Lawrence Berkeley National Laboratory

LBL Publications

Title

Accounting for spatiotemporal sampling variation in joint species distribution models

Permalink

https://escholarship.org/uc/item/2815g8rd

Journal

Journal of Applied Ecology, 61(1)
ISSN
0021-8901

Authors

North, Joshua S
Schliep, Erin M
Hansen, Gretchen JA
et al.

Publication Date

2024
DOI
10.1111/1365-2664.14547

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0

Peer reviewed

Accounting for Spatio-Temporal Sampling

 Variation in Joint Species Distribution ModelsJoshua S. North ${ }^{1}$, Erin M. Schliep ${ }^{2}$, Gretchen J.A. Hansen ${ }^{3}$, Holly Kundel ${ }^{3}$, Christopher A. Custer ${ }^{4}$, Paul McLaughlin ${ }^{5}$, and Tyler Wagner ${ }^{5}$
${ }^{1}$ Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
${ }^{1}$ Corresponding author: jsnorth@1bl.gov
${ }^{2}$ Department of Statistics, North Carolina State University, Raleigh, NC, 2311 Stinson Drive
${ }^{3}$ Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, Minnesota, 55108
${ }^{4}$ Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
${ }^{5}$ U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Abstract

1: Estimating relative abundance is critical for informing conservation and management efforts and for making inferences about the effects of environmental change on populations. Freshwater fisheries span large geographic regions, occupy diverse habitats, and consist of varying species assemblages. Monitoring schemes used to sample these diverse populations often result in populations being sampled at different times and under different environmental conditions. Varying sampling conditions can bias estimates of abundance when compared across time, location, and species, and properly accounting for these biases is critical for making inferences.

2: We develop a joint species distribution model (JSDM) that accounts for varying sampling conditions due to the environment and time of sampling when estimating relative abundance. The novelty of our JSDM is that we explicitly model sampling effort as the product of known quantities based on time and gear type and an unknown functional relationship to capture seasonal variation in species life history.

3: We use the model to study relative abundance of six freshwater fish species across the state of Minnesota, USA. Our model enables estimates of relative abundance to be compared both within and across species and lakes, and captures the inconsistent sampling present in the data. We discuss how gear type, water temperature, and day of the year impact catchability for each species at the lake level and throughout a year. We compare our estimates of relative abundance to those obtained from a model that assumes constant catchability to highlight important differences within and across lakes and species.

4: Synthesis and applications. Our method illustrates that assumptions relating indices of abundance to observed catch data can greatly impact model inferences derived from JSDMs. Specifically, not accounting for varying sampling conditions can bias inference of relative abundance, restricting our ability to detect responses to management interventions and environmental change. While our focus is on freshwater fisheries, this model architecture can be adopted to other systems where catchability may vary as a function of space, time, and species.

Keywords: Bayesian hierarchical model; catch per unit effort; catchability; ecological monitoring; freshwater fish; relative abundance

1 Introduction

Fisheries play an essential role in maintaining ecosystem function and are critical for global food supplies (Tacon \& Metian 2013). Monitoring the abundance or relative abundance of fishes is critical for establishing sustainable harvest rates, estimating the effectiveness of management actions, and quantifying the effects of environmental change on fish populations (Hilborn \& Walters 1992; Han et al. 2021). Monitoring the abundance of inland fisheries is particularly important because they support local economies, provide recreational opportunities, and play a significant role in global food security (Funge-Smith 2018; Radinger et al. 2019). Freshwater ecosystems also support high levels of biodiversity (Dudgeon et al. 2006) and are disproportionately threatened, compared to terrestrial systems, by anthropogenic activities (Carpenter et al. 2011; Reid et al. 2019).

Quantifying the abundance of inland freshwater fisheries presents unique challenges. In addition to managing multiple species (Dolder et al. 2018; Wagner et al. 2020), inland fisheries consist of a large number of managed populations, diverse habitats and species assemblages, and span large geographic regions. Inland freshwater fisheries are frequently managed at the individual lake level, but limited resources for monitoring and evaluation mean that monitoring data for individual lakes are often sparse across space and time. Due to sparse monitoring data and high levels of both process and measurement error, it is often impossible to detect responses of individual systems to management interventions or environmental change within a reasonable time frame (Wagner et al. 2013). Such limitations of individual lake management have been previously identified, along with others, resulting in the design and implementation of landscape-level management across a large population of lakes (Lester et al. 2003). A key component to such landscape-scale lake fisheries management is the implementation of standardized monitoring in an effort to meet fisheries management and ecological goals (Lester et al. 2021).

Ideally, estimates of abundance would be used to inform management decisions. While models such as N -mixture models (Royle 2004) can be used to estimate abundance for different taxa, they require spatially replicated count data from multiple sampling occasions over a relatively short time period for a given location (e.g., removal sampling). Whereas N -mixture
models have been used in fisheries contexts (Vine et al. 2019; Andres et al. 2020), these data do not generally exist when monitoring abundance of multiple species across hundreds to thousands of locations. In this context of data sparsity, evaluating the outcomes of management actions or the effects of environmental events on an individual lake is not possible, and only by pooling data from multiple lakes are we able to detect changes in fish populations (Lester et al. 2003; 2004; 2021).

Due to these challenges and data limitations, an index of abundance (e.g., catch per unit effort) is often used for evaluating the status and trends of fish populations. For each survey, effort can be defined as the amount of resources devoted to fishing - a fixed and known quantity. Depending on the gears employed, effort can be measured using various metrics; however, sampling time (hrs, minutes) and gear are most common in inland lake fisheries. For active gears (e.g., boat electrofishing), effort would be the amount of time spent electrofishing, whereas for passive gears (e.g. gill nets and trap nets) effort is measured by the number of net nights (i.e., the number of nets set out over a 24 hour period). Although effort for passive gears is less straightforward, it has been shown that using net nights as the measure of effort is appropriate so long as there is a low variation in soak time (Breen \& Ruetz 2006).

Dividing total catch by effort creates a relative measure of abundance to compare across time, space, and/or species. Customarily, inland fisheries' relative abundance data are modeled using univariate generalized linear mixed models that either directly model catch per unit effort or model catch and use effort as an offset term in the linear model (Kuparinen et al. 2010; Roop et al. 2018). More recently, multivariate models have been used in modeling ecological communities (Clark et al. 2014). For example, joint species distribution models (JSDM) are able to accommodate a large number of species and account for dependencies across species, space, and time (see Ovaskainen \& Abrego 2020, and references therein). These dependencies enable the borrowing of information across data that may be scarce in time or space in order to infer population characteristics. However, JSDMs have rarely been applied to inland fisheries and those that have are limited to investigating patterns and drivers of species occurrence, not abundance (Inoue et al. 2017; Wagner et al. 2020; Perrin et al. 2022).

Using indices of abundance to detect changes across time, space, and species requires that
we define the relationship between what is caught during routine sampling and true abundance. Let i denote a population of interest. Relative abundance, γ_{i}, is defined as the ratio of total catch, Y_{i}, divided by effort, E_{i}, and equated to the true abundance, N_{i}, by

$$
\begin{equation*}
\gamma_{i}=\frac{Y_{i}}{E_{i}}=q N_{i} . \tag{1}
\end{equation*}
$$

Here, q denotes catchability - the proportion of the population that is captured per one unit effort (Arreguín-Sánchez 1996). Defining the relationship between γ_{i} and N_{i} in this way suggests observed differences in γ_{i} is proportional to differences in true abundance. Catchability is often assumed constant in time and space, which is most likely violated for surveys spanning multiple locations and time points (Tsuboi \& Endou 2008; Korman \& Yard 2017). In addition, variation in catchability is not accounted for when modeling single species using data from a single gear. Failing to account for differences in catchability can lead to erroneous model inference regarding the changes of a population over time and/or space.

Mitigating variation in catchability requires consistent sampling - i.e., sampling each population under the same environmental context, such as at the same time of year, using the same gear, and under the same environmental conditions. Unfortunately, even under well-established and long-term sampling programs, consistent sampling is rarely possible due to the large number of populations, limited resources for data collection, heterogeneity of ecosystems, and the rapid pace of environmental change. Accounting for possible differences in catchability is one of the most significant challenges to modeling relative abundance (Wilberg et al. 2009; Korman \& Yard 2017).

Variation in catchability has received significant attention in the marine fisheries literature (Rose \& Kulka 1999; Wilberg et al. 2009; Zhang et al. 2020), yet statistical methods or models that account for differences in catchability for inland freshwater systems are limited (Czeglédi et al. 2021). Instead of accounting for catchability during statistical model development, ad hoc decisions are often made about how to aggregate data across space, time, or gear types, or how to subset data prior to modeling in order to minimize their potential influence on statistical inference (Radomski et al. 2020; Rypel 2021; Enders et al. 2021; McReynolds et al. 2021). These studies commonly rely on datasets compiled from many sources and are composed of
observations collected using different sampling methodologies. Fitting models to aggregate or subset data can result in a loss of information (Tehrani et al. 2021), and lead to biased parameter estimation and underestimates of uncertainty (Calabrese et al. 2014). Multi-species studies that span larger spatial extents and multiple systems are particularly impacted by these ad hoc approaches given the aforementioned factors affecting catchability. Studies that do account for varying catchability focus on single species with a single gear (Tsuboi \& Endou 2008), multiple species within one lake (Hosack et al. 2014), independent analyses of catch data for each gear (McReynolds et al. 2021), or use statistical methods to combine catch rates for different species collected using multiple gears (Wehrly et al. 2012; Rodríguez et al. 2021). These approaches fail to properly address the inherent differences in gear selectivity among multiple species (Smith et al. 2017) or temporal dynamics characteristic of year-to-year variability (Gordoa \& Hightower 1991; Gordoa et al. 2000; Korman \& Yard 2017).

The contribution of this work is to develop a JSDM that enables comparison of relative abundance of species sampled under different conditions by explicitly accounting for unequal sampling effectiveness (henceforth, sampling variability). To account for this variation when using γ_{i} as a proxy for N_{i}, we replace (1) with

$$
\begin{equation*}
\gamma_{i}=\frac{Y_{i}}{E_{i} \theta_{i}} \propto N_{i} \tag{2}
\end{equation*}
$$

where E_{i} is the fixed and known quantity of the sampling effort (e.g., time or number of gears) and θ_{i} accounts for variation in catchability due to inconsistent sampling (e.g., variation in environmental conditions, day of the year) that is inherent in ecological monitoring programs. As such, the catchability, θ_{i}, is indexed in time, space, species, and gear, allowing variation in the utility of one unit of effort. When $\theta_{i}=1$, (2) is equivalent to (1). We model θ_{i} as a function of seasonal and climate variables that are assumed related to fish life history events. For example, three common families of freshwater fishes include Centrarchidae (sunfishes and black bass), Percidae (walleye and perches), and Esocidae (the pike family) - which we focus on in our study - undertake temperature-dependent seasonal movements for spawning (Hayden et al. 2014; Hokanson 1977b; Kobler et al. 2008). Given the relationship between γ_{i} and N_{i} in (2), differences across populations reflect changes in true abundance in the presence of sampling
variability. This approach is relevant for monitoring programs in which species are sampled under different environmental conditions over space and time regardless of their sampling design.

We apply our model to catch data of six sport fish species collected between the years 2000 and 2019 across 1003 lakes in Minnesota. The model enables species-level inference with regard to environmental drivers of relative abundance across lakes and accounts for dependence between species. Resultant estimates of relative abundance can be compared both within and across species and lakes. To illustrate how a model accounting for sampling variability could impact inference regarding relative abundance of each species, we also compare our model results to those that would be obtained had catchability been assumed constant over space, time, species, and gear. Importantly, because "true" species abundance is unknown, we cannot formally compare the two approaches using measures of model fit or prediction accuracy. Rather, given a specific functional form relating γ_{i} and N_{i}, our work aims to identify possible impacts of sampling on model inference that is used to inform management and conservation decisions. We use a simulation study where the true species abundance is known to validate our model and to illustrate how sampling variability could impact inference regarding relative abundance of each species within and across lakes. In our application, we model seasonal patterns of catchability that represent changes in behavior (e.g., movement between habitats) and environmental conditions (e.g., water temperature) that vary within year. As such, a more ecologically realistic assumption is that, at a minimum, θ_{i} varies seasonally.

2 Materials and Methods

2.1 Catch Data of Sport Fish in Minnesota Freshwater Lakes

Data were collected by the Minnesota Department of Natural Resources (MNDNR) between 2000 and 2019 using standard sized experimental gill nets and trap nets as part of their standard sampling program (MNDNR 2017). All data existed prior to the initiation of this study. Fish data were collected by state of Minnesota employees in the course of their fish management activities and thus were exempt from permit requirements. These gears are designed to
index the abundance of sport fishes in the littoral (nearshore) zone, although gill nets are deployed in deeper waters. Gill nets and trap nets were selected since they are the main gears used during MNDNR's standard surveys - a survey that uses passive gears and does not target specific species. To account for changes in survey types throughout the time series and to maximize standardization across surveys, we restricted our analysis to a subset of survey types that minimize among-survey variation in survey methodology (MNDNR 2017). Both gill nets and trap nets were deployed at multiple index stations within a lake, where one unit fixed effort consisted of one net (gill net or trap net) deployed for a 24 -hour sampling period.

Sampling occurred during the ice-free season in Minnesota. Lakes that were considered to be a high priority to fisheries managers were sampled every year, whereas lakes of lower priority were sampled less frequently. The lower priority lakes were sampled on a two to ten year rotation, resulting in lakes having a different number of observations. The data used in our analysis consist of lakes sampled between June 1 and September 30 during the 20 year time period. The median number of surveys per lake was 3 , with a minimum and maximum of 1 and 19 , respectively. For a given lake, monitoring was targeted to occur at approximately the same day of year across surveys, but due to limited gear, personnel, and the large number of lakes, this was not always possible. Fig. S. 1 of the Supporting Information shows the median sample day of the year for each lake as well as the range in sample days throughout the study period. Importantly, there doesn't appear to be any spatial pattern in the timing of the sampling nor the variation in the timing of the sampling across years.

We considered six ecologically and socioeconomically important species including black crappie (Pomoxis nigromaculatus), bluegill (Lepomis macrochirus), largemouth bass (Micropterus salmoides), northern pike (Esox lucius), walleye (Sander vitreus), and yellow perch (Perca flavescens). For each species, catch was calculated as the sum of individuals captured in each gear type, and effort was the sum of the number of nets deployed for each gear type from a given survey. Summaries of the total catch and catch per unit effort are shown in Table S.1.

Environmental variables associated with fish abundance were included as covariates in our model. Lake area and maximum depth were obtained from MNDNR public databases (https://gisdata.mn.gov/dataset/water-lake-basin-morphology). Wa-
tershed land use was calculated based on the 2016 National Land Cover Database (Homer et al. 2020), quantified as the proportion of watershed area falling in wetland or urban land use categories and extracted using the LAGOSNE R package (Soranno et al. 2017; Stachelek et al. 2019). Water clarity was quantified using annual lake-specific median values of remotely sensed Secchi depth (Max Gilnes, Rensselaer Polytechnic Institute, Troy, NY, United States, 05/2020,personal communication). Water temperature was included both to account for potential seasonal differences in catchability and to quantify differences in abundances related to average thermal conditions. In both cases, we used surface water temperatures simulated using the general lake model (Hipsey et al. 2019) for lakes throughout the upper Midwest (Read et al. 2021). Specifically, we used a five-year rolling mean of annual degree days with a base of $5^{\circ} \mathrm{C}$ as a measure of lake specific temperatures experienced by the fish over their lifetime to capture annual temperature influence on relative abundance (Chezik et al. 2014; Honsey et al. 2019). To quantify the effect of within-year temperature differences on catchability, lake-specific cumulative degree days up to the day of the sample were calculated (base temp of $5^{\circ} \mathrm{C}$). Summaries of the environmental data are shown in Table S.2.

2.2 Multi-Species Modeling of Relative Abundance

Whereas the goal is to estimate annual relative abundance of each species at each location, the frequency and timing of sampling events as well as gears used vary across year and lake. Let $y_{i k j d t}$ denote the number of fish caught in lake $i \in\{1, \ldots, I\}$ of species $k \in\{1, \ldots, K\}$ using gear type $j \in\{1, \ldots, J\}$ during the sampling event on day $d \in\{1, \ldots, 365(366)\}$ of year $t \in\{1, \ldots, T\}$. We define the Bayesian hierarchical model for the count data, $y_{i k j d t}$, as

$$
\begin{equation*}
y_{i k j d t} \sim \operatorname{Poisson}\left(\widetilde{E}_{i k j d t} \gamma_{i k t}\right) \tag{3}
\end{equation*}
$$

where $\widetilde{E}_{i k j d t}$ is the sampling effort and $\gamma_{i k t}$ is the relative abundance for each lake, species, and year. Customarily, effort is a fixed and known quantity that is defined by the number of nets and/or duration of the sampling event. In addition, it is often assumed that effort is equal for all species and that one unit effort is the same for all days of the year across all years and gear
types. Here, we relax these assumptions following (2) and allow effort to vary as a function of species, day, year, and gear in order to account for seasonal impacts of sampling variability on estimates of relative abundance.

Let $E_{i j d t}$ denote the fixed and known quantity of effort that is defined by the sampling event at lake i using gear j on day d of year t (e.g., number of net days for the sampling event). To account for sampling variability across species and through time, we incorporate a multiplicative scaling, $\theta_{i k j d t}>0$. Specifically, we model sampling effort as

$$
\begin{equation*}
\widetilde{E}_{i k j d t}=E_{i j d t} \theta_{i k j d t} \tag{4}
\end{equation*}
$$

where $\theta_{i k j d t}$ captures the variation in catchability across lakes as a function of day, year, and gear type, as well as important characteristics of the lake. Note that if $\theta_{i k j d t} \equiv 1$, this model reduces to the customary model of catch per unit effort introduced in (1). Values of $\theta_{i k j d t}>1$ indicate that the conditions of the sampling event were above average for a given lake, species, and year, leading to disproportionately high catch relative to true abundance. Conversely, values of $\theta_{i k j d t}<1$ indicate the conditions were below average and catch was less than expected relative to true abundance. These multiplicative catchabilities adjust effort in order to mitigate the impacts of sampling variability on estimates of relative abundance. Importantly, within the Bayesian framework, the uncertainty in the model for catchability propagates through to uncertainty in our estimates of relative abundance.

2.2.1 Modeling Catchability

We model $\theta_{i j k d t}$ using a log-linear function capturing lake and time variables that may impact catchability. Specifically, we define the log-linear function

$$
\begin{equation*}
\log \left(\theta_{i j k d t}\right)=\boldsymbol{z}_{i d t}^{\prime} \boldsymbol{\psi}_{k j} \tag{5}
\end{equation*}
$$

where $z_{i d t}$ is a length r vector of variables describing the sampling conditions of lake i for sample day d in year t and $\psi_{k j}$ is a vector of coefficients for each species and gear.

The freshwater fish surveys considered in this analysis were conducted between June 1 and

September 30, which we term the "fishing season" for Minnesota. Many important fish life history events that affect foraging, growth, survival, and reproduction throughout the fishing season follows a seasonal cycle (Hokanson 1977a). Water temperature is known to be one such driver of fish life history (Beitinger et al. 2000). Therefore, water surface temperature, $W_{i d t}$, on the day of the sample is included as a covariate in $z_{i d t}$ the model for catchability. To capture additional seasonal variation in catchability during the fishing season within a lake, we constructed two covariates based on the fishing season cycle. For day of the year d, we define

$$
a_{d}=\sin \left(\frac{4 \pi \times d}{121}\right) \quad \text { and } \quad b_{d}=\cos \left(\frac{4 \pi \times d}{121}\right),
$$

where 121 corresponds to the number of days between June 1st and September 30th. These two terms, a_{d} and b_{d}, capture any periodic behavior in catchability where the period is set to half the length of the fishing season. We also include the interaction between $W_{i d t}$ and both a_{d} and b_{d}, recognizing that water temperature cycles may vary across the spatial domain. The length $r=6$ vector of variables included in the model are

$$
\begin{equation*}
\boldsymbol{z}_{i d t}=\left[1, W_{i d t}, a_{d}, b_{d}, W_{i d t} a_{d}, W_{i d t} b_{d}\right]^{\prime} \tag{6}
\end{equation*}
$$

Model inference of the coefficient parameters, $\psi_{k j}$, enables direct comparison of the utility of one unit effort across species and gear as a function of day of the year and water temperature. Whereas other variables could be considered, these, at a minimum, are assumed to capture the variation in fish life history for these species. See Section 4 for further discussion.

2.2.2 Modeling Relative Abundance

The parameter $\gamma_{i k t}$ is of primary focus of this analysis as it defines the relative abundance of species k in lake i and year t and is used as a proxy for true abundance. We model species relative abundance as

$$
\begin{equation*}
\log \left(\gamma_{i k t}\right)=\boldsymbol{v}_{i}^{\prime} \boldsymbol{\beta}_{k}+\boldsymbol{x}_{i t}^{\prime} \boldsymbol{\alpha}_{k}+\omega_{i k} \tag{7}
\end{equation*}
$$

where \boldsymbol{v}_{i} is a length p vector of static lake variables, including intercept, $\boldsymbol{x}_{i t}$ is a length q vector of lake and year specific variables, and $\boldsymbol{\beta}_{k}$ and $\boldsymbol{\alpha}_{k}$ are vectors of species-specific coefficients. Lastly, $\boldsymbol{\omega}_{i k}$ is a lake- and species-specific random effect to capture any remaining variation not explained by the covariates.

The static lake variables in vector \boldsymbol{v}_{i} include lake area, lake depth, and land use characteristics in the lake watershed. The variables in vector $\boldsymbol{x}_{i t}$ include Secchi disk depth (an index of water clarity) and cumulative growing degree days (GDD), which are assumed to vary across years and influence species abundance. The cumulative GDD for each lake and year captures the annual variation in temperature throughout the period of study. Variables were transformed to be approximately normal and on the same scale. Specifically, lake area, lake depth, and GDD were log transformed and centered and the land use characteristics were logit transformed. Letting $\omega_{i}=\left[\omega_{i 1}, \ldots, \omega_{i K}\right]^{\prime}$, we model the random effect as

$$
\begin{equation*}
\omega_{i} \stackrel{i i d}{\sim} M V N(\mathbf{0}, \mathbf{\Sigma}), \tag{8}
\end{equation*}
$$

where Σ is a $K \times K$ covariance matrix to allow for possible dependence between species.

2.2.3 Model Comparison

To explore the assumptions relating what is caught during routine sampling and true abundance, we also consider a base model with catchability assumed constant (i.e., (1)). This model is analogous to that outlined above except $\theta_{i j k d t}$ is fixed to 1 for all i, j, k, d, t. We investigate the differences in estimates of relative abundance obtained from the models with and without varying catchability by comparing estimates across lakes for a given species as well as across species for a given lake.

For the across-lake comparison, we first rank each lake from 1 to I (number of lakes) based on their estimates of relative abundance for each species. For example, the lake with the largest estimate of relative abundance for a given species is assigned the value 1 , the lake with the second largest estimate is assigned 2, and so on. We do this ranking using the estimates of relative abundance obtained from each model and make comparisons based on the difference in rankings between the two models. For the within lake comparison, we compare our estimates
of relative abundance across species for a given lake in order to investigate possible impacts of sampling variability on estimates of community structure or species composition. For each lake, we first scale our estimates of relative abundance across the six species such that they sum to one. Using these scaled estimates, we compute the difference in community percentage of each species between the two models.

2.2.4 Bayesian Model Specification and Inference

The JSDM for multi-species catch data with and without varying catchability are fitted in a Bayesian framework. Model inference is obtained using Hamiltonian Monte Carlo within the Stan computing software (Carpenter et al. 2017). To complete the model specification, we assign diffuse prior distributions to the model parameters. For each of the model coefficient parameters in $\boldsymbol{\psi}_{k}, \boldsymbol{\alpha}_{k}, \boldsymbol{\beta}_{k}$, for $k=1, \ldots, K$, we assign independent $N(0,1)$ priors, except for the intercept terms, which we assign independent $N\left(0,10^{2}\right)$ priors. Given the scale of each covariate and the models for abundance and effort being specified on the log scale, these priors are relatively diffuse. To model the covariance matrix $\boldsymbol{\Sigma}$, we first decompose it as $\Sigma=\operatorname{diag}\left(\tau_{1}, \ldots, \tau_{K}\right) \Omega \operatorname{diag}\left(\tau_{1}, \ldots, \tau_{K}\right)$ where each τ_{k} is a standard deviation and Ω is a $K \times K$ correlation matrix (Barnard et al. 2000). Then, we specify priors on the standard deviation and correlation matrix. We specify independent $\tau_{k} \sim \operatorname{Half-Cauchy}(0,2.5)$ for all $k=1, \ldots, K$ and $\Omega \sim \operatorname{LKJ}(1)$ (see Lewandowski et al. 2009, for detail on the LKJ prior). Lastly, to ensure model parameters are identifiable, the random effects, $\omega_{i k}$, are forced to be mean zero and the catchability, $\theta_{i j k d t}$, are forced to have a mean of 1 (i.e., both are "hard" constraints).

2.2.5 Simulation Study

To understand the impact on inference of relative abundance from our proposed model with varying catchability compared to the naive model with constant catchability, we conducted two simulation studies. For the first study, we simulated data according to our model with varying catchability and fit both our model and the naive model to the data. For the second study, we simulated data according to the naive model with constant catchability and fit both our model and the naive model to the data. For both simulated datasets, we withhold one year of the
simulated data for model validation (see Supplementary material for complete data generating details).

For both data sets, we obtained 6000 samples from the joint posterior distribution, discarding the first 4500 as burn-in, from both our model and the naive model. We then compared posterior estimates of relative abundance between our model and the naive model for each data simulation on the withheld year of data. Under the assumption the data exhibit varying catchability, we found our model better captures the relative abundance for the validation year (Figures S. 6 and S.7). In addition, under the assumption the data exhibit constant catchability, we found our model and the naive model have similar performance for the validation year (Figures S. 12 and S.13. Therefore, our model is appropriate under either the assumption the data do or do not exhibit varying catchability, while the naive model is appropriate only under the assumption the data have constant catchability. Specific details to the data generating mechanisms for the simulation studies and the compassion's based on inference of relative abundance are shown the Supplemental material.

3 Results

We applied the model to the catch data of sport fish in Minnesota freshwater lakes discussed in section. We obtained 2000 samples from the joint posterior distribution, discarding the first 1000 as burn-in. Convergence was assessed both graphically and using the Geweke diagnostic for all parameters and no issues were detected.

3.1 Posterior Estimation of Catchability

Posterior inference for catchability is shown graphically to identify important variation across species, time, lakes, and gear types. Formal inference, including posterior mean estimates and 95% credible intervals of the parameters, ψ, are shown in Table S.3. Recall from Section 2.2.1 that values of $\theta_{i k j d t}$ greater (less than) 1 indicate more (less) favorable conditions for the sampling event, meaning more (less) fish are expected to be observed per unit effort than is representative of the true population. The posterior mean estimates of catchability for each
species and gear on each day throughout the fishing season in 2016 are shown in Fig. 1. Similar patterns were detected for the other years in the study period (results not shown). These estimates elucidate variation in sampling effectiveness both within and across species and gear as a function of water temperature and day within the fishing season.

Figure 1: Posterior mean estimate of catchability $(\boldsymbol{\theta})$ for 2016 for each species and gear, averaged across all lakes. Each line corresponds to the catchability for a given species during the fishing season, ranging from June 2 to September 25.

In general, gill nets (Fig. 1 top) are more favorable for sampling northern pike, yellow perch, and walleye compared to nearshore species, like bluegill and black crappie, which are more favored by trap nets (Fig. 1 bottom). Seasonal variation in sampling effectiveness for
black crappie is similar for gill nets and trap nets, where the mid-summer (July 15 - August 15) yields proportionally higher catches than early or late summer. No seasonal differences in the sampling effectiveness of bluegill are detected using gill nets, but trap nets show favorable sampling during the early part (June - July) of the fishing season. Gill nets are more effective for sampling largemouth bass during mid to late summer (August - September), while trap nets have no seasonable patterns in effectiveness for this species. Using gill nets, the sampling conditions for northern pike, walleye, and yellow perch experience seasonal patterns, where sampling is more favorable for northern pike and yellow perch in early summer than late summer, and walleye are most favorable in the middle to late summer (August-September). Trap nets are more favorable for northern pike in the late summer than early summer, but no seasonal patterns are exhibited for walleye or yellow perch.

To further explore the impacts of sampling variability across gear type and day of the year of sampling, we computed the posterior mean estimate of the expected number of fish that would be caught in each lake on each day given one unit of effort for each gear (i.e., $E_{i j d t} \equiv 1$). Figs 2 and 3 show the difference between expected catch per one unit effort for each species on June 15, 2016 and August 15, 2016 across all lakes. For each lake, species, and gear, these differences are scaled by the average expected number of fish caught per day given one unit effort throughout the entire fishing season of 2016. Values of zero represent no difference in expected catch for the two dates. Positive values indicate a greater expected catch per unit effort in August relative to June, whereas negative values indicate greater expected catch in June relative to August. From Fig. 2, we expect to catch more black crappie, bluegill, largemouth bass, and walleye and catch fewer northern pike and yellow perch with one unit effort using gill nets on August 15 compared to June 15 . As a result of the water temperature differences among lakes across the state, a slight north-south spatial gradient also exists in these seasonal difference estimates of expected catch per one unit effort. Similarly, Fig. 3 suggests fewer bluegill and yellow perch to be caught per one unit effort using trap nets on August 15 compared to June 15, whereas we expect more black crappie, largemouth bass, northern pike, and walleye to be caught on August 15 than June 15. Similar to gill nets, there is a north-south gradient in the seasonal differences in expected catch using trap nets.

Figure 2: Posterior mean estimates of the difference in expected catch per unit effort between August 15, 2016 and June 15, 2016 using gill nets. Differences are scaled by the average expected number of fish caught per day given one unit effort throughout the entire fishing season of 2016 such that values of ± 1 indicate the difference is equal to the average expected catch for that gear, species, and year by lake. Positive values indicate a greater expected catch per unit effort in August.

3.2 Impacts of varying catchability on model inference

Our modeling approach contributes to inference by modeling variation in catchability due to sampling variability. In general, our model for catchability attempts to decompose the variation in expected catch per unit effort that is due to differences in relative abundance from that which could be the result of more or less favorable sampling conditions for some species, gears, and lakes. While we recognize the results shown above are specific to our choice of model for $\boldsymbol{\theta}$, we compare our model inference to that from the model that assumes constant catchability to highlight possible impacts of sampling designs on (i) estimates of relative abundance across species and lakes, (ii) inference on environmental drivers of abundance, and (iii) future studies that investigate the impacts of changes in environmental conditions (e.g., climate) on abundance.

The posterior mean estimates and 95% credible intervals for the parameters in the relative

Figure 3: Posterior mean estimates of the difference in expected catch per unit effort between August 15, 2016 and June 15, 2016 using trap nets. Differences are scaled by the average expected number of fish caught per day given one unit effort throughout the entire fishing season of 2016 such that values of ± 1 indicate the difference is equal to the average expected catch for that gear, species, and year by lake. Positive values indicate a greater expected catch per unit effort in August.
abundance model, $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, are shown by the blue points (mean) and bars (credible interval) in Fig. 4. The red points and bars show posterior estimates for the same parameters when catchability is assumed constant (i.e., $\theta_{i}=1$ in (2)). Parameters are deemed significant if their credible interval does not contain zero. As expected, the relationship between the environmental covariates and relative abundance varied among species. For example, the relative abundance of walleye - a species that prefers cool-water (Magnuson et al. 1990) and thrives in larger lakes (Nate et al. 2000) - has a negative coefficient for growing degree days and positive coefficient for lake area, regardless of model specification. Contrary to expectations, bluegill were associated with cooler temperatures (negative growing degree days). Bluegill are a warmwater species (Magnuson et al. 1979), although the influence of water temperature in our data may be masked by the strong positive influence of urban landcover. Black crappie, largemouth bass, and yellow perch had a strong relationship with water clarity, where large-
mouth bass and yellow perch were more abundant in clear water and black crappie were less abundant in clear water. There are no instances where the sign differs between the two models. The effect of degree days on largemouth bass is positive with varying catchability and overlaps zero when catchability is assumed constant - suggesting that modeling catchability allowed us to capture the positive influence of water temperature on warmwater largemouth bass. As noted previously, the negative effect of growing degree days on bluegill estimated by both models is confusing but might be a result of the strong positive effect of percent urban (which is zero for largemouth bass).

A few notable differences exist between parameter estimates from the two models. Some coefficients were significantly different from 0 in our model but are no longer significant in the model with constant catchability (e.g, lake area for largemouth bass), whereas other parameters that were not significant in our model are significant in the model with constant catchability (e.g., percent urban for yellow perch). Credible intervals for the two models that don't overlap are deemed significantly different. For yellow perch, the magnitude of the coefficient estimates of growing degree days and percent wetlands were much larger under our model than the model with constant catchability. The coefficient estimates of lake area for northern pike were also significantly different, where our model showed a negative relationship and the model with constant catchability showed a positive relationship. While some of these differences in coefficient estimates appear seemingly minor, they culminate in significant differences in estimates of relative abundance for each species as well as subsequent inference regarding community structure across the region. Additional inference from our model with varying catchability is included in the supplementary material. The posterior mean estimate of the species covariance matrix, Σ, is shown in Fig. S. 2 and the posterior estimates of relative abundance, $\gamma_{i k t}$, by species for all lakes for the year 2016 is shown in Fig. S.3.

Fig. 5 shows the difference in ranked relative abundance between the two models across lakes for each species, where the difference is scaled by the number of lakes and can be interpreted as a percentile. That is, a value of 30 or (-30) indicates that the lake is ranked 30% higher (lower) in terms of relative abundance for the species using our model compared to the model with constant catchability. Differences between the two models are less pronounced for
black crappie, bluegill, and largemouth bass compared to northern pike, walleye, and yellow perch. Spatially, we again detect a north-south gradient due to water temperature differences across the state. Our model produces lower rankings of relative abundance of northern pike, walleye, and yellow perch in much of central and northern Minnesota and higher rankings in southern Minnesota. Additionally, our model produces lower rankings of relative abundance for bluegill in northern and southern Minnesota and higher rankings in central Minnesota.

Differences in estimated relative abundance of species within lakes between the two models are shown in Fig. 6. Positive (negative) values indicate that our model produced larger (smaller) estimates of relative abundance than the model with constant catchability for that species compared to the other species within the lake. The most pronounced positive difference between the two models is for bluegill, which are estimated to be much more abundant within lakes compared to the other species when assuming sampling variability (with varying catchability). We also estimate fish communities to contain a higher percentage of black crappie, particularly in lakes throughout southern and northern Minnesota. Northern pike, walleye, and yellow perch have the most pronounced negative differences, where all three are estimated to be less abundant across the state compared to the other species when accounting for sampling variability. That is, our approach estimates fish communities with higher percentages of bluegill and black crappie and lower percentage of northern pike, walleye, and yellow perch.

4 Discussion

We developed a JSDM to study the relative abundance of freshwater fish species monitored throughout the open water season. The model addressed the important challenge of sampling variability across ecological contexts by allowing sampling effectiveness to vary among gears, species, and season. Our results demonstrate that the gear type and time of sampling that maximizes catchability varies among species. Seasonal variation in catchability was detected across species and gear. Notably, important seasonable differences in catchability were detected between higher and lower trophic levels. For example, northern pike catchability is highest for gillnets set in June, while black crappie catchability is high using both gear types in mid-late
summer. These differences in catchability are likely a result of fish behavior and life history as influenced by environmental cues throughout the season (e.g., Villegas-Ríos et al. 2014). For example, our focal fish species are members of the Centrarchidae (black crappie, bluegill, largemouth bass), Percidae (walleye, yellow perch), and Esocidae (northern pike) families. Seasonal movements of these fishes, as with other fish species, is largely driven by thermal cues (Johnson \& Charlton 1960; Schneider et al. 2010; Starzynski \& Lauer 2015). Temperature plays a critical role in growth and performance of poikilotherms, affecting vital rates and the timing and duration phenological events (Scranton \& Amarasekare 2017). Therefore, because of the seasonality in north-temperate ecosystems, it is likely that seasonal thermal cues play a role in the patterns of catchability observed in our study.

When compared to the model with constant catchability, significant differences in species community structure and relative abundance estimates were identified. Additionally, as exemplified by the simulation study, if the true catchability varies in time, relative abundance parameter estimates from a model where catchability is assumed constant will be biased. While the methods developed here are aimed at monitoring programs of freshwater fish, these approaches can be adapted for other systems, such as birds or plants, where catchability or detection probabilities may vary as a function of time, space, or species. For example, the abundance of small mammals is often indexed by catch per unit effort data (e.g., catches per trap night) and the methods developed here could help account for changes in catchability that may arise from environmental factors such as temperature and precipitation (Yarnell et al. 2007; Rowe et al. 2010).

We informed our choice of model for effort based on the dominant influence of water temperature on fish behavior and population-level processes (Magnuson et al. 1979). Recognizing that other choices of functional forms are possible, future work consists of using additional data to inform our estimates of sampling variability across species, gear, and environment. Future data collection programs could be tailored to address the knowledge gap relating catchability of species across time of the year due to life history and gear types. Such an approach would require repeated sampling of fish communities under a variety of conditions. A critical next step will be incorporating time-varying components that influence catchability such as ice off
date, water clarity, dissolved oxygen, and thermal structure of lakes (Stoner 2004; Fischer \& Quist 2019). Time-varying components will help reduce uncertainty in relative abundance estimates and allow for a more accurate estimate of varying catchability. Properly addressing the impact of catchability on monitoring species abundance across space and time would lead to a better understanding of the environmental drivers of each species and more accurate estimates of relative abundance that can be compared and combined across lakes to inform management decisions.

Currently, lake-rich states such as Minnesota and Wisconsin use lake classification systems to enable comparison of catch rates of fish across similar lake types (Schupp 1992; Rypel et al. 2019). Such classification systems implicitly account for environmental differences in lakes that might affect catchability and/or actual abundance, but do not explicitly separate the two. Additionally, lake classification systems do not account for seasonal variation in catchability, which is critical for comparing catch rates from surveys conducted at various times throughout the open water season. By explicitly including variables that influence both catchability and true abundance, we provide a method that enables comparison of catch rates across a broad range of lake types. A potential direction for future work is to build on the ability to compare across lakes and extend the spatial domain to include surveys from multiple states. However, care will have to be taken to account for methodological differences as there are not universal standards for gear type or survey methods between states. Additionally, there is interest in predicting relative abundance under future climate scenarios, with particular interest in joint predictions across multiple states. While our framework has the ability to predict relative abundance at lakes within the observed time domain, as shown by the simulation study in the supplementary material, we do not have constraints that would allow it to produce reasonable predictions at future times. Incorporating a mechanism, such as a temporal dynamic framework, into the model to enable predictions under future climate scenarios could provide insight into how fish populations might change.

Monitoring of species abundances serves several purposes in the conservation and management of natural resources (Radinger et al. 2019). Conservation and management decisions are frequently based on estimates of species abundance or relative abundance, and how they
differ among locations or over time (Lyons et al. 2008). Actions designed to either increase or decrease the abundance of a species are predicated on information about the relative abundance of that species in a given location. For example, the location of protected areas in both terrestrial and aquatic habitats may be based on where certain species are estimated to be most abundant (e.g., Johnston et al. 2015; García-Barón et al. 2019). Implementation and evaluation of management interventions rely on estimates of relative abundance changes over time, and how they are impacted by disturbance or management actions. For example, the allowable harvest of fish and wildlife species may be based on estimates of abundance that vary over time (e.g., Nielson et al. 2014), and the impact of interventions, such as habitat improvement relies on comparisons of species abundances over space and time (e.g., Scarcella et al. 2015). Accounting for the effects of sampling variability on these abundance estimates could improve the implementation and evaluation of such efforts.

Acknowledgements

We gratefully acknowledge the work of numerous employees of the Minnesota Department of Natural Resources for the collection and interpretation of fish data. Thanks to Jenna Ruzich for assistance with data collation. Thanks to Kevin Rose and Max Glines for remotely sensed clarity data, and to Jordan Read and Lindsay Platt for lake temperature modeling data and interpretation.

This work was supported by the U.S. Geological Survey Midwest Climate Adaptation Science Center Grant No.G20AC00096. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Conflict of Interest

The authors declare no conflicts of interest.

Author' Contribution

Authors Gretchen Hansen, Tyler Wagner, and Erin Schliep formulated the idea and contributed to the theoretical development of the research. Gretchen Hansen and Holly Kundel collated the data and conducted exploratory data analysis to motivate the modeling. Joshua North and Erin Schliep led the development of the statistical model and North implemented the statistical analysis. Joshua North, Erin Schliep, Gretchen Hansen, Holly Kundel, Christopher Custer, Paul McLaughlin, and Tyler Wagner contributed to the writing of the manuscript.

Data Availability

The fish catch and effort data as well as the environmental data associated with this manuscript are available on the Data Repository for University of Minnesota https://doi.org/10. 13020 /p4rw-z 926 (Point of contact is GJAH; North et al. 2022). The code for Bayesian model fitting and posterior inference are publicly available on GitLab at https://doi. org/10.5066/P9DALGBL (North et al. 2023).

References

Andres, K.J., Sethi, S.A., Duskey, E., Lepak, J.M., Rice, A.N., Estabrook, B.J., Fitzpatrick, K.B., George, E., Marcy-Quay, B., Paufve, M.R., Perkins, K. \& Scofield, A.E. (2020) Seasonal habitat use indicates that depth may mediate the potential for invasive round goby impacts in inland lakes. Freshwater Biology, 65, 1337-1347. https://dx.doi.org/10.1111/fwb. 13502.

Arreguín-Sánchez, F. (1996) Catchability: A key parameter for fish stock assessment. Reviews in fish biology and fisheries, 6, 221-242.

Barnard, J., McCulloch, R. \& Meng, X.L. (2000) Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 1281-1311.

Beitinger, T.L., Bennett, W.A. \& McCauley, R.W. (2000) Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environmental Biology of Fishes, 58, 237-275. https://dx.doi.org/10.1023/A:1007676325825.

Breen, M.J. \& Ruetz, C.R. (2006) Gear Bias in Fyke Netting: Evaluating Soak Time, Fish Density, and Predators. North American Journal of Fisheries Management, 26, 32-41. https://dx.doi.org/10.1577/M05-013.1.

Calabrese, J.M., Certain, G., Kraan, C. \& Dormann, C.F. (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Global Ecology and Biogeography, 23, 99-112. https://dx.doi.org/10.1111/geb.12102.

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M.A., Guo, J., Li, P. \& Riddell, A. (2017) Stan: A probabilistic programming language. Journal of Statistical Software, 76. https://dx.doi.org/10.18637/jss.v076.i01.

Carpenter, S.R., Stanley, E.H. \& Vander Zanden, M.J. (2011) State of the World's freshwater ecosystems: Physical, chemical, and biological changes. Annual Review of Environment and Resources, 36, 75-99. https://dx.doi.org/10.1146/annurev-environ-021810-094524.

Chezik, K.A., Lester, N.P. \& Venturelli, P.A. (2014) Fish growth and degree-days II: selecting a base temperature for an among-population study. Canadian Journal of Fisheries and Aquatic Sciences, 71, 1303-1311. https://dx.doi.org/10.1139/cjfas-2013-0615.

Clark, J.S., Gelfand, A.E., Woodall, C.W. \& Zhu, K. (2014) More than the sum of the parts: Forest climate response from joint species distribution models. Ecological Applications, 24, 990-999. https://dx.doi.org/10.1890/13-1015.1.

Czeglédi, I., Specziár, A. \& Erős, T. (2021) Temporal dynamics of freshwater fish assemblages, their background and methods of quantifications-A synthesis. Fish and Fisheries, 00, 1-16. https://dx.doi.org/10.1111/faf. 12601.

Dolder, P.J., Thorson, J.T. \& Minto, C. (2018) Spatial separation of catches in highly mixed fisheries. Scientific Reports, 8, 13886. https://dx.doi.org/10.1038/s41598-018-31881-w.

Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L.J. \& Sullivan, C.A. (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163. https://dx.doi.org/10.1017/S1464793105006950.

Enders, E.C., Charles, C., van der Lee, A.S. \& Lumb, C.E. (2021) Temporal variations in the pelagic fish community of Lake Winnipeg from 2002 to 2019. Journal of Great Lakes Research, 47, 626-634. https://dx.doi.org/10.1016/j.jglr.2021.01.004.

Fischer, J.R. \& Quist, M.C. (2019) Understanding Fish Assemblage Structure in Lentic Ecosystems: Relative Effects of Abiotic Factors and Management Legacies. North American Journal of Fisheries Management, 39, 607-624. https://dx.doi.org/10.1002/nafm. 10304.

Funge-Smith, S. (2018) Review of the state of the world fishery resources: Inland fisheries. FAO Fisheries and Aquaculture Circular, p. 397.

García-Barón, I., Authier, M., Caballero, A., Vázquez, J.A., Santos, M.B., Murcia, J.L. \& Louzao, M. (2019) Modelling the spatial abundance of a migratory predator: A call for transboundary marine protected areas. Diversity and Distributions, 25, 346-360. https://dx.doi.org/10.1111/ddi.12877.

Gordoa, A. \& Hightower, J.E. (1991) Changes in catchability in a bottom-trawl fishery for Cape Hake (Merluccius capensis). Canadian Journal of Fisheries and Aquatic Sciences, 48, 1887-1895. https://dx.doi.org/10.1139/f91-224.

Gordoa, A., Masó, M. \& Voges, L. (2000) Monthly variability in the catchability of Namibian hake and its relationship with environmental seasonality. Fisheries Research, 48, 185-195. https://dx.doi.org/10.1016/S0165-7836(00)00160-0.

Han, Q., Grüss, A., Shan, X., Jin, X. \& Thorson, J.T. (2021) Understanding patterns of distribution shifts and range expansion/contraction for small yellow croaker (Larimichthys polyactis) in the Yellow Sea. Fisheries Oceanography, 30, 69-84. https://dx.doi.org/10.1111/fog.12503.

Hayden, T.A., Holbrook, C.M., Fielder, D.G., Vandergoot, C.S., Bergstedt, R.A., Dettmers, J.M., Krueger, C.C. \& Cooke, S.J. (2014) Acoustic telemetry reveals large-scale migration patterns of walleye in lake huron. PLoS One, 9, e114833.

Hilborn, R. \& Walters, C.J. (1992) Quantitative Fisheries Stock Assessment. Springer US, Boston, MA.

Hipsey, M.R., Bruce, L.C., Boon, C., Busch, B., Carey, C.C., Hamilton, D.P., Hanson, P.C., Read, J.S., de Sousa, E., Weber, M. \& Winslow, L.A. (2019) A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geoscientific Model Development, 12, 473-523. https://dx.doi.org/10.5194/gmd-12-473-2019.

Hokanson, K.E.F. (1977a) Temperature requirements of some Percids and adaptations to the seasonal temperature cycle. Journal of the Fisheries Research Board of Canada, 34, 15241550. https://dx.doi.org/10.1139/f77-217.

Hokanson, K.E. (1977b) Temperature requirements of some percids and adaptations to the seasonal temperature cycle. Journal of the Fisheries Board of Canada, 34, 1524-1550.

Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R. \& Riitters, K. (2020) Conterminous United States land cover change patterns 2001-2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 184-199. https://dx.doi.org/10.1016/j.isprsjprs.2020.02.019.

Honsey, A.E., Venturelli, P.A. \& Lester, N.P. (2019) Bioenergetic and limnological foundations for using degree-days derived from air temperatures to describe fish growth. Canadian Journal of Fisheries and Aquatic Sciences, 76, 657-669. https://dx.doi.org/10.1139/cjfas-2018-0051.

Hosack, G.R., Peters, G.W. \& Ludsin, S.A. (2014) Interspecific relationships and environmentally driven catchabilities estimated from fisheries data. Canadian Journal of Fisheries and Aquatic Sciences, 71, 447-463. https://dx.doi.org/10.1139/cjfas-2013-0236.

Inoue, K., Stoeckl, K. \& Geist, J. (2017) Joint species models reveal the effects of environment on community assemblage of freshwater mussels and fishes in European rivers. Diversity and Distributions, 23, 284-296. https://dx.doi.org/10.1111/ddi.12520.

Johnson, M. \& Charlton, W. (1960) Some effects of temperature on the metabolism and activity of the large-mouth bass, micropterus salmoides lacepede. The Progressive Fish-Culturist, 22, 155-163.

Johnston, A., Fink, D., Reynolds, M.D., Hochachka, W.M., Sullivan, B.L., Bruns, N.E., Hallstein, E., Merrifield, M.S., Matsumoto, S. \& Kelling, S. (2015) Abundance models improve spatial and temporal prioritization of conservation resources. Ecological Applications, 25, 1749-1756. https://dx.doi.org/10.1890/14-1826.1.

Kobler, A., Klefoth, T., Wolter, C., Fredrich, F. \& Arlinghaus, R. (2008) Contrasting pike (esox lucius 1.) movement and habitat choice between summer and winter in a small lake. Hydrobiologia, 601, 17-27.

Korman, J. \& Yard, M.D. (2017) Effects of environmental covariates and density on the catchability of fish populations and interpretation of catch per unit effort trends. Fisheries Research, 189, 18-34. https://dx.doi.org/10.1016/j.fishres.2017.01.005.

Kuparinen, A., Klefoth, T. \& Arlinghaus, R. (2010) Abiotic and fishing-related correlates of angling catch rates in pike (Esox lucius). Fisheries Research, 105, 111-117. https://dx.doi.org/10.1016/j.fishres.2010.03.011.

Lester, N.P., Dextrase, A.J., Kushneriuk, R.S., Rawson, M.R. \& Ryan, P.A. (2004) Light and temperature: Key factors affecting walleye abundance and production. Transactions of the American Fisheries Society, 133, 588-605. https://dx.doi.org/10.1577/T02-111.1.

Lester, N.P., Marshall, T.R., Armstrong, K., Dunlop, W.I. \& Ritchie, B. (2003) A Broad-Scale Approach to Management of Ontario's Recreational Fisheries. North American Journal of Fisheries Management, 23, 1312-1328. https://dx.doi.org/10.1577/m01-230am.

Lester, N.P., Sandstrom, S., Kerckhove, D.T., Armstrong, K., Ball, H., Amos, J., Dunkley, T., Rawson, M., Addison, P., Dextrase, A., Taillon, D., Wasylenko, B., Lennox, P., Giacomini, H.C. \& Chu, C. (2021) Standardized broad-scale management and monitoring of inland lake recreational fisheries: An overview of the Ontario experience. Fisheries, 46, 107-118. https://dx.doi.org/10.1002/fsh. 10534.

Lewandowski, D., Kurowicka, D. \& Joe, H. (2009) Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100, 19892001. https://dx.doi.org/10.1016/j.jmva.2009.04.008.

Lyons, J.E., Runge, M.C., Laskowski, H.P. \& Kendall, W.L. (2008) Monitoring in the context of structured decision-making and adaptive management. Journal of Wildlife Management, 72, 1683-1692. https://dx.doi.org/10.2193/2008-141.

Magnuson, J.J., Crowder, L.B. \& Medvick, P.A. (1979) Temperature as an ecological resource. American Zoologist, 19, 331-343. https://dx.doi.org/10.1093/icb/19.1.331.

Magnuson, J.J., Meisner, J.D. \& Hill, D.K. (1990) Potential changes in the thermal habitat of Great Lakes fish after global climate warming. Transactions of the American Fisheries Society, 119, 254-264. https://dx.doi.org/10.1577/15488659(1990)119;0254:PCITTH ${ }_{6} 2.3 . C O ; 2$.

McReynolds, A., Hoff, M., Sikora, A., Nau, C., Pietraszek, M., Bartelme, C., Christie, M., Hoffman, S., Hayer, C. \& Forsythe, P. (2021) Adult and larval fish assemblages vary among small tributary mouths of Green Bay, Lake Michigan. Canadian Journal of Zoology, 99, 319-329. https://dx.doi.org/10.1139/cjz-2020-0143.

Minnesota Department of Natural Resources (MNDNR) (2017) Manual of instructions for lake survey. Minnesota Department of Natural Resources, Special Publication No 180, St Paul, Minnesota (version 104, released January 2019).

Nate, N.A., Bozek, M.A., Hansen, M.J. \& Hewett, S.W. (2000) Variation in walleye abundance with lake size and recruitment source. North American Journal of Fisheries Management, 20, 119-126. https://dx.doi.org/10.1577/1548-8675(2000)020;0119:viwawli2.0.co;2.

Nielson, R.M., Mcmanus, L., Rintz, T., Mcdonald, L.L., Murphy, R.K., Howe, W.H. \& Good, R.E. (2014) Monitoring abundance of golden eagles in the western United States. The Journal of Wildlife Management, 78, 721-730. https://dx.doi.org/10.1002/jwmg. 704.

North, J.S., Schliep, E.M., Hansen, G.J., Kundel, H., Custer, C.A., McLaughlin, P. \& Wagner, T. (2022) Data in support of accounting for spatio-temporal variation in catachability in joint species distribution models. Retrieved from the Data Repository for the University of Minnesota. https://dx.doi.org/10.13020/p4rw-z926.

North, J.S., Schliep, E.M., Hansen, G.J., Kundel, H., Custer, C.A., McLaughlin, P. \& Wagner, T. (2023) Software in support of accounting for spatio-temporal variation in catchability in joint species distribution models. US Geological Software release. https://dx.doi.org/10.5066/P9DALGBL.

Ovaskainen, O. \& Abrego, N. (2020) Joint species distribution modelling: with applications in R. Cambridge University Press.

Perrin, S.W., Veen, B., Golding, N. \& Finstad, A.G. (2022) Modelling temperature-driven changes in species associations across freshwater communities. Global Change Biology, 28, 86-97. https://dx.doi.org/10.1111/gcb.15888.

Radinger, J., Britton, J.R., Carlson, S.M., Magurran, A.E., Alcaraz-Hernandez, J.D., Almodovar, A., Benejam, L., Fernandez-Delgado, C., Nicola, G.G., Oliva-Paterna, F.J., Torralva, M. \& Garcia-Berthou, E. (2019) Effective monitoring of freshwater fish. Fish and Fisheries, 20, faf.12373. https://dx.doi.org/10.1111/faf.12373.

Radomski, P., Anderson, C.S., Bruesewitz, R.E., Carlson, A.J. \& Borkholder, B.D. (2020) An assessment model for a standard fill net incorporating direct and indirect selectivity applied to walleye. North American Journal of Fisheries Management, 40, 105-124. https://dx.doi.org/10.1002/nafm. 10384.

Read, J., Appling, A., Oliver, S., Platt, L., Zwart, J., Vitense, K., Hansen, G., Corson-Dosch, H. \& Kundel, H. (2021) Data release: Process-based predictions of lake water temperature in the Midwest US: U.S. Geological Survey data release.

Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D. \& Cooke, S.J. (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94, 849-873. https://dx.doi.org/10.1111/brv. 12480.

Rodríguez, M.A., Marselli, G. \& Mandrak, N.E. (2021) Responses of vulnerable fishes to environmental stressors in the Canadian Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences, 78, 1278-1292. https://dx.doi.org/10.1139/cjfas-2020-0314.

Roop, H.J., Poudyal, N.C. \& Jennings, C.A. (2018) Assessing angler effort, catch, and harvest on a spatially complex, multi-lake fishery in middle Georgia. North American Journal of Fisheries Management, 38, 833-841. https://dx.doi.org/10.1002/nafm.10179.

Rose, G. \& Kulka, D. (1999) Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Canadian Journal of Fisheries and Aquatic Sciences, 56, 118-127. https://dx.doi.org/10.1139/cjfas-56-S1-118.

Rowe, R.J., Finarelli, J.A. \& Rickart, E.A. (2010) Range dynamics of small mammals along an elevational gradient over an 80-year interval. Global Change Biology, 16, 2930-2943.

Royle, J.A. (2004) N-Mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108-115. https://dx.doi.org/10.1111/j.0006-341X.2004.00142.x.

Rypel, A.L. (2021) Spatial versus temporal heterogeneity in abundance of fishes in north-temperate lakes. Fundamental and Applied Limnology, 195, 173-185. https://dx.doi.org/10.1127/fal/2021/1405.

Rypel, A.L., Simonson, T.D., Oele, D.L., Griffin, J.D.T., Parks, T.P., Seibel, D., Roberts, C.M., Toshner, S., Tate, L.S. \& Lyons, J. (2019) Flexible Classification of Wisconsin Lakes for Improved Fisheries Conservation and Management. Fisheries, 44, 225-238. https://dx.doi.org/10.1002/fsh. 10228.

Scarcella, G., Grati, F., Bolognini, L., Domenichetti, F., Malaspina, S., Manoukian, S., Polidori, P., Spagnolo, A. \& Fabi, G. (2015) Time-series analyses of fish abundance from an artificial reef and a reference area in the central-Adriatic Sea. Journal of Applied Ichthyology, 31, 74-85. https://dx.doi.org/10.1111/jai. 12952.

Schneider, K.N., Newman, R.M., Card, V., Weisberg, S. \& Pereira, D.L. (2010) Timing of walleye spawning as an indicator of climate change. Transactions of the American Fisheries Society, 139, 1198-1210.

Schupp, D.H. (1992) An ecological classification of Minnesota lakes with associated fish communities.

Scranton, K. \& Amarasekare, P. (2017) Predicting phenological shifts in a changing climate. Proceedings of the National Academy of Sciences, 114, 13212-13217.

Smith, B.J., Blackwell, B.G., Wuellner, M.R., Graeb, B.D.S. \& Willis, D.W. (2017) Contact selectivity for four fish species sampled with North American standard gill nets. North American Journal of Fisheries Management, 37, 149-161. https://dx.doi.org/10.1080/02755947.2016.1254129.

Soranno, P.A., Bacon, L.C., Beauchene, M., Bednar, K.E., Bissell, E.G., Boudreau, C.K., Boyer, M.G., Bremigan, M.T., Carpenter, S.R., Carr, J.W., Cheruvelil, K.S., Christel, S.T., Claucherty, M., Collins, S.M., Conroy, J.D., Downing, J.A., Dukett, J., Fergus, C.E., Filstrup, C.T., Funk, C., Gonzalez, M.J., Green, L.T., Gries, C., Halfman, J.D., Hamilton, S.K., Hanson, P.C., Henry, E.N., Herron, E.M., Hockings, C., Jackson, J.R., Jacobson-Hedin, K., Janus, L.L., Jones, W.W., Jones, J.R., Keson, C.M., King, K.B.S., Kishbaugh, S.A., Lapierre, J.F., Lathrop, B., Latimore, J.A., Lee, Y., Lottig, N.R., Lynch, J.A., Matthews, L.J., McDowell, W.H., Moore, K.E.B., Neff, B.P., Nelson, S.J., Oliver, S.K., Pace, M.L., Pierson, D.C.,

Poisson, A.C., Pollard, A.I., Post, D.M., Reyes, P.O., Rosenberry, D.O., Roy, K.M., Rudstam, L.G., Sarnelle, O., Schuldt, N.J., Scott, C.E., Skaff, N.K., Smith, N.J., Spinelli, N.R., Stachelek, J., Stanley, E.H., Stoddard, J.L., Stopyak, S.B., Stow, C.A., Tallant, J.M., Tan, P.N., Thorpe, A.P., Vanni, M.J., Wagner, T., Watkins, G., Weathers, K.C., Webster, K.E., White, J.D., Wilmes, M.K. \& Yuan, S. (2017) LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. GigaScience, 6, 1-22. https://dx.doi.org/10.1093/gigascience/gix 101.

Stachelek, J., Oliver, S. \& Masrour, F. (2019) LAGOSNE: Interface to the lake multi-scaled geospatial and temporal database. R package version 202.

Starzynski, D. \& Lauer, T.E. (2015) How temperature affects timing and duration of yellow perch spawning in the indiana waters of lake michigan. Journal of Freshwater Ecology, 30, 445-453.

Stoner, A.W. (2004) Effects of environmental variables on fish feeding ecology: implications for the performance of baited fishing gear and stock assessment. Journal of Fish Biology, 65, 1445-1471. https://dx.doi.org/10.1111/j.0022-1112.2004.00593.x.

Tacon, A.G.J. \& Metian, M. (2013) Fish matters: Importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science, 21, 22-38. https://dx.doi.org/10.1080/10641262.2012.753405.

Tehrani, N.A., Naimi, B. \& Jaboyedoff, M. (2021) A data-integration approach to correct sampling bias in species distribution models using multiple datasets of breeding birds in the Swiss Alps. Ecological Informatics, p. 101501. https://dx.doi.org/10.1016/j.ecoinf.2021.101501.

Tsuboi, J. \& Endou, S. (2008) Relationships between catch per unit effort, catchability, and abundance based on actual measurements of salmonids in a mountain stream. Transactions of the American Fisheries Society, 137, 496-502. https://dx.doi.org/10.1577/T06-259.1.

Villegas-Ríos, D., Alós, J., Palmer, M., Lowerre-Barbieri, S., Bañón, R., Alonso-Fernández, A. \& Saborido-Rey, F. (2014) Life-history and activity shape catchability in a sedentary fish. Marine Ecology Progress Series, 515, 239-250. https://dx.doi.org/10.3354/meps11018.

Vine, J.R., Kanno, Y., Holbrook, S.C., Post, W.C. \& Peoples, B.K. (2019) Using sidescan sonar and N -Mixture modeling to estimate Atlantic sturgeon spawning migration Abundance. North American Journal of Fisheries Management, 39, 939-950. https://dx.doi.org/10.1002/nafm. 10326.

Wagner, T., Hansen, G.J., Schliep, E.M., Bethke, B.J., Honsey, A.E., Jacobson, P.C., Kline, B.C. \& White, S.L. (2020) Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models. Canadian Journal of Fisheries and Aquatic Sciences, 77, 1540-1551. https://dx.doi.org/10.1139/cjfas-2019-0348.

Wagner, T., Irwin, B.J., Bence, J.R. \& Hayes, D.B. (2013) Detecting temporal trends in freshwater fisheries surveys: Statistical power and the important linkages between management questions and monitoring objectives. Fisheries, 38, 309-319. https://dx.doi.org/10.1080/03632415.2013.799466.

Wehrly, K.E., Breck, J.E., Wang, L. \& Szabo-Kraft, L. (2012) A landscape-based classification of fish assemblages in sampled and unsampled lakes. Transactions of the American Fisheries Society, 141, 414-425. https://dx.doi.org/10.1080/00028487.2012.667046.

Wilberg, M.J., Thorson, J.T., Linton, B.C. \& Berkson, J. (2009) Incorporating time-varying catchability into population dynamic stock assessment models. Reviews in Fisheries Science, 18, 7-24. https://dx.doi.org/10.1080/10641260903294647.

Yarnell, R., Scott, D., Chimimba, C. \& Metcalfe, D. (2007) Untangling the roles of fire, grazing and rainfall on small mammal communities in grassland ecosystems. Oecologia, 154, 387402.

Zhang, C., Chen, Y., Xu, B., Xue, Y. \& Ren, Y. (2020) Evaluating the influence of spatially varying catchability on multispecies distribution modelling. ICES Journal of Marine Science. https://dx.doi.org/10.1093/icesjms/fsaa068.

Figure 4: Estimates of the abundance parameters, $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, for each species from our model with varying catchability (blue) and with constant catchability (red). The posterior mean is shown by the point and the 95% credible intervals are shown by the horizontal bars. A vertical line at zero is used to visually identify parameters that are significantly different from zero.

Figure 5: Difference in rank of relative abundance by species between our model with varying catchability and the model with constant catchability.

Figure 6: Difference in species community structure by lake between our model with varying catchability and the model with constant catchability. Positive values (red colors) indicate higher species abundance relative to other species within the lake when accounting for varying catchability. Negative values (blue colors) indicate lower species abundance relative to other species within the lake when accounting for varying catchability.

