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ABSTRACT Mangrove ecosystems provide important ecological benefits and eco-
system services, including carbon storage and coastline stabilization, but they
also suffer great anthropogenic pressures. Microorganisms associated with man-
grove sediments and the rhizosphere play key roles in this ecosystem and make es-
sential contributions to its productivity and carbon budget. Understanding this
nexus and moving from descriptive studies of microbial taxonomy to hypothesis-
driven field and lab studies will facilitate a mechanistic understanding of mangrove
ecosystem interaction webs and open opportunities for microorganism-mediated ap-
proaches to mangrove protection and rehabilitation. Such an effort calls for a
multidisciplinary and collaborative approach, involving chemists, ecologists, evolu-
tionary biologists, microbiologists, oceanographers, plant scientists, conservation bi-
ologists, and stakeholders, and it requires standardized methods to support repro-
ducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is
focused around three urgent priorities and three approaches for advancing man-
grove microbiome research.
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As the global footprint of mangroves and
their associated ecosystem services diminish,
this Perspective introduces the Mangrove
Microbiome Initiative and outlines 3 research
priorities and 3 approaches to advance the
field of mangrove microbiome research.
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KEYWORDS ecosystem rehabilitation, ecosystem services, mangrove, microbiome,
rhizosphere

INTRODUCTION: GLOBAL ROLE OF MANGROVES AND THEIR ASSOCIATED
MICROBIOMES

Mangroves, intertidal forests along tropical and subtropical coasts, are hot spots of
productivity and biodiversity. These ecosystems yield valuable services for hu-

manity, including cultural and religious value (1), habitat for fisheries species (2), plant
products including timber, filtration of terrestrial runoff, and coastline stabilization
against storm impacts (3, 4). Globally, mangroves are significant carbon sinks (4),
mitigating climate change by removing atmospheric greenhouse gases through se-
questration of organic matter in above- and below-ground biomass. Ultimately, the
mangrove ecosystem buries autochthonous and allochthonous detritus in anoxic,
saline sediments, where this “coastal blue carbon” can remain stable for millennia (5, 6).
Many of the ecological functions that underpin these services are carried out or
supported by the microorganisms that comprise the mangrove microbiome, including
bacteria, archaea, fungi, and protists.

Despite their economic and ecological importance, mangroves are threatened
globally (7), especially by coastal development and pollution (8), and potentially by
projected sea level rise (9, 10). Research to uncover the microbe-mangrove interactions
that maintain ecosystem services and resilience under changing conditions is urgently
needed for successful conservation and rehabilitation (10), making the nascent study of
mangrove microbiome functions a high priority (8). As we enter what the United
Nations has designated the Decade of Ocean Science for Sustainable Development as
well as the Decade on Ecosystem Restoration, building international collaboration
working toward science-based management of coastal ecosystems is an extremely
timely endeavor (11, 12).

This Perspective proposes microbiological research objectives and approaches to
meet the mangrove management challenges of the 21st century. We have formed the
Mangrove Microbiome Initiative (MMI), an international network of researchers advanc-
ing mangrove microbiome research through collaboration, discussion, and advocacy.
The aim of this platform is to facilitate collaborative work and knowledge sharing
among all researchers who wish to participate, strengthening our collective efforts
toward understanding, protecting, and rehabilitating these important ecosystems.
Research has so far only scratched the surface of understanding the diversity, function,
and connectivity of mangrove microbiomes. Recent developments in -omics tech-
niques and bioinformatic pipelines have changed the way we look at genes, species,
and communities, opening new windows into mangrove ecology. A more complete
understanding of mangrove-microbe interactions will support efforts to rehabilitate
mangrove forests and sustain ecosystem services in the face of increasing anthropo-
genic stress. Here, we identify three priority research areas for mangrove microbiome
research (priority 1 [P1], P2, and P3) and discuss three approaches to advancing the
field (approach 1 [A1], A2, and A3) (Fig. 1).

PRIORITY RESEARCH AREAS
P1. Characterizing mangrove microbiomes across scales in a changing world.

Understanding and predicting the influence of global change on the mangrove micro-
biome is an important goal and a great challenge that offers opportunities to protect,
manage, and mitigate impacts to threatened mangroves. At present, much of the work
characterizing microbial communities in mangroves has been descriptive and limited in
temporal and spatial range. While descriptive studies provide an important founda-
tional understanding of the mangrove microbiome, there is a need to advance the field
toward hypothesis-driven observational and experimental research to establish the
mechanisms that underlie mangrove-microbe symbiosis in these variable and far-flung
ecosystems. Achieving a mechanistic understanding requires detailed quantification of
biotic (e.g., plant taxonomy, anatomy, and sediment fauna) and abiotic (e.g., temper-
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ature, salinity, tidal amplitude and frequency, and level of pollution) variables that can
influence the composition and functions of the microbiome. Dynamic spatiotemporal
factors such as fluctuating air exposure times, oxygen concentrations (13), and salinity
levels (14), in addition to seasonal variations in rainfall (15), can affect the microbiome,
thereby influencing mangrove productivity. At a fine spatial scale, vicinity to vegetation
and crab burrows can also affect microbial metabolism (16, 17). To better understand
these processes, sophisticated experimental designs, new technologies and analytical
approaches, and directed intervention studies are required, as discussed below in
Approaches.

P2. Exploring the biogeochemical basis of mangrove ecosystem functions and
services. Mangroves support diverse communities of microorganisms in sediment
layers, in the water column, and in and on their tissues (e.g., biofilms on mangrove
roots) (18), and these communities play crucial roles in mangrove biogeochemistry and
nutrient cycling (19, 20). Indeed, a large fraction of the carbon turnover in these
ecosystems is carried out by sediment microbial heterotrophs (21). Bacterial oxygen
consumption and sulfate reduction generate chemical conditions in mangrove sedi-
ments that slow organic matter turnover, favoring the establishment of a net carbon
sink (22). In addition, microbial metabolism along sediment redox gradients drives the
production and consumption of methane and nitrous oxide (19, 23), potentially result-
ing in net sources of these greenhouse gases (24). Microbes play a critical role in
nitrogen cycling in mangrove sediments through a broad array of processes, including
fixation, denitrification, and anammox (anaerobic ammonium oxidation) (19, 25). They
contribute to remineralizing, and solubilizing otherwise unavailable phosphorus (26),

FIG 1 Microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems.
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thereby mediating the availability and fluxes of nutrients that can potentially limit
mangrove plant productivity (27, 28). This productivity fuels plant-product-based eco-
system services and provides the basis of the mangrove ecosystem food web (29–31),
which feeds the valuable services of fisheries production and mangrove ecotourism (2,
32). In addition, microbes on root and leaf surfaces make micronutrients available, can
provide defense against pathogens, and launch decay processes upon senescence (18,
33). While the relevance of these microbial processes to biogeochemical cycling and to
the associated services of carbon sequestration and nutrient regulation have been
demonstrated, mechanistic and predictive understanding is still in its infancy. The
Approaches section below discusses how standardized, experimental, and process-
based studies will move this field toward predictive understanding.

P3. Developing a holistic view of the mangrove microbiome. Although there are
numerous studies on mangrove bacterial communities (e.g., 18, 34, 35), there are
relatively few studies on fungi, protists, archaea, and viruses (including phage and
eukaryotic viruses). This knowledge gap is further complicated by the complex struc-
ture of the mangrove root system. Many metazoan inhabitants of this system, including
sponges, oysters, clams, and cockles, have their own distinct microbiomes that also
contribute to ecosystem functioning. Future work must take into account the full extent
of the taxonomic, functional, and structural diversity of the mangrove forest. It is
essential, for example, to explore the evolution, ecology, and physiology of mangrove-
associated microbial eukaryotes. Fungi and protists in particular are thought to play a
significant role in the ecology of mangrove forests (36) and can be bioindicators of
pollutants (37, 38). Unlike prokaryotes, their activity and function in natural ecosystems
are not based on a large flexibility of their metabolic capacities but on the exploration
of innovations in their structural complexity and behaviors (39). Fungi are capable of
converting complex organic compounds into more easily accessible forms and provide
infrastructure (i.e., fungal highways) along which bacteria migrate to areas with pref-
erential nutrients, substrates, and redox conditions (40, 41). Among protists, thraus-
tochytrids, known for their saprobic capabilities (42) and their ability to degrade highly
recalcitrant organic matter, also play an essential role in organic matter turnover in
mangrove ecosystems and can be an important food source for detritivores (43).
Archaea represent another underexplored group in mangrove ecosystems. Ammonia-
oxidizing archaea (and their bacterial counterparts) are common in mangrove sedi-
ments, as are methanogenic archaea. Beyond simple observations of community
structure (44), however, very little is known about the function of mangrove-associated
archaeal communities. Approaches to future mangrove microbiome research should be
more inclusive of nonbacterial microorganisms to facilitate a more holistic understand-
ing of the ecosystem.

APPROACHES FOR ADVANCING COLLABORATIVE MANGROVE MICROBIOME
RESEARCH

A1. Promoting coordinated global research efforts and establishing standard-
ized methods. Coordinated global efforts to ensure data quality and comparability are
essential (45), as this enables integration for meta-analysis as well as more distributed
analytical capability. The MMI will promote coordinated international mangrove mon-
itoring networks and contribute to standardization of sampling, analytical procedures,
and data archiving.

Robust experimental design (e.g., sufficient and appropriate replication) and sam-
pling protocols are crucial to move beyond anecdotal observation and reduce the
masking effect of confounding factors. Representative sampling requires consideration
of the appropriate scale and target community (e.g., epibionts and endobionts) and
how to address variation within sampling units (e.g., combining subsamples). Special
attention should be paid to factors influencing microbial habitat, such as sediment
depth (34, 46), light exposure (47), variety of root structures among and within
mangrove tree species (48), and leaf senescence.
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To embed our efforts in a larger scope beyond mangrove ecosystem boundaries,
standards from existing initiatives (e.g., the Earth Microbiome Project) should be
adapted for the generation of mangrove microbiome data (49). Our current toolbox to
study the mangrove microbiome includes modern -omics techniques (metagenomics,
metatranscriptomics, metaproteomics, and metabolomics), physiology and biochemis-
try (cultivation, colonization, and metabolic modeling), imaging (three-dimensional
[3D] tomography, histology, electron microscopy, superresolution microscopy, and
mass spectrometry), hypothesis-driven field studies, and the use of reproducible lab-
oratory systems. The MMI platform will be used to circulate standard protocols adjusted
to mangrove research for quality assurance and reproducibility. We envision a sustain-
able collaborative research approach where samples are collected and stored for a
broad scope of future applications and where standardized metadata (including con-
textual information, analytical protocols, and bioinformatic pipelines) are accessible.
Some existing international initiatives can be leveraged to meet this goal. For example,
infrastructure to meet these aims can be supported by the establishment of mangrove
monitoring programs in ILTER (International Long-Term Ecosystem Research) sites and
the expansion of the ILTER network to cover sites from a broad range of mangrove
environmental settings around the world (50). We recommend strict adherence to
existing checklists for data archiving (51) and additional submission of nonmandatory
parameters to improve compliance with the FAIR principle (Findable, Accessible, In-
teroperable, and Reusable [52]). The MMI will develop and promote the use of essential
variables in coordination with GOOS (Global Ocean Observing System [53, 54]) to
support concerted documentation and monitoring of the mangrove microbiome across
spatial and temporal scales.

A2. Interrogating mangrove-microbiome interactions in reproducible systems.
Mangrove ecosystems are threatened by a multitude of stressors, such as pollution, sea
level rise, coastal development, and sediment salinization. There is an urgent need to
better understand the impacts of these stressors on mangroves and their microbiomes.
In contrast to observational studies, controlled lab-based experiments enable manip-
ulation of specific disturbances and quantification of effects on microbial populations.
Using new microbial ecology approaches and technologies, it is possible to predict and
test response to perturbation and provide insight into the mechanisms behind these
responses (55, 56). Controlled laboratory settings can yield reproducible results while
eliminating environmental fluctuations and high costs often associated with field
studies requiring large sample sizes (57). Model ecosystems with the potential to enable
reproducible mangrove microbiome research range from highly controllable enclosed
systems like EcoFABs (fabricated microbial ecosystems) (58, 59) to larger scale systems
that introduce more variation and complexity (46, 60).

Generating robust synthetic microbial communities for use in these reproducible
systems requires isolation of representative microorganisms, a historically challenging
task. Successful approaches to reducing isolation bias include dilution to extinction (61,
62), encapsulation or separation (63, 64), and growth on chips (65, 66), all approaches
that imitate the natural environment to a certain degree, e.g., by operating with low
nutrient concentrations. Other top-down strategies, like dilution to stimulation (67) or
targeting specific microbes based on gene content (68, 69), could be useful to develop
specific mangrove-derived microbial consortia with desired functional roles (33), while
automated cultivation procedures can lower cost and increase throughput. Expanding
microbial culture collections from mangrove environments will be necessary to unravel
beneficial plant-microbe interactions, including plant-health-promoting bacteria (33),
and to provide necessary cultures for improving mangrove health in the future.

A3. Developing microbial interventions and exploring biotechnology. Specific
threats to mangrove forests may be remediated or mitigated by manipulation of
microorganisms. For example, in situ characterization of microbial biodegradation
potential allows for the development of strategies for microbiome manipulation as a
tool to prevent and/or mitigate oil impacts on mangroves (34, 37, 46, 70, 71), which are
vulnerable to chronic oil spills (72). Of particular interest are oil-degrading, health-
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promoting (ODHP) microbial consortia (33), which have dual functions: promoting oil
degradation and improving ecosystem and plant health. Indeed, microbial consortia in
mangrove sediments have been found to efficiently degrade oil, rendering them a
potential resource of effective hydrocarbon-degrading bacteria that can be used as an
inoculum for the purpose of bioremediation (73).

It is important to recognize that mangrove-health-promoting bacteria may have
additional applications to agriculture and other systems. A recent study of the micro-
biome associated with propagules of the mangrove plant Avicennia marina in the Red
Sea revealed plant-growth-promoting bacteria that enhance root development and
mangrove establishment (42). In addition, bacterial strains isolated from mangroves
have shown promise for salinity adaptation in agriculture (42) and for removal of
cadmium and zinc from hazardous industrial residue (74), highlighting the biotechno-
logical potential of mangrove-associated microbes to mitigate environmental impacts.
By marshaling the full suite of modern -omics tools, there is great promise for the
development of evidence-based ecosystem rehabilitation techniques for mangrove and
agricultural ecosystem functioning.

CONCLUSION: URGENT NEED FOR GLOBAL MULTIDISCIPLINARY ACTION

To advance the field of mangrove microbiome research and to facilitate protection
and rehabilitation of these crucial ecosystems, there is an urgent need for global
multidisciplinary collaboration that leads to action. Here, we have identified three
research priorities and three approaches to advance the field, and we have committed
to building a broad, collaborative network of researchers across disciplines, including
chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant
scientists, conservation biologists, and government representatives. Global collabora-
tion to establish universal protocols with a constantly expanding and versatile toolbox
will facilitate the collection of valuable data simultaneously and across the globe.
Testing hypotheses to elucidate microbial metabolisms that support mangrove reha-
bilitation is critically dependent on field experiments extending over the multiyear time
scale of intervention success or failure and on the consistent measurement of defined
variables important for mangrove health assessment. While such an investment may
seem unattractive in a fast-moving field, documentation of long-term results will be a
rare and valuable contribution to global mangrove restoration and rehabilitation efforts
and will be beneficial for successfully designing mangrove ecosystems for the provi-
sioning of particular ecosystem services. Furthermore, these approaches will be valu-
able, not only for mangrove ecosystems, but will also have the potential for application
to other coastal ecosystems and even terrestrial agricultural systems in the future.

With the establishment of the Mangrove Microbiome Initiative (http://bmmo
.microbe.net/mangrove-microbiome-initiative-mmi/) as part of the Beneficial Microbes
for Marine Organisms (BMMO) network, we seek to bridge the breadth of knowledge
from researchers focusing on the ecology and physiology of mangrove systems and
those with expertise in microbiology, high-throughput molecular methods, and bioin-
formatics. We welcome any interested researchers working on the mangrove micro-
biome to join our network through our website. This network provides a platform to
establish common goals and foster collaboration among groups working around the
globe and to share not only technical expertise but also crucial advice for overcoming
logistical barriers and enabling long-term research and rehabilitation success. For
increased awareness and longevity of research and interventions, engagement with
local communities and buy-in from decision-makers is essential. Furthermore, with the
high cost associated with accessing remote locations, the challenging logistics of
obtaining permits for research sites, and the importance of prioritizing just practices for
the extraction of samples and data from field sites, collaborative approaches from
multiple research groups in multiple regions and countries would be most efficient.

As the global footprint of mangroves and their associated ecosystem services
continue to diminish, advancement of the field of mangrove microbiome research is
urgently needed. Microorganisms have seldom been included in ecosystem manage-
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ment plans and policy, but as our understanding of their importance in maintaining
ecosystem health and enhancing resilience in the face of global change grows (75), it
is crucial to acknowledge their role and the opportunities that they provide.
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