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Miriam Stoeber1,2*, Damien Jullié1,3, Joy Li1,3, Soumen Chakraborty4,5,
Susruta Majumdar4,5, Nevin A Lambert6, Aashish Manglik7,8, Mark von Zastrow1,3*

1Department of Psychiatry, University of California, San Francisco, San Francisco,
United States; 2Department of Cell Physiology and Metabolism, University of
Geneva, Geneva, Switzerland; 3Department of Cellular and Molecular
Pharmacology, University of California, San Francisco, San Francisco, United States;
4Center for Clinical Pharmacology, Washington University School of Medicine, St.
Louis, United States; 5St Louis College of Pharmacy, St. Louis, United States;
6Department of Pharmacology and Toxicology, Medical College of Georgia,
Augusta University, Augusta, United States; 7Department of Pharmaceutical
Chemistry, University of California, San Francisco, San Francisco, United States;
8Department of Anesthesia, University of California, San Francisco, San Francisco,
United States

Abstract G protein-coupled receptors (GPCRs) signal through allostery, and it is increasingly

clear that chemically distinct agonists can produce different receptor-based effects. It has been

proposed that agonists selectively promote receptors to recruit one cellular interacting partner

over another, introducing allosteric ‘bias’ into the signaling system. However, the underlying

hypothesis - that different agonists drive GPCRs to engage different cytoplasmic proteins in living

cells - remains untested due to the complexity of readouts through which receptor-proximal

interactions are typically inferred. We describe a cell-based assay to overcome this challenge,

based on GPCR-interacting biosensors that are disconnected from endogenous transduction

mechanisms. Focusing on opioid receptors, we directly demonstrate differences between biosensor

recruitment produced by chemically distinct opioid ligands in living cells. We then show that

selective recruitment applies to GRK2, a biologically relevant GPCR regulator, through discrete

interactions of GRK2 with receptors or with G protein beta-gamma subunits which are differentially

promoted by agonists.

Introduction
G protein-coupled receptors (GPCRs) comprise nature’s largest family of signaling receptors and an

important class of therapeutic drug targets. GPCRs signal by allostery, and were considered for

many years to operate as binary switches that bind to cognate transducer and regulator proteins in

a single agonist-induced activated state. Over the past decade an expanded view has taken hold,

supported by accumulating in vitro evidence that GPCRs are conformationally flexible (Lohse and

Hofmann, 2015; Mahoney and Sunahara, 2016; Nygaard et al., 2013; Weis and Kobilka, 2018;

Wingler et al., 2019) and a confluence of cell biological and in vivo evidence supporting the exis-

tence of functionally selective agonist effects (Smith et al., 2018; Urban et al., 2007;

Williams et al., 2013). According to this still-evolving view, agonists have the potential to promote

GPCRs to selectively recruit one transducer or regulator protein over another, introducing bias into
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the signaling cascade at a receptor-proximal level that is either propagated downstream or elimi-

nated during intermediate transduction steps (Lau et al., 2011; Tsvetanova et al., 2017).

Opioid receptors provide a representative example. Interest in selective agonist effects at these

GPCRs dates back to the initial demonstration that opioid receptors can be activated by diverse

peptide and non-peptide agonists (Kosterlitz and Hughes, 1977). Early experimental evidence for

such selectivity among ligands emerged from the observation of an agonist-induced state of opioid

receptors in neuroblastoma cells that discriminates between opioid peptides and opiate alkaloids

(Von Zastrow et al., 1993). This was followed by the demonstration of agonist-selective control of

opioid receptor endocytosis, leading to the identification of functional selectivity among agonists

defined by differences in relative ability to drive receptor engagement of G protein relative to beta-

arrestin-dependent cellular pathways (Keith et al., 1998; Keith et al., 1996; Whistler et al., 1999;

Whistler and von Zastrow, 1998). This concept further evolved to the present view of biased recep-

tor recruitment of G proteins relative to beta-arrestins, with receptor-proximal selectivity calculated

by fitting quantitative measures of downstream pathway or protein response to operational models

of receptor-effector coupling (Schmid et al., 2017).

Two key gaps persist in our present understanding. First, selective protein recruitment by GPCRs

in intact cells remains largely calculated rather than directly observed. Accordingly, the understand-

ing of receptor-proximal agonist bias is inherently limited by assumptions of the model used to cal-

culate it (Kenakin, 2018; Klein Herenbrink et al., 2016). Indeed, and despite intense efforts

motivated by interest in the therapeutic impact of biased agonist effects at opioid receptors

(Johnson et al., 2017; Schmid et al., 2017; Whistler et al., 1999), significant challenges remain in

reliably assessing selectivity of receptor-proximal protein recruitment based on downstream cell-

based readouts (Conibear and Kelly, 2019). Second, challenges can arise even using cell-based

assays that are direct. For example, multiple methods have been developed to detect GPCR interac-

tion with beta-arrestins in intact cells (Chen et al., 2012; Kim et al., 2017). However, this binding

eLife digest About a third of all drugs work by targeting a group of proteins known as

G-protein coupled receptors, or GPCRs for short. These receptors are found on the surface of cells

and transmit messages across the cell’s outer barrier. When a signaling molecule, like a hormone, is

released in the body, it binds to a GPCR and changes the receptor’s shape. The change in structure

affects how the GPCR interacts and binds to other proteins on the inside of the cell, triggering a

series of reactions that alter the cell’s activity.

Scientists have previously seen that a GPCR can trigger different responses depending on which

signaling molecule is binding on the surface of the cell. However, the mechanism for this is unknown.

One hypothesis is that different signaling molecules change the GPCR’s preference for binding to

different proteins on the inside of the cell. The challenge has been to observe this happening

without interfering with the process.

Stoeber et al. have now tested this idea by attaching fluorescent tags to proteins that bind to

activated GPCRs directly and without binding other signaling proteins. This meant these proteins

could be tracked under a microscope as they made their way to bind to the GPCRs. Stoeber et al.

focused on one particular GPCR, known as the opioid receptor, and tested the binding of two

different opioid signaling molecules, etorphine and Dynorphin A.

The experiments revealed that the different opioids did affect which of the engineered proteins

would preferentially bind to the opioid receptor. This was followed by a similar experiment, where

the engineered proteins were replaced with another protein called GRK2, which binds to the opioid

receptor under normal conditions in the cell. This showed that GRK2 binds much more strongly to

the opioid receptor when Dynorphin A is added compared to adding etorphine.

These findings show that GPCRs can not only communicate that a signaling molecule is binding

but can respond differently to convey what molecule it is more specifically. This could be important

in developing drugs, particularly to specifically trigger the desired response and reduce side effects.

Stoeber et al. suggest that an important next step for research is to understand how the GPCRs

preferentially bind to different proteins.
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involves multiple biochemical steps and, in particular, it typically requires the receptor to undergo

prior agonist-induced phosphorylation (Eichel et al., 2018; Gurevich et al., 1995; Thomsen et al.,

2016). This has been clearly established for opioid receptors (Whistler and von Zastrow, 1998;

Zhang et al., 1998), for which full interaction with beta-arrestin requires the receptor to be phos-

phorylated at multiple sites in the cytoplasmic tail through a defined sequence of agonist-dependent

reactions which are catalyzed by distinct GPCR kinase (GRK) isoforms (Chiu et al., 2017; Just et al.,

2013; Lau et al., 2011; Miess et al., 2018). Accordingly, beta-arrestin recruitment measured in such

assays clearly reflects a process that is considerably more complex than allosteric selection by the

receptor.

Here we describe an alternative approach to address these knowledge gaps. We delineate a cell-

based method to simply assess selective protein recruitment by opioid receptors at the receptor-

proximal level, taking advantage of two engineered protein folds established to bind agonist-acti-

vated GPCRs in intact cells without requiring or engaging other known cellular proteins

(Stoeber et al., 2018; Wan et al., 2018). Using these engineered proteins comparatively as orthog-

onal receptor-interaction biosensors, we directly demonstrate selectivity in receptor-proximal pro-

tein recruitment elicited by various opioid agonists in living cells. We then show how the principle of

receptor-proximal protein selection applies in a more complex manner to GRK2, a biologically rele-

vant regulator.

Results

Comparative detection of direct protein recruitment by opioid
receptors in living cells
Two agonist-activated opioid receptor complexes have been described in structural detail

(Figure 1A), one bound to a nucleotide-free G protein heterotrimer and another to an active state-

stabilizing nanobody (Nb) (Huang et al., 2015; Koehl et al., 2018). The receptor conformation

resolved in each complex is similar but not identical, with Nb and G protein interactions involving

distinct molecular contacts on cytoplasmic domains of the receptor. Nbs are inherently orthogonal

to intracellular biochemistry but heterotrimeric G proteins engage multiple cellular proteins in addi-

tion to activated receptors. Thus we focused on mini-G (mG) proteins, engineered versions of the

Ras-like domain of G protein alpha subunits which bind directly to activated GPCRs but are not

known to engage other cellular proteins (Nehmé et al., 2017; Wan et al., 2018). We assessed bind-

ing to receptors in intact cells by redistribution of fluorescently labeled Nb or mG fusion proteins

from the cytoplasm to the plasma membrane (Figure 1B).

For a mG probe we chose mGsi, derived from the Ras-like domain of Gs alpha but with nine resi-

dues at the distal C-terminus replaced by the corresponding residues from Gi alpha1. These C-termi-

nal residues form a major determinant of G protein coupling specificity (Conklin et al., 1993) by

folding into a helical structure (alpha-5 helix) that occupies the agonist-activated GPCR core

(Carpenter and Tate, 2017; Koehl et al., 2018). Because Gs couples poorly to opioid receptors, we

reasoned that a sensor derived from mGsi would primarily detect this interaction. For a Nb probe

we selected Nb33, previously used to detect activated mu (MOR) and delta (DOR) opioid receptors

in living cells (Stoeber et al., 2018). Nb33 shares receptor contact residues with Nb39, a close ana-

log that has been resolved at high resolution in complex with activated MOR (Huang et al., 2015)

and in a similar complex with activated kappa opioid receptor (KOR) (Che et al., 2018). Because

cytoplasmic residues contacted by the Nb in these structures are largely distinct from those engaged

by the G protein alpha-5 helix, we reasoned that the Nb-derived sensor has the potential to provide

different allosteric information.

Fluorescent protein fusions of mGsi or Nb33 localized diffusely when expressed in the cytoplasm

of HEK293 cells, and recruitment by receptors was monitored using total internal reflection fluores-

cence microscopy (TIR-FM) in cells co-expressing Flag-tagged KOR (Figure 1C). Importantly,

HEK293 cells do not express endogenous opioid receptors or other opioid ligand binding sites,

thereby providing a null genetic background on which to directly examine protein probe recruitment

mediated specifically by the co-expressed receptor. We observed rapid and robust recruitment of

mGsi by KOR upon application of the kappa-selective peptide agonist Dynorphin A (DynA, Dynor-

phin 1–17). Recruitment of mGsi was reversible because application of the high-affinity competitive
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Figure 1. Comparative detection of direct probe recruitment by opioid receptors in living cells. (A) Crystal structures of the DAMGO-bound MOR (red)

- Gi (green/blue) complex (PDB: 6DDF) and the BU27-bound MOR (red) – nanobody (green) complex (PDB: 5C1M). Ligands are shown in blue. (B)

Schematic of nanobody (Nb)/miniGsi (mGsi) and OR localization in cells and expected probe re-localization upon agonist addition. (C) Scheme of a cell

imaged by total internal reflection fluorescence microscopy (TIR-FM). The evanescent excitation field selectively illuminates fluorophores close to the

Figure 1 continued on next page
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KOR antagonist 5’GNTI resulted in rapid redistribution of the biosensor back to the cytoplasm

(Figure 1D). In contrast, mGs was not detectably recruited in response to KOR activation by DynA

using the same assay (Figure 1F), verifying assay specificity and that mGsi recruitment is driven pri-

marily by the Gi-derived distal C-terminus. Further, we verified that agonist-induced recruitment of

mGsi occurred separately from a change in surface expression of KOR, which was monitored in par-

allel using anti-Flag antibody (Figure 1D). Nb33 was also rapidly recruited in response to KOR acti-

vation by DynA using the same experimental protocol, and this recruitment was also reversible upon

antagonist application and occurred without a detectable change in surface receptor expression

(Figure 1E). Accordingly, both mGsi and Nb33 can be used as biosensors of ligand-dependent

recruitment by KOR in living cells using the TIR-FM assay, and both sensors produce a reversible

recruitment signal that is sufficiently robust and fast (t1/2< 30 s) to enable reliable detection of pro-

tein recruitment without possible complications of later receptor trafficking.

We next tested two non-peptide KOR full agonists, U69593 (U69) and U50488 (U50). We gener-

ated concentration-response curves by increasing agonist concentration in a stepwise manner and

then adding DynA in excess (10 mM) at the end of each series as an internal reference (Figure 1G

and H). Both Nb33 and mGsi were robustly recruited in a concentration-dependent manner in

response to DynA and both of the non-peptide full agonist drugs (Figure 1I–K), consistent with the

previously established pharmacology of these compounds (DiMattio et al., 2015), but we also

noted that the concentration-response relationship for mGsi recruitment was consistently left-shifted

relative to Nb33. These results demonstrate that both Nb33 and mGsi are robustly recruited by KOR

after activation by peptide and non-peptide full agonists in living cells, but with a potency shift indi-

cating that the interactions are not identical.

Agonist-selective recruitment of engineered protein probes
We then applied the same approach to investigate the effect of the alkaloid agonist etorphine (ET)

on mGsi and Nb33 recruitment by KOR. ET is an opiate alkaloid drug that is structurally distinct from

opioid peptides as well as from U50 and U69. ET efficaciously promotes G protein activation and sig-

naling but has long been recognized to drive KOR internalization and phosphorylation poorly, sup-

porting its classification as a G protein-biased agonist by operational criteria (Chu et al., 1997;

DiMattio et al., 2015; Jordan et al., 2000). ET behaved as a potent but partial agonist in the mGsi

recruitment assay, producing a maximum biosensor recruitment response reaching 67% of that pro-

duced by DynA (Figure 2A and D). Remarkably, ET produced little or no recruitment of Nb33

despite a robust response to DynA verified in each assay and in the same cells (Figure 2B and E).

This lack of Nb33 recruitment was evident even at very high concentrations of ET (Figure 2B and C),

in contrast to mGsi that was potently recruited (Figure 2C–E). Further verifying this difference, selec-

tive recruitment of mGsi relative to Nb33 was observed when the biosensors were tagged with dis-

tinct fluorophores, co-expressed, and imaged in parallel in the same cells (Figure 2F). Again, mGsi

was potently recruited in response to ET but Nb33 was not, despite DynA producing strong

Figure 1 continued

plasma membrane. (D) TIR-FM images of a time series of a HEK293 cell, expressing Venus-mGsi and FLAG-KOR (not shown). Medium was exchanged

to DynA (agonist, 100 nM) and to 5’GNTI (antagonist, 100 mM) by bath application. The scale bar represents 10 mm. Intensity of mGsi and KOR (labeled

with anti-FLAG M1-AF647) during the TIR-FM time-lapse. 5 s between frames is shown. F0, average fluorescence intensity before agonist. (E) Same as in

(D) but with HEK293 cell expressing EGFP-Nb33 instead of mGsi. Intensity of Nb33 and KOR during TIR-FM time-lapse with 5 s between frames is

shown. (F) Intensity of mGs and KOR (labeled with anti-FLAG M1-AF647) during the TIR-FM time-lapse, adding increasing concentrations of DynA (1 nM

- 10 mM). 5 s between frames is shown. F0, average fluorescence intensity before agonist. (G) mGsi intensity during TIR-FM time-lapse series of a

HEK293 cell, co-expressing Venus-mGsi and KOR, adding increasing concentrations of U69 (1 nM - 10 mM) followed by reference compound DynA (10

mM). 5 s between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (reference compound DynA). (H) Same as in (F) with HEK293 cell

expressing EGFP-Nb33 instead of mGsi. (I–K) Concentration-dependent recruitment of mGsi and Nb33 probes to KOR, measured by TIR-FM upon

different agonists. Normalization of intensity values is shown (range [0–1]). Regression curves with Hill slope of 1 are shown. (I) DynA concentration

response (n = 3; average ± SEM). (J) U69 concentration response, normalized to DynA (n = 3; average ± SEM). (K) U50 concentration response,

normalized to DynA (n = 4; average ± SEM).

The online version of this article includes the following source data for figure 1:

Source data 1. Concentration-dependent recruitment of mGsi and Nb33 probes to KOR in response to DynA, U69, and U50 (Figure 1I-K).
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Figure 2. Selective recruitment of protein probes by KOR upon activation by etorphine. (A) mGsi intensity during TIR-FM time-lapse series of a HEK293

cell, co-expressing Venus-mGsi and KOR, adding increasing concentrations of etorphine (1 nM - 10 mM), followed by reference compound DynA (10

mM). 5 s between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (reference compound DynA). (B) Nb33 intensity during TIR-FM

time-lapse series of a HEK293 cell, co-expressing EGFP-Nb33 and KOR, treated, imaged, and normalized as in (A). (C) Concentration-dependent

Figure 2 continued on next page
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recruitment of both probes and in the same cells (Figure 2G). These results indicate that mG and

Nb probes can distinguish receptor-proximal agonist effects in intact cells.

A simple interpretation of these results is that differential probe recruitment reflects a primary

allosteric effect at the level of receptor-proximal protein engagement by the agonist-activated opi-

oid receptor. An alternative possibility is that agonists produce differential probe recruitment as a

secondary consequence of agonist-selective post-translational modifications of the receptor. In par-

ticular, because agonist-induced internalization of KOR requires multi-site phosphorylation on its

cytoplasmic tail, and ET is known to stimulate this phosphorylation less strongly than DynA

(Chen et al., 2016), we considered the possibility that differential biosensor recruitment occurs sec-

ondarily to differential phosphorylation. To test this, we measured biosensor recruitment by a

mutant KOR lacking all relevant phosphorylation sites in the cytoplasmic tail (KOR-TPD for ‘total

phosphorylation defective’, Figure 2H). The pronounced difference in mGsi relative to Nb33 recruit-

ment was still observed (Figure 2I and J). Independently verifying this, selective probe recruitment

by wild type KOR was not detectably perturbed in the presence of Compound101 (Figure 2K), a

chemical inhibitor of GRK2/3 activity known to strongly reduce KOR phosphorylation in HEK293 cells

(Chiu et al., 2017). Together, these results support the hypothesis that selective recruitment of mG

relative to Nb probes occurs as a primary consequence of allosteric protein selection at the receptor,

rather than a secondary effect of differential phosphorylation.

Agonist-selective probe recruitment is not restricted to KOR
We next asked if our experimental strategy can also detect differential protein recruitment by MOR.

Nb33 is already known to be recruited by agonist-activated MORs (Stoeber et al., 2018), and we

verified that this is also the case for mGsi. DAMGO, a peptide full agonist of MOR, produced rapid

and robust recruitment of mGsi that was rapidly reversed by the competitive antagonist naloxone

(Figure 3A and B). Similar to what was observed for recruitment of the engineered protein probes

by KOR, the concentration-response relationship for recruitment of mGsi by DAMGO was left-

shifted relative to Nb33 (Figure 3C). ET (also an agonist of MOR) promoted recruitment of both

probes by MOR, and to the same maximum degree when compared to the peptide full agonist

(Figure 3C). This contrasts with partial recruitment of mGsi and no detectable recruitment of Nb33

by KOR (Figure 2), indicating that differential recruitment of the engineered protein probes by opi-

oid receptors is both agonist-dependent and receptor subtype-specific.

To expand our search, and taking into account the fact that DAMGO and ET are both generally

classified as full agonists at MOR, we next examined morphine and PZM21. Both of these non-pep-

tide drugs are partial agonists with respect to assays of G protein activation or signaling, but each is

derived from a different chemical scaffold and differs in degree of bias estimated using a beta-

arrestin recruitment assay (Manglik et al., 2016). Using the same experimental protocol, and com-

paring recruitment promoted by the test ligand relative to the peptide full agonist (DAMGO)

Figure 2 continued

recruitment of mGsi and Nb33 probes to KOR upon etorphine (ET) addition, measured by TIR-FM and using DynA as reference. Normalization of

intensity values is shown (range [0–1]). Regression curves with Hill slope of 1 are shown. n = 5; average ± SEM. (D) TIR-FM images of a time series of a

HEK293 cell, expressing Venus-mGsi and KOR (not shown). Increasing concentrations of etorphine were added, followed by DynA. Venus-mGsi is

pseudocolored, low to high intensity. The scale bar represents 10 mm. (E) Same as in (D) but with HEK293 cell expressing EGFP-Nb33 instead of mGsi.

EGFP-Nb33 is pseudocolored, low to high intensity. The scale bar represents 10 mm. (F) Experimental set up for measuring agonist-dependent

recruitment of both mGsi and Nb33 to KOR in same cell. (G) mGsi and Nb33 intensity during TIR-FM time-lapse series of a HEK293 cell, co-expressing

Venus-mGsi, mCherry-Nb33, and FLAG-KOR. Cell was treated with increasing concentrations of etorphine, followed by DynA, and antagonist 5’GNTI. 5

s between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (reference DynA). Lower panel: 10 min kymograph traced inside the

cell, depicting intensities of Venus-mGsi, mCherry-Nb33, and FLAG-KOR (labeled with anti-FLAG M1-AF647), all pseudocolored, low to high intensity.

(H) Schematic of the C-tail domain of KOR, indicating the known agonist-dependent phosphorylation sites that are mutated to alanine in KOR-TPD. (I)

Same as in (G) but with HEK293 cell, co-expressing Venus-mGsi, mCherry-Nb33, and FLAG-KOR-TPD. (J) Concentration-dependent recruitment of mGsi

and Nb33 probes to KOR-TPD upon etorphine addition. Experimental setup and analysis as in (C). n = 5; average ± SEM. (K) Concentration-dependent

recruitment of mGsi and Nb33 probes to KOR upon etorphine addition, in cells pre-treated with GRK2/3 inhibitor Cmpd101 (30 mM). Experimental

setup and analysis as in (C). n = 3; average ± SEM.

The online version of this article includes the following source data for figure 2:

Source data 1. ET concentration-dependent recruitment of mGsi and Nb33 probes to KOR, or to KOR-TPD, or to KOR in the presence of Cmpd101.
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Figure 3. Agonist-selective protein probe recruitment by MOR. (A) 7 min kymograph traced inside a cell expressing Venus-mGsi, mCherry-Nb33, and

FLAG-MOR (labeled with anti-FLAG M1-AF647) and treated with increasing concentrations of DAMGO (agonist), followed by addition of Naloxone

(antagonist). Fluorescence intensities are pseudocolored, low to high intensity. (B) mGsi and Nb33 intensity during TIR-FM time-lapse series of a

HEK293 cell, co-expressing Venus-mGsi, mCherry-Nb33, and FLAG-MOR, adding increasing concentrations of DAMGO followed by Naloxone. 5 s

between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (10 mM DAMGO). (C) Concentration-dependent recruitment of mGsi and

Nb33 to MOR upon DAMGO and etorphine addition, measured by TIR-FM. Normalization of intensity values is shown (range [0–1]) with DAMGO as

reference. Regression curves with Hill slope of 1 are shown. DAMGO n = 3, etorphine n = 4, average ± SEM. (D) mGsi and Nb33 intensity during TIR-

FM time-lapse series of a HEK293 cell, co-expressing Venus-mGsi, mCherry-Nb33, and FLAG-MOR, adding increasing concentrations of morphine or

PZM21 followed by reference compound DAMGO (10 mM). 5 s between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (10 mM

DAMGO). (E) Concentration-dependent recruitment of mGsi and Nb33 probes to MOR upon morphine or PZM21 treatment, setup and analysis as in

(C). morphine n = 5, PZM21 n = 5, average ± SEM. (F) mGsi and Nb33 intensity during TIR-FM time-lapse series of a HEK293 cell, co-expressing Venus-

mGsi, mCherry-Nb33, and FLAG-MOR, adding increasing concentrations of mitragynine pseudoindoxyl (MP) followed by DAMGO, using bath

application. 5 s between frames is shown. (G) mGsi (left) and Nb33 (right) intensity during TIR-FM time-lapse series of a cell, co-expressing Venus-mGsi,

mCherry-Nb33, and FLAG-MOR, adding 10 mM of reference DAMGO, followed by agonist washout using perfusion (‘wo’, highlighted in gray), and

addition of 10 mM MP. 5 s between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (10 mM DAMGO). (H) Concentration-

dependent recruitment of mGsi and Nb33 to MOR upon MP addition, measured by TIR-FM with DAMGO as reference. n = 4; average ± SEM.

The online version of this article includes the following source data for figure 3:

Source data 1. Concentration-dependent recruitment of mGsi and Nb33 probes to MOR in response to DAMGO, ET, morphine, or PZM21.
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reference, both morphine and PZM21 produced partial recruitment of mGsi as well as Nb33

(Figure 3D and E). Whereas morphine and PZM21 were similar in the degree of mGsi recruitment

that they produced at saturating concentration, morphine was found to be significantly more effica-

cious than PZM21 in recruiting Nb33. Together, these results reveal a range of selective protein

recruitment effects among chemically diverse MOR partial agonists.

The experimental strategy used to compare test agonist effects relative to the peptide reference

was robust in practice but, in principle, it could underestimate differences relative to the reference

peptide if the test agonist dissociates slowly or has an on-rate much faster than the peptide refer-

ence. We found evidence for this when evaluating another chemically distinct MOR partial agonist,

the semi-synthetic natural product mitragynine pseudoindoxyl (MP) (Váradi et al., 2016). Using the

sequential agonist addition protocol, MP appeared to be similarly efficacious to DAMGO in promot-

ing recruitment of mGsi because no further increase was elicited by subsequent addition of DAMGO

while, in contrast, MP failed to produce any detectable recruitment of Nb33. However, we noted

that DAMGO also failed to promote recruitment of Nb33 in cells that were previously exposed to

MP (Figure 3F), despite DAMGO promoting a strong Nb33 recruitment response in cells not previ-

ously exposed to MP (Figure 3B). Adding a perfusion wash step, in order to remove excess test ago-

nist between applications, avoided this complication. With this modification, MP was verified to

indeed promote mGsi recruitment by MOR, but to a significantly reduced maximal degree relative

to DAMGO and without promoting detectable recruitment of Nb33 (Figure 3G and H). These

results further expand the range of differential protein recruitment effects documented among

chemically diverse MOR agonists.

Differential protein recruitment can be elicited by diverse opioid
agonists
To simplify comparison across agonists and receptors, we defined the maximum recruitment

response elicited by each agonist compared to the corresponding peptide full agonist reference

(DynA for KOR and DAMGO for MOR) as a relative ‘intrinsic activity’ for each agonist (Figure 4A).

We then plotted these relative values for each biosensor (Figure 4B). Some non-peptide agonists

were indistinguishable from the reference peptide by this analysis, recruiting both protein probes to

Figure 4. Receptor-proximal probe recruitment across agonists and receptors. (A) Table summarizing mGsi and Nb33 recruitment efficacies to KOR

and MOR upon different agonists. Intrinsic activities (‘I.A.’, maximal response) for both probes and each agonist are given (average ± SEM). DynA serves

as reference for KOR, DAMGO as reference for MOR. mGsi/Nb33 = ratios of intrinsic activities. (B) Plot of intrinsic activities (maximal responses) of

mGsi recruitment as function of Nb33 recruitment for all KOR and MOR agonists. The diagonal (dotted) line indicates the theoretical trajectory for

probe recruitment without bias. MS = morphine, ET = etorphine, MP = mitragynine pseudoindoxyl. (C) Summary of the effects of DynA vs. etorphine on

KOR-proximal protein recruitment. The chemically distinct agonists differentially promote recruitment of protein probes mGsi (interaction 1) and Nb33

(interaction 2), revealing biased recruitment of cytoplasmic proteins by opioid receptors.
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a similar maximal degree (corresponding to an ‘I.A.’ value of 1 for both probes), but others departed

from the diagonal. This is not consistent with the traditional concept of partial agonism based on a

unitary agonist-induced receptor ‘on’ state, which would predict the recruitment responses elicited

by all agonists to fall along the diagonal. Rather, the present results support the view that opioid

receptors are more flexibly activated, enabling them to selectively recruit one interaction probe over

another in living cells. They further suggest that the ability to promote selective protein recruitment

is widespread among chemically diverse opioid agonists (Figure 4C).

Relevance to agonist-selective recruitment of GRK2
While we found the engineered proteins useful as orthogonal probes to unambiguously assess

receptor-proximal recruitment in living cells, their disconnection from endogenous cellular machiner-

ies and pathways means that they are not directly related to function. Accordingly, we next asked if

agonist-selective protein recruitment applies to a physiologically relevant GPCR-interacting protein.

We focused on GRK2 because this kinase is known to be important for generating agonist-selective

patterns of multi-site phosphorylation in the MOR cytoplasmic tail, which convey biased effects

downstream from the receptor by distinguishing engagement of beta-arrestins and regulating recep-

tor entry into the endocytic network (Just et al., 2013; Lau et al., 2011). We were also intrigued by

GRK2 because it is recruited by activated GPCRs through multiple interactions, including with the

activated GPCR and with beta-gamma subunits that are exposed on the inner membrane leaflet fol-

lowing activation of the G protein heterotrimer (DebBurman et al., 1995; Lodowski et al., 2003;

Figure 5A).

We began by examining a functional GFP-fusion of GRK2 using the same TIR-FM imaging assay

used to monitor orthogonal probe recruitment. We focused on comparing the effects of ET relative

to DynA on KOR because these agonist-receptor pairs appeared to differ most dramatically based

on the orthogonal biosensor recruitment assay (Figure 4). DynA promoted rapid, concentration-

dependent recruitment of GRK2 to the plasma membrane (Figure 5B) while ET, despite being highly

potent, produced a degree of GRK2 recruitment clearly lower than that produced by DynA

(Figure 5C and D). This difference was not a secondary effect of receptor phosphorylation because

ET also produced less maximal GRK2 recruitment than DynA using the phosphorylation-defective

mutant KOR-TPD in place of KOR (Figure 5E and F).

Although ET promoted recruitment of full-length GRK2 less strongly than DynA, these agonists

produced similarly strong recruitment of a probe corresponding to the isolated C-terminal PH

domain from GRK2 that interacts with G beta-gamma (Figure 5G). This suggested that GRK2 bind-

ing to G beta-gamma subunits, enabled by G protein activation triggered by either agonist, is

responsible for partial recruitment promoted by ET. We independently verified this conclusion by

returning to assay of full length tagged GRK2, and testing the effect of blocking Gi activation by

pre-exposing cells to pertussis toxin (PTX). In this condition, ET failed to produce any detectable

recruitment of GRK2. However, as expected, DynA still produced a significant recruitment response

in the same cells (Figure 5H), but to a reduced degree relative to the recruitment response elicited

by DynA in cells not previously exposed to pertussis toxin.

The above results indicate that ET and DynA share the ability to promote GRK2 recruitment to

the plasma membrane via binding G beta-gamma, and that DynA engages an additional mode of

binding that is separate from the G protein and not shared with ET. We hypothesized that this inter-

action occurs with the activated opioid receptor itself. In order to test this, we devised an assay to

resolve GRK2 recruitment to the plasma membrane from GRK2 binding directly to the receptor. To

do so, we clustered receptors on the cell surface using an antibody cross-linking protocol, forming

clusters that appeared in TIRF images as discrete spots of laterally concentrated KOR (Figure 6A

and B, ‘KOR’ panels). We then used this characteristic appearance to distinguish GRK2 recruitment

to KOR-containing clusters from recruitment to the surrounding plasma membrane separately from

KOR clusters. As expected, in the absence of agonist GRK2 was primarily distributed in the cytosol

and not detectably associated with KOR (Figure 6B left, ‘GRK2’ panel). Within ~1 min after applica-

tion of DynA, GRK2 specifically accumulated at the KOR-containing clusters (Figure 6B right). In con-

trast, application of ET produced a diffuse increase in GRK2 fluorescence at the plasma membrane

but no specific accumulation at KOR-containing clusters (Figure 6C). Quantification of the GRK2

intensity in KOR clusters relative to the surrounding plasma membrane verified significant accumula-

tion of GRK2 with receptors promoted by DynA but not ET (Figure 6D), despite both agonists
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Figure 5. Agonist-selective modes of GRK2 recruitment to the plasma membrane. (A) Schematic depicting two modes of GRK2 recruitment from the

cytosol to the plasma membrane upon KOR activation: one involves interaction with G beta-gamma subunits exposed upon G protein activation and

another with the activated receptor itself. (B) GRK2 intensity during TIR-FM time-lapse series of a HEK293 cell, co-expressing GRK2-EGFP and KOR,

adding increasing concentrations of DynA. 5 s between frames is shown. Intensity is normalized between 0 (no agonist) and 1 (10 mM DynA). (C) GRK2

intensity for cells transfected as in (B) but adding increasing concentrations of etorphine (ET), followed by 10 mM DynA as reference. Imaging and

normalization as in (B). (D) Concentration-dependent recruitment of GRK2 to the plasma membrane upon DynA or ET addition, measured by TIR-FM.

Normalization of intensity values is shown (range [0–1]) with DynA as reference. Regression curve with Hill slope of 1 is shown for DynA, no fit for ET.

DynA n = 6, ET n = 7, average ± SEM. (E) Intensity of GRK2 during the TIR-FM time-lapse series of a HEK293 cell, expressing GRK2-EGFP and FLAG-

KOR (not shown). Medium was exchanged to ET (100 nM) and then to DynA (1 mM) by bath application. 5 s between frames is shown. F0 is the average

fluorescence intensity before agonist. n = 4, average ± SEM. (F) GRK2 intensity time course as in (E), but cells express FLAG-KOR-TPD instead of wild-

type. n = 4, average ± SEM. (G) Intensity of GRK2-C-tail during the TIR-FM time-lapse series of a HEK293 cell, expressing GRK2-C-tail-EGFP and FLAG-

KOR, imaged and treated as in (E). n = 5, average ± SEM. (H) GRK2 intensity time course as in (E), but cells were pre-treated with pertussis toxin (PTX,

100 ng/ml). n = 3, average ± SEM.

Figure 5 continued on next page
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promoting diffuse membrane recruitment (Figure 5). These results support a model of GRK2

engagement driven by discrete biochemical modes which are differentially regulated by agonists:

DynA and ET share the ability to promote GRK2 recruitment to the plasma membrane via receptor-

activated G beta-gamma, but DynA is different from ET in its ability to additionally promote GRK2

recruitment by binding directly to KOR (Figure 6E).

Figure 5 continued

The online version of this article includes the following source data for figure 5:

Source data 1. Concentration-dependent recruitment of GRK2 to the plasma membrane in response to DynA or ET (Figure 5D).

Source data 2. Recruitment behavior of GRK2 to the plasma membrane in response to ET and DynA (Figure 5E–H).

Figure 6. Agonist-selective modes of GRK2 recruitment by KOR. (A) Schematic of receptor clustering in the plasma membrane using cross-linking by

polyclonal antibody. (B) TIR-FM images of a cell expressing GRK2-mCherry and SEP-KOR. KOR was cross-linked with polyclonal antibodies before

imaging. Frames were collected immediately before agonist (left panels) and 1 min after application of 1 mM DynA (right panels). The scale bar

represents 10 mm. (C) Same as in (B) but cells were treated with etorphine (ET, 1 mM) instead of DynA. The scale bar represents 10 mm. (D) GRK2

intensity in KOR clusters relative to surrounding plasma membrane (see methods). Quantification of images collected before agonist and 2 min after

agonist (DynA or ET) application, similar to images shown in (A) and (B). DynA (26 cells) and ET (15 cells) across three independent experiments. Mean

with SD is shown. ***p = <0.0001 by paired two-tailed t-test. n.s. = not significant (p=0.30). (E) The two biochemical modes of GRK2 recruitment are

selectively promoted by distinct agonists. While etorphine only drives GRK2 binding to G beta-gamma, DynA additionally promotes direct interaction

of GRK2 with activated KOR.

The online version of this article includes the following source data for figure 6:

Source data 1. Recruitment of GRK2 to KOR clusters upon DynA or ET treatment (Figure 6D).
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Discussion
The ability of agonists to impose selectivity on protein recruitment by GPCRs has been proposed for

many years and is a core hypothesis underlying the present concept of biased agonism

(Schmid et al., 2017; Smith et al., 2018; Urban et al., 2007), but testing this hypothesis in an intact

cellular environment has remained challenging due to the complexity of cellular transduction and

regulatory pathways that GPCRs typically engage (Kenakin, 2019). The present study describes a

direct, reductionist approach to this problem based on the application of engineered proteins that

bind activated receptors but are not known to bind other cellular proteins. We show that agonists

differ in relative ability to drive recruitment of the engineered probes to opioid receptors in living

cells, and then delineate how the principle of agonist-selective recruitment applies to GRK2 as a

physiologically relevant regulator.

Our results indicate that selective recruitment of one cellular protein over another not only occurs

in intact cells, but it is widespread and elicited by diverse agonists. All partial agonists examined

were found to promote mGsi recruitment more strongly than Nb33 when present at saturating con-

centration. Further, concentration-response curves for mGsi relative to Nb33 recruitment by opioid

receptors were left-shifted even for peptide full agonists. The allosteric nature of GPCR activation is

well established, and has been recognized since early studies of receptor coupling to heterotrimeric

G proteins in vitro (De Lean et al., 1980; Maguire et al., 1975; Strachan et al., 2014;

Sunahara and Insel, 2016). The present results are fully consistent with this concept, and expand it

by providing clear biochemical evidence for discrete protein-engaged receptor states that can be

selectively produced by diverse agonists in the complex environment of intact, living cells. The engi-

neered interaction probes that we focused on here demonstrate such an additional level of allosteric

selection most simply, but our results delineating differential recruitment of GRK2 by receptors sug-

gest that the same principle applies in a more complex manner to biologically relevant GPCR-inter-

acting proteins.

In its present state of development, our approach is limited by the number of orthogonal probes

available for assessing protein recruitment. We focused here on two previously validated GPCR-

interacting proteins, selected based on existing biophysical evidence that each recognizes different

structural features of the activated receptor. It is possible, and we think likely, that still more specific-

ity exists in receptor-proximal protein recruitment. In future studies it will be interesting to develop

or adapt additional structurally diverse protein folds to address this question, and to explore addi-

tional agonist diversity using the existing probes. For example, it will be interesting to determine if

ligands can be found that promote recruitment of Nb33 preferentially to mGsi.

An important next step is to delineate the biophysical basis for the observed selectivity of protein

recruitment induced by opioid agonists, with differential effects of DynA and ET on Nb33 recruit-

ment to KOR providing a striking example. The present results clearly indicate that the complexes

responsible for agonist-selective protein recruitment must be distinct, but leave unresolved the

nature of the distinction. One possibility is that distinct allosteric complexes reflect unique conforma-

tional ensembles of the receptor. Although currently available structural data for KOR (Che et al.,

2018; Wu et al., 2012) preclude direct assessment of such conformational differences, prior struc-

tures of MOR in complex with either Nb39 (Huang et al., 2015) (a close analog of Nb33) or hetero-

trimeric Gi (Koehl et al., 2018) offer some insight. Both Nb39 and Gi alpha stabilize an active MOR

conformation in the intracellular domain; however, the precise conformation of the MOR intracellular

loop 3 (ICL3) differs between the two structures. Thus, differential recruitment of Nb33 and mGsi

may reflect agonist-selective stabilization of distinct active receptor conformations. Alternatively,

agonists may promote receptors to adopt similar active conformations, and distinctions in the kinet-

ics of sensor binding, sensor concentration, and/or sensor affinity contribute to differential recruit-

ment. Future studies, combining biophysical and cell biological approaches, will be needed to

answer this question. We also note that these classes of mechanism are not mutually exclusive, and

think it is likely that both contribute to agonist-selective allosteric effects observed in intact cells.

It will be particularly interesting to extend the present approach toward examining kinetic aspects

of selective protein recruitment by receptors. We found that the orthogonal probes produce a time-

invariant recruitment response within ~30 s after agonist application. This enables the approach to

be used as an end-point assay scalable to a drug screening platform, and we focused on steady state

recruitment values in the present work for simplicity. However, in light of clear and long-standing
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evidence for kinetic differences in agonist action at GPCRs (Klein Herenbrink et al., 2016;

Swaminath et al., 2004), we anticipate that time-dependent analysis of probe recruitment will pro-

vide additional insight into selectivity among agonists.

In sum, and viewed more broadly, the present results reinforce an emerging understanding that

GPCRs operate as allosteric machines with the potential to communicate significantly more informa-

tion about local chemical environment than the mere presence or absence of a cognate agonist

(Costa-Neto et al., 2016; Kenakin, 2019). We propose from the present observations that the mGsi

probe reports allosteric effects relevant to G protein engagement by opioid receptors, and that the

Nb probe reports additional effects relevant to GRK engagement. Our results further support the

hypothesis that agonist bias, now generally defined by operational criteria, can be deconvolved into

discrete receptor-proximal molecular selection events. The present study makes initial inroads

toward decoding this underlying ‘machine language’ of GPCR signaling, and thus toward precisely

delineating how much chemical information content receptors actually convey physiologically.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(human, female)

HEK293 ATCC CRL-1573;
RRID: CVCL_0045

Human embryonic kidney

Antibody Mouse anti-
FLAG (M1)

Sigma-Aldrich F-3040;
RRID: AB_439712

(1:1000)

Antibody Rabbit anti-GFP Invitrogen A-11122;
RRID: AB_221569

(1:100)

Recombinant
DNA reagent

EGFP-Nb33 (Stoeber et al., 2018) N/A EGFP-C1 backbone

Recombinant
DNA reagent

pmApple-Nb33 (Stoeber et al., 2018) N/A pmApple-C1 backbone

Recombinant
DNA reagent

NES-Venus-mGsi (Wan et al., 2018) N/A pcDNA3 backbone

Recombinant
DNA reagent

NES-Venus-mGs (Wan et al., 2018) N/A pcDNA3 backbone

Recombinant
DNA reagent

signal sequence FLAG
(ssf)-MOR, murine

(Stoeber et al., 2018) N/A pcDNA3 backbone

Recombinant
DNA reagent

ssf-KOR, murine (Chu et al., 1997) N/A pcDNA3 backbone

Recombinant
DNA reagent

ssf-KOR-TPD (S356A,
T357A, T363A, S369A)

This study N/A pcDNA3 backbone,
see Materials and methods

Recombinant
DNA reagent

Super ecliptic pHluorin
(SEP) -KOR, murine

This study N/A pCAGGS-SE backbone,
see Materials and methods

Recombinant
DNA reagent

GRK2-EGFP, murine This study N/A pCAGGS-SE backbone,
see Materials and methods

Recombinant
DNA reagent

GRK2-pmApple, murine This study N/A pCAGGS-SE backbone,
see Materials and methods

Recombinant
DNA reagent

GRK2-C-tail- EGFP (aa 546–670) This study N/A pCAGGS-SE backbone,
see Materials and methods

Peptide,
recombinant protein

Dynorphin A (1–17, DynA) Anaspec AS-24298

Peptide,
recombinant protein

DAMGO,
[D-Ala2, N-Me-Phe4,
Gly5-ol]-Enkephalin
acetate salt

Sigma-Aldrich E7384

Chemical
compound, drug

U-69593 (U69) Cayman
Chemical

13255

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

U-50488
hydrochloride (U50)

Tocris 0495

Chemical
compound, drug

GNTI
dihydrochloride (5’GNTI)

Axon Med Chem 1226

Chemical
compound, drug

Etorphine-HCl NIDA N/A

Chemical
compound, drug

Morphine sulfate (MS) Sigma-Aldrich 1448005

Chemical
compound, drug

Naloxone
hydrochloride dihydrate

Sigma-Aldrich N7758

Chemical
compound, drug

PZM21 Enamine N/A custom synthesis

Chemical
compound, drug

mitragynine
pseudoindoxyl (MP)

This study N/A (Váradi et al., 2016)

Chemical
compound, drug

Compound101
(Cmpd101)

HelloBio HB2840

Chemical
compound, drug

Pertussis toxin Sigma-Aldrich P7208

Commercial
assay or kit

Alexa Fluor 647
Protein Labeling Kit

Thermo Fisher
Scientific

A20173

Software,
algorithm

Prism GraphPad 8.1.1

Software,
algorithm

ImageJ Imagej.net/
contributors

2.0.0-rc-54/1.51 g

Software,
algorithm

MATLAB MathWorks R2014b

Software,
algorithm

PyMOL Schrödinger v1.7.4.5

Mammalian cell culture conditions
HEK293 (CRL-1573, ATCC, female, mycoplasma-tested) were cultured in Dulbecco’s modified

Eagle’s medium (DMEM, GIBCO), supplemented with 10% fetal bovine serum (UCSF Cell Culture

Facility). Stably transfected HEK293 cells expressing N-terminally FLAG-tagged MOR or KOR were

cultured in the presence of 250 mg/ml Geneticin (Gibco). For transient DNA expression, Lipofect-

amine 2000 (Invitrogen) was used according to manufacturer’s instructions. For live cell imaging,

cells were plated on poly-L-lysine-coated 35 mm glass-bottomed culture dishes (MatTek Corpora-

tion) 48 hr before the experiments. Cells were transfected 24 hr prior to imaging. Per 35 mm culture

dish, 200 ng DNA was used for mGsi and Nb33, 300 ng DNA was used for GRK2 constructs and 1.2

mg DNA was used for receptor constructs.

cDNA constructs
GRK2-EGFP and GRK2-pmApple were created by amplifying murine GRK2 and GFP or pmApple

DNA by PCR and inserting GRK2 and the respective fluorescent protein using In-Fusion cloning into

pCAGGS-SE cut with KpnI and EcoRI. Super ecliptic pHluorin (SEP)-KOR was generated by PCR

amplification of SEP and KOR, and insertion using In-Fusion cloning into pCAGGS-SE cut with KpnI

and EcoRI. ssfKOR-TPD was generated by In-Fusion cloning of three PCR fragments that cover

ssfKOR and introduce mutations S356A, T357A, T363A, and S369A.

Live cell total internal reflection fluorescence microscopy (TIR-FM)
Live cell image series measuring protein recruitment to the plasma membrane were performed at

37˚C using a Nikon Ti-E microscope equipped for through-the-objective TIR-FM with a temperature-,

humidity- and CO2-controlled chamber (Okolab), objective heater, perfect focus system, and an

Andor DU897 EMCCD camera. Images were obtained with a 100 � 1.49 NA Apo TIRF objective
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(Nikon) with solid-state lasers of 488, 561 and 647 nm (Keysight Technologies). Before imaging,

receptors at the cell surface were labelled with M1 monoclonal FLAG antibody (1:1,000) conjugated

to Alexa647 dye for 10 min at 37˚C. Cells were then washed and live imaged in HBS imaging solution

(Hepes buffered saline (HBS) with 135 mM NaCl, 5 mM KCl, 0.4 mM MgCl2,1.8 mM CaCl2, 20 mM

Hepes, 5 mM d-glucose adjusted to pH 7.4 and 300–315 mOsmol/l). Agonists or antagonists were

either added by bath application at concentrations indicated in the figure legends or by media per-

fusion. For the latter, an insert was 3D-printed and placed inside the imaging dish where it left a

dead volume of about 300 mL. It was used to perfuse HBS imaging solution with agonists or without

agonists (agonist washout) at concentrations indicated in the figure legends with a flow rate of 1.5

ml/min.

Cell treatments prior to live cell imaging
To cluster receptors in the plasma membrane, cells transfected with SEP–KOR were treated with a

polyclonal rabbit anti-GFP antibody (1:100) for 15 min at 37˚C. Cells were then washed and imaged

live in HBS imaging solution. To inhibit GRK2/3, cells were pre-incubated with Compound101 (30

mM) for 15 min at 37˚C and Compound101 was present throughout the imaging experiment. To

inhibit KOR coupling to Gai/o, cells were treated with PTX (100 ng/mL) for 16 hr and PTX was pres-

ent throughout the imaging experiment.

Agonist concentration dependence of protein recruitment
For probing protein recruitment to the plasma membrane, HEK293 cells co-expressing the cytosolic

protein of interest (mGsi, Nb33, or GRK2) and MOR or KOR were imaged using TIR-FM. Cells were

treated with increasing concentrations of agonist (bath application) and imaged at a frame rate of

0.2/s (total movie length 6–8 min). Protein intensity during time lapse series was measured using

ImageJ. If indicated, values were normalized between 0 (before agonist) and 1 (10 mM reference

agonist). Regression curves with Hill slope of 1 were fit using Prism 8.

Quantitative image analysis
All quantitative image analysis was performed on unprocessed images using MATLAB (MathWorks,

R2014b) or ImageJ (2.0.0). For quantifying GRK2-mCherry recruitment to the plasma membrane and

receptor clusters, we used a custom written MATLAB script. In brief, a polygon was drawn on the

TIR-FM image to encompass the cell of interest. Then, a mask of the receptor clusters was generated

by thresholding the SEP-KOR signal within the polygon. The average GRK2-mCherry fluorescence

was measured within the cluster mask (KOR clusters) and outside of the mask (membrane) of the

polygon, allowing to calculate the ratio. Quantification was performed in cells imaged before (t = 0)

and after (t = 1–2 min) agonist addition.

Statistics
Quantification of data are presented as mean ± standard error of the mean (SEM) or standard devia-

tion of the mean (SD) based on at least three biologically independent experiments with the precise

number indicated in the figure legends. Statistical analysis was performed using Prism (8.1.1, Graph-

Pad) and using paired or unpaired two tailed Student’s t test.
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