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ABSTRACT OF THE DISSERTATION

Framework to Define Performance Requirements for Structural Component Models
And

Application to Reinforced Concrete Wall Shear Strength

Matias Andrés Rojas Le6n
Doctor of Philosophy in Civil Engineering
University of California, Los Angeles, 2022

Professor John Wright Wallace, Chair

A large number of models to predict shear strength of structural walls have been proposed
in the literature to replace models adopted in codes and standards. Evaluation of the
predictive performance of new models relative to existing models is often difficult because
the models were developed using different databases and a model may have substantially
different performance (high, versus low variance) when evaluated against a different
database. In addition, more complex models are expected to have less variance than

relatively simple models and target performance metrics for models of different complexity
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do not exist. To address these issues, a study was conducted applying statistical and machine
learning approaches to establish target model performance for different model complexities.
The methodology is demonstrated by addressing the problem of assessing wall shear

strength using a comprehensive database of 333 walls reported to have failed in shear.

Wall shear strength equations reported in the literature and used in building codes are
assessed using a comprehensive database of reinforced concrete wall tests reported to have
failed in shear. Based on this assessment, it is concluded that mean values varied
significantly, and coefficient of variations were relatively large (> 0.30) and exceeded the
target error for a code-oriented equation defined in the companion paper. Therefore, a
methodology employing statistical and machine learning methods was used to develop a
new equation with form similar to that currently used in ACI 318-19. The proposed equation
is applicable to walls with rectangular, barbell, and flanged cross-sections and includes
additional parameters not considered in ACI 318-19, such as axial stress and quantity of
boundary longitudinal reinforcement. Parameter limits, e.g., on wall shear and axial stresses,
and an assessment of the relative contributions to shear strength also are addressed. Finally,
a reliability analysis is performed to study the relationship between probability of failure

and strength reduction factor applicable to the proposed equation.
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Chapter 1. Introduction

In civil and structural engineering, design checks are typically accomplished by comparing
demands (e.g., moment, M,; shear V,;; displacement, §,,) with capacities (e.g., M,,; shear V,;
displacement, §.). These equations that estimate capacities have been developed based on
models capturing the mechanics (e.g., free body diagrams) and calibrated using relatively
little data available at the moment. Unlike 20 to 30 years ago, more recently, comprehensive
databases are being assembled to enable the development of more complex capacity models
using more sophisticated statistical approaches, and also including Machine Learning (ML).
Evaluation of the predictive performance of different models is often difficult because of one

or more of the following reasons:

* They were developed using different databases and a model may have substantially

different performance (bias, variance) when evaluated against a different database.

* More complex models are expected to have less variance than relatively simple
models and however, approaches to judge the relative merits of models with different

complexities have not been proposed.

* Optimal model performance is often not studied, so it is unknown whether a model
with better performance is possible. In other words, even having one model that
performs better than a second one with similar complexity level and calibrated using
the same database, does not exclude the possibility than another better model could

be obtained. Therefore, for a given model complexity, how should the model



performance be assessed to judge if the model error has been minimized and what

are the relative benefits of the more complex model.

To address these issues, a study was conducted applying statistical and ML approaches to
establish target model performance for different model complexities. The framework is

particularly useful when addressing a mechanics-based problem with a small database.

The methodology is demonstrated by addressing the problem of assessing wall shear
strength, and the target errors are expressed in terms of the mean value and coefficient of

variation of the true-to-predicted ratio. This application was picked because:

* The wall shear strength equation in ACI 318-19 has remained essentially unchanged
for the last 50 years despite a large number of models being published in the

literature.

* Even though most of the published equations are similar in complexity, they show a
significant variance when assessed against a database of wall tests that is not the
same as that used to develop and calibrate the model (Gulec and Whittaker, 2011;

Sanchez-Alejandre and Alcocer, 2010; Carrillo and Alcocer, 2013; Kassem, 2015).

This can be ascribed to the issues before mentioned. First, it is typically more difficult to
obtain a better fit when a wider range of variables exist (e.g., one database includes only
walls with rectangular cross sections whereas the other database includes walls with both
rectangular, barbell, and flanged cross sections) and, if this is the case, the number of tests is
likely to have an impact too. Second, in most of the studies reported in the literature, wall
aspect ratio (h,,/l,,) was typically used as a means to determine which tests were included

in the database (e.g., h,,/l,, < 1.0 or 1.5); however, studies have shown (Abdullah and
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Wallace, 2021) that wall aspect ratio is not the best indicator of wall failure mode. Therefore,
most of the databases used to develop the models reported in the literature included some
walls that actually experienced flexural failures. Finally, in most cases, the databases were
typically not large enough to split into training and testing sets and did not assess issues
associated with underfitting versus overfitting (Hoge et al., 2018) to examine the possibility

that a model of equivalent complexity might have better predictive performance.

Over the last five decades, a significant number of wall tests have been reported in the
literature and have recently been complied in a comprehensive database with more than
1100 wall experiments (Abdullah and Wallace, 2020). The database was filtered to identify
wall tests with reported shear failure modes (flexure-shear, diagonal tension, or diagonal
compression), resulting in 412 tests, and then a detailed review was conducted to identify
reasons why would be inappropriate to include some tests (i.e., outliers identification, key
step of the methodology). The availability of this database of shear-controlled walls enabled
the application of the proposed ML-statistics based framework to establish a relationship
between model complexity and model performance requirements, which includes a target
error interval expressed in terms of the mean and COV of the true-to-predicted ratio
(Virue/Vprea)- This error indicator was selected because is well known and widely used in
this field, and therefore, researchers have a good understanding of what is means (e.g., how

much is small versus large).



Chapter 2. Review of Existing Wall Shear Strength Models

2.1 Models Calibrated Using Statistical Inferences and its Drawbacks

This section provides a detailed review and summary of existing models for predicting shear
strength of RC walls that are available in building codes and standards worldwide (Table
2.1) and reported in the literature (Table 2.2). Table 2.1 reveals that all existing models
compute wall nominal shear strength (V},) using a Vj, = V. + V; format, where V, and V; are
the concrete and reinforcement contributions to nominal shear strength, respectively.
However, the parameters considered that influence the concrete and reinforcement
contributions sometimes differ. For example, the NZS 3101 (2006) and ASCE/SEI 43 (2005)
models consider the influence of axial load on V. (ACI 318-19 does not), the EC8 (2005) and
ASCE/SEI 43 (2005) models include the impact of the vertical web reinforcement, and the
detailed model of NZS 3101 (2006) use M, /(V,l,) instead of h,,/l,,, which is used by the
remaining models shown in Table 2.1.

Table 2.1: Existing wall shear strength models in building codes and standards

Model Comments

ACI318-19, Section 18.10 Wall shear strength is determined using Equation

V., = Acv(ac;t\/ﬁ + pwhfywh) < 0-83Acv\/ﬁ
18.10.4.1. The upper limit of 0.83AC,,\/E (for an

025 forhy,/l, <15 individual wall) is intended to prevent diagonal
. wily < 1.
a, = 0.17 for hy, /1, = 2.0 compression failure and has been in the ACI 318
[y _
0.25—0.17 (E 15) for 15 < hy,/l,, < 2.0 N

A =1.0 for normalweight concrete. For lightweight concrete, For walls with h,, /[, < 2.0 it is required that p,, is
it ranges from 0.75 to 0.85 depending on the
composition of the aggregates. no less than pp,.

ECB'Z()O: Concrete contribution is ignored for walls subjected
= vut,
o to low axial stresses (1.5B,/(A.f;) < 0.1). Wall

Up =V, +v . .
noen shear strength depends on vertical and horizontal



Model

1.5P,

0 if 222 < 0.1
vy = Acfe
0.15./7/ if 1/4'5;’}‘ > 0.1
tlc

Vs = pnfyn (VT_;;/ - 0-3) + pufyw (1-3 - VI::v)
NZS 3101-2006
o=Vt Vs

_ Avfywhd
S

Vs

0.17/f

0.17( ’+ﬁ)
e

—_— = 1 Pu
. (0.27 R+

Simplified
Method

. » Detailed
i IW(O‘I fc’+0'2ﬁ) Method

0.05/7 +

My _lw
Vi 2

AlJ-1999
Vo=V +Vs

_ tan(@)U-ptuluvse -

2
= pwhfywh twlwcot(§)

tan(0) = ’(};—W‘”)z +1-— };—:

v=07--2L—
2000

_ (1+50t2($))pwhfywh
B vfl
cot(§¢) = 1 (for truss mechanisms)

PUIENS

ASCE/SEI 43-05

Vy = vptwdy < 1.664c1/f7

0.70y/77 — 028/ (22— 05) +
201!

d, = 0.611,,

Pse = Apy + Bpp

Py
4l,t,,

i + psefyl
v, = min

1 for }II—WS 0.5

w

A={15-"Tw foro.5<‘l‘—Ws 15

lw

0 for};—w>1.5
1 for T—WSO.S

B = 7—W—0.5f0r0.5<}11—ws 15

w w

0 for}ll—W > 1.5

w

Comments

web reinforcement, and the ratio of applied

moment to shear.

The simplified method may only be used when the
vertical reinforcement ratio along the entire wall
exceeds 0.003, and the spacing of reinforcement

does not exceed 300 mm (12 in) in any direction.

The detailed equation does not apply if (% = l?‘”) <

0.

In this model, besides the truss analogy, shear is
assumed to be resisted through an arch mechanism.
The contribution of the arch mechanism decreases

with the amount of the web horizontal steel.

ASCE/SEI 43-05 adopted the work done by Barda et
al. (1977), with modifications to extend its
applicability. This equation is meant to predict the
peak shear strength of walls with barbells or

flanges, common in nuclear power plants, and is

applicable to walls with }ll—w < 2.0 and vertical and

horizontal web reinforcement ratios < 1%. If the
reinforcement ratios exceed 1%, the combined

reinforcement ratio p,, is limited to 1%.



Table 2.2 presents wall shear strength equations reported in the literature, along with a
description of the databases used in calibration/validation of the models. In these studies,
wall shear strength relations were generally developed by identifying relevant parameters
based on literature review, investigating the mechanics of problem, and using statistical
analysis of data sets. Subsequently, a calibration process was employed to fit the coefficients
of the proposed model to the data. Therefore, these equations are typically valid and perform
well only when the model is used to estimate wall shear strength (e.g., shear stress, or shear
force) for a wall with parameters within the ranges of the parameters used to calibrate the
model. Because different databases were used to develop existing models, and these
databases used different criteria to determine which wall tests to include in the database, as
well as different test parameters, different ranges of test parameters and different numbers
of tests, a model developed with a given database can be biased when it is evaluated with a

different database.

Table 2.2: Existing wall shear strength models reported in the literature

Model Database Comments
llfarda etdal. (1977) * 8 flanged walls Meant to predict the peak
n = Untw
« M e10.25,1.00] shear strength of walls in
L v

1 !hW Pu
v, = 0.66\/f; — 0.21,/f Tt

+ Pofyw v low-rise buildings.
* Ppe € [1.8% ,6.4%)] 1.8% - 6.4%

wlw

* pynand p,,, € [0%,0.5%]

WOO? 5}990) * 143 squat walls reported to have = The model does not
v =2y . .
n 4 failed in shear consider the concrete and
0.5Ac/f! < Vy < 0.834,/f/ « ~105 barbell, ~20 flanged walls, steel contributions as two
~ . | different terms. Instead, it
Aty = 2Apefype + Auofyws and 18 rectangular cross
sections. uses the concrete

contribution to define a
lower and upper limit

only.



Model

Sanchez-Alejandre and Alcocer
(2010)

Pu I
V, = (an + 0-045) I+ mwpnfyn
My

~(0.42-0.08
y = mln{ Vulw
0.42 — 0.08(%Rmax) Option 2

Option 1

Ny = 0.75 + 0.05p, f,,
N, =1—0.16p,fyn, = 0.20

Rinax = drift angle

Gulec and Whittaker (2011)
For rectangular walls:

Vi = Vree <083V [ Ay

For barbell/flanged walls with :—t > 1.25:
Vo = Vpe < 1.25{f/ Ay

For barbell/flanged walls with :—t < 1.25:

Vn = min([/;"ec' Vbe) <10 fc,Acv

_ 0.83y/f2 Acy+0.25F,,+0.20F o +0.40P,,

Vrec =
w
_ 0.04f/ Aefr+0.40Fy,, +0.15F o +0.35P,
Vbe - A
W
\ lw
E,,: force attributed to vertical web
reinforcement
Fype: force attributed to both BEs
reinforcement

Carrillo and Alcocer (2013)
Vn = (al\/ﬁ+ nhphfyh)Acv < az fC’ACU

Database

o M <20, with 05< VM—;* <1.0

Vulw uw

for more than 75% of the test

specimens.
07 <-2 <018 for 18
Agfc
specimens, and P”, =0 for the
Agfc

rest.

80 rectangular walls with diagonal

tension failure mode

Most of the walls have VM—z‘ <1.0

utw
Low web reinforcement ratios and

axial loads.

Drift angles < 1%.

Cantilever walls
One database of 74 rectangular
walls

Second database of 153 walls (79
barbell walls, and 74 flanged walls)

’;—W € [0.25,2.00]

f! € [13.7 MPa, 51.0 MPa]

Py
7€ [0,0.14]

t/c

pwhfywh € [0 ,5.8 MPa]

Puvfyws € [0,12.8 MPa]

pbefybe € [0 ,14.1 MPa]

39 walls from quasi-static and

shake-table tests.

Comments

The model depends on the
amount of web
reinforcement (hor. and
ver.) that has reached
plastic strains at a given
drift angle (R,q.), and
although the y factor that
depends on R,,,, it can
also be expressed in terms

of My, / (V).

The model is based on a
free-body diagram of a low
aspect ratio wall with an

inclined (shear) crack.

The boundary element
reinforcement (pp..) is
calculated as 2A4g,./A;,

where A, is the area of

vertical reinforcement in

each BE.

Meant to be used for walls

in typical low-rise housing



Model

_ {0.8 for deformed bars
" =10.7 for welded — wire mesh

@ =021 - 0.02 (‘f:—l':v)

a, = 0.40
Kassem (2015)
V, = vptydy

For rectangular walls:
vy = 0.44f; [kgsin(2a) + 0.10w, 2
+0.30w,cot(a)]

For flanged walls:
vy = 0.67f! [lpkssin(Za) +0.160;, 2
+1.74w,cot(a)]

_ _ L
¥ = 0‘;95 250
= =5
kg = 4
= -1 h—W)
a = tan (dw
=d-%
d,=d 2
_ Pnfyn
fe
wp = Pvfyv

f

as: horizontal length of the compression

zone at the wall base

Looi and Su (2017)

V., = VnAgfc’

n 0034+A( = )1'3+B Lo
7 Aol Pog

g
+ Dppe

fybe
7
fCC

fon

L
<024

A=0283— 008422
Vyd
B=04—0.152%
Vyd
C=05-022x
Vyd
D = —0.08 + 0.06 2=
Vyd

fee: confined concrete strength

Note: 1 MPa = 145 psi

Database

’l‘—W ~ 0.5,1.0,2.0

w

Normalweight, lightweight, and

self-consolidating concrete.
Pwr and p,,,, € [0%,0.28%)]
Pre € [0.22%,1.50%)]

287 cantilever rectangular walls

2 €[0.25,1.00]

w
Py

[

Agfec

€ [0,0.23]

Pun € [0%,1.61%)]
Pwv € [0%,2.87%]

358 cantilever flanged walls

2 €[0.21,1.60] 0.21 - 1.60

w
Py

[

Agfe

€[0,0.34]

pun € [0% ,2.89%]
Puv € [0% ,2.89%)]

~ 150 rectangular walls with shear
and flexure-shear failure modes

f! € [15.7 MPa, 70.3 MPa]

P*}, € [0,0.40]

Agfc

My
o€ [04,26]

Puwn € [0.11% ,1.72%]
Py € [0.13%,2.84%]
Ppe € [0%,13.46%)

Comments

in Latin America (low
concrete strength and wall

thickness of ~4 in.)

It is a mathematical
equation based on the
strut-and-tie model. Since
flanged walls are more
susceptible to diagonal
compression failure than
two

rectangular  walls,

separate databases of
rectangular and flanged
used to

walls  were

calibrate the equations.

The proposed model is
entirely based on a multi-
parameter regression,
with relevant parameters
based on review of

literature.

The coefficients in the
equation do not have
units; therefore, they are
the same no matter the set
of units being used as long

as they are consistent.



Table 2.3 presents the comparison of wall shear strength models reported in four different
studies (Sanchez-Alejandre and Alcocer, 2010; Carrillo and Alcocer, 2013; Kassem, 2015;
Looi and Su, 2017) in terms of their mean and COV. The information in the table reveals that
the performance of a given model can be very different when assessed against a database
different from the one used to develop the model. It is also noted that the size of databases
influences the reported means and COVs even if the ranges of relevant parameters are
comparable. This is because small databases might not capture the inherent parameter
variability (which, for instance, might come from considering walls with different cross
sections), and thus, having a smaller model error is not necessarily an indicator of a good

predictive model (Tanaka, 1987).

Table 2.3: Wall shear strength model comparison reported in different studies: Virye /Vprea

Sanchez-Alejandre & Carillo &

Alcocer Alcocer Kassem Looi & Su
Model (2010) (2013) (2015) (2017)
Mean cov Mean COV Mean COV Mean COV
ACI 318-19,Ch. 18 @ 1.43 0.26 0.82 0.24 1.65 0.37 1.01 0.37
ACI 318-11,Ch. 11 -(®) - 0.90 0.21 - - - -
ACI 318-14, Ch. 11 - - - - - - 0.96 0.37
AlJ 1999 1.00 0.27 - - - - - -
CSA (2014) A23.3-14 - - - - - - 1.35 0.44
EC8 (2004) - - - - 2.54 0.71 - -
Barda etal., 1977 - - - - 1.39 0.47 - -
Wood, 1990 0.99 0.24 - - 0.78 0.32 - -
Hwang & Lee, 2002 1.06 0.22 - - 1.26 0.56 - -
Sanchez & Alcocer, 2010 1.00 0.13 0.79 0.12 1.91 0.29 0.84 0.35
Gulec & Whittaker, 2011 - - 1.06 0.09 1.34 0.24 0.89 0.31



Sanchez-Alejandre & Carillo &

Kassem Looi & Su
Alcocer Alcocer
Model (2010) (2013) (2015) (2017)
Mean cov Mean cov Mean Ccov Mean cov
Carrillo & Alcocer, 2013 - - 1.00 0.08 - - - -
Kassem, 2015 - - - - 1.00 0.21 - -
Looi & Su, 2017 - - - - - - 1.04 0.27

(a) Sanchez and Alcocer (2010) uses ACI 318-09 Ch. 21. Carrillo and Alcocer (2013) and Kassem (2015) use ACI 318-11
Ch. 21. Looi and Su (2017) use ACI 318-14, Ch. 18. These equations are the same as that in ACI 318-19 Ch.18.
(b) “-“ indicates the model was not included in the comparison.

2.2 ML Models and its Drawbacks

Models presented in Table 2.1, Table 2.2, and Table 2.3 were mainly calibrated using
statistical inference, which characterizes the relationship between the data (all of it) and the
outcome variable, i.e., the models are not predicting values for unknown data (Bzdok et al.,
2018). Statistical models can still be used to make predictions, but predictive power is not
their strength. In addition, as databases become large, it often becomes unfeasible to
completely interpret the data using statistical models. In such cases, application of ML is
valuable (Dey, 2016). Although ML models can provide very accurate predictions, the models

tend to be complex and difficult to use, and they also may be difficult to interpret (Bzdok et

al,, 2018).
Table 2.4: Predictive RC wall shear strength models obtained with ML
Chen etal. (2018) Moradi-Ardebili (2019) Keshtegar et al. (2021)

ANN-PSO® with 1 hidden ANN®) with 13 input parameters, 1 SVR-RSM(9)

later and 13 neurons hidden layer, and 10 neurons

* 6 input variables * 13 input variables * 15 input variables:

hW/lW’ By fc,: Acvr phfy: pvfy 18 hw: lw' tw, bf: tf: Pwhr Pwv» fyr fc" fC" Pwhs Pyw» nyh' nyV' bf' tf‘ tw)

vertical column reinf. ratio, hy, by /Ly, Bus Ators
horizontal column reinf. ratio. effective length of wall,

10



Chen etal. (2018) Moradi-Ardebili (2019) Keshtegar et al. (2021)

longitudinal reinf. ratio of flanges,
yield strength of bars in flanges

¢ Output variable e Output variables ¢ Output variable:
Virue = Verue Virue
— Lateral in-plane stiffness
— Drift ratio
» Database » Database » Database
— 139 tests - 329 tests — 208 tests
- 80% for training test and - 85% for training and 15% - 70% for training test and 30%
20% for testing set testing set for testing set
- Rectangular walls - Pwn € [0.0,6.69%] - tw e10.21,2.4]
_ ~ puy € [0.0,14.339 w
L € [0.25,2.0] Pwv €| %] = pyn € [0.0, 2.44%]
F - Horizontal column 0
- —= € [0.0,0.35] . . - Pwy € [0.0,2.90%]
Agf! reinforcement ratio between V. € [70 kN, 2483 kN]
~ pn € [0.0,1.96%] 0.0 - 6.69% frue ’
- py, €10.0,2.93%] — Vertical column reinforcement

ratio between 0.0 - 14.33%
— Virue € [15.42 kKN ,3231 kN]

e Error indicator used in the ° Error indicator used in the * Error indicator used in the

training training training
- Root mean square error — Mean square error (MSE) - Root mean square error
(RMSE) (RMSE)

— Coefficient of
determination (R?)
@ Artificial Neural Network implemented with Particle Swarm Optimization (Chen et al.,, 2018)
() Artificial Neural Network
() Support Vector Regression coupled with Response Surface Model (Keshtegar et al,, 2021)

Table 2.4 shows three ML models developed to predict wall shear strength. The databases
used for the ML studies in Table 2.4 are typically larger than the databases used for the
studies listed in Table 2.2. ML models as the ones shown in Table 2.4 show the potential
and significant predictive power of ML algorithms when compared to simpler models (Table
2.1, Table 2.2); however, these ML studies can suffer several drawbacks, as described next.
Due to test lab limitations, most wall tests reported in the literature have been conducted at

modest scale, typically in the range of 1/5 to 1/2. Several of the input variables used in
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models of Table 2.4 are not expressed in a form that allow them to extrapolate the results
of reduced-scale tests with full-scale walls. For example, the models used the geometry of
the wall directly (e.g., hy, Ly, tw, by, tf) instead of using aspect ratios, or forces (e.g., P, pnfy,
pvfy) instead of using associated stresses based on the mechanics of the problem, or, more
importantly, used shear strength (V;,,.) as the output variable instead of some mechanic-
based definition of shear stress (v,,). It is essential to use dimensionless (e.g., aspect ratios)
or mechanic-based normalized (e.g., stress) model parameters, otherwise, the model is not
valid when applied to full-scale walls, since the parameters of the full-scale walls are not
within the ranges that were used to calibrate the model. Note that the normalization referred
here is based on the physics of the problem and is not the normalization or scaling concepts
used in statistics, which are still important to do before training a model. Another limitation
identified in models listed in Table 2.4 is associated with the combination of the selected
predicted variable and the error indicator used in the optimization process; which for these
studies, results in minimizing the direct difference between the observed and the predicted
shear strength values (i.e., not an error percentage). It isimportant to use a mechanics-based,
normalized predicted variable (e.g., stress) when using error indicators such as the mean
squared error (MSE), root mean squared error (RMSE), or the mean absolute error (MAE),
otherwise, inconsistent error results are obtained. For example, the same error value for two
cases (wall specimens) could represent a predicted shear strength with 10% error with
respect to the experimental shear strength for one case, whereas it could represent a 100%
error for a wall with a smaller shear strength. The coefficient of determination (R? € [0,1]),
which is another type of error indicator, compares a given model with the null model, i.e., the

model that predicts the mean value of the data set used in the training process for any input;
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therefore, it does not necessarily measure the goodness of fit. For instance, predictions for a
model with a steep regression surface would tend to have a larger R? values but could be
less precise than the prediction based on a model with a less steep regression surface with a
smaller R2 (Barrett, 1974). The use of an error indicator that uses the true-to-predicted
difference with respect to the true value might be helpful in these studies, but the issue of
related results of reduced scale test specimens in the database to full-scale walls noted

previously remains.

For ML models, it is common to use two data sets, a training set and a testing set. The training
set is used to train (calibrate) the model and the testing set is used to verify that the trained
model will perform very similarly when predicting unseen data (testing set). This means the
error obtained when predicting values of the testing set must be similar to the error obtained
when predicting the values of the training set. Although this comparison should be carefully
addressed and ideally verified in terms of the error used in the optimization process and also
in terms of other meaningful error indicators to demonstrate model robustness, often this
added step is not properly considered. To help with this and avoid not noticing the problems
the model might have, model performance should be reported including an error indicator
that is well-known, such as mean and COV of the true-to-predicted ratio, assessed with
several relevant parameters. Also, if a ML model is compared with other models (e.g., Table
2.1, Table 2.2), the comparison should also include results for other (properly trained) ML
models to judge the performance of the proposed ML model. ML models are more complex
than models developed based on a (simple) equation; therefore, better performance is

expected.
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Chapter 3. Framework to Define Performance Requirements

To address the limitations highlighted in the previous section, a systematic methodology is
proposed to establish a relationship between the desired model complexity and its
performance. In this study, this methodology is applied to the prediction of RC wall shear
strength (Virye/Vpreq), and the obtained target errors are expressed in terms of mean and
coefficient of variance (COV) of the true-to-predicted ratio. It is relevant to highlight that the
methodology could be applied to other problems (e.g., column shear strength, beam flexural
strength, reinforcement development length, etc.). As detailed below, in addition to adopting
the generic steps of ML, i.e., collection and preparation of data, feature selection, selection of
ML algorithm, selection of model and hyper-parameters, model training, and model
performance evaluation (Alzubi et al., 2018), this framework requires specific sub-steps such
as defining relevant (starting) features based on the mechanics of the problem and
addressing the issue of using reduced-scale tests to predict capacities of full-scale specimens,
developing an iterative sensitivity analysis when a ML model is trained, and training Elastic

Net Models (ENMs) using engineered features defined from the starting features.

3.1 Step 1: Collection and Preparation of Data

Data from a comprehensive database of RC wall tests, called UCLA-RC Walls Database
(Abdullah, 2019; Abdullah and Wallace, 2020), was utilized in this study. The database
contains detailed and parameterized information for over 1100 RC wall tests assembled

from more than 250 test programs published in the literature, and it includes detailed and
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parameterized information about the test specimen, tests setup, loading protocols, test
results (e.g., backbone relations, failure modes), and analytically computed data (e.g., c, M,,,

M,, ¢n, ¢y, V). The reported failure modes are classified in the database as:

. Flexure failure modes, including bar buckling and concrete crushing, bar fracture, or
global or local lateral instability.

e Shear failure modes, including diagonal tension, diagonal compression (web
crushing), or shear sliding at the base.

e  Flexure-shear failure modes, including yielding in flexure prior to failing in one of the

shear failure modes.

e  Lap-splice failure mode.

The authors of the database did their best to validate that the reported failure mode was
consistent with the observed wall response and damage before reporting this information in
the database. The availability of the detailed and parameterized information in the database

enabled this study to assess the role of various parameters on wall shear strength.

A dataset of walls with reported flexure-shear, diagonal tension, or diagonal compression
failure modes was obtained from the UCLA-RC Walls Database. Tests with incomplete
information or test results were excluded. The reduced dataset included a total of 412 wall
tests. The dataset was further refined and 79 wall tests were removed because of the next

reasons:

e They either had artificial cracks for corrosion studies (6 tests, Zheng et al., 2015).
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e The reported lateral load readings do not match the values in the respective figures

(9 tests, Li and Li, 2002).

e The walls had non-symmetric cross-section shapes such as T-shape, L-shape, half

barbell, and wing walls (20 tests).

e The specimens had a tested f’, less than the limit of 20.7 MPa (3.0 ksi) given in ACI

318-19 Section 18.2.5 for special seismic systems (37 tests).
e  The longitudinal reinforcement yielding stress f, exceeded 100 ksi while f. was less

than 5 ksi (7 tests).

Asymmetric walls were excluded because the number of walls with these cross-sectional
shapes was low (20 walls) in comparison with the number of rectangular, barbell or flanged
walls. This means it is possible to overlook the inherit differences of the different groups of
asymmetrical walls if incorporating these little data into a much larger database of
symmetric walls, because all of them are probably following the same general trends. In
other words, the error of a model performance already calibrated with a large database of
symmetric walls will likely not see a drastic increase when including little data of
asymmetrical walls. Furthermore, when a shear strength model is proposed, it is expected it
can be generalized to be applicable to asymmetrical walls as well, i.e., the unsymmetrical
walls data can be part of the testing set. Based on the above filters, a final data set of 333

symmetric wall tests was obtained.
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Figure 3.1: Histogram of relevant variables

After a comprehensive and clean database was created for the study, a testing set to verify

the performance of the models was created by randomly selecting 20% of the database of
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333 wall tests, which resulted in 67 wall tests. The testing set is kept totally unknown for the
models and is used only after the training process of the models is completed. Figure 3.1
compares histograms for various database parameters of the entire dataset and the testing
set, where f_ is the specified compressive strength of concrete, p;. is the boundary region
longitudinal reinforcement ratio, fy. is the specified yield strength of the boundary region
longitudinal reinforcement, p,,, and f,,,, are the ratio and specified yield strength of the
horizontal web reinforcement, respectively, p,,, and f,,,, are the ratio and specified yield
strength of the vertical web reinforcement, respectively, P,, M,,, and V,, are the factored (or
test) axial load, moment, and shear, respectively, [, is the wall length in the direction of the
applied shear force, h,, is the total wall height, 4,, is the cross-sectional area bounding the
longitudinal reinforcement at a wall boundary, A., is the cross-sectional area bounded by
the wall length and the web thickness (t, ), 4, is the cross-sectional gross area, ¢ is the

neutral axis depth, and y;,,. is the normalized shear stress (introduced later).

3.2 Step 2: Defining the ML Models and Features

This step involves first identifying the potentially relevant parameters based on literature
review, which are then used to define the ML models. Considering a free body diagram of a
wall with a diagonal crack that helps to identify all relevant parameters (Figure 3.2), it is
possible to obtain the rough relationships shown in Eq. (3.1) through Eq. (3.6) between the

main variables and shear strength.

18



(fclfc’ + ks P”) twcm

AH

ry
r

Figure 3.2: Free body diagram of RC shear wall with a diagonal crack

V, < Agfe
Vu ic pwhfywh hw tw
Vuheff z pwvfywv (lw - C)th

Vuheff z pbefybeAbelw

P
Vihege = (fc' + —u> tyc?
Ag

P
Vuheff o~< <f;" - A_“) tw(lw - C)z

g

19

(3.1)

(3.2)
(3.3)

(3.4)

(3.5)

(3.6)



Non-dimensional parameters are used because it makes the coefficients defined from the
training process to be weights of each parameter, without physical or mechanical
interpretation. In accordance with the literature review, the following 10 variables are

selected and are named as the “starting features”.

fywn
X1 = Pun = (3.7
Cc
f;
X2 = Pwy % (3.8)
[
fyb
X3 = Pube 7 (3.9)
Cc
g 3.10
Xy = - .
4 Ang, ( )
c
Xg = — (3.11)
Lw
- 3.12
t
Xy = — (3.13)
Lw
tW
Xg = E (3.14)
h
Xg = — (3.15)
Ly
Abe
X10 = Ag (3.16)
The predicted variable is the normalized shear strength defined as:
Vtrue
y = , (3.17)
Agfe
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These starting features and the predicted variable can actually be identified by making the
left side in Eq. (3.1) through Eq. (3.6) to be the normalize shear strength Vu/(Ang’) and by

applying reasonable approximations in some cases (e.g., considering c as a fraction of [,

neglecting constants because the model calibration will handle that), as shown below.

Y«
21 3.17
Af (3.17)
Vu o pwhfywhh_w (3 18)
Agfe — L '
Vu « pwvfywv Lw (3.19)
Agfd = f¢ hes '
Vu - pbefybei Lw (3.20)
Agfe = f¢ Lwhes '
>l1+ —_— 3.21
Ayf? Agf? ) T B (3:21)
b <1— il )ﬂli (3.22)
Agfc, - Agfc’ Acv heff .

Between (1 + Pu/(Agf’C)) and (1 — Pu/(Agf’C)), only one is considered because they are

related to the practically the same parameters in Eq. (3.5) and Eq. (3.6), and also in Eq. (3.21)
and Eq. (3.22) (again, ¢ can be considered as a fraction of /), and because the presence of a
constant (i.e., “intercept” or equivalent) in the calibration process would suggest dropping

one of them for being linearly dependent of the other.

The height of the wall used to define the effective flange width according to ACI 318-19

Section 18.10.5.2 was estimated as h,, = h.;/0.7, where h. (effective height) corresponds
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to the shear span, defined as M, /V;,. Abdullah and Wallace (2021) show that there is no

significant increase in the shear strength of walls with small barbell column at the boundary

regions, and is well established that flanged walls have a larger shear strength (Gulec and

Whittaker, 2011; Kassem, 2015; Kim and Park, 2020). Because A, = A, for rectangular

walls, A; = A, for barbell walls with barbell column at the boundary regions, and 4, > 4,

for flanged walls, the cross-sectional area 4, is used instead of A, when associated with f/.

Four different feature matrices are defined:

The first feature matrix, X, contains the 10 starting features defined in Eq. (4.7)

through (4.16) and, therefore, is a matrix with 10 columns.

The next feature matrix, X, contains 140 features because the following 14 functions

were applied to the 10 starting features: identity function, ()72, ()%, ()72, ()3,
O7Y2,()3, ()73, (O3, ()73, exp()), exp(-.), In(.), and —In(1 + .).

Feature matrix X, has 285 features that are obtained by combining the 10 starting

poly

features into all possible multiplications a cubic polynom has.

Feature matrix X,., has 679 features that are obtained by combining the 14 more

poly
significant features of the X matrix into all possible multiplications a cubic polynom

has.

Cubic polynoms were used because Eq. (3.17) through Eq. (3.22) can be formed by

multiplying up to 3 starting features on the right side. Also, to reduce skewness or

highlighting trends, other variations of the output variable y (see Eq. (3.17)) are defined as
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3\/; and In(y). The 14 more significant features of X are obtained after performing the

sensitivity analysis (explained later) for ENM2 (introduced later in Table 3.1).

The starting features x4, ..., x1o (Egs. (4.7) to (4.16)) will be the input parameters of one or
more complex ML models, which will be predicting the normalized shear stress y (Eq.
(4.17)). The selected complex ML models for this study are the Artificial Neural Network
(ANN) and Random Forest (RF) Regression because they are applicable for this study (the
predicted parameter is a continuous variable), and because they are well known models that
are not complicated to implement in programming languages (e.g., Matlab, R, Python, which
have various built-in functions to simplify their implementation). The starting and
engineered features are used to create a suite of Elastic Net Models (ENMs). In this case, a

total of 10 ENMs are defined (see Table 3.1).

Table 3.1: Elastic Net Models definition

Model Short Reference Long Reference(@

ENM1 y~ X Y ~ N(u,o), w=x6, Vel ..n}
ENM2 y ~ X yj ~ N(uj,0), uj=%B, vje{1,2,..n}
BN Py~ X i ~ N(uj0), u=%B, vje{1,2,..n}
ENM4 In(y) ~X In(y;)) ~ N(uj,0), w; =%, vje{1,2,...n}
ENMS Y ~ Xpoly yj ~ N(uj,0), pj= Xpoty, B, Vje{1,2,..n}
ENM6 VY ~ Xpoy iy, ~ N(uj,0), pj= Xpoty, B, Vje{1,2,..n}
ENM7 In ) ~ Xpoty In@) ~ N(up0), 1 =Xpoy, B, Vie(l2,..n}
ENM8 Y ~ Xpoly yi ~ N(up0), uj= Xpoty, B, Vje{1,2,..n}
R VY~ Xpoy 3yi ~ N(w,0), u= Xpoty, B, Vje{1,2,..n}
ENM10 In ) ~ Xpoty In @) ~ N(j0), #y=FpoyB, Vje(12,..n)

(@ n is te number of features the model uses

23



ENMs (Zou and Hastie, 2005) are a simple and more interpretable ML model type because
they are a penalized linear modeling approach with a mixture of Ridge Regression (Hoerl
and Kennard, 1970) and Least Absolute Shrinkage and Selection Operator (LASSO)
regression (Tibshirani, 1996). Ridge regression reduces the impact of collinearity on the
features, whereas LASSO reduces the dimension of the problem by shrinking some of the
coefficients to zero (less significant parameters). ENMs have two hyper-parameters: (a) 1 >
0 is the complexity parameter that controls the weight of the penalization factors; (b) a €
[0,1] is the compromise between Ridge («¢ = 0) and LASSO (@ = 1). Small A values can result
in an overfitted model (too complex), whereas high A values can result in an underfitted

model (too simple).

3.3 Step 3: Sensitivity Analysis and Selection of Hyper-Parameters

For the 12 ML models defined in the previous step (1 ANN, 1 RF Regression, and 10 ENMs),
a sensitivity analysis on their main hyper-parameters is performed to assess the
underfitting-overfitting trade-off. The implemented sensitivity analysis (algorithm shown in
Figure 3.3) consists of using an iterative k-fold Cross-Validation (CV) method with Nj;., =
100 iterations and k = 4 folds. K-fold CV is useful for data scientists when dealing with small
databases (a few thousands of data samples). Iterations are included because in Structural
Engineering the database are typically even smaller (just a few tens or hundreds). Figure
3.3 shows that each iteration requires randomly dividing the training set into k folds and
performing a k-fold CV analysis for all possible hyper-parameter configurations. Once the

sensitivity analysis is completed, k X Nj;., = 4 X 100 = 400 RMSE values are computed for
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each configuration of hyper-parameters. Then, for each of these configurations, the mean
and standard deviation of the computed RMSE are obtained. Based on the lower mean error

and lower standard deviation, the optimal hyper-parameters are selected.
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Figure 3.3: Sensitivity analysis algorithm to select the optimum set of hyper-parameter values

3.3.1 ANN

The main hyper-parameters for an ANN model are the number of hidden layers and neurons
per layer. General rules regarding these hyper-parameters depend on the size of the
database or on the number of input features. Suggested rules can be found in the literature
(Chen et al. 2018; Moradi and Hariri-Ardebili, 2019), which are covered by the ranges

selected for the sensitivity analysis:

e  The number of hidden layers was varied from 1 to 6
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e  The number of neurons per hidden layer was varied from 1 to 30. For all ANN trained
in the sensitivity analysis, all hidden layers were implemented with the same number

of neurons.

The results of the sensitivity analysis are shown in Figure 3.4. The best ANN configuration
for each number of hidden layers considered is indicated with a blue dashed line. From these,
the optimum ANN is the one with 4 hidden layers and 30 neurons in each layer because it
has the minimum mean error (MIN RMSE) and the lowest standard deviation (SD). All
previous configurations (same 4 hidden layers, but fewer neurons) show a large range of

similar and stable results in terms of both mean error and SD.
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Figure 3.4: Sensitivity analysis to define the optimum ANN configuration

3.3.2 RF Regression

A large number of decision trees (1000 trees) is selected to ensure that a stable error level
is reached. For this study, the error became stable at around 300 trees. There are two other
hyper-parameters that could have an impact on the performance of the model (Zhang and

Ma, 2012): (1) the number of variables (selected among all the features) in each cell (mtry),
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and (2) the pre-specified threshold of maximum observation per cell (nodesize). For
classification problems, mtry is lower than p and is commonly taken as \/_ , where p is the
number of input variables. For regressions, mtry is commonly taken as one-third of the
number of samples in the dataset. Although there are suggested values for mtry, RFs are not
too sensitive to mtry (Zhang and Ma, 2012). In the sensitivity analysis, values of mtry from
both rules are used, i.e.,, mtry values smaller than p and values around one-third of the
training and complete sets. As for the nodesize parameter, it is thought that having large
trees (associated with small nodesize values) always produces better results (Breiman,
2001). However, arecent study (Segal and Xiao, 2011) shows that there could be cases where
large trees overfit the model. Although this is probably not the case because of the database

size, the sensitivity analysis covered a broad range of nodesize values to verify the behavior.

Figure 3.5 shows that the RF results are only slightly sensitive to mtry, and that having large
trees (small nodesize) results in low errors (RMSE). The stability of the results for mtry
values of 50, 90, and 130 is reached at smaller nodesize values. Figure 3.5 also shows that
the optimal RF model is obtained for the case with mtry = 50 and nodesize = 1 (minimum

mean and SD).
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Figure 3.5: Sensitivity analysis to define the optimum RF Regression configuration
3.3.3 ENMs

The same sensitivity analysis approach was implemented for each of the 10 ENMs defined in

Table 3.1. The log(4) values ranged from -12 to -2, while the a values were 1.0, 0.8, 0.6, 0.4,

0.2, and 0.0. As an example, Figure 3.6 presents the sensitivity analysis results for ENM6.
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For the ENMs, in addition to the optimum set of hyper-parameters, hyper-parameter sets
associated with different underfitting levels are defined. In this study, the three underfitting

levels selected include:

¢  Oneinwhich error corresponds to the error that is one standard deviation away from

the error of the optimum model (“1-SD away” version).
e Anunderfitted model that uses six features only (“6-feature” version).

e Anunderfitted model that uses three features only (“3-feature” version).

The reason for selecting these underfitting levels is because a model with a complexity-level

applicable for a code-oriented shear strength equation is of particular interest in this study.

Figure 3.7 presents the mean errors obtained from the sensitivity analysis of all 10 ENM
models and demonstrates that regardless of the value of @ considered (compromise between

Ridge and LASSO), there is a A value where practically the same optimum error is reached.
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Figure 3.7: Mean of MSE obtained from the sensitivity analysis of all ENM models
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Figure 3.8 shows that the number of coefficients shrinks faster for higher a values (as
expected). More importantly, it indicates that it is difficult for the models to exclude features
to reach the defined underfitted levels of interest (models with only between 3 and 6
features) for lower a values. Because of these reasons, for each ENM in this study, the
selected optimum hyper-parameter configuration is @ = 1 and its associated corresponding

A optimum value, i.e., all selected ENMs are LASSO models.
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Figure 3.8: Mean non-zero coefficients obtained from the sensitivity analysis of all ENM models

Therefore, from each ENM, one optimum version is selected along with three underfitted
versions. As an example, the blue, green, and orange vertical dashed lines in Figure 3.6(a)
indicate the 4 values associated with the selected underfitting levels for the LASSO model #6,
in addition to the optimum version indicated with a black dashed vertical line. The A value

associated with each underfitted level for all ten LASSO models is selected in the same

manner.
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3.4 Step 4: Training, Verification, and Selection of Best Performing Models

All the models are trained with the selected sets of hyper-parameters using the training set.

This results in 42 trained ML models:

e  Optimum ANN (1 model)

e  Optimum RF Regression (1 model)

e  Optimum version of each LASSO (10 models)

e The 1-SD away version of each LASSO (10 models)
e  The 6-feature version of each LASSO (10 models)

e  The 3-feature version of each LASSO (10 models)

The best performing model of each of these groups are selected. The acceptability criterion
adopted in this study defines a model as acceptable when the errors of the training and
testing sets are both within a defined margin away from the converging error, which is +20%
for the optimum models and +10% for the underfitted models. The converging error is taken
as the average of the training and testing errors. Optimum models have a larger margin
because they are right on the balanced point between the underfitted and overfitted models,
and thus they have the potential to “keep learning” (i.e., re-adjust their coefficients a bit) if
new data are provided for training. On the other hand, by definition, underfitted models are
not capable of capturing enough details of the process they are representing, and they follow
more rough trends identified from the data, which is the reason for the stricter margin
around the converging error. More details on this and the definition of the acceptability

criterion are given in Section 3.4.3.
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3.4.1 Optimum ANN and RF Regression

The complex ML models, ANN and RF, are trained using the configurations based on the
selected optimum hyper-parameters. Although the training process was based on the RMSE
between ;. and y,,.q, see Figure 3.9(a) and Figure 3.10(a), similar model performance
(i.e., training and testing errors within +20% of the converging error) is obtained when
predicting values from the training and testing sets in terms of the mean and COV of
Virue/Vprea» @s shown in Figure 3.9(b) and Figure 3.9(c) for the optimum ANN and in
Figure 3.10(b) and Figure 3.10(c) for the optimum RF. Figure 3.9(c) and Figure 3.10(c)

also show that the predictions for the training and testing sets have the same distribution

shapes.
. w_|
o RMSEyain = 0. 0129 ~N7] e Train: Mean =1.00, COV =012 (c) Train Set
2 | » RMSEqq = 0. 0182 . S e Test: Mean=098 , COV=0.17 mean =1.00
= S | 75 sd =012
= o~ cov =012
2| »
5 o 3w _| g . Test Set
2 = 50
i [ = = e :3193
= & = 5 =0
£s __}5 = 8 cov =017
| ™ 251
= =
g__ =_] {b:' 0
| T T T T 29 T T T T T T T T T
0.00 005 010 015 020 0 100 200 300 400 500 600 0.6 0.9 1.2 15
True y Vt'ue (k'P} Vtrue ! Vprec

Figure 3.9: Performance of selected ANN on the training and testing sets in terms of: (a) normalized shear
stress; (b) Viye/Vprea VS Virues (¢) distributions of Vipye [Vpreqa- (Note: 1 kip = 4.448 kN)
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Figure 3.10: Performance of selected RF Regression on the training and testing sets in terms of: (a) normalized
shear stress; (b) Virye/Vprea VS Virues (¢) distributions of Vipye /Vprea- (Note: 1 kip = 4.448 kN)

3.4.2 Optimum and Underfitted LASSO Models
All 40 LASSO models selected (4 from each ENM defined in Table 3.1) are trained using only

the features associated with each selected hyper-parameter configuration. This means that
the 40 models are linear regressions with different engineered features. Table 3.2 through
Table 3.5 show the error of the 40 models (sorted from smaller to larger converging error)
when predicting values from both the training and testing sets and include a column that to
show the acceptability of the model based on the criterion defined earlier. The error is
expressed in terms RMSE between Y, and yp,.q. As can be seen from these tables, there
are some model versions that do not meet the acceptability criterion. For each complexity
level (i.e., LASSO version), the model meeting the acceptability criterion (among those
associated with the same complexity level) and with the smaller converging error was
selected. A total of 4 ENMs are selected, which are highlighted in yellow in Table 3.2, Table
3.3, Table 3.4, and Table 3.5): the best optimal LASSO model, the best 1-SD away LASSO
model, the best 6-feature LASSO model, and the best 3-feature version. The same result is
presented graphically in Figure 3.11. Note that the optimum LASSO model #9 and #10 have
large errors, which is attributable to the implemented automated selecting of hyper-
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parameters, which for this case are just a little past the underfitted-overfitted sweet point;
this is part the reason for which including the 1-sd away (especially for those LASSO models

that are more complex).

Table 3.2: Optimum LASSO models Table 3.3: 1-sd away LASSO models
RMSE RMSE RMSE RMSE RMSE RMSE
2 2
Model (train) = (test) (conv) Passes? Model (train) = (test) (conv) Passes?
0.0117 0.0137 0.0127 Yes 9 0.0137 0.0147 0.0142 Yes
0.0114 0.0167 0.0140 Yes 6 0.0140 0.0175 0.0158 No
0.0112 0.0177 0.0145 No 10 0.0139 0.0185 0.0162 No

0.0131 0.0181 0.0156 Yes 3 0.0137 0.0189 0.0163 No
0.0120 0.0207 0.0163 No 5 0.0146 0.0181 0.0164 No
0.0148 0.0186 0.0167 Yes 4 0.0144 0.0183 0.0164 No
0.0134 0.0202 0.0168 No 2 0.0138 0.0199 0.0169 No

7

8

1

0.0197 | 0.0216 0.0207 Yes 0.0140 | 0.0213 0.0176 No

O Rk N H 00 W 3 U1 &

0.0122 0.0631 0.0377 No
10 0.0122 0.3469 0.1795 No

0.0145 0.0244 0.0195 No
0.0203 = 0.0219 0.0211 Yes

Table 3.4: 6-feature LASSO models Table 3.5: 3-feature LASSO models
RMSE | RMSE RMSE RMSE | RMSE RMSE
? ?
Model (train) = (test) (conv) Passes? Model (train) = (test) (conv) Passes?
3 0.0153 0.0194 0.0174 No 10 0.0192 0.0218 0.0205 Yes

9 0.0152 0.0201 0.0176 No
4 0.0164 0.0190 0.0177 Yes
8 0.0147 | 0.0209 0.0178 No

0.0184 0.0256 0.0220 No
0.0218 0.0237 0.0227 Yes
0.0208 @ 0.0291 0.0250 No
0.0245 0.0292 0.0268 Yes
0.0249 0.0288 0.0268 Yes
0.0273  0.0289 0.0281 Yes

10 0.0164 0.0198 0.0181 Yes
6 0.0203 = 0.0212 0.0207 Yes
1 0.0203 0.0219 0.0211 Yes
5 0.0200 @ 0.0222 0.0211 Yes 0.0264 | 0.0310 0.0287 Yes
7 0.0279  0.0320 0.0300 Yes
2

0.0276 | 0.0360 0.0318 No

0.0220 0.0233 0.0226 Yes
0.0213 | 0.0240 0.0226 Yes

N OO U1 R, W N O s
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Figure 3.11: Error of each LASSO model version - accepted vs rejected models

Figure 3.12 shows the similar behavior of these four trained LASSO models when predicting

values from both the training and testing sets. In this figure, the error is expressed in terms

RMSE between Y, and ¥,,¢q4, and in terms of mean and COV of the Vi, /Vpreq ratio and its

distribution. It can be seen that the errors go up and the distributions of the y;yye/Yprea

become wider as the complexity level of the models is relaxed, but they maintain the shape

of a normal distribution. Nonetheless, the errors obtained for the 6-feature and 3-feature

linear regressions are still very low when compared against the results of previous proposed

equations (see Table 2.3). In this comparison, it is important to consider the size of the

database, the ranges its parameters cover, and that for the database used in this study, all

wall tests were reported to have failed in shear.
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Figure 3.12: Performance LASSO models on the training and testing sets in terms of- (a, d, g, j) normalized shear

stress; (b, e, b, k) Virye [Viprea VS Virues (G £ 1, 1) distributions of Ve /

Virea- (Note: 1 kip = 4.448 kN)

Another way to verify the performance of the models is to plot the learning curves of the 6

selected models computed using the training and testing sets (Figure 3.13). Learning curves

also provide a tool to understand how the models would behave if new data are available.

The learning curves, similar to what was done for the sensitivity analysis, are obtained using
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iterations; the training and testing errors associated with each size of the training dataset
are obtained as the average of 50 RMSE values coming from models trained using 50
different subgroups of the same size randomly extracted from the training set. Except for the
RF regression, all the learning curves shown in Figure 3.13 have a gap between the training
and testing curves and reach a plateau when approaching the use of 100% of the training set.
Because of this, the error obtained when including future data in the training set to retrain
these same models (i.e., keeping the same hyper-parameters and relevant features already
identified) should fall between the training and testing errors but closer to the training error.
On the other hand, the training and testing learning curves for the RF regression are very
close to each other due to selecting a very large number of trees, but it can still be seen that
the slope of the learning curves are becoming less steep (reaching a plateau) when the
training size becomes larger. This means that, when providing additional data for training
the same RF regression model (i.e, same hyper-parameters and input features), the

converging error would get closer to that plateau, resulting in a slightly lower error.
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Figure 3.13: Performance LASSO models on the training and testing sets in terms of- (a, d, g, j) normalized shear
stress; (b, e, b, k) Virye [Viprea VS Virues (6 £ 1, 1) distributions of Virye [Vpreq. (Note: 1 kip = 4.448 kN)
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3.4.3 Definition of the Acceptable Bandwidth Around the Converging Error

Part of the understanding of how well a model is working and if it is meeting the
expectations, comes from analyzing the converging error. The proposed framework results
in having optimum models which training and testing errors have a small difference between
them. However, judgment is required to define “how small” is acceptable. The experience of
the authors comes from reviewing and understanding how existing models work and the
error they have (see Section 3). After reviewing several studies addressing both simple
models (see Table 2.1, Table 2.2, and Table 2.3) and complex ML models (see Table 2.4),
and analyzing several relevant existing models against the comprehensive database
collected for this study (see Figure 4.2), it is known that there are equations than can get a
true-to-predicted mean ratio very close to 1.0 with a COV as low as 0.30. Therefore, when
training a much more complex model, it is desired and expected to obtain a converging error
that is much lower than the ones obtained by the best existing equations, and of course it is
also expected that both training and testing error are smaller than the errors obtained by the

best existing equations.

The errors of the several existing models when predicting the values of the common
comprehensive database also give a sense of how much could be an acceptable low range
around the converging error. However, it was already introduced another ML tool that
provides valuable information regarding this: the “learning curves”. The learning curve tells
how fast the model learns; if the model sees a very small portion of the training set, it will
not learn enough to make good predictions of the testing set, but when the model has seen
almost the entire training set, it is expected to be already producing good predictions of the

testing set. A learning curve has a particular shape if the model is underfitted, overfitted, or
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optimum (balanced), as conceptually shown in Figure 3.14 for regression models. It is
relevant to add that reaching a plateau for both training and testing error learning curves
before reaching the 100% of the training set is important, otherwise, the model is still

capable of learning.
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Figure 3.14: Typical learning curve shapes for Regression Models (Emmert-Streib and Dehmer, 2019)

In addition to the understanding of how existing models behave, it is crucial that the
framework requires training not only one, but a group of models to its optimum version
along with underfitted versions of them as well. In this study, 12 optimum ML model versions
were selected and trained (1 ANN, 1 RF Regression, and 10 LASSO models). Also, three
underfitted versions for each LASSO model was defined, which means there are three groups
of 10 underfitted LASSO model versions. The group of optimum models reached training

errors (in terms of COV) between 0.11 and 0.13 for almost all of them (except for two of the
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simplest LASSO models) and reached testing errors between 0.15 and 0.20 for almost all of
them (except for two of the more complex LASSO models). The acceptable bandwidth around
the converging error was gradually increased from 0% of the converging error, and the

results were analyzed as it is shown in Table 3.6.
Table 3.6: Results of using different acceptable bandwidths around the converging error for the training and
testing errors

Acceptable Bandwidth Results and Comments

0% of the converging error No model was accepted

Only one model was accepted, and it had a converging error of COV=0.20.
This band error was discarded because the converging error was too high
5% of the converging error to be set as the target optimum error. This decision was made based on
the values obtained for the training errors, and also based on the same

analysis being done in parallel with the underfitted models.

Only one (same) model was accepted. Discarded for the same reasons as
10% of the converging error -
efore.

Two models were accepted. The converging errors were COV=0.20 and
15% of the converging error
COV=0.16. Discarded for the same reasons as before.

20% of the converging error Six models were accepted. The smallest converging error was COV=0.13.

Because of the results shown in Table 3.6 and the results of the same analysis but developed
on the underfitted model versions, the acceptable bandwidth is set as 20% of the converging

error. This results in all the following:

e The optimum ANN passes the 20% of the converging error criterion.

e The optimum ANN has a converging error of COV = 0.14, which is aligned with the
smallest converging error of the group of six models passing the 20% criterion in

Table 3.6.
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. It leaves room to set a stricter acceptable bandwidth for the underfitted models,

which is defined as 10% of the converging error.

e  Setting a 10% of the converging error as criterion for the underfitted models makes
it easier but still strict for them the comply with it. 70% of the simpler underfitted
models (3- and 6-feature LASSO models) pass the criterion, while only 20% of the
more complex but still underfitted models pass it (1-sd away LASSO models). Refer

to Table 3.3, Table 3.4, and Table 3.5 to see this.

An underfitted model must be assigned with a stricter acceptable bandwidth because it is
“easier to learn” for them. This means, underfitted models have a larger converging error,
but they can reach it faster than the optimum models reach their converging error. For
instance, Figure 3.13(c) shows the learning curve for the selected optimum LASSO models
(in terms of the error indicator used for the training, RMSE), and it can be seen that a plateau
is obtained at around 80% of the training dataset. Figure 3.13(e) and Figure 3.13(f) show
the learning curve of the selected 6-feature and 3-feature LASSO models, respectively, and

they reach their plateaus at about 30% and 20% of the training dataset, respectively.

3.5 Step 5: Setting Target Errors for Different Model Complexity Levels

The 6 selected models can be retrained by adding the testing data to the training set and
keeping the same selected hyper-parameters and input features. Because these models have
a good performance that has been verified and the testing data have a distribution similar to
the testing data (see Figure 3.1), the retraining process will only refine them (Amazon Web

Services, 2019). The results are presented side by side in Figure 3.15, sorted from higher
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model complexity level (left) to lower model complexity level (right): optimum ANN,
optimum RF, optimum LASSO M6, 1-sd away LASSO M9, 6-feature LASSO M4, 3-feature
LASSO M10. As expected, performances very similar to those obtained before the retraining
process and aligned with the observations derived from the learning curves are obtained.
This good behavior is verified with different error indicators, in terms of the RMSE between
Ytrue and Yp,cq (error used in the training process, 1st row of plots of Figure 3.15, RMSE
between 1.0 and Vi /Vpreq (2nd row of plots of Figure 3.15), and mean and COV of

Virue/Vprea (3rd row of plots of Figure 3.15).
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Figure 3.15: Retrained ML models
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Figure 3.15 shows that the ANN performs better (smaller error) than RF, but there is still
room for the RF to improve when additional data are added to the database. The optimum
LASSO model performs practically the same as the optimum ANN, or even slightly better if

the RMSE between y;y and yp,.q is considered. This is a relevant finding for two main

reasons:

e The complexity level of a LASSO model is much less than that of an ANN model
because the penalization factors included in the error definition used in the training
process to define which features are kept, are removed and the models are treated as
linear regressions using those selected features only, which in the case of the
optimum LASSO model in this study, are 45 features engineered from the 10 starting

features.

e  The underfitted LASSO models can be understood as a soft relaxation away from the
optimum when looking for target model performances (errors) that fulfill user
requirements for less complex models. The 1-SD away LASSO model is a linear
regression of 14 features engineered from 7 of the 10 starting features (x4, x5, X3, X,
Xg, X9 and x;4), the 6-feature LASSO model is a linear regression of 6 features
engineered from 6 of the 10 starting features (x;, x5, X3, X4, X¢ and xg), and the 3-
feature LASSO model is a linear regression that uses 3 features engineered from 5 of

the 10 starting features (x4, X3, X3, Xg and x4).

An equation with 3 to 6 terms defined from 5 to 6 parameters is representative of the
complexity level of equations adopted in building codes and standards, as it can be seen from

Table 2.1. The wall shear strength equation in Section 18.10 of ACI 318-19 (see Table 2.1)
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is shorter, but it does not consider some parameters that are important based on the
literature review, such as the effect of the boundary element (longitudinal reinforcement
and/or flanges) and axial load ratio. Therefore, for the comprehensive database presented
in this study or for a similar database (similar ranges and distributions for at least the same
parameters included in this database, as is the case of the testing set with respect to the
entire database accordingly with Figure 3.15), models with the different levels of

complexity noted should comply with the requirements stipulated in Table 3.7.

Table 3.7: Target Performances

Acceptable Bandwidth Complex ML Models Simple Models
Number of parameters = ~3—-6
Vtrue/Vpred mean ratio 0.99 —1.01 0.98 — 1.02
COV of Virye/Vpreq ratio <0.12 0.16 — 0.19

Training Vs testing Error margin +20% of the converging error +10% of the converging error

Note that the verification of the last requirement in Table 3.7 should be verified at least in
terms of the error indicator used in the training process. Ideally, additional error indicator

should be included in the performance verification to confirm model robustness.
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Chapter 4. Insights Related to the RC Wall Shear Strength Problem

4.1 Comments on Relevant Parameters

Among the starting features defined from Eq. (4.7) to Eq. (4.16), the ones used in the 6-
and/or the 3-feature LASSO models defining the performance requirement for a code-

oriented equation are:
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The only ones that are not listed here are x5 = c/!,, , x;, = t,,/l,, and x9 = h,,/l,, . The
absence of x5 =c/l, can be attributable to the presence of x;y = Ap./A, and x3 =
Pwoefyve/f' c, because these two features can be used to represent the forces of compression
or tension that are developed at the wall edges. The absence of x; =¢,/l,, can be
attributable to the presence of xg = t,,/h,,, which already accounts for the wall thickness
and can be used together with x, = M, /(V,l,) to reproduce values that have high
correlation with x, =t,,/l,,. On the other hand, the absence of xq = h,,/l, among the

previous parameters is striking, but there is a good reason for it. Some of the models
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reported in Table 2.1 or Table 2.2 use wall aspect ratio (h,,/l,,) as a parameter to estimate
wall shear strength (ACI 318-19 is one of those), whereas some other models use moment-
to-shear span ratio (M, /(V,l,,)). In many of the tests reported in the literature (82% of the
tests in the database used), these values are the same because the test involves a cantilever
wall, fixed at the base, with a single point load applied near the top of the wall, i.e.,, M,, = V, h,,

(see Figure 4.1).
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Figure 4.1: Histogram of test configuration

For some tests reported in the literature, these values are not the same (e.g., for a partial
height wall with an applied lateral load and moment at the top of the wall) and it is necessary

to define an effective wall height h,, .rr and wall aspect ratio (hy,.¢s/l,) for these tests.
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Figure 4.1 shows that, for the database used, there are 32 specimens with a moment applied
to the top of a partial height wall, 3 cantilever walls with 2 or more lateral loads, and 26
specimens tested with double curvature configuration. For tests with multiple applied lateral
loads (e.g., see Cardenas and Magura, 1972) and/or a moment applied at the top of the wall
test (e.g, see Segura and Wallace, 2018), the effective wall aspectratio h,, ¢ /l,, was defined
as M, /(V,1,) at the wall critical section (wall-foundation interface). If this approach is used,
then identical results are produced from the test database using either h,, /[, or M,,/(V;,L,,,).
Thus, to define xq = h,,/l,,, the constructed wall height was used because that is how the
aspect ratio has been defined in other studies. However, for the reasons given above, it was

expected that x, = M, /(V,1,,) would be a better parameter.

4.2 Comments on Existing Models Performances

The performance of the existing models in codes and standards was evaluated using the
common, comprehensive database gathered for this study (see Figure 4.2). Figure 4.2
shows that mean values varied from 0.70 to 1.97, and the COV values vary from 0.30 to 0.47
and that none of the existing models performed particularly well. The AlJ (1999) model had
the least variation (but with mean value of 0.7). The Barda et al. (1977) model and the
Sanchez-Alejandre and Alcocer (2010) model had mean values very close to 1.0, but COV
values greater than 0.30. The ASCE 43-05 model (which is based on Barda et al., 1977)
resulted in a mean value of 1.22 and COV of 0.30. None of these models meets the

requirements for the simplified model complexity level stated in Table 3.7.
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Figure 4.2: Performance comparison of existing models using the single, comprehensive database gather for this
study

Additionally, Table 2.2 shows that Kassem (2015) and Looi and Su (2017) calibrated their

models using a database similar in size to the one used in this study. Table 2.3 shows that,

although close (COV of 0.21 and 0.27 of the true-to-predicted ratio, with a mean value close

to 1.0), not even these models reached the target performance defined for simple models,

even though all data was used in the calibration process and no assessment of unseen data

was developed.
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As for the ML models analyzed in the literature review; no one meets the complex model
level target performance either because the error is not small enough or because the
difference between the training and testing error is too large. The proposed approach
provides a framework to better train ML models, particularly when the problem being
addressed is based on basic mechanical principles. The application of the framework made
all ML model types studied here to provide very similar results at their respective optimum

complexity level.

Achieving the same good performance of complex ML model with a simple LASSO model
emphasizes that the size of databases used for many civil engineer problems may still be too
small to benefit from the use of complex ML model types (such as ANN and RF regressions)
because a linear regression with the right features can still perform as good, or even slightly
better, as the complex ML models. This is aligned with the rule of thumb that says ML models
should be train on atleast an order of magnitude more samples than input model parameters
(Morgan and Bourlard, 1989; Google ML Education n.d.; Gonfalonieri, 2019). The optimum
LASSO model presented in this study uses 45 features, which are engineered from the 10
starting features presented in Eqgs. (4.7) to (4.16), which can be easily implemented in an

excel spreadsheet. This would not be the case for the ANN or RF regression models.
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Chapter 5. Methodology to Define a Code-Oriented Equation

A new equation to predict wall shear strength is desired because the current equation in ACI
318-19 Section 18.10 nor the existing models (see Figure 4.2) meet the target model
performance required for a code-oriented model complexity level (see 4.7) when predicting
values of a common, comprehensive database of walls reported to have failed in shear as the

one gathered for this study.

As mentioned before, the databases used by Kassem (2015) and Looi and Su (2017) are
comparable in size with the database used in this study. The model comparisons reported by
these authors in their respective studies (presented in the last columns of Table 2.3) show
that only their own proposed models are close to the target performance for a simple model.

However:

e The databases used in their studies use the assumption that walls with h,, /[, < 2.0
fail in shear, which although reasonable, might not always be true and thus it can

cause the proposed model to be biased.

e Both studies used the entire databases to calibrate their models and as a consequence
it is uncertain if the model will present high bias or variance (see Figure 3.14) when

faced against new data.

e The proposed models are still complex mainly because of their format.

In this chapter, an approach combining ML and statistical methods is implemented to shrink
an equation (starting equation) with a code-oriented format (V,, =V, + V;) up to the point

where the corresponding target performance is achieved. The same database with the same
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training and testing sets used in the previous chapters is used here. It is relevant to mention
that once a code appropriate equation was developed using the database of 333 walls with
symmetrical cross sections (rectangular, barbell, H-shaped), additional studies are
conducted to determine modifications need to apply the equation to walls with

unsymmetrical cross sections (L- and T-shaped), since these wall shapes are commonly used.

5.1 Step 1: Collection and Preparation of Data

The same database of 333 symmetrical walls reported to have failed in shear used before is
used here as well. This database has already been rigorously reviewed to filter out tests that
do not meet predefined criteria or where inconsistent results were reported (see 4.1). In
addition to the same training set of 266 samples and testing set of 67 samples, a second

testing set of unsymmetrical walls is included for this part of the study.

The second testing set of unsymmetrical walls consists of 13 samples out of the 20
unsymmetrical walls identified with T-shaped and L-shaped, or walls with a column (half
barbell shaped or column with wing walls) in the original (larger) dataset (see 4.1). This
approach was used because 13 tests was insufficient compared to 333, i.e., the inherit
differences associated with these tests would be overlooked by the training process if
included as part of the training and testing datasets. Since use of wing walls is not common
in the U.., the Japanese Code (AIJ] 1999) includes detailed recommendations on
determination of wing wall shear strength), the 7 wing wall samples among the 2-

unsymmetrical walls were excluded. The dataset of 13 tests is derived from 11 tests, because
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2 of the tests reported were failed in both directions of loading (specimen HW2 tested by

Kabeyasawa et al, 1996, and specimen SWBT-L40 tested by Baek et al., 2020).

5.2 Step 2: Identification of Relevant Parameters and Starting Equation

The first step involves identifying the relevant parameters based on a literature review, and
then normalizing these parameters (e.g., using shear stress versus shear strength, since most
tests were done on reduced scale test specimens). In this case, the parameters considered in
the starting model are the relevant features used in the simplest ML models (6- and 3-feature

LASSO models) indicated in Section 5.1:
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The selected parameters include material-related parameters (V;) and other parameters
(Vj,i)3
* Material-related parameters (V;): concrete strength and correlated cross-sectional
area (Ay; f.), quantity and yield stress of longitudinal reinforcement at the wall
boundary (ppe; fype), quantity and yield stress of horizontal web reinforcement (p,,p;
fywn), and quantity and yield stress of vertical web reinforcement (p,,,; fywv)
 Other parameters (y;,;): axial load ratio P,/(4;fy), shear-span ratio M, /(V,1,,) (or

aspectratio h,,/l,,).

Where all these variables have been already introduced, except for A;. The gross-section 4,

is the wall web area (4.,) plus the area of the effective overhanging flange width (if present)
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at the edge (or boundary) of the wall subjected to compressive stresses due to overturning
moment. It is also introduced now Ag;,, which is the area of concentrated longitudinal tension
reinforcement at a wall boundary within 0.201,, from the wall edge, as well as the area of
longitudinal reinforcement located within an effective tension flange width, if it exists. If wall
web longitudinal reinforcement is uniformly distributed, then Ay, includes the area of
longitudinal reinforcement within 0.20/,, from the wall edge, as well as longitudinal

reinforcement within the effective flange.

It is noted that initially, gross cross-sectional area (44), which represents the wall web area
and the area of the effective overhanging tension and compression flange width for an H-
shaped wall cross sections, or the entire area of barbell-shaped cross sections, was used in
this methodology (just like in the previous chapters, because it was convenient, and due to
symmetry, did not influence the results). However, evaluation of the second dataset (of
unsymmetric wall cross sections) indicated that this approach was difficult to interpret for
unsymmetrical walls (additional comments on why this term is used are presented in Step

4).

These parameters are rearranged into an equation that follows the “V. + V;” (concrete
contribution plus steel contribution) format. The “Other Parameters” (y;;) are normalized
and unitless and are weights that multiply each of the “Material Parameters” (V;) terms,
which have units of force (e.g., kN, kips, etc.). Figure 5.1 shows the general form of the
equation that is used to form the starting equation that is then reduced (shrinking process).
The starting equation is normalized to avoid the many potential issues that could arise

during the training process (see Section 3.2. It is noted that this normalization process is

53



based on the physics of the problem, i.e., different than the normalization or scaling concepts
used in statistics, which are still required prior to training a model. The predicted variable is

almost the same as the one when applying the framework to set target model performances:

W
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The only what changes in the definition of y,,,. respect to that of Eq. (4.17) is that in Eq.
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Figure 5.1: Definition of the starting equation

For the reasons mentioned in Section 5.1, it is necessary to define an effective wall height
hy ¢ 5 for wall tests with multiple lateral loads applied over the wall test specimen height or

for walls with a moment applied at the top of the wall. As said in Section 5.1, a common

approach is to use h,, .ry = M, /V,; therefore, for most of the tests in the database, with a

single point load applied near the top of a fixed-based, cantilever wall (see Figure 5.1),

54



hwefs = hy. With this definition, the same predictive equation would be achieved using
either hy, ff/1,, or M, /(V,1,,). In this study, M,,/(V, 1,,) is used. However, for a real building,

use of h,, /1,, versus M,,/(V,l,,) would produce different results. This issue is addressed later
in Section 8.3.

5.3 Step 3: Training Process, Equation Simplification and Performance
Verification

5.3.1 Training Process and Equation Simplification

The unknown coefficients to be studied and fitted are the a;, b; and B; coefficients of the
normalized equation shown in Figure 5.1. The database was split into the same training
(80%) and testing (20%) sets used before (Section 4). The iterative k-Fold Cross Validation
method implemented before is used here as well (see Figure 3.3). In this case, in addition to
keeping track of the model error, p-values are also recorded. The algorithm shown in Figure
5.2 is implemented to shrink (simplify) the starting equation until the model error meets the

target error (see Table 3.7).

55



Start New Cycle I—Dl ith iteration |«
F Y rl
Y
I Training Set |
Random splitting ofLrainrng set into 4 folds
v v v v
| Validation | | Training | | Training | | Training |—I‘* | rmse;, |& | p-value for each a;, b; and b’g|
Training [ Validation | | Training | | Training |_., | rmse; o |& | p-value for each a;, b; and ;:?f|
| Training | | Training | l Validation | [ Training |—I- | TMSe;;s |& | p-value for each a;, b,—andﬁf]
| Training I | Training | | Training || Validation |—p- | Tmse; |&|p—value for each a;, b; a“dﬂal
L l J
Niger Npotas Niger Nfolds
1 : L 1 : o NO YES
error = ———— Z z errory; . (poval) = —z z (p-value); !
L'rr.-rN_lfrllrl.\' =1 jm1 NEI:J:TN_r'm'r.E:i R jmn
Drop parameter associated with - ]
coefficient with highest p-value. BITOT < 110y ger? a0 y|  Keep coefficients of previous
{Apply judgement) cycle

Figure 5.2: Algorithm implementing 4-Fold CV to shrink the starting equation

The methodology involves splitting the training dataset randomly into k folds, k — 1 of the
folds are used as sub-training datasets to train a nonlinear regression model and the
remaining fold is used as a validation dataset. All this is done k times within each iteration.
The training process produces p-values for each aq;, b; and f; coefficients, whereas model
error is computed from model predictions using the validation dataset. Although root mean
square error (RMSE) is used in the optimization process, the mean and COV of the true-to-
predicted ratio (Viyye/Vpreq) are also computed. Once the iterative process is done,
Niter X k = 200 errors and N;ter X k = 200 p-values for each a;, b; and f; coefficients are
obtained (in this case, k = 4 and Ny, = 50 were used). The average error and the average

p-value for each coefficient are calculated. The p-values indicate the statistical significance
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for each model variable, the higher the p-value, the less significant the variable (Murtaugh,
2014). If the average error is lower than the target error, then the variable associated to the
largest average p-value is dropped. Judgement is applied so that the shrinking process is
gradual, e.g,, if the p-values of 8, and b,,,, are the first and second highest (respectively), the
parameter associated with b,,,,, is the one that is dropped because it results in a more gradual

shrinking of the equation.

The starting equation (with all the parameters) had an average RMSE of 0.0150, and a mean
and COV of the true-to-predicted ratio of 1.00 and 0.147, respectively. The resulting equation
at the end of the shrinking process, see Eq. (7.2), has an average RMSE of 0.0164 and a mean
and COV of the true-to-predicted ratio of 1.00 and 0.154, respectively. Because the nonlinear
regressions resulted in very similar values for a,, and a,,, (after the axial load ratio
parameter associated with coefficients b, and b,,;, were both dropped), these values were

set equal to each other (a; = a,. = a,yp)-

Yn=Bo+ b (%)a (1 +A,§f >

Results of the nonlinear regressions also produce results for fitted values for the a., b, as

A
lﬁz pbe],cybe be + ﬁg pwhfywh cv (7.2)

g fc A,

and S coefficients of Eq. (7.2). However, these fitted values (e.g., a, = —0.387, b, = 2.900
and a;, = —0.391) are not commonly used (or typical) of a code equation. Therefore, the

algorithm shown in Figure 5.3 was implemented to simplify the equation.
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Figure 5.3: Algorithm to find the optimum round up values for a., b, and a, coefficients

This process involved selecting a range of values around the fitted values, e.g., {a.} =

(0,—1/5,—-1/4,—1/3,-2/5,—1/2), {b.} = (1.5,2.0,2.5,3.0,3.5), and {a;} = (0,—1/5,—1/

4,—1/3,—-2/5,—1/2), and calibrating fB; coefficients using linear regression for each

combination. The algorithm for this process shown in Figure 5.3 was implemented using

k = 4 folds and N, = 50 iterations. Note that since the coefficients a;, b; and as are

assumed before the training process, only the f; coefficients are calibrated. The combination

of (a}, b}, a}) values associated with the minimum average error are selected for use in the

final equation. Some judgement can be applied in this process, i.e., the error associated for

various combinations of a., b. and a; values might be similar (and meet the target error);
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therefore, the most “convenient” values can be selected. Finally, values for ,, 81, f and S
are selected based on the average values obtained from the Ny, X k = 200 linear
regressions associated with the selected (a}, b, a;) values. The obtained equation is shown

in Eq. (7.3).

Vo = acA"gfc’ + as(psbfysb + pwhfywh)Acv (7.3)

Where py,, is the longitudinal reinforcement at the tensioned edge ratio defined as Ay, /Ay,

and the a. and a, coefficients are:

a, = -6 7.4
c 100 (Mu )1/3 ( )
Vulw
2
as = S(M—u)l/3 (7.5)
Vulw

5.3.2 Performance Verification - Symmetrical Walls

The performance of Eq. (7.3) is first assessed with the testing set defined from the database
of 333 symmetrical walls reported to have failed in shear. Figure 5.4 shows that similar
values of RMSE, mean, and COV are obtained for both the training and testing sets and error
indicators meet the requirements for a code-oriented model given in Table 3.7. Thus, the
performance of the equation is verified when predicting values of an unknown dataset of

symmetrical walls (rectangular, barbell, and H-shaped walls).
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Figure 5.4: Obtained equation performance and verification: Symmetrical Walls

5.3.3 Performance Verification - Asymmetrical Walls

As noted previously, the entire methodology was first applied using A, and a model similar
to that shown in Egs. (7.3), (7.4), and (7.5), was obtained. However, use of A, could not easily
be applied to walls with unsymmetrical cross-sectional shapes, because the longitudinal
reinforcement at the wall boundaries and the area of concrete in compression are different

depending on the loading direction.

Prior studies have shown that beams (Shear, Committee on Masonry, and Structural
Division, 1973) and walls (Kim and Park, 2020) with flanges in compression have larger
shear strengths than beams and walls with rectangular cross sections and the same area
longitudinal tension reinforcement, and that walls with flanges have higher shear strength
(Gulec and Whittaker, 2011; Kassem, 2015). Since the equation developed in the first run of
the methodology already accounted for the boundary longitudinal reinforcement in tension
explicitly (including any reinforcement within the effective tension flange width), Ay, it was
decided to use the variable A (instead of A;) because this still captures the difference of the
size of the area in compression of walls with a flange in compression respect to rectangular

walls. It is highlighted again that Eq. (7.3) was developed using the dataset of 333 walls,
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which included walls with both tension and compression flanges (H-shaped sections) and
barbell-shaped sections, using variable Ay,. It is noted that the performance of the equation
obtain in the first run of the methodology and Eq. (7.3) were essentially the same. Figure 5.5
demonstrates how A; and A, are defined for an unsymmetrical wall (a T-shaped wall in this
case) based on the direction of loading and, therefore, different wall shear strengths are

obtained for each direction of loading.

(a) Direction of Loading (b) Direction of Loading
< >
te tr
— |
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Ay = Cross-sectional A, area plus the area of the | A} = Cross-sectional A, area plus the area of the
compressed overhanging effective flange compressed overhanging effective flange
= bty + (L, — t;)b < 1.54,, = 1,b
A.p= Area of longitudinal reinforcement at the wall | A;,= Area of longitudnal reinforcement at the wall
boundary in tension including area within boundary in tension including area within
effective flange width effective flange width
= all the area of longitudinal reinforcement at the = Area of longitudinal reinforcement at the left side
right side in this case mn this case, excluding one layer of bars at each
side of the flange
(a) Flange in Compression (b) Flange mn Tension

Figure 5.5: Example of concrete cross-sectional area and tensioned longitudinal steel reinforcement
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Results presented for the dataset of unsymmetric walls are provided in Figure 5.6 and
demonstrate that the performance of the proposed approach is similar to that for the dataset
of 333 symmetric walls. It is noted that the dataset of unsymmetrical walls is limited and that

this approach should be reassessed if additional data become available.
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Figure 5.6: Obtained equation performance and verification: Unsymmetrical Walls

5.4 Step 4: Performance of the Obtained Equation over the Complete Dataset

Figure 5.7 shows the learning curves of the model using the training and testing sets in
terms of the error computed as RMSE between Y., and y,,,.4, and as COV between the ratio
Virue/Vprea and 1.0. The learning curves have the signature of an underfitted model (rapid
convergence and a long plateau of the training and testing error), but with the converging
error meeting the target error range and with the training and testing errors within the
+10% bandwidth around the converging error (see Table 3.7). This means the predictive
performance of the model is stable and will be essentially the same even if new data (that
follow a similar distribution) are added to the training dataset (Amazon Web Services, 2019).

Figure 5.8 presents the performance of Eq. (7.3) against the total database of 333 symmetric
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walls that were reported to fail in shear. No retraining was done, i.e., the same equation

obtained was applied to the combined training and testing dataset to compute RMSE, mean,

and COV.
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Figure 5.7: Learning curves in terms of: (a) RMSE of Y¢rye VS Ypreas (b) COV of Virye /Virea vs 1.0
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Figure 5.8: Obtained equation performance and verification: complete dataset of symmetrical walls
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Chapter 6. Definition of the Proposed Equation

The parameters involved in the equation obtained after applying the methodology described
in the previous section (see Eq. (7.3)) must be analyzed prior giving a formal definition of
the proposed equation, particularly those parameters that are new respect to the current

equation in the ACI 318-19 Section 18.10.

6.1 Dataset Parameter Range Limitations

Histograms for axial load ratio Pu/(A:qj“C’), Ay /Ay, and M, /(V, 1) are presented in Figure
6.1(a), Figure 6.1(b), and Figure 6.1(c), respectively. Based on the histograms for
Pu/(A:qj“C’) and Ay /Ay, limits of 0 < Pu/(A:q]fC’) < 0.20 and Ay /A, < 1.5 are proposed for
Eq. (7.3) because of the lack (limited) data outside these ranges. Given that shear strength
tends to increase with increases in these ratios, the proposed limits should produce
conservative predictions for ratios outside of these limits, except for the case of wall tension.
However, the ACI 318-19 equation for wall shear strength also does not address wall tension.
The histogram for M, /(V,l,) reveals that there are relatively few tests for 2.5 <
M, /(V,l,) < 3.0 and no data for M,,/(V,l,,) > 3.0; however, instead of limiting values for
M, /(V,L,), a limit of ay = 0.30 is proposed (because a; = 0.30 for M,,/(V,l,,) = 2.5, and

would barely decrease to g = 0.28 for a value of M, /(V,[,,) = 3.0).
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6.2 Lower limit for a,

Figure 6.2 shows that the a, coefficient obtained in this study do not follow a lognormal
distribution, but a truncated normal distribution (Burkardt, 2014), because it can be seen
the distribution has an abrupt ending in its left side. This truncation is understandable due
to the mechanics of the problem actually; the coefficient «, is directly related with the

concrete contribution, and therefore it is natural to have a lower limit for it.

— LogN ~(u= -3.14,6=0.58)
— N~(u=0.05,0=0.024)
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Figure 6.2: Histograms of parameters involved in the proposed equation
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Table 6.1 shows the 5% of the data with lowest a, values. These coefficients have an average
a. value of 0.009, no axial load applied and shear-span ratios = 2.0. Because of these values,
and having in consideration that nice round numbers are always preferred for an expression

meant for a code or standard, the minimum value for «,. is set to 0.010.

Table 6.1: 5% of the data with lower a. values

Num M,/(V,l,) P./(Agfe) a.
1 2.87 0 0.003
2 2.39 0 0.007
3 2.39 0 0.007
4 2.39 0 0.007
5 2.39 0 0.007
6 2.39 0 0.007
7 2.13 0 0.010
8 2.13 0 0.010
9 2.13 0 0.010
10 2.13 0 0.010
11 2.13 0 0.010
12 2.00 0 0.011
13 2.00 0 0.011
14 2.00 0 0.011
15 2.00 0 0.011
16 2.00 0 0.011
17 2.00 0 0.011

Mean 2.20 0 0.009

In addition to the information given in Table 6.1, the defined minimum value for a, can be
understood by using the upper limit for the shear-span ratio imposed by the lower limit ag >
0.30, i.e., M, /(V,l,) < 2.5, and a small axial load ratio that could represent the wall self-

weight:
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6.3 Comments on the Use of M,,/(V,L,,)

Current engineering practice is to use total wall height above the critical section (e.g., see ACI
318-19 Chapter 2, h,, or h, o) to determine the value of h, /1,, to use in ACI 318-19 Equation
18.10.4.1 (to determine a.). In general, the aspect ratio h,,/l,, will be significantly larger
than the value of the shear-span ratio M,,/(V,1,,) since this latter term uses the height of the

resultant lateral force.

Ratios of shear-span ratio and aspect ratio are compared in Figure 6.3 for a single cantilever
wall representing the lateral-force-resisting system for buildings with 1 to 15 stories using
the ASCE 7-16 ELF (Section 12.8) with T,, = C,T,. The results presented in Figure 6.3

indicate that using h,, /l,, versus M,,/(V,l,,) produces a conservative estimate of wall shear

strength.
(a) Ratio between SSR and AR (b) Ratio values assuming |, = 30’
1.0
o1 = nl
- MU/(VUIW)
M, ) 0.9- =
(de) § 4
iy 2
m T
(IW] 0.8- .

4 8 12 4 8 12
# of Stories # of Stories

Figure 6.3: Comparison of shear-span ratio to aspect ratio
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As well, in ACI 318-19, the ASCE 7 wall shear demand V, is amplified, i.e., V, = 2,w,V;, to
account for overstrength and higher mode contributions, where 2,, = M,,,./M,, for walls with
h,/l, > 15and 2, = 1.0for h,,/l,, < 1.5. Therefore, to account for overstrength and higher

modes, a more realistic value of moment-to-shear demand would be:

Mpr= -QvMu _ Mu
Vely Dy, Vol wuWly

Since w,, = 1.0, again, use of overall wall height (h,, .s/l,,) to estimate wall shear strength
will produce even more conservative results as shown in Figure 6.4 for wall aspect ratios of
1.0, 2.0, 3.0, 4.0 and 5.0. Given these observations, the proposed shear strength equation is
based on using M,,/(w,V,1l,) versus h,,/l,. An alternative approach would be to propose

modifications to h,,/l,, to address these issues.

Shear-Span Ratio
- Mu/(vulw)
- Mu/(@vvulw)

Aspect Ratio
hy/ly=5
hy/ly =4
hy/l,=3
hy/l, =2

—— hyfl,=1

Shear-Span Ratio

——
——

4 8 12
# of Stories

Figure 6.4: Impact of overstrength and dynamic amplification factors in the shear-span ratio to aspect ratio
relationship
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6.4 Proposed Equation

VW = acA"gfc’ + as(psbfysb + pwhfywh)Acv (8.1)

Where the a, and a; coefficients are:

and:

P 3
1+ %)
1 < Agfc

= 9 -6 |=>0.010 8.2
a. 100 ( Mu )1/3 - ( )
wy Vil
a5 = 52030 (8.3)
(1)
vaulW

Ay is the wall web area A, plus the area of the overhanging effective flange width (if
present) at the edge (or boundary) of the wall subjected to compression stresses due

to overturning moment. Ay shall not taken greater than 1.54,,.
Psp is the boundary region longitudinal reinforcement ratio defined as Ag;, /A,

Agp is the area of nonprestressed longitudinal tension reinforcement at a wall
boundary, including area within an effective tension flange width. If the wall has
uniformly distributed longitudinal reinforcement, or concentrated longitudinal steel
distributed in a region larger than 0.20[,, from the wall edge, then Ay, is taken as the
longitudinal reinforcement area within 0.20[,, from the wall edge and all effective
flange (if it is the case).

Pu(A’gfc’) shall not be taken larger than 0.20.

fysp 1s the specified yield strength of the boundary region longitudinal reinforcement
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*  pwr and f,,,, are the web horizontal reinforcement ratio and specified yield strength,
respectively.

*  pwy and fy,,,, are the web vertical reinforcement ratio and specified yield strength,
respectively.

* P, isthe factored axial load

* M, is the factored moment

* V), is the factored shear

Finally, Figure 6.5 confirms the proper predictive performance of the proposed model
defined as shown in Egs. (8.1), (8.2) and (8.3) when assessing it with the training and testing
sets. Figure 6.6 does the same, but using the complete dataset of walls with symmetrical

cross-section.
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Figure 6.5: Proposed equation performance and verification: Symmetrical Walls
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Figure 6.6: Proposed equation performance and verification: complete dataset of symmetrical walls

71




Chapter 7. Simplified Version of the Proposed Equation

To provide an alternative, simplified, approach, as is commonly done in ACI 318, values for
a. and a, are obtained based on dividing the database into sub-groups which, as shown in
Figure 7.1, are defined by setting specific ranges for the axial load ratio and shear-span ratio.
An iterative process was required to obtain these limits so they allow each sub-group to
contain a reasonable amount of samples at the same time that the limits itself are “round up”

values.

[t is relevant to mention that, in a first instance, the a, and a, coefficients are estimated from
the average values obtained with the regression coefficients (Eq. (7.2)). However, these
values were manipulated according with what the a, and a; equations (Eq. (8.2) and Eq.
(8.3)) suggest for each range combination of M,,/(V,l,,) and Pu/(A’gf’C). The reasons to do
this are because nice round up numbers are preferred and also because it helps to provide a
better understanding of the range of values that can be obtained for those sub-groups with

less samples (specially Group 1D).
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2D: # samples = 27
2C: # samples = 18
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3D: # samples = 32
3C: # samples = 17
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Figure 7.1: Definition of sub-groups

= acA.’gfc’ + as(psbfysb + pwhfywh)
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Therefore, the simplified version of the proposed model consists in using the same proposed
equation to predict wall shear strength (Eqg. (8.1), shown again below), but the values of «a,
and a, can be obtain directly from Table 7.1 instead of using the equations for it. An example
of a potential benefit of using the simple model version is that @, and a; will remain constant

if the axial load ratio and shear-span ratio values remain within the same range.



Table 7.1: Simplified method - Values for a, and a; coefficients

ac
M,
o V.1 P, P, P, P, as
vV ulw 0<—F—77<0.04 004<—-7—77<008 008<—7-——F<0.12 ——2>20.12
Hff Agft' gfc Agfc
[0,0.75) 0.070 0.090 0.095 0.100 0.45
[0.75,1.25) 0.025 0.045 0.075 0.080 0.40
[1.25, 2.00) 0.015 0.035 0.040 0.045 0.35
=2.0 0.010 0.015 0.020 0.040 0.30

The performance of this simplified model is shown in Figure 7.2 for the training and testing
datasets and in Figure 7.3 for the entire dataset. The mean values for all three datasets still
meet the target values identified in Table 3.7. The COV value is still low and substantially
lower than the value of 0.47 determined for the entire dataset for the ACI 318-19 Equation
(18.10.4.1) and other models evaluated (Figure 4.2). It is noted that it would be a relatively
simple process to develop an even more simplified model (with higher error) that could be

used to simplify design for cases where wall shear demands are not expected to control.
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Figure 7.2: Performance and verification of the simplified model version
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Figure 7.3: Performance of the proposed model over the complete dataset of symmetric walls
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Chapter 8. New Shear Stress Upper Limit

To avoid diagonal compression failures (Barda et al,, 1977), ACI 318-19 includes an upper
limit on wall shear stress (strength) of 10\/EAC,, for an individual wall segmentand 8,/ f/A.,

for wall segments sharing a common lateral force. The 10,/ f/ A, limit was reevaluated using
the entire dataset, which included walls failing due to flexure-shear (F-S), diagonal tension
(D-T), and diagonal compression (D-C). Results are presented in Figure 8.1, which also make
the difference between rectangular walls and walls with flanges (in this study, walls with H-
shaped and barbell cross-sections). The results presented in Figure 8.1 demonstrate that
the current shear strength upper limit is too conservative when applied to the entire dataset;
however, the limit does provide a reasonable upper limit on wall shear strength for walls

with rectangular cross sections with D-C failures (blue dots symbols).

20
X
. . X Failure Mode

_— 1 X ><><

- W F-S

[%2]) 4

2 15 % . s . . g
~ X
S X o I D-C
I‘; % x X

P . X

< L o2 4% SRS S S
<o X.’H«x- . 3 . _ Shape

g see, ot viim=10(ypsi)

> LY P P ® Rectangular

2 Soinc? * With Flanges
i yie %
5 % o .
&
5000 10000 15000 20000
f'e (psi)

Figure 8.1: ACI 318-19 wall shear stress limit
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To further investigate this issue, histograms are plotted for the ratio of shear stress at failure
to the current ACI 318-19 limit of 10@ in Figure 8.2. Most of the rectangular walls failing
in flexure-shear (F-S) (Figure 8.2 (a)) or in diagonal-tension (D-T) (Figure 8.2(b)) are
below the current ACI 318-19 limit (indicated by a vertical dashed line), whereas about half
of the rectangular walls failing in diagonal-compression (D-C) are above the limit (Figure
8.2(c)). However, the current limit does not do a good job at separating flanged walls that
fail in diagonal-compression from flanged walls that do not fail in diagonal-compression, as

several walls that failed in flexure-shear and diagonal-tension exceed the current limit.

Rectangular With Flanges

(a) Flexure-Shear (b) Diagonal-Tension (c) Diagonal-Compression

15+

101

count

|
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|
|
|
|
|
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| |
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(Viue/ Ao}/ 104F5)
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Figure 8.2: Current limit on ACI 318-19 vs wall shapes and shear failure types

Therefore, a study was conducted to assess the potential to propose a new upper limit by
using a logistic regression model designed to differentiate between walls that failed in F-S

and D-T from walls that failed in D-C.
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Figure 8.3: Manipulation of logistic regression to accommodate the desired problem

The variables X; used to define the polynom z = 8, + ); 5; X; that defines the logistic
function p(z) are set up as the logarithm of variables (i.e..X; = In(x;)) that engineers would

expect to find in an equation defining the shear stress limit. By doing so, the condition p(z) <

0.5 on the logistic function can be translated into x; < e‘ﬁ")/ﬁlHi;t1xi—ﬁi/ﬁ1 (see Figure 8.3).
Therefore, by defining x; as the shear stress (any version of it according to the needs of the

problem) and the rest of the x; as relevant variables (such as shear-span ratio, axial load

ratio, ratio of flange area over 4,

shear stress based on a multiplication of factors that results in walls below the limit to more

likely to fail in either F-S or D-T than in D-C. Several models were studied, and although better

or A.,, etc.), it is possible to obtain an upper limit for the
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results could be obtained using a complex model (see Figure 8.4 as an example), results
obtained from a simple model more appropriate for implementation in a code or standard is

used to develop a proposal.

|
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Figure 8.4: Example of a more complex logistic regression results

To make the proposed new shear stress upper limit similar to the currently used in ACI 318-
19, just one single parameter associated with wall cross-sectional shape was included in the
simple logistic regression (see Figure 8.5) along with the shear stress, which was expressed
in the same way that is currently defined in ACI 318-19, i.e., Vn/(AC,,\/E). Also, since the
objective is to include a modification in the current shear stress limit so it behaves similarly

on both rectangular cross-sectional shaped walls and walls with flanges.
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The coefficients of the logistic regression of Figure 8.5 are rounded so the shear stress upper
limit has a nicer expression. This results in the condition that wall shear stress v,, = V},/A.,

shall satisfy the following equation:

Up = — < Qgpape 10/ (11.1)

cv

Where agpqpe is 1.0 for walls with a rectangular cross section. Otherwise, for wall cross-

sections with flanges, aspqp. is compted using Eq. (11.2):

2
bty
Ashape = 07\1+— (11.2)
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I

1.00 20- !

True Pred. Pred. D-C

Cond. D-C F-SorD-T ,0 | B FSorD-T

D-C 40 36 4 |
0.75- FSorDT 24 o7 / 15+ :

~ €
N 05— = = — - — - — = - — =< 3Z10-
e Q
0.25 1 54
K Failure Mode
/ ve I
®F-SorD-T I
0o ® ® 0- ; ||
50 25 0.0 25 05 10 15 20
(a) z (b) Vtrue/ Viim

Figure 8.5: Simple logistic regression used to propose a new shear stress upper limit

Using Eq. (11.2), @spqpe need not be taken less than 1.0 and shall not exceed 1.5 and byt is

the total area of the overhanging effective flange width (on both sides of the web, if flanges
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exist on both sides) for the compression flange. If the flange length is different on each end
(boundary) of a wall, then the wall shear strength may be evaluated for each direction of

loading independently or the wall shear strength may be conservatively based on the smaller

flange width.
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Figure 8.6: Comparison of current ACI 318-19 upper shear stress limit with proposed limit in function of wall
shapes and shear failure types
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The distribution obtained with the proposed upper limit (Figure 8.6(c)) is similar to that for
the current limit for walls with rectangular cross sections (Figure 8.6(a)), i.e., most of the
walls failing in flexure-shear or diagonal-tension are below the limit and those failing in
diagonal-compression are roughly half below and half above the limit. The latter is not as
clear in Figure 8.6(a), because there are not many rectangular walls failing in D-C, but
Figure 8.6(d) shows that the fitted normal distribution have means of y = 0.69 and u = 1.14
for rectangular walls failing in F-S or D-T and for rectangular walls failing in D-C,
respectively. Figure 8.6(e) shows the fitted normal distributions for walls with flanges with
the current ACI 318-19 limit applied, and Figure 8.6(f) shows the fitted normal distributions
for walls with flanges with the proposed limit applied. Distributions obtained with the
proposed upper limit (Figure 8.6(f)) are much more similar to the distributions obtained

for the rectangular walls with the current ACI 318-19 limit applied (Figure 8.6(d)).

Finally, for walls sharing a common lateral force, the limiting stress would be taken as

0.8 spape, similarly to what ACI 318-19 currently does.
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Chapter 9. Comparison Study between Proposed Equation and ACI
318-19 Equation

In this chapter, a detailed assessment of the performances of the proposed equation and the
ACI 318-19 equation is developed. First, it is noted that ACI 318-19 Eq. 18.10.4.1 assumes
that wall shear strength is directly proportional to the quantity of web horizontal
reinforcement provided. This assumption applied to the proposed equation (Eq. (8.1))
would mean to force the term a; to be equal to 1.0. In the first sub-section, this assumption
is evaluated with the data, and it is found that it is not correct; it over-predicts what the data
shows. In addition, the ACI318-19 concrete contribution term is evaluated, and it is found
that under-predicts what the data shows (second sub-section of the chapter). Finally, in the
last sub-section, a global interpretation of the proposed equation is presented, and it is
compared along with the ACI 318-19 equation against key parameters, such as axial load

ratio and wall cross-section shape.

9.1 Relative Contribution of Web Horizontal Reinforcement to Shear Strength

Figure 9.1(a) shows the histogram for ratios of pyfywnAcy/Virue, While Figure 9.1(b)
shows the histogram of p,,, fywrAcv/Viaciz1s—19)- First, it is noted that the range of values for

Figure 9.1(a) is broad, with a mean of 0.61, median of 0.52, standard deviation of 0.35, and
7.8% of the values greater than 1.0. Second, the two histograms do not line up; the data

concentration in histogram of Figure 9.1(b) is slightly moved to the right respect to
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histogram of Figure 9.1(a). This suggests that the ACI 318-19 approach over-predicts the

contribution of web horizontal reinforcement to wall shear strength.
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Figure 9.1: Upper horizontal reinforcement contribution relative to: (a) V g and (b) V,, accordingly with ACI
318-19, and a: (c) without lower limit and (d) with lower limit

In the proposed equation, a; multiplies p,,,fywnhAcy, and thus represents an effectiveness
factor. Figure 9.1(c) and Figure 9.1(d) present the histogram of o with and without the
lower limit applied, respectively. These plots show that the mean value of the effectiveness
of horizontal web steel in the proposed equation is much smaller than 1.0; it is 0.39 for both
with and without application of the lower limit. In both cases the range of these values is

fairly small (COV of 0.18 with or without the lower limit applied).

To further evaluate the contribution of web horizontal reinforcement, pairs of companion

test were looked for within the database where the only variable that was allow to
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significantly change between each companion couple was the web horizontal reinforcement

strength pp,fywndcy, (note that including A, has no effect since the cross-section was a
variable that was kept as constant between the companion couples). From the total of 55278
different pairs that can be formed out of the 333 samples in the database, 67 pairs of
companion tests were found. The difference in py,p, f,wrAcy values was at least 3%, with an
average difference of 72%, whereas all other parameters did not very by more than 10%.
Therefore, since the only change between wall specimen (Test 1) and its companion wall

specimen (Test 2) is primarily related to p,, fywn, the variation in shear strength estimated
by the current equation in ACI 318-19 and by the proposed equation are shown below (see

Eq.(10.1) and Eq.(10.2)).

AVn(ACI) — A(Olc\/EAcv + pwhnyhACV)

0
—t

= A(ac fc’Acv) + A(pwhfywhAcv) (10-1)
= A(pwhfywhACV)
Av;l(Proqu) = A(CZCA;]‘;;’ + as(psbfysb + pwhfywh)ACU)

0 0
= A(acA"gfc’) + A(aspsbfysbAcv) + A(aspwhfywhAcv) (10.2)

= A(afspwhfywhAcv)

= aAnA (pwhfywh)

In both cases, the change in shear strength is function only of the web horizontal steel term.
Figure 9.2 shows the predicted shear strength by ACI 318-19 equation, versus the actual
(true, measured) change in shear strength. Both axes are normalized by the measured shear

strength of companion Test 1 (V). This normalization is helpful because it converts the
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difference as a percentage of the “initial value”, which makes the differences coming from all

companion couples comparable.
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Figure 9.2: Change in shear strength of web horizontal steel companion tests

From Figure 9.2 it can be seen that there are cases where the companion Test 2 has a larger

2 1
steel contribution term than companion Test 1, i.e., (pwhfywh)( ) > (pwhfywh)( ). There are
cases where the opposite happens as well. This condition is random, it just depend on what

test was decided to be called “first” in the companion couple. Acknowledging this, it was

decided to reverse the order of the companion couples with (pwhfywh)(l) > (pwhfywh)(z).

The reason to do this is because it allows to highlight the trends by reducing the range
covered by the samples, which is helpful in this case given that there are only 67 data points
in the plot and that they have a large variance. Figure 9.3(a) shows the same plot that in

Figure 9.2 but with the changes just mentioned. Figure 9.3(b) it is the same plot, but the
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predicted shear strength variation is obtained with the proposed equation (see Eq. (10.2)).
One pair of companion tests (Zhang et al., 2007) was too deviated from the trends, and it was
found that both companion tests had a flexure-shear failure type, but the shear failure of both
happened in sliding. Since the failure in both specimens happens due to a different
mechanism, it was removed. Results from this point ae obtained with the remaining 66

companion pairs.
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Figure 9.3: Change in shear strength of web horizontal steel companion tests with initial and final conditions
inverted such as Apyp, fywn > 0

At first sight, Figure 9.3(a) and Figure 9.3(b) look very similar. However, the difference
happens in the values of the x-axis. Figure 9.4 highlights the difference (the figure is the

same, but it keeps the axis limits constant).
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Figure 9.4: Change in shear strength of companion group 1 tests predicted with: (a) V; in ACI 318-19, and (b) V
in Proposed Equation

The slope of the linear regressions in Figure 9.4 can be interpreted as the efficiency
multiplier weighting the web horizontal reinforcement contribution term. Figure 9.4 (a)
indicate that assuming 100% of efficiency on the web horizontal reinforcement
overestimates the actual contribution coming from this term significantly because the slope
of the regression is just 0.28. On the other hand, Figure 9.4(b) shows that when
incorporating the a, coefficient of the proposed equation (Eq. (8.1)), the slope of the
regression goes up to 0.76. Even though 0.76 is much closer to 1.0, it is not as close to it.
However, there are only 332 pairs of companion tests in these plots (one companion couple

was removed as an outlier), and considerable dispersion is observed as well.

Additionally, the slopes obtained in the plots shown in Figure 9.5 and Figure 9.6 are close
to the values of the proposed a; (see Figure 9.1), or slightly smaller. However, considerable
dispersion is observed for walls failing in F-S and D-T. Additional data are needed to enable

further interpretation of these trends.
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Failure Mode of Companion Test 1
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Figure 9.5: Change in shear strength of web horizontal steel companion tests: Groups by failure mode of test (1),
colors by failure mode of test (1) as well
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Failure Mode of Companion Test 2
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Figure 9.6: Change in shear strength of web horizontal steel companion tests: Groups by failure mode of test (2),
colors by failure mode of test (1)
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9.2 Relative Contribution of Concrete to Shear Strength

A second analysis of companion tests is carried out. In this case, from the total of 55278
different pairs that can be formed out of the 333 samples in the database, 675 pairs of
companion tests having the same shape, same horizontal web steel term (difference in

PwhfywnAcy values is zero for 238 pairs and is less than 3% for the rest), and no restriction

on any other parameters were identified.

According to the current ACI 318-19 equation, the change in the total shear strength comes
from the change in the concrete term only:

AVn(ACI) — A(ac\/ﬁACU + pwhnyhACV)
0

= A(“c fc,Acv) + A(pwhfywhAcv) (10.3)

= Ach(“C\/ﬁ)

On the other hand, the change in the total shear strength for these companion tests depends

on two of the three terms of the proposed equation:

A]/;L(Pmqu) = A(acA,;]f;:, + as(psbfysb + pwhfywh)Acv)
0
= A(acA"gfc’) + A(aspsbfysbAcv) + A(aspwhfywhAcv) (10.4)

= A(OZCAZQfCI) + Ach(aspsbfysb)

Figure 9.7(a) shows that the ACI318-19 equation underpredicts the change in shear
strength by 56.4 of the true value (because the slope of the linear regression is 2.29). Figure
9.7(b) shows that the proposed equation predicts the true shear strength change much more

accurately, because the linear regression slope is 1.04. Note that in this case there is a
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significant larger number of companion couples, which reduces the impact in the trends

coming from the order in which the test within each companion couple were named.
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Figure 9.7: Prediction of the shear strength

Figure 9.8(a), Figure 9.8(b), and Figure 9.8(c) shows the change in wall shear strength for
the companion tests with constant web horizontal reinforcement using the ACI318-19
equation for walls with rectangular cross section, barbell cross section, and cross sections
with flanges, respectively. Figure 9.8(d), Figure 9.8(e), and Figure 9.8(f) plot the same but
using the proposed equation. The results indicate that the proposed equation does a
significantly better job at predicting the change in wall shear strength for all three wall cross-
section shapes. Also, the performance of the proposed equation is very similar for the three

wall cross-sectional shapes.

92



(a) Rectangular (b) Barbell (c) Flanged

y=0.077+2.1x y=0.1+2.6x o y=0.032+2.1x
41 R?=0.55 R%=0.44 R?=0.055

-

T T T T T T T T T T T T T

05 00 05 10 15 05 00 05 10 15 05 00 05 10 15
(ACI),,
A(ac fC cv/Vtrue

(d) Rectangular (e) Barbell (f) Flanged
y=0.0012+1.1x J y=0.043+ x L4 y=0.059 + x

. 41 R?=0.89 R*=038 R?=0.71
2
>
=2
=
> %
<

0.

o 1 2 3 4 0 1 2 3 4 0 1 2 3 4

A0 A'of e + 0tsAspfysh) / Virue

Figure 9.8: Shear strength change prediction by wall cross-sectional shape using ACI 318-19 equation

The concrete contribution from the ACI318-19 equation and the proposed equation also are

compared to enable better understanding of the proposed equation. To accomplish this, the
a. coefficient in ACI 318-19 Equation 18.10.4.1, which has units of /psi is normalized by

pre- and post-multiplying the ACI 318-19 concrete contribution by /f/, i.e.:

V. = aC){ACU\/E

ac
=\|\—= | Ma VT
() e

(o
\/E cvJc
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Therefore, the normalized ACI 318-19 normalized «, coefficient is defined as:

(ACD)
(acn _ %c

ac,norm - 7
Vi
And, from the database, the mean value of 1/\/E is 0.013 /psi.

Figure 9.9(a) shows the proposed a. values using the shear-span ratio and axial load ratio

from the database to show the range of applicability. Figure 9.9(b) shows the analytical

values for the proposed «a. (obtained with Eq. (8.2)) and aéﬁfolr)m. To generate this plot, the

shear-span ratio was taken equal to the aspect ratio, i.e, h,, /L, = M, /(V,l,), which is a
reasonable assumption for wall specimens tested in the laboratory (see Section 5.1).

However, as noted in Section 6.3 (particularly, Figure 6.3 and Figure 6.4), h,, /1, is likely to

(ACD)
c,norm

be considerably greater than M, /(V,l,). The normalized «a corresponds to values
associated to axial load ratios Pu/(A&ﬂ,) between 5% and 10% for M, /(V,l,) = 1.0, and

tends to significantly underestimate the concrete contribution for higher axial loads and for

M, /(V,L,) < 1.0.
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Figure 9.9: Understanding of proposed «a,

It is important to note that, in this comparison (and in Eq. (8.1)), the influence of the
boundary longitudinal reinforcement on wall shear strength was included as a
“reinforcement contribution”, ie., V;= as(psbfysb + pwhfywh)Ac,,. The boundary
longitudinal reinforcement term (a;pspfyspAcy) also could be considered as a “concrete
contribution”, as one physical interpretation as to how this increases wall shear strength is
that increases wall neutral axis depth, which results in larger concrete contribution (e.g., as
is done in ACI 318-19 Table 22.5.5.1 for one-way shear strength). However, analysis of the
data also suggested that the increase in wall shear strength might also be due, in part, to the
possibility of increased reinforcement contribution (e.g., dowel action). Therefore, although
the proposed model is presented as shown in Eq. (8.1), an alternative form where the
boundary longitudinal reinforcement term is treated as a concrete contribution could also

be derived.
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9.3 Further Interpretation and Comparison Against ACl 318-19 Equation

The proposed equation is explicitly accounting for effect of the axial load and for the
longitudinal reinforcement at the edge of the wall in tension, which are not considered in the
ACI 318-19 equation. Also, it uses the shear-span ratio instead of aspect ratio. From the
mechanics of the problem, all these parameters were known to influence wall shear strength

(or column shear strength).

0 < Py/(A'fc) < 0.05 = 0.05 < P,/(A'f ) < 0.1 0.1 <P /(A'4f'c) <0.15 =e=0.15< P,/ (A’(f ) <0.2
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Figure 9.10: Relative shear strength contribution from each term of the proposed equation

Figure 9.10 shows the relative contributions coming from each term of the proposed
equation when estimating the shear strength of the walls in the database. Figure 9.10(a)
indicates that the contribution coming from V, = a Ay f, increases with increasing axial load
ratio and with lower shear span ratios, as expected. In Figure 9.10(b), at zero or low axial
stress, wall shear strength increases substantially with increases in boundary longitudinal
reinforcement (Vsb = aspsbfysbAc,,), likely because neutral axis depth and dowel action
increase, and as shear span increases, likely because overturning moment increases

requiring greater quantities of boundary longitudinal reinforcement. Figure 9.10(c) shows
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that the relative contribution of the third term of the equation (directly related to web

horizontal reinforcement contribution, Vs, = aspywnfywnAcy) is, on average 22%, and is not

very sensitive to changes in both shear-span ratio and axial load ratio.

Figure 9.11 and Figure 9.12 show the ACI 318-19 equation is biased and that the proposed
equation provides a similar performance against different variables (e.g., axial load ratio,
shear-span ratio, shear stress). The ACI 318-19 approach is generally conservative, except
for walls low axial load ratios (Figure 9.11(a)) or rectangular walls with low normalized
shear stress (Figure 9.12(a)) (which are likely to be correlated), it produces significantly
different mean values for walls with higher axial loads (Figure 9.11(a)) or with different
cross-section shapes (Figure 9.12(a)), and its limiting shear stress has the biggest impact
on walls with axial load ratios greater than 0.05 (Figure 9.11(b)) and it affects walls with
different cross-section shapes similarly (Figure 9.12(b)). The proposed approach provides
a fairly uniform mean and COV values prior to application of a limiting shear stress (Figure
9.11(c) and Figure 9.12(c)), except for a modest increase in the dispersion at very low
normalized shear strength (Figure 9.11(a)), which mainly corresponds to walls with axial
load ratios lesser than 0.5. This increase in dispersion is, however, smaller than the one ACI
318-19 equation has in the same range of normalized shear stress. Applying a limiting shear
stress for the proposed approach primarily influences barbell-shaped and H-shaped walls
(Figure 9.12(d)) and walls with axial stress ratios either small (less than 0.05) or high
(greater than 0.12) (Figure 9.11(d)). These wall configurations are likely to be correlated;
a barbell or H-shaped wall with a large axial load might be obtaining a high shear strength

contribution coming from V, = a Ay f; (Figure 9.10(a)), while a barbell or H-shaped wall
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with very low axial load might be getting a large shear strength contribution from Vg, =

aspsbfysbAcv (Figure 9'10(b))-
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Figure 9.11: True-to-predicted ratio using ACI 318-19, without (a) and with (b) upper limit, and the proposed
equation without (c) and with (d) upper limit, versus shear stress.

Figure 9.13(a) confirms that ACI 318-19 equation is generally more conservative than the
proposed equation for walls with axial load ratios larger than 5%, or for walls with barbell
or H-shaped cross-sections (Figure 9.13(c)). On the other hand, the shear strength for
rectangular walls with low axial load ratio might be underestimated by the ACI 318-19
equation. This is a cause of concern because short rectangular walls with low axial load ratio
are the ones most likely to be subjected to a shear failure. Applying the upper limit on the
equations accentuates the over-conservatism of the ACI 318-19 equation respect to the
proposed equation for walls with axial load ratios larger than 10% (Figure 9.13(b)) and for

walls with rectangular cross sections (Figure 9.13(d)).
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Figure 9.12: True- to-predicted ratio using ACI 318-19, without (a) and with (b) upper limit, and the proposed
equation without (c) and with (d) upper limit, versus shear span ratio.
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Figure 9.13: Ratio of shear strength predicted by ACI 318-19 versus shear strength predicted with the proposed
equation.
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Chapter 10. Strength Reduction Factor for Design Purposes

10.1 Introduction

A Monte Carlo Simulation will be run to assess the reliability associated with the strength
reduction factor currently used in ACI 318-19, ¢ = 0.75, for Maximum Considered
Earthquake (MCE) GMs. The archetypes are designed with the ACI 318-19 equation, but their
shear capacity will also be estimated with the proposed equation. Since it has been shown
the performance of the proposed equation to be better than the ACI 318-19 equation,
addressing the reliability of these ACI 318-19 compliant archetypes with the proposed
equation will provide a better estimation of the probability of failure of these archetypes.
Also, a relationship between the resultant strength reduction factor associated with the

shear strength estimated by the proposed equation (¢,.,) and the obtained probability of

failure is studied.

Before running the Monte Carlo Simulation, it is necessary to define proper distributions for
the variables with uncertainty, which are those associated with material properties (f. and
fy) and the demands (axial load, moment, and shear). The variables related to the geometry
of the wall are considered as constants. The distributions representing the demands vary for
the different archetypes; therefore, these distributions will be selected after analyzing the

demands of each archetype.

For each archetype, an OpenSees model was created considering expected material
properties and expected axial load (coming from the load combination D+0.25L). A

methodology, explained later, was implemented to modify the expected material properties
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and allow the model to reproduce strength loss at its predicted roof drift capacity. From this
model with expected material properties modified, two more models are defined where the
only difference is the axial load applied; for one is (0.9-0.2Sps)D, and for the other is

(1.2+0.2Sps)D+0.5L.

10.2 Design of Archetypes

Table 10.1 presents the main characteristics of the archetypes. All archetypes are
Reinforced Concrete (RC) Wall Buildings designed in accordance with the Modal Response
Spectrum Analysis (MRSA) of ASCE 7-16 (including accidental torsion). The calculations
made to determine the demands and do the design are shown in Appendix A, Appendix B,
and Appendix C for the 4-, 8-, and 12-story archetype, respectively. Effective wall flexural

stiffness was set at 0.5E.I; and shear stiffness at 0.4E.A, over the entire wall height for the

code level analysis.

The commentary of ACI 318-19 Section 18.10.6 states that the wall P-M strength over the
wall height should be specified so that the critical section (plastic hinge) occurs at the
intended location. In this study, this was accomplished by amplifying the ASCE 7-16 moment
demand M, over the wall height by the overstrength factor at the base 2, = My, pase/
M, pase, where My, pqse and My, 4. are the maximum probable moment at the base using
fs = 1.25f, = 75 ksi and the moment demand at the wall base obtained from the MRSA. The
result of this process is illustrated in Fig. 10.1. In Fig. 10.1, the amplified moment demand is

less than the moment capacity (¢M,,), at all locations over the wall height except at the
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critical section (hinge region). Table 10.1 summarizes the main design characteristics of the

archetypes.

Table 10.1: Main design characteristics of the ACI 318-19 compliant RC wall archetypes

Parameter A:(:lslte(;;}[,)e Afc-lslz(;;};,)e Alrf:ilset:)yrge

MCE spectral acc. at short periods, S 2.08g 2.08g 2.08g
MCE spectral acc. at 1-s period, S 0.64g 0.64g 0.64g
Wall shape Rect. Rect. Rect.
# of stories 4 8 12
Fundamental period, T4 (s) 0.24 0.80 1.75
# of walls in each direction 4 4 4
Seismic weight associated with one wall, W (kips) 3,420 7,535 11,441
Wall thickness, t,, (in) 24 30 30
Wall length, L, (ft) 30 30 30
Horizontal web reinforcement ratio, p,,, (%) * 0.52 0.44 0.52
Longitudinal boundary reinforcement ratio, pgp, (%) * 0.53 0.33 0.33
Nominal concrete compressive strength, f.. (ksi) * 5 5 5
Nominal yield stress of hor. web reinforcement, f,,,; (ksi) 60 60 60
Nominal yield stress of long. bound. reinforcement, f,, (ksi) 60 60 60
Axial load in wall due to (0.9-0.2Sps)D, Py, min (Kips) * 684 1,584 2,426
Axial load in wall due to D+0.25L, P,, 5y (kips) * 1,157 2,674 4,098
Axial load in wall due to (1.2+0.2Sps)D+0.5L, Py, 1ax (Kips) * 1,741 4,018 6,159
Moment demand of wall, M,, (kip-ft) * 73,815 82,299 87,139
Shear demand of wall, V,, (kips) * 1,800 1,190 1,158
Expected shear demand of wall, V,, (kips) * 2,984 3,110 3,474
Nominal shear strength of wall, VEIACI) (kips) 4,145 4,347 4,875
Nominal shear strength of wall, V%PMPEQ) (kips) ** 3,306 3,855 4,663
Nominal shear strength of wall, d)VElAm (kips) 3,108 3,260 3,657
DCR using Proposed Eq., V,/V " °PF®) 0.90 0.81 0.75

*These parameters are for the critical section, which is at the base for every archetype.

**V,(lpmqu) is obtained using the demands coming from the load combination (1.2D+0.2Sps)D+0.5L+E.
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Figure 10.1: Moment profile of the archetypes

10.3 OpenSees Modeling

The objective is to study what the strength reduction factor should be when using the
proposed equation in a process of designing a code compliant wall. Because these walls are
designed to fail in flexure before than in shear, it is appropriate to produce archetype models
that account for strength loss at the predicted roof drift capacity. To do this, models with

expected material properties, expected axial load and no strength loss are first produced.
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10.3.1 Models with Expected Material Properties, Expected Axial Load, and No Strength Loss

Due to symmetry of the building layout and the lateral system, and to simplify the modeling
process, a 2D model consisting of one wall was used to determine the responses of each

archetype in each direction. For each archetype model:

* The wall was modeled using the Multi-Vertical-Line-Element (MVLE) model in
OpenSees (Kolozvari et al. 2015). Four fiber elements were used for the first and

second stories and subsequent levels were modeled with two elements.

* The model considered expected material properties (f,, = 70 ksi; fe, = 1.3f/ =
6.5 ksi) and the unconfined and confined concrete uniaxial stress versus strain
relationships were estimated using the Saatcioglu and Razvi (1992) model, which
allows for consideration of the different levels of confinement for the two principal

direction (e.g, %, y) for the boundary elements.

* Parameters were selected for the Concrete02 model in OpenSeeS to fit the stress

versus strain relationships obtained with the Saatcioglu and Razvi (1992) model.

* Reinforcement stress versus strain was modeled using the SteelMPF model in
OpenSeeS based on the following parameters: f,, = 70 ksi, E; = 29000 ksi, and 1%

post yielding slope.
* One load combination for gravity load was considered; D + 0.25L.

10.3.2 Models with Modified Expected Material Properties to Produce Strength Loss

The algorithm shown in Figure 10.2 is proposed and implemented to develop models that

recreate strength loss at their respective predicted roof drift capacity. Obtaining the
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expected material properties as described in the previous section correspond to the 1st step
of the algorithm. Once the model was created, a monotonic pushover analysis was conducted
(2nd step of Figure 10.2) to determine appropriate parameters for modeling strength loss

(no strength loss was considered in the initial pushover analysis). The roof drift capacity at
significant strength loss (220% from peak load) was estimated using the Drift Capacity

model proposed by Abdullah and Wallace (2019). To reproduce significant strength loss at
the predicted roof drift capacity for each archetype, the neutral axis depth and strain profile
at the predicted roof drift capacity using the wall model with expected axial load applied
(D+0.25L) are needed (see 3rd step in Figure 10.2). The strain at which strength
degradation initiates in compression for both confined concrete and longitudinal boundary
reinforcement is assumed to be the same (&), i.e., crushing of confined concrete and buckling
of longitudinal boundary reinforcement are coupled. If this approach is not adopted,
compressive concrete loads are transferred to boundary longitudinal reinforcement, and
only moderate strength loss can be achieved. In addition, for this study, the outer steel layer
of the boundary element (BE) under tension is assumed to reach its rupture strain when
concrete reaches its residual strength in the BE under compression. An upper strain limit,
Erupt, Was also set for tension rupture of longitudinal reinforcement. The strain &, must
be larger than the maximum tensile strain registered at roof drift capacity with the
monotonic pushover analysis in order to not produce strength loss before than desired. Step
4 of Figure 10.2 details how these values are used to modify the material properties of the
BE in the plastic hinge region to achieve strength loss. Step 5 of Figure 10.2 is to verify that
the strength loss objectives are achieved for both monotonic and reversed-cyclic pushover

analyses.
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In step 4 of the algorithm, strain values ¢, and ¢, (the latter is the modified strain at which
the residual concrete capacity is reached) are selected from the monotonic pushover analysis
of the Multi-Vertical-Line-Element-Model (MVLEM) with expected gravity load applied and
without modified material stress versus strain relations. The strain values are determined
from the strain profile at the wall critical section (wall-foundation interface) when the roof

drift capacity is reached as noted below:

* &, selected as the strain at half of the neutral axis depth (i.e., half of the strain of the
outer compressed fiber). Once this value is reached in the compression BE of the
MVLEM, significant strength loss will occur because half of the compressed boundary
longitudinal reinforcement is assumed to buckle and half of the confined concrete in
the compressed BE initiates strength loss by starting on the descending branch of the
stress-strain relation. The expected material properties are modified to achieve this

objective (of strength loss).

* The modified residual concrete strength is obtained from Eq. (10.1), where &, is the
strain at which the bars in tension rupture (&, = 0.14, 0.12, and 0.10 was used for
the 4-story, 8-story, and 12-story archetypes, respectively) and c is the neutral axis
depth at roof drift capacity. Eq. (10.1) produces strength loss because the properties
of the boundary longitudinal reinforcement in tension are modified to achieve
strength loss exactly when the neutral axis associated to the roof drift capacity is

reached (if we were only modifying the material relationships in tension).

(s
Eres = Erup X I —¢ (10.1)

w—C
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It is noted that the material properties also are modified in compression, which also
influence wall responses earlier because the strain levels associated for compression are
lower than the strain levels associated with strength loss in tension (g, < €7.5). Once the roof
drift capacity is reached, the wall neutral axis depth becomes larger due to degradation in
concrete stress capacity, and Eq. (10.1) produces rebar rupture in the BE in tension when
the outer fibers in the compressed BE have failed (reached residual strength) as desired to

achieve significant strength loss for both directions of loading.

Changing the strains at peak and residual stresses in the Concrete02 material in the
OpenSeeS model is sufficient to implement the necessary modification to the concrete stress
versus strain relations. However, to implement the necessary modifications for the steel
behavior it was necessary to define a Parallel material at the BE, a bilinear Steel MPF material
with weight factor of 80% (with a strain hardening ratio equal to 0.0125) to have complete
strength loss in tension and compression at the desired strain values (using MinMax option
in OpenSees), and another with weight factor of 20% and elastic-perfectly plastic SteelMPF

material to be able to reproduce appropriate residual capacity.

10.4 Selection of Ground Motions at MCEr Level

For each archetype, a suite of ground motions (GMs) is selected to appropriately represent
the spectral shape at the risk-targeted maximum considered earthquake (MCER)
performance level at a site located in Downtown Los Angeles, California (latitude 34.059,

longitude -118.238). This location (same considered for the design) has site spectral
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acceleration values of S; = 2.08g and S; = 0.64g. The Uniform Hazard Response Spectrum

for this site is shown in Figure 10.3.
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Figure 10.3: Uniform Hazard Response Spectrum for Site (USGS Unified Hazard Tool)

The spectral acceleration associated with the fundamental period of each archetype (shown
in Table 10.2) was extracted from the Uniform Hazard Response Spectrum (Figure 10.3)
and then used to generate a Conditional Mean Spectrum (CMS) (Baker, 2011). The period
used to match the spectrum is the fundamental period obtained from the Eigen Analysis
performed on the OpenSees archetype model with expected gravity load applied (D+0.25L).
Figure 10.4 illustrates how the spectra for each set of performance GM dataset matches the
same S, value at T; for each archetype. Table 10.2 also includes the number of records

comprising each of the suits of MCER level GMs. The list specifying the GMs and their scale
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factor are provided in Appendix A.6, Appendix B.6, and Appendix C.6 for the 4-, 8-, and 12-

story archetype, respectively.

Table 10.2: Period and spectral acceleration used to generate the CMS

— gundamenl, | Speetrl - botassetetd
4-Story Archetype 0.18 2.05g 42
8-Story Archetype 0.52 1.18g 43
12-Story Archetype 1.20 0.57g 46

*The fundamental period is extracted from the OpenSees model with expected material properties that is then
subjected to the suite of GMs.

w== Median = u»25 and 97.5 percentile —Selected ground motions

(b) 8-Story Archetype

(a) 4-Story Archetype

(c) 12-Story Archetype
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Figure 10.4. Response spectra of selected GMs for each archetype

Once the suite of GMs is selected, dynamic analyses are run with it for each archetype using
the three load combinations previously mentioned: (0.9-0.2Sps)D, D+0.25L, and
(1.2+0.2Sps)D+0.5L. The hysteretic results are obtained in terms of moment versus
curvature at the base because the plots are cleaner compared to base shear vs drift, and

because the predicted roof drift capacity can be translated into total plastic hinge rotation as
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described by Abdullah and Wallace (2019). Table 10.3 shows the plastic hinge rotation at

strength loss.

Table 10.3: Predicted total hinge rotation capacity

Archetype Total Hinge Rotation Capacity, 6 (rad)
4-Story Archetype 0.031
8-Story Archetype 0.030
12-Story Archetype 0.033

Figure 10.5 shows the moment versus curvature associated with the GM that causes the
largest hysteretic cycle (i.e., maximum total rotation in the plastic hinge region) for each
archetype. The results in Figure 10.5 are from the model with gravity load coming from the
load combination (1.2+0.2Sps)D+0.5L. The rotations are below the total rotation capacity for
the 4- and 12-story archetypes. For the 8-story archetype, there is only one GM that make
the building to surpass its deformation capacity, and from Figure 10.5 it can be seen that
the strength loss actually starts to happen at around 0.03 rad, as indicated in Table 10.3.
The results of the dynamic analyses for all GMs can be found in Appendix A.7.2.3, Appendix

B.7.2.3, and Appendix C.7.2.3 for the 4-, 8-, and 12-story archetype, respectively.
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Figure 10.5: Moment versus curvature of the GM that causes the largest hysteresis cycle - LC: (1.2+0.2Sps)D+0.5L
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10.5 Probability Distributions for Actual-to-Nominal Material Properties Ratio

The database used for this study also includes nominal material properties. However, this
information is not always reported. Therefore, there are 254 tests that reported the nominal
fc» 247 tests that reported the nominal f, ¢ of the longitudinal boundary reinforcement, and
249 tests that reported the nominal f,,,,, of the horizontal web reinforcement. Figure 10.6

shows the density histograms of the expected-to-nominal material properties, along with the

fitted normal and log-normal distributions. The log-normal distribution is chosen as the one

that better represents the data for the three cases.

=/ ogN ~(n=0.08,5=0.12) —[ 0gN ~(n=0.12,6=0.13) =/ 0gN ~(1=0.15,5=0.15)
=N ~(1=1.09,5=0.14) —N~(u=1.14,6=0.19) =N ~(n=1.17,0=0.18)
3_
31 47
31 5
> 2 - > >
= = =
w 0 7]
c c 2 c
)] O] (]
© o ©
14 i
1_
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(a) f'c, e/f'c, nom (b) fybe, e/fybe, nom (C) fywh, e/fywh, nom

Figure 10.6: Density histograms and fitted distributions of the expected-to-nominal material properties

Therefore, the selected distributions to represent the actual-to-nominal material properties

are the ones indicated in Table 10.4.
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Table 10.4: Selected distributions to represent the actual-to-nominal material properties

Variable Distribution Type Parameter 1 Parameter 2
feelfénom Log-Normal fiog = 0.08 Ol0g = 0.12
fysv.el fysbmom Log-Normal Hiog = 0.12 Tlog = 0.13
fywh.e! fywhnom Log-Normal Hiog = 0.15 Tlog = 0.15

10.6 Reliability Analysis for the 4-Story Archetype

Before running a Monte Carlo simulation, it is necessary to estimate the probability
distributions for actual-to-nominal demand ratios. These distributions vary for the different
archetypes and therefore the are obtained by assessing the dynamic analyses run for each of
them. Because this is the first archetype, the reasoning and description of the steps will be

provided within this section.

10.6.1 Probability Distribution for Actual-to-Nominal Demands Ratio

The density histograms of the actual-to-nominal shear ratios obtained with the OpenSees
model for the three load combinations studied are shown in Figure 10.7 and Figure 10.8.
Figure 10.7 shows the ratio of the actual shear demand (I, .) over the nominal amplified
shear demand obtained according to the ACI 318-19 prescriptions (V; ,,m). Figure 10.8

shows the ratio of the actual shear demand (1, ) over the nominal shear demand obtained

by MRSA (Vi nom)-
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Figure 10.7: Density histograms and fitted distributions of the actual-to-demand shear ratios, where the
nominal value is the amplified shear demand V , obtained using ACI 318-10 provisions - 4-Story Archetype
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Figure 10.8: Density histograms and fitted distributions of the actual-to-nominal shear ratios, where nominal
value is the demand V,, without amplification — 4-Story Archetype
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Even though similar histograms can be obtained for axial load and moment demands, it
would not be representative to draw random samples from distributions based on those
histograms when performing a Monte Carlo simulation to simulate the variability of these
demands. The reason for this is because they are correlated with the lateral force imposed
by the ground motion. Therefore, a relationship between these demands and the base shear
is sought and found. Figure 10.9 shows how the P, ./P, ,,m ratio correlates with the
Ve.e/Ve nom ratio for the different load combinations, while Figure 10.10 does the same but

between My, o /My nom and V, ¢ /Ve nom-

(a) (0.9-0.2Sps )D (b) D+0.25L (c) (1.2+0.2Sps )D+0.5L
2007y -073+058x ° y=1+0.14 x | y=0.86+0.24 x
| R?*=0.3 R?=0.072 R*=0.43
1.751
E
o
-1 [
2 1501 )
D;- .
. |
o $ b8 J e ° © Yy o
4 © 0.0 S8 0T g &% o
100- T T T T T T T T T
0.8 1.0 12 0.8 1.0 12 0.8 1.0 12
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Figure 10.9: Relationship between actual-to-nominal axial load ratio and actual-to-nominal shear ratio - 4-
Story Archetype

115



(a) (0.9-0.2Sps )D (b) D+0.25L (c) (1.2+0.2Sps )D+0.5L
y=0.57+0.81x y=0.56+0.85 X y=0.45+0.97 x
R*=0.7 R*=0.73 .|| R?=0.81 )

1.751
§
_Ej 1.501
=
1.251
1.00+ T T T T T T T T T
0.8 1.0 1.2 0.8 1.0 1.2 0.8 1.0 12
Ve.e/Ve. nom

Figure 10.10: Relationship between actual-to-nominal moment ratio and actual-to-nominal shear ratio - 4-
Story Archetype

It is considered that a linear regression estimates these trends good enough. Therefore, the
approach is to make the P, . /P, ,,m to follow a normal distribution with a mean value that
follows the linear regression in Figure 10.9 for each load combination. Similarly,
My, e /My nom is set to follow a normal distribution which mean value follows the linear

regression in Figure 10.10 for each load combination.

With the mean value of the distribution already defined, the standard deviation is the only
parameter left to define for these distributions. The standard deviation of a sample around
a mean value is obtained based on the differences between the samples and the mean value,

as show in Eq. (10.2).

Zl‘n—l(xi - ﬂx)z
= — 10.2
o — (10.2)

By looking at Eq. (10.3), it is clear that the standard deviation is a measurement of the error

when the values of a sample are estimated just by the sample mean. Similarly, the residuals
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of a regression are the error between the observed (actual) value and the predicted one, i.e.,

Yiobs — Yipreda- The analogy is clear by looking at Eq. (10.4).

Xi = Uy + & (10.3)
X; = ,80 + ﬁlxi + & (104)
Hi

The residual standard error of a sample represented by a regression is defined on the same
way that the standard deviation is defined for a sample represented by its mean. Thus, the
standard deviation of a normal distribution which mean values follows a linear regression
can be obtained using Eq. (10.5). In Eq. (10.5), instead of dividing by the sample size n, which
gives us the root mean square error (RMSE), the denominator corresponds to the degrees of
freedom (statistical concept, not the one used in structural engineering) because is works
better in order to obtain an unbiased estimation. The statistical degree of freedom
corresponds to the number of samples minus the number of parameters that are estimated,

which are two in this case (intercept and slope of the linear regression).

— — (10.5)

2 2
Residual Standard Error = \/Ein_l(yi _ yi'pred) = \/Ein_l(% —(Bo + ﬁlxi))

Figure 10.11 shows the residual and their corresponding residual standard error of the
linear regression between V, . /V, nom and P, . /P, nom shown in Figure 10.9. Same thing is

done in Figure 10.12.
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Figure 10.11: Residuals and residual standard deviations for actual-to-nominal axial demands - 4-Story

(Mu. e/Mu. nom)obs - (Mu. e/MU‘ "°m)est

Archetype

(a) (0.9-0.2Sps )D (b) D+0.25L (c) (1.2+0.2Spg )D+0.5L

0.21 $
®
£y &N, e
[ o °, o 0.0. . 0. ° . | odp ¢ 2 ®
0.0-—:.—. :tsu—‘-————.—.—.-"-'*——————.?.—'{0,.'.'3'}'.-0"
4 o ® L
’ o : ¢ ¢ ? o0 © ° ® o
o

-0.2- ¢

[e)
Res. Stand. Error = 0.07

Res. Stand. Error = 0.07

Res. Stand. Error = 0.07

12 14 16

1.8

1.4 1.6

(MU. e/Mu. nom)

1.2

est

1.8

T

12 14 16

1.8

Figure 10.12: Residuals and residual standard deviations for actual-to-nominal moment demands - 4-Story

Archetype

Finally, by considering the actual-to-nominal shear demand distributions of Figure 10.7 and

Figure 10.8, the linear regressions shown in Figure 10.9 and Figure 10.10, and the

associated residual standard errors shown in Figure 10.11 and Figure 10.12, the

probability distributions representing the actual-to-nominal demands can be defined for this

archetype. Table 10.5 summarizes this information.
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Table 10.5: Selected actual-to-nominal demand probability distributions for the 4-Story Archetype

Load
Combination

(0.9-0.2Sps)D

D+0.25L

(1.2+0.2Sps)D+0.5L

10.6.2 Monte Carlo Simulation Results

10.6.2.1 Verification of Correlation Between Demands

Variable

Ve,e/v;z,nom
Ve,e/Vu,nom

Pu,e /Pu,nom

Mu,e/Mu,nom

V:e,e/%,nom
Ve,e/Vu,nom

Pu,e/Pu,nom

Mu,e/Mu,nom

V:e,e/vé,nom
Ve,e /Vu,nom

Pu,e/Pu,nom

Mu,e/Mu,nom

Distribution Type

Log-Normal

Log-Normal

Normal

Normal

Log-Normal

Log-Normal

Normal

Normal

Log-Normal

Log-Normal

Normal

Normal

w =073 + 0.58(

w =102+ 0.14(

;= 0.86 + 0.24(

W =045 + 0.97(

Parameter 1

Hiog = —0.08
Hiog = 0.42

u =057 +0.81 (
Hiog = 0.00
,ulog = 050

4 = 0.56 + 0.85 (
,ulog = 005
,ulog = 056

e.e

e,nom

Vee

e,nom

Vee

e,nom

Vee

e,nom

Vee

e,nom

Vee

e,nom

)
)

)
)

)
)

Parameter 2

Ulog = 0.15
Ulog = 0.15

o=0.12

o= 0.07

Ulog =0.14
Ulog =0.14

o = 0.07

o= 0.07

Ulog =0.13
Ulog =0.13

o = 0.04

o= 0.07

A Monte Carlo Simulation using 10,000 iterations is carried out for each load combination.

The correlation of the simulated actual-to-nominal axial and moment demands with the

actual-to-nominal shear ratios are first verified (see Figure 10.13 and Figure 10.14,

respectively).
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Figure 10.13: Relationship between simulated actual-to-nominal axial demands versus actual-to-nominal shear
demands - 4-Story Archetype
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Figure 10.14: Relationship between simulated actual-to-nominal moment demands versus actual-to-nominal
shear demands - 4-Story Archetype
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10.6.2.2 Reliability Results Expressed in Terms of V,, — V,

Because the variables (strength and demand) are dependent, the plots are expressed only as
a junction variable. In this case, is in terms of the difference between strength and demand
(V, — V), where the failure condition corresponds to ;, — V, < 0. Figure 10.15 presents the
results when using the ACI 318-19 equation, whereas Figure 10.16 does the same but using
the proposed equation. Itis relevant to recall that these archetypes are ACI 318-19 compliant
walls. Therefore, the results obtained with the proposed equation (Figure 10.16) can be
understood as a more accurate estimation, because the better performance of the proposed

equation has already been demonstrated.

For the worse scenario, i.e., gravity load coming from the (1.2+0.2Sps)D+0.5L load
combination, results say that ACI 318-19 estimates this archetype to have 0.8% of
probability of failure, whereas the proposed equation says its probability of failure is actually
closer to 7%. It is worth to highlight that the shear strength estimated with the proposed

4 (PropEq)

equation is = 3,306 kips, which is equivalent to have used a strength reduction

factor of only ¢ = V,/V.""°PED = 0.90 (see Table 10.1) in order to satisfy ¢V, ""P%? = v,
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Figure 10.15: Reliability results using the ACI 318-19 equation, in terms of V,, — V,, for the 4-Story Archetype
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Figure 10.16: Reliability results using the proposed equation, in terms of V,, — V,, for the 4-Story Archetype
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10.6.2.3 Reliability Results Expressed in Terms of V,/V,

The proposed equation estimates a much higher probability of failure for this ACI 318-19

compliant archetype respect to what the ACI 318-19 equation does.

. Do Not Fail (ve/vﬁ,"“’<1) . Fail (Ve VA 21)
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Figure 10.17: Reliability results using the ACI 318-19 equation, in terms of V, /V,, for the 4-Story Archetype
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Figure 10.18: Reliability results using the proposed equation, in terms of V, /V,, for the 4-Story Archetype
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Even though expressing the results in terms of the 1, /V;, ratio instead of the difference V;, —
I/, says the same in terms of the reliability index and probability of failure, it provides a better
understanding of the demand-to-strength relationship. This can also give a general view
about the reduction factor associated with these actual values (demand and strength). Table
10.6 indicates the mean values of the I, /V}, distributions shown in Figure 10.17 and Figure

10.18.

Table 10.6: Mean values of the actual shear demand over the actual shear strength

Ve Ve
Load Combination (W)Actual (V%proqu) )Actual
Mean Mean
(0.9-0.2Sps)D 0.60 0.74
D+0.25L 0.65 0.79
(1.2+0.2Sps)D+0.5L 0.68 0.83
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10.7 Reliability Analysis for the 8-Story Archetype

10.7.1 Probability Distribution for Actual-to-Nominal Demands Ratio

=== LogNormal === Normal

(@) (0.9-0.2Sps )D

(b) D+0.25L

() (1.2+0.2Sy5 )D+0.5L

density

T T

1 2 3
Ve. e/ Ve.nom

Figure 10.19: Density histograms and fitted distributions of the actual-to-demand shear ratios, where the
nominal value is the amplified shear demand V , obtained using ACI 318-10 provisions - 8-Story Archetype

=== LogNormal === Normal

(@) (0.9-0.28ps )D

(b) D+0.25L

() (1.2+0.28ps )D+0.5L

density

Figure 10.20: Density histograms and fitted distributions of the actual-to-nominal shear ratios, where nominal

2 - 6
Ve e/ V. nom

value is the demand V,, without amplification - 8-Story Archetype
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Figure 10.21: Relationship between actual-to-nominal axial load ratio and actual-to-nominal shear ratio - 8-
Story Archetype
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Figure 10.22: Relationship between actual-to-nominal moment ratio and actual-to-nominal shear ratio - 8-

Story Archetype
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Figure 10.23: Residuals and residual standard deviations for actual-to-nominal axial demands - 8-Story
Archetype
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Figure 10.24: Residuals and residual standard deviations for actual-to-nominal moment demands - 8-Story
Archetype
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Table 10.7: Selected actual-to-nominal demand probability distributions for the 8-Story Archetype

Load
Combination

(0.9-0.2Sps)D

D+0.25L

(1.2+0.2Sps)D+0.5L

Variable

Ve,e/Ve,nom
Ve,e/Vu,nom

Pu,e /Pu,nom

Mu,e/Mu,nom

V:e,e/%,nom
Ve,e/Vu,nom

Pu,e/Pu,nom

Mu,e/Mu,nom

V:e,e/vé,nom
Ve,e/Vu,nom

Pu,e/Pu,nom

Mu,e/Mu,nom

Distribution Type

Log-Normal

Log-Normal

Normal

Normal

Log-Normal

Log-Normal

Normal

Normal

Log-Normal

Log-Normal

Normal

Normal
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=111+ 0.12 (

=119+ 0.27(

=0.99 + 0.20 (

=148+ 0.16 <

Parameter 1

Hiog = —0.21
.ulog =0.75

Hiog = —0.08
Hiog = 0.88

Hiog = 0.02
Hiog = 0.98

e.e

e,nom

Vee

e,nom

Vee

e,nom

Vee

e,nom

Vee

e,nom

Vee

e,nom

)
)

)
)

)
)

Parameter 2

Ol0g = 031
Tl0g = 031

g =0.26

o=0.11

Ulog = 0.34
Glog = 0.34

o =0.16

o =011

Ulog =0.31
Glog =0.31

o = 0.10
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10.7.2 Monte Carlo Simulation Results

10.7.2.1 Verification of Correlation Between Demands

(a) (0.9-0.2Sy5 )D (b) D+0.25L (¢) (1.2+0.2Sps )D+0.5L
y=11+0.29 x y=11+0.12x y=0.98+0.2x
R%=0.08 R?=0.062 R%?=0.32

o % o °

T T
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Ve, e/ Ve.nom

B

Figure 10.25: Relationship between simulated actual-to-nominal axial demands versus actual-to-nominal shear
demands - 8-Story Archetype

(a) (0.9-0.2Sps )D (b) D+0.25L (€) (1.2+0.2Sys )D+0.5L
y=11+0.18x y=12+0.27x y=15+017x
R%*=0.16 R%*=0.42 R?=0.21

Ve. e/ Ve. nom

Figure 10.26: Relationship between simulated actual-to-nominal moment demands versus actual-to-nominal
shear demands - 8-Story Archetype
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10.7.2.2 Reliability Results Expressed in Terms of V,, — V,

. Do Not Fail (vf,‘“’-vpo) . Fail (vf,"“’-veso)
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Figure 10.27: Reliability results using the ACI 318-19 equation, in terms of V,, — V,, for the 8-Story Archetype
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Figure 10.28: Reliability results using the proposed equation, in terms of V,, — V,, for the 8-Story Archetype
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10.7.2.3 Reliability Results Expressed in Terms of V,/V,

The proposed equation estimates a moderate lower probability of failure for this ACI 318-

19 compliant archetype respect to what the ACI 318-19 equation does.
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. Fail v INED )
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Figure 10.29: Reliability results using the ACI 318-19 equation, in terms of V, /V,, for the 8-Story Archetype

. Do Not Fail (v,/vf,"”s"k

1) . Fail (ve/vﬁ,"”e“’a 1)

(a) (0.9-0.2Sp5 )D (b) D+0.25L (c) (1.2+0.2S )D+0.5L
4000 - | |
1 B, =3.09 B =187 | Pr=1.54
3000
| |
I
8 2000 : !
o 1 |
I I
1000 | |
I
o4 i - s
04 0.8 1.2 16 04 0.8 1.2 16 04 0.8 12 16
PropE:
Ve /Vf, PEQ)

Figure 10.30: Reliability results using the proposed equation, in terms of V, /V,, for the 8-Story Archetype
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Table 10.8: Mean values of the actual shear demand over the actual shear strength — 8-Story Archetype

Ve Ve
Load Combination <W>Amml <V1(1Proqu)>Actual
Mean Mean
(0.9-0.2Sps)D 0.55 0.61
D+0.25L 0.63 0.71
(1.2+0.2Sps)D+0.5L 0.69 0.80
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10.8 Reliability Analysis for the 12-Story Archetype

10.8.1 Probability Distribution for Actual-to-Nominal Demands Ratio

=== LogNormal === Normal

(@) (0.9-0.2Sps )D

(b) D+0.25L

(¢) (1.2+0.2Sps )D+0.5L

density

05 10

Ve. e/ Ve. nom

1.5

Figure 10.31: Density histograms and fitted distributions of the actual-to-demand shear ratios, where the
nominal value is the amplified shear demand V , obtained using ACI 318-10 provisions — 12-Story Archetype
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Figure 10.32: Density histograms and fitted distributions of the actual-to-nominal shear ratios, where nominal
value is the demand V,, without amplification - 12-Story Archetype
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Figure 10.33: Relationship between actual-to-nominal axial load ratio and actual-to-nominal shear ratio - 12-
Story Archetype
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Figure 10.34: Relationship between actual-to-nominal moment ratio and actual-to-nominal shear ratio - 12-
Story Archetype
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Figure 10.35: Residuals and residual standard deviations for actual-to-nominal axial demands - 12-Story
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Figure 10.36: Residuals and residual standard deviations for actual-to-nominal moment demands - 12-Story

Archetype
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Table 10.9: Selected actual-to-nominal demand probability distributions for the 12-Story Archetype

Load
Combination

(0.9-0.2Sps)D

D+0.25L

(1.2+0.2Sps)D+0.5L

Variable

Ve,e/Ve,nom
Ve,e/Vu,nom

Pu,e /Pu,nom

Mu,e/Mu,nom

V:e,e/%,nom
Ve,e/Vu,nom

Pu,e/Pu,nom

Mu,e/Mu,nom

V:e,e/vé,nom
Ve,e/Vu,nom

Pu,e/Pu,nom

Mu,e/Mu,nom

Distribution Type

Log-Normal

Log-Normal

Normal

Normal

Log-Normal

Log-Normal

Normal

Normal

Log-Normal

Log-Normal

Normal

Normal
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o = 0.04
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10.8.2 Monte Carlo Simulation Results

10.8.2.1 Verification of Correlation Between Demands
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Figure 10.37: Relationship between simulated actual-to-nominal axial demands versus actual-to-nominal shear
demands - 12-Story Archetype
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Figure 10.38: Relationship between simulated actual-to-nominal moment demands versus actual-to-nominal
shear demands - 12-Story Archetype
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10.8.2.2 Reliability Results Expressed in Terms of V,, —
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Figure 10.39: Reliability results using the ACI 318-19 equation, in terms of V,, —

VeV (kip)
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Figure 10.40: Reliability results using the proposed equation, in terms of V,, —

VPR v (kip)
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10.8.2.3 Reliability Results Expressed in Terms of V,/V,
The proposed equation estimates a much lower probability of failure for this ACI 318-19

compliant archetype respect to what the ACI 318-19 equation does.
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Figure 10.41: Reliability results using the ACI 318-19 equation, in terms of V, /V,, for the 12-Story Archetype
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Figure 10.42: Reliability results using the proposed equation, in terms of V, /V,, for the 12-Story Archetype
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Table 10.10: Mean values of the actual shear demand over the actual shear strength

Ve Ve
Load Combination <W>Amml <V1(1Proqu))Actual
Mean Mean
(0.9-0.2Sps)D 0.49 0.48
D+0.25L 0.54 0.56
(1.2+0.2Sps)D+0.5L 0.59 0.65

10.9 Further Assessment of the Archetypes Reliability Analyses Results

Even though the archetypes are ACI 318-19 compliant, a relationship between the
probability of failure and the strength reduction factor when using the proposed equation
can be obtained. Using the proposed equation, different shear strengths for the different load
combinations can be estimated; for each axial load, the associated probable moment is
obtained from the unreduced P-M diagram (obtained using 1.25f, = 75 ksi), and then the
amplified shear demand is calculated accordingly with the resultant overstrength factor
2, = Mp,,./M,,. The a. and a; coefficients are calculated using its more generalized form, as
shown in Eq. (10.6) and (10.7), respectively. Note that these expressions are equivalent to
the ones presented before for the load combination producing the largest axial demand,

unless w, {2, = 3.0.

—61=0.010 (10.6)
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2
Qg =———— >0.30 (10.7)

The demands and shear strength are shown in Table 10.11, where in addition of presenting

the 1, /V;l(PTOqu) ratio, an “equivalent strength reduction factor” (¢.g) is included. This ¢,
represents the strength reduction factor that would have been applied if designing the
archetype with the proposed equation in order to comply with the condition ¢V,, > V. The
margin between ¢V,, and V, is usually small, e.g., it is between 4% and 5% for the ACI 318-19

compliant archetypes of this study. Therefore, the factor ¢, in Table 10.11 is estimated as

1.051, /V;l(PTOqu). The probability of failure (ps) obtained with the Monte Carlo simulation

analysis is also tabulated.

Table 10.11: Shear strength V;l(Pmqu) for each load combination and associated ¢,

4 P M 14 ALR (PropEq) v
Archetype Load ™ N o € ss U (}’Tepb"q) Pr Peq
Combination (kip) (kip-ft) (kip) (%) (kip) v, (%)
LC_min 684 110,572 2,692 1.6 137 3,031 0.89 09 093
4-Stor
4 LC_avg 1,157 115,891 2,826 2.7 @ 1.37 3,154 0.90 3.6 094
Archetype
LC_max 1,741 122,361 2,984 4.0 @ 1.37 3,306 0.90 6.8 | 0.95
LC_min 1,584 107,716 2,487 29 | 144 3,212 0.77 0.1 081
8-Stor
y LC_avg 2,674 120,058 2,772 50 144 3,493 0.79 3.1 083
Archetype
LC_max 4,018 134,678 3,110 7.4 144 3,855 0.81 6.1 | 0.85
LC_min 2426 117,283 2,716 45 144 3,961 0.69 0.0 0.72
12-Story LC_avg 4,098 135520 3,138 7.6 144 4,072 0.77 0.0 081
Archetype LC_max 6,159 156,260 3,618 114 1.44 4,663 0.78 0.4 | 0.82
LC_max* 6,159 156,260 3,474 | 114 1.50* 4,589 0.76 04 | 0.79

*The only difference in the calculation of the values in this row respect to the one above, is that the upper limit for the
amplification factor was considered (w, 2, < 3.0).

**LC_min = (0.9-Sps)D ; LC_avg = D+0.25L ; LC_max = (1.2+0.2Sps)D+0.5L
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Figure 10.43(a) highlights the trends between the probability of failure and axial load ratio,
Figure 10.43(b) associates probability of failure and the ratio of shear demand over the
shear upper limit (note that a4y, = 1.0 for rectangular walls). Naturally, with higher shear
demand, the probability of failure increases. Figure 10.43(c) relates the probability of
failure with the strength reduction factor ¢,,. From this plot it can be seen that values vary

between approximate values of 0.75 and 0.95, keeping the probability of failure always

below 10%, which is the threshold for MCE level defined in ASCE 7-16.

Since these archetypes are ACI 318-19 compliant, the results here show what was said before
in Chapter 10. Shear strength for rectangular walls with low levels of axial load ratio is
underestimated by the ACI 318-19 equation, which results in a larger probability of failure
for the 4-Story Archetype in this case. However, it is relevant to acknowledge that the
variation of axial load around the average value estimated from D+0.25L shows a positive

correlation with the probability of failure (Figure 10.43(a)).

~o~ (a) 4-Story Archetype =®- (b) 8-Story Archetype -*- (c) 12-Story Archetype

1.04

6 -
_ 0.94
* 4 o

2 084T

01 o=t

- : ) 035 040 045 0.71, ! !
- 0 2 4 6
(a) Pu/<A'gf'c) (%) (b) Vo/(“shape10Acv'JC] (c) ps (%)

Figure 10.43: Probability of failure trends and its relationship with associated ¢,
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Figure 10.43(c), computed without the upper limit for V, currently considered in ACI 318-
19, suggest that using ¢ < 0.80 might result in probability of failures that are always very
small (close to 0%). For values of ¢ > 0.80 it can be seen that the probability of failure varies
from ~0% to ~6% for the 8-story archetype, and from ~1% to ~7% for the 4-story
archetype. In other words, the probability of failure for each archetype varies depending on
the vertical load combination, thus defining a variability region for pf, as shown in Figure
10.44(a). If the upper limit that ACI 318-19 currently has for the shear demand amplification

factor is considered (w, {2, < 3.0), then the variability region for p; increases, but around the

portion related to lower ¢ factors and lower p; (Figure 10.44(b)).

4-Story Archetype =8~ 8-Story Archetype =&~ 12-Story Archetype
1.04 1.04
0.94 0.9
Including limit
o Ve = wvQvVu = 3Vu g
q') -
¢ > % ————0-——-—""""
= .,.——“
0.84 0.8
) | D pr varibility region | D pr varibility region
0.74 0.7
0 2 ' 6 0 2 6

4 4
(a) ps (%) (b) pr (%)

Figure 10.44: Relationship between p; and ¢, to assess selection of ¢ for the proposed equation
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Chapter 11. Conclusions

The performance of existing RC wall shear strength equations (used in building codes or
standards or proposed in the literature) vary substantially when evaluated with different
databases and generally perform poorly when evaluated against a common database (i.e.,
high error and/or high variance). Some of the more complex models reported in the
literature indicate good performance by showing that the more complex model performance
is better than simpler models, which is an unfair comparison because it is expected to obtain
better predictions if the model is more complex. As well, comparisons between two models
of similar model complexity level are not enough to say the one with better performance is
a good model, because it can be the case that a third equivalent complexity model could have
better performance. This led to pose the problem of establishing objective model
performance criteria. The problem was addressed by implementing a systematic combined
ML-Statistics methodology to establish target errors for different model complexity levels.
The methodology was applied to the problem of RC walls shear strength prediction using a
comprehensive database. Based on the results obtain with this framework, the following

specific conclusions are drawn:

* The proposed methodology can be used as a framework to obtain relationships
between target model performance for models with different complexity levels and
can be particularly useful when addressing a mechanic-based problem with a small

database.
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A comprehensive database of 333 RC walls reported to have failed in shear is obtained
from the UCLA-RC Shear Walls Database. Each test includes approximately 30
variables, which enables a detailed assessment of how each variable influences wall
shear strength. This database is large by structural engineering standards for large

scale tests, but still relatively small to take advantage of ML approaches.

The framework used in this study can be implemented as means to determine if a
properly trained complex ML model can make a big difference in terms of predictive

power respect to a simple linear regression model obtained from the ENMs analysis.

When applied to the RC wall shear strength capacity estimation problem, the
framework shows that a systematic methodology that recognizes the mechanics of
the problem and the availability of limited data (compared to those databases with
thousands or millions of samples available in fields where ML shows its greats
potential) can produce simple models with performance as good as complex ML

models.

The proposed iterative sensitivity analysis enables clear ML hyper-parameters trends
to be identified which made it easier to select the optimum set of hyper-parameter
values. Including the standard deviation of the errors obtained for each hyper-
parameter configuration in the trend plots helps to assess the underfitting-overfitting
trade-off and it shows how a non-appropriate hyper-parameter selection could be

made if only one iteration is run.

When coming up with a new model (ML model or not), it is required to split the
dataset into testing and training sets. Before using the entire database to refine the

model, it is a requisite for the model to have similar predictive power against both
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training and testing sets. This should be verified not only in terms of the error
indicator selected for the optimization process, but also (at a minimum) in terms of

mean of Viyye /Vpreq and its COV.

Defining the starting features and the predicted variable as normalized (unitless) and
mechanic-based is one of the key initial steps in the framework to make: (1) the
database representative of full-scale test specimens, because structural laboratory
tests are often conducted at less than full-scale; (2) the error indicator used in the

optimization process more robust; (3) the ENMs better able to capture data trends.

All ML models considered in this study at their optimum complexity level (ANN, RF
Regression and LASSO model), result in very similar predictive performance. This
result is taken as a validation for using underfitted models derived from the optimum
LASSO model as a soft relaxation away from the optimum when looking for target

model performance (errors) that fulfill user requirements for less complex models.

Target performance of a model to predict reinforced concrete wall shear strength for
implementation in codes and standards should achieve a Vi, /V},eq mean ratio very
close to 1.0 with a COV in the range of 0.16 to 0.19 when faced against the
comprehensive database provided in this study (or a similar one). In addition, the
training and testing errors should be within a margin of £10% of the converging error

(in terms, at least, of the error used in the optimization process and in terms of COV).
Complex ML models are required to have a V¢ /V}req mean ratio of 1.0 (or very close
to) with a COV of 0.12 or lower, and to verify a training and testing error within a

margin of +20% of the converging error (in terms, at least, of the error used in the

optimization process and in terms of COV).
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After applying the framework and established objective model performance criteria for the
reinforced concrete wall shear strength problem, several existing models in codes,
standards, and literature were studied. None of the existing code-oriented models meets the
target performance for a simplified shear strength model, which suggested there is room for

improvement in terms of code equation predictive performance.

Using a methodology, that involves statistical and ML approaches, applied to the same
comprehensive and cleanse database of 333 walls that are reported to have failed in shear,
a new wall shear strength equation is obtained. Also, a modification on the current shear

stress upper limit is proposed.

* The proposed equation satisfies the target model performance for a code-oriented
equations. A simplified version of the equation is obtained, and it also meets the target

model performance objectives.

* The proposed equation applies to walls with rectangular, barbell, and flanged (C-, H-
, T- and L-shaped) cross-sections, although the validation was limited for asymmetric

cross-section shapes due to lack of data (database with only 13 samples).

e Unlike the ACI 318-19 equation, the proposed equation has practically the same
performance (prior to application of a limiting shear stress) for walls with different

cross-section shape, axial load ratio, shear-span ratio, or aspect ratio.

* Analyses of two companion tests groups indicate that the shear strength contribution
coming from the terms of the proposed equation are more accurate than the

contributions coming from the terms on the ACI 318-19 equation, which tends to
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significantly underestimate and overestimate the contributions associated with

concrete and horizontal web reinforcement, respectively.

The coefficients on the equation are unitless, which provides a more natural use of
the equation because it does not depend on the specific set of units the engineer is
using.

The proposed shear strength upper limit is simple and is designed to have the
performance similar to the limit in ACI 318-19 for rectangular walls (most of walls
not failing in diagonal-compression below the limit and about half of the walls failing
in diagonal-compression above the limit), but for all walls. The proposed limit
consists in including the ag, factor (function of the cross-section area of the

compressed flange over A.,) to the current upper bound definition, which allows

shear stresses (v, = V,,/A.,) up to 15\/ﬁ for walls with flanges.

Finally, a reliability analysis is performed through a Monte Carlo Simulation. Three ACI 318-

19 compliant archetypes were studied, for which the shear strength was also estimated using

the proposed equation. It is found that the shear strength reduction factor associated with

the proposed equation can vary between approximately values of 0.75 and 0.95, keeping a

probability of failure less than 10% for MCE level, and practically in 0% for ¢ values around

0.80 or less. Also, the reliability analysis presents results that are consistent with those

obtained by performing comparisons of the proposed equation and the ACI 318-19 equation

on the database; the ACI 318-19 equation underestimates the shear strength of rectangular

walls and walls with low axial load ratio, and it overestimates it for barbell walls or walls

with flanges, or walls with high axial load. Explicitly:
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The proposed equation estimates a much higher probability of failure for the 4-story
rectangular wall respect to what the ACI 318-19 equation does.
The proposed equation estimates a moderate lower probability of failure for the 8-story
rectangular wall respect to what the ACI 318-19 equation does.
The proposed equation estimates a much lower probability of failure for the 12-story

rectangular wall respect to what the ACI 318-19 equation does.
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Appendix A. Design and Analysis of 4-Story Archetype
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A.1 Analysis - Design Forces and Displacements

e
5}
2

Building Information

- ny:=4 stories.

|
I
--------- N
- Story height of h,,,:= 13 ft, except for the 1st story I i i
which hy,:=15 fthigh i i i
I T s e N
- 120 ft x 120 ft every story ‘“—“"ﬂ“"T"‘T
] 1] I
- n,,:=4 rectangular walls in each direction ii ‘
3]
1]
1
- Center of mass and stiffness coincide (no eccentricity) " S Nt Bt E
"
"
- Dead load = 175 psf (floors) EE . 1|
= 140 psf (roof) it i |
:::—::::*::::*2: :
- Live load = 50 psf + 15 psf (partitions) = 65 psf (floors) " . |
= 20 psf + 0 psf (partitions) = 20 psf (floors) EE t il
n " )
- Risk Categorylz 4 | Weeeeece oo N —  — -
- Site Class C
- Wall dimensions: 1,,:=30 ft, t,=241in, t;:=0 ft, by:=0 ft
A, =1, t,=8640 in’
A=ty e (L, —2+tg) +2+ by tg=8640 in’
A=ty (l,—tg) + byt =8640 in®
Determination of SDC
Mapped acceleration parameters
From USGS Hazard Tool Website:
Maximum considered earthquake spectral response acceleration at short periods. S,:=2.08 g
Maximum considered earthquake spectral response acceleration at a period of 1-sec. S,:=0.64 g

Determine if the building is permitted to be automatically asigned to SDC A
Because S,=2.08 >0.15 and S,=0.64 >0.04, the building is not permitted to be automatically assigned to SDC A.

Determine if the SDC is E or F
Because the Risk Category is II and S, =0.64 <0.750, the SDC is not E or F

Design acceleration parameters
According to ASCE 7-16:

Table 11.4-1 F,:
Table 11.4-2 F,=1.4
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Eq. 11.4-1 Spys=F,-S,=2.08

Eq. 11.4-2 Sy =F, S, =0.90
2

Eq- 11-4'3 S“S::g'slws_l 39
2

Eq. 11.4-4 Sini= i =0.60

Check if the SDC can be determine by ASCE 7-16 Table 11.6-1 alone
Check if all four conditions in ASCE 7-16 11.6 are satisifed.

Structural height Ry, = (ng—1) « hy,, + hy, =54 ft
From Table 12.8-2 C,:=0.02, :=0.75
Approximate fundamental period (Eq. 12.8-7) T,=C,- (f:) =0.40

SL)I
T, (S. 11.4.5) T,:= =0.43

SL)S

Because 7,=0.40 > 0.8 7,=0.34 , the SDC cannot be determined by ASCE 7-16 Table 11.6-1 alone (1st
condition is not satisfied)

Determine the SDC
From ASCE 7-16 Table 11.6-1 with S,,s=1.39 >0.50 and Risk Category II, the SDC is D.
From ASCE 7-16 Table 11.621 with S, =0.60 >0.20 and Risk Category II, the SDC is D.

Therefore, SDC is D.

Gravity Load and Mass Calculation
Gravity Load

Load combination 6 and 7 include the seismic load effects (ASCE 7-17, S. 2.3.6). These axial loads are; (LC6) 1.2D
+ Ev + Eh + L + 0.2S; (LC7) 0.9D - Ev + Eh. Exception No.1 of S. 2.3.6 allows the load factor on LL in LC6 to be
taken as 0.5 when live load is less than 100psf. From ASCE 7-16 S. 12.4.2.2, the vertical seismic load effect shall
be determined as £, = (0.2 S),5) - DL . Therefore:

Gravity load from LC6:  (1.2+0.2 S),5) DL+0.5 LL Gravity load from LC7:  (0.9-0.2 5,5) DL
Tributary area of the wall: Apipwan =4+ (56.25-2+168.75) ft* —28.125 ft> =1097 ft*
Wall weigth: w,,, =0 kip (in the upper story)
Wy, 1= (150 pef)« A, hy,, =117 kip (in a typical story)
w,, = (150 pef)-A, - h, =135 kip (in the bottom story)
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Table 1. Wall gravity load

Applied Applied Applied Wall Wall Wall
Level (:st) (;:f) D;;);;SL (;cs?) (:)Cs:) Vertical Load Vertical Load Vertical Load| Axial Load  Axial Load Axial Load
D+0.25L (kips)  LC6 (kips) LC7 (kips) |D+0.25L (kips) LC6(kips) LC7 (kips)
Base| O 0 0 0 0 0 0 0 1,157 1,741 684
2 |298 65 314 473 186 345 519 204 813 1,222 480
3 |282 65 298 449 175 327 492 192 486 730 288
4 (282 65 298 449 175 327 492 192 159 238 9%
Roof | 140 20 | 145 217 87 159 238 9% 0 0 0

Seismic Weight of the Building

Seismic weight = dead + partitions = 175 psf + 15 psf =190 psf (floors)
= 140 psf + 7.5 psf =147.5 psf (roof)

Table 2. Seismic weight and mass of the building (considering wall self weight)

Story DL(psf) | Area(ft)) Seismic Weight, W: (kips) Seismic Mass, m; (kips-s-/in)
1 150 14,400 3,744 9.70
2 190 14,400 3,672 951
3 190 14,400 3,672 951
4 1475 14,400 2,592 671
Sum 13,680 3543

Values for the model (one quarter of the building only)

Building Associated to one Wall
. . . . . . Wbuilding . .
Seismic weight: Witding = 13680 kip W, = ——= 13420 kip
) nw
. . ki '32 Mm,i,(iu 1573 '32
Seismic mass: Mypitging = 35.43 If— M, =219 _ g 86 ?—
‘ in Ny, in

Accidental Torsion Factor

Accordingly to ASCE 7-16 S. 12.8.4.2, accidental torsion shall be calculating by displacing the center of mass each
way from its actual loaction by a distance equal to 5% of the dimension of the structure perpendicular to the
direction of applied forces. In this case, the floor slabs are a square of 120 ft x 120 ft. The distance between each
wall and the CM isd,,,.,,,:= 30 ft. The (base or story) shear of the building is called V', while the (base or

story) shear of the wall is called V. Therefore:

Eccentricity e:=0.05-(120 ft)=6.00 ft
Distance between walls and actual CM e =30 ft
Stiffness of one wall k,, (no need to actually obtain this value now)

153



Moment due to acc. torsion My=e Vi
(Vipuita @and Va1 are the building base =e. <4 Vwa”>

Shear and Wa" base Shear W/O ace torSIon) = 6 k:’lUd’lU(ﬂII,ed’ll)(ﬁ'"b + 2 k:’ll) <2 d’ll)(""b> 9 <2 d’ll)(’7”,>

M
Rotation of the slab due to acc. torsion 0, = 7‘”‘
14 kwdwmnz
. . ]\/[at €- <4 Vwall> 2 evwall
Extra (+/-) shear in one wall due to acc. torsion Vau=k,- (9atdwcm> = = =
14 dwcm 14 dwcm 7 dwcm
. . 2 e‘/wall 2e
Total shear in one wall due to acc. torsion Viotwail = Vwan + — =1+ - V wall
. 2e

Factor to account for acc. torsion Kgi=1+ 7 d € —1.06
Base Shear of the Building (ELF)
Required parameters:

Response moadifiation coefficient (Table 12.2-1) R:=5

Deflection amplification factor (Table 12.2-1) C,:=5

Importance factor (Table 1.5-2) I1,:=1.0

Long-period transition (Fig. 22-12) T,=8

Approximate fundamental period (already calculated) T,=0.40
Determine the fundamental period:

Fundamental period (from modal analysis) T:=0.24 s

Coefficient for upper limit for 7' (Table 12.8-1) C,=1.4

Upper limit for 7" (S. 12.8.2) T,=C,-T,=0.56 s

Therefore, the fundamental period to use is: T:=min (T,T,) =024 s
Determine the seismic coefficient: 5

Seismic response coefficient (Eq. 12.8-2) C,:= ;}‘5 =0.28

I,
.. . SU]
Upper limit for C,, given that 7', <T, (Eq.12.8-3) —=0.50

e

Cs.ma:l: = —R
7.2
(IW)

Lower limit for C,, given that T\, <T, (Eq.12.8-5 and -6) C
(Eq. 12.8-6 applies when S| > 0.6 g, which is the case now)

s.min

0.5-85,
=max |0.044S)g 1, ,— =0.064

L . )
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Therefore:

Seismic coefficient to be used: C:=C,110e=0.50
Seismic base shear of the wall: Vy:=C,-W,=1702 kip
Seismic base shear of the wall accounting for acc. torsion: Viyi=ky -V, =1800 kip

Modal Response Spectrum Analysis

Concrete strength f’.:=5000 psi
Modulus of elasticity E:=57000-14/f".-psi =4031 ksi

3

2
by (Ly—2-1 (b-t?’ l, t ]
Inertia I,=—2 a=2tn) |00 tn +bpety |2 —L| |=4500 ft*
12 12 2 2 )
Eff. inertia I,;:=0.50-1,=2250 ft"
. 27 T
Modal periods T=""" T"=[0.24 0.04 0.01 0.01] X
wm -
sz.eff-
j=1 J

Number of required modes to achieve more than 90% of the total mass =0.98

t

Base shear: Vi mnsa =725 kip

Because the base shear obtain with the modal analysis is less than the base hsear obtained by the ELF
method (V' yinsa = 725 kip <V, =1800 kip ), all forces and drifts are requried to be scaled with the factor

Vil Vitodaianalysis (ASCE 7-16, S. 12.9.1.4).

Vi

Factor for scaling of forces k =2.48

shear *=
b.MRSA
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Design Forces and Displacements - Summary

The lateral demands on the wall obtained from the Modal Response Spectrum Analysis are shown in the table
below. The forces were scaled to acchieve 100% of the base shear calcualted by the ELF method. The table
incorporates the wall gravity loads calculated before (see Table 1).

Table 3. Loads and displacement demands on the wall

Height Axial Load Aialinadl Asiatinad] taer Story |Overturning Elasti_c Amplifi_ed Sto_ry

Level () D+9.25L LC6 (kip) | LC7 (kip) |Force (kip) Sh_ear Wment Defl_ectnon Defl'ectnon Drift
(kip) (kip) (kip-ft) (in) (in) (%)

Base 0 TAhy 1,741 684 0 1,800 73,815 0.00 0.00 0.00
2 15 813 1,222 480 233 1,661 47,271 0.06 0.32 0.18

3 28 486 730 288 435 1,314 26,051 0.20 0.98 0.42
4 41 159 238 96 651 702 9,132 0.37 183 0.55
Roof | 54 0 0 0 702 0 0 0.55 2.76 0.60

The roof drift is:

Min. axial load:
D+0.5L axial load:
Max. axial load:

Shear demand:

Moment demand:

Axial load ratios:

ATOOf = 0.43%

P

min

=684 kip

P)yo5,= 1157 kip

P

maxr

= 1741 kip

V,, = 1800 kip
M, = 73815 kip - ft

min

ALR, = — " —1.6%
A g° f c
P 5
ALRyy 551, = —20 = 2.7%
A g° f c
ALRmm- = & = 40%
l A’ 'f/c

g9
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A.2 Wall Design
Critical Section

Building Information
Number of stories
Lightweight concrete
Concrete compressive strength
Yield strength of steel bars
Height of the wall
Length of the wall
Thickness of the wall
Flange thickness
Flange total width

ng=4
A:=1.0
f.:=5000 psi
Jy =160 ksi

hw::<nsfl>-13 ft+15 ft=>54 ft
l,:=30 ft

t, =24 in
tp=0 ft=0.00 in
bfl::(] ft

Gross Area A=ty (I, —2 ty) +2 byt =8640 in®
A,, cross-section area A, =t 1,=8640 in’
Min., avg., and max. axial demand P,,.,:=684 kip P,,,=1157 kip P, =1741 kip
Shear demand V,.:=1800 kip
Moment demand at critical section M, :=73815 kip - ft
Critical section at the bottom Popes = Ty =54 ft
Provided longitudinal reinforcement in the critical section
Web Hor.: #5 @ 5.0
#4 rebar A ;=031 in?
A
Spacing Suph=9.0in .
2 °A#5 45500
Reinf. ratio Pwh = =0.52%
Swh * bw 39000
Web Ver.: #4 @ 6.6 39500
#4 rebar Ay =0.20 in”
Spacing Sy i=6.6 ﬁ‘n 20000
. . - # o )
Reinf. ratio Puw = P =0.25% P, (kip) 19500
P, ki 13000
Boundary Element: 36 #10 oh (k)
#10rebar - area A 4 =1.27 in’ P (KiD) 6500
#10 rebar - diam.  d,y=1.27in (d,:=d ) . .
Length Of BE lbe :=69.0 in ) 20 10 80 100 120 140 160 180 200 220
Width of BE b:=t,=24.00 in ~65001
. . 36- A#w
Reinf. ratio Ppe i=—————=0.0265
(e +3in) - 1, M, (1000 kip - ft)
36+A 4
pgpi=———=0.0053 ¢M,, (1000 kip - ft)

cv

M, (1000 kip - ft)
¢ x
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Minimum reinforcement ratios for the web
Ay=1,+t,=8640 in®
Because V,=1800 kip >\ \/f'.-psi A.,=611 kip, we can use p;:=0.0025 and p,:=0.0025 (ACI 18.10.2.1)

Number of curtains of reinforcement in the web (ACI 18.10.2.2)

h,
Even though —~=1.80 <2, 2 curtains of longitudinal and transverse reinforcement are provided in the web.

w

Required area of longitudinal reinforcement for flexure and axial forces
Longitudinal reinforcement ratio within 0.15 [,,=54.0 in from the end of the wall, and over a width equal to the

wall thickness, shall be at least 6 —'f Pt =0.0071 . Therefore, the requirements of ACI 318-19, 18.10.2.4(a)
Yy
are satisfied.

The longitudinal reinforcement required by 18.10.2.4(a) shal extend vertically above and below the critical section

M,
at least the greater of [,,=30.0 ft and P 13.7 ft. This is satisfied becuase p,.=0.0265 is provided in up

u

to 2 feet above level 3, covering a height equal to 15 ft+13 ft +2 ft =30.0 ft

No more than 50 percent of the reinforcement required by 18.10.2.4(a) shall be terminated at any section. This
means that outside the greater of [, and M,/ <3 Vu> (which is 30 ft), we have:

Minimum long. reinf. ratio
(within 0.15 1,,=54.0 4n from the end of the wall)

Minimum amount of long. reinf. above cut-off point

Maximum Probable Moment

P-M diagram obtained with 1.25 f, =75 ksi and P,,,,= 1741 kip

A 122.361
18000+

10000 \
32000+

24000

P, (kip ~
4( ) 16000+

| >

P, (Kip) o X >
20 10 . € 100 120 140 160 180 200 220

x

—8000 M, (1000 kip - ft)

¢M,, (1000 kip - ft)

M, (1000 kip - ft)
¢ x >
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Design shear force

(a) Demand
Maximum probable moment M, =122361 kip - ft
(using P-M diagram obtained with 1.25 f, =75 ksi )
Critical section at the bottom Popes = D4 ft
Wall length l,=30.0 ft
Shear demand vV, = 1800 kip
h’wcs Mpr
Overstrength factor when —==1.80 > 1.5: 2,:=max [T 1.5|=1.66
w, when —2£=1.80 < 2.0 : w,=1.0

w

Therefore, accodring to ACI 318-19, 18.10.3.1:
Ve=min (2, w,-V,,3 V,) =2984 kip (2, w,=1.66 )

(b) Strength (ACI 318-19):
o, coefficient O o = if

h.
<15 QU gei =240

Ly

50
h,,

elseif —>2.0

w

|20
else
hwcs
23—
Ly
Upper limit Vacitim =10+ A, «\/ f".- psi = 6109 kip

Shear Strength Viaci= (ac.m’,i “A. V f/c < PSL A+ Py ¢ fy) <Ay =4145 kip < Vin.aci.lim = 6109 kip

Thus: ¢V, :=0.75-V, ... =3108 kip > V,=2984 kip

The capacity (Prop. Eq.):

Ratio of long. steel boundary  p,,=0.53%

Axial load considered: P,,..=1741 kip

a, coefficient

ac. Y




o, coefficient =0.36
N tata) | )
Qghape factor Qgpgpe =Mmin max|1,0.7«|1+——— ,1.5;=1.00
LA Ao ) ))
Upper limit Vdim = Qghape * 10-A.,+ V f/c - psi =6109 kip
Shear strength Voprop = (Qep* Fet Qe (P + Pun) * [) * Ay =3306 kip < V4, = 6109 kip
Ve
Resultant DCR -=0.90 (Remember we are not designing the wall with the proposed equation.
n.prop We want to assess an ACI 318-19 compliant wall with it).

Determine if special boundary elemens are required

h,
Since —~=1.80 < 2.0, Section 18.10.6.2 does not apply. Specification on Section 18.10.6.3 are used instead.

w

The maximum extreme fiber compressive stress is obtained as shown below. The results are shown in Table 1.
M, P,

_ u mar
o=——

21, A

w

cv

Table 3. Maximum compressive stress

X ) Overturning

St Height | Axial L?ad PR Stre-ss
(ft) LC6 (kip) (kip-ft) (ksi)
Base 0 1,741 73,815 1.91
2 45 1,222 47,271 1.24
3 28 730 26,051 0.69
4 41 238 9,132 0.24
Roof 54 0 0 0.00

Because there are stresses > o,,,,.:=0.2- .= 1.00 ksi at the base, special boundary element is required.

=1.00 ksi --> Special Boundary Element

maxr

0'121.91 ksi > o

o= 1.24 kst > o,,,,=1.00 ksi --> Special Boundary Element

maxr

400 psi

o= 0.69 ksi < 0.15-f,=0.75 kst and p;.,q> —=0.0067 --> Ties per 18.10.6.5

Y

400 psi .
PSt _ 0.0067 --> No ties

0'4:0.24 kst < 0.15-f.=0.75 ksi and p; 4 <
Y

To see how is the longitudinal reinforcement at the wall ends for stories 3 and 4, see the corresponding section
later in this report.
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Horizontal length of the Special BE
The neutral axis depth associated wih the maximum axial load is c¢:=c¢,,,,,=51.5 in . According to ACI 318-19

18.10.6.4(a), the special boundary elements must extend horizontally from the extreme compression fiber a
distance equal to the greater of the following:

C
Greater between ¢—0.1[,=15.49 in and 5 25.75 in

Therefore, using a BE length of [,, = 69.0 in satisfies this requirement.

Check the width of the flexural compression zone
The laterally unsupported wall height corresponds to the height of the 1st story h,:=15 ft

h
b=24.00 in > 1—2: 11.25 in --> ACI 318-19 18.10.6.4(b) is satisfied

C

T 0.14 < %:0.38 -->  ACI 318-19 18.10.6.4(c) does not apply

w

Transverse reinforcement in the Special BE
The provided vertical spacing is s:=5.0 in, and the largest distance (centerline to centerline) between laterally
restrained longitudinal bars is h,:=6.0 in .

First, we check the requirements of ACI 318-19 18.10.6.4(e). The maximum vertical spacing of the special
boundary element transverse reinforcement is equal to the following:

b .
‘—:8.0 mn

!
b —93.0 in

Smas = lesser of —

maxr

For grade 80 bars, lesser of 5 d,=6.35 in or 6 in --> use 6.0

e

m—)l =6.67 shall be within[4 in,6 in] --> use 6.0

Because s=5.00 in , ACI 318-19 18.10.6.4(e) is satisfied.

#5 perimetral hoop, one 135-degree #4 crosstie in the longitudinal direction and ten #4 crossties in the transvese
direction. For #4 bars: A ,,:=0.20 in” and d ,:=0.5 in; for #5 bars: A ,;:=0.31in” and d 4;:=0.625 in .

b=24.00 in
lye = 69.00 in
. d#l(] ] .
boy:=lpe—3 i +2|d s+ =68.52 in
. d#l(] .
bepi=b—2+(3in)+2+|d 4+ =20.52 in
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Ay pei=b+1, =1656.00 in?
Ay =bgy » by =1406.03 in”

According to ACI 318-19 18.10.6.4(g), the minimum amount of transverse reinforcement is:

—

Agbe I
0.3. (L" 1) .1~ 0.00444
A, Ach Iy

= greater of —

c /,

0.09 -£:0.00750
Y

s+b

Therefore, the minimum BE transverse reinforcements are:
When doing a X-X cut: A iy :=0.0075+5b,, =2.57 in”
When doing a Y-Y cut: A iy i=0.0075 8+ by =0.77 in’
And the provided BE transverse reinforcements are:
When doing a X-X cut: Agoxx=2+Ay;+10-A 4, =2.62 in’
When doing a Y-Y cut: Agiyy=2Ays+Ay=03821in"

Thus, the minimum requirements for the amount of transverse reinforcement in the BE are satisfied.
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Flexural Strength Verification - Story 3

Demand
Minimum axial load: P, ., =288 kip
Maximum axial load: P, .. =730 kip
Shear: V,:=1314 kip
Moment: M, :=26051 kip - ft
Web: #4 @ 6.4 in both directions
#4 rebar Ay =0.20 in® R
Spacing S =6.6in 45000
2.4 105
Reinf. ratio Pu= A 0.25% 10500
Sp* tw 36000
31500+
27000+
22500
Boundary Element: 18 #10 Po (k) a0
#10rebar - area A ,,=1.27 in’ 13500
#10 9P, (kip)
#10 rebar - diam.  d =127 in (dy:=dy,) —— 9000
. 4500
Length of BE Iy, =33 in  Froim x(’"” ) , o « >
Width of BE bimt —924.00 in 4500 L—2—10 60 80 100 120 140 160 180
_ _ Y18 Ay
Reinf. ratio Plend =————=0.0265
i (Ine +3 in) - t,, M, (1000 kip - ft)

¢M, (1000 kip - ft)

M, (1000 kip - ft)
¢ x 3

Verification of flexural strength for P, =288 kip and M,=26051 kip - ft

min

— 51 5 4
maz = 01.5 N .

From the sectional analysis, the largest neutral axis depth is c:=c¢,,

400 psi . . . .
Becasue p;,,,;=0.0265 > PR 0067 , the transverse reinforcement in accordance with ACI 18.10.6.5 is
Y

required at the ends of the wall:

Boundary transverse reinforcement shall satisfy the requirements 18.7.5.2(a) through (e) over the greater
of ¢c—0.11,=15.49 in and %: 26 in

Because the section above the 2th story there is no yield expected (i.e., outside the length of the plastic
hinge length calculated before), the maximum spacing of the transverse reinforcement is equal to the
lesser of the following for Grade 80 reinforcement:

Smaz =N (6 dyy, 6 in) =6.00 in

mazx °

Following transversal reinforcement over an horizontal wall segment of [,, =33 in satisfies all above requirements:

One #4 perimetral hoop
One #4 crosstie inthe longitudinal direcction
Six #4 crossties in the transvese direction
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' ,(, . si
Also, above the cut-off point we have that p; ., =0.0265 > % [6 ffip] =0.0035 . Therefore, S. 18.19.2.4

(c) is satisfied.

BecauseV,=1314 kip <X-\/f’.-psi - A, =611 kip, ACI 18.10.6.5 needs to be satisfied, i.e., the horizontal
reinforcement shall be terminate with hooks.

Flexural Strength Verification - Story 4

Demand

Minimum axial load: P,..==96 kip

Maximum axial load: P, i=238 kip

Shear: V,:=T702 kip

Moment: M, :=9132 kip - ft

Web: #4 @ 6.6 in both directions

#4 rebar Ay =0.20 in® R
Spacing 5, =6.60 in 40000

36000
32000
28000
24000
20000

Reinf. ratio P =0.25%

P, (kip) 16000
] 12000
P, (kip) 8000
) 4000
P (Kip)

¢ * ’ “Joool 15 30 45 60 75 90 105 120 135 150

M, (1000 kip - ft)
¢M, (1000 kip - ft)

M, (1000 kip - ft)

¢ x )

Verification of flexural strength for P, ;, =96 kip and M, =9132 kip - ft

400 psi

Becasue p,=0.0025 < =0.0067 , the transverse reinforcement in accordance with ACI 18.10.6.5(b) is

Y
not required.

BecauseV, =702 kip > \-\/f'.-psi - A.,=611 kip, ACI 18.10.6.5 needs to be satisfied, i.e., the horizontal
reinforcement in the last story shall be terminated with hooks.
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A.3 Wall Sketches

INANAANE

T

-~
Z LEVEL 4
7 I
///A LEVEL 3
-
V%// LEVEL 2
/ -
%A BASE

WALL - SCHEMATIC ELEVATION VIEW

LEVEL | STORY | HEIGHT (FT) | WEB ZONE WALL END ZONE
244 @ 6.6"V
ROOF r 54 244 @6.6"H
2-44 @ 6.6"V el
a 3 a1 244 @6.6"H
’ HOOPS AND CROSSTIES @ 6.0"
3 2 28 288® 6.6"V 69" x 24"
2-45@5.0"H e .
2 1 15 HOOPS AND CROSSTIES @ 5.0
NOTES:

CROSSTIES IN THE WEB ARE NOT SHOWN

180"

I

180"
3
#10 - 20 # @66
o121 | S@6"=30
(TYP)
A A
S
AN
=4
£ 2020
(TYP)
180"
3
# @868 #

20231
(PER. HOOP)

11@6" = 66"

20.20"
(TYP)

. WALL CROSS SECTION
-/

THE DRAWING OF THE DETAILING OF THE BOUNDARY ELEMENT MIGHT NOT SATISFY ALL ACI 318-19 REQUIREMENTS, HOWEVER
THE PURPOSE OF PROVIDING ENOUGH TRANSVERSE STEEL AND ESTIMATE THE CORRESPONDING CONFINEMENT IS MET.
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A.4 Expected Concrete Stress-Strain Relationship

Materials
#4 and #5 Hoops and Crossties:
Diameter: dpr s :=0.5 in dpp.ns:=0.625 in
Area: Ayo=0.2in" A s:=0.311in"
Expected yield Stress: Syt =70 ksi

Steel for Longitudinal Bars (#10)

Diameter: dy, =1.27 in
Area: A, :=1.27in°
Yield Stress: Ji1 =70 ksi
Concrete
Expected unconfined concrete strength f'o=1.3-5000 psi =6500 psi
Modulus of elasticity E_.:=57000-1/f"., - psi =4595 ksi
. 5 2. f,co
Strain related to f’, &= = 0.0028

c

Saatciougly & Razvi Model
(a) Unconfined Concrete
Strain at maximum concrete compressive strength €01:=E,,=0.0028
When specific information is not available, the authors of this Eps5:=0.0038
model reccomend to use
. . . <5 085 —€ co>
Strain at which the descending branch Ep=———————+&, €.=0.0093
touches the X axis 0.15

Stress-strain relation for confined fesni(ec)=if 0<e.<ey
concrete

2
(This also recovers the Hognestad f’ . ( 2.€ c Ee
expression co
p ) \ Eo1 )

elseif gy <e.<e.p

€o1

E,—E
i s (1 _0,15.6701]
\ €oss — €01 )
else
o
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(b) Confined Concrete in Stories 1 & 2

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

Dimension between laterally supported
vertical bars, in X dir.

Dimension between laterally supported
vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear
when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

Maximum confined stress

More parameters required to obtain
the confined stress-strain curve:

Volumetric ratio

bcz =69 in + dbl e dbt.n5

bcy:: 24in—2-3 in+dy + dpp s

§1,:=6.0 in
24in—2-3 in
Sly ::72
5:=5.0 in
Ny g := 10 Ny 5 i = 2
Ny s = 2 Ny = 1

<ny.n4 ° Ast.n4 + LY Ast.n5> ¥ fyt

flz = - bcz
<nz.n5 ~ Ast.n5 +Nyng Ast.n4> % fyt
fly = >
5+b,,
kopi=min
Ky, ==min
flez = kZz ° flz
fley = k2y 'fly
flez " bcz + fley % bcy
fle =
bcz + bcy
fe —0.17
ky:=4.825- ( =
ST

f,cc::f,co—i_kl'fle

. fle

K=k -
fCO

ny.n4 ° Ast.n4 + ny.n5 o Ast.n5 o Nyns* Ast.n5

8+ (beg+bey)

167

b.,=70.9 in
b, =19.9 in
S =6 1n

S, =9 in

fia=0.517 ksi

£, =0.577 ksi

Ky, =0.387
fies=0.517 ksi
Fley=0.223 ksi
f1o=0.453 ksi
k,=5.521

' o=9 ksi

K=0.385

p=0.007



(c

)

Strain at which is reached the residual
stress

Residual Stress

Stress-strain relation for confined
concrete

Confined Concrete in Story 3

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

Dimension between laterally supported

vertical bars, in X dir.

Dimension between laterally supported

vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear
when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

g1:=€¢1+(1+5-K) £, =0.00827
€g51=260+p € +Epss £g5=0.0191
0.8 (g5—¢€1)
Coms =gy €,.res = 0.0663
Fooai=02-07 Jres=1.8 ksi
fcc.SH,.l <€c> =if 0 <e.<ég&
1
1+2:-K
: (2 SE, &
ce® R ==
i S e
elseif €, <e. <€, s
E.,—€
f,cc' (1 —0.15 '671]
\ Egs—¢€1)
else
f’I‘ES
by =69 in +dy; + dys g bey =70.77 in
bey =24 —2-3 in +dy +dyg g b, =19.77 in
§1,:=6.0 in S, =6 1n
24 —2-31in .
B 8= Sy =9 in
2
5:=6.0 in
n,:=6
n,=3
n,+A -f
e i f12=0.198 ksi
Seb,,
n, A -f
A 2 f1y=0.354 ksi
: 5+b,,
kg :=min (0.099-2 L kye=1

o
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Maximum confined stress

More parameters required to obtain
the confined stress-strain curve:

Volumetric ratio

Strain at which is reached the residual

stress

Residual Stress

Stress-strain relation for confined

concrete

kg, =min (0.099 .2

flez = k2z 'flz
fley = k2y 'fly

_ flez " bcz+fley' bcy
 Ogily

—0.17
ky:=4.825- ( L )
k

fle:

S

f,cc::f,co—i_kl'fle

K kl . fle
f,co
pi= <ny & nz> *Astna
S <bcz i bcy>

g1:=€¢1+(1+5-K)
€85 =260+ p- &y +E0gs
0.8 (eg5—¢)

Ecres = ~o1s +é&1

fres =0.2 'f,cc

fcc.SH,.Z <€c> =1if 0 <e.<&

cc k gl

else

f’I‘ES
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7 .(2-&7(*: ] ]

elseif e, <e.<¢

1+2.-K

2
c

\e1) )

c.res

f/cc.(l_o.w.ﬁ]

Egs—¢€1)

kg, =0.448

f1op="0.198 ksi
Fley=0.158 ksi

f1.=0.189 ksi
k, =6.403

' o=T.712 ksi
K=0.186
p=0.003
£,=0.00547
g5 =0.0085
€, p0s=0.0217

c.res

Fres=1.542 ksi



Plots

# of points i:=1..100
Concrete strain values €,:=0.002-(i—1)
Unconfined concrete strength Froume = o (é’c,)
Confined concrete strength (stories 1 & 2) R~ (50)
Confined concrete strength (story 3) feconfs. =Fecsn2 (50)
9
8.1
T2
6.3
5.4
—_— 4.5
fc.co'nfl (ksz) 3.6
fc.co'nf2 (k?S’L) 2.7
1.8
0.9
¢ 0.02 0.04 0.06 0.08 0.1 0.12 0.14
=
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A.5 Sectional Analysis with Expected Material Properties and Amof Capacity

Expected Material Properties

Unconfined Concrete
Max. compressive stress feunc=6.5 ksi
Strain at max. comp. stress Epame = 0.003

Eog5 = 0.0038
Strain at which the descending €. .=

branch touches the X axis 0.15

fz.unc <€c> =if 0< €< Ecunc

\ c.unc cc":E.U’I‘LE }
else if Ecunc <Ec < ng.u'lw
E.—€
f’E.U’I‘LE g (1 —0.15- ‘ — ]
\ €085 — €c.unc }
else
o
Steel
Steel yielding stress Jy =70 ksi
Elastic modulus of steel E,:=29000 ksi
Yielding Strain £,=—2=0.00241
3
Post-yielding slope Eg4:=0.01.E,=290.00 ksi
Esh = gy

fo(e)=if 0<|e|<e,
E, .¢,

elseif e, <|e | <eq
H sign <€S> Iy
elseif £4,< e, <0.3
sign (g5) - (fy + (& — )  Eun)
elseif 0.3<|e,[<0.80
sign (€,) « (fy+ (0-8—€4) * Egp)
else
o

<‘€085 = ga.unc)

c.unc

171

Confined Concrete

Length of BE e =69.0 in
Concrete peak stress f.+=9.00 ksi
Strain at Concrete Peak Stress €0y :=0.0083
Rresidual stress Frez=02%
Strain at residual stress Epres :=0.0663

Other parameters (S&R model) K:=0.39
€,5:=0.0191

fo(e)=if 0<e.<e,

2-¢, (e V
]

elseif €, <e.,<¢

c.res

E.—&
floe (1 —0.15 #]
€585_€cu}

elseif ¢ <e

cres =%c
fTe.s

else

o

LRFD Reduction Factor

¢ (&) =1f |e] <&,
H 0.65
elseif |} >0.005
o9
else
0.9-0.65

0.65+— 2 .(le;| -
+0.005—gy (led —e)



fe(e) (Ksi)

f.s <€S> (kS’L) fc.unc <€c> (kSl)
A A
135.001 9.00
120.001 8.10
105.00 7:20
6.30
90.00
5.40
75.00+
4.50
60.00+1
3.60
45.00+ 270
30.00 1.80
15.00 0.90
0-00- s 0-00 >
T0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.p0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
1= Ee

S

P-M Diagram & Critical Demand

Wall length l,,:=30.ft (h:=1,)
Web width b:=24in

Flange thickness tp:=0 ft=0.00 in
Flange total width by:=0 ft

Moment demand: M, :=73815 kip- ft

Axial demands: P,..:=684 kip
Pg=1157 kip N
P, .::=1741 kip 64000
56000
Web Ver.: #4 @ 6.6 48000
#4 rebar Ay =0.20 in® 40000
Spacing Sy =6.6 i1 32000
) . <A
Reinf. ratio P i=———=0.25% 24000
Swp b P, (kip)
T 16000
Boundary Element: 36 #10 oP, (kip) 8000
#10 rebar - A 4 o=1.27in?
rebar - area 410 in - —6
#10 rebar - diam.  d;g=1.27in (dy:=d 4,) ° x > 8000
Length of BE 1. =69.0 in —16000
Width of BE b=24.00 in
Reinf. rati 8-Amo _, gsn
einf. ratio = =9 i
& (lpe+ 3 in) -0 ’ il

36-A
#10
pay = — = =0.53%

cv

¢M,, (1000 kip - ft)

M, (1000 kip - ft)

¢ x H
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Maximum Probable Moment
Sectional analysis using expected material properties and P,

mazx !

which comes from (1.2+0.2SDS)DL + 0.5LL

Story 1: Neutral axis depth c:=47.683 in (Iterate until obtain P,,,,=1741 kip)
P-M Capacity
B le B 0L B ik
h .
M, = le B (h - ycpl) bV (h - di) Py M, = 124046 kip- ft

Moment and Curvature at Yielding
Sectional analysis using expected material properties and expected axial load (DL + 0.25LL Condition)

E_:=57000-1/f', - psi =5407.49 ksi

Story 1: Neutral axis depth Y:=62.37 in (Iterate until obtain P,,, = 1157 kip)
P-M Capacity
P = Xl:FCpl-q- b3 2 Bkl
h :
Moo= XZ) By (hf ycpl) + ZFP (h— di) —Ppe— M,,,=89958 kip- ft
€y 5 1
= ={9.831-107") —
o, T b, = ) 7L

Expected Capacity
Sectional analysis using expected material properties and expected axial load (DL + 0.25LL Condition)

Story 1: Neutral axis depth c:=44.503 in (Iterate until obtain P,,,=1157 kip)
P-M Capacity
P le e B =157 kip
h :
M= XZ)FCPZ- (hf ycpl) 4 D B (h— di) Py M,,=117814 kip- ft
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Design shear force with amplification factors

Maximum probable moment M, = 124046 kip- ft
(expected material properties and highest axial load)

Critical section at the bottom Ropes = 54 ft
Wall length l,=30.0 ft
Shear demand V,:=1800 kip
M
Overstrength factor when —2.=1.80 > 1.5: ,:=max ( MPT , 1.5) =1.68

wces

=1.80 < 2.0 : w,:=1.0

v

w, when

w

Therefore, accodring to ACI 318-19, 18.10.3.1:
Ve=min (2,+w,-V,,3 V,) =3025 kip (2, w,=1.68 )

Predicted Drift Capacity

Wall length l,=30.00 ft
Width of wall cross section b=24.00 in
Web cross-sectional area A, :=1,-b=8640 in’
Neutral axis depth at expected demand c.:=44.5 in
Maximum expected shear demand V,=3025 kip

. VE
Nominal shear stress U= e 350.10 psi

l¢c.
A, parameter Api=———=27.81
b
a parameter for combination of a single a:=45
perimeter hoop with supplemental crossties
Expected unconfined concrete strength S une=16.50 ksi
Height of the wall h,, =54 ft
. . 6c >‘l) Umaz
Roof drift capacity =38 -———— " =2.69 %
hw @ 8- V f,c.unc - pS’L

Deformation capcity 6.:=0.027+h, =17 in
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A.6 Selection of MCE Level Ground Motions

The methodology described by Baker and Lee (2018) was implemented. The scripts
developed by the authors are available in Baker’s GitHub repository (link here). The period
used as the input T,,,,4 in Table A.1 corresponds to the fundamental period obtained with
the OpenSees model. The spectral acceleration used as target when computing the
conditional spectrum, S,(T,,nq) in Table A.1, was obtained by interpolating T,,,4 in the

Uniform Hazard Response Spectrum of the site (shown in Figure 10.3).

Table A.1: Input values used in “Main_select_motions.m” script by Baker and Lee (2018)

Parameter Value
Tcond 0.18
Tmin 0.01
Tmax 5
SaTcond 0.57
rup.M_bar 6.92
rup..Rjb 8.4
rup.eps_bar 1.31
rup.Vs30 760
rup.z1 999
rup.region 1
rup.Fault_Type 1
rup.Rrup 4.60
rup.Rx 4.60
rup.W 11
rup.Ztor 0
rup.Zbot 11
rup.dip 90
allowedRecs.Vs30 [560 1130]
allowedRecs.Mag [6.2 8.2]
allowRecs.D [0 50]
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Tag

EQ 401
EQ 402
EQ 403
EQ 404
EQ 405
EQ 406
EQ 407
EQ 408
EQ 409
EQ 410
EQ 411
EQ 412
EQ 413
EQ414
EQ 415
EQ 416
EQ 417
EQ 418
EQ 419
EQ 420
EQ 421
EQ 422
EQ 423
EQ 424
EQ 425
EQ 426
EQ 427
EQ 428
EQ 429
EQ 430
EQ 431
EQ 432
EQ 433
EQ 434
EQ 435
EQ 436
EQ 437
EQ 438
EQ 439
EQ 440
EQ 441
EQ 442

*Record Sequential Number of the PEER NGA-West2 database

Table A.2: Selected ground motions for the 4-Story Archetype MCE level analysis

RSN*

1012
1020
1023
1078
1126
1350
1520
1633
288
3943
4213
4227
4229
4231
4455
4483
4842
4845
4858
4867
4869
4873
495
5285
5474
5623
5807
5809
5819
6928
71
72
763
801
809
80
810
8164
8165
825
87
957

Earthquake Name

"Northridge-01"
"Northridge-01"
"Northridge-01"
"Northridge-01"
"Kozani_ Greece-01"
"Chi-Chi_ Taiwan"
"Chi-Chi_ Taiwan"
"Manjil_ Iran"
"Irpinia_ Italy-01"
"Tottori_Japan"
"Niigata_Japan"
"Niigata_Japan"
"Niigata_Japan"
"Niigata_Japan"
"Montenegro_Yugoslavia"
"L'Aquila_ Italy"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Nahanni_ Canada"
"Chuetsu-oki_Japan"
"Iwate_ Japan"
"Iwate_ Japan"
"Iwate_ Japan"
"Iwate_ Japan"
"Iwate_ Japan"
"Darfield_ New Zealand"
"San Fernando"

"San Fernando"
"Loma Prieta"
"Loma Prieta"
"Loma Prieta"

"San Fernando"
"Loma Prieta"
"Duzce_ Turkey"
"Duzce_ Turkey"
"Cape Mendocino"
"San Fernando"
"Northridge-01"

Year

1994
1994
1994
1994
1995
1999
1999
1990
1980
2000
2004
2004
2004
2004
1979
2009
2007
2007
2007
2007
2007
2007
1985
2007
2008
2008
2008
2008
2008
2010
1971
1971
1989
1989
1989
1971
1989
1999
1999
1992
1971
1994
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Horizontal Acc. Filename Utilized

RSN1012_NORTHR_LA0270.AT2
RSN1020_NORTHR_H12090.AT2
RSN1023_NORTHR_L09090.AT2
RSN1078_NORTHR_SSU090.AT2
RSN1126_KOZANI_KOZ--L.AT2
RSN1350_CHICHI_ILAO067-N.AT2
RSN1520_CHICHI_TCUO088-E.AT2
RSN1633_MAN]JIL_ABBAR--L.AT2
RSN288_ITALY_A-BRZ270.AT2
RSN3943_TOTTORI_SMNO15EW.AT2
RSN4213_NIIGATA_NIGO23EW.AT2
RSN4227_NIIGATA_NIGH10NS.AT2
RSN4229_NIIGATA_NIGH12NS.AT2
RSN4231_NIIGATA_NIGH15EW.AT2
RSN4455_MONTENE.GRO_HRZ000.AT2
RSN4483_L-AQUILA_AMO043YLN.AT2
RSN4842_CHUETSU_65005EW.AT2
RSN4845_CHUETSU_65008NS.AT2
RSN4858_CHUETSU_65028EW.AT2
RSN4867_CHUETSU_65040NS.AT2
RSN4869_CHUETSU_65042EW.AT2
RSN4873_CHUETSU_65056EW.AT2
RSN495_NAHANNI_S1280.AT2
RSN5285_CHUETSU_NIGH12EW.AT2
RSN5474_ IWATE_AKT019EW.AT2
RSN5623_IWATE_IWTO015EW.AT2
RSN5807_IWATE_55462NS.AT2
RSN5809_IWATE_55465NS.AT2
RSN5819_IWATE_4CA71NS.AT2
RSN6928_DARFIELD_LPCCN8OE.AT2
RSN71_SFERN_L12021.AT2
RSN72_SFERN_L04201.AT2
RSN763_LOMAP_GIL337.AT2
RSN801_LOMAP_SJTE315.AT2
RSN809_LOMAP_UC2000.AT2
RSN80_SFERN_PSL270.AT2
RSN810_LOMAP_LOB090.AT2
RSN8164_DUZCE_487-NS.AT2
RSN8165_DUZCE_496-EW.AT2
RSN825_CAPEMEND_CPMO000.AT2
RSN87_SFERN_SAD003.AT2
RSN957_NORTHR_HOW330.AT2

Scale
Factor

2.8

3.94
2.21
1.77
3.32
3.7

2.63
1.04
3.62
2.84
2.09
3.43
2.44
4.95
2.71
3.09
141
1.4

3.99
2.4

3.53
1.96
0.83
2.67
3.46
3.69
4.15
3.37
2.98
2.6

1.42
3.46
1.78
3.4

2.27
4.39
1.86
2.55
0.63
0.76
4.92
4.13



A.7 OpenSees Analysis Results

A.7.1 Model with Expected Material Properties and Expected Axial Load

This model uses the expected material properties defined by the application of the Saatcioglu

and Razvi (1992) model. The applied gravity load comes from the load combination D+0.25L.
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Figure A.1: Base shear versus roof drift - Monotonic Pushover with Py, and w/o modification to expected
material properties (4-Story Archetype)
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Figure A.2: Base moment versus curvature - Monotonic Pushover with P, and w/o modification to expected
material properties (4-Story Archetype)
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Figure A.3: Monotonic pushover results at predicted roof drift capacity (4-Story Archetype)

178




A.7.2 Model with Modified Expected Material Properties and Expected Axial Load

A.7.2.1 Monotonic Pushover Results
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Figure A.4: Base shear versus roof drift - Monotonic Pushover with F,,,; and modified expected material
properties (4-Story Archetype)
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Figure A.5: Base moment versus curvature - Monotonic Pushover with Py, , and modified expected material
properties (4-Story Archetype)
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A.7.2.2 Cyclic Pushover Results
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Figure A.6: Base shear versus roof drift - Cyclic Pushover with F,,,; and modified expected material properties
(4-Story Archetype)
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Figure A.7: Base moment versus Curvature - Cyclic Pushover with Fy, , and modified expected material
properties (4-Story Archetype)

180



A.7.2.3 Dynamic Analysis Results — LC: (1.2+0.2Sps)D+0.25L
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Appendix B. Design and Analysis of 8-Story Archetype
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B.1 Analysis - Design Forces and Displacements

120 ft
Building Information
. f—— 301t | 30 | 30 ft | 30 ft —
- ng:=8 stories. | I |
R | | I -
- Story height of h,,,:=13 ft, except for the 1st story | i i i E
which hy:=15 fthigh Sl - i i i i
: i i |-—3nﬂ-u—-| i
1 K} 11 1} I
- 120 ft x 120 ft every story ! :::T::::ﬁ:::*::?
I 1] 1 1] [
I 1] 1] I I
- n, =4 rectangular walls in each direction ek i 1
1
I
i}
- Center of mass and stiffness coincide (no eccentricity) /" T~ """ " =TT EEE s R RS
n
"
- Dead load = 175 psf (floors) saon M . EE . }
= 140 psf (roof) E Ei ii I ;
) N --—I :—:*::::H::::*:: ;
- Live load = 50 psf + 15 psf (partitions) = 65 psf (floors) : " " i ;
= 20 psf + 0 psf (partitions) = 20 psf (floors) 30 E Ei ii “. ‘:
I 1] n 1} I
- Risk Category II b ﬂ --------- h' --------- | ECETEEE
- Site Class C
- Wall dimensions: 1,,:=30 ft, t,:=304n, t;:=0 ft, b,=0 ft
Ay =1, t,=10800 in’
Agi=ty, e (L,—2+tp) +2 byt =10800 in’
A=t~ (Ly—tg) + b+ ty=10800 in’
Determination of SDC
Mapped acceleration parameters
From USGS Hazard Tool Website:
Maximum considered earthquake spectral response acceleration at short periods. S,:=2.08 g
Maximum considered earthquake spectral response acceleration at a period of 1-sec. S,:=0.64 g

Determine if the building is permitted to be automatically asigned to SDC A

Because S,=2.08 >0.15 and S, =0.64 >0.04, the building is not permitted to be automatically assigned to
SDC A.

Determine if the SDC is E or F
Because the Risk Category is Il and S;=0.64 <0.750, the SDC is not E or F

Design acceleration parameters
According to ASCE 7-16:

Table 11.4-1 F :
Table 11.4-2 F :
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Eq. 11.4-1 Sysi=F,+S,=2.08

Eq. 11.4-2 Sy =F,+S,=0.90
2

Eq. 11.4-3 Spsi=2+Syus=1.39
2

Eq. 11.4-4 Spri=—+ 531 =0.60

Check if the SDC can be determine by ASCE 7-16 Table 11.6-1 alone
Check if all four conditions in ASCE 7-16 11.6 are satisifed.

Structural height By = (ng—1) « hy, + by = 106 ft
From Table 12.8-2 C,:=0.02, z:=0.75
. . }LTL ’
Approximate fundamental period (Eq. 12.8-7) T,=C,- (ft ) =0.66
S
T, (S. 11.4.5) T,:=—21=0.43
*SDS

Because 7,=0.66 > 0.8 T,=0.34 , the SDC cannot be determined by ASCE 7-16 Table 11.6-1 alone (1st
condition is not satisfied)

Determine the SDC

From ASCE 7-16 Table 11.6-1 with S¢=1.39 >0.50 and Risk Category II, the SDC is D.
From ASCE 7-16 Table 11.621 with S;,; =0.60 >0.20 and Risk Category II, the SDC is D.

Therefore, SDC is D.

Gravity Load and Mass Calculation

Gravity Load

Load combination 6 and 7 include the seismic load effects (ASCE 7-17, S. 2.3.6). These axial loads are; (LC6) 1.2D
+ Ev + Eh + L + 0.2S; (LC7) 0.9D - Ev + Eh. Exception No.1 of S. 2.3.6 allows the load factor on LL in LC6 to be
taken as 0.5 when live load is less than 100psf. From ASCE 7-16 S. 12.4.2.2, the vertical seismic load effect shall
be determined as £, = (0.2 Spg) - DL . Therefore:

Gravity load from LC6:  (1.2+0.2 Spg) DL+0.5 LL Gravity load from LC7:  (0.9—-0.2 Sps) DL
Tributary area of the wall; Apipwan =4+ (56.25 2+ 168.75) ft* —28.125 ft* =1097 ft*
Wall weigth: w,, =0 kip (in the upper story)
Wy 1p = (150 pef) - A« by, =146 kip (in a typical story)
w,, = (150 pef) - A, by =169 kip (in the bottom story)
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Table 1. Wall gravity load

Applied Applied Applied Wall Wall Wall
Level I[;?Slf} {plslf} DE;]S?}EL {;2?} {;i:} Vertical Load Vertical Load Vertical Load| Axial Load  Axial load Axial Load
D+0.25L (kips)  LCB (kips) LC7 (kips) | D+0.25L (kips) LCG(kips) LC7(kips}
Base | O 0 0 0 0 0 0 0 2674 4,018 1,584
2 | 329 65 345 518 205 379 569 225 2,295 3,450 1359
3 | 308 65 325 488 192 356 535 1 1,939 2,914 1149
4 | 308 65 325 488 192 356 535 21 1,583 2,319 G38
5 | 308 | 65 325 488 192 356 535 1 1,227 1,844 27
6 | 308 65 325 488 192 356 535 1 871 1,308 517
7 | 308 65 325 488 192 356 535 1 515 773 306
8 | 308 &5 325 488 192 356 535 21 159 238 56
Roof | 140 20 145 217 87 159 238 96 0 0 0

Seismic Weight of the Building
Seismic weight = dead + partitions = 175 psf+ 15 psf=190 psf (floors)
140 psf+ 7.5 psf=147.5 psf (roof)

Table 2. Seismic weight and mass of the building (considering wall self weight)

Story DL {psf) Area (ft’) Seismic Weight, W, [kips) Seismic Mass, m, (kips-s /in}

1 150 14,400 3,596 10.35
2 150 14,400 3,506 0.12
3 150 14,400 3,506 10.12
4 150 14,400 3,506 10.12
5 150 14,400 3,506 0.12
6 150 14,400 3,506 0.12
7 150 14,400 3,506 0.12
8 147.5 14,400 2,709 7.02

Sum 30,141 78.07

Values for the model (one quarter of the building only)

Building Associated to one Wall
. . . . - . Wbuilding - .
Seismic weight: Wiitding = 30141 kip W,:=———=17535 kip
i T,
. kip- s Miyyiii kip-s®
Seismic mass: Myiging =T8.07 —2 15 M, = tulding _ g 5o FP*5
i m Ny, m
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Accidental Torsion Factor

Accordingly to ASCE 7-16 S. 12.8.4.2, accidental torsion shall be calculating by displacing the center of mass each
way from its actual loaction by a distance equal to 5% of the dimension of the structure perpendicular to the

direction of applied forces. In this case, the floor slabs are a square of 120 ft x 120 ft. The distance between each
wall and the CM isd,,,.., :=30 ft. The (base or story) shear of the building is called V,,;,, while the (base or story)

shear of the wall is called V. Therefore:

Eccentricity e:=0.05-(120 ft)=6.00 ft
Distance between walls and actual CM ypern =30 [t
Stiffness of one wall k,, (no need to actually obtain this value now)

Moment due to acc. torsion My = e Viyia
(Viywia @nd V., are the building base =e. <4 lel)
shear and wall base shear w/o acc. torsion) =6 Ky yuemOdyem +2 ki (2 dyer) 0 (2 dyern)
- . MaL
Rotation of the slab due to acc. torsion ot = ‘
1/1 kwdwcmz

MaL € <4 Vwall> _ 2 e‘/wall

Extra (+/-) shear in one wall due to acc. torsion Va=ky: <0atd = =
14 d 7d

‘wem wem ‘wem

2 evwall ( 2e \

Total shear in one wall due to acc. torsion Veotwan=Vwa+——=|1+ —| Viwan
’ 7 dwcm 7 dwcm)
2e
Factor to account for acc. torsion ky=1+ — C  —1.06
Base Shear of the Building (ELF)
Required parameters:
Response modifiation coefficient (Table 12.2-1) R:=5
Deflection amplification factor (Table 12.2-1) C,:=5
Importance factor (Table 1.5-2) 1,:=1.0
Long-period transition (Fig. 22-12) T,:=8
Approximate fundamental period (already calculated) T,=0.66
Determine the fundamental period:
Fundamental period (from modal analysis) T:=0.80 s
Coefficient for upper limit for 7' (Table 12.8-1) C,=14

Upper limit for 7' (S. 12.8.2)

Therefore, the fundamental period to use is:
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Determine the seismic coefficient:
Seismic response coefficient (Eq. 12.8-2)

Upper limit for C,, given that T,,<T, (Eq.12.8-3)

Lower limit for C,, given that T, <7, (Eq.12.8-5 and -6)
(Eqg. 12.8-6 applies when S, >0.6 g, which is the case now)

Therefore:
Seismic coefficient to be used:
Seismic base shear of the wall:
Seismic base shear of the wall accounting for acc. torsion:

Modal Response Spectrum Analysis

Concrete strength
Modulus of elasticity

f'.:==5000 psi

E:=57000-1/f".-psi =4031 ksi

3

Inertia

too(l —2-t byoty®
I,:= et <w ﬂ> +2. fl_f
: 12 12

Eff. inertia Ip=0.50-1,=2813 ft'

Sps
R
I(i

C.:=

S

=0.28

“SDl

s.maa:‘:ﬂ
Te|—
[e

C min "= Max (0.044 Sps+1,,

\

C =0.15

0.5-5,
R
IP

=0.064

)

C,:=C;,,0:=0.15

V,:=C,+W,=1125 kip
Vy =k, + V,=1190 kip

27
T::—
w

Modal periods

m

Number of required modes to achieve more than 90% of the total mass

Base shear: Vi rirsa =912 kip

T"=[0.80 0.13 0.05 0.02 0.01 0.01 0.0] 0.01]

Z Mm.effj
= =0.93
t

Because the base shear obtain with the modal analysis is less than the base hsear obtained by the ELF
method (V, yrea =912 kip <V, =1190 kip), all forces and drifts are requried to be scaled with the factor

Vire! Vitodatanalysis (ASCE 7-16, S. 12.9.1.4).

V,
b _130

b.MRSA

Factor for scaling of forces k

shear *—
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Design Forces and Displacements - Summary

The lateral demands on the wall obtained from the Modal Response Spectrum Analysis are shown in the table
below. The forces were scaled to acchieve 100% of the base shear calcualted by the ELF method. The table
incorporates the wall gravity loads calculated before (see Table 1).

Table 3. Loads and displacement demands on the wall

. Axial Load| . . Story |Overturning| Elastic | Amplified | Story
Height Axial Load | Axial Load | Lateral : : :
Level D+0.25L : ! . Shear Moment |Deflection|Deflection| Drift
(ft) ) LCB (kip) | LC7 (kip) |Force (kip) . ) ) )
(kip) {kip) (kip-ft) {in) {in) (%)

Base 0 2,674 4,018 1,584 0 1,190 82,295 0.0 0.0 0.00
2 15 2,295 3,450 1,359 75 1,150 65,958 0.1 0.3 0.17

3 28 1,539 2,914 1,149 173 1,055 52,668 0.2 1.0 0.44

4 41 1,583 2,379 938 235 91 40,530 0.4 2.0 0.63

5 54 1,227 1,844 27 253 820 29,571 0.6 3.2 0.78

6 67 871 1,308 517 245 700 19,670 0.9 4.6 0.89

7 80 515 773 306 227 548 10,879 1.2 6.1 0.96

8 93 159 238 96 270 294 3,824 1.5 1.6 0.99
Roof | 106 0 0 0 294 0 0 1.3 8.2 1.00

The roof drift is:

Min. axial load:
D+0.25L axial load:
Max. axial load:
Shear demand:
Moment demand:

Axial load ratios:

Ar(mf = 072%

P, =1584 kip

Pp s =2674 kip

P,,..=4018 kip

Vv, =1190 kip
M, = 82299 kip - ft

ALR,;,=———=2.9%
A ' f c
ALRp 55 = —222 = 5.0%
g *Je
ALR,,,i=——=17.4%
A ' f c
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B.2 Wall Design
Critical Section

Building Information

Number of stories ng,=8

Lightweight concrete A:=1.0

Concrete compressive strength f’.:==5000 psi

Yield strength of steel bars J,y =60 ksi

Height of the wall hy = (n,—1) 13 ft+15 ft =106 ft
Length of the wall l,=30 ft

Thickness of the wall t,=301in

Flange thickness ty:=0 ft=0.00 in

Flange total width by =0 ft

Gross Area A=ty (I,—2 tg) +2 by ty=10800 in®
A,, cross-section area A, =t,1,=10800 in’

Min., avg., and max. axial demand P,...:=1584 kip P, =2674 kip
Shear demand V,:=1190 kip

Moment demand at critical section M, :=82299 kip - ft

Critical section at the bottom Popes = Ty, = 106 f1

Provided longitudinal reinforcement in the critical section

P

mazx °

=4018 kip

Web Hor.: #5 @ 4.75

#4 rebar A y5:=0.311in?
Spacing Swhi=4.75 in
- - wh 2.11#5
Reinf. ratio Digni= =0.44%
wh * bw

Web Ver.: #4 @ 5.3

#4 rebar Ay =0.20 in?
Spacing S i=5.3 1N
- - wv 2.11#4
Reinf. ratioc  p,,=—"—=0.25% P, (kip)
Sww * tw .
P, (ki
Boundary Element: 36 #9 ¢—(w)
#9rebar - area A 4 =1.00in’ P (Kip)
¢ x 3
#9 rebar - diam.  dy=1.128in (d;:=d )
Length of BE 1. :=69.0 in
Width of BE b:=t, =30.00 in
. . 3644
Reinf. ratio Ppe=———————=1.6T%
(Ipe + 3 i) - t,,
36-A
#9
papi=———= 0.33%

cv

Verification for P

min

—1584 kip and M, = 82299 kip - ft.
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Minimum reinforcement ratios for the web
A, =1, t,=10800 in’
Because V,=1190 kip >\ \/f’.-psi A, =764 kip, we can use p;:=0.0025 and p,:=0.0025 (ACI 18.10.2.1)

Number of curtains of reinforcement in the web

h,
Because —=3.53 >2, 2 curtains of longitudinal and transverse reinforcement are required in the web (ACI

18.10.2.2)

Required area of longitudinal reinforcement for flexure and axial forces
Longitudinal reinforcement ratio within 0.15 [,,=54.0 in from the end of the wall, and over a width equal to the

wall thickness, shall be at least 6 —'f st =0.0071 . Therefore, the requirements of ACI 318-19, 18.10.2.4(a)
Yy
are satisfied.

The longitudinal reinforcement required by 18.10.2.4(a) shal extend vertically above and below the critical section

Mu
at least the greater of [,,=30.0 ft and e e 23.1 ft. This is satisfied becuase p,.=0.0167 is provided in the

u

first 4 stories, covering a height equal to 15 ft +3-13 ft=54.0 ft

No more than 50 percent of the reinforcement required by 18.10.2.4(a) shall be terminated at any section. This
means that outside the greater of i, and M,/ <3 Vu> (which is 30 ft), we have:

Minimum long. reinf. ratio =0.0035

(within 0.15 [,,=54.0 4n from the end of the wall)

Minimum amount of long. reinf. above cut-off point 0.15 I, - t,,=5.73 in>

VFepi|

B, )

1 (6 J'eepsi ]
2\ )

Maximum Probable Moment

P-M diagram obtained with 1.25 f, =75 ksi and P,,,, =4018 kip

A 134.678
58500

52000
45500 h\\\\\-\-““‘--\\‘\\\\
39000
32500

26000 ~—
P, (klp) 19500

) 13600
¢P. (wp) (4018

g —0 ; + 1 , + } } —>
P (Kip) ====g;===ﬁﬁ=”?§’>100 125 150 175 200 225 250
: x , —6500
—13000 M, (1000 kip - ft)

¢M, (1000 kip - ft)

M, (1000 kip - ft)
< x b
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Design shear force

(a) Demand
Maximum probable moment M, = 134678 kip - ft
(using P-M diagram obtained with 1.25 f, =75 ksi )
Critical section at the bottom Rpes = 106 ft
Wall length l,=30.0 ft
Shear demand V,=1190 kip
M
Overstrength factor when —~2=3.53 > 1.5 : ,:=max ( M’" : 1.5) =1.64
n
w, when —22.=3,53 > 2.0 and n,:=max (8 ,0.007 - f””) =890 >6: w,:=min|l.3+ 38 , 1.8)
i n
w,=1.60
Therefore, accodring to ACI 318-19, 18.10.3.1:
Ve=min (2,+w,+V,,3 V,) =3110 kip (2, w,=2.61 )
Strength (ACI 318-19): B
a, coefficient O =it l—“’ 2.5 0 =2.00
|50
hy,
elseif —>2.0
|20
else
thS
2.(3—
Ly
Upper limit V acitim =8 * Ay A\ f.» psi =6109 kip
Shear Strength Vn.aci = (ac.aci <A V f,c g pSZ + Puwh 'fy) ' Acv =4347 klp < Vn.aci.lim =6109 k’Lp
Thus: ¢V, :=0.75-V, ... =3260 kip > V,_,=3110 kip

The capacity (Prop. Eq.):

Ratio of long. steel boundary  p,,=0.33%
Axial load considered: P,,..=4018 kip

a, coefficient




a, coefficient

2

: ( tn-op ] 1

Qghape factor Ogpape =N mMax 1,0.7+ 11+ -1 1,1.5]=1.00
- w ) )
Upper limit Vn.lim = Qspape 8- Acv °V f/c ¥ pSZ =6109 kIZp
Shear Strength Vn.prop = (aa.p o f/c T, <psb o pwh) ° fy> A, =3855 kip < V niim = 6109 kip
VS .
Resultant DCR -—0.81 (Remember we are not designing the wall with the proposed
Vi vron equation. We want to assess an ACI 318-19 compliant wall with it).

Determine if special boundary elemens are required
Special boundary elements are required where the following equation is satisfied (ACI 18.10.6.2):

156, I
>
h

w

~ 600 ¢

wces

From the analysis, the elastic displacement at the top of the building is ¢,,:= 1.84 in . Also, from ASCE 7-16 Table
12.2-1 we have C;:=5 for a Seismic Force-Resisting System consisting in special reinforced concrete shear walls.
In addition, I,:=1.0 for Risk Category II (ASCE 7-16 Tabe 1.5-2). Therefore:

Cd'(sze %
0, i=— =9.20 in
I

u
e

5
Ratio ¢,/ h,,., shall not be taken less than 0.005. But in this case, h—“:0.007

From the sectional analysis, the largest neutral axis depth is c:=cp,,,,=59.0 in . Thus:
1.5 6,

l
“—-0.0108 >—2 =0.0102
60

wces 0 c

Therefore, special boundary elements are required at the ends of the wall

Vertical extent of the special BE transverse reinforcement

According to ACI 318-19, 18.10.6.2(b)(i), provide special boundary element transverse reinforcement vertically
over at least the greater of the following lengths from the critical wall section:

M

u

4V,

u

1,,=30.00 ft and =17.3 ft

The special BE transverse reinforcement is provided along the first 4 stories (i.e., 15 ft +3.13 ft =54.00 ft). BE
transverse reinforcement in stories 5 and 6 has a vertical spacing of 6 in, satisfying the requirements of Table
18.10.6.5(b).
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Check if ACI 18.10.6.2(b)(ii) or (iii) is satisfied

b=30.00 in >4/0.025.c-1,, =23.05 in Cond. (b)(ii) is satisfied
. 1 1 (L) (e V. 1.5 6, Cond. (b)(iii)
Sman |=——sid —=——— [=|== 5 0.015({=0.030 > =0.011 is satisfied
Rpes 100 50 (b )b (8 /—psi> il . o

At least one of the above shall be satisfied. Therefore, ACI 18.10.6.2(b) is satisfied.

Horizontal length of the Special BE

According to ACI 318-19 18.10.6.4(a), the special boundary elements must extend horizontally from the extreme
compression fiber a distance equal to the greater of the following:

Greater between ¢—0.1[,=23.01 in and %: 29.51 in

Therefore, using a BE length of [;,, = 69.0 in satisfies this requirement.

Check the width of the flexural compression zone
The laterally unsupported wall height corresponds to the eight of the 1st story h,:=15 ft

h
b=30.00 in > 1—;: 11.25 in --> ACI 318-19 18.10.6.4(b) is satisfied

li: 0.16 < %: 0.38 -->  ACI 318-19 18.10.6.4(c) does not apply

w

Transverse reinforcement in the Special BE

The provided vertical spacing is s:=3.5 in, and the largest distance (centerline to centerline) between laterally
restrained longitudinal bars is h,:=6.0 in .

First, we check the requirements of ACI 318-19 18.10.6.4(e). The maximum vertical spacing of the special
boundary element transverse reinforcement is equal to the following:

b :

—=10.0 zn

3

l

b —923.0 in

Smaz = lesser of — 8

For grade 80 bars, lesser of 5 d,=5.64 in or 6 in --> use 5.6

h
(1422
s, :44—'k : m—J =6.67 shall be within[4 in,6 in] --> use 6.0

Because s=3.50 in , ACI 318-19 18.10.6.4(e) is satisfied.

#5 perimetral hoop, one 135-degree #4 crosstie in the longitudinal direction and ten #4 crossties in the transvese
direction. For #4 bars: A ,,=0.20 in” and d ,:=0.5 in; for #5 bars: A ;:=0.31 in” and d 4:=0.625 in.
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b=30.00 in
I, =69.00 in

bo=lpe—3 in+2- = 68.38 in

d 4
d s +———
et 2

bepi=b—2-(3in)+2- d#5+7 =26.38 in

Ay pei=be1,,=2070.00 in®

Ay =bg, +by=1803.67 in’

According to ACI 318-19 18.10.6.4(g), the minimum amount of transverse reinforcement is:

—

Ag.be s
0 i 1) .2 =0.00369
Ag Ach Iy
= greater of =
S+b, ,
I
0.09 . —=0.00750
Yy
Therefore, the minimum BE transverse reinforcements are:
When doing a X-X cut: Ag iy :=0.0075-5-b,, =1.79 in>
When doing a Y-Y cut: Aoy i=0.0075 5+ by =0.69 in’
And the provided BE transverse reinforcements are:
When doing a X-X cut: Agxx=2+Ays+10-A 4, =2.62 in’
When doing a Y-Y cut: Agryy=2Ays+Ay=082in"

Thus, the minimum requirements for the amount of transverse reinforcement in the BE are satisfied.
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Flexural Strength Verification - Stories 5 & 6

Demand
Minimum axial load: P,..:=938 kip
Maximum axial load: P, :=2379 kip
Shear: V, =570 kip
Moment: M, :=29496 kip - ft
Web: #4 @ 5.3 in both directions R
#4 rebar Ay =0.20 in®
Spacing Spi=50.31n
) i 2.4y
Reinf. ratio P i=——=0.25%
S * Ly
Boundary Element: 18 #9 P, (kip)
#9rebar - area A 4 =1.00in’
oP, (kip)
#9 rebar - diam.  dy=1.128in (d;:=d ) —_—
Length of BE e =39.00 in  Fmin (kip)
40 60 80 100 120 140 160 180 200 220
Width of BE b:=t,=30.00 in
) ) 18- A 4
Reinf. ratio Prend i =——————=1.43%
g <lbe +3 in) it M, (1000 kip - ft)

¢M, (1000 kip - ft)

M, (1000 kip - ft)
¢ x 3

Verification of flexural strength for P, ;, =938 kip and M,=29496 kip - ft

min

From the sectional analysis, the largest neutral axis depth (associated with the largest axial load) is
€= Cppae = 99.0 in at the critical section.

400 psi

Becasue p;,,;,=0.0143 > =0.0067 , the transverse reinforcement in accordance with ACI 18.10.6.5 is

Yy
required at the ends of the wall:

Boundary transverse reinforcement shall satisfy the requirements 18.7.5.2(a) through (e) over the greater of
¢—0.11,=23.01 in and %: 30 in

Because the section above the 7th story is not expected to yield (i.e., outside the length of the plastic hinge
length calculated before), the maximum spacing of the transverse reinforcement is equal to the lesser of
the following for Grade 80 reinforcement:

Smaz :

=min (6 d;,, 6 in) =6.00 in

Following transversal reinforcement over an horizontal wall segment of [,, =39 in satisfies all above requirements:

One #4 perimetral hoop
One #4 crosstie inthe longitudinal direcction
Four #4 crossties in the transvese direction
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. 1 ,c' st
Also, above the cut-off point we have that p;,,;,=0.0143 > Sy [6 \/fip) =0.0035 . Therefore, S.

Yy

18.19.2.4(c) is satisfied.

BecauseV, =570 kip <\-\/f'.-psi +- A, =764 kip, ACI 18.10.6.5 does not need to be satisfied, i.e., the
horizontal reinforcement does not need to terminate with hook.

Flexural Strength Verification - Stories 7 & 8

Demand

Minimum axial load: P,...:=306 kip

Maximum axial load: P, .. =773 kip

Shear: V, =548 kip

Moment: M, :=10879 kip - ft

Web: #4 @ 5.3 in both directions R
#4 rebar A 4,=0.20 in® 49500

Spacing 5,=0.13m 1000

Reinf. ratio  p,=0.25%

38500
33000

27500

P, (kip) 22000
— 16500
#P, (kip) 11000
T 5500

9 & 2 20 40 60 80 100 120 140 160 180 200
—5500

M, (1000 kip - ft)
¢M, (1000 kip - ft)

M, (1000 kip - ft)

¢ x >

Verification of flexural strength for P, ;, =306 kip and M,=10879 kip - ft

min

400 psi

Because p,=0.0025 < =0.0067 , the transverse reinforcement in accordance with ACI 18.10.6.5(b) is

Yy
not required.

Because V., =548 kip <\+\/f'.-psi +- A, =764 kip, ACI 18.10.6.5 does not need to be satisfied, i.e., the horizontal
reinforcement in the last story does not need to terminate with hook.
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B.3 Wall Sketches

e_ﬂ L_E:ELS WEB ZONE
MLL 2 LEVEL 6
e H

/

WALL - SCHEMATIC ELEVATION VIEW

LEVEL | STORY | HEIGHT (FT) WEB ZONE WALL END ZONE
ROOF 8 106 244@53"V
8 7 93 2-84 @ S3"H
7 6 80 248 @ 53"V 39"x 28"
" 18-
6 5 67 284@53"H | Lo0Ps AND CROSSTIES @ 6.0
5 4 54
< 3 41 248 @53"V 69°x 30"
2-45 @ 4.75"H 36 - #9 -
3 2 28 HOOPS AND CROSSTIES @ 3.5
2 1 15
NOTES

CROSSTIES IN THE WEB ARE NOT SHOWN

180"

@53
4" |‘_
AP A
-
o~
180"
3"
r # @53 €
o128 | Ses
(TYP)
I — A
=
o~

|
|
€

THE DRAWING OF THE DETAILING OF THE BOUNDARY ELEMENT MIGHT NOT SATISFY ALL ACI 318-19 REQUIREMENTS, HOWEVER
THE PURPOSE OF PROVIDING ENOUGH TRANSVERSE STEEL AND ESTIMATE THE CORRESPONDING CONFINEMENT IS MET.
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B.4 Expected Concrete Stress-Strain Relationship

Materials

#4 and #5 Hoops and Crossties:

Diameter:
Area:

Expected yield Stress:

Steel for Longitudinal Bars (#9)

Diameter:
Area:
Yield Stress:

Concrete

Expected unconfined concrete strength

Modulus of elasticity

Strain related to f’,

Saatciougly & Razvi Model

(a) Unconfined Concrete

dppng :=0.5 in dypns = 0.625 in
Ayo=0.2in" A s:=0.311in"
Sy =70 ksi

dy; :=1.128 in

A, :=1.00 in>

Sy1:=70 ksi

o0 =1.3+5000 psi = 6500 psi
E,:=57000-4/f".,+psi =4595 ksi

2+ f
£ = © —0.0028
E

co
c

Strain at maximum concrete compressive strength €01 =E,,=0.0028

When specific information is not available, the authors of this Eos5:=0.0038

model reccomend to use

Strain at which the descending branch

touches the X axis

Stress-strain relation for confined

concrete

(This also recovers the Hognestad

expression)

<5085 = 5co>
Eopi= W_—i—gco €.¢=0.0093

fc.SH,.l <€c> =if 0< €.<€n

, [20e (e 3
)

elseif gy <e.<e.p

. —€
il (1 _0,15.6701]
\ €oss —€o01)

else
o
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(b)

Confined Concrete in Stories 1, 2, 3 & 4

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

Dimension between laterally supported
vertical bars, in X dir.

Dimension between laterally supported
vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear
when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

Maximum confined stress

More parameters required to obtain
the confined stress-strain curve:

Volumetric ratio

bcz =69 in + dbl e dbt.n5

bcy:: 30in—2-3 in+dy + dps

§1,:=6.0 in
30in—2-3 in
Sly ::72
s:=3.5 1
Ny g := 10 Ny 5 i = 2
Ny = 1 Ny s = 2

<ny.n4 ° Ast.n4 + LY Ast.n5> ¥ fyt

flz = - bcz
<nz.n5 ~ Ast.n5 +Nyng Ast.n4> % fyt
fly = >
5+b,,
kopi=min
Ky, ==min
flez = kZz ° flz
fley = k2y 'fly
flez " bcz + fley % bcy
fle =
bcz + bcy
fe —0.17
ky:=4.825- ( =
ST

f,cc::f,co—i_kl'fle

. fle

K==k :
fCO

ny.n4 ° Ast.n4 & ny.n5 . Ast.n5 &+ Nyns* Ast.n5

S <bcz i bcy>

201

b, =70.75in
b.,=25.75 in
S =6 1n

Sy=121in

fia=0.741 ksi

f1,=0.637 ksi

kg, =0.493

fiep=0.741 ksi
fley=0.314 ksi

f1.=0.627 ksi

k,=5.224

' =9.774 ksi

K=0.504

p=0.01



Strain at which is reached the residual
stress

Residual Stress

Stress-strain relation for confined
concrete

(c) Confined Concrete in Stories 5 & 6

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

Dimension between laterally supported
vertical bars, in X dir.

Dimension between laterally supported
vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear
when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

g1:=€¢1+(1+5-K)

€g5:=260-p €1 +€qg5

0.8 (egs—€
gmszzﬁi £

0.15

fres =0.2 'f,cc

fcc.SH,.l <€c> =if 0< €.<¢€

: (2-56 £
cc K El

elseif €, <e.<¢

else

f’I‘ES

bcz =39 in + dbl + dbt.n4

bcy:: 30in—2-3 in+dy +dp g

81, =12.0 in
30in—2-3 in
Sly':72
5:=6.0 in
ny::4
n,:=3
ny'Ast.n4 'fyt
Jiw= b—
Se cT
_ ny 'Ast.n4 'fyt
e s+b

cy

kg, :=min (0.099-2

|

2
€

\e:) )

c.res

£,=0.00995
£g5=0.0286
€, 05 =0.1095

c.res

fres=1.955 ksi

1+2-K

.7 &
F | Dl Bt
\ Egs—¢€1)

b.,=40.63 in
b, =25.63 in
Sp=121n

Sy =12in

f1a=0.23 ksi

£1,=0.273 ksi

ks, =0.989



Maximum confined stress

More parameters required to obtain the
confined stress-strain curve:

Volumetric ratio

Strain at which is reached the residual
stress

Residual Stress

Stress-strain relation for confined
concrete

kg, =min (0.099 .2

flez = k2z 'flz
fley = k2y 'fly

_ flez " bcz+fley' bcy
 Ogily

—0.17
ky:=4.825- ( L )
k

fle:

ST
f,cc::f,co—i_kl'fle

fle

K:=k,- -
fCO

pi= <ny & nz> *Astna
8+ (beg+bey)

g1:=€¢1+(1+5-K)
€85 =260+ p- &y +E0gs
0.8 (eg5—¢)

Ecres = ~o1s +é&1

fres =0.2 'f,cc

fcc.SH,.Z <€c> =1if 0 <e.<&

cc k gl

else

f’I‘ES

203

7 .(2-&7(*: ] ]

elseif e, <e.<¢

1+2.-K

2
c

\e1) )

c.res

f/cc.(l_o.w.ﬁ]

Egs—¢€1)

Eeyy=10,572

f1ep=0.227 ksi
Fley=0.156 ksi

f1.=0.2 ksi
k,=6.345

' = T.7T67 ksi
K=0.195
p=0.004
£,=0.00559
£g5=0.0089
S —(:0233

c.res

fres=1.553 ksi



Plots

# of points
Concrete strain values

Unconfined concrete strength
Confined concrete strength (stories 1, 2, 3 & 4)

Confined concrete strength (stories 5 & 6)

10

fc.co'nfl (kS’L)

fc.co'an (k}S’L) 3

fc.unci = fc.SH.l (Eci)

fc.confli = fcc.SH.l (Eci)

fc.coani e fcc.SH.Z (Eci)

0.02 0.04

0.06 0.08
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B.5 Sectional Analysis with Expected Material Properties and Amof Capacity

Expected Material Properties

Unconfined Concrete
f’E.U’I‘LE = 65 kiSZ
Strain at max. comp. stress Epame = 0.003

£0g5 == 0.0038

Max. compressive stress

Strain at which the descending €. .=
branch touches the X axis 0.15

fz.unc <€c> =if 0< Ec<Ecunc

\Ecume  \Ecame) )
elseif g, . <€.< € Frinc
\ €085~ €cunc )
else
o
Steel
Steel yielding stress Jy =70 ksi
Elastic modulus of steel E,:=29000 ksi
Yielding Strain £,:=—2=0.00241

Yy
s

Post-yielding slope Eg4:=0.01.E,=290.00 ksi

Esh = gy
fo(e)=if 0<|e|<e,
E, .¢,

elseif e, <|e | <eq
H sign <€S> Iy
elseif £4,< e, <0.3
sign (g5) - (fy + (& — )  Eun)
elseif 0.3<|e,[<0.80
sign (€,) « (fy+ (0-8—€4) * Egp)
else
o

<‘€085 = ga.unc)

c.unc
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Confined Concrete

Length of BE e =69.0 in
Concrete peak stress f.=9.77 ksi
Strain at Concrete Peak Stress €0y :=0.0100
Rresidual stress Frez=02%
Strain at residual stress Eeres:=0.1095
Other parameters (S&R model) K:=0.50

€,.85:=0.029
fo(e)=if 0<e.<e,

1

1+2-K

2-¢, (e V
]

elseif €, <e.,<¢

c.res

E.—&
floe (1 —0.15 #]
€585_€cu}

elseif ¢ <e

cres =%c
fTe.s

else
o

LRFD Reduction Factor

¢ (&) =1f |e] <&,
H 0.65
elseif |} >0.005
o9
else
0.9-0.65

0.65+— 2 .(le;| -
+0.005—gy (led —e)



fe(e) (Ksi)

I <€S> (ksi) P <£c> (ksi)
A A
135.001 10.00
120.001 9.00
105.00 800
7.00
90.00
6.00
75.00+
5.00
60.00+1
4.00
45.00+ 3.00
30.00- 2.00
15.00 1.00
0-06- a 0-06- >
T0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.p0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
1= Ee

S

P-M Diagram & Critical Demand

Wall length l,,:=30.ft (h:=1,)
Web width b:=30 in

Flange thickness tp:=0 ft=0.00 in
Flange total width by:=0 ft

Moment demand: M, :=82299 kip- ft

Axial demands: P,...:=1584 kip
Py =2674 kip N
P :=4018 kip 80000
Web Ver.: #4 @ 5.3 —
#4 rebar Ay =0.20 in®
60000
Spacing Sypi=5.31n
2-Ay, 50000
Reinf. ratio P i=———=10.25%
Sizi% 0 40000
Boundary Element: 36 #9 P, (kip) 30000
#9 rebar - area A 4, =1.00 in” g Gy
Length of BE 1, =69.00 in 10000
P (Kip)
Width of BE b=30.00 in ¢ x » —6
36+ A 4 : 90 120 150 180 210 240 270 300
Reinf. ratio Ppei=———————=1.6T% ~10000
(le+3in)-b
36+A 4
Psb = . =0.33% M, (1000 kip - ft)

cv

¢M,, (1000 kip - ft)

M, (1000 kip - ft)

¢ x H
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Maximum Probable Moment
Sectional analysis using expected material properties and P,

mazx !

which comes from (1.2+0.2SDS)DL + 0.5LL.

Story 1: Neutral axis depth c:=48.886 in (Iterate until obtain P,,,,=4018 kip)
P-M Capacity
B le B 0L B P,,=4018 kip
h .
M, = le B (h - ycpl) bV (h - di) Py M, = 138168 kip- ft

Moment and Curvature at Yielding
Sectional analysis using expected material properties and expected axial load (DL + 0.25LL Condition)

E_:=57000-1/f', - psi =5634.07 ksi

Story 1: Neutral axis depth y:=58.38 in (Iterate until obtain P, =2674 kip)
P-M Capacity
P = le Fon D e B = etk
h :
Moo= XZ) By (h - ycpl) + 2 B (h - di) —Ppe— M,,,= 96308 kip- ft
€y 5 1
= ={9.700-107") —
o, T b, = ) 7L

Expected Capacity
Sectional analysis using expected material properties and expected axial load (DL + 0.25LL Condition)

Story 1: Neutral axis depth c:=42.384 in (Iterate until obtain P, =2674 kip)
P-M Capacity
B, le B P P,,=2674 kip
h .
M= zlj Bogen (h - ycpl) o 3 e (h - di) Py M,,,=123425 kip- ft
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Design shear force with amplification factors

Maximum probable moment M, = 138168 kip- ft
(expected material properties and highest axial load)

Critical section at the bottom Popes = 106 ft
Wall length l,=30 ft
Shear demand V,:=1190 kip
M
Overstrength factor when —2.=3.53 > 1.5 : 2, :=max (TIPL’ 1.5) =1.68
n
w, when —2£.=3.53 > 2.0 and n,:=max (8 ,0.007 - w) =890 >6: w,=min|l.3+ 38 " 1.8)
i n
w,=1.60
Therefore, accodring to ACI 318-19, 18.10.3.1:
Ve=min (2,+w,+V,,3 V,) =3190 kip (2, w,=2.68 )
Predicted Drift Capacity
Wall length l,=30.00 ft
Width of wall cross section b=30.00 in
Web cross-sectional area A, =1,-b=10800 in’
Neutral axis depth at expected demand c.:=42.38 in
Maximum expected shear demand V,=3190 kip
. VE
Nominal shear stress U= e 295.38 psi
l¢c.
A, parameter Ap = =16.95
a parameter for combination of a single a:=45
perimeter hoop with supplemental crossties
Expected unconfined concrete strength S une=16.50 ksi
Height of the wall h,, =106 ft
. . 6c >‘l) Umaz
Roof drift capacity =38 -———— " =3.02 %
w «@ 8- V f,c.unc - pS’L
Deformation capcity 4.:=0.0302 - h,, =38 in
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B.6 Selection of MCE Level Ground Motions

The methodology described by Baker and Lee (2018) was implemented. The scripts
developed by the authors are available in Baker’s GitHub repository (link here). The period
used as the input T,,,,4 in Table A.1 corresponds to the fundamental period obtained with
the OpenSees model. The spectral acceleration used as target when computing the
conditional spectrum, S,(T,,nq) in Table A.1, was obtained by interpolating T,,,4 in the

Uniform Hazard Response Spectrum of the site (shown in Figure 10.3).

Table B.1: Input values used in “Main_select_motions.m” script by Baker and Lee (2018)

Parameter Value
Tcond 0.52
Tmin 0.01
Tmax 5
SaTcond 0.57
rup.M_bar 6.92
rup..Rjb 8.4
rup.eps_bar 1.31
rup.Vs30 760
rup.z1 999
rup.region 1
rup.Fault_Type 1
rup.Rrup 4.60
rup.Rx 4.60
rup.W 11
rup.Ztor 0
rup.Zbot 11
rup.dip 90
allowedRecs.Vs30 [560 1130]
allowedRecs.Mag [6.2 8.2]
allowRecs.D [0 50]
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Tag

EQ 801
EQ 802
EQ 803
EQ 804
EQ 805
EQ 806
EQ 807
EQ 808
EQ 809
EQ 810
EQ811
EQ 812
EQ 813
EQ 814
EQ 815
EQ 816
EQ 817
EQ 818
EQ 819
EQ 820
EQ 821
EQ 822
EQ 823
EQ 824
EQ 825
EQ 826
EQ 827
EQ 828
EQ 829
EQ 830
EQ 831
EQ 832
EQ 833
EQ 834
EQ 835
EQ 836
EQ 837
EQ 838
EQ 839
EQ 840
EQ 841
EQ 842
EQ 843

Table B.2: Selected ground motions for the 8-Story Archetype MCE level analysis

RSN*

1012
1078
1091
1111
1211
1234
1281
1485
1492
1618
291

3472
3943
4213
4227
4229
4455
4481
4483
4841
4842
4843
4845
4846
4854
4858
4864
4865
4868
4869
4874
4887
495

5623
5806
6928
748

763

801

809

8164
957

989

Earthquake Name

"Northridge-01"
"Northridge-01"
"Northridge-01"
"Kobe_Japan"
"Chi-Chi_ Taiwan"
"Chi-Chi_ Taiwan"
"Chi-Chi_ Taiwan"
"Chi-Chi_ Taiwan"
"Chi-Chi_ Taiwan"
"Duzce_ Turkey"
"Irpinia_ Italy-01"
"Chi-Chi_ Taiwan-06"
"Tottori_Japan"
"Niigata_Japan"
"Niigata_Japan"
"Niigata_Japan"
"Montenegro_Yugoslavia"
"L'Aquila_ Italy"
"L'Aquila_ Italy"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Chuetsu-oki_Japan"
"Nahanni_ Canada"
"Iwate_ Japan"
"Iwate_ Japan"
"Darfield_ New Zealand"
"Loma Prieta"
"Loma Prieta”
"Loma Prieta"
"Loma Prieta"
"Duzce_ Turkey"
"Northridge-01"
"Northridge-01"

Year

1994
1994
1994
1995
1999
1999
1999
1999
1999
1999
1980
1999
2000
2004
2004
2004
1979
2009
2009
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
2007
1985
2008
2008
2010
1989
1989
1989
1989
1999
1994
1994

*Record Sequential Number of the PEER NGA-West2 database
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Horizontal Acc. Filename Utilized

RSN1012_NORTHR_LA0180.AT2
RSN1078_NORTHR_SSUOO0O0.AT2
RSN1091_NORTHR_VAS090.AT2
RSN1111_KOBE_NIS000.AT2
RSN1211_CHICHI_CHYO052-N.AT2
RSN1234_CHICHI_CHY086-E.AT2
RSN1281_CHICHI_HWAO032-N.AT2
RSN1485_CHICHI_TCUO045-E.AT2
RSN1492_CHICHI_TCUO052-E.AT2
RSN1618_DUZCE_531-E.AT2
RSN291_ITALY_A-VLTO000.AT2
RSN3472_CHICHI.06_TCUO76E.AT2
RSN3943_TOTTORI_SMNO15NS.AT2
RSN4213_NIIGATA_NIGO23NS.AT2
RSN4227_NIIGATA_NIGH10NS.AT2
RSN4229_NIIGATA_NIGH12EW.AT2
RSN4455_MONTENE.GRO_HRZ090.AT2
RSN4481_L-AQUILA_FAO30XTE.AT2
RSN4483_L-AQUILA_AMO043YLN.AT2
RSN4841_CHUETSU_65004EW.AT2
RSN4842_CHUETSU_65005EW.AT2
RSN4843_CHUETSU_65006EW.AT2
RSN4845_CHUETSU_65008EW.AT2
RSN4846_CHUETSU_65009EW.AT2
RSN4854_CHUETSU_65020NS.AT2
RSN4858_CHUETSU_65028NS.AT2
RSN4864_CHUETSU_65037NS.AT2
RSN4865_CHUETSU_65038EW.AT2
RSN4868_CHUETSU_65041NS.AT2
RSN4869_CHUETSU_65042EW.AT2
RSN4874_CHUETSU_65057EW.AT2
RSN4887_CHUETSU_6CB61EW.AT2
RSN495_NAHANNI_S1280.AT2
RSN5623_IWATE_IWTO015EW.AT2
RSN5806_IWATE_55461NS.AT2
RSN6928_DARFIELD_LPCCN8OE.AT2
RSN748_LOMAP_BES345.AT2
RSN763_LOMAP_GIL337.AT2
RSN801_LOMAP_SJTE315.AT2
RSN809_LOMAP_UC2000.AT2
RSN8164_DUZCE_487-NS.AT2
RSN957_NORTHR_HOWO060.AT2
RSN989_NORTHR_CHL070.AT2

Scale
Factor

1.72
2.49
3.87
0.6

2.52
3.05

0.93
2.14
2.89
417

4.46
2.79
1.73
3.53
2.17
4.74
2.23
2.72
2.4

2.12
1.92
2.8

1.76
4.36
2.72
1.59
2.2

1.37
3.8

0.72
3.99
1.45
2.63
2.05
2.14
3.73
2.09
2.54
4.44
2.36
411
2.04



B.7 OpenSees Analysis Results

B.7.1 Model with Expected Material Properties and Expected Axial Load

This model uses the expected material properties defined by the application of the Saatcioglu

and Razvi (1992) model. The applied gravity load comes from the load combination D+0.25L.

1 1 T 1 T 1 T 1
2000 - E
1500 E
=
=
]
Q
& 1000} .
Q
w
©
(a0]
500 —
0 1 | 1 1 1 1 1 1
05 1 1.5 2 25 3 3.5 4
Roof Drift (%)

Figure B.1: Base shear versus roof drift - Monotonic Pushover with F,,,; and w/o modification to expected
material properties (8-Story Archetype)
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Figure B.2: Base moment versus curvature - Monotonic Pushover with Py, and w/o modification to expected
material properties (8-Story Archetype)
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Figure B.3: Monotonic pushover results at predicted roof drift capacity (8-Story Archetype)
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B.7.2 Model with Modified Expected Material Properties and Expected Axial Load

B.7.2.1 Monotonic Pushover Results
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Figure B.4: Base shear versus roof drift - Monotonic Pushover with Py, and modified expected material
properties (8-Story Archetype)
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Figure B.5: Base moment versus curvature - Monotonic Pushover with F,,, and modified expected material
properties (8-Story Archetype)
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B.7.2.2 Cyclic Pushover Results
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Figure B.6: Base shear versus roof drift - Cyclic Pushover with F,,, and modified expected material properties
(8-Story Archetype)
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Figure B.7: Base moment versus Curvature - Cyclic Pushover with F,,; and modified expected material
properties (8-Story Archetype)
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B.7.2.3 Dynamic Analysis Results — LC: (1.2+0.25SDS)D+0.25L
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Appendix C. Design and Analysis of 12-Story Archetype
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C.1 Analysis - Design Forces and Displacements

[
5]
2

Building Information

- ng:=12 stories. i i
_________ H_________H________
- Story height of h,,,:= 13 ft, except for the 1st story i I i
which h,:=15 fthigh i i i
L e
_ 120 ﬂ: X 120 ﬂ: eVery Story :::_::::n:::::_::::::.
1] 1 I
" " )
- n,,:=4 rectangular walls in each direction "
I
1]
1]
- Center of mass and stiffness coincide (no eccentricity) " e s S
"
"
- Dead load = 175 psf (floors) ii . ,
= 140 psf (roof) it 1t |
::'—::::*::::*::: :
- Live load = 50 psf + 15 psf (partitions) = 65 psf (floors) " :: ;
= 20 psf + 0 psf (partitions) = 20 psf (floors) i t |
" 1] [
- Risk Category2zr 4} kel - - I— 4
- Site Class C
- Wall dimensions: 1,,:=30 ft, t,=3014n, t;:=0 ft, by:=0 ft
A, =1, t,=10800 in’
A=ty e (I, —2-tp) +2- by t5=10800 in’
Algi=ty, (I, —tg) + by -ty =10800 in®
Determination of SDC
Mapped acceleration parameters
From USGS Hazard Tool Website:
Maximum considered earthquake spectral response acceleration at short periods. S,:=2.08 g
Maximum considered earthquake spectral response acceleration at a period of 1-sec. S,:=0.64 g

Determine if the building is permitted to be automatically asigned to SDC A

Because S,=2.08 >0.15 and S,=0.64 >0.04, the building is not permitted to be automatically assigned to

SDC A

Determine if the SDCis E or F
Because the Risk Category is I and S, =0.64 <0.750, the SDC is not E or F

Design acceleration parameters
According to ASCE 7-16:

Table 11.4-1 F:
Table 11.4-2 E.:=14
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Eq. 11.4-1 Sys=F,-5,=2.08

Eq. 11.4-2 Sy =F,+5,=0.90
2

Eq. 11.4'3 SUSZZE'SA/WS: 1.39
2

Eq. 11.4-4 Sp1i=—Syu1 =060

Check if the SDC can be determine by ASCE 7-16 Table 11.6-1 alone
Check if all four conditions in ASCE 7-16 11.6 are satisifed.

Structural height Ry i= (n,— 1) « by, + by = 158 ft
From Table 12.8-2 C,:=0.02, z:=0.75
Approximate fundamental period (Eq. 12.8-7) T,=C,- (f:) =0.89

SL)I
T, (S. 11.4.5) T = =0.43

SL)S

Because 7,=0.89 > 0.8 7,=0.34 , the SDC cannot be determined by ASCE 7-16 Table 11.6-1 alone (1st
condition is not satisfied)

Determine the SDC
From ASCE 7-16 Table 11.6-1 with S;,c=1.39 >0.50 and Risk Category II, the SDC is D.
From ASCE 7-16 Table 11.621 with S, =0.60 >0.20 and Risk Category II, the SDC is D.

Therefore, SDC is D.

Gravity Load and Mass Calculation

Gravity Load

Load combination 6 and 7 include the seismic load effects (ASCE 7-17, S. 2.3.6). These axial loads are; (LC6) 1.2D
+ Ev + Eh + L + 0.2S; (LC7) 0.9D - Ev + Eh. Exception No.1 of S. 2.3.6 allows the load factor on LL in LC6 to be
taken as 0.5 when live load is less than 100psf. From ASCE 7-16 S. 12.4.2.2, the vertical seismic load effect shall
be determined as £, = (0.2 Ss) - DL . Therefore:

Gravity load from LC6:  (1.2+0.2 S)5) DL+0.5 LL Gravity load from LC7:  (0.9—-0.2 S))5) DL
Tributary area of the wall: Apipwan =4+ (56.25-2+168.75) ft* —28.125 ft> =1097 ft’
Wall weigth: w,,, =0 kip (in the upper story)
Wy, 1= (150 pef) - A+ hy,, =146 kip (in a typical story)
w,, = (150 pef)- A, - hy, =169 kip (in the bottom story)
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Table 1. Wall gravity load

DL

LL

I
(psf) (psf)

D+0.25L LC6 LC7
(psf) (psf)

(psf)

Applied Applied Applied
Vertical Load Vertical Load Vertical Load
D+0.25L (kips) LC6 (kips) LC7 (kips)

Wall

Roof

0
329
308
308
308
308
308
308
308
308
308
308
140

0
65
65
65
65
65
65
65
65
65
65
65
20

0
345
325
325
325
325
325
325
325
325
325
325
145

0
518
488
488
488
488
488
488
488
488
488
488
217

0
205
192
192
192
192
192
192
192
192
192
192

87

0 0
379 569
356 535
356 535
356 535
356 535
356 535
356 535
356 535
356 535
356 535
356 535
159 238

0
225
211
211
211
211
211
211
211
211
211
211

%6

2,426
2,201
1,991
1,780
1,570
1,359
1,149
938
727
517
306
96
0

Wall Wall
Axial Load Axial Load Axial Load
D+0.25L (kips) LC6 (kips) LC7 (kips)

4,098 6,159

3,719 5,591

3,363 5,055

3,007 4,520

2,651 3,985

2,295 3,450

1,939 2,914

1,583 2,379

1,277 1,844

871 1,308

515 773

159 238

0 0

Seismic Weight of the Building

Seismic weight = dead + partitions = 175 psf + 15 psf =190 psf (floors)
= 140 psf + 7.5 psf =147.5 psf (roof)

Table 2. Seismic weight and mass of the building (considering wall self weight)

Story DL(psf) | Area(ft’) Seismic Weight, W, (kips) Seismic Mass, m, (kips-s-/in)
1 150 14,400 3,996 10.35
2 190 14,400 3,906 10.12
3 150 14,400 3,906 10.12
4 150 14,400 3,906 10.12
5 150 14,400 3,906 10.12
6 190 14,400 3,906 10.12
7 190 14,400 3,906 10.12
8 150 14,400 3,906 10.12
g 150 14,400 3,906 10.12
10 150 14,400 3,906 10.12
11 150 14,400 3,906 10.12
12 1475 14,400 2,709 7.02

Sum 45,765 118.53
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Values for the model (one quarter of the building only)

Building Associated to one Wall
. < < . 2 Wbuilding 5
Seismic weight: Witding = 45765 kip W,:=—————=11441 kip
nw
—_— kip s’ Mo bipis
Seismic mass: Myitding=118.53 L ] P T Wi
n T n

Accidental Torsion Factor

Accordingly to ASCE 7-16 S. 12.8.4.2, accidental torsion shall be calculating by displacing the center of mass each

way from its actual loaction by a distance equal to 5% of the dimension of the structure perpendicular to the

direction of applied forces. In this case, the floor slabs are a square of 120 ft x 120 ft. The distance between each

wall and the CM isd,,,.,,, :
shear of the wall is called V ;. Therefore:

Eccentricity e:=0.05-(120 ft)=6.00 ft

Distance between walls and actual CM e =30 ft

Stiffness of one wall k,, (no need to actually obtain this value now)
Moment due to acc. torsion My=e+Via

(Viywia @nd V. are the building base =e. <4 Vwa”>

shear and wall base shear w/o acc. torsion) =6 Kyl yerOwem +2 Ku <2 dwcm> 0 <2 dwcm>

M,
14k,d, 2

wrrwem

Rotation of the slab due to acc. torsion 6,

A'Iat €- <4 Vwall> _ 2 e‘/wall

=30 ft. The (base or story) shear of the building is called V,,;,, while the (base or story)

Extra (+/-) shear in one wall due to acc. torsion  V =k, * (64 dyer,) = N T —

P s 2 e‘/wall 2e
Total shear in one wall due to acc. torsion Viotwail = Vwall + — =1+ ¥ V wall
Factor to account for acc. torsion k=1 +—26—: 1.06
Base Shear of the Building (ELF)
Required parameters:
Response moadifiation coefficient (Table 12.2-1) R:=5
Deflection amplification factor (Table 12.2-1) C,;:=5
Importance factor (Table 1.5-2) I1,:=1.0
Long-period transition (Fig. 22-12) T;=8
Approximate fundamental period (already calculated) T,=0.89
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Determine the fundamental period:
Fundamental period (from modal analysis)
Coefficient for upper limit for 7' (Table 12.8-1)
Upper limit for 7' (S. 12.8.2)
Therefore, the fundamental period to use is:

Determine the seismic coefficient:
Seismic response coefficient (Eq. 12.8-2)
Upper limit for C,, given that T, <T, (Eq.12.8-3)
Lower limit for C,, given that 7\, <T, (Eq.12.8-5 and -6)
(Eg. 12.8-6 applies when S, >0.6 g, which is the case now)
Therefore:

Seismic coefficient to be used:
Seismic base shear of the wall:

Seismic base shear of the wall accounting for acc. torsion:

Modal Response Spectrum Analysis

Concrete strength
Modulus of elasticity

f’.:=5000 psi

E:=57000-/f, - psi = 4031 ksi

Inertia I := tw* (b —2+ts)

3
( bfl . tﬂ3
g 2-
12 12

. - 4
Eff. inertia Ip=0.50 1, =2813 ft

T:=1.75 s

C,=14
T,=C,-T,=1.25 s
T=min(T,T,)=1.25 s

%))

DS

Clii——
R
IE

S

=0.28

&
el

Cs.maz S —}%
Tel—
Ie

0.5-5,
Cs.min :=max |0.044 - SL)S ° Ie S =0.064

L T )

CS = CS.WL(II = 0.10
V,:=C,-W,=1095 kip
Vb = kat . Vl): 1158 kip

2
l t ]
w fl 4
phaata |t =5625 L

2
T::—Tr_
w.

Modal periods

m

Number of required modes to achieve more than 90% of the total mass

Base shear: Vi mrsa = 883 kip

T"=[1.75 0.28 0.10 0.05 0.03 0.02 0.03 0.01 0.01 0.01 ...]

Z Z\/[m.effj
= =0.91

M,

Because the base shear obtain with the modal analysis is less than the base hsear obtained by the ELF
method (V' 11094 = 883 kip <V, =1158 kip), all forces and drifts are requried to be scaled with the factor

Vsl Vitodaanaysis (ASCE 7-16, S. 12.9.1.4).

Vi

Factor for scaling of forces k =131

shear ‘=
b.MRSA
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Design Forces and Displacements - Summary

The lateral demands on the wall obtained from the Modal Response Spectrum Analysis are shown in the table
below. The forces were scaled to acchieve 100% of the base shear calcualted by the ELF method. The table
incorporates the wall gravity loads calculated before (see Table 1).

Table 3. Loads and displacement demands on the wall

) Axial Load| i Story |Overturning| Elastic Amplified | Story
Level b D+0.25L s L?ad s er)ad Latera.l Shear Moment | Deflection | Deflection | Drift
(ft) (kip) LC6 (kip) | LC7 (kip) |Force (kip) (kip) (kip-ft) (in) (in) (%)

Base 0 4,098 6,159 2,426 0 1,158 87,139 0.0 0.0 0.00
2 15 3,719 5,591 2,201 43 1127 73,156 0.1 0.3 0.18
3 28 3,363 5,055 1,991 125 1,045 62,471 0.2 13 0.48

4 41 3,007 4,520 1,780 197 924 53,579 0.4 2.2 0.71
3 54 2,651 3,985 1,570 237 792 46,447 0.7 3.6 0.90
6 67 2,295 3,450 1,359 245 681 40,541 1.0 L 1.06
74 80 1,939 2,914 1,149 237 605 35,114 1.4 7.1 1.19
8 93 1,583 2,379 938 226 570 29,496 1.8 9.1 139

9 106 1,227 1,844 7XF 203 566 23,260 2.2 2 5 [ 1.37
10 119 871 1,308 517 159 551 16,365 xT 135 1.43
31 132 515 773 306 133 465 9,326 3.2 15.8 147
12 145 159 238 96 217 254 3,302 3.6 18.1 1.49
Roof | 158 0 0 0 254 0 0 4.1 204 1.50

The roof drift is:

Min. axial load:
D+0.25L axial load:
Max. axial load:
Shear demand:
Moment demand:

Axial load ratios:

ATOOf == 1.08%

P

min

=2426 kip

P95, = 4098 kip

P

max

V, = 1158 kip
M, = 87139 kip - ft

ALR, i =—" = 4.5%
g'fc
ALR e = 76%
g*Je
ALR,ppi=—=11.4%
g'fc

= 6159 kip
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C.2 Wall Design
Critical Section

Building Information

Number of stories =112

Lightweight concrete Qe=l1:0

Concrete compressive strength f’.:==5000 psi

Yield strength of steel bars J,y =60 ksi

Height of the wall hy:=(n,—1) 13 ft+15 ft =158 ft
Length of the wall l;=30 ft

Thickness of the wall t,=301in

Flange thickness ty:=0 ft=0.00 in

Flange total width by =0 ft

Gross Area A=t (I,—2 ty) +2 by ty=10800 in®
A,, cross-section area A, =t,1,=10800 in’

Min., avg., and max. axial demand P, .. :=2426 kip P, =4098 kip P, .. :=6159 kip
Shear demand V,:=1158 kip

Moment demand at critical section M, :=87139 kip - ft

Critical section at the bottom Popes = Ty = 158 ft

Provided longitudinal reinforcement in the critical section

Web Hor.: #5 @ 4.0

#4 rebar A y5:=0.311in? N
Spf:\cmg - Sphi= 4.0};‘n#5 550001
Reinf. ratio Digni= =0.52%
: 49500
wh * Yw
44000
Web Ver.: #4 @ 5.3
38500
#4 rebar Ay =0.20 in®
) 330001
Spacing Swpi=5.31n
) ) 2-Ay 27500
Reinf. ratio Puw=———=0.25% P, (kip)
Su * by " 7 22000
P, (ki 5500 |
Boundary Element: 36 #8 P () 16500
#9rebar - area A 4 =1.00in’ P (kip) 11001
¢ x 3
#9 rebar - diam.  dy=1.128in (dy:=d ) 25003
e y ——o0-
Length of BE Iy, =69.00 in 20__4 0 80 100 120 140 160 180 200 220 240
Width of BE b:=t,=230.00 in 55001
. . 3644
Reinf. ratio Ppe=—————=1.6T%
(Ipe + 3 i) - t,, M, (1000 kip - ft)
36+ A 4
Pgpi=———=0.33% M, (1000 kip - ft)
A, R i
o . M, (1000 kip - ft)
Verification for P, =2426 kip and M,=87139 kip - ft. ¢ x ’
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Minimum reinforcement ratios for the web
A, =1, t,=10800 in’
Because V,=1158 kip >\ \/f’.-psi A, =764 kip, we can use p;:=0.0025 and p,:=0.0025 (ACI 18.10.2.1)
Number of curtains of reinforcement in the web
h
Because —=5.27 >2, 2 curtains of longitudinal and transverse reinforcement are required in the web (ACI

w

18.10.2.2)
Required area of longitudinal reinforcement for flexure and axial forces
Longitudinal reinforcement ratio within 0.15 [,,=54.0 in from the end of the wall, and over a width equal to the

wall thickness, shall be at least 6 —'f st =0.0071 . Therefore, the requirements of ACI 318-19, 18.10.2.4(a)

Y

are satisfied.
The longitudinal reinforcement required by 18.10.2.4(a) shal extend vertically above and below the critical section

M,
at least the greater of [,,=30.0 ft and ﬁf:%'l ft. This is satisfied becuase p,.=0.0167 is provided in the

u

first 6 stories, covering a height equal to 15 ft+5-13 ft=280.0 ft

No more than 50 percent of the reinforcement required by 18.10.2.4(a) shall be terminated at any section. This
means that outside the greater of [, and M,/ <3 Vu> (which is 30 ft), we have:

- . . 1 ( f'ee psi ]
Minimum long. reinf. ratio =0.0035
(within 0.15 [,,=54.0 4n from the end of the wall) 2 k y }
o . . 1 ( fle-psi ] g 5
Minimum amount of long. reinf. above cut-off point k6 } 0.151,-t,=5.73 in
Y

Maximum Probable Moment

P-M diagram obtained with 1.25 f, =75 ksi and P,,,, = 6159 kip

A 156.26
58500

52000
45500 h\\\\\-\-““‘--\\‘\\\\\\\\
39000

32500

26000
P, (kip) 19500

1
6P, (kip) 6959 >

6500

X
oy >
>

P (Kip) %mn 125 154 175 200 225 250
: x , —6500

—13000 M, (1000 kip - ft)

¢M, (1000 kip - ft)

M, (1000 kip - ft)
< x b
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Design shear force

(a) Demand
Maximum probable moment M, = 156260 kip - ft
(using P-M diagram obtained with 1.25 f, =75 ksi )
Critical section at the bottom Ropes= 158 ft
Wall length l,=30.0 ft
Shear demand V,=1158 kip
M
Overstrength factor when —22.=5.27 > 1.5 : ,:=max ( M’" : 1.5) =1.79

wces

h n
w, when =5.27 > 2.0 and n,:=max (12 ,0.007 -—f”ci) =13.27 >6: w,:=min|1l.3+ 38 , 1.8)
i n
w,=1.74
Therefore, accodring to ACI 318-19, 18.10.3.1:
Ve=min (2,+w,-V,,3 V,) =3474 kip (2, w,=3.12 )
Strength (ACI 318-19): B
a, coefficient O =it l—“’ 2.5 0 =2.00
50
hy,
elseif —>2.0
|20
else
thS
9| 3=
Ly
Upper limit V acitim =8 * Ay A\ f.» psi =6109 kip
Shear Strength Vn.aci = (ac.aci <A V f,c g pSZ + Puwh 'fy) ' Acv =4875 klp < Vn.aci.lim =6109 k’Lp
Thus: ¢V, :=0.75-V, .. =3657 kip > V,_,=3474 kip

The capacity (Prop. Eq.):

Ratio of long. steel boundary  p,,=0.33%
Axial load considered: P,..=6159 kip

a, coefficient




o, coefficient Q=

2
) ( ty e bpy ] )
Qghape factor Ogpape:=Min max;1,0.7 1 +——-— ;,1.5;=1.00
7 7 \ \ ACU
Upper limit Vn.lim = Qspape 8- Acv °V f/c ¥ pSZ =6109 kIZp
Shear Strength Vn.prop = (aa.p o f/c T, <psb o pwh) ° fy> <A, =4663 kip < V niim = 6109 kip
VG
Resultant DCR —=0.75 (Remember we are not designing the wall with the proposed
Vi vron equation. We want to assess an ACI 318-19 compliant wall with it).

Determine if special boundary elemens are required
Special boundary elements are required where the following equation is satisfied (ACI 18.10.6.2):

156, I
>

h

w

~ 600 c

wces

From the analysis, the elastic displacement at the top of the building is 4,,.:=4.3 in . Also, from ASCE 7-16 Table
12.2-1 we have C;:=5 for a Seismic Force-Resisting System consisting in special reinforced concrete shear walls.
In addition, I,:=1.0 for Risk Category II (ASCE 7-16 Tabe 1.5-2). Therefore:

Cd'(sze
0, i=— =21.50 in

u

e

5
Ratio 6,/ h,,., shall not be taken less than 0.005. But in this case, g Y —0.011

wces

From the sectional analysis, the largest neutral axis depth is c:=c,,,.=75.4 in . Thus:

1.54

l
“—0.0170 >—2 =0.0080
60

wces 0 c

Therefore, special boundary elements are required at the ends of the wall.

Vertical extent of the special BE transverse reinforcement

According to ACI 318-19, 18.10.6.2(b)(i), provide special boundary element transverse reinforcement vertically
over at least the greater of the following lengths from the critical wall section:

M

u

4V,

u

1,,=30.00 ft and =18.8 ft

The special BE transverse reinforcement is provided along the first 3 stories (i.e., 15 ft+2.13 ft =41.00 ft). BE
transverse reinforcement in stories 4, 5 and 6 has a vertical spacing of 6 in, satisfying the requirements of Table
18.10.6.5(b).
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Check if ACI 18.10.6.2(b)(ii) or (iii) is satisfied

b=30.00 in >4/0.025.c-1,, = 26.05 in Cond. (b)(ii) is satisfied
. 1 1 (L) (e V. 1.5 6, Cond. (b)(iii)
Sman |=——sid —=——— [=|== 5 0.015(=0.028 > =0.017 is satisfied
Rpes 100 50 (b )b (8 /—psi> il . o

At least one of the above shall be satisfied. Therefore, ACI 18.10.6.2(b) is satisfied.

Horizontal length of the Special BE

According to ACI 318-19 18.10.6.4(a), the special boundary elements must extend horizontally from the extreme
compression fiber a distance equal to the greater of the following:

Greater between ¢—0.11,=39.37 in and %: 37.69 in

Therefore, using a BE length of [;,, = 69.0 in satisfies this requirement.

Check the width of the flexural compression zone
The laterally unsupported wall height corresponds to the eight of the 1st story h,:=15 ft

h
b=30.00 in > 1—;: 11.25 in --> ACI 318-19 18.10.6.4(b) is satisfied

li: 0.21 < %: 0.38 -->  ACI 318-19 18.10.6.4(c) does not apply

w

Transverse reinforcement in the Special BE

The provided vertical spacing is s:=3.5 in, and the largest distance (centerline to centerline) between laterally
restrained longitudinal bars is h,:=6.0 in .

First, we check the requirements of ACI 318-19 18.10.6.4(e). The maximum vertical spacing of the special
boundary element transverse reinforcement is equal to the following:

—

b :
—=10.0 =n
3
l
b —93.0 in
3

= |esser of —

maxr —

S,
For grade 80 bars, lesser of 5 d,=5.64 in or 6 in --> use 5.6

z —} =6.67 shall be within[4 in,6 in] --> use 6.0

—

Because s=3.50 in , ACI 318-19 18.10.6.4(e) is satisfied.

#5 perimetral hoop, one 135-degree #4 crosstie in the longitudinal direction and ten #4 crossties in the transvese
direction. For #4 bars: A ,,=0.20 in” and d ,:=0.5 in; for #5 bars: A ,;=0.31 in” and d 4;:=0.625 in.
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b=30.00 in
I, =69.00 in

bo=lpe—3 in+2- = 68.38 in

d
#9

dys+——
#5 9

d#g

bepi=b—2-(3in)+2- d#5+7 =26.38 in

Ay pei=be1,,=2070.00 in®
Ay =bg, +by=1803.67 in’

According to ACI 318-19 18.10.6.4(g), the minimum amount of transverse reinforcement is:

—

A i
0.3.| 2% _1|.2°=0.00369
A, Ach Iy
*_= greater of —
5+b, r
0.09 - —==10.00750
Yy
Therefore, the minimum BE transverse reinforcements are:
When doing a X-X cut: A iy :=0.0075+5b,, =1.79 in”
When doing a Y-Y cut: A iy i=0.0075 5+ by =0.69 in’
And the provided BE transverse reinforcements are:
When doing a X-X cut: Agxx=2+Ays+10-A 4, =2.62 in’
When doing a Y-Y cut: Agryy=2Ays+Ay=082in"

Thus, the minimum requirements for the amount of transverse reinforcement in the BE are satisfied.
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Flexural Strength Verification - Stories 7 & 8

Demand
Minimum axial load: P,...:=938 kip
Maximum axial load: P, :=2379 kip
Shear: V,:=570 kip
Moment: M, :=29496 kip - ft
Web: #4 @ 5.3 in both directions
#4 rebar Ay =0.20 in® R
Spacing Spi=50.31n 55000
Reinf. rati = 2AR g o5y oo
elnf. ratio pw~—m— . 0 44000
38500
Boundary Element; 28 #9 imgg
275
#9rebar - area A 4 =1.00in’ P, (kip) o000
- di — ; e 16500
#9 rebar - diam.  dy=1.128in (d;:=d ) oP, (kD) 0
Length of BE 1. =69.00 in 5500
) P Prin (Kip) . " .
Widithi:of BE = t“’_30'(2)g,lz 5 : % 2 :nm‘n Mm 100 120 140 160 180 200 220 240
Reinf. ratio Promd =2 —1.30% N
(e +3 in) - t,,

M, (1000 kip - ft)
¢M,, (1000 kip - ft)

M, (1000 kip - ft)

¢ x >

Verification of flexural strength for P, ,;, =938 kip and M,=29496 kip - ft

min

From the sectional analysis, the largest neutral axis depth (associated with the largest axial load) is
€= Cppae = 75.4 in at the critical section.

400 psi

Becasue p;,,;,=0.0130 > =0.0067 , the transverse reinforcement in accordance with ACI 18.10.6.5 is

Yy
required at the ends of the wall:

Boundary transverse reinforcement shall satisfy the requirements 18.7.5.2(a) through (e) over the greater of
¢—0.11,=39.37 in and %:38 in

Because the section above the 7th story is not expected to yield (i.e., outside the length of the plastic hinge
length calculated before), the maximum spacing of the transverse reinforcement is equal to the lesser of
the following for Grade 80 reinforcement:

S =min <6 db,6in>:6.00 in

mazx *

Following transversal reinforcement over an horizontal wall segment of [,, =69 in satisfies all above requirements:

One #4 perimetral hoop
One #4 crosstie inthe longitudinal direcction
Ten #4 crossties in the transvese direction
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\/ f'e+ DSt
Because above the cut-off p;,,,=0.0130 > é [6 —f h ] =0.0035 , S. 18.19.2.4(c) is satisfied.
Y

BecauseV, =570 kip <\-\/f'.-psi - A., =764 kip, ACI 18.10.6.5 does not need to be satisfied, i.e., the
horizontal reinforcement does not need to terminate with hook.

Flexural Strength Verification - Story 9 & 10

Demand
Minimum axial load: P,..:=517 kip
Maximum axial load: P, ..:=1308 kip
Shear: V=551 kip
Moment: M, :=16365 kip - ft
Web: #4 @ 5.3 in both directions
#4 rebar Ay =0.20 in® R
Spacing 5,=0.13m

) ) 2-Ay
Reinf. ratio P i=——=0.25%

Sy * Ly

Boundary Element: 14 #9
#9rebar - area A 4 =1.00in’ P, (kip)
#9 rebar - diam.  dy=1.128in (dj,:=d ) 6P, (kip)
Length of BE lpe =39 in
Width of BE be=t, = 30.00 4 s 1)

' o =y = 4 -ZZ § = > 0 40 60 80 100 120 140 160 180 200
Reinf. ratio Plend =~ #4905

(e +3 in) - t,,

M, (1000 kip - ft)
¢M, (1000 kip - ft)

M, (1000 kip - ft)

¢ x >

Verification of flexural strength for P, ,;, =517 kip and M,=16365 kip - ft

min

From the sectional analysis, the largest neutral axis depth (associated with the largest axial load) is
€= Cprae = 75.37 in at the critical section.

400 psi

Becasue p;,,,=0.0111 > =0.0067 , the transverse reinforcement in accordance with ACI 18.10.6.5 is

Y
required at the ends of the wall:

Boundary transverse reinforcement shall satisfy the requirements 18.7.5.2(a) through (e) over the greater of
¢—0.11,=39.37 in and %:38 in

Because the section above the 5th story is not expected to yield (i.e., outside the length of the plastic hinge
length calculated before), the maximum spacing of the transverse reinforcement is equal to the lesser of the
following for Grade 80 reinforcement:

Spmax i= TN <6 db,6in>:6.00 in

mazx °
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Following transversal reinforcement over an horizontal wall segment of [,, =39 in satisfies all above requirements:

One #4 perimetral hoop
One #4 crosstie in the longitudinal direction
Four #4 crossties in the transvese direction

\ f'e+ DSt
Because above cut-off point p;,,,,=0.0111 > £ 6 —f il 0.0035 , S. 18.10.2.4(c) is satisfied.
2 Yy
BecauseV, =551 kip <A-\/f.-psi - A., =764 kip, ACI 18.10.6.5 does not need to be satisfied, i.e., the horizontal

reinforcement in the last story does not need to terminate with hook.

Flexural Strength Verification - Stories 11 & 12

Demand

Minimum axial load: P,...:=306 kip
Maximum axial load: P, ,..:=773 kip
Shear: V=465 kip
Moment: M, :=9326 kip - ft

Web: #4 @ 5.3 in both directions
#4 rebar Ay =0.20 in®
Spacing 5,=0.13m

Reinf. ratio Pw=0.25%

P, (kip)

oP, (kip)

P (Kip)

§ N i 20 40 60 80 100 120 140 160 180 200

M, (1000 kip - ft)
¢M, (1000 kip - ft)

M, (1000 kip - ft)

¢ x >

Verification of flexural strength for P,,;,, =306 kip and M,=9326 kip - ft

min

400 psi

Becasue p,=0.0025 < =0.0067 , the transverse reinforcement in accordance with ACI 18.10.6.5(b) is

Yy
not required.

BecauseV, =465 kip <A-\/f'.-psi - A., =764 kip, ACI 18.10.6.5 does not need to be satisfied, i.e., the horizontal
reinforcement in the last story does not need to terminate with hook.
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WALL - SCHEMATIC ELEVATION VIEW
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3
¢
#9 v _ ppn #4@53"
©1.128" 11@6" = 66
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B T = = = = = WP PR AP S
3
N #4
B ©0.20°
(TYP)
65) WALL CROSS SECTION
180"
3
¢
#9 " #4@53"
01.128" 11@6" = 66"
(TYP)
- PP AP
3l |
. #4
B ©0.20"
(TYP)
(B WALL CROSS SECTION
G
180"
3
q
# w _ ppn # @53 # @ 4.0
©1.128" 11@6" = 66 |
(TYP)
3
#5
#4
: ©0.31" =
“ | (PEr HooOP) Ve

NOTES: E B

CROSSTIES IN THE WEB ARE NOT SHOWN

THE DRAWING OF THE DETAILING OF THE BOUNDARY ELEMENT MIGHT NOT SATISFY ALL ACI 318-19 REQUIREMENTS, HOWEVER
THE PURPOSE OF PROVIDING ENOUGH TRANSVERSE STEEL AND ESTIMATE THE CORRESPONDING CONFINEMENT IS MET.
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C.4 Expected Concrete Stress-Strain Relationship

Materials

#4 and #5 Hoops and Crossties:

Diameter:
Area:

Expected yield Stress:

Steel for Longitudinal Bars (#9)

Diameter:
Area:
Yield Stress:

Concrete

Expected unconfined concrete strength

Modulus of elasticity

Strain related to f’,

Saatciougly & Razvi Model

(a) Unconfined Concrete

dppng :=0.5 in dypns = 0.625 in
Ayo=0.2in" A s:=0.311in"
Sy =70 ksi

dy; :=1.128 in

A, :=1.00 in>

Sy1:=70 ksi

o0 =1.3+5000 psi = 6500 psi
E,:=57000-4/f".,+psi =4595 ksi

2+ f
£ = © —0.0028
E

co
c

Strain at maximum concrete compressive strength €01 =E,,=0.0028

When specific information is not available, the authors of this Eos5:=0.0038

model reccomend to use

Strain at which the descending branch

touches the X axis

Stress-strain relation for confined

concrete

(This also recovers the Hognestad

expression)

<5085 = 5co>
Eopi= W_—i—gco €.¢=0.0093

fc.SH,.l <€c> =if 0< €.<€n

, [20e (e 3
)

elseif gy <e.<e.p

. —€
il (1 _0,15.6701]
\ €oss —€o01)

else
o
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(b)

Confined Concrete in Stories 1, 2 & 3

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

Dimension between laterally supported
vertical bars, in X dir.

Dimension between laterally supported
vertical bars, in Y dir.

Vertical spacing of hoops
# of hoops or crossties that appear

when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

Maximum confined stress

More parameters required to obtain
the confined stress-strain curve:

Volumetric ratio

bcz =69 in a5 dbl o+ dbt.n5

bey:=30 i — 23 in+dy; + dyy s

§1,:=6.0 in
30in—2-3 in
Sly ::72
s:=3.5
Ny g := 10 Ny 5 °= 2
Ny = I Ny s = 2

<ny.n4 ° Ast.n4 + LY Ast.n5> ¥ fyt

flz = - bcz
f - <nzn5 ~ Ast.n5 +Nyng Ast.n4> % fyt
. 5+b,
kopi=min
Ky, ==min
flez = kZz ° flz
fley = k2y 'fly
flez ° bcz + fley ° bcy
fle =
bcz + bcy
fe —-0.17
ky:=4.825+ ( e
ksi

f,cc::f,co—i_kl'fle

. fle

K==k :
fCO

ny.n4 ° Ast.n4 & ny.n5 . Ast.n5 &+ Nyns* Ast.n5

b, =70.75in
b, =25.75 in
S, =6 1n

Sy =12in

fia=0.741 ksi

f1,=0.637 ksi

kg, =0.493

fiep=0.741 ksi
Fiey=0.314 ksi

f1o=0.627 ksi
k,=5.224
' =9.774 ksi

K=0.504

S <bcz i bcy>
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(c

~

Strain at which is reached the residual

stress

Residual Stress

Stress-strain relation for confined
concrete

Confined Concrete in Stories 4, 5 & 6
Dimension to centerline of outermost

hoop, in X direction

Dimension to centerline of outermost

hoop, in Y direction

Dimension between laterally supported

vertical bars, in X dir.

Dimension between laterally supported

vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear

when doing a X-X cut

# of hoops or crossties that appear

when doing a Y-Y cut

More parameters required to obtained

the maximum confined stress:

g1:=€¢1+(1+5-K)

€g5:=260-p €1 +€qg5

0.8 (g5—¢€1)
Ecres’™ T—'i'gl

fres =0.2 'f,cc

fcc.SH,.l <€c> =if 0< €.<¢€

£,=0.00995
£g5=0.0286
€, 05 =0.1095

c.res

fres=1.955 ksi

a
1+2.-K
’ (2 e, (&.\?
cc® ==
E-T
else if 51 <€CS€C.’I‘ES
&, —E€
f,cc' (1 —0.15 '671]
\ Egs—¢€1)
else
fTES
boy =69 i1 +dy; + dygng b,, =70.63 in
Doy =30 in — 23 in +dy; + dyy g b., = 25.63 in
81,:=6.0 in 812 =6 in
30in—2+3 in 2
S1y= Spy= 12 in
2
$:=6.0 in
N, = 12
T=3
n,-A -f
flpm f1=0.396 ksi
S bcz
n_ A o f
=t T £1,=0.273 ksi
§ebgy
kg i=min (0.099-2 —1 kye=1

o
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Maximum confined stress

More parameters required to obtain the
confined stress-strain curve:

Volumetric ratio

Strain at which is reached the residual
stress

Residual Stress

Stress-strain relation for confined
concrete

(d) Confined Concrete in Stories 7 & 8

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

kg, =min (0.099 .2

bip=0572

flez:: kZz'flz flez:0-396 kst
Jrey=kayfry ey =0.156 ksi
Frew* bew + Fiey 0
ol e CEC T U 0D f1o=0.332 ksi
bcz+bcy
—0.17
fle
k,:=4.825. - k,=5.818
kst
f’cc::f,co—i_ kl 'fle ,cc:8‘435 kS’L
f
K=k 22 K=0.298
fCO
n,+n,) A
p==M — p=0.005
8+ (beg+bey)
g:=60,+(1+5-K) £,=0.00704
€85 =260+ p- &y +E0gs €¢5=0.0133
0.8 (eg5—¢&;
Eeres’= %J e Ecres™ 0.0405

fres =0.2 'f,cc

fcc.SH,.Z <€c> =if 0 Sgc

e

e
e
\

else

f’I‘ES

bcz =69 in 3t dbl St dbt.

bey=30 i — 23 in+dy; + dyy

239

elseif e, <e.<¢

fres=1.687 ksi

<&
1
1+2.-K
2
2.¢, &
e \&a))

c.res

E.=—E
1—0.15-671]
Egs—¢€1)

- b, =70.63 in

by, =25.63 in



Dimension between laterally supported
vertical bars, in X dir.

Dimension between laterally supported
vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear
when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

Maximum confined stress

More parameters required to obtain
the confined stress-strain curve:

Volumetric ratio

Strain at which is reached the
residual stress

Spp=6 1

12 2
s:=6.0 in
N, = 10
n, =3

_ L Ast.n4 : fyt

Izt
Seb,,

_ nz'Ast.rA 'fyt
S+b

cy

ly*

kopi=min

Ky, ==min

flez = kZz 'flz
fley = k2y 'fly

_ flez'bcz+fley'bcy

fle - bcz + bcy

—0.17
ky:=4.825- ( L )
k

S

f,cc::f,co—i_kl'fle

fle

4
co

<ny & nz> s Ast.n4
Sis <bcz L bcy>

g1:=€¢1+(1+5-K)

K:=k,-

p::

€g5:=260-p €1 +€qg5

0.8 (eg5—¢)

E pippy = ———————l}-E

c.res "

0.15
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4 (30m2-3m

.

S,=611n

8 . . .
+E.(30 in—2-3 m) Sy =20 tn

fia=0.33 ksi

f1y=0.273 ksi

ey, =0.443

fiea="0.33 ksi
fley=0.121 ksi

f1o=0.275 ksi
k,=6.01

' o =8.151 ksi
K=0.254
p=0.005
£,=0.00642
£45=0.0113
€, 05 =0.0325

c.res



Residual Stress

Stress-strain relation for confined
concrete

(e) Confined Concrete in Stories 9 & 10

Dimension to centerline of outermost
hoop, in X direction

Dimension to centerline of outermost
hoop, in Y direction

Dimension between laterally supported
vertical bars, in X dir.

Dimension between laterally supported
vertical bars, in Y dir.

Vertical spacing of hoops

# of hoops or crossties that appear
when doing a X-X cut

# of hoops or crossties that appear
when doing a Y-Y cut

More parameters required to obtained
the maximum confined stress:

fres =0.2 'f,cc

fcc.SH,.S <€c> =if 0< €.<¢&

Fres=1.63 ksi

1

1+2-K
7 (2 .EC (8612]
fcc' i
B e
elseif €, <e. <€, s
E.—€
f,cc' (1 —0.15 '671]
\ Egs—¢€1)
else

f’I‘ES
by =39 in+dy; + dyypa b.,=40.63 in
by =30 in — 23 in+dy +dp; b.,=25.63 in
812:=9.6 1n S1.=9.6 in
Spi=24im—2-3in S, =18 in
5:=6.0 in
n,:=7
T=3

n, A - f
W e 3 f1z=0.402 ksi
Seb,,
n,-A -f
=t T £1,=0.273 ksi
§ebgy

kopi=min ky,=0.836
Ky, :==min ko, =0.467

flez = kZz 'flz
fley = k2y 'fly
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f1oa=0.336 ksi
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Maximum confined stress

More parameters required to obtain
the confined stress-strain curve:

Volumetric ratio

Strain at which is reached the residual
stress

Residual Stress

Stress-strain relation for confined
concrete

_ flez'bcz+fley'bcy

fle : bcz e bcy
—0.17
ky:=4.825+ ( fle, )
ksi

f,cc::f,co—i_kl'fle

i kl . fle
f,co
pi= <TLy i nf”) *Astna
S <bcz == bcy)

g1:=€¢;+(1+5-K)

€85 =260 p- &1 +E0gs

08 (es5—¢€1)
ciresi®™=" a0

0.15

=

fres :=0.2 'f,cc

fcc.SH,.4 <€c> =1if 0 <E.<&

else

f’I‘ES
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# .(2-&7(*: ] ]

cc \ El

elseif e, <e.<¢

1+2.-K

2
c

\e1) )

c.res

f/cc.[l_o.w.ﬁ]

Egs—¢€1)

f1o=0.255 ksi
k,=6.085

o =8.054 ksi
K=0.239
p=0.005
£,=0.00621
£45=0.0119
€, 705 =0.0367

c.res

fres=1.611 ksi



Plots
# of points

Concrete strain values

Unconfined concrete strength

Confined concrete strength (stories 1, 2 & 3)

Confined concrete strength (stories 4, 5 & 6)

Confined concrete strength (stories 7 & 8)

Confined concrete strength (stories 9 & 10)
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ot

2= 1.:.100

€.,;:=0.002-(i—1)
feune,=Fesra (5 ci)
feconpr,=Fec.sma (€ ci)
fecon2, = Fec.sn2 (€ ci)
fecongs; = Fecsns (€ ci)
)

fc.conf4i S fcc.SH.4 (E

0.02 0.04

0.06 0.08 0.1 0.12 0.14
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C.5 Sectional Analysis with Expected Material Properties and Amof Capacity

Expected Material Properties

Unconfined Concrete
Max. compressive stress feunc=6.5 ksi
Strain at max. comp. stress Epame = 0.003

£0g5 == 0.0038

Strain at which the descending €. .=
branch touches the X axis 0.15

fz.unc <€c> =if 0< Ec<Ecunc

\ c.unc cc":E.U’I‘LE }
else if Ecunc <Ec = ng.u'lw
E.—€
f’E.U’I‘LE ' (1 —0.15- ‘ — ]
\ €085 — Ec.unc }
else
o
Steel
Steel yielding stress fy =70 ksi
Elastic modulus of steel E:=29000 ksi
Yielding Strain & = =002 4T
S
Post-yielding slope Eg4:=0.01.E,=290.00 ksi
Esh = gy

fi(e) =1if 0<|e)|<e,
E -€,

elseif e, <|e | <eq
H sign <€s> Iy
elseif £4,< e, <0.3
sign () - (f,+ (JeJ —<a) - Ea)
elseif 0.3<|e,[<0.80
sign (€,) « (fy+ (0-8—€4,) * Eg)
else
o

<‘€085 = ga.unc)

c.unc
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Confined Concrete

Length of BE e =69.0 in
Concrete peak stress f.=9.84 ksi
Strain at Concrete Peak Stress €0 :=0.0101
Rresidual stress Frez=02%
Strain at residual stress Eeres=0.1335

cres”

Other parameters (S&R model) K:=0.51
€,.85:=0.033
fo(e)=if 0<e.<e,

2:¢, (&, \?
e

elseif €, <e,<¢

c.res

EE
fie (1 —0.15 #]
5385_€cu}

elseif ¢ <e

cres =%c
fre.s

else
o

LRFD Reduction Factor

¢ (&) =1f |ef <,
‘ 0.65
elseif |} >0.005
os
else
0.9-0.65

0.65 + (
0.005 —¢,

€t| - €y>



fe(ec) (ksi)

I <€S> (ksi) P <£c> (ksi)
A A
135.001 10.00
120.00- 9.00
105.001 800
7.00
90.00+1
6.00
75.00+ &0
60.001 4‘00
45.001 3.00
30.00+ 2.00
15.00 1.00
0 D02 G.oL 0.b6 ODE 0.0 0.5 00 Bo6 08 050 “0po 0.02 004 006 008 0.10 0.12 0.14 0.16 0.18 0.20
g, €
P-M Diagram & Critical Demand
Wall length l:=30 fit (h:=1,)
Web width b:=30 in
Flange thickness tp:=0 ft=0.00 in
Flange total width by =0 ft
Moment demand:  M,,:=87139 kip- ft
Axial demands: P,..:=2426 kip
P,,,=4098 kip .
P, 0p=6159 kip 00
76000
Web Ver.: #4 @ 5.3 46500
#4 rebar Ay =0.20 in® 7000
Spacing Syy=5.31n 47500
<A
Reinf. ratio Pun = 5—-7:4 =0.25% 38000
P, (kip) 28500
Boundary Element: 36 #9 — {5660
#9 rebar - area A 4, =1.00 in” 9P (p) 0500
Length of BE 1, =69.00 in P (Kip) 5 X
) ¢ x ? 30, 90 120 150 180 210 240 270 300
Width of BE ~ 5=230.00 in 0500
) ] 36+ A 4
Reinf. ratio Ppei=———————=1.6T% —19000
(le+3in)-b
36-A
i 7 _
P = — = 0.33% M, (1000 kip - ft)

cv

M, (1000 kip - ft)

M, (1000 kip - ft)

¢ x H
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Maximum Probable Moment

Sectional analysis with expected material properties and P, which comes from (1.2+0.2SDS)DL + 0.5LL

nax /

Story 1: Neutral axis depth c:=58.52 in (Iterate until obtain P,,,,=6159 kip)
P-M Capacity
B le o P,,=6159 kip
h .
M, = le B (h - ycpl) bV (h - di) Py M, = 158805 kip- ft

Moment and Curvature at Yielding
Sectional analysis using expected material properties and expected axial load (DL + 0.25LL Condition)

E_:=57000-1/f', - psi =5654.22 ksi

Story 1: Neutral axis depth Y:=66.217 in (Iterate until obtain P, =4098 kip)
P-M Capacity
Py= le Fon D e P,,=4098 kip
h :
M,,= XZ)FCPZ- (hf ycpl) + ZFP (h— di) ~Pup M,,=110346 kip- ft
€y 5 1
= ={9.961-107") —
o, T b, = ) 7L

Expected Capacity
Sectional analysis using expected material properties and expected axial load (DL + 0.25LL Condition)

Story 1: Neutral axis depth c:=47.84 in (Iterate until obtain P, =4098 kip)
P-M Capacity
B, le B P P,,=4098 kip
h .
M= zlj Bogen (h - ycpl) o 3 e (h - di) Py M,,= 136669 kip- ft
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Design shear force with amplification factors

Maximum probable moment M, = 158805 kip - ft
(expected material properties and highest axial load)

Critical section at the bottom Popes = 158 ft
Wall length l,=30 ft
Shear demand V,:=1158 kip
wes Z\/[pr
Overstrength factor when ——=5.27 > 1.5 : 2, := max ETI 1.5(=1.82
n
w, when —2£.=527 > 2.0 and n,:=max (12 ,0.007 - f”ci) =13.27 >6: w,:=min|1.3+ 38 ; 1.8)
i in
w,=1.74
Therefore, accodring to ACI 318-19, 18.10.3.1:
Ve=min (2, w,-V,,3 V,) =3474 kip (2, w,=3.18 )
Predicted Drift Capacity
Wall length l,=30.00 ft
Width of wall cross section b=30.00 in
Web cross-sectional area A, =1,-b=10800 in’
Neutral axis depth at expected demand c,:=47.84 in
Maximum expected shear demand V,=3474 kip
. VE
Nominal shear stress Vi 5 321.67 psi
¢,
A, parameter Api=——p—=19.14
b
a parameter for combination of a single a:=45
perimeter hoop with supplemental crossties
Expected unconfined concrete strength S une=16.50 ksi
Height of the wall h,, =158 ft
. . 6c b Umaz
Roof drift capacity =38 -—-——— " =293 %
i - 8- V f,c.unc 5 pS’L
Deformation capcity 6.:=0.029 - h,, =55 in
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C.6 Selection of MCE Level Ground Motions

The methodology described by Baker and Lee (2018) was implemented. The scripts
developed by the authors are available in Baker’s GitHub repository (link here). The period
used as the input T,,,,4 in Table A.1 corresponds to the fundamental period obtained with
the OpenSees model. The spectral acceleration used as target when computing the
conditional spectrum, S,(T,,nq) in Table A.1, was obtained by interpolating T,,,4 in the

Uniform Hazard Response Spectrum of the site (shown in Figure 10.3).

Table C.1: Input values used in “Main_select_motions.m” script by Baker and Lee (2018)

Parameter Value
Tcond 1.20
Tmin 0.01
Tmax 5
SaTcond 0.57
rup.M_bar 6.92
rup..Rjb 8.4
rup.eps_bar 1.31
rup.Vs30 760
rup.z1 999
rup.region 1
rup.Fault_Type 1
rup.Rrup 4.60
rup.Rx 4.60
rup.W 11
rup.Ztor 0
rup.Zbot 11
rup.dip 90
allowedRecs.Vs30 [560 1130]
allowedRecs.Mag [6.2 8.2]
allowRecs.D [0 50]
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Table C.2: Selected ground motions for the 12-Story Archetype MCE level analysis

Tag RSN* Earthquake Name Year Horizontal Acc. Filename Utilized
EQ1201 1013 "Northridge-01" 1994 RSN1013_NORTHR_LDM334.AT2
EQ1202 1078 "Northridge-01" 1994 RSN1078_NORTHR_SSU090.AT2
EQ1203 1108 "Kobe_Japan" 1995 RSN1108_KOBE_KBUO000.AT2
EQ1204 | 1202 "Chi-Chi_Taiwan" 1999 RSN1202_CHICHI_CHYO035-E.AT2
EQ1205 1206 "Chi-Chi_Taiwan" 1999 RSN1206_CHICHI_CHY042-E.AT2
EQ1206 | 1234 "Chi-Chi_ Taiwan" 1999 RSN1234_CHICHI_CHYO086-E.AT2
EQ1207 1270 "Chi-Chi_ Taiwan" 1999 RSN1270_CHICHI_HWAO020-E.AT2
EQ1208 | 1279 "Chi-Chi_ Taiwan" 1999 RSN1279_CHICHI_HWAO030-N.AT2
EQ1209 143 "Tabas_Iran" 1978 RSN143_TABAS_TAB-L1.AT2
EQ1210 | 1492 "Chi-Chi_ Taiwan" 1999 RSN1492_CHICHI_TCUO052-N.AT2
EQ1211 1507 "Chi-Chi_ Taiwan" 1999 RSN1507_CHICHI_TCUO071-N.AT2
EQ1212 | 1510 "Chi-Chi_ Taiwan" 1999 RSN1510_CHICHI_TCUO075-N.AT2
EQ1213 1511 "Chi-Chi_Taiwan" 1999 RSN1511_CHICHI_TCUOQ76-N.AT2
EQ1214 | 1551 "Chi-Chi_Taiwan" 1999 RSN1551_CHICHI_TCU138-N.AT2
EQ1215 1787 "Hector Mine" 1999 RSN1787_HECTOR_HEC000.AT2
EQ1216 285 "Irpinia_Italy-01" 1980 RSN285_ITALY_A-BAG000.AT2
EQ1217 3274 "Chi-Chi_Taiwan-06" 1999 RSN3274_CHICHI.06_CHY035E.AT2
EQ1218 3548 "Loma Prieta" 1989 RSN3548_LOMAP_LEX000.AT2
EQ1219 356 "Coalinga-01" 1983 RSN356_COALINGA.H_H-SC2090.AT2
EQ 1220 | 369 "Coalinga-01" 1983 RSN369_COALINGA.H_H-SCN315.AT2
EQ 1221 3744 "Cape Mendocino" 1992 RSN3744_CAPEMEND_BNH270.AT2
EQ 1222 3943 "Tottori_Japan" 2000 RSN3943_TOTTORI_SMNO15NS.AT2
EQ 1223 4213 "Niigata_Japan" 2004 RSN4213_NIIGATA_NIGO23EW.AT2
EQ 1224 4229 "Niigata_Japan" 2004 RSN4229_NIIGATA_NIGH12EW.AT2
EQ 1225 4481 "L'Aquila_Italy” 2009 RSN4481_L-AQUILA_FA030XTE.AT2
EQ 1226 4483 "L'Aquila_lItaly” 2009 RSN4483_L-AQUILA_AMO043YLN.AT2
EQ 1227 4841 "Chuetsu-oki_Japan" 2007 RSN4841_CHUETSU_65004NS.AT2
EQ 1228 4844 "Chuetsu-oki_Japan" 2007 RSN4844_CHUETSU_65007NS.AT2
EQ 1229 4850 "Chuetsu-oki_Japan" 2007 RSN4850_CHUETSU_65013NS.AT2
EQ1230 4864 "Chuetsu-oki_Japan" 2007 RSN4864_CHUETSU_65037NS.AT2
EQ1231 4865 "Chuetsu-oki_Japan" 2007 RSN4865_CHUETSU_65038EW.AT2
EQ1232 4869 "Chuetsu-oki_Japan" 2007 RSN4869_CHUETSU_65042EW.AT2
EQ 1233 4873 "Chuetsu-oki_Japan" 2007 RSN4873_CHUETSU_65056NS.AT2
EQ1234 5618 '"Iwate_Japan" 2008 RSN5618_IWATE_IWT010EW.AT2
EQ1235 5681 "Iwate_Japan” 2008 RSN5681_IWATE_MYGHO6EW.AT2
EQ1236 5775 '"lwate_Japan” 2008 RSN5775_IWATE_54009EW.AT2
EQ 1237 5806 "Iwate_Japan” 2008 RSN5806_IWATE_55461NS.AT2
EQ 1238 5807 "Iwate_Japan” 2008 RSN5807_IWATE_55462NS.AT2
EQ1239 6891 "Darfield_New Zealand” 2010 RSN6891 _DARFIELD_CSHSN76W.AT2
EQ1240 751 "Loma Prieta” 1989 RSN751_LOMAP_CLR180.AT2
EQ1241 755 "Loma Prieta” 1989 RSN755_LOMAP_CYC195.AT2
EQ1242 | 779 "Loma Prieta” 1989 RSN779_LOMAP_LGP000.AT2
EQ 1243 801 "Loma Prieta" 1989 RSN801_LOMAP_SJTE315.AT2
EQ1244 | 809 "Loma Prieta" 1989 RSN809_LOMAP_UC2090.AT2
EQ1245 8164 "Duzce_Turkey" 1999 RSN8164_DUZCE_487-NS.AT2

*Record Sequential Number of the PEER NGA-West2 database

249

Scale
Factor
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C.7 OpenSees Analysis Results

C.7.1 Model with Expected Material Properties and Expected Axial Load

This model uses the expected material properties defined by the application of the Saatcioglu

and Razvi (1992) model. The applied gravity load comes from the load combination D+0.25L.
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Figure C.1: Base shear versus roof drift — Monotonic Pushover with F,,,; and w/o modification to expected
material properties (12-Story Archetype)
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Figure C.2: Base moment versus curvature - Monotonic Pushover with B, and w/o modification to expected
material properties (12-Story Archetype)
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Figure C.3: Monotonic pushover results at predicted roof drift capacity (12-Story Archetype)
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C.7.2 Model with Modified Expected Material Properties and Expected Axial Load

C.7.2.1 Monotonic Pushover Results
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Figure C.4: Base shear versus roof drift - Monotonic Pushover with F,,; and modified expected material
properties (12-Story Archetype)
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Figure C.5: Base moment versus curvature - Monotonic Pushover with Py, , and modified expected material
properties (12-Story Archetype)
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C.7.2.2 Cyclic Pushover Results
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Figure C.6: Base shear versus roof drift - Cyclic Pushover with Fy,, and modified expected material properties
(12-Story Archetype)

15k 1

-
T
1

<)

(3]
T
1

Base Moment (kip-ft)
o
T
1

;\
w

15 1 1 1 1 1 1 1 1 1 | —

-0.01 -0.008 -0.006 -0.004 -0.002 0 0.002 0.004 0006 0.008 0.01
Curvature (1/ft)

Figure C.7: Base moment versus Curvature - Cyclic Pushover with Py, , and modified expected material
properties (12-Story Archetype)

253



C.7.2.3 Dynamic Analysis Results — LC: (1.2+0.25DS)D+0.25L
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