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Summary

The fluent production of a signed language requires exquisite coordination of sensory, motor, and 

cognitive processes. Similar to speech production, language produced with the hands by fluent 

signers appears effortless, but reflects the precise coordination of both large-scale and local 

cortical networks. The organization and representational structure of sensorimotor features 

underlying sign language phonology in these networks is unknown. Here, we present a unique 

case study of high-density electrocorticography (ECoG) recordings from the cortical surface of 

profoundly deaf signer during awake craniotomy. While neural activity was recorded from 

sensorimotor cortex, the participant produced a large variety of movements in linguistic and 

transitional movement contexts. We found that at both single electrode and neural population 

levels, high-gamma activity reflected tuning for particular hand, arm, and face movements, which 

were organized along dimensions that are relevant for phonology in sign language. Decoding of 

manual sensorimotor features revealed a clear functional organization and population dynamics for 

these highly-practiced movements. Furthermore, neural activity clearly differentiated linguistic 

and transitional movements, demonstrating encoding of language-relevant articulatory features. 

These results provide a novel and unique view of the fine-scale dynamics of complex and 

meaningful sensorimotor actions.
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Graphical Abstract

Introduction

Unlike spoken languages, which are produced with the vocal tract articulators and 

understood through the auditory system, signed languages are articulated through the hands 

and body and perceived through the visual system [1]. Despite these differences, signed 

languages evolve naturally in communities of Deaf persons, and have historical [2], 

linguistic [3,4], and developmental [5,6] patterns that are nearly indistinguishable from 

spoken languages.

Signed languages provide a unique opportunity to explore how highly-practiced 

sensorimotor representations that underlie human language production are encoded in the 

brain. The complete visibility of all articulators used in sign language production allows 

analysis of linguistic representations at the gestural level, which is more difficult in speech, 

where articulators are not easily accessible [7]. In addition, sign languages provide a rich set 

of movements that require complex control of the arms, hands, and body compared to 

typical motor control experiments involving reaching and grasping [8-10]. Thus, alongside 

studies of speech and movement, signed languages can provide a critical complementary 

window into the neural computations that underlie highly skilled manual movements.

Linguistic analysis of signed languages has revealed that the manual actions used in sign 

formation have compositional structure. Analogous to spoken segmental features (e.g., 
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syllables, consonants, vowels), signs are constructed from fixed inventories of handshapes, 

locations (place of articulation), and discrete arm and hand movement trajectories [11]. At a 

basic motor control level, these movements reflect planning and execution that is similar to 

reaching and grasping [12], where decades of work has revealed both individual neuron 

tuning for specific articulator and movement features, and complex movement dynamics 

encoded in neural populations [13]. However, little work, particularly in humans, has 

examined the representation of movements where combinations of basic features (e.g., 

phonology) are combined to produce complex representations like words and phrases.

The fact that fluent signers produce these kinds of highly-practiced movements in 

coordination with higher level cognitive and linguistic representations allows for a detailed 

examination of language production that does not use the vocal tract. While there have been 

descriptions of the broad cortical regions involved in sign language processing, particularly 

as it relates to speech [14-19], the fine-scale coordinated dynamics of these regions have not 

been explored, especially for production. Specifically, there has been little work on the 

neural processes involved in representing the compositional substructure of signed language 

[20,21]. It is unknown how motor, sensory, and linguistic representations are coordinated in 

dynamic brain activity to allow for fluent sign production.

Here, we present a unique case study of a profoundly deaf signer who underwent awake 

craniotomy with language mapping for resection of a brain tumor. He volunteered to 

participate in an intraoperative research study in which high-density electrocorticographic 

signals were recorded directly from his brain. The participant viewed videos of ASL (Figure 

S1A), and was asked to perform a lexical decision task (real/pseudo signs). In addition to 

“yes/no” responses, he produced a variety of spontaneous natural responses, including 

linguistic signs, transitional movements (Figure S1B), and fingerspelling, a manual 

representation of the English alphabet that occurs in a central space in front of the signer’s 

body (distinct from the lexical sign neutral location). The participant’s manual behaviors 

were recorded and annotated frame-by-frame to provide nearly 8000 events that were 

aligned to the neural data. This unique opportunity allowed us to examine the neural 

encoding of sensorimotor and linguistic properties of American Sign Language (ASL), 

extending our understanding of how skilled motor behaviors are controlled in human cortex 

[22-24].

Results

Selectivity for hand and arm movements in sensorimotor cortex

While performing a lexical decision task, the participant produced a range of location/

handshape combinations, both in the context of indicating his responses on each trial, and in 

a variety of comments he made to the experimenters. This provided a unique opportunity to 

examine how high-gamma (HG; 70-150Hz) neural activity encodes specific movements in 

sensorimotor cortex. We chose to examine articulatory location (the spatial locations in front 

of and on the body where a sign is produced), and handshape (the configuration of the 

fingers of the hand(s)) because they are the most prominent features of these movements, 

and at a theoretical level, they constitute two of the most critical phonological features in 

sign language [11,25].
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We identified electrodes that encode location and handshape, using multiple linear 

regression. We found 61 electrodes over pre-central, post-central, and supramarginal gyrus 

(SMG) with activity that was significantly correlated with location and handshape features, 

explaining up to ~32% of the variance (p<0.01, Bonferroni corrected for multiple electrodes; 

minimum p-value = 0.000039; Figure 1A).

To examine encoding of location features, we compared movements where the dominant 

hand contacted the non-dominant hand (hand’ location), versus movements where the 

dominant hand contacted the face, (‘face’ location), controlling for handshape (Figure 1B). 

We found example electrodes that showed stronger activity for the hand locat over dorsal 

pre-central gyrus (Figure 1C-D). In contrast, an example electrode over ventral central 

sulcus showed significantly greater responses to movements in the ‘face’ location (Figure 

1E). These sites corresponded clearly to dorsal and ventral sensorimotor areas, and 

specifically to hand and face representations of the homunculus (see Figure 3). Since these 

comparisons were matched for handshape, we conclude that they are selective for location.

Next, we examined the encoding of specific handshapes. We compared the ‘O’ and ‘S’ 

handshape, which are of interest because they are physically similar (Figure 1F; most ASL 

handshapes are described according to the fingerspelling alphabet). We found two example 

electrodes that showed stronger activity for ‘O’ than for ‘S’ over SMG (Figure 1G-H). These 

contrasted with an example electrode that showed a greater response for ‘S’ handshapes, 

which was also located over SMG (Figure 1H). Since responses were matched for location, 

we conclude that they are selective for handshape. Together, these examples demonstrate 

that within less than 1cm of cortex, neural responses encode fine-grained sensorimotor 

information that is highly relevant to linguistic features of ASL.

Among these responses, we also observed different temporal neural dynamics during sign 

production. Some electrodes showed sharp responses that were locked to the onset of 

movement (the video frame when the participant begins to move his hand for the 

corresponding movement/feature, e.g., Figure 1C,I), while others showed more sustained 

responses that began prior to movement onset (e.g., Figure 1D,E,G,H). The latter response 

type is typical of motor evoked activity, which reflects preparatory and planning activity that 

precedes the actual movement. In contrast, responses closely locked to movement onset may 

reflect a combination of motor and sensory/proprioceptive feedback, such as contact 

between the thumb and medial phalange of the middle finger (Figure 1G,H). These 

responses were not likely due to purely somatosensory activity, as a qualitative comparison 

between movements that made contact in the target location and non-contacting movements 

that either failed to make contact or are ASL signs that are “uncontacted”, revealed 

overlapping response profiles. This suggests that while electrodes may encode sensory and 

proprioceptive features, they are part of the motor action that drives neural activity during 

movement.

Hierarchies for sensorimotor features in cortex

Across all location and handshape combinations for which there was sufficient data, we used 

an unsupervised clustering approach to describe the neural organization of these 

sensorimotor features (which were defined a priori based on the ASL linguistic literature). 
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We calculated the Euclidean distance between every location/handshape combination based 

on the peak activity across all 61 significant electrodes.

We found two primary clusters, which separated movements made during the production of 

lexical signs in ASL and movements made during the production of fingerspelled sequences 

(Figure 2A). Fingerspelling has different sensorimotor and visual dynamics compared to 

sign, where fingerspelling requires the signer’s hand to be held at a stationary location in 

front of the signer (often proximal to the shoulder; Supplementary Video S1) and a 

sequential articulation of a constrained set of handshapes corresponding to the 26 letters of 

the English alphabet is used to spell words. Furthermore, it is considered linguistically 

distinct from sign language, since it is a manual representation of spelling based on spoken 

language. In contrast, lexical signs entail a larger set of phonological features, which include 

a more varied set of articulatory locations, discrete movements, and handshapes that are 

constrained by sign language specific properties.

Within the fingerspelling branch, we observed clear clustering based on handshape. The 

largest branch within this cluster divides the handshapes {‘W’,’B’,’C’,’I’} (Figure 2A; 

orange branch) and {‘M’,’T’,’A’,’S’} (Figure 2A; red branch). These two sub-clusters are 

defined primarily by whether the hand is open or closed, where closed handshapes tend to 

make contact between the fingers and palm. Within the closed hand cluster, the only 

difference between handshapes is the position of the thumb.

The lexical sign branch had two main sub-clusters, the first of which was composed mostly 

of signs in the ‘neutral’ location (Figure 2A; yellow and green branches). Neutral location is 

defined as an articulatory area in front of the signer where signs are produced without 

contacting the body. A sub-cluster of this branch contained handshapes that are defined by 

an extended index finger (‘1’, ‘L’, ‘V’). The second main sub-cluster contained all non-

fingerspelling locations (‘face’, ‘neutral’, ‘hand’, and ‘chest’), and was organized primarily 

according to open handshapes that do not involve contact between the digits and the palm 

(e.g., ‘5’, ‘B’, ‘C’; Figure 2A; blue branches).

We also examined the organization of location and handshape features with another 

phonological feature of sign: internal hand movements (Figure S2C-D). Internal movements 

refer to changes that affect the distal properties of hand articulation, which include changes 

in wrist motion (rotation and flexion) and changes in handshapes and fingers (hand closure, 

finger oscillation). These are typically repeated movements, which may be superimposed 

upon the larger ballistic movements of the arms. While classification accuracy was less 

robust compared to location/handshape, we found patterns that were related primarily to 

wrist movements (e.g. flex, rotate, shake) and finger movements (close, oscillate, circle).

In summary, unsupervised clustering revealed structure in the neural representation of 

sensorimotor features. These features are important phonological components of signing 

systems [4,11,26], and these analyses show a representational and temporal hierarchy for 

distinct phonological features.
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Sensorimotor Features can be Classified from Neural Activity

To examine the neural separability of sensorimotor/linguistic features, we trained a series of 

linear support vector machine (SVM) classifiers. The data from all 61 electrodes at each 

timepoint was used to classify each articulation as a particular location or handshape. 

Separate 10-fold cross-validated classifiers were trained using a 20ms sliding window to 

generate a timecourse of classification accuracy relative to movement onset.

For location, the classifier was accurate up to 67.1% (chance≈25%; Figure 2B). The 

classifier performed above chance from ~650ms before movement onset to ~650ms after 

movement onset, and peaked ~100-200ms before movement onset. Averaged over a 200ms 

window around the peak classification accuracy, the confusion matrix for the 4 locations 

revealed high accuracy for each location (Figure 2C, diagonal). Consistent with hierarchical 

clustering (Figure 2A), fingerspelling was highly distinct (86.4%), and was rarely confused 

with the other locations. The ‘face’ (64.5%), ‘hand’ (63.8%), and ‘neutral’ (58.8%) locations 

were also all classified well above chance.

Handshape classification was similar to location classification, with peak accuracy ~36.6% 

(chance≈12.5%; Figure 2D). The classifier performed above chance levels from ~400ms 

before movement onset to ~450ms after movement onset, and peaked ~50-150ms after 

movement onset. Averaged over a 200ms window around the peak, the confusion matrix for 

8 handshapes revealed high accuracy for each handshape (Figure 2E, diagonal). Classifier 

confusions were consistent with sensorimotor similarity between handshapes. For example 

‘B’, ‘C’ and ‘5’ are forms in which all 5 fingers are prominent, but differ in terms of 

curvature (‘C’ and ‘B’), and whether the fingers are separated or together (‘5’ versus ‘C’ and 

‘B’).

We next asked which brain regions contribute to location and handshape classification by 

examining the weights of the linear SVM models at the peak of the classification curves. 

The weights were averaged across all 10 folds and all of the one-vs-all classifiers for each 

condition. We observed that the weights for both location (Figure S2A) and handshape 

(Figure S2B) were highly distributed across sensorimotor cortex. Consistent with the 

example electrodes in Figure 1, we observed stronger weights for handshape in post-central 

areas, and largely overlapping localization for location, particularly in ventral pre-central 

areas.

We also examined the classification performance for internal movements. Overall, 

classification accuracy was lower, but still well above chance, reaching 56.5% 

(chance≈25%; Figure S2E). Performance was above chance from ~50ms before movement 

onset to ~350ms after movement onset, and peaked ~20ms before movement onset. 

Averaged over a 200ms window around the peak classification accuracy, the confusion 

matrix showed that ‘close’ (57.4%), ‘flex’ (39.2%), ‘oscillate’ (47.6%), and ‘rotate’ (55.4%) 

were all classified well above chance (Figure S2F).

In summary, high-gamma neural activity in left-hemisphere peri-rolandic and parietal cortex 

encodes fine-scale articulatory features that are associated with phonological features of sign 

language. As discussed below, the hierarchical and temporally distributed patterns of activity 
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may reflect different requirements for the planning and execution of skilled movements with 

early pre-movement activity encoding goal directed targets of a signed action, while later 

occurring (i.e. post-movement onset) activity reflecting proprioceptive information 

necessary for fine motor error monitoring related to handshapes.

Stimulation Reveals Sensorimotor Map

The neurophysiology results thus far show a distributed set of focal representations for 

specific sensorimotor features related to handshape and the spatial locations in which 

movements take place. A notable aspect of these results is the inter-mixed nature of face and 

hand representations, and the fact that the timing of activity suggests both sensory and motor 

representations on both pre- and post- central gyri.

To definitively map the functions of these sensorimotor areas, we performed direct electrical 

stimulation (DES) with the participant, where the entire area of cortex exposed by the 

craniotomy was mapped. DES provides a way to test the causal role of focal neural 

populations in various behaviors by precisely inducing or disrupting activity patterns, 

causing somatotopically-specific movements and percepts.

We found that stimulating sites throughout the pre- and post-central gyri caused a variety of 

specific motor and sensory effects (Figure 3). Notably, we found three sites that caused both 

facial movements and sensations in the jaw and tongue (sites 1, 2, and 7), which were 

located on ventral sensorimotor cortex. We also found two sites over precentral gyrus that 

did not evoke movements, but did evoke facial sensations (sites 3 and 11). There were three 

post-central sites that caused only sensory effects for either the face (site 4) or hand (sites 5 

and 6). Notably, there were relatively few sites that caused motor or sensory effects for the 

hands, even in dorsal regions of sensorimotor cortex, which reflects differences between 

ECoG and DES in terms of defining functional properties of local tissue.

We also stimulated while the participant performed continuous counting and picture naming 

tasks. We found a site on ventral pre-central gyrus (near the anterior bank; site 11), which 

caused counting arrest. Notably, this area has been implicated speech arrest, hand movement 

arrest, and in music arrest where patients are using their hands to play piano or guitar 

[27,28]. There were also two sites that caused naming errors, one on SMG (site 13), and one 

over posterior middle temporal gyrus (site 12), consistent with naming errors during speech 

in hearing patients [29].

Together, these results demonstrate that the areas in which we observe neurophysiological 

activity that correlates with sign production overlap with areas that are causally related to 

sensorimotor and language function.

Linguistic and Transitional Movements Have Distinct Activity Patterns

To determine the extent to which these cortical responses are unique to language production, 

we asked whether neural activity in these regions is different during the production of 

linguistic versus transitional movements that are matched closely for sensorimotor features. 

During the task, the participant produced three main types of movements: lexical signs, 

fingerspellings, and transitional gestures. Lexical signs and fingerspellings constitute 
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linguistic movements that carry meaning and occur in highly structured sequences. In 

contrast, transitional gestures are movements that occur between linguistic movements, and 

are characterized by the physical properties of both the preceding and subsequent linguistic 

content. While they contain information about the lexical sign or fingerspelling movements 

surrounding them, these dynamic actions are not considered part of the underlying 

representation of linguistic (i.e., phonological) signs. To minimize the possibility that any 

observed effects are due to fine-scale sensorimotor differences between linguistic and 

transitional movements, both conditions were matched closely for handshape information. 

Furthermore, electrodes that significantly encoded location information (Figure 1A) were 

excluded from the analysis.

We found that specific electrodes showed stronger responses to linguistic movements 

(Figure 4A-B), while a smaller subset showed stronger responses to transitional movements 

(Figure 4C). Across all electrodes, responses were generally significantly stronger for 

linguistic movements, particularly in ventral and dorsal precentral gyrus, and SMG (Figure 

3D; see Figure S3A for electrode timecourses and statistics; ranksum test p<0.05, 

Bonferroni corrected for electrodes). There were three distinct regions that showed greater 

responses to transitional movements: dorsal pre-central gyrus, ventral SMG, and middle pre-

central gyrus (Figure 3D). In some cases, neural responses actually decreased for linguistic 

movements, while transitional movements evoked stronger activity (e.g., Figure 3C). While 

electrodes generally showed evoked activity to both linguistic and transitional movements, 

these results demonstrate that there are differences in the pattern of response amplitude that 

distinguish these categories (Figure S3A).

The timing of the peak differences between linguistic and transitional movements revealed 

an anterior-to-posterior pattern, with pre-central activity peaking up to ~250ms before 

movement onset, and post-central activity peaking up to ~250ms after movement onset 

(Figure 4E; see also Figure 4A-B). There was a significant correlation between the 

magnitude of the peak amplitude difference and the latency at which that peak occurred 

(Pearson r = 0.39, p < 0.007; Figure S3C). This suggests that as activity propagates from 

motor to sensory cortex, linguistic movements evoke increasingly greater activity compared 

to transitional movements. Note that transitional movement effects do not always precede 

linguistic effects, since transitional movements occur both before and after each linguistic 

event. Together, these results suggest that post-central and supramarginal gyri may contain 

specific linguistic representations for meaningful movements in sign and fingerspelling.

We also compared the production of real signs with pseudo signs, which were created by 

replacing a single handshape feature of a real sign, rendering it meaningless. On a subset of 

trials, the participant repeated the real and pseudo signs, allowing us to examine the 

production of these two movement types while controlling for low-level sensorimotor 

differences. As with linguistic versus transitional movements, we found that the majority of 

electrodes showed stronger responses to real signs (Figure 4F; see Figure S3B for electrode 

timecourses and statistics; ranksum test p<0.05, Bonferroni corrected for electrodes). The 

same three areas that showed greater responses to transitional movements also showed 

stronger responses to pseudo signs. As with the linguistic vs transitional movement 

distinction, most electrodes that showed evoked activity for real signs also showed evoked 
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activity for pseudo signs, however the relative response amplitude differed, usually with 

higher activity for real signs (Figure S3B). The participant produced real and pseudo signs 

with the same durations (Kolmogorov-Smirnov D = 0.13, p = 0.86), although he was faster 

to start producing real signs (Kolmogorov-Smirnov D = 0.38, p = 0.007).

Lexical Frequency and Age of Acquisition of ASL Signs Modulate Activity

Finally, we wanted to understand whether neural activity during signing is influenced by 

factors that are known to modulate activity during speech and other motor actions [30]. 

Here, we focused on task difficulty, which we quantified using lexical variables of sign 

frequency and age of acquisition (AoA)[31]. The original task design (lexical decision) was 

focused more on perceptual processes related to sign language. Furthermore, the stimuli 

were designed to span a range of statistical properties of ASL, including lexical frequency 

and AoA. Therefore, we initially examined neural responses time-locked to the stimulus 

presentation.

Although response times were on average sufficiently long to separate putative perceptual 

and motor activity (Figure S1C), we found that most active electrodes showed response 

patterns that were not clearly attributable to perception (Figure S4A). There were some 

electrodes that exhibited multi-peak responses that suggest distinct perception and 

production-related activity, however at the single trial level, the variability in response times 

made this hard to interpret. Furthermore, when we examined the main stimulus manipulation 

in the task (real vs. pseudo signs), we found that most significant differences between these 

conditions occurred during time windows more clearly attributed to production (Figure 

S4B). Thus, while there may be perception-related activity in sensorimotor cortex in a Deaf 

signer, the present data do not allow us to disambiguate perceptual and motor activity.

However, we found evidence that stimulus-related statistical features are correlated with 

activity during both early and later time periods putatively associated with perception and 

production. Whether time-locked to stimulus onset (Figure 5A) or response onset (Figure 

5B), we found a significant negative correlation with frequency and a positive correlation 

with AoA (p<0.05, Bonferroni corrected for timepoints). As expected, frequency and AoA 

are negatively correlated for the stimuli (Figure S5; Spearman’s ρ=−0.58, p=1.3x10−18), 

since higher frequency signs/words tend to be learned earlier. However, there is still 

sufficient variability in this relationship that the neural regression analysis could 

characterize, leading to distinct timecourses of effects.

The stimulus-locked regression weights showed the pattern more clearly, and also revealed 

an initial positive frequency and negative AoA effect (Figure 5A). Furthermore, the 

frequency effect preceded the AoA effect, starting ~500ms before average movement onset, 

and nearly 1000ms before the onset of the participant’s production. These results indicate 

that although we did not observe clear event-related neural responses to the presentation of 

the sign videos, activity after the stimulus onset was modulated by processes related to both 

frequency and AoA, effects that persisted throughout the duration of the sign production.

In contrast to previous analyses showing movement- and linguistic-related activity in 

sensorimotor cortex, frequency and AoA effects were localized primarily to prefrontal cortex 
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(Figure 4C). Only electrodes showing R2 values with P < 0.05, Bonferroni corrected for 

multiple timepoints, and constrained to at least 50ms of contiguous significance were 

considered significant (their average regression weights and R2 values are shown in Figure 

4A-B). On these electrodes, frequency and AoA accounted for up to ~17% of the variance.

Discussion

We examined the neural basis of sign language production in a unique case of a profoundly 

deaf ASL signer using high-density ECoG directly on the cortical surface. These recordings 

provide the highest resolution description of fluent ASL production to date, and allow us to 

characterize the fine-scale spatiotemporal dynamics of sensorimotor and linguistic manual 

movements. The participant provided a rich, complex, and relatively natural set of behaviors, 

which gave us the opportunity to understand the cortical organization of highly-practiced 

sensorimotor control in the human brain.

Cortical organization of manual sensorimotor features

Non-invasive neuroimaging has revealed the broad cortical networks involved in single sign 

and sentence production. Our results overlap with the frontal and parietal areas that have 

been observed previously, including supplementary motor area, precentral gyrus, postcentral 

gyrus, paracentral lobule (BA 5,7), and SMG (BA 40) [18,20,21,32]. SMG is a multi-modal 

region that contains an integrated representation of the body, and in monkeys, neurons there 

exhibit complex body-centered responses [33-36]. Overall, this frontal-parietal network is 

associated with motor and linguistic behaviors, including action planning.

To our knowledge, there is only one previous report of intracranial neurophysiology in 

humans during sign language production [15]. In that case report, a hearing patient with 

epilepsy who was a proficient, late learner of ASL performed picture naming, word reading, 

and word repetition in both English and ASL. The authors observed highly overlapping 

high-gamma activity between speech and sign, except in sensorimotor and parietal regions. 

Across sensorimotor cortex, speech and sign were localized to areas that reflected the 

articulators used (e.g., tongue vs hand). In parietal cortex, there were unique responses 

during signing, which is consistent with previous reports of lesions to these areas causing 

sign language aphasia [37].

Here, we confirm many of these activity patterns [15], and we expand on what activity in 

these various sensorimotor regions reflects. We observed that high-gamma neural activity in 

left-hemisphere peri-rolandic and parietal cortex encodes fine-scale articulatory features that 

map onto the crucial phonological features of sign language [38]. Discrete cortical locations 

in parietal cortex were shown to differentiate handshapes that were similar in articulatory 

form (e.g., “O” and “S”), where subtle differences (e.g., open vs closed fist) are the 

distinctive feature that represents different linguistic categories. This is consistent with a 

previous report demonstrating that sign language paraphasias, including formational errors 

in handshape, were evoked by stimulation to the left-hemisphere inferior parietal lobe in an 

intraoperative mapping study of a deaf signer [39]. In addition, both the previous stimulation 

mapping and the present ECoG results demonstrated cortical specificity for distinct body 
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locations, which represent another contrastive feature of signed languages in addition to 

handshape.

Distinct representations of linguistically-meaningful features

Here, classification and hierarchical clustering provide detailed evidence for neural 

representations of linguistically-relevant features of ASL, which may be combined 

compositionally during signing. First, the distinction between articulatory locations used in 

lexical signs versus fingerspelling demonstrates a key dissociation between two mutually 

exclusive signing systems, which agrees with a recent PET study that showed cortical 

activation differences during the production of fingerspelled words and body anchored 

lexical signs in ASL [21].

Second, we found neural representations of ASL handshapes, for example distinguishing 

open postures (e.g. B, C, 5) and more compact postures (e.g. S, A, T). Previous behavioral 

analyses have demonstrated that the degree of handshape closure factors significantly in 

phonetic and phonological models of ASL [40-42]. The distinct (but partially overlapping) 

representations of location and handshape (and to a lesser degree, internal movements) 

provide evidence for a spatial encoding of phonological features in ASL that are analogous 

to articulatory synergies recently described for speech [43]. Furthermore, differences in the 

timing of location and handshape classification support a hierarchical organization of 

compositional elements in sign language.

Third, we found that linguistic movements were associated with greater responses in ventral 

and dorsal pre-central gyrus and SMG. We confirmed that this effect was specifically related 

to movements produced in a linguistic context by comparing real lexical signs and pseudo 

signs, which differed only in a single handshape. These results provide further evidence for 

encoding of linguistically-relevant articulatory features throughout the sensorimotor 

network, which are also modulated by lexical properties of sign frequency and age of 

acquisition.

Conclusions

We present a unique case study that allows us to characterize the dynamics of manual 

articulations in sign language at a scale that has never before been possible. The confluence 

of circumstances here – profound deafness, early exposure to sign language, and the 

unfortunate development of a brain tumor requiring awake surgery– are rare and unlikely to 

be replicated directly. For decades, sign language has provided a crucial test of the generality 

of language representation across modalities [44]. As new methodological advances allow 

for characterizations of the underlying representational structure of speech, studies using 

similar approaches in sign language have great potential to reveal the amodal features that 

constitute language. Particularly where our results agree with recent work in speech 

production [45], it is now possible to characterize the organization and representations 

underlying linguistically-relevant movements, regardless of language modality or hearing 

status.
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STAR ★ Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Edward F. Chang 

(Edward.Chang@ucsf.edu).

Materials availability—This study did not generate unique reagents.

Data and Code Availability—The datasets/code supporting the current study have not 

been deposited in a public repository because it contains personally identifiable patient 

information, but are available in an anonymized form from the corresponding author on 

request after signing a data transfer agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participant—One 48-year-old right-handed male participated in the study. He was 

profoundly deaf in both ears since age 2, having lost his hearing due to spinal meningitis. He 

had attended residential schools for the deaf and worked as a state employee. American Sign 

Language (ASL) was his primary and preferred language. At age 48, he was diagnosed with 

glioblastoma multiforme (GBM) located in the left temporoparietal area. Prior to this 

diagnosis, he had no other major medical conditions, and had no other known cognitive or 

neurological deficits. The patient gave written informed consent prior to surgery and 

experimental testing. All protocols were approved by the Committee on Human Research at 

UCSF and experiments and data in this study complied with all relevant ethical regulations.

METHOD DETAILS

ECoG Data Acquisition—A high-density 256-channel grid with 4mm inter-electrode 

spacing was placed on the cortical surface covering frontal and parietal areas. The grid was 

connected to a multichannel pre-amplifier connected to a digital signal processor (Tucker-

Davis Technologies) and digitized at 3052 Hz. Signals were monitored in real time and 

recorded without any hardware filtering.

Data Preprocessing—Data were visually inspected offline for noisy channels and time 

points containing artifacts (e.g., electrographic spikes, DC shifts), which were excluded from 

all subsequent analyses. The remaining channels were common average referenced, and 

notch filters were used to remove 60 Hz line noise and harmonics.

The broadband ECoG voltages were filtered using logarithmically-spaced band-pass filters 

and the Hilbert transform, described in previously published procedures [45] to extract 

signals in the high-gamma (70-150 Hz) range [46,47]. High-gamma (HG) responses are of 

interest in the present study because they are known to correlate with multi-unit firing [48], 

and have strong evoked relationships with speech perception [49-51] and production [45]. 

The HG time series on each channel was normalized with z-scores relative to the period 

from 1000 to 500ms before stimulus onset. This window was chosen to provide a baseline 

that is not contaminated by either sensory or motor components of the task.
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Task and Behavior—The participant viewed short video clips of single ASL signs and 

pseudosigns (Figure S1A) on a computer screen placed in his field of view. There were 79 

videos (49 real signs, 30 pseudo signs, which were created by changing a single handshape 

feature in real signs), and the participant viewed each video 4 times. Videos were 931.3 ± 

324.4ms in duration. He was instructed to perform a lexical decision task, where he would 

respond to each video with the ASL signs ‘yes’ (real sign) or ‘no’ (pseudo sign). Lexical 

decision sign stimuli were presented using Presentation (version 6.1.3) on a Dell Latitude 

620 laptop, which output codes to an analog channel in the ECoG recordings, which 

provided millisecond synchronization between visual stimuli and neural data. Two cameras 

recording at 30fps were used to capture the participant’s responses during the procedure. 

Video data were analyzed using ELAN (version 4.4) and a multi-tiered coding scheme that 

documented relevant features (e.g., stimulus onset, movement onset, sign-gloss, handshape, 

location etc; see Table S1). These annotations were time-aligned to the Presentation stimulus 

time codes. Furthermore, all ECoG analyses were performed with data downsampled to 

100Hz, providing ~10ms temporal resolution, with ± 3 neural sample synchronization to 

each coded event.

Although the participant understood the task instructions and was awake and alert, on most 

trials he did not solely respond to the lexical decision question. Instead, he produced a 

variety of responses, including repeating the sign, fingerspelling the sign (e.g., “C-A-N-D-

Y” for “candy”; Supplementary Video S1), repairing pseudo signs to real signs, and other 

comments such as jokes. This resulted in a large and varied set of linguistic and transitional 

movements that could be used to investigate the neural basis of ASL production in a deaf 

signer (Figure S1A,B). To capitalize on this rare, naturalistic data set, a fluent linguistically-

trained ASL signer carefully coded the video of the participant’s behavior frame-by-frame 

(uncertain events were discussed in detail with another fluent linguistically-trained ASL 

signer). There were 26 parameters that were coded for each event, which included the onset 

and offset times of the event (defined as the frame when the participant began to move for 

that particular feature), the movement type (lexical sign, fingerspelling, transitional 

movement, etc.), the response type (repetition, comment, yes/no, etc.), and a series of 

sensorimotor and linguistically relevant phonological features of ASL: handshape, location, 

internal movement, movement path, and movement direction (see Table S1 for complete list 

of coded features). Fingerspelling occurred in a location central to the participant’s chest due 

to the constraints of the operating setup, and to allow the experimenters to see his 

articulations clearly. These features were chosen as descriptions of the sensorimotor actions 

the participant performed, which could then be related to the linguistic structure of ASL. 

ECoG data were segmented for the time window [−2 2] seconds around the onset of each 

behavior. See Supplementary Video S1 for an example of a trial in which the participant 

produced both a fingerspelling and a lexical sign for the word ‘candy’.

We measured response times as the time from the start of each video stimulus to the time of 

the first movement onset within each trial (not counting subsequent movements within a 

trial). The participant responded with a mean response time of 953.5ms (±250.3ms; Figure 

S1C). The inter-trial interval (ITI; measured from last movement onset to next stimulus 
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onset) was 4.13sec (±1.32sec; Figure S1D), providing sufficient time for a return to neural 

baseline between trials.

Stimulation Mapping—To map the function of local neural populations, we used direct 

electrical stimulation (DES) on the exposed surface of the cortex. Current was delivered 

using a bipolar stimulator wand (Integra LifeSciences, Plainsboro, NJ) with parameters set at 

60Hz frequency, 3-5mA current amplitude, biphasic pulses. Amplitude was determined 

based on the ability to elicit sensorimotor or sign arrest effects without after-discharges 

[27,29,52]. Signing errors were measured during counting and picture naming tasks. During 

the picture naming task, the participant viewed images on a screen and produced the ASL 

sign and/or fingerspelling translation for the name of the object. As with speech, signing 

errors were either arrest (complete involuntary cessation of movement until the offset of 

stimulation), slowing, or dysarthria of the manual articulators. The entire area of the exposed 

craniotomy was stimulated across ~1 hour of mapping. Negative sites (sites with no errors or 

elicited responses) were not marked on the brain during mapping, however were evaluated in 

the video recording of the entire session with the camera focused on the exposed brain.

QUANTIFICATION AND STATISTICAL ANALYSIS

Location/Handshape Linear Regression Analyses—To examine the encoding of 

behavioral variables of interest on each electrode, neural activity was regressed against 

feature matrices describing the features of articulatory activity (e.g., handshape, location, 

internal movement). For categorical variables like handshape, the features were coded as a 

series of binary dummy variables (1 if present during a particular behavior, 0 if absent). For 

the location/handshape regression, a minimum of 10 occurrences of each location/handshape 

combination was required to be included in the analysis.

Separate regression models for each electrode were run across the 4 seconds of segmented 

ECoG trials using a sliding window. Electrodes were considered to have significant effects 

of location/handshape if the regression resulted in R2 values at a threshold of P < 0.01, 

Bonferroni corrected for 256 electrodes and showing at least 100ms of contiguous 

significance at that threshold. This procedure identified 61 significant electrodes distributed 

across sensorimotor and parietal cortex.

Hierarchical Clustering—To examine structural relationships among the observed 

feature properties identified through the regression analysis, we used hierarchical clustering, 

an unsupervised method for finding structure in the neural data. Ideally, location, handshape, 

and internal movement features would be clustered simultaneously. However, the participant 

did not produce a sufficient number of movements where all three features were apparent 

with a reasonable number of occurrences. Therefore, we performed separate clustering with 

3 combinations: (1) Location/handshape, (2) Location/internal movement, and (3) 

Handshape/internal movement. A minimum of 8 occurrences of each combination was 

required to be included in the analysis.

Hierarchical clustering was performed for the data averaged over a 200ms window centered 

at the onset of the linguistic movement across all 61 electrodes identified in the regression 

analysis. This time window was chosen as it was generally the peak of the R2 in the 
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regression analysis. Clustering was done using Ward’s method, and the ordering of the 

leaves was determined by minimizing the distances between neighboring feature 

combinations. In the visualization of the hierarchy, branches were colored such that 

distances below 40% of the maximum have unique colors.

Classification—Location, handshape, and internal movements were examined using 

supervised classification. The 4 locations and 8 handshapes with at least 50 occurrences 

were separately classified using linear Support Vector Machines (SVMs). For internal 

movements, there were 4 categories that had at least 35 occurrences. ECoG data from the 61 

significant electrodes identified in the regression analysis was used as features in a series of 

classifiers.

A 100ms window was advanced by 20ms increments along the 4 second timecourse of 

neural activity, producing timecourses of classification accuracy. Since there were more than 

2 classes in each analysis, we used a one-vs-all approach, where the data were assigned a 

score for each possible class using a uniform prior across classes. Each data point was 

assigned to the class with the highest classification score.

Classification accuracy was defined as the average classification accuracy of each class. This 

was done by counting the total number of confusions for each class, normalizing for class 

size, and calculating the proportion of correct classifications. This approach assigns the same 

weight to smaller categories as it does to larger categories. We used this approach rather than 

a more basic tally of the total number of correct classifications because we were interested in 

the classifier’s ability to discriminate between feature classes, and the more basic approach 

would have skewed the accuracy to reflect the ability to discriminate the largest classes.

To prevent over-fitting and to quantify significance, we used 10-fold crossvalidation. For 

classification accuracy timecourses, the mean and standard deviation across the 10 folds of 

held-out test data are shown. We also generated a null distribution of 10-fold cross-validated 

test data by randomly shuffling the class labels for each training set. We defined above-

chance classification accuracy as timepoints where the standard deviations of the null and 

actual distributions do not overlap.

To examine which electrodes contributed most strongly to each classification model, we 

extracted the linear weights:

f(x) = x
s

T
β + b

Where β is the set of linear predictor coefficients used to define the separating hyperplane 

for the classes, s is a scaling parameter, and b is the bias term. The model weights were 

normalized together for location and handshape classifiers for visualization, which was 

justified given that the L2 norm of each weight vector was similar (location=1.51, 

handshape=1.71).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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• Sign language production requires coordinating sensorimotor and cognitive 

processes

• We recorded electrocorticography (ECoG) while a deaf signer produced signs

• Phonological sign features were distinctly represented in sensorimotor cortex

• Population neural activity reflected linguistically-relevant sensorimotor 

features

Producing sign language requires coordination of phonologically-organized hand 

movements. Leonard et al. record direct neural activity in a deaf signer undergoing brain 

surgery while he produces signs and other movements. Location and handshape are 

distinctly represented in sensorimotor cortex, revealing neural organization for sign 

articulation.
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Figure 1: Individual electrodes show sensorimotor selectivity for relevant linguistic features of 
ASL.
(A) Linear regression R2 values showing electrodes that respond significantly to location and 

handshape features. The yellow line marks the central sulcus. Filled electrodes passed a 

statistical cutoff for the regression analysis (p<0.01, Bonferroni corrected for multiple 

comparisons across electrodes). (B) Comparison of single electrode activity for movements 

occurring at hand and face locations. (C-E) Single electrodes respond selectively to hand 

(C,D) and face (E) locations, controlling for handshape. Some responses begin at movement 

onset (video frame when the participant begins to move; C), and others begin up to ~1sec 

before movement onset (D,E). (F) Comparison of single electrode activity for ‘O’ and ‘S’ 

handshapes, which are physically similar. (G-I) Single electrodes respond selectively to ‘O’ 

(G,H) and ‘S’ (I) handshapes, controlling for location. See Figure S1, Table S1, and Video 

S1.
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Figure 2: Hierarchical clustering of sensorimotor features.
Unsupervised clustering of neural data reveals hierarchical structure of linguistically-defined 

phonological features. (A) Fingerspelling location is distinct from all other locations. Larger 

branches are generally organized according to location, while the smallest distances reflect 

handshape similarity. (B-C) Neural data was used to classify four locations. The timecourse 

of classification accuracy revealed a peak prior to movement onset (B). At the peak, all four 

locations are classified above chance, with poorer performance for “neutral” (C). (D-E) 

Neural data was used to classify eight handshapes. The timecourse of classification accuracy 

revealed a peak just after movement onset (D). At the peak, handshape confusions were 

largely driven by sensorimotor similarity (E). Light grey in B and D reflects chance 

distributions. See Figure S2 and Table S1.
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Figure 3: Direct electrical stimulation reveals sensorimotor and language organization.
Sites with evoked motor, sensory, and language errors are marked on the participant’s brain. 

Sites with multiple effects have markers offset for visualization. Black line indicates the 

central sulcus. No sites showed only motor hand effects.
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Figure 4: Localization of linguistic features of sign.
Transitional movements (not part of lexical signs or fingerspelling) were compared to 

linguistic movements. (A-C) Example electrodes showing timecourses for linguistic signs 

and transitional movements (matched for handshape). Electrodes are labeled in D. (D) The 

peak difference between transitional and linguistic movements reveals generally larger 

responses to linguistic signs throughout pre-central, post-central, and parietal cortex. The 

dorsal portion of post-central gyrus and anterior SMG respond more strongly to transitional 

movements. (E) The peak latency of the difference between transitional and linguistic 

movements reveals an anterior-to-posterior gradient of activity across sensorimotor cortex. 

(F) Producing real signs evokes stronger activity in most areas except posterior dorsal 

parietal cortex. Pseudo signs are matched to real signs for handshape. See Figure S3.
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Figure 5: Lexical frequency and age of acquisition (AoA) effects on stimulus- and response- 
locked activity.
(A) At ~1000ms after stimulus onset, there is a negative effect of frequency and a positive 

effect of AoA, explaining a maximum of ~8% of the variance on average. Box plots beneath 

axes indicate interquartile range and 1.5 times interquartile range for response onset (red), 

stimulus offset (green), and movement onset (blue). (B) Response-locked (production) 

neural activity was also modulated by frequency and AoA, with a broader timecourse 

peaking around the onset of each movement. (C) Electrodes significantly modulated by 

frequency and AoA during the post-stimulus window were primarily localized to dorsal 

prefrontal cortex. A subset of the same electrodes was modulated during production. See 

Figure S4 and Figure S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB (Mathworks) http://www.mathworks.com/products/matlab/ RRID: SCR_001622

Presentation (Neurobehavioral Systems) https://www.neurobs.com/ RRID: SCR_002521

ELAN (Max Planck Institute for Psycholinguistics) https://archive.mpi.nl/tla/elan N/A
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