the universe (with the present
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t cosmic time
z redshift: z = a0/a− 1
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H Hubble parameter: H = ȧ/a
H0 present Hubble parameter
ρ energy density
P pressure
w equation of state: w = P/ρ
K curvature of the universe
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P (k) power spectrum of perturbations
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Lyman-Alpha Forest Symbols
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P (v) velocity distribution of absorbing atoms
σ velocity dispersion

b Doppler parameter: b =
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kB Boltzmann constant
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L(ν) Lorentzian absorption profile
V (ν) Voigt line profile
τ optical depth
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αH+ recombination rate coefficient
Γγ,HI photoionization rate
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A21 spontaneous transition coefficient
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ABSTRACT OF THE DISSERTATION

Constraining Dark Matter and Dark Energy Models using
Astrophysical Surveys

by

Agnieszka M. Cieplak

Doctor of Philosophy in Physics

University of California, San Diego, 2013

Professor Kim Griest, Chair

This thesis addresses astrophysical probes to constrain dark matter (DM)

and dark energy models. Primordial black holes (PBHs) remain one of the few DM

candidates within the Standard Model of Particle Physics. This thesis presents a

new probe of this PBH DM, using the microlensing of the source stars monitored by

the already existing Kepler satellite. With its photometric precision and the large

projected cross section of the nearby stars, it is found that previous constraints on

PBH DM could theoretically be extended by two orders of magnitude. Correcting

a well-known microlensing formula, a limb-darkening analysis is included, and a

new approximation is calculated for future star selection. A preliminary prediction

is calculated for the planned Wide-Field Infrared Survey Telescope.

xviii



A preliminary study of the first two years of publicly available Kepler data

is presented. The investigation yields many new sources of background error not

predicted in the theoretical calculations, such as stellar flares and comets in the

field of view. Since no PBH candidates are detected, an efficiency of detection

is therefore calculated by running a Monte Carlo with fake limb-darkened finite-

source microlensing events. It is found that with just the first 8 quarters of data,

a full order of magnitude of the PBH mass range can be already constrained.

Finally, one of the astrophysical probes of dark energy is also addressed -

specifically, the baryon acoustic oscillations (BAO) measurement in the gas distri-

bution, as detected in quasar absorption lines. This unique measurement of dark

energy at intermediate redshifts is being measured by current telescope surveys.

The last part of this thesis therefore focuses on understanding the systematic effects

in such a detection. Since the bias between the underlying dark matter distribu-

tion and the measured gas flux distribution is based on gas physics, hydrodynamic

simulations are used to understand the evolution of neutral hydrogen over time. It

is found the location of the peak is a dependable measurement, but more robust

simulations will have to be run for a full understanding of the shape and size of

the peak.
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Chapter 1

Introduction

The mathematical description of cosmology, the study of the origins of the

Universe, was first enabled by the introduction of General Relativity by Albert

Einstein (1917). Linking the energy density of matter to the space-time geometry,

it was realized that his theory could be applied as a description of the Universe

as a whole. Friedmann (1922) and Lemâıtre (1927) wrote down the solutions

to Einstein’s equations for both a static and expanding universe. However, it

was the discovery by Hubble (1929) of an expanding Universe that kickstarted

observational cosmology. Measuring recession velocities of galaxies, he discovered

that their velocities were linearly related to their distances, thus demonstrating

that the Universe is in fact expanding, and not static. Building on these discoveries,

Alpher et al. (1948) suggested that since the Universe is now expanding, it should

have been denser and hotter at earlier times, thus allowing for the right conditions

for primordial nucleosynthesis to occur. They therefore suggested that chemical

elements were created in the early Universe, and the residual heat should be visible

as a background radiation. This in fact was discovered, by Penzias & Wilson (1965)

as a background microwave radiation, called the cosmic microwave background

(CMB). There were a few surprises with this measurement, one of which was

the fact that the CMB was very isotropic, suggesting that different regions of the

Universe, now separated by large distances, were in fact in causal contact at earlier

times. This prompted Guth (1981) to suggest the concept of inflation, where the

Universe underwent a period of rapid expansion before the photons decoupled from

1
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the background matter to form the CMB, therefore ensuring causal contact at very

early times.

The question of course arises how the first structure would have formed

from this isotropic background. Sachs & Wolfe (1967), Harrison (1970) and Zel-

dovich (1972) predicted, based on the measurements of structure at the time, that

there should be initial density perturbations in the plasma which is probed by the

CMB, with an amplitude that is the same on all scales. This scale-invariant spec-

trum is also close to that predicted by the theory of inflation, in which quantum

fluctuations of an underlying scalar field give rise to density perturbations in the

primordial plasma (Guth & Pi, 1982). These fluctuations should then grow into

the structure of the Universe that we see today. Since these initial perturbations

in the CMB were predicted to be very small, they were not discovered until COBE

measured the CMB temperature with great precision, detecting temperature vari-

ations of one part in 10,000 (Smoot et al., 1992). These temperature maps have

since been measured to even better precision by WMAP (Bennett et al., 2012;

Hinshaw et al., 2012), and most recently, by Planck (Planck Collaboration et al.,

2013).

However, with these measurements of the primordial perturbations, it was

realized that if the initial perturbations were due to baryonic matter only, they

would not have enough time to grow over the age of the Universe into the structures

we see today. This was a further confirmation of already existing measurements of

the local galactic motions, which were pointing to the possibility that there is some

unknown matter in the Universe that is unaccounted for, and cannot be explained

with just visible matter. Zwicky (1933) first suggested that there is some form of

“dark matter” after measuring galaxy velocity dispersions in the Coma cluster. He

found that in order to explain the motions of the galaxies in the cluster, he would

have to add 400 times more matter than what was visible. Since then the presence

of such “dark matter” has been confirmed from various observations, such as ro-

tation curves in spiral galaxies, stellar motions in the Milky Way, or gravitational

lensing. Furthermore, measurements of Big Bang nucleosynthesis have constrained

the matter to be nonbaryonic, not made of ordinary atomic matter. During this
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nucleosynthesis most of the baryonic mass was in the form of protons and neutrons,

which were taking part in this process of forming deuterium, helium, and lithium.

The amount of these primordial elements measured infers the total baryonic mass

at the time of nucleosynthesis, which, according to observations, is well below that

needed to account for the dark matter.

If the initial quantum fluctuations of the Universe form a primordial plasma

with overdensities in dark matter, radiation, and baryonic matter, the dark matter

can decouple from the photons much earlier than baryonic matter. Its overdensi-

ties can therefore grow much earlier, providing for dark matter halos into which

baryonic matter can fall into at later times, allowing for faster structure forma-

tion. Statistical measurements of structure in the Universe constrain the thermal

velocities of the dark matter particles at the time of their decoupling, since their

free streaming length has to be small enough to allow for growth of overdensities

on galactic scales (warm dark matter and cold dark matter) or smaller (cold dark

matter).

In addition, to explain the rate of structure formation, cosmological sim-

ulations point to an extra density component which is dominant at later times,

causing a late acceleration of the Universe. The detection of this late-time accel-

eration by measuring supernovae at various distances has resulted in the Nobel

prize awarded to two competing teams (Riess et al., 1998; Perlmutter et al., 1999).

This additional energy density causing this acceleration is what is known as dark

energy.

The resulting current cosmology paradigm is therefore the ΛCDM model

in which the dark energy accounts for 68% of the energy content of the Universe,

cold dark matter for 27%, and baryonic matter for 5% (Planck Collaboration et al.,

2013).

The goal of this thesis is to address the nature of the hidden component, the

dark matter and dark energy sectors, of the energy composition of the Universe.
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1.1 Outline of Dissertation

In Chapters 2 and 3, I first address predictions and preliminary constraints

for a dark matter candidate that is the only candidate of the Standard Model

of Particle Physics - Primordial Black Holes (PBHs). Unlike other dark matter

candidates, they do not require the invention of a new particle, and they would be

produced in the early Universe, before the time probed by nucleosynthesis limits.

They could therefore be dark matter composed of radiation and baryons, and

escape the nucleosynthesis limits described above. Although much effort has been

put into the search for new particle dark matter candidates, we find that we can

look for PBHs with an already existing satellite, not needing additional resources.

The description of this new method to look for PBHs, as well as some preliminary

constraints, are the topics of Chapter 2 and Chapter 3.

In Chapter 4 I address the major component of the energy content of the

Universe that is still unknown - the dark energy. In particular I look into the pos-

sible systematic effects of an important method of measuring the rate of expansion

of the Universe. This method uses matter distribution statistics to understand

how this acceleration has changed over time. Using the gas distribution of neutral

hydrogen through the measurement of absorption lines allows us to probe further

back in time, between the time that is measured by the CMB, and the time that is

probed by galaxy distributions locally. However, there is much to be understood

in the physics of this gas evolution, and the possible systematic effects that could

possibly limit these measurements are the topic of Chapter 4.
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Chapter 2

Improved Theoretical Predictions

of Microlensing Rates for the

Detection of Primordial Black

Hole Dark Matter

2.1 Introduction

Dark Matter (DM) has been the topic of extensive research and remains one

of the long standing mysteries in cosmology. Recent technological developments

have aided the search for DM particle candidates (Feng, 2010) with little success,

so increased attention is now focused on closing the window of one of the few DM

candidates left in the Standard Model of particle physics - primordial black holes

(PBHs) (Frampton et al., 2010; Carr et al., 2010). As opposed to regular black

holes, PBHs are much smaller and would only be able to form during the early

universe, when perturbations could collapse to form stable PBHs whose mass would

be on the order of the mass of the horizon at the time of their collapse. PBHs can

form due to density fluctuations during different inflation scenarios, such as double

7
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inflation (Frampton et al., 2010), as well as due to phase transitions in the early

universe causing a soft equation of state, bubble collisions, collapse of cosmic loops,

or domain walls (Khlopov, 2010). First proposed by Zel’dovich & Novikov (1966)

and Hawking (1971), PBHs would form during the radiation-dominated era, and

therefore would be non-baryonic, satisfying the big bang nucelosynthesis limits on

baryons, and would thus be classified as cold dark matter in agreement with the

current paradigm.

The discovery of Hawking evaporation (Hawking, 1974, 1975), led to a theo-

retical lower limit on their mass scale of 5×10−19M�, with any black holes smaller

than this having evaporated by the current age of the Universe. There are no

theoretical limits on the rest of the mass range, however higher masses have been

progressively ruled out by various experiments (Carr et al., 2010) (Alcock et al.,

1998), leaving one major unconstrained window left, covering 5 × 10−14M� to

2× 10−8M�. The lower mass end of this window is set due to femtolensing obser-

vations of gamma-ray bursts (see Barnacka et al. (2012) for a recent analysis of the

Fermi Gamma-ray Burst Monitor data), while the higher mass end is constrained

by the combined MACHO/EROS results due to microlensing (Alcock et al., 1998).

Kesden & Hanasoge (2011) recently suggested that this unconstrained mass range

could be addressed by using stars as seismic detectors of PBHs passing through

them, while Luo et al. (2012) proposed a mechanism to search for PBHs transiting

near Earth by studying Earth’s seismic waves. In Griest et al. (2011, hereafter

Paper I), we proposed to extend the previous microlensing constraints into this

mass range by using the NASA Kepler satellite, which has the capability to close

a significant part of the window.

The Kepler satellite is a 1 m aperture telescope with a 115 deg2 field-of-view

in an Earth trailing heliocentric orbit (see Koch et al. (2010); Borucki et al. (2010)

for a description of the Kepler mission). It takes photometric measurements of

around 150,000 stars every 30 minutes in the Cygnus-Lyra region. The telescope

was launched in March 2009 and the mission has recently been extended to the
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year 2016. With planet-finding as its main science interest, it measures changes in

stellar flux down to one part in a thousand or lower. This proves very beneficial in

microlensing searches as well, where flux magnification is measured in the stellar

light curves.

Here we fill in details and expand on our previous analysis of this exciting

possibility, analyzing the importance of limb-darkening on tightening our con-

straints, as well as calculating the probability for various lens parameters if any

events are detected. We also improve our numerical estimate over the previous

use of a 5000 star sample, by including all the third quarter Kepler stars being

monitored (∼156,000 stars), and project this as representative of the majority

of the mission. We introduce new notation for the limb-darkened microlensing

curves, which will be used to fit any future observed events. We correct an er-

ror in a well-known finite-source limb-darkening microlensing formula and derive

a limb-darkened microlensing detection efficiency in our framework. Finally, we

show that the PBH DM mass window can be extended further to lower masses

using this improved analysis, and provide an approximation which can be used to

predict microlensing rates in future surveys, such as the planned WFIRST space

mission.

2.2 Formulas

2.2.1 Point-Source Microlensing

Paczynski (1986) first proposed microlensing as a way to search for DM in

the Milky Way. In doing so, he assumed a point-source, point-lens model, in which

a lens, such as a PBH, would cause a magnification of this source when crossing

in front of it, described by

Aps =
u2 + 2

u
√
u2 + 4

(2.1)

where u = b/rE and b is the impact parameter of the lens, that is the transverse
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distance between the lens and the line-of-sight to the source. The Einstein ring

radius rE is given by

rE =

√
4GMLx(1− x)

c2
(2.2)

where x is the ratio of the lens distance to the source distance, L is the distance

to the source star, and M is the mass of the lens. As the PBH passes in front of

the star, the amplitude becomes time-dependent, A(t) = A[u(t)], and

u(t) =

{
u2

min +

[
2(t− t0)

tE

]2
}1/2

. (2.3)

Here t0 is the time of the peak magnification, umin = u(t0), and tE = 2rE/vt is the

time for a lens to cross the Einstein ring with a velocity vt transverse to the line

of sight (see Figure 2.1 for an example light curve).

Figure 2.1 An example microlensing light curve for the three microlensing models:
point-source (dashed line), finite-source with U∗ = 52 (solid line), and finite-source
with limb-darkening with U∗ = 52 and uλ = 0.6 (dotted line), plotted in terms of
the impact parameter u.
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This is the standard point-source limit, in which the lens produces a 34

percent magnification when it is within one Einstein radius of the projected source

star. This approximation is valid for a source that is much smaller than the Einstein

radius and is not directly aligned with the lens. However, for the relatively nearby

Kepler source stars and the relative low mass PBHs, the projected star radius

needs to be taken into account.

2.2.2 Finite-Source Microlensing

When the projection of the radius of the star is comparable to the lens

impact parameter, one needs to take into account finite-source effects on the de-

tectability of events. The projected star radius is given by

U∗ =
R∗x

rE(x)
, (2.4)

where R∗ is the radius of the source star. For a constant surface brightness,

equation 2.1 now becomes (Witt & Mao, 1994, eqns 9-11)

Afs(U∗) =
2

πU∗
+

1 + U2
∗

U2
∗

(
1

2
+

1

π
arcsin

U2
∗ − 1

U2
∗ + 1

)
(2.5)

for u = U∗, and

Afs(u, U∗) =
2(u− U∗)2

πU2
∗ (u+ U∗)

1 + U2
∗√

4 + (u− U∗)2
Π
(π

2
, n, k

)
+
u+ U∗
2πU2

∗

√
4 + (u− U∗)2E

(π
2
, k
)

− u− U∗
2πU2

∗

8 + (u2 − U2
∗ )√

4 + (u− U∗)2
F
(π

2
, k
)

(2.6)

for u 6= U∗, where

n =
4uU∗

(u+ U∗)2
(2.7)

and

k =

√
4n

4 + (u− U∗)2
. (2.8)
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F , E, and Π are elliptic integrals of the first, second, and third kind. As opposed

to the point-source approximation, there is now a maximum amplitude for the

magnification, which is equal to (Witt & Mao, 1994, eqn 13)

Amaxfs
=

√
4 + U2

∗

U∗
. (2.9)

The duration of the event tevent will now be the time during which the

event is detectable, starting when the lens crosses the threshold impact parameter

uthresh at which the microlensing light curve magnification reaches the minimum

detectable threshold Athresh = A(uthresh, U∗) (see Figure 2.2). The duration of the

event is then described by

tevent =
(
u2

thresh − u2
min

)1/2
tE (2.10)

(see Figure 2.1 for an example lightcurve).

u
*

uminuthresh

vt

Figure 2.2 The microlensing geometry in the lens plane. A PBH with a small
Einstein radius equal to rE pictured as the small circle crosses in front of the large
projected star, with a projected star radius U∗. The microlensing event is detected
when the PBH’s impact parameter reaches uthresh. For a finite-source model this
is approximately U∗, however for a limb-darkened finite-source model, this could
be slightly less than U∗. The impact parameter when the PBH reaches its closest
approach to the star center is labeled as umin.

As the ratio of the distance to the lens to the distance to the star, x,
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approaches 1, the projected star radius in terms of the Einstein radius, U∗, ap-

proaches ∞, thereby suppressing the maximum magnification Amaxfs
. Therefore

there is some xmax beyond which Amaxfs
is lower than the detectable magnification,

Athresh and no events are detected. This effect decreases the detection efficiency

of the PBHs. However, the duration of the event increases, since the PBH does

not have to be one Einstein radius away from the center, but from the edge of

the projected star, for the beginning of a microlensing event. This effect increases

the detection efficiency. As seen in Paper I, this dominates the detectability of

events, increasing the number of expected microlensing events in the Kepler light

curves. This finite-source model, however, assumes a constant brightness of the

star, and does not take into account limb-darkening of the source star. In this

paper we extend our analysis of the detectability of events to include this more

physical model of the stars being lensed.

2.2.3 Finite-Source Microlensing with Limb-Darkening

For microlensing of nearby Kepler stars, where the Einstein radii of de-

tectable PBHs is very small, limb-darkening is anticipated to be an important ef-

fect on the rate of detection. The effect is such that the star appears to be brighter

towards the center, producing a more concentrated source brightness, mimicking

a model in between the point-source and the finite-source approximations. The

limb-darkening profile we use to study this is the linear limb-darkening described

by Witt and Mao, projected into the lens plane where (Witt & Mao, 1994, eqn 15)

Ib(U
′

∗) = 1− uλ + uλ
√

1− (U ′∗/U∗)
2. (2.11)

Here, U
′
∗ is now the distance from the center of the projected star in terms of the

Einsten radius and uλ is the linear limb-darkening coefficient. As discussed later,

we also calculated results using a quadratic limb-darkened formula. Witt and Mao

calculated a limb-darkened profile numerically using a weighted surface brightness
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(Witt & Mao, 1994, eqn 16),

Alimb(u, U∗) =

(∫ U∗

0

2πU
′

∗Ib(U
′

∗)dU
′

∗

)−1 ∫ U∗

0

∂(Afs(u, U
′
∗)πU

′2
∗ )

∂U ′∗
Ib(U

′

∗)dU
′

∗. (2.12)

The integrand in the second integral of equation 2.12 has a peak at u = U
′
∗,

which causes some problems with convergence when integrating numerically. Witt

and Mao provided another form of equation 2.12, (Witt & Mao, 1994, first half

of eqn 16) but recommended against its use due to, they said, the presence of

a singularity. We find in fact, that there is an error in their equation, due to

the treatment of the integral boundaries. Integrating equation 2.12 by parts (see

Appendix A.1) we find the correct magnification for a linear limb-darkened profile

to be

Alimb(u, U∗) =
(
πU2
∗ (1− uλ/3)

)−1×[
Afs(u, U∗)πU

2
∗ (1− uλ) + (πuλ/U∗)

∫ U∗

0

Afs(u,
√
U2
∗ − z2)(U2

∗ − z2)dz

]
, (2.13)

where

Afs(y)πy2 = 2y + (1 + y2)

(
π

2
+ arcsin

y2 − 1

y2 + 1

)
(2.14)

for u = y, and

Afs(u, y)πy2 =
2(u− y)2

(u+ y)

1 + y2√
4 + (u− y)2

Π
(π

2
, n, k

)
+
u+ y

2

√
4 + (u− y)2E

(π
2
, k
)

(2.15)

− u− y
2

8 + (u2 − y2)√
4 + (u− y)2

F
(π

2
, k
)

for u 6= y. Here y = U∗ or y =
√
U2
∗ − z2, where appropriate in equation 2.13. Use

of this equation removes the problem of numerical convergence in equation 2.12.

As stated above, the limb-darkening of the source star produces a more con-

centrated source brightness, thereby changing the shape of the microlensing light
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curve (see Figure 2.1). There will therefore be a higher maximum magnification

than that produced by a pure finite-source light curve. Agol (2002) calculated this

maximum amplification for a quadratic limb-darkening model. Here we present

the result for the linear limb-darkening profile using equation 2.13 when u = 0:

Amax =
Amaxfs

1− uλ/3

×
{

1− uλ + (2uλ/3U
2
∗ )

[
(2 + U2

∗ )E
[√

U2
∗/(4 + U2

∗ )
]

− 2K
[√

U2
∗/(4 + U2

∗ )
]]}

, (2.16)

where K and E are the complete elliptic integrals of the first and second kind (see

Appendix A.1.1 for a derivation).

Therefore, there is a new, higher xmax below which the magnification is

detected, allowing more PBHs to be observed. At the same time, since the bright-

ness of the star is more concentrated, the impact parameter for which an event is

detected will be closer to the projected center of the star, decreasing the duration

of the event. Since this is an effect in between the point-source and finite-source

model, there should be an overall decrease in the number of expected events in

the Kepler data which we explore in Section 2.4. We use the linear limb-darkening

model to calculate the number of expected events, as having the largest effect on

this number compared to other limb-darkening models, thereby demonstrating the

largest effect limb-darkening could have. The difference between the quadratic and

linear limb-darkening models on the number of expected events is less than 4% for

the lowest-mass PBHs explored.
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2.3 Improved Numerical Estimate of Expected

Number of Events using the Finite-Source

Microlensing Model

In Paper I we used the finite-source microlensing model to calculate the

expected number of PBH microlensing events in the Kepler data based on a subset

of the third quarter light curves that were then publicly available. Here we make

a more accurate estimate of this number. As in Paper I we require 4 sequential

measurements of 3-sigma above average, equivalent to a microlensing event of

a minimum 2 hour duration. Since the Kepler source stars are just out of the

plane of the Milky Way disk, moving in almost the same direction around the

Galactic center as the Sun, we assume a negligible transverse velocity between

the observer and the sources. While the velocity dispersion of stars such as the

Sun perpendicular to the plane of the Galaxy is on the order of 20 km/s, the

expected rms velocity of the primordial black holes is 270 km/s, which is an order

of magnitude higher. Since the source stars are at the same distance as the Sun

from the Galactic Center, we also assume the local dark matter density ρDM ≈ 0.3

GeV cm−3. The nearness of the source stars and the Kepler field being about 90◦

from the direction of the Galactic Center means that a model of the Galactic DM

halo is not required. There is probably a factor of two uncertainty in the value

of ρDM which translates directly into our possible limits. We calculate the stellar

distances and the magnification thresholds Athresh (below which an event would

not be detected) for each star as described in Paper I. To calculate the number of

expected events, we’d like to calculate the rate of detection per star-year, which can

be thought of as Γ = τ/ < tevent >, where τ is the optical depth (the total number

of PBHs inside a microlensing tube as defined in Griest (1991)) and < tevent > is

the average event duration. Since we require a minimum 2 hour event duration,

we use the differential event rate (Paper I, eqn 1),



17

dΓ

dtevent

=
ρ

M
Lv2

c

∫ xmax

0

dxβ′2g(β′) (2.17)

where g(β′) =
∫ 1

0
dyy3/2(1 − y)−1/2e−β

′y = π
2
e−β

′/2[I0(β′/2) − (1 + 1/β′)I1(β′/2)],

I0 and I1 are modified Bessel functions of the first kind, β′ = 4r2
Eu

2
thresh/(t

2
eventv

2
c ),

y = v2
t /(β

′v2
c ), vc ≈ 220 km/s is the halo circular velocity, and vt is the transverse

lens velocity. Following Paper I, we use this equation for the calculation of the

number of expected events for the finite-source microlensing model. However, we

improve upon our Paper I calculation in several ways.

First, we extend the calculation to include the full set of third quarter light

curves being monitored (∼ 156,000 stars), reflecting a more accurate sample of

the stars monitored during the full Kepler mission. This increases the detectable

mass range predicted by one fifth order of magnitude below our previous estimate.

Second, whereas before we discarded 25% of the Kepler stars as variable, irrelevant

of stellar classification, we next assume a more accurate number of variable stars in

the Kepler mission, with 25% of the observed dwarf stars and 95% of the observed

giant stars assumed to be variable (Ciardi et al., 2011). In the sample of third

quarter light curves we find about 12% of the total stars being monitored to be

giant stars. With many of the giant stars being unusable, the distribution consists

of mainly dwarf stars. This changes the shape of the curve, however it does not

reduce the observable mass range. While the mostly discarded giant stars’ peak

PBH DM mass sensitivity is at around 10−8M�, which dominated the earlier curve

in Paper I, the dwarf stars’ sensitivity is better at lower PBH masses, peaking at

around 5 × 10−9M�, since a higher fraction of the stellar intensity is magnified.

Therefore, discarding 95% of the giant stars does not affect our sensitivity at lower

PBH masses. Finally, building upon our calculation, we scale the observation time

to 7.5 years to include the extended Kepler mission, which has been approved and

is already in progress. This results in a total of 780,000 star-years being observed.

This final result is plotted in Figure 2.3 as the solid line. The larger amount of
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Figure 2.3 Top panel: Expected number of events, Nexp, scaled to 780,000 star-
years of Kepler observing time for a finite-source microlensing model with no
limb-darkening (solid line) and with limb-darkening (dashed line). We assume
4 sequential measurements with 3-sigma above average measurements of the flux.
The dash-dotted line represents Nexp from our previous estimate of Paper I. The
horizontal line shows the 95% confidence level limit if no events are detected. Bot-
tom panel: The potential 95% confidence level exclusion of PBH dark matter.
The area above the solid line for the finite-source model (dashed line when limb-
darkening is included) would be ruled out if no events are detected in the 7.5 year
Kepler observation lifetime. The dash-dotted line represents the previous estimate
of Paper I, while the dotted line represents the current limits from the combined
MACHO/EROS LMC microlensing surveys (Alcock et al., 1998). The horizontal
line depicts a DM halo consisting entirely of PBHs.

star-years, dominated by monitoring of dwarf stars, increases the sensitivity to

lower mass PBHs. This final, more accurate estimate shows a potential closing of

the PBH DM window down to 2× 10−10M�, compared to the 5× 10−10 previously

estimated in Paper I.
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2.4 Effect of Limb Darkening on the Numerical

Estimate of Expected Number of Events

In addition to these calculations, we now consider the effect of limb-darkening

on the predicted number of detectable events. As seen in Section 2.2.3, limb-

darkening increases Amax, but decreases the duration of the event, since the total

stellar flux remains the same. Amax determines xmax, the distance to which a PBH

would be detectable, with xmax = 1 being the maximum value. A higher Amax

would naively increase this value, increasing the range of masses that PBHs would

be detectable, however, calculating xmax for a typical Kepler star (with radii be-

tween 0.9R� and 1.5R�), without limb-darkening, one can see that xmax is already

approaching the maximum value of 1. Therefore, increasing this further when

limb-darkening is added, does not produce much of an effect on the total number

of events that could be detected. The only other effect then is to reduce the possi-

ble duration of an event, therefore decreasing the total expected number. In Paper

I, we showed that the naive point source optical depth is proportional to u2
thresh

(the detectable impact parameter value) and thus replacing this with the projected

star radius, changes the optical depth by a factor of U2
∗ . Extending this naive cal-

culation to limb-darkening, we can see that any effect on the projected star radius

will directly impact the optical depth in quadrature. Therefore, limb-darkening,

which effectively reduces the radius of the star, could drastically limit how far we

can extend the current PBH mass range, since lower PBH masses would not be as

detectable.

Here we explore this effect by repeating the above calculation for the ex-

pected number of PBH microlensing events, however now including the limb-

darkening effect for each star. In order to do this, we used the linear limb-darkening

model as described in Section 2.2.3, calculating the linear limb-darkening coeffi-

cients using the (Sing, 2010) model grid to find Kepler limb-darkening coefficients

as a function of the effective temperature, surface gravity, and metallicity of each
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of the 150,000 Kepler source stars. This enables us to calculate a new detectable

magnification threshold Athresh using the magnification formula in equation 2.13

for linear limb-darkening. The number of expected events including this linear

limb-darkening effect is plotted in Figure 2.3 as the dashed line.

Surprisingly, Figure 2.3 does not show a significant effect of limb-darkening

on the number of expected events. This can be understood as being due to the ex-

treme precision of Kepler. Since Kepler light curves allow a magnification threshold

of Athresh = 1.001 or lower to be set, the median Kepler star (with a small stellar

radius), will allow for a detection as soon as a PBH is within one Einstein ra-

dius of the projected star radius, where the limb-darkening does not play much

of an effect yet on the light curve. On stars with bigger stellar radii, as well as

models with smaller PBH masses, this limb-darkening will have some effect, since

the magnification reaches Athresh only when the PBH’s impact parameter is inside

the projected star radius, where the limb-darkening plays a role. However, even

then, the duration is shortened by just a small amount. In Figure 2.4 we plot the

percent change between the finite-source model with and without limb-darkening

and we in fact see that there is a decrease of up to 17% for the lower lens masses.

Moving towards higher PBH masses, almost all the Kepler stars which have radii

on the order of a solar radius, will be able to have a detectable event within one

Einstein radius of their projected radius, therefore, making the limb-darkening ef-

fects negligible. As a side-note, we found that if we did not discard 95% of the

giant stars as variable, we would see an increase in the overall number of expected

events due to limb-darkening at higher mass ranges. Amax is significantly lower

for stars with large radii, and therefore the detectable value of x will be close to

0. We found that introducing limb-darkening in giant stars increases this Amax,

increasing the possible detectable range of x, drastically increasing the number of

detectable events. Also, the higher the mass of the PBH, the lower the projected

star radius, and the more pronounced this effect will be, increasing the x ratio by

a higher amount when introducing limb-darkening. Therefore the biggest effect of
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limb-darkening on the number of events seems to be in these large-radii stars and

on the lower lens masses. The effect of limb-darkening will also be crucial in the

fitting of potential PBH events as well as in calculating the experimental detection

efficiency.

Figure 2.4 Percent change in the number of expected microlensing events due to
limb-darkening for 780,000 star-years of Kepler observing time, defined asNexp with
limb darkening divided by Nexp without limb-darkening included. The horizontal
line depicts 100%, representing no change, for comparison.

2.5 Detection Efficiency

In order to turn either detection or non-detection of microlensing into a

statement about Galactic dark matter, one must calculate the efficiency at which

the experiment finds PBH microlensing. This is done by performing a Monte

Carlo simulation with randomly generated microlensing events and using the same

selection criteria used to select microlensing light curves. One thus calculates the
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detection efficiency ε, which is just the fraction of simulated events recovered.

Using ε one can calculate the expected number of detectable events as

Nexp =

∫ xmax

0

∫ uthresh(x)

0

∫ ∞
0

ε(x, umin, vt)
dΓ

dxdumindvt

dvtdumindx, (2.18)

where
dΓ

dxdumindvt

= 4rE(x)L
ρ

M

v2
t

v2
c

e−v
2
t /v

2
c (2.19)

as derived in Appendix A.2.

As before, we are making the approximation that the DM density is constant

between the Earth and the source stars, valid for the relatively nearby Kepler stars,

and using the fact that the Kepler field is nearly in the direction of the Sun’s motion

around the Galaxy. Previous microlensing experiments sampled the DM through

long lines-of-sights through the halo requiring use of DM models that fall off as a

function of galactic distance. Our distances of one or two kpc to the Kepler source

stars (compared to 8 kpc to the Galactic Center) coupled with the fact that the

Kepler stars are also at ' 8 kpc from the Center means that we need not use a

halo model. Since the Milky Way DM distribution is quite uncertain this makes

Kepler microlensing results more robust than results requiring the use of a halo

model.

Without limb-darkening, ε is a function of only x and vt, and the integral

over umin can be performed since that distribution is well-known due to a uniform

stellar intensity across the projected star radius. This is not true when limb-

darkening is included, since a lower umin produces a higher amplitude in a limb-

darkened light curve as well as decreases the duration of an event. The effect of

limb-darkening on the efficiency is calculated by adding the parameter umin to the

Monte Carlo simulation. Thus the two competing effects can both influence this

probability of detection.
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2.6 Detectable Parameters

Also of interest is what we can say about a potential PBH if we do detect

microlensing events. Assuming the measured light curve parameters are U∗ and

tevent found by fitting a limb-darkened finite-source microlensing light curve to any

events of 2 hours or more, one can then calculate the mass probability and the dis-

tance probability of the lens in terms of these measured parameters. Uncertainty in

the fit parameters, due for instance to having only 4 data points, will translate into

uncertainties in the distributions, which could be characterized by Monte Carlo.

Performing a change of variables in terms of the observable parameters, the mass

and distance likelihood functions can be derived. We find the mass likelihood func-

tion by making the substitution dx = R2
∗c

2U∗/(2GML)(R2
∗c

2/4GML + U2
∗ )
−2dU∗

in Equation 2.17 to obtain the following expression independent of x:

dΓ

dteventdU∗
=
ρv2

cc
2

2G

R2
∗U∗
M2

(
c2R2

∗
4GML

+ U2
∗

)−2

β2g(β), (2.20)

where

β =
4uthresh(U∗, uλ)

2R2
∗U

2
∗

t2eventv
2
c

(
c2R2

∗
4GML

+ U2
∗

)−2

(2.21)

and

g(β) =

∫ 1

0

dyy3/2(1− y)−1/2e−βy. (2.22)

In Figure 2.5 we plot this likelihood for tevent = 2 hours, R∗ = 1R�, L = 0.73

kpc, uλ = 0.61, and Athresh = Alimb(uthresh, U∗) = 1.0007, values typical of a median

star in the Kepler field being monitored. The different curves represent the range

of different values of U∗ that could be measured for such a star undergoing a

microlensing event. The distributions are normalized to have unit area under each

curve so that each curve can be thought of as a probability density, that is for

a measured duration of 2 hours and the given U∗, the curves give the relative

likelihood of the event being caused by a PBH of mass shown on the abscissa. The

rise of each curve at low mass is dominated by the β2 term, which increases with
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increasing U∗. The event duration is proportional to this projected star radius U∗,

the PBH Einstein radius, rE, and inversely proportional to the PBH transverse

velocity, vt. For a lower mass PBH only small transverse velocities will give rise to

events longer than 2 hours. If U∗ is decreased, then for the lower mass PBHs the

transverse velocities have to be smaller, with the number of possible events for these

mass ranges approaching zero. This is the reason that the distributions tend to

zero for the smaller values of U∗ for the smaller PBH masses in Figure 2.5. On the

other hand, the decrease in each curve at larger PBH masses is caused by the lower

number density of PBHs as their mass increases. The bigger the PBH lenses, the

lower the number density needed to explain the local dark matter density. This in

turn corresponds to less potential microlensing events. If microlensing events were

to be observed in the Kepler data, we would then be able to, using distributions

such as these, estimate the mass of the PBH making up the DM. The product of

these likelihood functions would give us an estimate of the PBH DM mass range.

We could also use these distributions to exclude some range of masses that the

microlensing lenses could represent by measuring their tevent and U∗ parameters.

In a similar way, we can calculate the lens distance likelihood function, with

a change of variables where M = c2R2
∗/(4GLU

2
∗ ) × x/(1 − x) in Equations 2.20 -

2.22,

dΓ

dteventdU∗
= 8Gρ

v2
c

c2

L2

R2
∗
U∗(1− x)2β2g(β), (2.23)

where

β = 4
R2
∗

t2eventv
2
c

uthresh(U∗, uλ)
2

U2
∗

x2. (2.24)

These distribution functions are plotted normalized to unit area under each

curve in Figure 2.6. We see that the distance to the lens is not very dependent

on the value of U∗ measured. The distance probability distribution is dominated

by the transverse velocities that are detectable at each distance to the lens (closer
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Figure 2.5 Lens mass relative likelihood for tevent = 2 hours, R∗ = 1R�, L = 0.73
kpc, uλ = 0.61, and Alimb(uthresh, U∗) = 1.0007 representing a median star in the
Kepler field. The range of values for U∗ = 10, 30, and 50 represents the range that
could be measured in such a star. The curves here are normalized to have unit
area under each curve, so that each curve represents the probability of each mass
given the measured lightcurve parameters.

lenses have to be traveling slower in order to be detected for a given measured

tevent). If a microlensing event was to be detected, then the probability distribution

for the distance to the lens can be plotted for the particular stellar radius being

monitored, just like in Figure 2.6. A bigger R∗ will yield a distribution centered

at lower x, while a smaller R∗ will shift the distribution to higher x. We can

then narrow down the most likely position of the lens based on the likelihood

of detection at each distance for the particular star at which the event occurred.

Overall, though, Figure 2.6 shows that it will not be easy to determine the distances

to the lens.
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Figure 2.6 Lens distance relative likelihood for tevent = 2 hours, R∗ = 1R�,
uλ = 0.61, and Alimb(uthresh, U∗) = 1.0007 representing a median star in the Kepler
field. The range of values for U∗ = 10, 30, and 50 represents the range that could
be measured in such a star. The curves here are normalized to have unit area
under each curve.

2.7 Limitations

We turn now to considerations of what could be improved in upcoming

missions, and what theoretical limitations the Kepler satellite has on detecting

PBHs. As mentioned above, for the lower mass range of PBHs, the higher-velocity

objects would not be detectable, because they result in magnifications that last too

short a time. In Figure 2.7 we plot the maximum detectable velocity for a given

PBH mass for a Kepler star with median parameter values of distance, radius, and

Athresh, calculated from the third quarter stars monitored. Throughout this section,

by velocity we mean the velocity of the lens relative to the Earth-source line-of-

sight in the direction perpendicular to the line-of-sight. As mentioned earlier, since
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the Kepler stars are just out of the plane of the Milky Way disk, moving in the same

direction as the Sun, we have assumed a negligible relative velocity between the

Kepler satellite and the source stars. The Kepler satellite is therefore sensitive to

PBH velocities which are radial in relation to center of the Galaxy. For a median

type Kepler star, the vc value of 220 km/s is on average detectable for masses

above 2 × 10−7 solar masses. The lower-mass range events would be dominated

by the projected radius of the star and therefore their maximum velocity curve

approaches a constant value, but at the upper-mass range, the Einstein radii of

the PBHs become important in detecting the event, and therefore more of the

velocity distribution is detectable.

Figure 2.7 Maximum detectable transverse velocity, vmax, of PBHs, for a median
type Kepler star with R∗ = 1R�, L = 0.73 kpc, uλ = 0.61, and Alimb(uthresh, U∗) =
1.0007, for a minimum tevent = 2 hours.

In order to understand the limits on this detectable velocity, we calcu-

lated the optical depth, which determines how many measurements are needed
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for any given PBH mass, and is defined as the number of PBHs inside a de-

tectable microlensing tube (as defined in Griest 1991, with the addition of an

xmax cutoff for the finite-source model). We therefore arrive at the equation

τ = π(ρ/M)L
∫ xmax

0
u2

thresh(x)r2
E(x)dx. A higher optical depth translates to a higher

probability of detection. In Figure 2.8 we plot the optical depth, averaged over all

the third quarter Kepler source stars. As can be seen, and as discussed in Paper

I, the optical depth is now larger than the usual point-source one by a factor of

u2
thresh, which is dominated by the large U2

∗ . The overall amplitude of the curve is

also dominated by the average distance to the stars being monitored, whereas the

shape of the curve at lower-mass PBHs is mostly governed by xmax, the detectable

distance to the lens. This is set by the photometric accuracy of Kepler and cannot

be changed.

Figure 2.8 Average optical depth for the third quarter Kepler source stars being
monitored. The horizontal line depicts the average optical depth if a point-source
microlensing model is used for comparison.
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Another limitation is related to our detection of events that last 2 hours

or more, which is set by the Kepler satellite cadence. In Figure 2.9 we plot the

average event duration, defined as tevent = τ/Γ, averaged over all the third quarter

Kepler stars being monitored. We can see that the average event duration is about

2 hours at around 10−8 solar masses. With the 2 hour selection criteria, we are

therefore not able to detect most events for the smaller mass PBHs. Figure 2.9

shows that if events as short as 0.1 hours could be detected, one might be able to

detect PBHs of masses down to 10−10M� or below. This could be improved upon

by decreasing the Kepler satellite cadence when monitoring the stars.

Figure 2.9 Average event duration, < tevent >, for the third quarter Kepler source
stars being monitored. The horizontal line depicts tevent = 2 hours, which repre-
sents the minimum event duration required for a microlensing detection in the
Kepler data.

Our theoretical detectable limits are due to both the threshold detection

limit of Kepler and the cadence. The first cannot be changed, however we address
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improvements to the second limitation in the next section.

2.8 Future Planned Missions

Kepler’s extended mission of four additional years helps increase its sensi-

tivity to lower-mass DM PBHs, as seen in Section 2.3. Here we address whether

any possible additional measures could be undertaken during this extended mis-

sion to further increase this sensitivity. As seen in the previous section, in the

analysis of the average microlensing event duration, cadence plays a huge role in

these measurements. The Kepler camera actually takes one image every minute.

Due to communication bandwidth, for most stars, the Kepler team adds up the

one minute exposures into a 30 minute exposure before transmitting the data to

Earth. These are called “long cadence” light curves and this is what is assumed in

our calculations of the number of expected events and light curve characterization

up to this point. However, for a selectable subset of stars, the entire one minute

cadence (“short cadence”) light curves are transmitted. Thus we wish to investi-

gate the value for microlensing of the Kepler team returning short cadence data

on a subset of stars. If we naively decrease the monitoring cadence to 1 min for all

the Kepler source stars, for the full 780,000 star-years, the lower-mass DM PBH

sensitivity increases by an order of magnitude, down to 2× 10−11M�. Thus, while

not possible due to bandwidth limitations, naively returning short cadence light

curves for all the stars, would allow the exploration of one additional factor of 10

in the allowed PBH mass range. This could be an exciting possibility. However,

when the cadence is decreased, the Poisson average error in each flux measure-

ment increases. Thus with the set light gathering power of the Kepler telescope,

a shorter cadence is offset by a larger Athresh. In order to investigate this trade-off

we redid our analysis assuming a 1 min cadence, but reducing the signal/noise for

each flux measurement appropriately. Figure 2.10 shows the results of this analysis

for 780,000 star-years with the same assumed stellar variability as in Section 2.3.
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Although requiring short cadence for all the Kepler stars for the full mission is

not achievable, this demonstrates that reducing the cadence time on the current

source stars with the current light curve precision, would give only a modest in-

crease in the sensitivity to lower-mass PBHs. However, if Kepler’s aperture was

large enough to maintain the current signal/noise at a one minute cadence, great

improvement would be possible. In this we note that certain stars are far more

valuable than others for detecting microlensing.

Figure 2.10 Total number of expected events for 780,000 star-years for 1 min
and 30 min Kepler cadence monitoring times. The horizontal line shows the 95%
confidence level limit if no events are detected.

We therefore address the characteristics of source stars and cadence times

that would optimize this sensitivity in future missions similar to Kepler. Since

95% of the giant stars are seen to be variable, we focus on the dwarf stars, which

would yield a higher number of less variable light curves for the same number of

stars monitored. To investigate an optimal selection of stars for monitoring we
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calculated the expected number of microlensing events for each non-variable dwarf

star in the third quarter Kepler data. We plotted this per-star-Nexp versus other

stellar parameters to see which correlated well with higher Nexp. In Figure 2.11,

we show the best such correlation, Nexp vs. Teff , where stars with higher Teff are

much more likely to return a detectable microlensing event. This figure shows

that source stars with Teff > 8000K are roughly 100,000 times more valuable for

monitoring than stars with Teff < 4000K. There is some scatter in the points

plotted, since we only apply a rough cut-off here to distinguish between the dwarf

and giant stars based on the radius in the Kepler Input Catalog. We expect the

giant stars to give a lower number for the expected number of events, for the same

Teff when compared to the dwarf stars, and these giant stars that have passed our

rough cut-off may be what is contributing to this scatter. Overall, Figure 2.11

demonstrates that short cadence monitoring of a handful of carefully selected stars

should be as valuable as large numbers of typical stars. The bandwidth problem,

therefore, might be solved by long cadence monitoring of most stars but short

cadence monitoring of a small sample.

Why does Teff correlate so well with the expected number of lensing events?

We see that for a point-source microlensing model detectability correlates well with

luminosity; the more luminous stars give higher rates of predicted detections when

the projected star radii and the lens Einstein radii are comparable. However, for

these small PBH masses, the Einstein radii are much smaller than the projected

star radii and the luminosity per unit area is more important, giving the upward

trend with effective temperature.

In order to understand better the factors that influence the number of pre-

dicted events for a given star, we can make the following approximations. For

light curves with 1% or better precision, as seen in Kepler, we can approximate

uthresh ≈ U∗. Also, for R∗/R� < 0.57 (tevent/1hr) (vc/220km/s) /xmax, we can ap-

proximate β < 1 and β2g(β) ≈ (3/8)πβ2. Using these approximations in equation

1 of Paper I, with xmax < 1 for M = 10−10M�, we arrive at the predicted rate of
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Figure 2.11 Expected number of events per star-year for a PBH mass of 10−10M�
with a 1 min cadence, for each non-variable dwarf star being monitored in the third
quarter of the Kepler data, plotted with respect to Teff .

detection for a given star (as derived in Appendix A.3)

Γ ≈ 409.6π
G5M4ρ

c10v2
c

U10
∗max

t3min

L6

R6
∗
, (2.25)

where U∗max corresponds to the maximum U∗ detectable for a given Athresh of a

star. Calculating this for the appropriate ρ and vc, we arrive at

Γ ≈ 2.63× 1020

(
L

1kpc

)6(
R�
R∗

)6(
M

M�

)4(
1hr

tmin

)3
1

(A2
thresh − 1)

5

1

year
. (2.26)

Using the third quarter Kepler stars, we plot this approximation as a straight line in

Figure 2.12 along with the actual rates calculated using our integral formulas. The

approximation works very well for these low-mass PBHs and demonstrates how the

stellar characteristics come into play in this calculation. As seen in Equation 2.26,

a high stellar distance-to-radius ratio is important. The dependence of the rate on
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the effective temperature is also readily explained by the fact that the distance is di-

rectly calculated from this value using L = 1.19×10−3R∗(Teff/T�)2100.2(V−AV+B.C.)

where V is the apparent visual magnitude, AV the extinction parameter, and B.C.

the bolometric correction as in Paper I. We can see that the rate will be related

to the effective temperature as Γ ∝ T 12
eff . Also, decreasing the cadence will have a

cubic effect on the rate expected, while maintaining a low Athresh is also important,

as expected. We can therefore predict, for example, that for a Kepler type mission,

with 30 min cadence, in order to push the PBH mass limits down to 5× 10−11M�,

one would have to observe 160,000 dwarf stars with a (L/1kpc)(R�/R∗) fraction of

3.15 or higher, while maintaining the 0.1% lightcurve precision. It seems therefore

that pushing to smaller PBH masses in order to close the remaining PBH DM

mass window will be difficult. However, if events were detected, a survey pointing

towards or away from the Galactic center would provide us with more information

about the DM distribution. We therefore address the WFIRST mission next.

2.8.1 WFIRST

NASA’s Wide-Field Infrared Survey Telescope (WFIRST), is a proposed

next-generation space observatory being designed to search for Dark Energy and

extrasolar planets (Green et al., 2011). As the highest ranked large space mission

recommendation in the Astronomy and Astrophysics 2010 Decadal Survey, it is

being designed to perform Dark Energy measurements using Baryon Acoustic Os-

cillations, Type Ia Supernovae, and Weak Lensing. In addition, it will complement

the Kepler mission with its microlensing search for extrasolar planets, targeting

stars towards the galactic bulge. Here we address its value for PBH DM limits or

characterization. The preliminary specifications are to monitor 2× 108 stars with

a cadence of 15 min and a 1% photometry precision (Bennett et al., 2010). It is

especially exciting, as it will monitor the center of the Galaxy, and therefore could

potentially provide insights into the DM distribution of the Milky Way. It will add
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Figure 2.12 Expected number of events per star-year for a PBH mass of 10−10M�
with a 1 min cadence, for each non-variable dwarf star being monitored in the third
quarter of the Kepler data, plotted with respect to the stellar variables governing
this number. The straight line represents the approximation in Equation 26.

to the existing DM dynamical constraints due to microlensing (Iocco et al., 2011).

Here we provide a preliminary calculation for the number of expected events, if the

stars being monitored are similar to those of Kepler, as well as assuming a simple

DM distribution of the form

ρ(x) = ρ0
a2 + r2

0

a2 + L2(1− x)2
, (2.27)

with a = 5 kpc. Following our analysis for the Kepler mission, we find the rate of

detection,

dΓ

dtevent

= ρ0
a2 + r2

0

M
Lv2

c

∫ xmax

0

dx
1

a2 + L2(1− x)2
β2g(β). (2.28)

In Figure 2.13 we plot the number of expected events for one year of monitoring
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of Kepler-type stars (with R∗ ≈ 1R�) toward the galactic bulge (L = 8 kpc), with

25% of stars assumed to be variable, and ignoring transverse velocity. Alongside,

we plot the approximation given in Equation 2.26 as a dashed line, demonstrating

its usefulness for predicting microlensing rates for PBH lenses with masses less

than 10−10M�, as stated in the previous section.

Figure 2.13 Total number of expected events towards the galactic bulge for a mis-
sion such as WFIRST. The dashed line represents the approximation of Equation
26, appropriate for PBH lens masses below 10−10M�. The horizontal line shows
the 95% confidence level limit if no events are detected. The dotted line represents
the predicted Kepler microlensing limits as shown in Figure 3, for comparison.

This is a preliminary analysis, however, it demonstrates that WFIRST will

complement Kepler in the same PBH mass range, providing a greater number of

events, and exploring an additional order of magnitude of the PBH DM window.

If the stars being monitored are larger than the Kepler type stars, the number of

expected events will decrease, as predicted by Equation 2.26. Also, the transverse

velocity of the source stars will have a sizable effect, as well as lensing due to other
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stars. If PBHs are detected by Kepler, WFIRST will be able to study the DM

characteristics, such as velocity and spatial distributions.

2.9 Conclusions

In this theoretical paper, we addressed the possibility of detecting or ruling

out PBH DM using the microlensing of Kepler source stars in the largely uncon-

strained window between 5 × 10−14M� and 2 × 10−8M�. Building upon Paper I,

we introduced a more proper treatment of the population of source stars and their

variability, including a finite-source microlensing framework which includes limb-

darkening. Using this analysis, we found that the PBH DM mass constraints could

be extended down to 2× 10−10M�, two orders of magnitude below current limits

and a third of a magnitude lower than our previous work. As mentioned, a proper

Monte Carlo simulation will be needed to fully understand the experimental detec-

tion efficiency. We provide a limb-darkened microlensing framework which will be

used to fit potential Kepler light curves, and which will help to distinguish between

PBH’s and stellar flares, the main source of experimental systematic error. Our

analysis leaves us optimistic in being able to provide a probability for the masses

of the lenses if any microlensing events are found, and therefore characterizing the

DM and its epoch of formation. We found a very strong correlation between the

rate of PBH detection for a given star and its effective temperature, providing an

approximate expression for this rate for these low-mass PBHs. This should help

in selecting stars to be monitored in future microlensing experiments. Using this

approximation, it can be seen that fully closing the remaining PBH DM window

using a microlensing method will be difficult, however sensitivity could potentially

be improved by another order of magnitude using future planned missions, such

as the WFIRST survey towards the galactic bulge. More analysis for this case is

needed.
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Chapter 3

Preliminary Constraints for

Primordial Black Hole Dark

Matter

3.1 Introduction

Following our theoretical predictions for the potential of the Kepler satellite

to constrain or detect primordial black hole dark matter (PBH DM) in Chapter 2,

we conduct a preliminary analysis of the first two years of publicly available data.

As mentioned above, the Kepler satellite, which monitors ∼160,000 stars at a

distance of 1 kpc for a total mission duration of 7.5 years, is surprisingly sensitive

to lower mass PBH microlensing events. This is due to Kepler’s photometric

sensitivity of one part in 10,000 or better, allowing for magnification threshold

detections of 0.1% or less, as well as the finite-source effects, due to the stars being

relatively close by. As calculated in Cieplak & Griest (2013), this allows for a

PBH sensitivity in the mass range of 2 × 10−10M� to 2 × 10−6M�, a mass range

that includes two orders of magnitude of an unexplored region (see (Carr et al.,

2010) for a review). While the above sensitivity was a theoretical prediction, in

42



43

this analysis we look at the actual, experimental detection range of the first two

years of publicly available light curves.

3.2 Data Description

The data which we are analyzing includes ∼160,000 light curves from Quar-

ters 2-9, each containing 4,400 flux measurements taken over 90 days. Each flux

measurement is a sum of 1 minute exposures that is transmitted every 30 minutes,

to give a 30 minute cadence. We use the Kepler pipeline flux data. Since the

Kepler team is searching for flux decrements which are the exact opposite of PBH

signatures, we trust that their pipeline effectively optimizes the search for any flux

decrements or magnifications. We therefore have the photometric flux measure-

ments (pdcflux), the flux error (pdcfluxerror), and the quality flag (sap quality)

for each point. The quality flag is set to a nonzero value if the data is suspect,

such as during a detection of a cosmic ray.

3.3 Selection Criteria

We employ several selection criteria, which all have to be met for a PBH

microlensing candidate lightcurve to qualify as a candidate. We define the magni-

fication A to be the ratio of the flux at a given point, to the mean flux calculated

from 300 points towards the middle of the lightcurve. Our first scan of the data

requires 4 sequential points which lie 3σ above the mean flux. As mentioned in the

previous analysis, we expect about 25% of the dwarf stars, and 95% of the giant

stars to be variable (Ciardi et al., 2011). In order to avoid false positives due to

stellar variability, we calculate the autocorrelation function, requiring the value at

a 30 minute lag to be lower than 0.7, and we discard any stars which have more

than 2 bumps detected. This effectively removes 34% of the dwarf stars and 91%

of the giant stars, which is close to our expectations of the previous analysis.
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Our assumption of Gaussian errors assumed in the previous analysis in

Chapter 2 however is not quite accurate. After eliminating the variable stars as

stated above, our selection criteria identifies 10,000 candidates, which is far too

many, based on the expected number of events. Therefore, to avoid detecting

bumps which arise out of the amount of overall variability in the lightcurve, which

is not included in the measurement of photometric error, we ensure that the ratio

|A− 1|/σ during the bump is more than 5.5 times more significant than the same

ratio before and after the bump. After investigating the variability in the data, we

found that this requirement effectively measures whether the bump arises from the

stars’ noise levels which are not included in the Gaussian error assumption. After

applying the above criteria, we find many stars which have bump detections, all

at the same time across different light curves. We in effect get rid of these, since

we suspect this arises due to instrumental effects during this time or due to the

detrending software. We block this entire time from the remainder of the analysis

as suspect.

After applying the main criteria cuts as above, we find a large number of

bumps (on the order of 100) arising from one of our main sources of experimental

systematic error which was unaccounted for in our previous theoretical calculations.

These are stellar flares, which arise due to magnetic activity in stellar atmospheres.

Walkowicz et al. (2011) analyzed stellar flares on M and K dwarf stars in the Kepler

light curves, while Maehara et al. (2012) performed an analysis of flares on solar

type stars, finding that they can release large amounts of magnetic energy on the

order of hours. An example of such a stellar flare is pictured in Figure 3.1. As seen

in this example, we expect these stellar flares to be asymmetric, rising fast, and

declining in an exponential fashion. We are therefore able to fit these light curves to

two fits, one being the stellar flare model with three parameters (t0, the peak time,

Amax, the maximum amplitude of the flare, and λ, the exponential decay constant),

the other being the microlensing fit model with four parameters (t0, the time of

closest approach, t̂, the time it takes for the lens to cross the projected star radius,
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Amax, the maximum magnification, and εmin, the minimum impact parameter in

terms of the stellar radius). For the flare fit, we allow a quick rise consisting of one

or two points to reach the the maximum amplitude. After such a fit, we eliminate

any flares by requiring the chi-squared per degree of freedom for the microlensing

fit to be lower than 75% of that for the flare star fit, where the requirement arises

by inspection of each of the fits. This successfully removes longer duration flare

events, however, there are still some bumps which pass these cuts but are suspected

to be flares with a 2 hour duration. This might be due to the fact that since the

30 minute flux cadence is an integrated measurement, the maximum peak of the

flare could be distributed between the two bins, giving rise to two points close to

the maximum, and thereby mimicking a symmetric microlensing event. If this is

taken into account, we in effect only have three points to which we can successfully

fit a model. Due to the small number of points for fitting purposes, we change the

minimum requirement of 4 sequential flux measurements 3σ above average to 5

sequential measurements. Also, to address the similar issue, where there might

be a tail in the flare event in the points after the bump, we add an asymmetry

statistic, where the absolute difference between the flux measured before the peak

and after the peak, divided by the total flux above the median under the peak,

has to be smaller than 17%. This makes sure we get rid of any asymmetric events,

where the asymmetry might arise in the tails of the events and would not be seen

in the bump.

Finally, if a stellar flare fit is not a best fit, we still require the lensing model

to be a good fit in general. We therefore impose the criterion that the chi-squared

per degree of freedom for the microlensing fit be less than 3.5, as well as for the

chi-squared per degree of freedom under the peak to be less than 4 times that

outside of the peak, so that the fit under the peak is only allowed to be slightly

worse than the fit outside.

These criteria effectively remove the irreducible background of the stellar

flares and any variability in the stars, as well as any instrumental effects. The
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Figure 3.1 Example of a stellar flare seen in the Kepler light curves. The flare fit
is show in green, while the ID of the star is shown in the upper left corner.

tightening of these constraints translates directly into the lowering of any potential

limits on primordial black hole dark matter as discussed below. The requirements

for the cuts therefore result from a balance between tightening the constraints

enough to get rid of all possible background, while at the same time keeping the

number of expected events high enough for potential primordial black hole dark

matter limits. A summary of all the cuts is pictured in Table 3.1.

3.4 Comets

Applying these cuts to all the first two years of Kepler data, we obtain 17

candidate PBH events, all with symmetry requirements and fits consistent with a

microlensing shape, as pictured in an example in Figure 3.2. However, when we

plot the positions of these events in Figure 3.3, we can see that they lie along arcs
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Table 3.1. Definitions of Statistics and Selection Criteria

Statistic Definition

Ai fluxi/ 〈flux〉

σi reported error of flux normalized by average flux

bump sequence of 4 or more contiguous fluxes with Ai − 1 ≥ 3σi

nbump number of bumps in lightcurve

bumplen number of contiguous fluxes with Ai − 1 ≥ 3σi

lag1autocorr 1
N

∑i=N
i=1 ((Ai − 1)(Ai+1 − 1))

bumpvar
∑
|Ai − 1|/σi over points under bump

leftedgevar
∑
|Ai − 1|/σi over 2 bumplen points

starting 6 bumplen before bump

rightedgevar
∑
|Ai − 1|/σi over 2 bumplen points

starting 4 bumplen after bump

dof number of data points within 5 bumplen of peak

minus number of fit parameters

mlchi2dof χ2 of fit to microlensing shape divided by dof

fchi2dof χ2 of fit to exponential flare shape divided by dof

chi2in χ2 of microlensing fit for points with time, ti,

such that t0 − 1.5t̂ < ti < t0 + 1.5t̂

chi2out χ2 of microlensing fit for points with time,

t0 − 6t̂ < ti < t0 + 6t̂, but not in chi2in

Nasy number of points near peak time, t0, for asymmetry;

larger of 1.5λ and 2t̂

asymmetry
∑

Nasy points |A(t0 − ti)−A(t0 + ti)|/(
∑
A(ti)−NasyAmin)

Selection Criterion Purpose

0 < nbump < 3 remove variable stars and stars with no transient

bumplen ≥ 4 level 1 trigger (significant bump)

bumplen ≥ 5 remove short duration flare events

lag1autocorr > 0.7 remove obvious variable stars

bumpvar > 1
2

5.5( leftedgevar + rightedgevar) signal to noise cut when reported errors are non-Gaussian

edgecriterion > 0 remove bumps that start or end in bad data

mlchi2dof < 0.75 fchi2dof microlensing fit significantly better than flare fit

mlchi2dof < 3.5 microlensing fit is not too bad

asymmetry < 0.17 remove short duration flare events

chi2in/chi2out < 4 remove events where χ2
dof under peak is much worse than

χ2
dof outside peak area

asymmetry < 0.17 remove short duration flare events
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or lines in the Kepler field. All of these objects are also detected only in Quarters

5 and 9, at the same time of year. Therefore, the Quarter 5 events suggest an

object moving through the Kepler field at a constant speed of 16 arcseconds/hour,

while the Quarter 9 distribution suggests two objects, moving along two lines.

Figure 3.2 Example of a comet seen in the Kepler light curves. The microlensing
fit is show in blue, while the ID of the star is shown in the upper left corner.

The Quarter 5 object’s distance can be estimated, by approximating its

movement on the sky as solely due to Kepler’s motion around the Sun at 30 km/s.

The distance can then be estimated to be about 10 AU. Using the amount of flux

added to the lightcurve and the g magnitude of the source star, we calculate the g

magnitude of the object as between 20 and 21.5. We then use the right ascension

(RA) and declination (dec) of the background Kepler stars against which the object

is visible to look up the possible object in the Minor Planet Center MPChecker

(IAU, 2013). We performed a 300 arcmin radius search, since Kepler is in an Earth-

trailing orbit, and the position seen by the telescope will be slightly offset from the
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(a)

(b)

Figure 3.3 Position of the comets found in Quarter 5 (a) and Quarter 9 (b). The
red diamond represents an event that did not pass all the cuts, however is pictured
since it confirms the existence of a third comet.
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RA and dec defined on Earth for the background stars. We find that in fact, this

is a well-studied comet, which passes through the locations of our events, called

comet C/2006 Q1 (McNaught) with offsets of up to 212 arcmin with respect to the

stars’ locations as seen by Earth. At the time it was passing through the Kepler

field in Quarter 5, it was also in fact 10 AU away, confirming our predictions. All

of our Quarter 5 events are therefore well explained by tracing this comet’s path.

Similarly, Quarter 9 pictures two objects moving at constant angular speed.

One of the events pictured did not pass all the cuts, however is pictured as a

confirmation that there is in fact an object moving in a line across the field. We

again looked these up in the Minor Planet Center MPChecker (IAU, 2013), and

found that the slower moving comet does in fact correspond to C/2007 Q3 (Siding

Spring), however we did not find any known comets which agreed with the position

of the faster moving object. By obtaining the distance to the known comet, we

can then do a conversion from the RA and dec measured from Earth to that which

would be seen by Kepler, and we find that the known comet agrees in location

with the slower moving object to within 100 arc seconds. We therefore are able

to confirm this object’s identity. Applying the same technique as above, we also

found a g magnitude of 21.9 for the slower moving object, and a g magnitude of 21.9

for the faster moving object. Since the unknown comet is moving faster along the

Kepler field, we cannot make the distant object approximation as with the previous

comet. It is therefore probably a lot closer than the other two comets. Since

we cannot identify it in any known comet database, we conclude that this could

be a comet that has been previously undetected. Although not very efficient, we

found that monitoring stellar light curves also produces potential comet discoveries.

Table 4.1 lists the time, location, and magnitudes of the comets found.

After removing these events as comets, there are no PBH microlensing

candidates that remain in the first two years of the analyzed Kepler data.
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Table 3.2. Comets in Kepler data

quarter Kepler ID timea RA dec gmagb comet

5 3527753 482.949 285.905 38.6395 21.3 C/2006 Q1

5 3628766 483.582 285.904 38.7161 21.4 C/2006 Q1

5 3833908 485.217 285.893 38.9171 20.8 C/2006 Q1

5 3937408 486.116 285.887 39.029 21.5 C/2006 Q1

5 3937430 486.106 285.894 39.0263 21.2 C/2006 Q1

5 3937432 486.259 285.894 39.0463 21.4 C/2006 Q1

5 4447346 490.591 285.82 39.5627 21.7 C/2006 Q1

5 4637389 492.379 285.791 39.7713 22.1 C/2006 Q1

5 4729654 492.880 285.774 39.8299 21.9 C/2006 Q1

5 7421340 530.305 282.978 43.0877 20.8 C/2006 Q1

5 7421791 528.762 283.157 43.0068 20.6 C/2006 Q1

9 1429653 872.332 290.769 37.0712 21.3 new

9 3833007 837.604 285.517 38.9324 21.9 C/2007 Q3

9 3936698 838.523 285.568 39.023 21.5 C/2007 Q3

9 4138614 840.608 285.615 39.2529 21.5 C/2007 Q3

9 4347043 842.049 285.662 39.4001 22.6 C/2007 Q3

9 4751561 879.688 293.212 39.8243 21.2 new

9 6870049∗ 886.968 293.851 42.3156 21.9 new

aKepler days; convert to Julian date by adding 2454833

bFound by adding the bump peak flux to the source star magnitude. See text.

∗Did not pass all cuts.
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3.5 Limits on Primordial Black Hole Dark Mat-

ter

Since we do not detect any PBH microlensing candidates, we can put a

limit on PBH DM in some mass range. To do this we utilize Equation 2.18 derived

in the previous chapter. Since in the theoretical approach, we did not anticipate

all the sources of background error listed above, we have to recalculate the number

of expected events we would expect to recover with our new cuts.

We therefore need to calculate the new Nexp given by

Nexp =

∫ xmax

0

∫ uthresh(x)

0

∫ ∞
0

ε(x, umin, vt)
dΓ

dxdumindvt

dvtdumindx. (3.1)

In order to this, we use a Monte Carlo method. For each star, we calculate the

maximum detectable values for the distance to the lens, x, the impact parameter

at closest approach, umin, and the transverse velocity of the lens, vt. We then

generate random values for these parameters drawing from a uniform distribution

in the allowed range of values, as well as a random time of the event, t0. We

generate 2000 such random fake events per star, calculating the magnification

using the linear limb-darkening model described in Section 2.2.3 and applying

this magnification to the existing data flux light curves, with the correct scaling

of errors for each flux point. By inputting the fake events into the actual data,

we are able to fully account for all the background events and data cuts to our

calculation of efficiency. If the fake event passes through all the cuts, we calculate

a microlensing rate for that event from Equation 2.19:

dΓ

dxdumindvt

= 4rE(x)L
ρ

M

v2
t

v2
c

e−v
2
t /v

2
c . (3.2)

We then add the rates, in effect performing the integral above to get the number

of expected events, Nexp for each star, at the end dividing by the total number of

events inputted. This is done for 5000 stars in each quarter, averaged, and scaled

up to the full number of stars in that quarter. The number of expected events is
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then summed up over all the quarters. This in turn is redone for each PBH mass,

resulting in millions of events per PBH mass point calculated.

Following the MACHO microlensing analysis (Alcock et al., 1996), after

calculating the total number of expected events for each PBH mass, the upper limit

for PBH DM halo fraction in the Milky Way is set by 3/Nexp at 95% confidence

level, since no events are detected. This is plotted in Figure 3.4 as the solid black

line. We picture the previous MACHO microlensing limits which constrain PBH

DM down to 2× 10−8M�, and the recent femtolensing limits from Barnacka et al.

(2012) on the lower mass range, which go up to 4×10−14M�. As can be seen, after

utilizing two years of Kepler data, we can already constrain an additional order of

magnitude below the MACHO limits, down to 2×10−9M�. Our sensitivity is not as

good as expected in our theoretical predictions due to the addition of stellar flares

and non-Gaussian errors, which were not included in our previous calculations.

However, we are optimistic in obtaining further PBH mass coverage as the Kepler

data continues to be analyzed. In the best case scenario we might be sensitive to

another order of magnitude below the one set here with the full extended Kepler

mission, however, future missions, such as WFIRST (Green et al., 2011), might

further probe some of the remaining PBH mass range once the Kepler mission is

finished (as discussed in the previous chapter).

3.6 Summary and Conclusion

We present the first constraints on a new range of PBH DM based on Kepler

satellite data using the first two years of publicly available lightcurves. After

a first look at the lightcurves, we find unexpected sources of background error,

such as stellar flares, comets, cosmic rays, and non-Gaussian errors. We therefore

introduce new cuts in order to eliminate this background, primarily increasing the

number of required continuous points 3 sigma above average from 4 to 5. With

these new requirements to eliminate background, we find no PBH microlensing
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Figure 3.4 The 95% confidence level exclusion of PBH dark matter from the non-
observation of PBHs. The area above the solid line is the new ruled out region
based on Quarters 2-9 of the Kepler light curves. The dotted line is the theoretical
limit from Chapter 2, the dashed line is previous best limit from the combined
MACHO/EROS LMC microlensing surveys (Alcock et al. 1998), while the dash-
dotted line represents the new limits from femtolensing (Barnacka et al. 2012).
The horizontal line depicts a DM halo consisting entirely of PBHs.

candidates. In order to place constraints in the detectable PBH mass range, we

therefore recalculate the number of expected events, using a Monte Carlo analysis

with millions of inputted fake limb-darkened microlensing events. Based on this

analysis, the PBH DM can be constrained a full order of magnitude below the

existing MACHO limits, just based on the first two years of Kepler data. These

constraints and sensitivity will further increase as the publicly available Kepler

lightcurves are analyzed to include the full extended Kepler mission, and possible

further improved with the upcoming WFIRST mission.
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Chapter 4

Baryon Acoustic Oscillations in

the Lyman-Alpha Forest

4.1 Introduction

The discovery of the accelerated expansion of the Universe by two separate

Nobel-winning teams studying supernovae Ia (Riess et al., 1998; Perlmutter et al.,

1999), has led to numerous astrophysical studies of this phenomenon called the

dark energy. Supernovae Ia, having a known luminosity and redshift distance,

can serve as “standard candles” providing a measurement of how fast they are

moving away from us. Other such standard candles include cepheid variables at

closer distances where the period of the stellar pulsations can be related to their

luminosity, planetary nebulae using the assumption that all have similar maximum

intrinsic brightness, the Tully-Fisher relation relating the rotation curve of a spiral

galaxy to its intrinsic luminosity, etc. The same method can be applied with

“standard rulers”: objects of known size and redshift. These include ultra-compact

radio sources, galaxy clusters which related Xray flux to cluster size, as well as

statistical standard rulers, the most important of which are the Baryon Acoustic

Oscillations (BAO) measurements.
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4.2 Physics of Baryon Acoustic Oscillations

BAO are imprints on the matter distribution by sound waves in the pri-

mordial plasma in the early universe (Peebles & Yu, 1970; Sunyaev & Zeldovich,

1970). Quantum fluctuations after inflation produce initial overdensities of dark

matter, radiation, and baryons. The photons and baryons evolve as a single fluid

coupled by Thomson scattering. If a single overdensity is considered, the initial

overdensity of this plasma will propagate outwards as an acoustic wave with a speed

cs = c/
√

3(1 + 3ρb/4ργ), where ρb and ργ are the baryon and photon densities, re-

spectively, and the ratio 3ρb/4ργ comes about from the adiabatic initial conditions

of the fluctuations. As the temperature of the universe drops, the electrons become

bound to protons to form neutral hydrogen, and the photons decouple from the

baryons and stream out freely. The characteristic size of how far these baryons

travel due to radiation pressure can be calculated as rs =
∫ t(zdrag)

0
cs(1+z)dt ≈ 150

Mpc (Eisenstein & Hu, 1998), where z is the redshift. Since the recombination

epoch does not exactly coincide with the epoch at which the baryons are released

from any radiation pressure (there is still some Compton drag after the photons

are released from the electrons), the integral upper limit is the time at which this

drag epoch ends t(zdrag). The photons that stream out at the decoupling epoch is

what is detected as the Cosmic Microwave Background (CMB).

The evolution of a single overdensity can be followed in Figure 4.1. As

the baryon-photon plasma evolves in a spherical manner, the initial central dark

matter density, not influenced by radiation pressure, is centralized in the middle.

Eventually the dark matter falls into the baryons’ gravitational wells and vice versa,

which, after decoupling, produces a higher total matter density at the center of

this spherical shell and a smaller total matter overdensity at rs ≈ 150 Mpc. The

overlay of these spheres of matter overdensities produces the distribution of large

scale structure that we see today. This characteristic length is therefore frozen

into the matter distribution at the end of the drag epoch, and can be probed
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statistically as a “standard ruler” over time.

Figure 4.1 The evolution of a single overdensity - the mass radial profile vs the
comoving radius. Top left: The baryons and photons travel outward as a single
fluid, while the neutrinos stream out freely. Top right: The dark matter is pulled
slightly outward due to gravitational interactions with the baryons. Middle left:
The photons decouple at recombination. Middle right: The result is an overdensity
of dark matter in the middle, and an overdensity of baryons in a shell. Bottom
left: The baryons and dark matter eventually fall into each other’s potential wells,
resulting in the figure in the Bottom right. (Eisenstein et al., 2007)
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4.3 Cosmological Parameters Measured with BAO

This standard ruler can therefore be probed in the tangential and the radial

direction, giving potential constraints on the angular diameter distance, and the

Hubble parameter, respectively. The Hubble parameter is defined as H ≡ ȧ/a,

where a is the scale factor of the universe. Moreover, we can express the current

radiation density, matter density, dark energy density, and a space-time curvature

term, respectively as

Ωr =
8πGρ

(0)
r

3H2
0

, Ωm =
8πGρ

(0)
m

3H2
0

, ΩDE =
8πGρ

(0)
DE

3H2
0

, Ωk = 1− Ωr − Ωm − ΩDE.

(4.1)

Using these expressions, the Hubble parameter over time can be derived from the

Friedmann equation as

H(z) = H0

√
Ωm(1 + z)3 + ΩDEf(z) + Ωk(1 + z)2 + Ωrad(1 + z)4 (4.2)

where f(z) is the dimensionless dark energy density. This is related to the dark

energy equation of state by

f(z) = exp(3

∫ z

0

1 + w(z′)

1 + z′
dz′), (4.3)

where w(z) = w0+waz/(1+z) and w = PDE/ρDE. From H(z) it can be shown that

in order to constrain f(z) separate measurements of H(z) and Ωk are necessary.

This is difficult to achieve with other standard rulers, however the BAO method

provides separate measurements in the radial and tangential directions, giving

H(z) and dA(z), the angular diameter distance,

H(z) =
c∆z

rs‖(z)
, (4.4)

dA(z) =
rs⊥

∆θ(1 + z)
, (4.5)
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where rs‖(z) is the measured scale in the parallel direction, and rs⊥ is the scale in

the perpendicular direction. From this, the density parameter of curvature, Ωk, is

found to be

Ωk =
(H(z)D′(z))2 −H2

0

(H0D(z))2 (4.6)

with D(z) = (c/H0)(1 + z)dA(z). Therefore, the BAO statistical determinations

can potentially remove the degeneracy in theH(z) and Ωk measurements, providing

a unique way to constrain the dark energy equation of state, not available with

other standard ruler experiments.

4.4 Two-Point Statistics

4.4.1 Correlation Function

A way to detect the BAO scale in the matter distribution, is to use the

correlation function, ξ(r), which is related to the probability of finding overdensities

at separation r above a random distribution. If one defines a matter overdensity

as δ(r) = ρ(r)/ρ̄− 1, then the correlation function is defined as

ξ(r) = 〈δ(y)δ(y + r)〉 (4.7)

where the average is taken over all possible positions. If the distribution is random,

then the correlation function is equal to zero. If it is positive, then the density at

that separation is higher than a random distribution. The BAO signal therefore

appears as a bump in the correlation function at ∼150 Mpc. (see lower panel of

Figure 4.2 for different cosmologies)

4.4.2 Power Spectrum

Since the general relativistic equations are linear to first order, the initial

cosmological perturbations are evolved by expanding them in terms of Fourier
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parameter normalized by 100 km s!1 Mpc!1, fB " !B0=!M0 is
the fraction of the baryon density to the total mass density, and
!!0 is the density parameter of neutrinos.

The primordial spectral index ns determines the overall shape
of the power spectrum. In the standard Harrison-Zel’dovich
spectrum, ns ¼ 1. The parameter !M0 h determines the scale
of the particle horizon at the equality epoch zeq, since the ra-
diation density is accurately known by the temperature of
the cosmic microwave background, T0 ¼ 2:725 $ 0:001 K
(Mather et al. 1999). As a result, the power spectrum has a
characteristic peak at keq / !M0h (h!1 Mpc)!1. The baryon
fraction fB and Hubble parameter h, as well as !M0 h, are
responsible to the scales and strength of acoustic oscillations
and Silk damping. The dependences are not expressed by
simple scaling relations, and useful fitting relations on physical
grounds are provided by Eisenstein & Hu (1998). The density
parameter of neutrinos, !!0 characterizes the free streaming
scales by the existence of the hot dark matter. In standard cold
dark matter scenarios, this parameter is negligible. In the
analysis of galaxy clustering, the spectral amplitude As is more
conveniently specified by the parameter "8. The relation be-
tween As and "8 depends on other parameters explained above
that determine the shape of the power spectrum.

In Figure 1 the dependences of the power spectrum and
correlation function in real space on parameters !M0 h, fB, and
h are plotted. We consider a model with ns ¼ 1, !M0 ¼ 0:3,
fB ¼ 0:15, h ¼ 0:7, !!0 ¼ 0 as a fiducial case. Thick lines
correspond to the fiducial model, and other lines show the

effects of varying individual parameters, considering !M0 h,
fB, and h as independent parameters. The amplitude is nor-
malized by "8 ¼ 1. The upper panels show the effects on the
power spectrum, and the lower panels show that on the corre-
lation function, which are the (three-dimensional) Fourier
transforms of the corresponding power spectrum. The correla-
tion function in comoving space is given by the function #(0)0 (x)
of equation (5).
The oscillatory behavior appears in the power spectrum by

acoustic waves before recombination epoch. Since this oscil-
latory behavior is periodical in Fourier space, just one peak
appears in the correlation function. The scale of the peak
corresponds to the sound horizon at the recombination epoch.
We call this a ‘‘baryon peak’’ in the correlation function.
Increasing!M0 h shifts the peak of the power spectrum to the

right, so that the powers on large scales are suppressed when
"8 is fixed. Correspondingly, the correlation function on large
scales is smaller for larger !M0 h. The scale of the zero point of
the correlation function decreases with this parameter. The lo-
cation of the baryon peak is changed by !M0 h because the
sound horizon is also dependent on this parameter.
The main effect of the parameter fB is on the strength of the

Silk damping. Therefore, increasing fB enhances the power on
large scales when "8 is fixed. The location of the baryon peak
is less dependent on fB , and the absolute amplitude of the
baryon peak is predominantly dependent on fB. The zero point
of the correlation function is not much affected as long as
fB 6¼ 0.

Fig. 1.—Power spectrum (upper panels) and the correlation function (lower panels) in comoving space. Thick lines correspond to model parameters !M0 ¼ 0:2,
fB ¼ 0:15, and h ¼ 0:7. The amplitude is normalized by "8 ¼ 1. Thin lines show the variations of each parameters as suggested in the plots. When !M0 h increases,
the amplitude on large scales decreases. When fB increases, the amplitude on large scales increases. When h increases, the location of the baryon peak is shifted to
large scale.

MATSUBARA576 Vol. 615

Figure 4.2 Power spectra and correlation functions in different cosmologies. Upper
panel: BAO signal appearing as wiggles in the power spectrum. The left panel
shows varying Ωm, the middle, varying the baryon fraction fb = Ωb/Ωm, while the
right varying h = H(z)/H0. Lower panel: BAO signal appearing as a peak in the
correlation function, with varying cosmologies as for the upper panel. (Matsubara,
2004)

modes δ =
∫
ei
~k·~rδkd

3k. The orthonormal modes then evolve independently. Their

amplitude can then be described in terms of the power spectrum, defined as

〈δkδ∗k′〉 = (2π)3P (~k)δD(~k − ~k′). (4.8)

If the field is statistically homogeneous, the modes are uncorrelated. The power

spectrum and the correlation function are related by a Fourier transform:

P (~k) =

∫
ξ(~r)e−i

~k·~rdV. (4.9)

The BAO signal therefore appears as a series of wiggles in the power spectrum

(see upper panel of Fig 4.2). Also see Eisenstein et al. (2007) for a comparison of
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Fourier and configuration space for BAO.

4.5 Measurements of BAO

4.5.1 Cosmic Microwave Background

As stated above, the Cosmic Microwave Background (CMB) arises from

photons streaming towards us after decoupling from the hot plasma after recombi-

nation. Although not a direct probe of the matter fluctuations, the overdensities

leave an imprint on the temperature fluctuations of the CMB. This is due to the

fact that photons climbing out of deep gravitational wells (high overdensities) lose

energy, becoming colder, while photons coming from underdensities gain energy,

thus becoming hotter (Sachs & Wolfe, 1967). These temperature fluctuations can

then be Fourier decomposed onto the two-dimensional last scattering surface, to

obtain the power spectrum pictured in Figure 4.3. The wiggles that we see there-

Figure 4.3 Two-dimensional power spectrum of the CMB temperature fluctua-
tions as measured by the Planck satellite.(Planck Collaboration et al., 2013)
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fore represent the acoustic oscillations at the moment of the photons decoupling.

Although the BAO signal cannot be measured in 3D using the CMB, and there-

fore the degeneracy between H(z) and Ωk is not broken, the CMB does constrain

the ratio of ρb/ργ by obtaining an accurate photon density from the blackbody

distribution of the CMB.

4.5.2 Matter Measurements

The CMB is a 2D measurement of the acoustic oscillation signal measured

through the fluctuations in radiation temperature. However, since this is gener-

ated at the moment of decoupling, and not after the drag epoch, there are some

differences between the radiation power spectrum and the matter power spectrum,

as would be measured directly (see Figure 4.4 which pictures the peaks of the two

spectra being out of phase due to velocity overshoot). The first detection of the

BAO signal in the matter distribution is in the measurements of the luminous red

galaxy distribution (see Figure 4.5). It has since been measured in the 6dF Galaxy

Survey (Beutler et al., 2011), as well as WiggleZ (Blake et al., 2011) and updated

SDSS-II data (Padmanabhan et al., 2012), and BOSS (Anderson et al., 2012).

The distribution of these measurements with redshift can be seen in Figure 4.6.

These measurements probe BAO at low redshift, however the BAO method really

becomes powerful at higher redshift, since there is more volume to probe, and the

evolution of the Fourier modes of the matter densities is more in the linear regime.

Surveys of galaxies at these large volumes requires heavy telescope investment,

when in fact any tracer of matter will do. 21 cm intensity mapping of neutral hy-

drogen is a focus of future planned radio telescopes, and could potentially measure

the BAO scale at z > 6 (Mao & Wu, 2008; Rhook et al., 2009). Instead of resolving

galaxies, this would map the intensity of this neutral hydrogen transition from all

the galaxies over some volume.

Additionally, much focus has also been on the intergalactic medium (IGM)
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Figure 4.4 The difference between the CMB power spectrum (top panel) and
matter power spectrum in large scale structure (bottom panel). Both panels picture
the quantity k3P (k)/2π2, with the trend taken out in the bottom panel. (Meiksin
et al., 1999)

at lower redshifts in particular the neutral hydrogen which could be measured

through the Lyman-alpha transition appearing in Quasar absorption spectra along

the line of sight. This could be done with currently existing technology and low

resolution spectra.

4.6 Measurements of BAO in the Lyman-Alpha

Forest

4.6.1 Lyman-Alpha Forest

Quasars are among the most distant observable objects in the Universe and

are thought to be very luminous active galactic nuclei. They are great cosmological
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Figure 4.5 The first detection of the BAO peak in the SDSS survey Luminous
Red Galaxy correlation function. (Eisenstein et al., 2005)

tools since they exist at high redshift and the light they emit probes any intervening

gas as it travels towards us. The Lyman-alpha absorption of neutral hydrogen

at 1216Åin particular has a large cross section. Therefore when the emission

continuum of a quasar becomes redshifted to this wavelength, it will be absorbed

by gas clouds along the line of sight even with small fractions of neutral hydrogen

present. These series of absorption lines in a quasar spectrum are what is called

the Lyman-alpha forest. In order for these lines to be visible through the Earth’s

atmosphere, the absorbing material has to be at redshifts of 1.7 or higher for the

ultraviolet light to be redshifted to wavelengths which are not absorbed by the

atmosphere. At very high redshifts the forest in turn becomes too opaque.

The relationship between Lyman-alpha absorption and the underlying mat-

ter density is nonlinear, however the physics is thought to be well-understood. The

following closely follows Mo et al. (2010). The shape of each absorption line is a
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Figure 8 (Left) The current BAO distance-redshift relation. Individual measurements are of the
quantity DV (z)/rs. We have multiplied by the rs of the fiducial ΛCDM model to yield a distance;
the sound horizon is predicted to 1.1% from WMAP7. In increasing redshift, data points are from
the 6dFGS (Beutler et al., 2011), SDSS-II (Padmanabhan et al., 2012; Xu et al., 2012b), BOSS
(Anderson et al., 2012), and WiggleZ (Blake et al., 2011d). The WiggleZ paper also quotes corre-
lated results from multiple redshift bins, but we have chosen to plot only a single combined data
point for each survey so that the measurement errors are uncorrelated. As described in the text,
for a fixed choice of w(z) and Ωk, CMB data allows a prediction for DV (z)/rs. The flat ΛCDM
prediction from the best-fit WMAP7 model is the black line, and the grey region shows the 1σ
WMAP7 range. This is not a fit to the data, but rather the vanilla ΛCDM prediction from the
CMB data. (Right) The same plot after dividing by the ΛCDM prediction from WMAP7. We have
added an open point that shows the measurement from Percival et al. (2010) using a combination
of SDSS-II DR7 LRG and Main sample galaxies and 2dFGRS galaxies; the Padmanabhan et al.
(2012) measurement from the DR7 LRG data alone has a smaller error bar because of the increased
precision afforded by reconstruction. Also shown are the four alternative models from Table 1; here
we have suppressed the 1σ range that would surround each line owing to uncertainties in the mat-
ter and baryon density. Also shown is the direct H0 value from Riess et al. (2011); here we have
assumed perfect knowledge of the sound horizon, which suppresses a 1.1% uncertainty term be-
tween this value and the BAO points. These figures are adapted from the corresponding figures
in Anderson et al. (2012). We have omitted the very recent BAO detections from the BOSS Lyα
forest at z ≈ 2.3 (Busca et al., 2012; Slosar et al., 2013), which are also consistent with ΛCDM
predictions.

the Ωm = 1 scenario), and the acoustic oscilllations were primarily studied in the CMB context
(Bond and Efstathiou, 1984, 1987; Jungman et al., 1996; Hu and Sugiyama, 1996; Hu and White,
1996; Hu et al., 1997). A resurgence of interest in the dynamics of the early universe post-COBE
led to the identification of the acoustic scale as a standard ruler, first in the CMB and then in
the matter power spectrum (Kamionkowski et al., 1994; Jungman et al., 1996; Hu and Sugiyama,
1996; Eisenstein and Hu, 1998; Meiksin et al., 1999). Fisher matrix forecasts for the combina-
tion of CMB and large-scale structure identified the acoustic oscillations as a critical feature in
breaking the distance scale degeneracy between Ωm and H0 in CMB model fits (Tegmark, 1997;
Goldberg and Strauss, 1998; Efstathiou and Bond, 1999; Eisenstein et al., 1998). In particular, the
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Figure 4.6 The BAO distance-redshift relation. For each measurement described
in the text, the quantity DV (z) = [DA(z)]2/3[cz/H(z)]1/3 is plotted. The black
line represents the WMAP7 ΛCDM prediction. The BOSS Lyα measurements are
targeting redshifts of 2-3. (Weinberg et al., 2012)

convolution of a Lorentzian and a Gaussian profile. The Gaussian profile is due

to Doppler broadening, due to the gas not being at rest with respect to the back-

ground. If the velocity distribution is Maxwellian, then the velocity distribution

is

P (v)dv =
1√
πb
e−v

2/b2dv, (4.10)

where b is the Doppler parameter and related to the velocity dispersion, b =
√

2σ.

In general, b2 = 2kBT/m+ b2
turbulence. The Lorentzian profile is due to the natural

broadening due to the finite lifetime of the excited state. It is described by

L(ν) =
1

π

[
γ

(ν − ν12)2 + γ2

]
, (4.11)

where γ = A21/4π and A21 is the spontaneous transition coefficient. The resulting
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line profile is the Voigt profile

V (ν) =

∫ ∞
−∞

L
[
ν
(

1− v

c

)]
P (v)dv. (4.12)

By fitting the Voigt profiles, the Doppler b parameters suggest a cold gas (T ∼

104K). The column densities for the Lyman-alpha forest range from 1012cm−2, for

the resolution limit of high resolution spectra, to 1017cm−2, above which the gas

becomes optically thick.

In order to measure a power spectrum which could be related to the under-

lying matter power spectrum, what is measured is the flux at each pixel. This is

related nonlinearly to the optical depth by F = e−τ , which in turn can be expressed

in terms of the neutral hydrogen density,

τ(ν0) =

∫ ∞
0

nHI(x)σLyα(ν)
dx

1 + z
, (4.13)

ν = ν0(1 + z)

[
1 +

v(x)

c

]
,

where σLyα is the Lyman-alpha absorption cross-section at frequency ν, given by

the Voigt profile V (ν). The optical depth can be related to the underlying dark

matter by performing evolving the gravitational equations, hydrodynamical, ther-

mal, and ionization states of the gas, to give nHI , v(x), and b(x).

However, one can understand the underlying physics by the following simple

analysis. Since the gas dynamical time scales are much longer than recombination

and ionization time scales, one can assume a photoionization equilibrium where

nHI(x) = n2
H(x)αH+(T )/Γγ,HI , (4.14)

where αH+ is the recombination coefficient, whereas Γγ,HI is the photoionization

rate.

Additionally, assuming hydrogen traces the underlying baryon density, nH(x) =

nH(x)[1 + δb(x)]. Also, assuming adiabatic expansion, T = T0(1 + δb)
Γ−1, Γ ≈ 5/3,

where T0 and Γ depend on the thermal and ionization history of the gas. This
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relationship is thought to have a 5 − 10% scatter and increases for high densities

(Hui & Gnedin, 1997). Furthermore, neglecting thermal broadening and radiation

damping, one arrives at the Fluctuating Gunn-Peterson Approximation (FGPA)

(Weinberg et al., 1997; Croft et al., 1998)

τ(ν0) = 0.172(1 + δb)
2.7−0.7Γ

(
1 +

dv(x)

H(z)dz

)−1(
1 + z

4

)6(
H(z)/H0

5.51

)−1

h−1×(
Ωbh

2

0.0125

)2(
T0

104K

)−0.7(
Γ

10−12s−1

)−1

, (4.15)

relating the Lyman-alpha optical depth directly to the underlying density field.

The gas density field therefore traces the dark matter density field, down to the

scale of the Jeans length, where the gas pressure supports gas against gravity. The

above is a good approximation for low densities and high redshifts, however it

ignores shock heated gas and thermal broadening. It does demonstrate how the

Lyman-alpha forest flux can be treated as a continuous field sampled as pixels

to calculate the correlation function or power spectrum which traces the dark

matter power spectrum. Since pressure forces are subdominant on large scales,

it is thought that the neutral hydrogen density closely traces the total matter on

BAO scales.

4.6.2 Redshift Space Distortions and Bias

The picture is further complicated by redshift space distortions, which is the

effect of the peculiar velocities of the gas on the estimated distance (redshift) of the

gas. For example gas that is moving away from us towards an overdense region will

appear farther than it actually is, while the gas on the other side of the overdensity

will be moving towards us, and thus appearing closer. Depending on the size of the

overdensity and the peculiar velocity, the overdensity will either appear elongated

or squashed along the line of sight. This distorted power spectrum is therefore

related to the underlying real space one by (Kaiser, 1987)

Predshift(
−→
k ) = Preal(k)

[
1 + βµ2−→

k

]2

(4.16)
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where µ−→
k

= ẑ · k̂, the cosine of the angle between the line of sight and
−→
k . The

overdensities in redshift space appear larger than in real space. If we decompose

these into Legendre polynomials, we obtain[
1 + βµ2−→

k

]2

=

[
1 +

2

3
β +

1

5
β2

]
P0(µ−→

k
) +

[
4

3
β +

4

7
β2

]
P2(µ−→

k
) +

8

35
β2P4(µ−→

k
).

(4.17)

Therefore blindly measuring P(k) averaged over all directions will actually be mea-

suring

P
(0)
redshift(k) =

[
1 +

2

3
β +

1

5
β2

]
P (k) = C0P (k). (4.18)

Similarly, ξ0(r)redshift = C0ξreal(r).

In practice, there is also a linear bias b between the flux power spectrum

and the underlying dark matter power spectrum, producing the final relationship

PF (
−→
k ) = b2

[
1 + βµ2−→

k

]2

PDM(k). (4.19)

Therefore, one needs to understand β, the redshift space parameter, which is in-

fluenced by how smooth the gas is in the IGM, the pressure, and the temperature

history of the gas, as well as b, the bias parameter, influenced by the mean ab-

sorption level of the gas, in order to fully measure the underlying dark matter

power spectrum. These are the main parameters which will have to be understood

in order to fully account for the systematics of the BAO measurements in the

Lyman-alpha forest. From here on b will now represent the bias parameter for the

rest of the thesis, and not the Doppler parameter described in the previous section.

4.6.3 Past Studies, Detection, and Motivation

White (2003) first suggested the possibility of measuring BAO in the Lyman-

alpha forest in the SDSS survey, while McDonald & Eisenstein (2007) estimated

the potential of such a survey specifically for BOSS, basing their analysis on previ-

ous studies by McDonald (2003) on lower scales. McDonald (2003) was the first to
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calculate the b and β parameters using hydro-PM simulations, where the tempera-

ture - density relation is assumed as above, and shocks and temperature evolution

of the gas is ignored. He obtained the values of β ∼ 1.47 and b ∼ 0.13 at z ∼ 2.25

which have since been used for mock quasar spectra. Slosar et al. (2009) presented

the first simulations of the BAO scale in the Lyman-alpha forest using N-body

dark-matter-only simulations, and using the above FGPA by matching the ampli-

tude of the optical depth with that of the observed mean flux in quasar spectra

data. They found that the Lyman-alpha flux provides a good tracer of the dark

matter density field on the BAO scale, with β ∼ 1 and a scale-invariant bias of

b ∼ 0.2. Subsequently this was followed by White et al. (2010) with similar simula-

tions, but with better resolution. Their results follow the previous scale-invariant

bias measurements.

There has also been much progress in terms of experimental results. Slosar

et al. (2011) reported the first 3D correlation function measurement of the flux in

the quasar absorption spectra from the BOSS survey. He found a lower preferred

β (0.44-1.2) and a higher measurement of b than those predicted by the above

simulations. This was postulated to be due to the presence of Damped-Lyman-

alpha systems, which skew the Lyman-alpha forest measurements, metal lines, gas

that is smoother than expected, or a misunderstanding in the modeling of pressure

in the hydro-PM codes.

The first BAO detection in the Lyman-alpha forest from the BOSS survey

quasar spectra was announced by Busca et al. (2013) late last year. The position

of the peak was announced as a 4σ measurement. The position of the peak was

well-modeled, however their mock spectra generated by FGPA did not fully model

the shape of the peak. The measurement of the BAO peak was improved to 5σ by

Slosar et al. (2013) earlier this year.

Due to such advancements in the measurement of the BAO peak in the

Lyman-alpha forest, our main motivation is to fully understand any systematics

involved in such a measurement, so that the method could be further developed
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with better precision. We are especially interested in understanding the bias of

the flux with respect to the underlying density field at the BAO scale, the redshift

distortion parameter β which is determined by the temperature history of the gas,

as well as the shape and position of the BAO peak. While b and β determine the

large-scale power, their values are set from small scale physics, which can more

fully be probed with large hydrodynamic simulations which include shock heating

and temperature evolution of the gas. Using such a simulation the temperature-

density approximation can be fully probed at the BAO scale. This will aid in

modeling the shape of the BAO peak, in order to better fit for the position of the

peak, thus improving the precision of the measurement. We therefore analyze a full

hydrodynamic simulation of the Lyman alpha forest to better understand the effect

of the FGPA approximation at the BAO scale, as well as any systematics involved,

building upon the work done with hydro-PM and dark-matter-only simulations

described above.

4.6.4 Simulations

For our analysis we use hydrodynamic cosmological simulations run by M.

Norman, P. Paschos, and R. Harkness, using the code ENZO (Norman et al.,

2007). The code evolves dark matter, primordial hydrogen and helium gas in an

expanding universe with periodic boundary conditions. The baryonic matter is

modeled by Euler equations, evolving on a grid. Energy source and sinks are

included due to radiative cooling and heating, as well as changes in the ionization

state of the gas. The Piecewise Parabolic Method (PPM) is used for the ideal gas

dynamics, and the species abundance is solved by integrating the rate equations

which include the radiative and collisional processes. The radiation fields, which

control the ionization state of the gas, are evolving but spatially homogeneous. The

dark matter is evolved as a collisionless phase fluid, obeying the Vlasov-Poisson

equation, using the particle-mesh algorithms for the collisionless N-body dynamics.
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The baryonic and dark matter components are coupled through a gravitational

field, and the gravitational potential is computed by solving the Poisson equation

using FFTs. See Norman et al. (2007) for a full description of ENZO.

We have two simulations, both with a flat ΛCDM cosmology, with WMAP5

concordance parameters: Ωb = 0.043, ΩDM = 0.207, ΩΛ = 0.75, h =0.72, σ8 = 0.8,

n=0.95. The initial conditions were read in as a Gaussian random field using

the baryon and dark matter transfer functions generated by CAMB (Lewis et al.,

2000) at a redshift of 99. One simulation evolves the baryons on a 20483 grid with

a resolution of 330 kpc, with 614.4 comoving Mpc on a side. The dark matter is

evolved as 20483 particles. The second simulation is the same, but with better

resolution, using a 40963 grid, with 165 kpc resolution. The larger simulation

therefore approaches the resolution needed to resolve the gas, while at the same

time maintaining 4 modes on the BAO scale inside the volume. The data dumps

were generated at three redshifts: z=3, z=2.74, and z=2.5, with seven cubes per

redshift dump, representing the dark matter, baryons, neutral hydrogen densities,

the three cubes for the gas peculiar velocities, and temperature of the gas. In order

to understand all the analysis involved, we start with the smaller simulation which

is less computation intensive.

Synthetic neutral hydrogen spectra were generated using the method devel-

oped by Zhang et al. (1997), where the optical depth is computed from equation

3.12, ignoring the Lorentzian contribution due to the low column densities of neu-

tral hydrogen at these redshifts. Also parametrizing to order v/c, the optical depth

can be generated by

τν(z) =
c2σ0√
πν0

∫ z0

z

nHI(z
′)

b

a2

ȧ
exp

{
−
[
(1 + z′)

ν

ν0

− 1 +
v

c

]2
c2

b2

}
dz (4.20)

(Zhang et al., 1997; Bi et al., 1995). The integrated optical depth is therefore

computed using this equation along the line of sight.

We start the analysis by looking at the smaller resolution simulation, and

generating 5000 spectra distributed randomly on the face of the cube, with the
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lines running parallel along the side of the cube, with 2048 pixels each. The mean

Figure 4.7 The flux PDF, binned in equal flux bins, where F = e−τ at z = 3.

flux as measured in the 5000 lines of sight is F̄ = 0.54, which is in close agreement,

although slightly smaller than that predicted by observations (McDonald et al.,

2005) where ln F̄ (z) = ln(0.8) [(1 + z)/3.25]3.2. The flux Probability Distribution

Function (PDF) is also pictured in Figure 4.7. The PDF seems more evolved than

that of smaller ENZO simulations at the same redshifts (Regan et al., 2007).

4.6.5 Work in Progress: Correlation Functions

We proceed to calculate the three-dimensional correlation function for the

dark matter and gas densities over the whole cube. We have developed two ways in

which to do this. The first way is to calculate a Fourier Transform along the line-

of-sight for each sightline, multiply two sight lines together, while keeping track of

their perpendicular separation, and then Fourier Transform back the result. This

effectively calculates the correlation function in the parallel direction, and allows us

to then multiply all the points together along the perpendicular direction, binning

them into bins of width equal to the length of the box divided by the number

of pixels. We then sum the resulting products in each bin, keeping track of the
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number of the products per bin. This in effect gives us a correlation function

in two dimensions, so we then proceed to again bin the correlation function into

a full-angular averaged correlation function. The second way is the brute-force

method, which is more computationally intensive. It is done by calculating the

product of each pair of points, summing them and averaging per separation bin.

Both yield the same results at the BAO scale in our periodic box simulation. The

correlation functions computed by using the first method are pictured in Figure

4.8 and Figure 4.9.

Figure 4.8 The gas density correlation function, using all the pixels in the cube
which amounts to 20482 sightlines.

We can see that the gas density traces the dark matter density very closely.

We measure the BAO peak of the dark matter correlation function at 155.1 Mpc,

while the gas density peak at 154.8 Mpc. This is done by fitting a Gaussian fit to

the BAO peak for each measurement. As expected, the gas and dark matter density

at these scales trace each other very well, however, as will be addressed later, the
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Figure 4.9 The dark matter density correlation function, using all the pixels in
the cube which amounts to 20482 sightlines.

overall scale of the BAO peak seems too high in both of the cubes as compared

to linear theory. Due to the question of validity of the results of the simulations,

we do not proceed to compute the errors on this BAO peak measurement. In

order to understand the significance of the detection of the peak, there are two

ways in which error bars could be computed. The first way is a boot-strap method

through random sampling of the lines of sight with replacement, recomputing the

correlation function using the remaining sample, and iterating this multiple times

to understand the scatter. The second way is to calculate the standard deviation at

each point based on the number of pairs that go into each point in the correlation

function. This would however underestimate the true error.

We next calculate the three-dimensional correlation function of the flux

of the 5000 lines of sight we generate as described in the previous section. This

now includes the peculiar velocities and therefore the redshift-space distortions.
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The shape of the peak has changed dramatically, however the BAO peak is still

measured at 155.1 Mpc. Assuming that the flux - dark matter relationship is not

influenced by the original dark matter BAO peak being higher than expected (as

will be discussed later), it seems that the position of the peak does not change

between the flux and underlying dark matter correlation functions, providing for

a robust BAO position measurement. For a more precise measurement however,

the shape of the peak itself would have to be modeled, and fit properly in order

to ensure accuracy. For this it is clear that the differences between Figure 4.9 and

Figure 4.10 have to be fully understood by studying the bias and redshift space

distortion parameters.

Figure 4.10 The flux correlation function, using 5000 sightlines.
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4.6.6 Work in Progress: Bias and Redshift Space Distor-

tion Parameters

If we plot the ratio of the three-dimensional flux correlation function to

the underlying dark matter, we obtain in effect the value of b2 [1 + 2/3β + 1/5β2],

which is plotted in Figure 4.11. Whereas previous studies (Slosar et al., 2009;

Figure 4.11 The ratio of the angular-averaged flux to dark matter correlation
functions.

White et al., 2010) found the values of b and β to be scale independent, we see

that they widely vary, with less variance on smaller scales and just around the

BAO scale. Provided this conclusion remains, after the dark matter BAO peak

problem is resolved, this would be an interesting result for the BAO measurements.

If we assume β ∼ 1 as seen in the previous studies, we find that b ∼ 0.27 on small

scales in agreement with the above measurements. However, as can be seen, this

varies widely as we go to higher scales. Since we cannot quite trust the results of
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this simulation, the analysis would have to be redone more carefully in a future

simulation with starting conditions which more closely match theory (see below).

4.6.7 Work in Progress: Power Spectra

We next calculate the three dimensional power spectra for four of the cubes,

the dark matter, gas density, neutral hydrogen density, truncated neutral hydrogen

density expressed as 1 − e−δHI , and temperature in Figure 4.12. This is done by

performing a three-dimensional Fast Fourier Transform (FFT), taking the abso-

lute value squared at each point, and binning the result similarly to the angular-

averaged correlation function. This results in the full three dimensional power

spectrum with respect to k [1/Mpc], where kmin = 2π/(length of box in Mpc). We

Figure 4.12 The angular-averaged power spectrum for dark matter, gas density,
neutral hydrogen density, truncated neutral hydrogen density expressed as 1 −
e−δHI , and temperature for the full 20483 simulation at redshift z = 3.

can see that the gas density, and the truncated neutral hydrogen density follow the
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dark matter density very well at large scales, with some constant bias factor. The

scale-dependent parameter β which we find above arises from the transformation

from the neutral hydrogen density field to the flux field when peculiar velocities

are taken into account.

4.6.8 Work in Progress: Complications

However, in order to trust our results, we need to address some challenges

we have encountered with our simulations. The first of them is already pictured in

Figure 4.12. We see a series of peaks in the dark matter power spectrum pictured

as the black line. This was, we found a defect in the dark matter tile boundaries of

the simulation. Since the dark matter is not evolved on a grid in ENZO, like the

baryons are, the dark matter particle positions and velocities are the true state

simulation variables, however, when the dark matter density was computed for

output purposes, there was an incorrect treatment at the boundaries. This has

since been fixed in the ENZO output.

There is however another complication we encountered, having to do with

the dark matter as well. In Figure 4.13 we picture again the dark matter three

dimensional power, however this time along with the linear theory predicted by the

CAMB program (Lewis et al., 2000). We do this by inputting initial conditions of

the simulation into the CAMB setup, which evolves the total linear matter power

spectrum. The normalization is adjusted to give the value of σ8 inputted into the

simulation (which is the normalization of the matter power spectrum on scales of

8h−1Mpc at the current redshift). There is also a factor of (2π/(length of box

in Mpc))3 difference between the power spectrum calculated from the ENZO box

using the IDL definition of FFT which we use, and the power spectrum result of

the CAMB program.

Whereas a tilt in the power spectrum is expected due to nonlinear evolution

over time, the amplitude seen in the wiggles are a lot bigger than that expected by
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Figure 4.13 The angular-averaged power spectrum for dark matter and baryons
for the full 20483 simulation at redshift z = 3, compared to that predicted by linear
theory as calculated by the program CAMB.

linear theory. If we plot the dark matter correlation function against that predicted

by CAMB in Figure 4.14, we also find a BAO peak that is bigger in amplitude

than that predicted by linear theory. Since the BAO is at the scales that are large

enough to be described by linear theory, especially at redshift of z = 3, we do not

expect such a big discrepancy.

We therefore decided to probe further, and investigate the conditions at the

initial redshift dump of the simulation, which we plot in Figure 4.15 and Figure

4.16. One can see that even in the initial conditions, without any time for

nonlinear evolution to take place, the dark matter does not follow the dark matter

power spectrum that was inputted into the simulation.
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Figure 4.14 The angular-averaged correlation function for dark matter for the full
20483 simulation at redshift z = 3, compared to that predicted by linear theory as
calculated by the program CAMB.

4.6.9 Future Work and Tests

After many tests, we decided to rerun the initial conditions to the simulation

from scratch and sent the exact initial conditions to Professor Michael Norman’s

group to rerun the code. To our surprise, the new simulation, with the same set

of initial parameters as before, returned the correct dark matter power spectrum

as predicted by linear theory! This new simulation is pictured in Figure 4.17. The

normalization of the power spectrum is correct as well. Our conclusion is therefore

that in the previous simulation, the baryon power spectrum must have been read

in twice, for the dark matter as well.

We are therefore hopeful that a new simulation can be rerun with the BAO

peak matching the linear theory in the dark matter to test the results we obtained.

As part of future work, we will also test to see whether the 4k simulation, with
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Figure 4.15 The angular-averaged power spectrum for dark matter for the full
20483 simulation at redshift z = 99, compared to that predicted by linear theory
as calculated by the program CAMB.

higher precision, has the same problem with the BAO peak not matching the

expected one.

4.7 Conclusion

In this chapter we have set out to understand the underlying systematic ef-

fects of a Baryon Acoustic Oscillations measurement in the Lyman-alpha forest in

Quasar absorption lines. Although in the past, there has been much analysis of this

measurement using dark matter only simulations, our aim is to fully understand

the bias and redshift space parameters, set by small scale physics of the gas, which

can more fully be probed with hydrodynamic simulations. Using the hydrody-

namic ENZO simulations, we have calculated the dark matter and flux correlation
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Figure 4.16 The angular-averaged correlation function for dark matter for the full
20483 simulation at redshift z = 99, compared to that predicted by linear theory
as calculated by the program CAMB.

functions and found that the measurement of the BAO peak in the absorption

lines traces that of the underlying dark matter. We have also attempted to cal-

culate the bias and redshift space parameters, however such an analysis will have

to be redone in the future, with a more robust simulation which more accurately

traces the expected theory. We have set initial conditions for such a simulation,

and we hope that we will be able to contribute to a better understanding of the

shape and size of the BAO peak in the Lyman-alpha forest. This measurement

by the BOSS collaboration (Busca et al., 2013; Slosar et al., 2013) is already a

contributing dark energy standard ruler measurement at intermediate redshifts,

and increasing its accuracy will further increase our knowledge of the expansion

history of our Universe.
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Figure 4.17 The angular-averaged correlation function for dark matter for the
new full 20483 simulation at redshift z = 99, compared to that predicted by linear
theory as calculated by the program CAMB.
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D. G. 2013, Astronomy and Astrophysics, 552, A96

Croft, R. A. C., Weinberg, D. H., Katz, N., & Hernquist, L. 1998, The Astrophys-
ical Journal, 495, 44

Eisenstein, D. J. & Hu, W. 1998, The Astrophysical Journal, 496, 605

Eisenstein, D. J., Seo, H.-J., & White, M. 2007, The Astrophysical Journal, 664,
660

Eisenstein, D. J., Zehavi, I., Hogg, D. W., Scoccimarro, R., Blanton, M. R., Nichol,
R. C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Z., Anderson, S. F., An-
nis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F. J., Connolly, A.,
Csabai, I., Doi, M., Fukugita, M., Frieman, J. A., Glazebrook, K., Gunn, J. E.,
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Chapter 5

Conclusion

This thesis presents examples of astrophysical approaches to probing the

nature of dark matter and dark energy. There are many dark matter candidates

currently proposed, from weakly interacting massive particles (WIMPs), to axions

and sterile neutrinos (Feng, 2010). Many of these particle candidates are being

targeted with expensive direct and indirect searches, as well astrophysical surveys,

with little success. Primordial black holes (PBHs), therefore, as the only non-

particle candidate, and one that does not require any physics beyond the Standard

Model, deserve increased attention. In Chapter 2 of this thesis we therefore focused

on making theoretical predictions for the possibility of constraining a significant

portion of the remaining PBH dark matter mass window using the already existing

Kepler satellite. We found that the microlensing of Kepler source stars provides

for the possibility of constraining up to 40% of the remaining mass range, due to

the extreme photometric precision of the telescope, as well as the proximity of the

Kepler source stars. This allows for the detection of small mass black holes down

to 2 × 10−10M�. In Chapter 3 we implemented our formalism in the analysis of

the first two years of publicly available Kepler lightcurves. Even though we found

many background sources of error which were not accounted for in our predicted

sensitivity calculation, we successfully constrained the mass range by a full one
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order of magnitude below the previous MACHO/EROS microlensing survey limits

(Alcock et al., 1998), down to 2 × 10−9M�. No PBH candidate events have been

found so far, however we will continue to extend this monitoring of Kepler data

for possible microlensing events as it becomes publically available. In addition,

we also provided approximations in Chapter 2 for future star selection, as well as

predictions for planned missions, such as WFIRST. It seems that with Kepler, and

WFIRST, we will be able to close a majority of the window left, however, leaving

a full two orders of magnitude not targeted. Short cadence monitoring of stars

with improved photometric precision will come upon the backgrounds of stellar

flares, which become more prominent at shorter time scales, while monitoring

stars farther away becomes increasingly difficult while maintaining this precise

photometry. New methods, such as extending the limits from lensing of Gamma

Ray Bursts, might therefore have to come into play to address the remaining

primordial black hole mass range. The detection or exclusion of PBH dark matter

would also provide a powerful indication of early Universe physics, constraining

the amplitude of fluctuations allowed during the radiation era or the possibility

of multiple periods of accelerated expansion during that time, allowing for PBH

production.

The late-time measurements of the accelerated expansion of the Universe

are the focus of current dark energy astrophysical surveys. Although many models

predict a constant equation of state with w = −1, any deviation from this would

indicate a departure from the current standard cosmology picture. It is therefore

important to track this number over time, with great precision. Measurements

of the Cosmic Microwave Background (CMB) at high redshifts, and supernovae

at low redshifts, are now being complemented with lensing measurements, and

Baryon Acoustic Oscillations (BAO), which can be measured in multiple matter

probes over time (Weinberg et al., 2012). Although dark energy is thought to have

become dominant at redshifts of 1 and lower, it is important to track the evolution

of the Universe at intermediate redshifts as well. 21 cm probes of neutral hydrogen
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will thus target matter distribution at redshifts of 12 and lower with future radio

telescopes (Wyithe et al., 2007), however currently, the BOSS team is already

measuring BAO at redshifts of 2-3 with low resolution quasar spectra (Busca et al.,

2013; Slosar et al., 2013). In Chapter 4 we investigated the possible systematic

effects of this measurement using full scale hydrodynamic simulations. We have

found the location of the peak in the Lyman-alpha forest is a robust measurement

of the underlying total matter BAO peak, however we were not able to fully model

the shape and size of the peak due to some challenges with the simulations. We

have laid out the groundwork for such an analysis with a future simulation which

will more accurately model the full initial conditions of the BAO dark matter

distribution. Such a full hydrodynamic analysis will be crucial to understanding

the uncertainties involved in such a measurement, since the bias and redshift space

distortion parameters which are present in the conversion between the flux and dark

measurements, are set by the gas physics in the Intergalactic Medium, which can

be modeled by just such a simulation. In the future the full modeling of the BAO

peak shape will be needed to increase the precision of the BAO measurement in

the Lyman-alpha forest. This will especially be true for the continuing BOSS data

analysis, as well as the upcoming BigBOSS survey (Schlegel et al., 2011) which will

extend the number of quasar absorption lines measured from tens of thousands to

millions. The combination of supernovae, BAO, weak lensing, clusters, and CMB

will provide powerful insight into dark energy models in the near future. Although

the measurements might just provide us with a more precise value of w centered

around -1, as we map the matter distribution of the Universe over time with

future surveys, such as WFIRST, Euclid, or LSST (Weinberg et al., 2012), we

might encounter even further surprises, just like the discovery of dark energy was

a mere fifteen years ago.

With such multiple approaches to the measurements of dark energy and

dark matter we are continuing to provide new insight into the nature of the other

95% of the Universe.
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Aubourg, É., Bautista, J. E., Bhardwaj, V., Blomqvist, M., Bolton, A. S., Bovy,
J., Brownstein, J., Carithers, B., Croft, R. A. C., Dawson, K. S., Font-Ribera,
A., Le Goff, J.-M., Ho, S., Honscheid, K., Lee, K.-G., Margala, D., McDonald,
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Appendix A

Derivation of Microlensing

Formulas

A.1 Finite-Source with Linear Limb-Darkening

Formula

Equation 2.13 can be derived starting with equation 2.12:

Alimb(u, U∗) =

(∫ U∗

0

2πU
′

∗Ib(U
′

∗)dU
′

∗

)−1 ∫ U∗

0

∂(Afs(u, U
′
∗)πU

′2
∗ )

∂U ′∗
Ib(U

′

∗)dU
′

∗. (A.1)

The first integrand can then be evaluated as follows:

∫ U∗

0

2πU ′∗I(U ′∗)dU
′
∗ = πU ′2∗ I(U ′∗) |U∗0 −

∫ U∗

0

πU ′2∗
∂I(U ′∗)

∂U ′∗
dU ′∗

= πU2
∗ (1− uλ) + πuλ

1

U∗

∫ U∗

0

U ′3∗√
U2
∗ − U ′28

dU ′∗

= πU2
∗ (1− uλ) +

2

3
πuλU

2
∗

= πU2
∗

(
1− 1

3
uλ

)
. (A.2)
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The second integrand, as stated in the text, has a peak at u = U ′∗, which

causes problems with convergence when integrating numerically. However, by cor-

rectly treating the integral boundaries, we can omit this problem by the following

∫ U∗

0

∂Afs(u, U
′
∗)πU

′2
∗

∂U ′∗
I(U ′∗)dU

′
∗ =AfsπU

2
∗ (1− uλ)

+ πuλ
1

U∗

∫ U∗

0

Afs(u, U
′
∗)

U ′3∗√
U2
∗ − U ′2∗

dU ′∗ (A.3)

with the substitution of U ′2∗ = U2
∗ − z2 and 2U ′∗dU

′
∗ = −2zdz∫ U∗

0

Afs(u, U
′
∗)

U ′3∗√
U2
∗ − U ′2∗

dU ′∗ =

∫ U∗

0

Afs(u,
√
U2
∗ − z2)(U2

∗ − z2)dz. (A.4)

This expression removes the problem of numerical convergence. Putting

the two integrands together, we arrive at equation 2.13:

Alimb(u, U∗) =
(
πU2
∗ (1− uλ/3)

)−1×[
Afs(u, U∗)πU

2
∗ (1− uλ) + (πuλ/U∗)

∫ U∗

0

Afs(u,
√
U2
∗ − z2)(U2

∗ − z2)dz

]
. (A.5)

.

A.1.1 Maximum Magnification for a Finite-Source Linear

Limb-Darkening Model

In order to derive Amax in Equation 2.16, we start with

Afs(0, U∗) =

√
4 + U2

∗

U∗
(A.6)

and, following the above derivation for the second integrand,

Afs(0, U∗)πU
2
∗ (1− uλ) = πU∗

√
4 + U2

∗ (1− uλ), (A.7)

while,
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∫ U∗

0

Afs(0,
√
U2
∗ − z2)(U2

∗ − z2)dz =

∫ U∗

0

√
4 + U2

∗ − z2√
U2
∗ − z2

(U2
∗ − z2)dz

=

∫ U∗

0

√
U2
∗ − z2

√
4 + U2

∗ − z2dz

=
2

3

√
4 + U2

∗

[(
2 + U2

∗
)
E[
√
U2
∗/(4 + U2

∗ )]

−2K[
√
U2
∗/(4 + U2

∗ )]
]
. (A.8)

Putting the expressions together we arrive at,

Amax = Alimb(0, U∗)

=
Amaxfs

1− uλ/3

×
{

1− uλ + (2uλ/3U
2
∗ )

[
(2 + U2

∗ )E
[√

U2
∗/(4 + U2

∗ )
]

− 2K
[√

U2
∗/(4 + U2

∗ )
]]}

. (A.9)

A.2 Derivation of the Expression for the Num-

ber of Expected Events

We can derive the differential event rate used in Equation 2.18 following

the setup in (Griest, 1991). We assume a Maxwellian velocity distribution of dark

matter:

f(v)d3v = e−v
2/v2c

1

π3/2v3
c

d3v, (A.10)

with vc ≈ 220 km/s. Then the differential rate of detection is just the flux of

primordial black holes (PBHs) through the microlensing tube (as defined in (Griest,

1991)):

dΓ =
nd3x

dt
f(v)d3v, (A.11)
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where n = ρ/M is the number density of PBHs, d3x = vt cos θdtdS is the cylin-

drical segment of the microlensing tube through which the PBH passes, dS =

uthreshrE(x)dαLdx is the surface element of the microlensing tube with L being the

distance from the observer to the source star, x the ratio of the distance to the lens

with respect to L, and α running from 0 to 2π, while f(v)d3v = f(v)vtdvxdvtdθ

is the distribution of PBH velocities in cylindrical coordinates. θ here is the angle

between the normal to the surface element dS and the transverse velocity of the

PBH. We thus obtain the expression:

dΓ =
ρuthreshrE(x)

πM

v2
t

v2
c

e−v
2
t /v

2
c cos θdvtdθdαLdx. (A.12)

Finally, integrating over α and performing a change of variables where

cos θ =
√

1− u2
min/u

2
thresh with the variables defined as in the text,

dΓ = 4rE(x)L
ρ

M

v2
t

v2
c

e−v
2
t /v

2
cdvtdumindx. (A.13)

A.3 Derivation of the Approximation for Future

Star Selection

We can derive the approximation for future star selection for the small

primordial black hole masses (PBHs), starting with Equation 2.17

dΓ

dtevent

=
ρ

M
Lv2

c

∫ xmax

0

dxβ′2g(β′). (A.14)

For small PBHs on the order of 10−10M�, the projected star radius dominates the

lightcurve. Therefore we can make the approximation that uthresh ≈ U∗. Also,

for dwarf stars, whenever R∗/R� < 0.57 (tevent/1hr) (vc/220km/s) /xmax, one can

approximate β < 1 and β2g(β) ≈ (3/8)πβ2. This leaves us with the expression:

dΓ

dtevent

=
ρ

M
Lv2

c

∫ xmax

0

dx
3

8
πβ2. (A.15)
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Since now β = 4r2
Eu

2
thresh/(t

2
eventv

2
c ) ≈ 4x2R2

∗/(t
2
eventv

2
c ), we have

dΓ

dtevent

=
6

5
π
ρ

M

1

v2
c

R4
∗

t4event

x5
maxL. (A.16)

Integrating over tevent from the minimum microlensing time detectable, tmin to

infinity,

dΓ

dtevent

=
2

5
π
ρ

M

1

v2
c

R4
∗

t5min

x5
maxL. (A.17)

For these small PBHs, we know that xxmax < 1, so we can estimate xxmax ≈
4GMLU2

∗/(R
2
∗c

2), arriving at Equation 2.25

Γ ≈ 409.6π
G5M4ρ

c10v2
c

U10
∗max

t3min

L6

R6
∗
. (A.18)

Additionally, using the values of ρ ≈ 0.3 GeV cm−3 and vc ≈ 220 km/s, as well as

U∗max = 2/
√
A2
thresh − 1, we arrive at Equation 2.26:

Γ ≈ 2.63× 1020

(
L

1kpc

)6(
R�
R∗

)6(
M

M�

)4(
1hr

tmin

)3
1

(A2
thresh − 1)

5

1

year
. (A.19)
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