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REGULAR ARTICLE

A refined cell-of-origin classifier with targeted NGS and artificial
intelligence shows robust predictive value in DLBCL
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Key Points

• A DLBCL cell-of-origin
classifier integrating
both genetic and gene
expression signatures
shows robust predic-
tive values in DLBCL
cohorts.

• Targeted NGS and AI
enable potential appli-
cation of fast and reli-
able DLBCL
classification assays in
clinical practice.

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity of B-cell lymphoma. Cell-of-

origin (COO) classification of DLBCL is required in routine practice by the World Health

Organization classification for biological and therapeutic insights. Genetic subtypes uncovered

recently are based on distinct genetic alterations in DLBCL, which are different from the COO

subtypes defined by gene expression signatures of normal B cells retained in DLBCL. We

hypothesize that classifiers incorporating both genome-wide gene-expression and pathogenetic

variables can improve the therapeutic significance of DLBCL classification. To develop such

refined classifiers, we performed targeted RNA sequencing (RNA-Seq) with a commercially

available next-generation sequencing (NGS) platform in a large cohort of 418 DLBCLs. Genetic

and transcriptional data obtained by RNA-Seq in a single run were explored by state-of-the-art

artificial intelligence (AI) to develop aNGS-COO classifier for COO assignment andNGS survival

models for clinical outcome prediction. The NGS-COO model built through applying AI in the

training setwas robust, showing high concordancewith COOclassification by either Affymetrix

GeneChip microarray or the NanoString Lymph2Cx assay in 2 validation sets. Although the

NGS-COO model was not trained for clinical outcome, the activated B-cell–like compared with

the germinal-center B-cell–like subtype had significantly poorer survival. The NGS survival

models stratified 30% high-risk patients in the validation set with poor survival as in the

training set. These results demonstrate that targeted RNA-Seq coupled with AI deep learning

techniques provides reproducible, efficient, and affordable assays for clinical application. The

clinical grade assays and NGS models integrating both genetic and transcriptional factors

developed in this study may eventually support precision medicine in DLBCL.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell
lymphoma and is clinically heterogeneous. Gene expression
profiling (GEP) classified DLBCL into 2 major molecular subtypes
according to their cell of origin (COO): germinal-center B-cell–like
(GCB) and activated B-cell–like (ABC) DLBCL.1 ABC-COO is
associated with poorer clinical outcomes in DLBCL irrespective of
treatment: CHOP (cyclophosphamide, doxorubicin, vincristine, and
prednisone), rituximab (R)-CHOP,1-3 obinutuzumab (G)-CHOP,4 or
classical salvage chemotherapy R-DHAP (rituximab, dexamethasone,
high-dose cytarabine, and cisplatin) followed by intensive therapy
plus autologous stem cell transplantation.5 However, several novel
agents, including lenalidomide,6-8 ibrutinib,8,9 and bortezomib alone10

or in combination with durvalumab (anti–PD-L1),11 showed selective
or better clinical efficacy in ABC- vs GCB-DLBCL. The prognostic
and therapeutic differences between ABC- and GCB-DLBCL have
a molecular basis, such as higher frequencies of mutations in CD79,
MYD88, CARD11, PRDM1, and TNFAIP3,12 chronic active B-cell
receptor signaling,13 and more frequent MYC/BCL2 double expres-
sion in the absence of genetic MYC/BCL2 double hit14 in ABC-
DLBCL. In addition, the subcellular distribution and mechanism of
action of doxorubicin in ABC-DLBCL are different from those in
GCB-DLBCL.15 To guide clinical therapeutics, distinction of the
GCB vs ABC/non-GC subtype has become the standard practice
according to the 2016 revision of the World Health Organization
classification of lymphoid neoplasms.16

Significant efforts have been put into establishing clinically applicable
assays and accurate classification of DLBCL, and methodology to
determine COO has been evolving in the last 2 decades. The
original Lymphochip spotted cDNA microarray and the gold
standard classification algorithm are robust in COO classifica-
tion but impracticable for routine clinical practice.1-3 Research-
ers thus developed algorithms to distinguish GC from non-GC
subtypes based on protein expression of 3 to 5 biomarkers in
formalin-fixed, paraffin-embedded (FFPE) tissue samples readily
assessed by immunohistochemistry (IHC) in the clinic.17-24 However,
the accuracy of these IHC algorithms and the prognostic signifi-
cance of COO subtypes determined by IHC algorithms5,25 are
not consistent.23,26-28 To enable GEP by DNA microarrays to
classify DLBCL using clinical FFPE tissues that yield highly
fragmented RNA samples, new RNA amplification and labeling
techniques and classification models were developed, including
a 100-gene classifier for Affymetrix GeneChip (Affymetrix, Inc)
data29 and a 20-gene DLBCL Automatic classifier for Illumina
WG-DASL platform (Illumina United Kingdom) data30 developed
from a previous platform-independent 27-gene DLBCL subgroup
predictor31 that showed reproducibility and prognostic value.

To simplify the GEP process for FFPE samples, a multiplexed
quantitative nuclease protection assay (qNPA) was developed that
directly hybridizes mRNA in situ using 50-mer probes for genes of
interest, followed by probe capture and quantitative imaging, thereby
reliably detecting mRNA levels in FFPE samples without RNA exaction
and amplification.32-34 The qNPA platform (HTG Molecular Diagnos-
tics, Inc.) can accurately classify DLBCL using a 14-gene signature.35

The current HTG EdgeSeq DLBCL COO assay has been applied in
a clinic trial.36 However, the most successful simplified variation of
microarray for rapid COO determination is the NanoString nCounter
System (NanoString Technologies), which elegantly detects target

mRNA of interest in extracted nonamplified RNA samples using
a capture probe and a color-coded reporter probe, followed by
purification, immobilization, and digital readout.37 Several different
small gene panel-based DLBCL-COO assays, including the most
wildly used Lymph2Cx 20-gene assay,38 have been applied in
research studies and clinical trials,4,39-45 although a large gene
panel (145 genes) was also achievable for the NanoString nCounter
system.46 COO determined by Lymph2Cx 20-gene assay either
exhibited high concordance with GEP-determined COO or showed
significant prognostic value in 4 retrospective studies47-50 and a clinical
trial,51 but not in 2 clinical trials52 and 1 retrospective study.53

Reverse transcriptase–multiplex ligation-dependent probe amplifi-
cation, which ligates the left and right probes annealed to cDNA
target sequences, permitting amplification of specific genes,54 is
another type of assay that has been applied for DLBCL-COO
classification based on expression of 14 or 21 genes.55,56 This
method is sensitive and cost-effective without using a dedicated
platform but has relatively poor dynamic range and is unable to
include some COO-specific genes.55

DLBCL outcome predictors that link GEP signatures directly to
clinical outcome instead of COO have also been developed,2,3,57,58

but the reproducibility between different studies was poor, and the
predictive value for therapies other than the standard treatment is
uncertain. In contrast, COO classification with underlying biology
basis9 also have predictive values for novel therapies, as demon-
strated in phase 1/2 and 2/3 clinical trials.6-8,10,11 However, recent
clinical trials for adding ibrutinib (phase 336) and bortezomib (phases
259 and 360) to the standard R-CHOP in previously untreated ABC
(by Hans algorithm and HTGEdgeSeq36 or by Illumina DASL assay60

) or non-GC (by Hans algorithm and Nanostring Lymph2Cx assay59)
DLBCL patients failed to show improved clinical outcome.

To better classify DLBCL biologically guiding therapeutic clinical
trials, genetic alteration signatures have been explored to subtype
DLBCL in large numbers of patients, as genetic upstream of the
oncogenic biology in DLBCL can define the response to novel
targeted therapies. Schmitz et al61 used a GenClass algorithm, and
Chapuy et al62 used an nonnegative matrix factorization (NMF)
consensus clustering algorithm to analyze high-content genetic
data of 574 and 304 patients, respectively, and uncovered
genetically distinct subtypes within or independent of COO subtypes,
most of which demonstrated robust prognostic significance and
potential therapeutic relevance.61,62 However, the pathogenic driver
roles of many mutations in signatures vary or have not been
validated,63,64 and how to accurately assign a genetic subtype
to new individual patients at presentation in real time is less
clear than the current COO classification. In a phase 3 GOYA
study (NCT01287741),43 approximation of EZB, BN2, N1, and
MCD subtypes based on presence of subtype founder gene
alterations in targeted next-generation sequencing (NGS) data of
465 genes did not find prognostic effect, whereas clusters (C) C2,
C3, and C5 identified by applying NMF consensus clustering to the
study cohort showed poorer prognosis compared with C0, C1, and
C4 clusters. In another prospective study from the LNH03B LYSA
(Lymphoma Study Association) clinical trials with targeted NGS of 34
key genes and genomic copy number variation analysis, none of
the genetic subtypes identified by the GenClass algorithm or
NMF consensus clustering showed prognostic significance.65

The inconsistent prognostic values could result from the highly
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variable sequencing panels and NGS data quality in different
studies, inaccurate subtyping, and the clinical heterogeneity
within defined genetic subtypes underscored by phenotypic
biologic (eg, MYC/BCL2 expression66) heterogeneity arising
from many other underlying mechanisms, for example, epigenetic
deregulation and genetic alterations in noncoding regions.67 In
fact, in the cohort of Schmitz et al, MCD patients with MYD88/
CD79B double mutations had better survival compared with
other MCD patients,66 and the EZB subtype has been further
divided into the unfavorable EZB-MYC1 and favorable EZB-MYC─

subtypes recently by a LymphGen algorithm.68 A LymphGen
webtool has been public accessible and able to assign genetic
subtypes to patients if the input is from a cohort but not if from only 1
patient.

Based on these previous studies, we hypothesized that combined
high-throughput genetic and gene expression signature analysis
may improve the DLBCL classification for prognostic stratification
and therapeutic implication. To be clinically applicable, fast and
economical assays on FFPE samples that provide both genetic and
expression data with low sample input are needed. We therefore
implemented targeted RNA sequencing (RNA-Seq) of 1408 genes
with NGS technology that simultaneously sequences and quantitates
expressed mRNA molecules in a single assay. Artificial intelligence
(AI) was implemented to build predictive models based on both
genetic and gene expression data of a large number of DLBCL
FFPE samples. The robustness of the predictive models was tested
in validation cohorts supporting our hypothesis.

Patients and methods

Patients

RNA-seq was performed for 444 patients with de novo DLBCL
diagnosed in 1998 to 2008 treated with R-CHOP at 22 medical
centers. Cases were organized for retrospective studies as part of
the DLBCL Consortium Program,69 which has been approved by
the institutional review board of each participating medical center
and conducted in accordance with the Declaration of Helsinki.
Patients with transformed DLBCL, primary mediastinal large B-cell
lymphoma, primary central nervous system DLBCL, or primary
cutaneous DLBCL have been excluded. Molecular characterization
of the study cohort has been previously summarized.70,71 Fluores-
cence in situ hybridization identified 12 of 293 cases as high-grade
B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrange-
ments (7MYC/BCL2 double/triple-hit and 5MYC/BCL6 double-hit
cases).

Data for 418 cases were further analyzed after data quality control.
GEP was performed in 366 of the 418 patients using Affymetrix
GeneChip Human Genome U133 Plus 2.0 (deposited in Gene
Expression Omnibus GSE#31312).24 Using a Bayesian model, 172,
160, and 34 cases were determined as GCB, ABC, and unclassified
DLBCL, respectively. For the 34 GEP-unclassified cases, the
Visco-Young IHC algorithm24 was applied, which assigned 15 cases
to GCB and 19 cases to ABC. For the other 52 cases in which GEP
was not performed, the Visco-Young algorithm classified 22 cases as
GCB and 23 cases as ABC.

To further validate the COOmodel, 60 independent DLBCL samples
were obtained and classified into ABC/GCB subtypes using the
Lymph2Cx NanoString nCounter assay according to the manufac-
turer’s instructions.

GEP analysis

Raw RNA-Seq and Affymetrix GEP data were preprocessed and
normalized by robust multichip average using the R package
(version 1.65.1).72 Two-class unpaired significance analysis of
microarrays were performed to identify significantly differentially
expressed genes (DEGs) between the 2 groups.73 Gene expres-
sion data were analyzed via CLUSTER software using the average
linkage metric and then displayed by JAVA TREEVIEW (https://
www.java.com/en).74

RNA library construction and sequencing

The Agencourt FormaPure Total 96-Prep Kit was used to extract
both DNA and RNA from the same FFPE tissue lysates using an
automated KingFisher Flex and protocols as recommended by each
manufacturer. Samples were selectively enriched for 1408 cancer-
associated genes using reagents provided in an Illumina TruSight
RNA Pan-Cancer Panel. The cDNA was generated from the
cleaved RNA fragments using random primers during the first-
and second-strand synthesis. Then, sequencing adapters were
ligated to the resulting double-stranded cDNA fragments. The
coding regions of expressed genes were captured from this library
using sequence-specific probes to create the final library. Sequencing
was performed on an Illumina NextSeq 550 System platform. Ten
million reads per sample in a single run was required. The read
length was 23 150 bp. The sequencing depth was 103 to 17393,
with a median of 413. An expression profile was generated from the
sequencing coverage profile of each individual sample using
Cufflinks. Expression levels were measured using fragments per
kilobase of transcript per million and further normalized using the
B-cell PAX5 RNA expression levels to adjust for variability in the
percentage of DLBC cells in samples.

Alignment of sequencing data and variant calling were performed
with the DRAGEN Somatic Pipeline (Illumina) using tumor-only
analysis against the GRCh37 reference genome to identify 2
classes of mutations: single nucleotide variants and indels. Tumor
samples were analyzed without a matching normal.

DLBCL COO classification and clinical risk

prediction modeling

To build robust DLBCL classification models, we randomly selected
60% of cases to fit (train) the model and then validated using the
remaining 40% (validation set). Sixty independent DLBCL samples
classified by Nanostring Lymph2Cx assay were used as a second
validation set.

First, univariate significance tests were used to screen the large
number of variables. Normalized RNA expression data and mutation
data were included as variants to build a classification model. For
interpretability and simplicity, we divided the gene expression values
into 4 or 10 equal parts using the quartiles (Q1, Q2, and Q3)
and deciles and selected mutation data of 39 highly recurrent
genes that had mutations in at least 10 patients. Fisher’s exact
test was used after discretizing RNA expressions using their
quartiles, and 228 variables were statistically significant with
P , .01. After adjusting for multiple hypothesis testing using
Benjamini-Hochberg’s method and setting the cutoff for false
discovery rate (FDR) at 0.01, statistically significant variables
were narrowed down to 129. Finally, setting the cutoff for FDR
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at 0.0001, 48 variables were selected with either small adjusted
P values or high area under the receiver operating curve (AUC).

We selected 252 DLBCLs with high confidence COO assignment
to develop risk stratification models directly correlating with survival.
We randomly selected 60% (152) of subjects as the training set to
fit the model and tested the performance in the remaining 40%
(100) patients. Kaplan-Meier and Cox proportional hazards (CPH)
analysis was used to identify variables with significant prognostic
impact.

Multiple statistical approaches were tested for modeling perfor-
mance, and models built through deep learning techniques75,76

were most predictive and robust. We used autoencoders for
nonlinear transformations of autoencoded features into 2-dimensional
latent space. Logistic regression and CPH models were used for
building the COO model and clinical risk models, respectively. A
flowchart of the study is provided in supplemental Figure 1.

Results

Mutation spectrum, GCB/ABC association, and

prognostic significance in DLBCL

In 418 patients, RNA-Seq data fulfilled the quality control criteria
(supplemental Table 1) and were further analyzed. In total, 2207
nonsynonymous mutations occurred in 598 genes in 412 patients.

In the study cohort, each patient had 0 to 30 genes harboring
mutations (median, 4 mutated genes); 322 genes had mutations
in at least 2 patients. Figure 1A shows the case distribution of
mutations in 66 genes occurred in at least 6 patients. The
corresponding mutation and clinical data are in the supplemental
Data. The clinical features of the 418 patients are summarized in
Table 1.

Mutation profile was compared between GCB and ABC subtypes
classified by GEP and/or IHC (GCB, n 5 209; ABC, n 5 202).
Mutations in EZH2 (P , .0001), KMT2D (MLL2), CREBBP, IRF8,
STAT6, GNA13, BTK, BRAF, BCL2, DNMT1, and DUSP2 were
significantly more frequent in GCB than in ABC, whereas mutations
in MYD88 (P , .0001), CD79B (P , .0001), and SPEN, PIM1,
PRDM1,ETV6, andNOTCH2 (borderlineP5 .054) were significantly
more frequent in ABC than in GCB (Fisher’s exact test; asterisks
for significant genes in Figure 1A). The majority (69%) of MYD88
mutations in ABC were pL273P (L265P), whereas almost half of
MYD88 mutations in GCB were pS219C.

Comparisons between GEP-classified GCB (n5 172) and ABC (n
5 160) cases showed largely similar results (top significant genes
are shown in Figure 1B), except that the associations of NOTCH2
with ABC and DUSP2 mutations with GCB became insignificant,
and additionally BIRC6 mutation and IRF4 mutation showed
significant association with GCB and ABC subtype, respectively. In
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addition, the 34 GEP-unclassified cases had higher frequencies of
CREBBP and BRAFmutations than both GCB and ABC subtypes.

Mutation status of each gene was analyzed for prognostic significance.
Table 2 lists frequently mutated genes with significant muta-
tional effects on overall survival (OS) by univariate analysis.
Among genes with mutations occurring in at least 9 patients,
TP53, TET2, KMT2D (in overall cohort, P5 .0005, .011, and .012,
respectively), NOTCH2 (in GCB, P 5 .005), and ATM (in ABC,
P 5 .003) mutations showed significantly adverse effects, whereas
EZH2 and GNA13 mutations genes showed significantly favorable
effects (P 5 .007 and .047, respectively).

Development and validation of the NGS-COO

classification model

RNA-Seq gene expression (supplemental Data), gene fusion, and
mutation data were used to develop a model for DLBCL-COO
classification in the training set. Fisher’s exact test and multiple
hypothesis testing adjustment were used to identify RNA-Seq
variables showing significant difference between GCB and ABC
subtypes. DEGs betweenGEP-classified GCB and ABC subtypes are
visualized in Figure 2A (FDR , 0.1, fold change $ 1.42). Finally,
the top 48 variables (Table 3; Figure 2B) that were significantly
differed between GCB and ABC subtypes with FDR , 0.0001 or

Table 1. Clinical features of the overall study cohort and GCB and ABC subtypes of DLBCL newly defined in the current study

Overall, n (%) GCB, n (%) ABC, n (%) GCB vs ABC, P

Patients 418 (100) 202 (100) 216 (100)

Sex

Male 229 (54.8) 110 (54.5) 119 (55.1) .92

Female 189 (45.2) 92 (45.5) 97 (44.9)

Age, y

#60 178 (42.6) 100 (49.5) 78 (36.1) .0075

.60 240 (57.4) 102 (50.5) 138 (63.9)

Stage of disease

I-II 185 (46.0) 106 (54.6) 79 (38.0) .0009

III-IV 217 (54.0) 88 (45.4) 129 (62.0)

Serum LDH level

Normal 144 (37.0) 80 (42.6) 64 (31.8) .036

Elevated 245 (63.0) 108 (57.4) 137 (68.2)

ECOG performance status

0-1 313 (82.6) 154 (86.0) 159 (79.5) .10

$2 66 (17.4) 25 (14.0) 41 (20.5)

No. of extranodal sites involved

0-1 295 (74.3) 145 (76.3) 150 (72.5) .42

$2 102 (25.7) 45 (23.7) 57 (27.5)

IPI risk group

0-2 246 (60.9) 133 (68.9) 113 (53.6) .0022

3-5 158 (39.1) 60 (31.1) 98 (46.4)

B-symptoms

Absence 267 (66.8) 141 (73.8) 126 (60.3) .0042

Presence 133 (33.3) 50 (26.2) 83 (39.7)

Tumor size, cm

,5 189 (58.9) 91 (59.5) 98 (58.3) .91

$5 132 (41.1) 62 (40.5) 70 (41.7)

COO by Affymetrix GEP

GCB 172 (47.0) 149 (86.1) 23 (11.9) <.0001

ABC 160 (43.7) 8 (4.6) 152 (78.9)

UC 34 (9.3) 16 (8.7) 18 (9.3)

COO by GEP and IHC

GCB 209 (50.9) 180 (90.5) 29 (13.7) <.0001

ABC 202 (49.1) 19 (9.5) 183 (86.3)

Significant P values are in boldface.
ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; IPI, International Prognostic Index.

28 JULY 2020 x VOLUME 4, NUMBER 14 NGS ASSAY AND AI FOR COO CLASSIFICATION IN DLBCL 3395



high AUC were chosen to build a new classification model for
RNA-Seq data, including 2 genes (MYD88 and EZH2)9s mutation
status and 46 genes9 RNA expression levels.

Several statistical models were built on the 48 variables in the training
set (without knowing classification) and then tested in the validation
sets. The COOmodel based on autoencoder, an unsupervised deep
learning technique, showed the best performance. An autoencoder
neural network was built with 5 hidden layers.75,76 The first 2 layers
and the last 2 layers each had 100 neurons; the middle layer
(bottleneck) had 2 neurons, which captured latent (unobserved)

features of the data. The values of these 2 neurons formed a low-
dimensional (2) representation of the data; that is, it aggregated
the 48 variables into 2 latent features. The top 7 contributing variables to
the latent features were MYD88 mutation, EZH2 mutation, RASGRF1
expression, MYBL1 expression, S1PR2 expression, SSBP2 expres-
sion, and IRF4 expression. Based on the latent features, a logistic
regression model was built for GCB/ABC classification (named as
NGS-COO classifier). As shown in Figure 3A, the autoencoder
transformed the high-dimensional data into a 2-dimensional space
where the 2 subtypes were easily separable (linearly) roughly with
a diagonal line from (21, 21) to (1, 1).

Table 2. List of genes with >2% mutational prevalence and significant impact on OS rate in DLBCL

Gene Effect on OS

In DLBCL In GCB In ABC

Mutation frequency, % P for OS Mutation frequency, % P for OS Mutation frequency, % P for OS

KMT2D Unfavorable 23.7 .012 28.5 .005 17.5 —

TP53 Unfavorable 16.3 .0005 19.8 .024 13.1 .034

EZH2 Favorable 9.3 .007 17.4 .04 1.9 —

TET2 Unfavorable 5.5 .011 6.4 .011 4.4 —

NOTCH2 Unfavorable 4.5 (.061) 2.9 .005 6.9 —

GNA13 Favorable 4.1 .047 8.1 (.09) 0.6 —

ATM Unfavorable 2.2 (.085) 1.7 — 2.5 .003

The DLBCL group had 418 patients. The GCB group, determined by gene-expression profiling, had 172 patients. The ABC group, determined by gene-expression profiling, had 160
patients. The impact on OS was based on univariate analysis for each gene. Marginal P values are in the parentheses. Dashes indicate not prognostic.
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The NGS-COO classifier developed from the training set was then
applied to the validation set. A probability of scoring was generated for
each case. Approximately 30% of the cases had a score between 0.5
and 0.75, indicating low confidence for classification. For the remaining
70% with high confidence for assigning to 1 of the 2 subtypes
(probability of 0.8 or higher), the ABC vs GCB classification showed
sensitivity and specificity of 96% and 97% for classification in the
validation set. The accuracy/concordance rate with previous GCB/
ABC classification was 95.6%. The corresponding AUC was 96.2%.

In the training and validation sets, in total, 216 cases were
determined as the ABC subtype and 202 cases as the GCB
subtype. Differential expression of the 46 genes constituting the
NGS-COO classifier in the study cohort is visualized in Figure 2B.
The new GCB/ABC cases were also associated with 1319
significant DEGs with FDR , 0.0001 in GEP analysis using our
previous Affymetrix GeneChip DNA microarray data (Figure 2B)
and multiple biomarkers characterized in previous studies by our
Consortium program (supplemental Table 2).

To further evaluate the performance of the NGS-COO classification
model, we applied the same approach to 60 independent cases as

an external validation cohort. Our NGS-COO model showed
sensitivity and specificity of 96% and 97%, respectively, with the
previous COO classification by the NanoString Lymph2Cx assay.
The concordance rate was 92.9%. The corresponding AUC was
95.7%. As shown in Figure 3B-C, the pattern of separation by the
autoencoder was similar between training, validation, and indepen-
dent sets. They all showed separation between ABC and GCB with
a diagonal line from (21, 21) to (1,1), although the independent 60
cases were collected from a completely different set of samples and
the sequencing was performed separately.

The performance of our NGS-COO classifier was also evaluated
by correlating with survival outcomes. Although the autoencoder
was only trained for COO classification in the training set, the
NGS-COO classifier was significantly associated with OS and
progression-free survival (PFS) in DLBCL, similar to the previous
COO classification (Figure 4A-C). The relative risk of the new ABC
compared with the new GCB group was 1.53. The prognostic
significance was slightly improved if comparing within high-
confidence cases only (risk for OS, 1.81, P 5 .007; risk for PFS,
1.77, P 5 .0046).

Table 3. List of 48 variables (46 for gene expression level and 2 for gene mutation status) in the DLBCL NGS-COO classifier

AFF3 AHR AUTS2 BCAS4 BCL6 BTLA

CARD11 CCND2 CCND3 CD22 CD44 COL9A3

CREB3L2 EBF1 ETV6 FAM46C FOXP1 IKZF1

IL2RA IRF4 IRS1 KANK1 LCK LMO2

LPP LRMP LRP5 LRRK2 LYL1 LYN

METTL7B EZH1 mutation MYD88 mutation MYBL1 P2RY8 PAG1

PAK6 PDGFD PIK3CG PIM1 PTK2 PTK2B

PTPN2 RASGRF1 S1PR2 SSBP2 STAT3 TBL1XR1
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Development of prognostic models for DLBCL

risk stratification

To build robust prognostic models aggregating small contributions
of a large number of variables directly to patient survival, we used
a similar procedure and the AI method to develop models in the
training set and test the performance in the validation set based on
both gene expression and genetic variables plus 2 additional
factors: age and sex of patients. We first screened for significant
variables using Kaplan-Meier and CPH for OS in the training set.
Although 61 variables showed significant prognostic effects by log-
rank test and 110 variables by CPH regression (P , .05), only the
TP53 mutation remained statistically significant after adjusting for

multiple hypothesis testing (FDR, 0.0001). Therefore, we selected
57 variables with the top 2% AUC values or P , .01 (either based
on log-rank test or CPH; Table 4).

We used a similar neural network architecture as described for
COO modeling and again included 2 neurons in the bottleneck
layer to reduce the data into 2 dimensions (latent features). The top
7 variables contributing to the 2 latent features are age .60, TP53
mutation, CARD11 expression, BCL6 expression, MALAT1 ex-
pression, RABEP1 expression, and BCORL1 expression. A simple
CPH model was built based on the 2 latent features obtained from
the autoencoder (which are nonlinear combinations of the 57
variables) and provided a risk score (NGS-OS score) for each case,
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which was normalized to be between 0 (lowest risk) and 100
(highest risk). As shown in Figure 5A, we divided the training set into
3 equal subgroups based on the NGS-OS risk score and found the
high-risk group had strikingly poorer survival than the low- and
intermediate-risk groups (P , .0001). We then applied the NGS-
OS model into the validation set and stratified patients using the
same NGS-OS risk score cutoffs established in the training set and
found that 3 resulting risk groups in the validation set showed
incremental survival rates. The relative OS risk for the 3 subgroups
was roughly 1, 4, and 9.

We followed a similar procedure to build a CPH model for PFS
with 50 selected variables based on a 2-dimensional feature
set obtained from an autoencoder (Table 5). The top 7 variables
contributing to the model are TP53 mutation, CDK8 expression,
LMO2 expression, BCR expression, TGFBR2 expression, CHD2
expression, and ETS1 expression. Although 24 variables are shared
by the NGS-OS and NGS-PFS models, there are only 7 genes
(AFF3, BCL6, CARD11, CCND2, IRF4, LMO2, and PIM1) shared
by the NGS-COO and NGS-OSmodels and 5 genes (AFF3, BTLA,
CREB3L2, FOXP1, and LMO2) shared by the NGS-COO and
NGS-PFS models.

Similar with the NGS-OS risk scores, NGS-PFS risk scores identified
one third of the training set and 30% of the validation set as high-risk
patients (Figure 5B). The relative risk for the low-, intermediate-,
and high-risk groups in the validation sets was roughly 1, 2, and
4, respectively.

Discussion

In this study, we developed novel DLBCL classification models based
on both genetic and transcriptional variables derived from compre-
hensive RNA-Seq annotation and quantitative data. Molecular
classification methods based on tumor biology can be categorized
according to whether the model is based on normal or abnormal
signatures and whether the measure is at the DNA (genetic), RNA
(transcriptional), or protein level (summarized in the visual abstract
according to the literature1-3,14,17-24,57,58,61,62,68,77,78). The manda-
tory COO classification for DLBCL with significant prognostic and
therapeutic prediction values is originally based on unaltered normal
B-cell GEP signatures and currently assayed by protein IHC
algorithms in clinical practice, whereas the recently developed
DLBCL genetic subtyping defines subtypes with shared genetic
abnormalities based on co-occurring genetic alterations or co-
ordinate genetic signatures. Therefore, genetic subtypes, such as
the MCD/C5 subtype in ABC-DLBCL and the C3/EZB subtype in

GCB-DLBCL,61,79 reduce the heterogeneity in COO subtypes with
respect to pathogenic mechanisms (potentially also response to
targeted therapies). However, the functional consequences of
different genetic alterations defining a genetic subtype may vary,
and pathogenic subtyping can also be achieved with phenotypic
gene expression signatures.3 Different from genetic subtyping that
assigned MYC/BCL2 double-hit lymphoma into multiple genetic
subtypes (visual abstract),61,62 molecular high-grade (MHG) GEP
signature or double-hit transcriptomic gene-expression signature
(DHITsig) defined a distinct MHG or DHITsig-positive (DHITsig-
pos) subgroup with poor prognosis in GCB-DLBCL.77,78 Only 36%
of MHG and 52% of DHITsig-pos cases had MYC/BCL2 genetic
double hit60,77,78; certain mutations and the EZB genetic subtype
were enriched (but not exclusively or inclusively; overlapping
percentages shown in visual abstract) in the MHG/DHITsig-pos
DLBCL subgroup. In contrast to the COO classification and nuclear
factor kB–activating genetic mutations that failed to predict clinical
outcome of bortezomib,60 MHG GEP signature identified cases
showing improved PFS with the addition of bortezomib to standard
R-CHOP therapy (P5 .08).77 Therefore, both genetic and phenotypic
variables have advantages and disadvantages, and a combina-
tional approach may better correlate DLBCL biology to therapeutic
vulnerability and clinical outcome.

Our results demonstrated that both the NGS-COO classifier and
NGS survival predictors were robust, and AI was able to assign
COO/risk scores to new DLBCL cases (patients in the validation
sets). Our NGS-COO classifier shared 8 genes with the 27-gene
predictor by Wright et al (BCL6, CCND2, ETV6, IRF4, LMO2,
LRMP, MYBL1, and PIM1),31 8 genes with the 20-gene DLBCL
Automatic classifier by Barrans et al (BCL6, CCND2, ETV6,
FOXP1, IRF4, LMO2, LRMP, and PIM1),30 7 genes with the 14-
gene-qNPA assay (BCL6, CCND2, IRF4, LMO2, LRMP, MYBL1
and PIM1),35 and 3 genes with the NanoString Lymph2Cx assay
(CREB3L2,MYBL1, and S1PR2).38 Seven of the total 11 common
genes (BCL6, CCND2, CREB3L2, FOXP1, IRF4, LMO2, and
PIM1) are also shared by our NGS survival predictors, consistent
with the association of COO with clinical outcome. The NGS-OS/
PFS risk predictors had more significant P values in prognostic
analysis than the NGS-COO classifier in the same patient cohort,
suggesting that COO is only one of the biological contributors to
DLBCL clinical outcome. However, the performance of NGS-OS/
PFS risk predictors for other therapies is unknown. Different from
previous COO/prognostic models, we integrated genetic abnormal-
ities: MYD88 and EZH2 mutations in the NGS-COO classification

Table 4. List of 57 variables (55 for gene expression level and 2 for gene mutation status) selected for building the NGS-OS risk model

AFF3 Age .60 ASPSCR1 BCL2 BCL6 BCORL1

BHLHE22 BTK CARD11 CCND2 CD58 CHEK2

CIT CREB3L2 DST ETS1 EYA2 FANCF

FZD6 GAS5 HMGA1 HOXA9 IRF4 KDM5C

KLK2 LFNG LMO2 MACROD1 MALAT1 MEF2B/MEF2BNB-MEF2B

MFNG MLLT4 MTCP1 TET2 mutation TP53 mutation MYC

PIM1 POLD1 PPP3CA RABEP1 RAD51B RBM6

RECQL4 RHBDF2 RLTPR RTEL1-TNFRSF6B SMAD3 SPTBN1

SRRM3 ST6GAL1 SULF1 SYP TEAD2 TFAP2A

TGFBR3 U2AF2 ZIC2
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model, TP53 and TET2 mutations in the NGS-OS risk model, and
TP53 mutation in the NGS-PFS model. Future studies may reveal
whether our models can improve the practical significance of DLBCL
prediction models by including both GEP and genetic features.

The high-throughput RNA-Seq assays developed in this study using
an NGS benchtop sequencer with approximately 3-day turnaround
time have important practical implications. Although targeted NGS
platforms have been implemented in the clinic to aid in diagnosis
and therapeutic decisions,80 and AI is emerging as an efficient tool
in health care for large data processing and sophisticate model
construction,76,81 currently no NGS panels and AI implementation
have been developed for lymphoma diagnosis and management.
Our study supports the reliability and practicality of using targeted
NGS along with AI in generating clinically useful objective information.

Compared with current IHC assays, DNA microarrays, and other
GEP analysis techniques used for DLBCL COO classification,
targeted RNA-Seq has a balanced advantage of genome-wide
coverage, dynamic range of quantification, reproducibility, high
throughput, and accuracy, as well as high sensitivity, automation,
affordability, short assay time, and flexibility.82 As RNA-seq has
become less costly and been integrated into clinical practice,80

we expect that the generated RNA-seq data will be used not only
to answer the COO and prognostic questions but also other
diagnostic and clinical questions impacting clinical decisions,
such as predicting clinical responses to novel therapies in clinic
and in future prospective or retrospective studies.80,83

In conclusion, the current proof-of-principle study demonstrates the
potential utility of the targeted RNA-Seq assay for accurate and
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reproducible DLBCL-COO subclassification in daily clinical prac-
tice using a commercial available NGS platform; streamline analysis
of high-throughput RNA-Seq data, COO assignment, and risk
prediction by AI can further improve the workflow. Data portal and
streamline AI integration can be further developed based on results
in this study, which may provide a reliable tool for precision medicine
and decision making by clinicians. However, the predictive and
therapeutic values of the COO and risk stratification models
developed in this large cohort of DLBCL remain to be determined in
future prospective clinical studies.
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