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Abstract

1: Estimating relative abundance is critical for informing conservation and manage-

ment efforts and for making inferences about the effects of environmental change on pop-

ulations. Freshwater fisheries span large geographic regions, occupy diverse habitats, and

consist of varying species assemblages. Monitoring schemes used to sample these diverse

populations often result in populations being sampled at different times and under different

environmental conditions. Varying sampling conditions can bias estimates of abundance

when compared across time, location, and species, and properly accounting for these biases

is critical for making inferences.

2: We develop a joint species distribution model (JSDM) that accounts for varying

sampling conditions due to the environment and time of sampling when estimating rela-

tive abundance. The novelty of our JSDM is that we explicitly model sampling effort as

the product of known quantities based on time and gear type and an unknown functional

relationship to capture seasonal variation in species life history.

3: We use the model to study relative abundance of six freshwater fish species across

the state of Minnesota, USA. Our model enables estimates of relative abundance to be

compared both within and across species and lakes, and captures the inconsistent sampling

present in the data. We discuss how gear type, water temperature, and day of the year

impact catchability for each species at the lake level and throughout a year. We compare

our estimates of relative abundance to those obtained from a model that assumes constant

catchability to highlight important differences within and across lakes and species.

4: Synthesis and applications. Our method illustrates that assumptions relating indices

of abundance to observed catch data can greatly impact model inferences derived from JS-

DMs. Specifically, not accounting for varying sampling conditions can bias inference of

relative abundance, restricting our ability to detect responses to management interventions

and environmental change. While our focus is on freshwater fisheries, this model architec-

ture can be adopted to other systems where catchability may vary as a function of space,

time, and species.

Keywords: Bayesian hierarchical model; catch per unit effort; catchability; ecological

monitoring; freshwater fish; relative abundance
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1 Introduction1

Fisheries play an essential role in maintaining ecosystem function and are critical for global2

food supplies (Tacon & Metian 2013). Monitoring the abundance or relative abundance of3

fishes is critical for establishing sustainable harvest rates, estimating the effectiveness of man-4

agement actions, and quantifying the effects of environmental change on fish populations5

(Hilborn & Walters 1992; Han et al. 2021). Monitoring the abundance of inland fisheries is6

particularly important because they support local economies, provide recreational opportuni-7

ties, and play a significant role in global food security (Funge-Smith 2018; Radinger et al.8

2019). Freshwater ecosystems also support high levels of biodiversity (Dudgeon et al. 2006)9

and are disproportionately threatened, compared to terrestrial systems, by anthropogenic activ-10

ities (Carpenter et al. 2011; Reid et al. 2019).11

Quantifying the abundance of inland freshwater fisheries presents unique challenges. In12

addition to managing multiple species (Dolder et al. 2018; Wagner et al. 2020), inland fisheries13

consist of a large number of managed populations, diverse habitats and species assemblages,14

and span large geographic regions. Inland freshwater fisheries are frequently managed at the15

individual lake level, but limited resources for monitoring and evaluation mean that monitor-16

ing data for individual lakes are often sparse across space and time. Due to sparse monitoring17

data and high levels of both process and measurement error, it is often impossible to detect18

responses of individual systems to management interventions or environmental change within19

a reasonable time frame (Wagner et al. 2013). Such limitations of individual lake management20

have been previously identified, along with others, resulting in the design and implementation21

of landscape-level management across a large population of lakes (Lester et al. 2003). A key22

component to such landscape-scale lake fisheries management is the implementation of stan-23

dardized monitoring in an effort to meet fisheries management and ecological goals (Lester24

et al. 2021).25

Ideally, estimates of abundance would be used to inform management decisions. While26

models such as N-mixture models (Royle 2004) can be used to estimate abundance for differ-27

ent taxa, they require spatially replicated count data from multiple sampling occasions over a28

relatively short time period for a given location (e.g., removal sampling). Whereas N-mixture29
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models have been used in fisheries contexts (Vine et al. 2019; Andres et al. 2020), these data30

do not generally exist when monitoring abundance of multiple species across hundreds to thou-31

sands of locations. In this context of data sparsity, evaluating the outcomes of management32

actions or the effects of environmental events on an individual lake is not possible, and only by33

pooling data from multiple lakes are we able to detect changes in fish populations (Lester et al.34

2003; 2004; 2021).35

Due to these challenges and data limitations, an index of abundance (e.g., catch per unit36

effort) is often used for evaluating the status and trends of fish populations. For each survey, ef-37

fort can be defined as the amount of resources devoted to fishing – a fixed and known quantity.38

Depending on the gears employed, effort can be measured using various metrics; however, sam-39

pling time (hrs, minutes) and gear are most common in inland lake fisheries. For active gears40

(e.g., boat electrofishing), effort would be the amount of time spent electrofishing, whereas for41

passive gears (e.g. gill nets and trap nets) effort is measured by the number of net nights (i.e.,42

the number of nets set out over a 24 hour period). Although effort for passive gears is less43

straightforward, it has been shown that using net nights as the measure of effort is appropriate44

so long as there is a low variation in soak time (Breen & Ruetz 2006).45

Dividing total catch by effort creates a relative measure of abundance to compare across46

time, space, and/or species. Customarily, inland fisheries’ relative abundance data are modeled47

using univariate generalized linear mixed models that either directly model catch per unit effort48

or model catch and use effort as an offset term in the linear model (Kuparinen et al. 2010;49

Roop et al. 2018). More recently, multivariate models have been used in modeling ecological50

communities (Clark et al. 2014). For example, joint species distribution models (JSDM) are51

able to accommodate a large number of species and account for dependencies across species,52

space, and time (see Ovaskainen & Abrego 2020, and references therein). These dependencies53

enable the borrowing of information across data that may be scarce in time or space in order to54

infer population characteristics. However, JSDMs have rarely been applied to inland fisheries55

and those that have are limited to investigating patterns and drivers of species occurrence, not56

abundance (Inoue et al. 2017; Wagner et al. 2020; Perrin et al. 2022).57

Using indices of abundance to detect changes across time, space, and species requires that58
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we define the relationship between what is caught during routine sampling and true abundance.59

Let i denote a population of interest. Relative abundance, γi, is defined as the ratio of total60

catch, Yi, divided by effort, Ei, and equated to the true abundance, Ni, by61

γi =
Yi

Ei
= qNi. (1)62

Here, q denotes catchability – the proportion of the population that is captured per one unit63

effort (Arreguı́n-Sánchez 1996). Defining the relationship between γi and Ni in this way sug-64

gests observed differences in γi is proportional to differences in true abundance. Catchability is65

often assumed constant in time and space, which is most likely violated for surveys spanning66

multiple locations and time points (Tsuboi & Endou 2008; Korman & Yard 2017). In addition,67

variation in catchability is not accounted for when modeling single species using data from68

a single gear. Failing to account for differences in catchability can lead to erroneous model69

inference regarding the changes of a population over time and/or space.70

Mitigating variation in catchability requires consistent sampling – i.e., sampling each pop-71

ulation under the same environmental context, such as at the same time of year, using the same72

gear, and under the same environmental conditions. Unfortunately, even under well-established73

and long-term sampling programs, consistent sampling is rarely possible due to the large num-74

ber of populations, limited resources for data collection, heterogeneity of ecosystems, and the75

rapid pace of environmental change. Accounting for possible differences in catchability is one76

of the most significant challenges to modeling relative abundance (Wilberg et al. 2009; Korman77

& Yard 2017).78

Variation in catchability has received significant attention in the marine fisheries literature79

(Rose & Kulka 1999; Wilberg et al. 2009; Zhang et al. 2020), yet statistical methods or models80

that account for differences in catchability for inland freshwater systems are limited (Czeglédi81

et al. 2021). Instead of accounting for catchability during statistical model development, ad82

hoc decisions are often made about how to aggregate data across space, time, or gear types, or83

how to subset data prior to modeling in order to minimize their potential influence on statistical84

inference (Radomski et al. 2020; Rypel 2021; Enders et al. 2021; McReynolds et al. 2021).85

These studies commonly rely on datasets compiled from many sources and are composed of86
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observations collected using different sampling methodologies. Fitting models to aggregate or87

subset data can result in a loss of information (Tehrani et al. 2021), and lead to biased parame-88

ter estimation and underestimates of uncertainty (Calabrese et al. 2014). Multi-species studies89

that span larger spatial extents and multiple systems are particularly impacted by these ad hoc90

approaches given the aforementioned factors affecting catchability. Studies that do account for91

varying catchability focus on single species with a single gear (Tsuboi & Endou 2008), multi-92

ple species within one lake (Hosack et al. 2014), independent analyses of catch data for each93

gear (McReynolds et al. 2021), or use statistical methods to combine catch rates for differ-94

ent species collected using multiple gears (Wehrly et al. 2012; Rodrı́guez et al. 2021). These95

approaches fail to properly address the inherent differences in gear selectivity among multi-96

ple species (Smith et al. 2017) or temporal dynamics characteristic of year-to-year variability97

(Gordoa & Hightower 1991; Gordoa et al. 2000; Korman & Yard 2017).98

The contribution of this work is to develop a JSDM that enables comparison of relative99

abundance of species sampled under different conditions by explicitly accounting for unequal100

sampling effectiveness (henceforth, sampling variability). To account for this variation when101

using γi as a proxy for Ni, we replace (1) with102

γi =
Yi

Eiθi
∝ Ni (2)103

where Ei is the fixed and known quantity of the sampling effort (e.g., time or number of gears)104

and θi accounts for variation in catchability due to inconsistent sampling (e.g., variation in en-105

vironmental conditions, day of the year) that is inherent in ecological monitoring programs. As106

such, the catchability, θi, is indexed in time, space, species, and gear, allowing variation in the107

utility of one unit of effort. When θi = 1, (2) is equivalent to (1). We model θi as a function108

of seasonal and climate variables that are assumed related to fish life history events. For ex-109

ample, three common families of freshwater fishes include Centrarchidae (sunfishes and black110

bass), Percidae (walleye and perches), and Esocidae (the pike family) – which we focus on in111

our study – undertake temperature-dependent seasonal movements for spawning (Hayden et al.112

2014; Hokanson 1977b; Kobler et al. 2008). Given the relationship between γi and Ni in (2),113

differences across populations reflect changes in true abundance in the presence of sampling114
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variability. This approach is relevant for monitoring programs in which species are sampled115

under different environmental conditions over space and time regardless of their sampling de-116

sign.117

We apply our model to catch data of six sport fish species collected between the years 2000118

and 2019 across 1003 lakes in Minnesota. The model enables species-level inference with re-119

gard to environmental drivers of relative abundance across lakes and accounts for dependence120

between species. Resultant estimates of relative abundance can be compared both within and121

across species and lakes. To illustrate how a model accounting for sampling variability could122

impact inference regarding relative abundance of each species, we also compare our model re-123

sults to those that would be obtained had catchability been assumed constant over space, time,124

species, and gear. Importantly, because “true” species abundance is unknown, we cannot for-125

mally compare the two approaches using measures of model fit or prediction accuracy. Rather,126

given a specific functional form relating γi and Ni, our work aims to identify possible impacts127

of sampling on model inference that is used to inform management and conservation decisions.128

We use a simulation study where the true species abundance is known to validate our model129

and to illustrate how sampling variability could impact inference regarding relative abundance130

of each species within and across lakes. In our application, we model seasonal patterns of131

catchability that represent changes in behavior (e.g., movement between habitats) and environ-132

mental conditions (e.g., water temperature) that vary within year. As such, a more ecologically133

realistic assumption is that, at a minimum, θi varies seasonally.134

2 Materials and Methods135

2.1 Catch Data of Sport Fish in Minnesota Freshwater Lakes136

Data were collected by the Minnesota Department of Natural Resources (MNDNR) between137

2000 and 2019 using standard sized experimental gill nets and trap nets as part of their stan-138

dard sampling program (MNDNR 2017). All data existed prior to the initiation of this study.139

Fish data were collected by state of Minnesota employees in the course of their fish manage-140

ment activities and thus were exempt from permit requirements. These gears are designed to141
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index the abundance of sport fishes in the littoral (nearshore) zone, although gill nets are de-142

ployed in deeper waters. Gill nets and trap nets were selected since they are the main gears143

used during MNDNR’s standard surveys – a survey that uses passive gears and does not tar-144

get specific species. To account for changes in survey types throughout the time series and to145

maximize standardization across surveys, we restricted our analysis to a subset of survey types146

that minimize among-survey variation in survey methodology (MNDNR 2017). Both gill nets147

and trap nets were deployed at multiple index stations within a lake, where one unit fixed effort148

consisted of one net (gill net or trap net) deployed for a 24-hour sampling period.149

Sampling occurred during the ice-free season in Minnesota. Lakes that were considered150

to be a high priority to fisheries managers were sampled every year, whereas lakes of lower151

priority were sampled less frequently. The lower priority lakes were sampled on a two to ten152

year rotation, resulting in lakes having a different number of observations. The data used in our153

analysis consist of lakes sampled between June 1 and September 30 during the 20 year time154

period. The median number of surveys per lake was 3, with a minimum and maximum of 1 and155

19, respectively. For a given lake, monitoring was targeted to occur at approximately the same156

day of year across surveys, but due to limited gear, personnel, and the large number of lakes,157

this was not always possible. Fig. S.1 of the Supporting Information shows the median sample158

day of the year for each lake as well as the range in sample days throughout the study period.159

Importantly, there doesn’t appear to be any spatial pattern in the timing of the sampling nor the160

variation in the timing of the sampling across years.161

We considered six ecologically and socioeconomically important species including black162

crappie (Pomoxis nigromaculatus), bluegill (Lepomis macrochirus), largemouth bass (Micropterus163

salmoides), northern pike (Esox lucius), walleye (Sander vitreus), and yellow perch (Perca164

flavescens). For each species, catch was calculated as the sum of individuals captured in each165

gear type, and effort was the sum of the number of nets deployed for each gear type from a166

given survey. Summaries of the total catch and catch per unit effort are shown in Table S.1.167

Environmental variables associated with fish abundance were included as covariates in168

our model. Lake area and maximum depth were obtained from MNDNR public databases169

(https://gisdata.mn.gov/dataset/water-lake-basin-morphology). Wa-170

8

https://gisdata.mn.gov/dataset/water-lake-basin-morphology


tershed land use was calculated based on the 2016 National Land Cover Database (Homer171

et al. 2020), quantified as the proportion of watershed area falling in wetland or urban land172

use categories and extracted using the LAGOSNE R package (Soranno et al. 2017; Stachelek173

et al. 2019). Water clarity was quantified using annual lake-specific median values of remotely174

sensed Secchi depth (Max Gilnes, Rensselaer Polytechnic Institute, Troy, NY, United States,175

05/2020,personal communication). Water temperature was included both to account for po-176

tential seasonal differences in catchability and to quantify differences in abundances related to177

average thermal conditions. In both cases, we used surface water temperatures simulated using178

the general lake model (Hipsey et al. 2019) for lakes throughout the upper Midwest (Read et al.179

2021). Specifically, we used a five-year rolling mean of annual degree days with a base of 5◦C180

as a measure of lake specific temperatures experienced by the fish over their lifetime to capture181

annual temperature influence on relative abundance (Chezik et al. 2014; Honsey et al. 2019). To182

quantify the effect of within-year temperature differences on catchability, lake-specific cumu-183

lative degree days up to the day of the sample were calculated (base temp of 5◦C). Summaries184

of the environmental data are shown in Table S.2.185

2.2 Multi-Species Modeling of Relative Abundance186

Whereas the goal is to estimate annual relative abundance of each species at each location,187

the frequency and timing of sampling events as well as gears used vary across year and lake.188

Let yik jdt denote the number of fish caught in lake i ∈ {1, . . . , I} of species k ∈ {1, . . . ,K}189

using gear type j ∈ {1, . . . ,J} during the sampling event on day d ∈ {1, . . . ,365(366)} of year190

t ∈ {1, . . . ,T}. We define the Bayesian hierarchical model for the count data, yik jdt , as191

yik jdt ∼ Poisson(Ẽik jdtγikt) (3)192

where Ẽik jdt is the sampling effort and γikt is the relative abundance for each lake, species, and193

year. Customarily, effort is a fixed and known quantity that is defined by the number of nets194

and/or duration of the sampling event. In addition, it is often assumed that effort is equal for195

all species and that one unit effort is the same for all days of the year across all years and gear196
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types. Here, we relax these assumptions following (2) and allow effort to vary as a function of197

species, day, year, and gear in order to account for seasonal impacts of sampling variability on198

estimates of relative abundance.199

Let Ei jdt denote the fixed and known quantity of effort that is defined by the sampling200

event at lake i using gear j on day d of year t (e.g., number of net days for the sampling201

event). To account for sampling variability across species and through time, we incorporate a202

multiplicative scaling, θik jdt > 0. Specifically, we model sampling effort as203

Ẽik jdt = Ei jdtθik jdt (4)204

where θik jdt captures the variation in catchability across lakes as a function of day, year, and205

gear type, as well as important characteristics of the lake. Note that if θik jdt ≡ 1, this model206

reduces to the customary model of catch per unit effort introduced in (1). Values of θik jdt > 1207

indicate that the conditions of the sampling event were above average for a given lake, species,208

and year, leading to disproportionately high catch relative to true abundance. Conversely, values209

of θik jdt < 1 indicate the conditions were below average and catch was less than expected210

relative to true abundance. These multiplicative catchabilities adjust effort in order to mitigate211

the impacts of sampling variability on estimates of relative abundance. Importantly, within212

the Bayesian framework, the uncertainty in the model for catchability propagates through to213

uncertainty in our estimates of relative abundance.214

2.2.1 Modeling Catchability215

We model θi jkdt using a log-linear function capturing lake and time variables that may impact216

catchability. Specifically, we define the log-linear function217

log(θi jkdt) = z
′
idtψk j, (5)218

where zidt is a length r vector of variables describing the sampling conditions of lake i for219

sample day d in year t and ψk j is a vector of coefficients for each species and gear.220

The freshwater fish surveys considered in this analysis were conducted between June 1 and221
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September 30, which we term the “fishing season” for Minnesota. Many important fish life222

history events that affect foraging, growth, survival, and reproduction throughout the fishing223

season follows a seasonal cycle (Hokanson 1977a). Water temperature is known to be one224

such driver of fish life history (Beitinger et al. 2000). Therefore, water surface temperature,225

Widt , on the day of the sample is included as a covariate in zidt the model for catchability. To226

capture additional seasonal variation in catchability during the fishing season within a lake, we227

constructed two covariates based on the fishing season cycle. For day of the year d, we define228

ad = sin
(

4π ×d
121

)
and bd = cos

(
4π ×d

121

)
,229

where 121 corresponds to the number of days between June 1st and September 30th. These two230

terms, ad and bd , capture any periodic behavior in catchability where the period is set to half231

the length of the fishing season. We also include the interaction between Widt and both ad and232

bd , recognizing that water temperature cycles may vary across the spatial domain. The length233

r = 6 vector of variables included in the model are234

zidt = [1,Widt ,ad,bd,Widtad,Widtbd]
′. (6)235

Model inference of the coefficient parameters, ψk j, enables direct comparison of the utility of236

one unit effort across species and gear as a function of day of the year and water temperature.237

Whereas other variables could be considered, these, at a minimum, are assumed to capture the238

variation in fish life history for these species. See Section 4 for further discussion.239

2.2.2 Modeling Relative Abundance240

The parameter γikt is of primary focus of this analysis as it defines the relative abundance of241

species k in lake i and year t and is used as a proxy for true abundance. We model species242

relative abundance as243

log(γikt) = v
′
iβk +x

′
itαk +ωik (7)244
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where vi is a length p vector of static lake variables, including intercept, xit is a length q vector245

of lake and year specific variables, and βk and αk are vectors of species-specific coefficients.246

Lastly, ωik is a lake- and species-specific random effect to capture any remaining variation not247

explained by the covariates.248

The static lake variables in vector vi include lake area, lake depth, and land use character-249

istics in the lake watershed. The variables in vector xit include Secchi disk depth (an index of250

water clarity) and cumulative growing degree days (GDD), which are assumed to vary across251

years and influence species abundance. The cumulative GDD for each lake and year captures252

the annual variation in temperature throughout the period of study. Variables were transformed253

to be approximately normal and on the same scale. Specifically, lake area, lake depth, and GDD254

were log transformed and centered and the land use characteristics were logit transformed. Let-255

ting ωi = [ωi1, . . . ,ωiK]
′, we model the random effect as256

ωi
iid∼ MV N(0,Σ), (8)257

where Σ is a K ×K covariance matrix to allow for possible dependence between species.258

2.2.3 Model Comparison259

To explore the assumptions relating what is caught during routine sampling and true abundance,260

we also consider a base model with catchability assumed constant (i.e., (1)). This model is261

analogous to that outlined above except θi jkdt is fixed to 1 for all i, j,k,d, t. We investigate262

the differences in estimates of relative abundance obtained from the models with and without263

varying catchability by comparing estimates across lakes for a given species as well as across264

species for a given lake.265

For the across-lake comparison, we first rank each lake from 1 to I (number of lakes) based266

on their estimates of relative abundance for each species. For example, the lake with the largest267

estimate of relative abundance for a given species is assigned the value 1, the lake with the268

second largest estimate is assigned 2, and so on. We do this ranking using the estimates of269

relative abundance obtained from each model and make comparisons based on the difference270

in rankings between the two models. For the within lake comparison, we compare our estimates271
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of relative abundance across species for a given lake in order to investigate possible impacts272

of sampling variability on estimates of community structure or species composition. For each273

lake, we first scale our estimates of relative abundance across the six species such that they sum274

to one. Using these scaled estimates, we compute the difference in community percentage of275

each species between the two models.276

2.2.4 Bayesian Model Specification and Inference277

The JSDM for multi-species catch data with and without varying catchability are fitted in a278

Bayesian framework. Model inference is obtained using Hamiltonian Monte Carlo within279

the Stan computing software (Carpenter et al. 2017). To complete the model specification,280

we assign diffuse prior distributions to the model parameters. For each of the model coeffi-281

cient parameters in ψk, αk, βk, for k = 1, . . . ,K, we assign independent N(0,1) priors, ex-282

cept for the intercept terms, which we assign independent N(0,102) priors. Given the scale283

of each covariate and the models for abundance and effort being specified on the log scale,284

these priors are relatively diffuse. To model the covariance matrix Σ, we first decompose it as285

Σ= diag(τ1, . . . ,τK)Ωdiag(τ1, . . . ,τK) where each τk is a standard deviation and Ω is a K×K286

correlation matrix (Barnard et al. 2000). Then, we specify priors on the standard deviation287

and correlation matrix. We specify independent τk ∼ Half-Cauchy(0,2.5) for all k = 1, . . . ,K288

and Ω ∼ LKJ(1) (see Lewandowski et al. 2009, for detail on the LKJ prior). Lastly, to ensure289

model parameters are identifiable, the random effects, ωik, are forced to be mean zero and the290

catchability, θi jkdt , are forced to have a mean of 1 (i.e., both are “hard” constraints).291

2.2.5 Simulation Study292

To understand the impact on inference of relative abundance from our proposed model with293

varying catchability compared to the naive model with constant catchability, we conducted two294

simulation studies. For the first study, we simulated data according to our model with varying295

catchability and fit both our model and the naive model to the data. For the second study, we296

simulated data according to the naive model with constant catchability and fit both our model297

and the naive model to the data. For both simulated datasets, we withhold one year of the298
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simulated data for model validation (see Supplementary material for complete data generating299

details).300

For both data sets, we obtained 6000 samples from the joint posterior distribution, discard-301

ing the first 4500 as burn-in, from both our model and the naive model. We then compared302

posterior estimates of relative abundance between our model and the naive model for each303

data simulation on the withheld year of data. Under the assumption the data exhibit varying304

catchability, we found our model better captures the relative abundance for the validation year305

(Figures S.6 and S.7). In addition, under the assumption the data exhibit constant catchability,306

we found our model and the naive model have similar performance for the validation year (Fig-307

ures S.12 and S.13. Therefore, our model is appropriate under either the assumption the data308

do or do not exhibit varying catchability, while the naive model is appropriate only under the309

assumption the data have constant catchability. Specific details to the data generating mecha-310

nisms for the simulation studies and the compassion’s based on inference of relative abundance311

are shown the Supplemental material.312

3 Results313

We applied the model to the catch data of sport fish in Minnesota freshwater lakes discussed314

in section. We obtained 2000 samples from the joint posterior distribution, discarding the first315

1000 as burn-in. Convergence was assessed both graphically and using the Geweke diagnostic316

for all parameters and no issues were detected.317

3.1 Posterior Estimation of Catchability318

Posterior inference for catchability is shown graphically to identify important variation across319

species, time, lakes, and gear types. Formal inference, including posterior mean estimates and320

95% credible intervals of the parameters, ψ, are shown in Table S.3. Recall from Section321

2.2.1 that values of θik jdt greater (less than) 1 indicate more (less) favorable conditions for the322

sampling event, meaning more (less) fish are expected to be observed per unit effort than is323

representative of the true population. The posterior mean estimates of catchability for each324
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species and gear on each day throughout the fishing season in 2016 are shown in Fig. 1. Sim-325

ilar patterns were detected for the other years in the study period (results not shown). These326

estimates elucidate variation in sampling effectiveness both within and across species and gear327

as a function of water temperature and day within the fishing season.328
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Figure 1: Posterior mean estimate of catchability (θ) for 2016 for each species and gear, aver-
aged across all lakes. Each line corresponds to the catchability for a given species during the
fishing season, ranging from June 2 to September 25.

In general, gill nets (Fig. 1 top) are more favorable for sampling northern pike, yellow329

perch, and walleye compared to nearshore species, like bluegill and black crappie, which are330

more favored by trap nets (Fig. 1 bottom). Seasonal variation in sampling effectiveness for331
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black crappie is similar for gill nets and trap nets, where the mid-summer (July 15 - August332

15) yields proportionally higher catches than early or late summer. No seasonal differences in333

the sampling effectiveness of bluegill are detected using gill nets, but trap nets show favorable334

sampling during the early part (June - July) of the fishing season. Gill nets are more effec-335

tive for sampling largemouth bass during mid to late summer (August - September), while trap336

nets have no seasonable patterns in effectiveness for this species. Using gill nets, the sampling337

conditions for northern pike, walleye, and yellow perch experience seasonal patterns, where338

sampling is more favorable for northern pike and yellow perch in early summer than late sum-339

mer, and walleye are most favorable in the middle to late summer (August-September). Trap340

nets are more favorable for northern pike in the late summer than early summer, but no seasonal341

patterns are exhibited for walleye or yellow perch.342

To further explore the impacts of sampling variability across gear type and day of the year343

of sampling, we computed the posterior mean estimate of the expected number of fish that344

would be caught in each lake on each day given one unit of effort for each gear (i.e., Ei jdt ≡ 1).345

Figs 2 and 3 show the difference between expected catch per one unit effort for each species346

on June 15, 2016 and August 15, 2016 across all lakes. For each lake, species, and gear, these347

differences are scaled by the average expected number of fish caught per day given one unit348

effort throughout the entire fishing season of 2016. Values of zero represent no difference349

in expected catch for the two dates. Positive values indicate a greater expected catch per unit350

effort in August relative to June, whereas negative values indicate greater expected catch in June351

relative to August. From Fig. 2, we expect to catch more black crappie, bluegill, largemouth352

bass, and walleye and catch fewer northern pike and yellow perch with one unit effort using353

gill nets on August 15 compared to June 15. As a result of the water temperature differences354

among lakes across the state, a slight north-south spatial gradient also exists in these seasonal355

difference estimates of expected catch per one unit effort. Similarly, Fig. 3 suggests fewer356

bluegill and yellow perch to be caught per one unit effort using trap nets on August 15 compared357

to June 15, whereas we expect more black crappie, largemouth bass, northern pike, and walleye358

to be caught on August 15 than June 15. Similar to gill nets, there is a north-south gradient in359

the seasonal differences in expected catch using trap nets.360
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Figure 2: Posterior mean estimates of the difference in expected catch per unit effort between
August 15, 2016 and June 15, 2016 using gill nets. Differences are scaled by the average
expected number of fish caught per day given one unit effort throughout the entire fishing
season of 2016 such that values of ± 1 indicate the difference is equal to the average expected
catch for that gear, species, and year by lake. Positive values indicate a greater expected catch
per unit effort in August.

3.2 Impacts of varying catchability on model inference361

Our modeling approach contributes to inference by modeling variation in catchability due to362

sampling variability. In general, our model for catchability attempts to decompose the variation363

in expected catch per unit effort that is due to differences in relative abundance from that which364

could be the result of more or less favorable sampling conditions for some species, gears, and365

lakes. While we recognize the results shown above are specific to our choice of model for θ, we366

compare our model inference to that from the model that assumes constant catchability to high-367

light possible impacts of sampling designs on (i) estimates of relative abundance across species368

and lakes, (ii) inference on environmental drivers of abundance, and (iii) future studies that369

investigate the impacts of changes in environmental conditions (e.g., climate) on abundance.370

The posterior mean estimates and 95% credible intervals for the parameters in the relative371
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Figure 3: Posterior mean estimates of the difference in expected catch per unit effort between
August 15, 2016 and June 15, 2016 using trap nets. Differences are scaled by the average
expected number of fish caught per day given one unit effort throughout the entire fishing
season of 2016 such that values of ± 1 indicate the difference is equal to the average expected
catch for that gear, species, and year by lake. Positive values indicate a greater expected catch
per unit effort in August.

abundance model, α and β, are shown by the blue points (mean) and bars (credible interval)372

in Fig. 4. The red points and bars show posterior estimates for the same parameters when373

catchability is assumed constant (i.e., θi = 1 in (2)). Parameters are deemed significant if374

their credible interval does not contain zero. As expected, the relationship between the envi-375

ronmental covariates and relative abundance varied among species. For example, the relative376

abundance of walleye – a species that prefers cool-water (Magnuson et al. 1990) and thrives377

in larger lakes (Nate et al. 2000) – has a negative coefficient for growing degree days and378

positive coefficient for lake area, regardless of model specification. Contrary to expectations,379

bluegill were associated with cooler temperatures (negative growing degree days). Bluegill are380

a warmwater species (Magnuson et al. 1979), although the influence of water temperature in381

our data may be masked by the strong positive influence of urban landcover. Black crappie,382

largemouth bass, and yellow perch had a strong relationship with water clarity, where large-383
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mouth bass and yellow perch were more abundant in clear water and black crappie were less384

abundant in clear water. There are no instances where the sign differs between the two models.385

The effect of degree days on largemouth bass is positive with varying catchability and overlaps386

zero when catchability is assumed constant – suggesting that modeling catchability allowed us387

to capture the positive influence of water temperature on warmwater largemouth bass. As noted388

previously, the negative effect of growing degree days on bluegill estimated by both models is389

confusing but might be a result of the strong positive effect of percent urban (which is zero for390

largemouth bass).391

A few notable differences exist between parameter estimates from the two models. Some392

coefficients were significantly different from 0 in our model but are no longer significant in the393

model with constant catchability (e.g, lake area for largemouth bass), whereas other parame-394

ters that were not significant in our model are significant in the model with constant catchability395

(e.g., percent urban for yellow perch). Credible intervals for the two models that don’t overlap396

are deemed significantly different. For yellow perch, the magnitude of the coefficient estimates397

of growing degree days and percent wetlands were much larger under our model than the model398

with constant catchability. The coefficient estimates of lake area for northern pike were also399

significantly different, where our model showed a negative relationship and the model with400

constant catchability showed a positive relationship. While some of these differences in coef-401

ficient estimates appear seemingly minor, they culminate in significant differences in estimates402

of relative abundance for each species as well as subsequent inference regarding community403

structure across the region. Additional inference from our model with varying catchability is404

included in the supplementary material. The posterior mean estimate of the species covariance405

matrix, Σ, is shown in Fig. S.2 and the posterior estimates of relative abundance, γikt , by species406

for all lakes for the year 2016 is shown in Fig. S.3.407

Fig. 5 shows the difference in ranked relative abundance between the two models across408

lakes for each species, where the difference is scaled by the number of lakes and can be in-409

terpreted as a percentile. That is, a value of 30 or (-30) indicates that the lake is ranked 30%410

higher (lower) in terms of relative abundance for the species using our model compared to the411

model with constant catchability. Differences between the two models are less pronounced for412
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black crappie, bluegill, and largemouth bass compared to northern pike, walleye, and yellow413

perch. Spatially, we again detect a north-south gradient due to water temperature differences414

across the state. Our model produces lower rankings of relative abundance of northern pike,415

walleye, and yellow perch in much of central and northern Minnesota and higher rankings in416

southern Minnesota. Additionally, our model produces lower rankings of relative abundance417

for bluegill in northern and southern Minnesota and higher rankings in central Minnesota.418

Differences in estimated relative abundance of species within lakes between the two models419

are shown in Fig. 6. Positive (negative) values indicate that our model produced larger (smaller)420

estimates of relative abundance than the model with constant catchability for that species com-421

pared to the other species within the lake. The most pronounced positive difference between the422

two models is for bluegill, which are estimated to be much more abundant within lakes com-423

pared to the other species when assuming sampling variability (with varying catchability). We424

also estimate fish communities to contain a higher percentage of black crappie, particularly in425

lakes throughout southern and northern Minnesota. Northern pike, walleye, and yellow perch426

have the most pronounced negative differences, where all three are estimated to be less abun-427

dant across the state compared to the other species when accounting for sampling variability.428

That is, our approach estimates fish communities with higher percentages of bluegill and black429

crappie and lower percentage of northern pike, walleye, and yellow perch.430

4 Discussion431

We developed a JSDM to study the relative abundance of freshwater fish species monitored432

throughout the open water season. The model addressed the important challenge of sampling433

variability across ecological contexts by allowing sampling effectiveness to vary among gears,434

species, and season. Our results demonstrate that the gear type and time of sampling that435

maximizes catchability varies among species. Seasonal variation in catchability was detected436

across species and gear. Notably, important seasonable differences in catchability were detected437

between higher and lower trophic levels. For example, northern pike catchability is highest for438

gillnets set in June, while black crappie catchability is high using both gear types in mid-late439
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summer. These differences in catchability are likely a result of fish behavior and life history440

as influenced by environmental cues throughout the season (e.g., Villegas-Rı́os et al. 2014).441

For example, our focal fish species are members of the Centrarchidae (black crappie, bluegill,442

largemouth bass), Percidae (walleye, yellow perch), and Esocidae (northern pike) families.443

Seasonal movements of these fishes, as with other fish species, is largely driven by thermal444

cues (Johnson & Charlton 1960; Schneider et al. 2010; Starzynski & Lauer 2015). Temperature445

plays a critical role in growth and performance of poikilotherms, affecting vital rates and the446

timing and duration phenological events (Scranton & Amarasekare 2017). Therefore, because447

of the seasonality in north-temperate ecosystems, it is likely that seasonal thermal cues play a448

role in the patterns of catchability observed in our study.449

When compared to the model with constant catchability, significant differences in species450

community structure and relative abundance estimates were identified. Additionally, as exem-451

plified by the simulation study, if the true catchability varies in time, relative abundance param-452

eter estimates from a model where catchability is assumed constant will be biased. While the453

methods developed here are aimed at monitoring programs of freshwater fish, these approaches454

can be adapted for other systems, such as birds or plants, where catchability or detection prob-455

abilities may vary as a function of time, space, or species. For example, the abundance of small456

mammals is often indexed by catch per unit effort data (e.g., catches per trap night) and the457

methods developed here could help account for changes in catchability that may arise from458

environmental factors such as temperature and precipitation (Yarnell et al. 2007; Rowe et al.459

2010).460

We informed our choice of model for effort based on the dominant influence of water tem-461

perature on fish behavior and population-level processes (Magnuson et al. 1979). Recognizing462

that other choices of functional forms are possible, future work consists of using additional data463

to inform our estimates of sampling variability across species, gear, and environment. Future464

data collection programs could be tailored to address the knowledge gap relating catchability465

of species across time of the year due to life history and gear types. Such an approach would466

require repeated sampling of fish communities under a variety of conditions. A critical next467

step will be incorporating time-varying components that influence catchability such as ice off468
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date, water clarity, dissolved oxygen, and thermal structure of lakes (Stoner 2004; Fischer &469

Quist 2019). Time-varying components will help reduce uncertainty in relative abundance es-470

timates and allow for a more accurate estimate of varying catchability. Properly addressing the471

impact of catchability on monitoring species abundance across space and time would lead to a472

better understanding of the environmental drivers of each species and more accurate estimates473

of relative abundance that can be compared and combined across lakes to inform management474

decisions.475

Currently, lake-rich states such as Minnesota and Wisconsin use lake classification sys-476

tems to enable comparison of catch rates of fish across similar lake types (Schupp 1992; Rypel477

et al. 2019). Such classification systems implicitly account for environmental differences in478

lakes that might affect catchability and/or actual abundance, but do not explicitly separate the479

two. Additionally, lake classification systems do not account for seasonal variation in catch-480

ability, which is critical for comparing catch rates from surveys conducted at various times481

throughout the open water season. By explicitly including variables that influence both catch-482

ability and true abundance, we provide a method that enables comparison of catch rates across483

a broad range of lake types. A potential direction for future work is to build on the ability to484

compare across lakes and extend the spatial domain to include surveys from multiple states.485

However, care will have to be taken to account for methodological differences as there are not486

universal standards for gear type or survey methods between states. Additionally, there is inter-487

est in predicting relative abundance under future climate scenarios, with particular interest in488

joint predictions across multiple states. While our framework has the ability to predict relative489

abundance at lakes within the observed time domain, as shown by the simulation study in the490

supplementary material, we do not have constraints that would allow it to produce reasonable491

predictions at future times. Incorporating a mechanism, such as a temporal dynamic frame-492

work, into the model to enable predictions under future climate scenarios could provide insight493

into how fish populations might change.494

Monitoring of species abundances serves several purposes in the conservation and man-495

agement of natural resources (Radinger et al. 2019). Conservation and management decisions496

are frequently based on estimates of species abundance or relative abundance, and how they497
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differ among locations or over time (Lyons et al. 2008). Actions designed to either increase498

or decrease the abundance of a species are predicated on information about the relative abun-499

dance of that species in a given location. For example, the location of protected areas in both500

terrestrial and aquatic habitats may be based on where certain species are estimated to be most501

abundant (e.g., Johnston et al. 2015; Garcı́a-Barón et al. 2019). Implementation and evalua-502

tion of management interventions rely on estimates of relative abundance changes over time,503

and how they are impacted by disturbance or management actions. For example, the allowable504

harvest of fish and wildlife species may be based on estimates of abundance that vary over505

time (e.g., Nielson et al. 2014), and the impact of interventions, such as habitat improvement506

relies on comparisons of species abundances over space and time (e.g., Scarcella et al. 2015).507

Accounting for the effects of sampling variability on these abundance estimates could improve508

the implementation and evaluation of such efforts.509
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Figure 4: Estimates of the abundance parameters, α and β, for each species from our model
with varying catchability (blue) and with constant catchability (red). The posterior mean is
shown by the point and the 95% credible intervals are shown by the horizontal bars. A vertical
line at zero is used to visually identify parameters that are significantly different from zero.
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Figure 5: Difference in rank of relative abundance by species between our model with varying
catchability and the model with constant catchability.
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Figure 6: Difference in species community structure by lake between our model with varying
catchability and the model with constant catchability. Positive values (red colors) indicate
higher species abundance relative to other species within the lake when accounting for varying
catchability. Negative values (blue colors) indicate lower species abundance relative to other
species within the lake when accounting for varying catchability.
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