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ABSTRACT OF THE DISSERTATION 

 

Framework to Define Performance Requirements for Structural Component Models 

And 

Application to Reinforced Concrete Wall Shear Strength 

 

by 

 

Matías Andrés Rojas León 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2022 

Professor John Wright Wallace, Chair 

 

A large number of models to predict shear strength of structural walls have been proposed 

in the literature to replace models adopted in codes and standards. Evaluation of the 

predictive performance of new models relative to existing models is often difficult because 

the models were developed using different databases and a model may have substantially 

different performance (high, versus low variance) when evaluated against a different 

database. In addition, more complex models are expected to have less variance than 

relatively simple models and target performance metrics for models of different complexity 
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do not exist. To address these issues, a study was conducted applying statistical and machine 

learning approaches to establish target model performance for different model complexities. 

The methodology is demonstrated by addressing the problem of assessing wall shear 

strength using a comprehensive database of 333 walls reported to have failed in shear. 

Wall shear strength equations reported in the literature and used in building codes are 

assessed using a comprehensive database of reinforced concrete wall tests reported to have 

failed in shear. Based on this assessment, it is concluded that mean values varied 

significantly, and coefficient of variations were relatively large (> 0.30) and exceeded the 

target error for a code-oriented equation defined in the companion paper. Therefore, a 

methodology employing statistical and machine learning methods was used to develop a 

new equation with form similar to that currently used in ACI 318-19. The proposed equation 

is applicable to walls with rectangular, barbell, and flanged cross-sections and includes 

additional parameters not considered in ACI 318-19, such as axial stress and quantity of 

boundary longitudinal reinforcement. Parameter limits, e.g., on wall shear and axial stresses, 

and an assessment of the relative contributions to shear strength also are addressed. Finally, 

a reliability analysis is performed to study the relationship between probability of failure 

and strength reduction factor applicable to the proposed equation. 
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Chapter 1. Introduction 

 

In civil and structural engineering, design checks are typically accomplished by comparing 

demands (e.g., moment, IJ; shear �J; displacement, KJ) with capacities (e.g., IL; shear �L; 

displacement, KM). These equations that estimate capacities have been developed based on 

models capturing the mechanics (e.g., free body diagrams) and calibrated using relatively 

little data available at the moment. Unlike 20 to 30 years ago, more recently, comprehensive 

databases are being assembled to enable the development of more complex capacity models 

using more sophisticated statistical approaches, and also including Machine Learning (ML). 

Evaluation of the predictive performance of different models is often difficult because of one 

or more of the following reasons: 

• They were developed using different databases and a model may have substantially 

different performance (bias, variance) when evaluated against a different database. 

• More complex models are expected to have less variance than relatively simple 

models and however, approaches to judge the relative merits of models with different 

complexities have not been proposed. 

• Optimal model performance is often not studied, so it is unknown whether a model 

with better performance is possible. In other words, even having one model that 

performs better than a second one with similar complexity level and calibrated using 

the same database, does not exclude the possibility than another better model could 

be obtained. Therefore, for a given model complexity, how should the model 
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performance be assessed to judge if the model error has been minimized and what 

are the relative benefits of the more complex model. 

To address these issues, a study was conducted applying statistical and ML approaches to 

establish target model performance for different model complexities. The framework is 

particularly useful when addressing a mechanics-based problem with a small database.  

The methodology is demonstrated by addressing the problem of assessing wall shear 

strength, and the target errors are expressed in terms of the mean value and coefficient of 

variation of the true-to-predicted ratio. This application was picked because: 

• The wall shear strength equation in ACI 318-19 has remained essentially unchanged 

for the last 50 years despite a large number of models being published in the 

literature. 

• Even though most of the published equations are similar in complexity, they show a 

significant variance when assessed against a database of wall tests that is not the 

same as that used to develop and calibrate the model (Gulec and Whittaker, 2011; 

Sánchez-Alejandre and Alcocer, 2010; Carrillo and Alcocer, 2013; Kassem, 2015). 

This can be ascribed to the issues before mentioned. First, it is typically more difficult to 

obtain a better fit when a wider range of variables exist (e.g., one database includes only 

walls with rectangular cross sections whereas the other database includes walls with both 

rectangular, barbell, and flanged cross sections) and, if this is the case, the number of tests is 

likely to have an impact too. Second, in most of the studies reported in the literature, wall 

aspect ratio (ℎO/PO) was typically used as a means to determine which tests were included 

in the database (e.g., ℎO/PO < 1.0 or 1.5); however, studies have shown (Abdullah and 
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Wallace, 2021) that wall aspect ratio is not the best indicator of wall failure mode. Therefore, 

most of the databases used to develop the models reported in the literature included some 

walls that actually experienced flexural failures. Finally, in most cases, the databases were 

typically not large enough to split into training and testing sets and did not assess issues 

associated with underfitting versus overfitting (Höge et al., 2018) to examine the possibility 

that a model of equivalent complexity might have better predictive performance. 

Over the last five decades, a significant number of wall tests have been reported in the 

literature and have recently been complied in a comprehensive database with more than 

1100 wall experiments (Abdullah and Wallace, 2020). The database was filtered to identify 

wall tests with reported shear failure modes (flexure-shear, diagonal tension, or diagonal 

compression), resulting in 412 tests, and then a detailed review was conducted to identify 

reasons why would be inappropriate to include some tests (i.e., outliers identification, key 

step of the methodology). The availability of this database of shear-controlled walls enabled 

the application of the proposed ML-statistics based framework to establish a relationship 

between model complexity and model performance requirements, which includes a target 

error interval expressed in terms of the mean and COV of the true-to-predicted ratio 

(�TUJV/�WUVX). This error indicator was selected because is well known and widely used in 

this field, and therefore, researchers have a good understanding of what is means (e.g., how 

much is small versus large). 
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Chapter 2. Review of Existing Wall Shear Strength Models 

 

2.1 Models Calibrated Using Statistical Inferences and its Drawbacks 

This section provides a detailed review and summary of existing models for predicting shear 

strength of RC walls that are available in building codes and standards worldwide (Table 

2.1) and reported in the literature (Table 2.2). Table 2.1 reveals that all existing models 

compute wall nominal shear strength (�L) using a �L = �M + �Z format, where �M and �Z are 

the concrete and reinforcement contributions to nominal shear strength, respectively. 

However, the parameters considered that influence the concrete and reinforcement 

contributions sometimes differ. For example, the NZS 3101 (2006) and ASCE/SEI 43 (2005) 

models consider the influence of axial load on �M (ACI 318-19 does not), the EC8 (2005) and 

ASCE/SEI 43 (2005) models include the impact of the vertical web reinforcement, and the 

detailed model of NZS 3101 (2006) use IJ/(�JPO) instead of ℎO/PO, which is used by the 

remaining models shown in Table 2.1. 

Table 2.1: Existing wall shear strength models in building codes and standards 

Model Comments 

ACI 318-19, Section 18.10  �L = [M\]/M^_-M̀ + *Oa-bOac ≤ 0.83[M\_-M̀   

 

 

/M = f 0.25    for ℎO/PO ≤ 1.50.17    for ℎO/PO ≥ 2.00.25 − 0.17 kalml − 1.5n  for 1.5 < ℎO/PO < 2.0  

 ^ = 1.0 for normalweight concrete. For lightweight concrete, 

it ranges from 0.75 to 0.85 depending on the 

composition of the aggregates. 

 

Wall shear strength is determined using Equation 

18.10.4.1. The upper limit of 0.83[M\_-M̀  (for an 

individual wall) is intended to prevent diagonal 

compression failure and has been in the ACI 318 

Code since 1971. 

For walls with ℎO/PO ≤ 2.0 it is required that *\ is 

no less than *a .  

EC8-2004 �L = 5L�O�  

 5L = 5M + 5Z  

Concrete contribution is ignored for walls subjected 

to low axial stresses (1.54J/([T-M̀ ) < 0.1). Wall 

shear strength depends on vertical and horizontal 
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Model Comments 

5L = o
  0               if q.rstuvwxy < 0.10.15_-M̀   if  q.rstuvwxy ≥ 0.1  

5Z = *a-ba k zt{tml − 0.3n + *\-b\ k1.3 − zt{tmln  

 

web reinforcement, and the ratio of applied 

moment to shear.  

NZS 3101-2006 �L = �M + �Z   

 �Z = u|w}l~XZ    

 
{xux| =

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧   

��0 o0.17_-M̀                 0.17 �_-M̀ + stu��                                SimplifiedMethod
��0

⎩⎪⎨
⎪⎧0.27_-M̀ + st�u�                                

0.05_-M̀ + ml��.q_wxy��.��t����t�t ��l�
    DetailedMethod

  

 

The simplified method may only be used when the 

vertical reinforcement ratio along the entire wall 

exceeds 0.003, and the spacing of reinforcement 

does not exceed 300 mm (12 in) in any direction. 

The detailed equation does not apply if kzt{t − ml� n ≤
0. 

AIJ-1999  �L = �M + �Z   

 �M = T�L(�)(q��)Tlml�wxy� ≥ 0   �Z = *Oa-bOa�OPO���(�)   ��0( ) = ¡kalml n� + 1 − alml      ¢ = 0.7 − wxy����  � = ]q�M£T�(¤)c¥l~w}l~�wxy   ���(�) = 1 (for truss mechanisms) 

 

In this model, besides the truss analogy, shear is 

assumed to be resisted through an arch mechanism. 

The contribution of the arch mechanism decreases 

with the amount of the web horizontal steel. 

ASCE/SEI 43-05 �L = 5L�O�O ≤ 1.66[M\_-M̀   

5L = ��0 o 0.70_-M̀ − 0.28_-M̀ kalml − 0.5n + st�mlTl + *ZV-bq 20_-M̀                                                                                   �O = 0.61PO  *ZV = [*\ + §*a  

 

[ =
⎩⎪⎨
⎪⎧ 1     for  ¨©ª© ≤ 0.51.5 − alml  for 0.5 < ¨©ª© ≤ 1.50     for ¨©ª© > 1.5     

§ =
⎩⎪⎨
⎪⎧ 1     for  ¨©ª© ≤ 0.5alml − 0.5 for 0.5 < ¨©ª© ≤ 1.50     for ¨©ª© > 1.5     

 

ASCE/SEI 43-05 adopted the work done by Barda et 

al. (1977), with modifications to extend its 

applicability. This equation is meant to predict the 

peak shear strength of walls with barbells or 

flanges, common in nuclear power plants, and is 

applicable to walls with 
alml ≤ 2.0 and vertical and 

horizontal web reinforcement ratios ≤ 1%. If the 

reinforcement ratios exceed 1%, the combined 

reinforcement ratio *ZV  is limited to 1%. 
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Table 2.2 presents wall shear strength equations reported in the literature, along with a 

description of the databases used in calibration/validation of the models. In these studies, 

wall shear strength relations were generally developed by identifying relevant parameters 

based on literature review, investigating the mechanics of problem, and using statistical 

analysis of data sets. Subsequently, a calibration process was employed to fit the coefficients 

of the proposed model to the data. Therefore, these equations are typically valid and perform 

well only when the model is used to estimate wall shear strength (e.g., shear stress, or shear 

force) for a wall with parameters within the ranges of the parameters used to calibrate the 

model. Because different databases were used to develop existing models, and these 

databases used different criteria to determine which wall tests to include in the database, as 

well as different test parameters, different ranges of test parameters and different numbers 

of tests, a model developed with a given database can be biased when it is evaluated with a 

different database.  

Table 2.2: Existing wall shear strength models reported in the literature 

Model Database Comments 

Barda et al. (1977) �L = 5L�O�  

 5L = 0.66_-M̀ − 0.21_-M̀ alml + st�mlTl + *\-b\   

• 8 flanged walls 

• 
alml ∈ ¬0.25 , 1.00­  

• *®V ∈ ¬1.8% , 6.4%­ 1.8% - 6.4% 

• *Oa  and *O\ ∈ ¬0% , 0.5%­ 

Meant to predict the peak 

shear strength of walls in 

low-rise buildings. 

Wood (1990) �L = u|°w}�   

 0.5[M\_-M̀ ≤ �L ≤ 0.83[M\_-M̀   

 [\w-b = 2[®V-b®V + [O\-bO\   

 

• 143 squat walls reported to have 

failed in shear 

• ~105 barbell, ~20 flanged walls, 

and ~18 rectangular cross-

sections. 

The model does not 

consider the concrete and 

steel contributions as two 

different terms. Instead, it 

uses the concrete 

contribution to define a 

lower and upper limit 

only. 
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Model Database Comments 

• 
zt{tml ≤ 2.0, with 0.5 ≤ zt{tml ≤ 1.0 

for more than 75% of the test 

specimens. 

• 0.7 ≤ stu�wxy ≤ 0.18 for 18 

specimens, and 
stu�wxy = 0 for the 

rest. 

Sánchez-Alejandre and Alcocer 

(2010) �L = �±²\ + 0.04 stu�� _-M̀ + ²a*a-ba   

 ± = ��0 ³ 0.42 − 0.08 zt{tml          Option 1 0.42 − 0.08(%µ¶�·)  Option 2  

   ²\ = 0.75 + 0.05*\-b\   

 ²a = 1 − 0.16*a-ba ≥ 0.20  

 µ¶�·  = drift angle 

• 80 rectangular walls with diagonal 

tension failure mode  

• Most of the walls have 
zt{tml ≤ 1.0 

• Low web reinforcement ratios and 

axial loads. 

• Drift angles < 1%. 

The model depends on the 

amount of web 

reinforcement (hor. and 

ver.) that has reached 

plastic strains at a given 

drift angle (µ¶�·), and 

although the ± factor that 

depends on µ¶�· , it can 

also be expressed in terms 

of IJ/(�JPO).  

Gulec and Whittaker (2011) For rectangular walls:  �L = �UVM ≤ 0.83_-M̀ [M\   

 For barbell/flanged walls with uvux| ≥ 1.25:  �L = �®V ≤ 1.25_-M̀ [½  

 For barbell/flanged walls with uvux| < 1.25:  �L = ��0(�UVM , �®V) ≤ 10_-M̀ [M\   

 �UVM = �.¾¿_wxyux|��.�rÀ|l��.��À|ÁÂ��.��st¡~l�l
  

 �®V = �.��wxyuÃÄÄ��.��À|l��.qrÀ|ÁÂ��.¿rst¡~l�l
  

 Å\O: force attributed to vertical web 

reinforcement 

 Å\®V: force attributed to both BEs 

reinforcement 
 

• Cantilever walls 

• One database of 74 rectangular 

walls 

• Second database of 153 walls (79 

barbell walls, and 74 flanged walls) 

• 
alml ∈ ¬0.25 , 2.00­  

• -M̀ ∈ ¬13.7 MPa , 51.0 MPa­  

• 
stuvwxy ∈ ¬0 , 0.14­  

• *Oa-bOa ∈ ¬0 , 5.8 MPa­  

• *O\-bO\ ∈ ¬0 , 12.8 MPa­  

• *®V-b®V ∈ ¬0 , 14.1 MPa­  

The model is based on a 

free-body diagram of a low 

aspect ratio wall with an 

inclined (shear) crack. 

The boundary element 

reinforcement (*®V∗) is 

calculated as 2[Z,®V/[T, 

where [Z,®V  is the area of 

vertical reinforcement in 

each BE. 

 

Carrillo and Alcocer (2013) �L = ]/q_-M̀ + ²a*a-bac[M\ ≤ /�_-M̀ [M\   

 

• 39 walls from quasi-static and 

shake-table tests. 

Meant to be used for walls 

in typical low-rise housing 
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Model Database Comments 

²a = Ç0.8  -�� ��-����� ���           0.7  -�� +�P��� − +��� �� ℎ  

 /q = 0.21 − 0.02 k zt{tmln  

 /� = 0.40  

• 
alml ≈ 0.5, 1.0, 2.0  

• Normalweight, lightweight, and 

self-consolidating concrete. 

• *Oa  and *O\ ∈ ¬0% , 0.28%­  

• *®V ∈ ¬0.22% , 1.50%­  

in Latin America (low 

concrete strength and wall 

thickness of ~4 in.)  

Kassem (2015) �L = 5L�O�O  

 For rectangular walls:  5L = 0.44-M̀ ÉÊËZ �0(2/) + 0.10Ìa alXl  

   +0.30Ì\���(/)­ 

 For flanged walls:  5L = 0.67-M̀ ÉÊËZ �0(2/) + 0.16Ìa alXl  

   +1.74Ì\���(/)­ 

 Ê = 0.95 − wxy�r�  ËZ = �ÎXl  / = ��0�q kalXln  �O = � − �Î¿   

  Ìa = ¥~w}~wxy  Ì\ = ¥|w}|wxy   �Z: horizontal length of the compression 

zone at the wall base 

• 287 cantilever rectangular walls 

• 
alml ∈ ¬0.25 , 1.00­  

• 
stu�wxy ∈ ¬0, 0.23­  

• *Oa ∈ ¬0% , 1.61%­  

• *O\ ∈ ¬0% , 2.87%­  

 

• 358 cantilever flanged walls 

• 
alml ∈ ¬0.21 , 1.60­ 0.21 – 1.60 

• 
stu�wxy ∈ ¬0 , 0.34­  

• *Oa ∈ ¬0% , 2.89%­  

• *O\ ∈ ¬0% , 2.89%­ 

It is a mathematical 

equation based on the 

strut-and-tie model. Since 

flanged walls are more 

susceptible to diagonal 

compression failure than 

rectangular walls, two 

separate databases of 

rectangular and flanged 

walls were used to 

calibrate the equations. 

Looi and Su (2017) �L = 5L[½-M̀   \Ïwxy = 0.034 + [ � stu�wxy�q.¿ + §*\ w}|wxy   

                                 +Ð*a w}~wxy + Ñ*®V w}ÁÂwxxy   

 \Ïwxy ≤ 0.24  

 [ = 0.283 − 0.084 zt{tX  § = 0.4 − 0.15 zt{tX  Ð = 0.5 − 0.2 zt{tX  Ñ = −0.08 + 0.06 zt{tX  -MM̀: confined concrete strength 
 

• ~ 150 rectangular walls with shear 

and flexure-shear failure modes 

• -M̀ ∈ ¬15.7 MPa , 70.3 MPa­  

• 
stu�wxy ∈ ¬0 , 0.40­   

• 
zt{tml ∈ ¬0.4 , 2.6­  

• *Oa ∈ ¬0.11% , 1.72%­  

• *O\ ∈ ¬0.13% , 2.84%­  

• *®V ∈ ¬0% , 13.46%­  

The proposed model is 

entirely based on a multi-

parameter regression, 

with relevant parameters 

based on review of 

literature. 

The coefficients in the 

equation do not have 

units; therefore, they are 

the same no matter the set 

of units being used as long 

as they are consistent. 

Note: 1 MPa = 145 psi 
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Table 2.3 presents the comparison of wall shear strength models reported in four different 

studies (Sánchez-Alejandre and Alcocer, 2010; Carrillo and Alcocer, 2013; Kassem, 2015; 

Looi and Su, 2017) in terms of their mean and COV. The information in the table reveals that 

the performance of a given model can be very different when assessed against a database 

different from the one used to develop the model. It is also noted that the size of databases 

influences the reported means and COVs even if the ranges of relevant parameters are 

comparable. This is because small databases might not capture the inherent parameter 

variability (which, for instance, might come from considering walls with different cross 

sections), and thus, having a smaller model error is not necessarily an indicator of a good 

predictive model (Tanaka, 1987). 

Table 2.3: Wall shear strength model comparison reported in different studies: �TUJV/�WUVX 

Model 

Sánchez-Alejandre & 

Alcocer 

(2010) 

Carillo & 

Alcocer 

(2013) 

Kassem 

(2015) 

Looi & Su 

(2017) 

Mean COV Mean COV Mean COV Mean COV 

ACI 318-19, Ch. 18 (a) 1.43 0.26 0.82 0.24 1.65 0.37 1.01 0.37 

ACI 318-11, Ch. 11 -(b) - 0.90 0.21 - - - - 

ACI 318-14, Ch. 11 - - - - - - 0.96 0.37 

AIJ 1999 1.00 0.27 - - - - - - 

CSA (2014) A23.3-14 - - - - - - 1.35 0.44 

EC8 (2004) - - - - 2.54 0.71 - - 

Barda et al., 1977 - - - - 1.39 0.47 - - 

Wood, 1990 0.99 0.24 - - 0.78 0.32 - - 

Hwang & Lee, 2002 1.06 0.22 - - 1.26 0.56 - - 

Sánchez & Alcocer, 2010 1.00 0.13 0.79 0.12 1.91 0.29 0.84 0.35 

Gulec & Whittaker, 2011 - - 1.06 0.09 1.34 0.24 0.89 0.31 
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Model 

Sánchez-Alejandre & 

Alcocer 

(2010) 

Carillo & 

Alcocer 

(2013) 

Kassem 

(2015) 

Looi & Su 

(2017) 

Mean COV Mean COV Mean COV Mean COV 

Carrillo & Alcocer, 2013 - - 1.00 0.08 - - - - 

Kassem, 2015 - - - - 1.00 0.21 - - 

Looi & Su, 2017 - - - - - - 1.04 0.27 

(a) Sánchez and Alcocer (2010) uses ACI 318-09 Ch. 21. Carrillo and Alcocer (2013) and Kassem (2015) use ACI 318-11 

Ch. 21. Looi and Su (2017) use ACI 318-14, Ch. 18. These equations are the same as that in ACI 318-19 Ch.18. 

(b) “-“ indicates the model was not included in the comparison. 

 

2.2 ML Models and its Drawbacks 

Models presented in Table 2.1, Table 2.2, and Table 2.3 were mainly calibrated using 

statistical inference, which characterizes the relationship between the data (all of it) and the 

outcome variable, i.e., the models are not predicting values for unknown data (Bzdok et al., 

2018). Statistical models can still be used to make predictions, but predictive power is not 

their strength. In addition, as databases become large, it often becomes unfeasible to 

completely interpret the data using statistical models. In such cases, application of ML is 

valuable (Dey, 2016). Although ML models can provide very accurate predictions, the models 

tend to be complex and difficult to use, and they also may be difficult to interpret (Bzdok et 

al., 2018). 

Table 2.4: Predictive RC wall shear strength models obtained with ML 

Chen et al. (2018) Moradi-Ardebili (2019) Keshtegar et al. (2021) 

ANN-PSO(a) with 1 hidden 

later and 13 neurons 

 

• 6 input variables ℎO/PO , 4J , -M̀ , [M\ , *a-b, *\-b 

 

 

ANN(b) with 13 input parameters, 1 

hidden layer, and 10 neurons 

 

• 13 input variables 4J , ℎO , PO , �O, �w , �w , *Oa , *O\ , -b, -M̀ , 

vertical column reinf. ratio, 

horizontal column reinf. ratio. 

SVR-RSM(c) 

 

 

• 15 input variables: -M̀ , *Oa , *\O, -bOa , -bO\ , �w , �w , �O, ℎO , ℎO/PO , 4J , [T£T ,  

effective length of wall, 
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Chen et al. (2018) Moradi-Ardebili (2019) Keshtegar et al. (2021) 

 

 

 

• Output variable �TUJV  

 

 

 

• Database 

- 139 tests 

- 80% for training test and 

20% for testing set 

- Rectangular walls 

- 
alml ∈ ¬0.25, 2.0­ 

- 
stu�wxy ∈ ¬0.0, 0.35­  

- *a ∈ ¬0.0, 1.96%­ 

- *\ ∈ ¬0.0, 2.93%­ 

 

 

 

• Error indicator used in the 

training 

- Root mean square error 

(RMSE) 

- Coefficient of 

determination (µ�) 

 

 

 

• Output variables 

- �TUJV  

- Lateral in-plane stiffness 

- Drift ratio 

 

• Database 

- 329 tests 

- 85% for training and 15% 

testing set 

- *Oa ∈ ¬0.0, 6.69%­ 

- *O\ ∈ ¬0.0, 14.33%­ 

- Horizontal column 

reinforcement ratio between 

0.0 – 6.69% 

- Vertical column reinforcement 

ratio between 0.0 – 14.33% 

- �TUJV ∈ ¬15.42 Ë
 , 3231 Ë
­ 

 

• Error indicator used in the 

training 

- Mean square error (MSE) 

longitudinal reinf. ratio of flanges, 

yield strength of bars in flanges 

 

• Output variable: �TUJV  

 

 

 

• Database 

- 208 tests 

- 70% for training test and 30% 

for testing set 

- 
alml ∈ ¬0.21, 2.4­ 

- *Oa ∈ ¬0.0, 2.44%­ 

- *O\ ∈ ¬0.0, 2.90%­ 

- �TUJV ∈ ¬70 Ë
 , 2483 Ë
­ 

 

 

 
 

• Error indicator used in the 

training 

- Root mean square error 

(RMSE)  

(a) Artificial Neural Network implemented with Particle Swarm Optimization (Chen et al., 2018) 
(b) Artificial Neural Network 
(c) Support Vector Regression coupled with Response Surface Model (Keshtegar et al., 2021) 

 

Table 2.4 shows three ML models developed to predict wall shear strength. The databases 

used for the ML studies in Table 2.4 are typically larger than the databases used for the 

studies listed in Table 2.2. ML models as the ones shown in Table 2.4 show the potential 

and significant predictive power of ML algorithms when compared to simpler models (Table 

2.1, Table 2.2); however, these ML studies can suffer several drawbacks, as described next.  

Due to test lab limitations, most wall tests reported in the literature have been conducted at 

modest scale, typically in the range of 1/5 to 1/2. Several of the input variables used in 
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models of Table 2.4 are not expressed in a form that allow them to extrapolate the results 

of reduced-scale tests with full-scale walls. For example, the models used the geometry of 

the wall directly (e.g., ℎO, PO, �O, �w, �w) instead of using aspect ratios, or forces (e.g., 4J, *a-b, 

*\-b) instead of using associated stresses based on the mechanics of the problem, or, more 

importantly, used shear strength (�TUJV) as the output variable instead of some mechanic-

based definition of shear stress (5L). It is essential to use dimensionless (e.g., aspect ratios) 

or mechanic-based normalized (e.g., stress) model parameters, otherwise, the model is not 

valid when applied to full-scale walls, since the parameters of the full-scale walls are not 

within the ranges that were used to calibrate the model. Note that the normalization referred 

here is based on the physics of the problem and is not the normalization or scaling concepts 

used in statistics, which are still important to do before training a model. Another limitation 

identified in models listed in Table 2.4 is associated with the combination of the selected 

predicted variable and the error indicator used in the optimization process; which for these 

studies, results in minimizing the direct difference between the observed and the predicted 

shear strength values (i.e., not an error percentage). It is important to use a mechanics-based, 

normalized predicted variable (e.g., stress) when using error indicators such as the mean 

squared error (MSE), root mean squared error (RMSE), or the mean absolute error (MAE), 

otherwise, inconsistent error results are obtained. For example, the same error value for two 

cases (wall specimens) could represent a predicted shear strength with 10% error with 

respect to the experimental shear strength for one case, whereas it could represent a 100% 

error for a wall with a smaller shear strength. The coefficient of determination (µ� ∈ ¬0,1­), 

which is another type of error indicator, compares a given model with the null model, i.e., the 

model that predicts the mean value of the data set used in the training process for any input; 
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therefore, it does not necessarily measure the goodness of fit. For instance, predictions for a 

model with a steep regression surface would tend to have a larger µ� values but could be 

less precise than the prediction based on a model with a less steep regression surface with a 

smaller R2 (Barrett, 1974). The use of an error indicator that uses the true-to-predicted 

difference with respect to the true value might be helpful in these studies, but the issue of 

related results of reduced scale test specimens in the database to full-scale walls noted 

previously remains. 

For ML models, it is common to use two data sets, a training set and a testing set. The training 

set is used to train (calibrate) the model and the testing set is used to verify that the trained 

model will perform very similarly when predicting unseen data (testing set). This means the 

error obtained when predicting values of the testing set must be similar to the error obtained 

when predicting the values of the training set. Although this comparison should be carefully 

addressed and ideally verified in terms of the error used in the optimization process and also 

in terms of other meaningful error indicators to demonstrate model robustness, often this 

added step is not properly considered. To help with this and avoid not noticing the problems 

the model might have, model performance should be reported including an error indicator 

that is well-known, such as mean and COV of the true-to-predicted ratio, assessed with 

several relevant parameters. Also, if a ML model is compared with other models (e.g., Table 

2.1, Table 2.2), the comparison should also include results for other (properly trained) ML 

models to judge the performance of the proposed ML model. ML models are more complex 

than models developed based on a (simple) equation; therefore, better performance is 

expected. 
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Chapter 3. Framework to Define Performance Requirements 

 

To address the limitations highlighted in the previous section, a systematic methodology is 

proposed to establish a relationship between the desired model complexity and its 

performance. In this study, this methodology is applied to the prediction of RC wall shear 

strength (�TUJV/�WUVX), and the obtained target errors are expressed in terms of mean and 

coefficient of variance (COV) of the true-to-predicted ratio. It is relevant to highlight that the 

methodology could be applied to other problems (e.g., column shear strength, beam flexural 

strength, reinforcement development length, etc.). As detailed below, in addition to adopting 

the generic steps of ML, i.e., collection and preparation of data, feature selection, selection of 

ML algorithm, selection of model and hyper-parameters, model training, and model 

performance evaluation (Alzubi et al., 2018), this framework requires specific sub-steps such 

as defining relevant (starting) features based on the mechanics of the problem and 

addressing the issue of using reduced-scale tests to predict capacities of full-scale specimens, 

developing an iterative sensitivity analysis when a ML model is trained, and training Elastic 

Net Models (ENMs) using engineered features defined from the starting features. 

 

3.1 Step 1: Collection and Preparation of Data 

Data from a comprehensive database of RC wall tests, called UCLA-RC Walls Database 

(Abdullah, 2019; Abdullah and Wallace, 2020), was utilized in this study. The database 

contains detailed and parameterized information for over 1100 RC wall tests assembled 

from more than 250 test programs published in the literature, and it includes detailed and 
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parameterized information about the test specimen, tests setup, loading protocols, test 

results (e.g., backbone relations, failure modes), and analytically computed data (e.g., c, IL, 

Ib , 2L, 2b , �L). The reported failure modes are classified in the database as: 

• Flexure failure modes, including bar buckling and concrete crushing, bar fracture, or 

global or local lateral instability. 

• Shear failure modes, including diagonal tension, diagonal compression (web 

crushing), or shear sliding at the base. 

• Flexure-shear failure modes, including yielding in flexure prior to failing in one of the 

shear failure modes. 

• Lap-splice failure mode. 

The authors of the database did their best to validate that the reported failure mode was 

consistent with the observed wall response and damage before reporting this information in 

the database. The availability of the detailed and parameterized information in the database 

enabled this study to assess the role of various parameters on wall shear strength. 

A dataset of walls with reported flexure-shear, diagonal tension, or diagonal compression 

failure modes was obtained from the UCLA-RC Walls Database. Tests with incomplete 

information or test results were excluded. The reduced dataset included a total of 412 wall 

tests. The dataset was further refined and 79 wall tests were removed because of the next 

reasons: 

• They either had artificial cracks for corrosion studies (6 tests, Zheng et al., 2015). 
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• The reported lateral load readings do not match the values in the respective figures 

(9 tests, Li and Li, 2002). 

• The walls had non-symmetric cross-section shapes such as T-shape, L-shape, half 

barbell, and wing walls (20 tests). 

• The specimens had a tested -′M less than the limit of 20.7 MPa (3.0 ksi) given in ACI 

318-19 Section 18.2.5 for special seismic systems (37 tests). 

• The longitudinal reinforcement yielding stress -b exceeded 100 ksi while -M̀  was less 

than 5 ksi (7 tests). 

Asymmetric walls were excluded because the number of walls with these cross-sectional 

shapes was low (20 walls) in comparison with the number of rectangular, barbell or flanged 

walls. This means it is possible to overlook the inherit differences of the different groups of 

asymmetrical walls if incorporating these little data into a much larger database of 

symmetric walls, because all of them are probably following the same general trends. In 

other words, the error of a model performance already calibrated with a large database of 

symmetric walls will likely not see a drastic increase when including little data of 

asymmetrical walls. Furthermore, when a shear strength model is proposed, it is expected it 

can be generalized to be applicable to asymmetrical walls as well, i.e., the unsymmetrical 

walls data can be part of the testing set. Based on the above filters, a final data set of 333 

symmetric wall tests was obtained. 
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Figure 3.1: Histogram of relevant variables 

  

After a comprehensive and clean database was created for the study, a testing set to verify 

the performance of the models was created by randomly selecting 20% of the database of 
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333 wall tests, which resulted in 67 wall tests. The testing set is kept totally unknown for the 

models and is used only after the training process of the models is completed. Figure 3.1 

compares histograms for various database parameters of the entire dataset and the testing 

set, where -M̀  is the specified compressive strength of concrete, *®V is the boundary region 

longitudinal reinforcement ratio, -b®V is the specified yield strength of the boundary region 

longitudinal reinforcement, *Oa and -bOa are the ratio and specified yield strength of the 

horizontal web reinforcement, respectively, *O\  and -bO\ are the ratio and specified yield 

strength of the vertical web reinforcement, respectively, 4J, IJ,  and �J are the factored (or 

test) axial load, moment, and shear, respectively, PO is the wall length in the direction of the 

applied shear force, ℎO is the total wall height, [®V is the cross-sectional area bounding the 

longitudinal reinforcement at a wall boundary, [M\ is the cross-sectional area bounded by 

the wall length and the web thickness (�O), [½ is the cross-sectional gross area, � is the 

neutral axis depth, and 
TUJV is the normalized shear stress (introduced later). 

 

3.2 Step 2: Defining the ML Models and Features 

This step involves first identifying the potentially relevant parameters based on literature 

review, which are then used to define the ML models. Considering a free body diagram of a 

wall with a diagonal crack that helps to identify all relevant parameters (Figure 3.2), it is 

possible to obtain the rough relationships shown in Eq. (3.1) through Eq. (3.6) between the 

main variables and shear strength. 
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Figure 3.2: Free body diagram of RC shear wall with a diagonal crack 

 

�J ∼∝ [½-M̀  (3.1) 

�J  ∼∝ *Oa-bOaℎO�O (3.2) 

�JℎÓÔÔ  ∼∝ *O\-bO\(PO − �)��O (3.3) 

�JℎÓÔÔ ∼∝ *®V-b®V[®VPO (3.4) 

�JℎÓÔÔ ∼∝  Õ-M̀ + 4J[½Ö �O�� (3.5) 

�JℎÓÔÔ ∼∝  Õ-M̀ − 4J[½Ö �O(PO − �)� (3.6) 
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Non-dimensional parameters are used because it makes the coefficients defined from the 

training process to be weights of each parameter, without physical or mechanical 

interpretation. In accordance with the literature review, the following 10 variables are 

selected and are named as the “starting features”.  

          ×q = *Oa -bOa-M̀  (3.7) 

          ×� = *O\ -bO\-M̀  (3.8) 

             ×¿ = *O®V -b®V-M̀  (3.9) 

            ×� = 1 + 4J[½-M̀  (3.10) 

×r = �PO (3.11) 

   ×Ø = IJ�JPO (3.12) 

×Ù = �OPO  (3.13) 

×¾ = �OℎO (3.14) 

×Ú = ℎOPO  (3.15) 

×q� = [®V[½  (3.16) 

The predicted variable is the normalized shear strength defined as: 

                                                                
   =    �TUJV[½-M̀                                                                     (3.17) 
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These starting features and the predicted variable can actually be identified by making the 

left side in Eq. (3.1) through Eq. (3.6) to be the normalize shear strength �J/][½-M̀ c and by 

applying reasonable approximations in some cases (e.g., considering � as a fraction of PO, 

neglecting constants because the model calibration will handle that), as shown below. 

�J[½-M̀  ∼∝ 1 (3.17) 

�J[½-M̀  ∼∝  *Oa-bOa-M̀
ℎOPO  (3.18) 

�J[½-M̀  ∼∝  *O\-bO\-M̀
POℎÓÔÔ (3.19) 

�J[½-M̀  ∼∝  *®V-b®V-M̀
�PO

POℎÓÔÔ (3.20) 

�J[½-M̀  ∼∝  Õ1 + 4J[½-M̀ Ö �PO
POℎÓÔÔ (3.21) 

�J[½-M̀  ∼∝  Õ1 − 4J[½-M̀ Ö [®V[M\
POℎÓÔÔ (3.22) 

 

Between k1 + 4J/][½-′Mcn and k1 − 4J/][½-′Mcn, only one is considered because they are 

related to the practically the same parameters in Eq. (3.5) and Eq. (3.6), and also in Eq. (3.21) 

and Eq. (3.22)  (again, � can be considered as a fraction of PO), and because the presence of a 

constant (i.e., “intercept” or equivalent) in the calibration process would suggest dropping 

one of them for being linearly dependent of the other. 

The height of the wall used to define the effective flange width according to ACI 318-19 

Section 18.10.5.2 was estimated as ℎO ≈ ℎeff/0.7, where ℎeff (effective height) corresponds 
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to the shear span, defined as IJ/�J. Abdullah and Wallace (2021) show that there is no 

significant increase in the shear strength of walls with small barbell column at the boundary 

regions, and is well established that flanged walls have a larger shear strength (Gulec and 

Whittaker, 2011; Kassem, 2015; Kim and Park, 2020). Because [½ = [M\  for rectangular 

walls, [½ ≈ [M\ for barbell walls with barbell column at the boundary regions, and [½ > [M\  

for flanged walls, the cross-sectional area [½ is used instead of [M\ when associated with -M̀ . 

Four different feature matrices are defined: 

• The first feature matrix, Û, contains the 10 starting features defined in Eq. (4.7) 

through (4.16) and, therefore, is a matrix with 10 columns. 

• The next feature matrix, ÛÜ, contains 140 features because the following 14 functions 

were applied to the 10 starting features: identity function, (.)�q, (.)�, (.)��, (.)q/�, 

(.)�q/�, (.)¿, (.)�¿, (.)q/¿, (.)�q/¿, exp(.), exp(-.), ln(.), and −ln(1 + .). 

• Feature matrix Ûpoly has 285 features that are obtained by combining the 10 starting 

features into all possible multiplications a cubic polynom has. 

• Feature matrix ÛÜpoly has 679 features that are obtained by combining the 14 more 

significant features of the ÛÜ matrix into all possible multiplications a cubic polynom 

has. 

Cubic polynoms were used because Eq. (3.17) through Eq. (3.22) can be formed by 

multiplying up to 3 starting features on the right side. Also, to reduce skewness or 

highlighting trends, other variations of the output variable 
 (see Eq. (3.17)) are defined as 
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_
Þ  and ln(
). The 14 more significant features of ÛÜ are obtained after performing the 

sensitivity analysis (explained later) for ENM2 (introduced later in Table 3.1). 

The starting features ×q, . . . , ×q� (Eqs. (4.7) to (4.16)) will be the input parameters of one or 

more complex ML models, which will be predicting the normalized shear stress 
 (Eq. 

(4.17)). The selected complex ML models for this study are the Artificial Neural Network 

(ANN) and Random Forest (RF) Regression because they are applicable for this study (the 

predicted parameter is a continuous variable), and because they are well known models that 

are not complicated to implement in programming languages (e.g., Matlab, R, Python, which 

have various built-in functions to simplify their implementation). The starting and 

engineered features are used to create a suite of Elastic Net Models (ENMs). In this case, a 

total of 10 ENMs are defined (see Table 3.1). 

Table 3.1: Elastic Net Models definition 

Model Short Reference Long Reference(a) 

ENM1 
  ~  à          
á   ~  
]�á, �c ,    �á = ��̀� ,            ∀�ãä1,2, … 0æ 

ENM2 
  ~  àÜ           
á   ~  
]�á, �c ,    �á = �ç�̀� ,            ∀�ãä1,2, … 0æ 

ENM3 _
Þ   ~  àÜ         _
áÞ   ~  
]�á , �c ,    �á = �ç�̀� ,            ∀�ãä1,2, … 0æ 

ENM4 ln (
)  ~  àÜ                 ln (
á)  ~  
]�á, �c ,    �á = �ç�̀� ,            ∀�ãä1,2, … 0æ 

ENM5         
  ~  àèé�ê                  
á   ~  
]�á , �c ,    �á = �èé�ê�` � ,     ∀�ãä1,2, … 0æ 

ENM6 
    _
Þ   ~  àèé�ê    _
áÞ     ~  
]�á , �c ,    �á = �èé�ê�` � ,     ∀�ãä1,2, … 0æ 

ENM7 ln (
)  ~  àèé�ê ln (
á)  ~  
]�á , �c ,    �á = �èé�ê�` � ,     ∀�ãä1,2, … 0æ 

ENM8         
  ~  àÜèé�ê         
á   ~  
]�á , �c ,    �á = �çèé�ê�` � ,     ∀�ãä1,2, … 0æ 

ENM9 _
Þ   ~  àÜèé�ê     _
áÞ   ~  
]�á, �c ,    �á = �çèé�ê�` � ,     ∀�ãä1,2, … 0æ 

ENM10 ln (
)  ~  àÜèé�ê ln (
á)  ~  
]�á , �c ,    �á = �çèé�ê�` � ,     ∀�ãä1,2, … 0æ 

(a) ' is te number of features the model uses 
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ENMs (Zou and Hastie, 2005) are a simple and more interpretable ML model type because 

they are a penalized linear modeling approach with a mixture of Ridge Regression (Hoerl 

and Kennard, 1970) and Least Absolute Shrinkage and Selection Operator (LASSO) 

regression (Tibshirani, 1996). Ridge regression reduces the impact of collinearity on the 

features, whereas LASSO reduces the dimension of the problem by shrinking some of the 

coefficients to zero (less significant parameters). ENMs have two hyper-parameters: (a) ^ >
0 is the complexity parameter that controls the weight of the penalization factors; (b) / ∈
¬0,1­ is the compromise between Ridge (/ = 0) and LASSO (/ = 1). Small ^ values can result 

in an overfitted model (too complex), whereas high ^ values can result in an underfitted 

model (too simple). 

 

3.3 Step 3: Sensitivity Analysis and Selection of Hyper-Parameters 

For the 12 ML models defined in the previous step (1 ANN, 1 RF Regression, and 10 ENMs), 

a sensitivity analysis on their main hyper-parameters is performed to assess the 

underfitting-overfitting trade-off. The implemented sensitivity analysis (algorithm shown in 

Figure 3.3) consists of using an iterative Ë-fold Cross-Validation (CV) method with 
ëTVU =
100 iterations and Ë = 4 folds. K-fold CV is useful for data scientists when dealing with small 

databases (a few thousands of data samples). Iterations are included because in Structural 

Engineering the database are typically even smaller (just a few tens or hundreds). Figure 

3.3 shows that each iteration requires randomly dividing the training set into Ë folds and 

performing a Ë-fold CV analysis for all possible hyper-parameter configurations. Once the 

sensitivity analysis is completed, Ë × 
ëTVU = 4 × 100 = 400 RMSE values are computed for 
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each configuration of hyper-parameters. Then, for each of these configurations, the mean 

and standard deviation of the computed RMSE are obtained. Based on the lower mean error 

and lower standard deviation, the optimal hyper-parameters are selected. 

 

Figure 3.3: Sensitivity analysis algorithm to select the optimum set of hyper-parameter values 

 

3.3.1 ANN 

The main hyper-parameters for an ANN model are the number of hidden layers and neurons 

per layer. General rules regarding these hyper-parameters depend on the size of the 

database or on the number of input features. Suggested rules can be found in the literature 

(Chen et al. 2018; Moradi and Hariri-Ardebili, 2019), which are covered by the ranges 

selected for the sensitivity analysis: 

• The number of hidden layers was varied from 1 to 6 
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• The number of neurons per hidden layer was varied from 1 to 30. For all ANN trained 

in the sensitivity analysis, all hidden layers were implemented with the same number 

of neurons. 

The results of the sensitivity analysis are shown in Figure 3.4. The best ANN configuration 

for each number of hidden layers considered is indicated with a blue dashed line. From these, 

the optimum ANN is the one with 4 hidden layers and 30 neurons in each layer because it 

has the minimum mean error (MIN RMSE) and the lowest standard deviation (SD). All 

previous configurations (same 4 hidden layers, but fewer neurons) show a large range of 

similar and stable results in terms of both mean error and SD. 

 

Figure 3.4: Sensitivity analysis to define the optimum ANN configuration 

 

3.3.2 RF Regression 

A large number of decision trees (1000 trees) is selected to ensure that a stable error level 

is reached. For this study, the error became stable at around 300 trees. There are two other 

hyper-parameters that could have an impact on the performance of the model (Zhang and 

Ma, 2012): (1) the number of variables (selected among all the features) in each cell (���
), 
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and (2) the pre-specified threshold of maximum observation per cell (0��� �í�). For 

classification problems, ���
 is lower than � and is commonly taken as _�, where � is the 

number of input variables. For regressions, ���
 is commonly taken as one-third of the 

number of samples in the dataset. Although there are suggested values for ���
, RFs are not 

too sensitive to ���
 (Zhang and Ma, 2012). In the sensitivity analysis, values of ���
 from 

both rules are used, i.e., ���
 values smaller than � and values around one-third of the 

training and complete sets. As for the 0��� �í� parameter, it is thought that having large 

trees (associated with small 0��� �í� values) always produces better results (Breiman, 

2001). However, a recent study (Segal and Xiao, 2011) shows that there could be cases where 

large trees overfit the model. Although this is probably not the case because of the database 

size, the sensitivity analysis covered a broad range of 0��� �í� values to verify the behavior. 

Figure 3.5 shows that the RF results are only slightly sensitive to ���
, and that having large 

trees (small 0��� �í�) results in low errors (RMSE). The stability of the results for ���
 

values of 50, 90, and 130 is reached at smaller 0��� �í� values. Figure 3.5 also shows that 

the optimal RF model is obtained for the case with ���
 = 50 and 0��� �í� = 1 (minimum 

mean and SD). 
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Figure 3.5: Sensitivity analysis to define the optimum RF Regression configuration 

 

3.3.3 ENMs 

The same sensitivity analysis approach was implemented for each of the 10 ENMs defined in 

Table 3.1. The log(^) values ranged from -12 to -2, while the / values were 1.0, 0.8, 0.6, 0.4, 

0.2, and 0.0. As an example, Figure 3.6 presents the sensitivity analysis results for ENM6. 

 

Figure 3.6: Sensitivity analysis for ENM6 model: _
áÞ ∼ 
]�á , �c, �á = �′poly�� 
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For the ENMs, in addition to the optimum set of hyper-parameters, hyper-parameter sets 

associated with different underfitting levels are defined. In this study, the three underfitting 

levels selected include: 

• One in which error corresponds to the error that is one standard deviation away from 

the error of the optimum model (“1-SD away” version). 

• An underfitted model that uses six features only (“6-feature” version). 

• An underfitted model that uses three features only (“3-feature” version). 

The reason for selecting these underfitting levels is because a model with a complexity-level 

applicable for a code-oriented shear strength equation is of particular interest in this study. 

Figure 3.7 presents the mean errors obtained from the sensitivity analysis of all 10 ENM 

models and demonstrates that regardless of the value of / considered (compromise between 

Ridge and LASSO), there is a ^ value where practically the same optimum error is reached. 

 

Figure 3.7: Mean of MSE obtained from the sensitivity analysis of all ENM models 
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Figure 3.8 shows that the number of coefficients shrinks faster for higher / values (as 

expected). More importantly, it indicates that it is difficult for the models to exclude features 

to reach the defined underfitted levels of interest (models with only between 3 and 6 

features) for lower / values. Because of these reasons, for each ENM in this study, the 

selected optimum hyper-parameter configuration is / = 1 and its associated corresponding 

^ optimum value, i.e., all selected ENMs are LASSO models. 

 

Figure 3.8: Mean non-zero coefficients obtained from the sensitivity analysis of all ENM models 

 

Therefore, from each ENM, one optimum version is selected along with three underfitted 

versions. As an example, the blue, green, and orange vertical dashed lines in Figure 3.6(a) 

indicate the ̂  values associated with the selected underfitting levels for the LASSO model #6, 

in addition to the optimum version indicated with a black dashed vertical line. The ^ value 

associated with each underfitted level for all ten LASSO models is selected in the same 

manner. 
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3.4 Step 4: Training, Verification, and Selection of Best Performing Models 

All the models are trained with the selected sets of hyper-parameters using the training set. 

This results in 42 trained ML models: 

• Optimum ANN (1 model) 

• Optimum RF Regression (1 model) 

• Optimum version of each LASSO (10 models) 

• The 1-SD away version of each LASSO (10 models) 

• The 6-feature version of each LASSO (10 models) 

• The 3-feature version of each LASSO (10 models) 

The best performing model of each of these groups are selected. The acceptability criterion 

adopted in this study defines a model as acceptable when the errors of the training and 

testing sets are both within a defined margin away from the converging error, which is ±20% 

for the optimum models and ±10% for the underfitted models. The converging error is taken 

as the average of the training and testing errors. Optimum models have a larger margin 

because they are right on the balanced point between the underfitted and overfitted models, 

and thus they have the potential to “keep learning” (i.e., re-adjust their coefficients a bit) if 

new data are provided for training. On the other hand, by definition, underfitted models are 

not capable of capturing enough details of the process they are representing, and they follow 

more rough trends identified from the data, which is the reason for the stricter margin 

around the converging error. More details on this and the definition of the acceptability 

criterion are given in Section 3.4.3. 
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3.4.1 Optimum ANN and RF Regression 

The complex ML models, ANN and RF, are trained using the configurations based on the 

selected optimum hyper-parameters. Although the training process was based on the RMSE 

between 
TUJV and 
WUVX, see Figure 3.9(a) and Figure 3.10(a), similar model performance 

(i.e., training and testing errors within ±20% of the converging error) is obtained when 

predicting values from the training and testing sets in terms of the mean and COV of 

�TUJV/�WUVX, as shown in Figure 3.9(b) and Figure 3.9(c) for the optimum ANN and in 

Figure 3.10(b) and Figure 3.10(c) for the optimum RF. Figure 3.9(c) and Figure 3.10(c) 

also show that the predictions for the training and testing sets have the same distribution 

shapes. 

 

Figure 3.9: Performance of selected ANN on the training and testing sets in terms of: (a) normalized shear 
stress; (b) �TUJV/�WUVX  vs �TUJV; (c) distributions of �TUJV/�WUVX . (Note: 1 kip = 4.448 kN) 
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Figure 3.10: Performance of selected RF Regression on the training and testing sets in terms of: (a) normalized 
shear stress; (b) �TUJV/�WUVX  vs �TUJV; (c) distributions of �TUJV/�WUVX . (Note: 1 kip = 4.448 kN) 

 

3.4.2 Optimum and Underfitted LASSO Models 

All 40 LASSO models selected (4 from each ENM defined in Table 3.1) are trained using only 

the features associated with each selected hyper-parameter configuration. This means that 

the 40 models are linear regressions with different engineered features. Table 3.2 through 

Table 3.5 show the error of the 40 models (sorted from smaller to larger converging error) 

when predicting values from both the training and testing sets and include a column that to 

show the acceptability of the model based on the criterion defined earlier. The error is 

expressed in terms RMSE between 
TUJV and 
WUVX. As can be seen from these tables, there 

are some model versions that do not meet the acceptability criterion. For each complexity 

level (i.e., LASSO version), the model meeting the acceptability criterion (among those 

associated with the same complexity level) and with the smaller converging error was 

selected. A total of 4 ENMs are selected, which are highlighted in yellow in Table 3.2, Table 

3.3, Table 3.4, and Table 3.5): the best optimal LASSO model, the best 1-SD away LASSO 

model, the best 6-feature LASSO model, and the best 3-feature version. The same result is 

presented graphically in Figure 3.11. Note that the optimum LASSO model #9 and #10 have 

large errors, which is attributable to the implemented automated selecting of hyper-
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parameters, which for this case are just a little past the underfitted-overfitted sweet point; 

this is part the reason for which including the 1-sd away (especially for those LASSO models 

that are more complex). 

Table 3.2: Optimum LASSO models 

Model 
RMSE 

(train) 

RMSE 

(test) 

RMSE 

(conv) 
Passes? 

6 0.0117 0.0137 0.0127 Yes 

5 0.0114 0.0167 0.0140 Yes 

7 0.0112 0.0177 0.0145 No 

3 0.0131 0.0181 0.0156 Yes 

8 0.0120 0.0207 0.0163 No 

4 0.0148 0.0186 0.0167 Yes 

2 0.0134 0.0202 0.0168 No 

1 0.0197 0.0216 0.0207 Yes 

9 0.0122 0.0631 0.0377 No 

10 0.0122 0.3469 0.1795 No 
 

Table 3.3: 1-sd away LASSO models 

Model 
RMSE 

(train) 

RMSE 

(test) 

RMSE 

(conv) 
Passes? 

9 0.0137 0.0147 0.0142 Yes 

6 0.0140 0.0175 0.0158 No 

10 0.0139 0.0185 0.0162 No 

3 0.0137 0.0189 0.0163 No 

5 0.0146 0.0181 0.0164 No 

4 0.0144 0.0183 0.0164 No 

2 0.0138 0.0199 0.0169 No 

7 0.0140 0.0213 0.0176 No 

8 0.0145 0.0244 0.0195 No 

1 0.0203 0.0219 0.0211 Yes 
 

 

Table 3.4: 6-feature LASSO models 

Model 
RMSE 

(train) 
RMSE 

(test) 
RMSE 

(conv) 
Passes? 

3 0.0153 0.0194 0.0174 No 

9 0.0152 0.0201 0.0176 No 

4 0.0164 0.0190 0.0177 Yes 

8 0.0147 0.0209 0.0178 No 

10 0.0164 0.0198 0.0181 Yes 

6 0.0203 0.0212 0.0207 Yes 

1 0.0203 0.0219 0.0211 Yes 

5 0.0200 0.0222 0.0211 Yes 

7 0.0220 0.0233 0.0226 Yes 

2 0.0213 0.0240 0.0226 Yes 
 

 

Table 3.5: 3-feature LASSO models 

Model 
RMSE 

(train) 
RMSE 

(test) 
RMSE 

(conv) 
Passes? 

10 0.0192 0.0218 0.0205 Yes 

8 0.0184 0.0256 0.0220 No 

4 0.0218 0.0237 0.0227 Yes 

9 0.0208 0.0291 0.0250 No 

2 0.0245 0.0292 0.0268 Yes 

3 0.0249 0.0288 0.0268 Yes 

1 0.0273 0.0289 0.0281 Yes 

5 0.0264 0.0310 0.0287 Yes 

6 0.0279 0.0320 0.0300 Yes 

7 0.0276 0.0360 0.0318 No 
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Figure 3.11: Error of each LASSO model version – accepted vs rejected models 

 

Figure 3.12 shows the similar behavior of these four trained LASSO models when predicting 

values from both the training and testing sets. In this figure, the error is expressed in terms 

RMSE between 
TUJV and 
WUVX, and in terms of mean and COV of the �TUJV/�WUVX ratio and its 

distribution. It can be seen that the errors go up and the distributions of the 
TUJV/
WUVX 

become wider as the complexity level of the models is relaxed, but they maintain the shape 

of a normal distribution. Nonetheless, the errors obtained for the 6-feature and 3-feature 

linear regressions are still very low when compared against the results of previous proposed 

equations (see Table 2.3). In this comparison, it is important to consider the size of the 

database, the ranges its parameters cover, and that for the database used in this study, all 

wall tests were reported to have failed in shear.  
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Figure 3.12: Performance LASSO models on the training and testing sets in terms of: (a, d, g, j) normalized shear 
stress; (b, e, h, k) �TUJV/�WUVX vs �TUJV; (c, f, i, l) distributions of �TUJV/�WUVX . (Note: 1 kip = 4.448 kN) 

 

Another way to verify the performance of the models is to plot the learning curves of the 6 

selected models computed using the training and testing sets (Figure 3.13). Learning curves 

also provide a tool to understand how the models would behave if new data are available. 

The learning curves, similar to what was done for the sensitivity analysis, are obtained using 
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iterations; the training and testing errors associated with each size of the training dataset 

are obtained as the average of 50 RMSE values coming from models trained using 50 

different subgroups of the same size randomly extracted from the training set. Except for the 

RF regression, all the learning curves shown in Figure 3.13 have a gap between the training 

and testing curves and reach a plateau when approaching the use of 100% of the training set. 

Because of this, the error obtained when including future data in the training set to retrain 

these same models (i.e., keeping the same hyper-parameters and relevant features already 

identified) should fall between the training and testing errors but closer to the training error. 

On the other hand, the training and testing learning curves for the RF regression are very 

close to each other due to selecting a very large number of trees, but it can still be seen that 

the slope of the learning curves are becoming less steep (reaching a plateau) when the 

training size becomes larger. This means that, when providing additional data for training 

the same RF regression model (i.e., same hyper-parameters and input features), the 

converging error would get closer to that plateau, resulting in a slightly lower error. 

 

Figure 3.13: Performance LASSO models on the training and testing sets in terms of: (a, d, g, j) normalized shear 
stress; (b, e, h, k) �TUJV/�WUVX vs �TUJV; (c, f, i, l) distributions of �TUJV/�WUVX . (Note: 1 kip = 4.448 kN) 
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3.4.3 Definition of the Acceptable Bandwidth Around the Converging Error 

Part of the understanding of how well a model is working and if it is meeting the 

expectations, comes from analyzing the converging error. The proposed framework results 

in having optimum models which training and testing errors have a small difference between 

them. However, judgment is required to define “how small” is acceptable. The experience of 

the authors comes from reviewing and understanding how existing models work and the 

error they have (see Section 3). After reviewing several studies addressing both simple 

models (see Table 2.1, Table 2.2, and Table 2.3) and complex ML models (see Table 2.4), 

and analyzing several relevant existing models against the comprehensive database 

collected for this study (see Figure 4.2), it is known that there are equations than can get a 

true-to-predicted mean ratio very close to 1.0 with a COV as low as 0.30. Therefore, when 

training a much more complex model, it is desired and expected to obtain a converging error 

that is much lower than the ones obtained by the best existing equations, and of course it is 

also expected that both training and testing error are smaller than the errors obtained by the 

best existing equations. 

The errors of the several existing models when predicting the values of the common 

comprehensive database also give a sense of how much could be an acceptable low range 

around the converging error. However, it was already introduced another ML tool that 

provides valuable information regarding this: the “learning curves”. The learning curve tells 

how fast the model learns; if the model sees a very small portion of the training set, it will 

not learn enough to make good predictions of the testing set, but when the model has seen 

almost the entire training set, it is expected to be already producing good predictions of the 

testing set. A learning curve has a particular shape if the model is underfitted, overfitted, or 
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optimum (balanced), as conceptually shown in Figure 3.14 for regression models. It is 

relevant to add that reaching a plateau for both training and testing error learning curves 

before reaching the 100% of the training set is important, otherwise, the model is still 

capable of learning. 

 

Figure 3.14: Typical learning curve shapes for Regression Models (Emmert-Streib and Dehmer, 2019) 

 

In addition to the understanding of how existing models behave, it is crucial that the 

framework requires training not only one, but a group of models to its optimum version 

along with underfitted versions of them as well. In this study, 12 optimum ML model versions 

were selected and trained (1 ANN, 1 RF Regression, and 10 LASSO models). Also, three 

underfitted versions for each LASSO model was defined, which means there are three groups 

of 10 underfitted LASSO model versions. The group of optimum models reached training 

errors (in terms of COV) between 0.11 and 0.13 for almost all of them (except for two of the 
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simplest LASSO models) and reached testing errors between 0.15 and 0.20 for almost all of 

them (except for two of the more complex LASSO models). The acceptable bandwidth around 

the converging error was gradually increased from 0% of the converging error, and the 

results were analyzed as it is shown in Table 3.6. 

Table 3.6: Results of using different acceptable bandwidths around the converging error for the training and 
testing errors 

Acceptable Bandwidth Results and Comments 

0% of the converging error No model was accepted 

5% of the converging error 

Only one model was accepted, and it had a converging error of COV=0.20. 

This band error was discarded because the converging error was too high 

to be set as the target optimum error. This decision was made based on 

the values obtained for the training errors, and also based on the same 

analysis being done in parallel with the underfitted models. 

10% of the converging error 
Only one (same) model was accepted. Discarded for the same reasons as 

before. 

15% of the converging error 
Two models were accepted. The converging errors were COV=0.20 and 

COV=0.16. Discarded for the same reasons as before. 

20% of the converging error Six models were accepted. The smallest converging error was COV=0.13. 

 

Because of the results shown in Table 3.6 and the results of the same analysis but developed 

on the underfitted model versions, the acceptable bandwidth is set as 20% of the converging 

error. This results in all the following: 

• The optimum ANN passes the 20% of the converging error criterion. 

• The optimum ANN has a converging error of COV = 0.14, which is aligned with the 

smallest converging error of the group of six models passing the 20% criterion in 

Table 3.6. 
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• It leaves room to set a stricter acceptable bandwidth for the underfitted models, 

which is defined as 10% of the converging error. 

• Setting a 10% of the converging error as criterion for the underfitted models makes 

it easier but still strict for them the comply with it. 70% of the simpler underfitted 

models (3- and 6-feature LASSO models) pass the criterion, while only 20% of the 

more complex but still underfitted models pass it (1-sd away LASSO models). Refer 

to Table 3.3, Table 3.4, and Table 3.5 to see this. 

An underfitted model must be assigned with a stricter acceptable bandwidth because it is 

“easier to learn” for them. This means, underfitted models have a larger converging error, 

but they can reach it faster than the optimum models reach their converging error. For 

instance, Figure 3.13(c) shows the learning curve for the selected optimum LASSO models 

(in terms of the error indicator used for the training, RMSE), and it can be seen that a plateau 

is obtained at around 80% of the training dataset. Figure 3.13(e) and Figure 3.13(f) show 

the learning curve of the selected 6-feature and 3-feature LASSO models, respectively, and 

they reach their plateaus at about 30% and 20% of the training dataset, respectively. 

 

3.5 Step 5: Setting Target Errors for Different Model Complexity Levels 

The 6 selected models can be retrained by adding the testing data to the training set and 

keeping the same selected hyper-parameters and input features. Because these models have 

a good performance that has been verified and the testing data have a distribution similar to 

the testing data (see Figure 3.1), the retraining process will only refine them (Amazon Web 

Services, 2019). The results are presented side by side in Figure 3.15, sorted from higher 



 

42 

 

model complexity level (left) to lower model complexity level (right): optimum ANN, 

optimum RF, optimum LASSO M6, 1-sd away LASSO M9, 6-feature LASSO M4, 3-feature 

LASSO M10. As expected, performances very similar to those obtained before the retraining 

process and aligned with the observations derived from the learning curves are obtained. 

This good behavior is verified with different error indicators, in terms of the RMSE between 


TUJV and 
WUVX (error used in the training process, 1st row of plots of Figure 3.15, RMSE 

between 1.0 and �TUJV/�WUVX (2nd row of plots of Figure 3.15), and mean and COV of 

�TUJV/�WUVX (3rd row of plots of Figure 3.15). 

 

Figure 3.15: Retrained ML models 
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Figure 3.15 shows that the ANN performs better (smaller error) than RF, but there is still 

room for the RF to improve when additional data are added to the database. The optimum 

LASSO model performs practically the same as the optimum ANN, or even slightly better if 

the RMSE between 
TUJV and 
WUVX is considered. This is a relevant finding for two main 

reasons: 

• The complexity level of a LASSO model is much less than that of an ANN model 

because the penalization factors included in the error definition used in the training 

process to define which features are kept, are removed and the models are treated as 

linear regressions using those selected features only, which in the case of the 

optimum LASSO model in this study, are 45 features engineered from the 10 starting 

features. 

• The underfitted LASSO models can be understood as a soft relaxation away from the 

optimum when looking for target model performances (errors) that fulfill user 

requirements for less complex models. The 1-SD away LASSO model is a linear 

regression of 14 features engineered from 7 of the 10 starting features (×q, ×�, ×¿, ×Ø, 

×¾, ×Ú and ×q�), the 6-feature LASSO model is a linear regression of 6 features 

engineered from 6 of the 10 starting features (×q, ×�, ×¿, ×�, ×Ø and ×¾), and the 3-

feature LASSO model is a linear regression that uses 3 features engineered from 5 of 

the 10 starting features (×q, ×�, ×¿, ×Ø and ×q�). 

An equation with 3 to 6 terms defined from 5 to 6 parameters is representative of the 

complexity level of equations adopted in building codes and standards, as it can be seen from 

Table 2.1. The wall shear strength equation in Section 18.10 of ACI 318-19 (see Table 2.1) 
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is shorter, but it does not consider some parameters that are important based on the 

literature review, such as the effect of the boundary element (longitudinal reinforcement 

and/or flanges) and axial load ratio. Therefore, for the comprehensive database presented 

in this study or for a similar database (similar ranges and distributions for at least the same 

parameters included in this database, as is the case of the testing set with respect to the 

entire database accordingly with Figure 3.15), models with the different levels of 

complexity noted should comply with the requirements stipulated in Table 3.7. 

Table 3.7: Target Performances 

Acceptable Bandwidth Complex ML Models Simple Models 

Number of parameters − ~3 − 6 

�TUJV/�WUVX  mean ratio 0.99 − 1.01 0.98 − 1.02 

COV of �TUJV/�WUVX  ratio ≤ 0.12 0.16 − 0.19 

Training Vs testing Error margin ±20% of the converging error ±10% of the converging error 

 

Note that the verification of the last requirement in Table 3.7 should be verified at least in 

terms of the error indicator used in the training process. Ideally, additional error indicator 

should be included in the performance verification to confirm model robustness. 
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Chapter 4. Insights Related to the RC Wall Shear Strength Problem 

 

4.1 Comments on Relevant Parameters 

Among the starting features defined from Eq. (4.7) to Eq. (4.16), the ones used in the 6- 

and/or the 3-feature LASSO models defining the performance requirement for a code-

oriented equation are: 

                                                                 ×q   =    *Oa -bOa-M̀                                                               
                                                                 ×�   =    *O\ -bO\-M̀                                                               
                                                                 ×¿   =    *O®V -b®V-M̀                                                              
                                                                 ×�   =    1 + 4J[½-M̀                                                            
                                                                 ×Ø   =    IJ�JPO                                                                    
                                                                 ×¾   =    �OPO                                                                        
                                                                ×q�   =    [®V[½                                                                     
The only ones that are not listed here are ×r = �/PO , ×Ù = �O/PO and ×Ú = ℎO/PO . The 

absence of ×r = �/PO can be attributable to the presence of ×q� = [®V/[M\ and ×¿ =
*O®V-b®V/-′M , because these two features can be used to represent the forces of compression 

or tension that are developed at the wall edges. The absence of ×Ù = �O/PO can be 

attributable to the presence of ×¾ = �O/ℎO, which already accounts for the wall thickness 

and can be used together with ×Ø = IJ/(�JPO) to reproduce values that have high 

correlation with ×Ù = �O/PO. On the other hand, the absence of ×Ú = ℎO/PO among the 

previous parameters is striking, but there is a good reason for it. Some of the models 
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reported in Table 2.1 or Table 2.2 use wall aspect ratio (ℎO/PO) as a parameter to estimate 

wall shear strength (ACI 318-19 is one of those), whereas some other models use moment-

to-shear span ratio (IJ/(�JPO)). In many of the tests reported in the literature (82% of the 

tests in the database used), these values are the same because the test involves a cantilever 

wall, fixed at the base, with a single point load applied near the top of the wall, i.e., IJ = �JℎO 

(see Figure 4.1). 

 

Figure 4.1: Histogram of test configuration 

 

For some tests reported in the literature, these values are not the same (e.g., for a partial 

height wall with an applied lateral load and moment at the top of the wall) and it is necessary 

to define an effective wall height ℎO,Vww and wall aspect ratio (ℎO,Vww/PO) for these tests. 
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Figure 4.1 shows that, for the database used, there are 32 specimens with a moment applied 

to the top of a partial height wall, 3 cantilever walls with 2 or more lateral loads, and 26 

specimens tested with double curvature configuration. For tests with multiple applied lateral 

loads (e.g., see Cardenas and Magura, 1972) and/or a moment applied at the top of the wall 

test (e.g., see Segura and Wallace, 2018), the effective wall aspect ratio ℎO,Vww/PO was defined 

as IJ/(�JPO) at the wall critical section (wall-foundation interface). If this approach is used, 

then identical results are produced from the test database using either ℎO/PO or IJ/(�JPO). 

Thus, to define ×Ú = ℎO/PO, the constructed wall height was used because that is how the 

aspect ratio has been defined in other studies. However, for the reasons given above, it was 

expected that ×Ø = IJ/(�JPO) would be a better parameter. 

 

4.2 Comments on Existing Models Performances 

The performance of the existing models in codes and standards was evaluated using the 

common, comprehensive database gathered for this study (see Figure 4.2). Figure 4.2 

shows that mean values varied from 0.70 to 1.97, and the COV values vary from 0.30 to 0.47 

and that none of the existing models performed particularly well. The AIJ (1999) model had 

the least variation (but with mean value of 0.7). The Barda et al. (1977) model and the 

Sánchez-Alejandre and Alcocer (2010) model had mean values very close to 1.0, but COV 

values greater than 0.30. The ASCE 43-05 model (which is based on Barda et al., 1977) 

resulted in a mean value of 1.22 and COV of 0.30. None of these models meets the 

requirements for the simplified model complexity level stated in Table 3.7. 
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Figure 4.2: Performance comparison of existing models using the single, comprehensive database gather for this 
study 

 

Additionally, Table 2.2 shows that Kassem (2015) and Looi and Su (2017) calibrated their 

models using a database similar in size to the one used in this study. Table 2.3 shows that, 

although close (COV of 0.21 and 0.27 of the true-to-predicted ratio, with a mean value close 

to 1.0), not even these models reached the target performance defined for simple models, 

even though all data was used in the calibration process and no assessment of unseen data 

was developed.  

 



 

49 

 

As for the ML models analyzed in the literature review; no one meets the complex model 

level target performance either because the error is not small enough or because the 

difference between the training and testing error is too large. The proposed approach 

provides a framework to better train ML models, particularly when the problem being 

addressed is based on basic mechanical principles. The application of the framework made 

all ML model types studied here to provide very similar results at their respective optimum 

complexity level. 

Achieving the same good performance of complex ML model with a simple LASSO model 

emphasizes that the size of databases used for many civil engineer problems may still be too 

small to benefit from the use of complex ML model types (such as ANN and RF regressions) 

because a linear regression with the right features can still perform as good, or even slightly 

better, as the complex ML models. This is aligned with the rule of thumb that says ML models 

should be train on at least an order of magnitude more samples than input model parameters 

(Morgan and Bourlard, 1989; Google ML Education n.d.; Gonfalonieri, 2019). The optimum 

LASSO model presented in this study uses 45 features, which are engineered from the 10 

starting features presented in Eqs. (4.7) to (4.16), which can be easily implemented in an 

excel spreadsheet. This would not be the case for the ANN or RF regression models. 
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Chapter 5. Methodology to Define a Code-Oriented Equation 

 

A new equation to predict wall shear strength is desired because the current equation in ACI 

318-19 Section 18.10 nor the existing models (see Figure 4.2) meet the target model 

performance required for a code-oriented model complexity level (see 4.7) when predicting 

values of a common, comprehensive database of walls reported to have failed in shear as the 

one gathered for this study. 

As mentioned  before, the databases used by Kassem (2015) and Looi and Su (2017) are 

comparable in size with the database used in this study. The model comparisons reported by 

these authors in their respective studies (presented in the last columns of Table 2.3) show 

that only their own proposed models are close to the target performance for a simple model. 

However: 

• The databases used in their studies use the assumption that walls with ℎO/PO ≤ 2.0 

fail in shear, which although reasonable, might not always be true and thus it can 

cause the proposed model to be biased. 

• Both studies used the entire databases to calibrate their models and as a consequence 

it is uncertain if the model will present high bias or variance (see Figure 3.14) when 

faced against new data. 

• The proposed models are still complex mainly because of their format. 

In this chapter, an approach combining ML and statistical methods is implemented to shrink 

an equation (starting equation) with a code-oriented format (�L = �M + �Z) up to the point 

where the corresponding target performance is achieved. The same database with the same 
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training and testing sets used in the previous chapters is used here. It is relevant to mention 

that once a code appropriate equation was developed using the database of 333 walls with 

symmetrical cross sections (rectangular, barbell, H-shaped), additional studies are 

conducted to determine modifications need to apply the equation to walls with 

unsymmetrical cross sections (L- and T-shaped), since these wall shapes are commonly used. 

 

5.1 Step 1: Collection and Preparation of Data 

The same database of 333 symmetrical walls reported to have failed in shear used before is 

used here as well. This database has already been rigorously reviewed to filter out tests that 

do not meet predefined criteria or where inconsistent results were reported (see 4.1). In 

addition to the same training set of 266 samples and testing set of 67 samples, a second 

testing set of unsymmetrical walls is included for this part of the study. 

The second testing set of unsymmetrical walls consists of 13 samples out of the 20 

unsymmetrical walls identified with T-shaped and L-shaped, or walls with a column (half 

barbell shaped or column with wing walls) in the original (larger) dataset (see 4.1). This 

approach was used because 13 tests was insufficient compared to 333, i.e., the inherit 

differences associated with these tests would be overlooked by the training process if 

included as part of the training and testing datasets. Since use of wing walls is not common 

in the U.S., the Japanese Code (AIJ 1999) includes detailed recommendations on 

determination of wing wall shear strength), the 7 wing wall samples among the 2- 

unsymmetrical walls were excluded. The dataset of 13 tests is derived from 11 tests, because 
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2 of the tests reported were failed in both directions of loading (specimen HW2 tested by 

Kabeyasawa et al, 1996, and specimen SWBT-L40 tested by Baek et al., 2020). 

 

5.2 Step 2: Identification of Relevant Parameters and Starting Equation 

The first step involves identifying the relevant parameters based on a literature review, and 

then normalizing these parameters (e.g., using shear stress versus shear strength, since most 

tests were done on reduced scale test specimens). In this case, the parameters considered in 

the starting model are the relevant features used in the simplest ML models (6- and 3-feature 

LASSO models) indicated in Section 5.1: 

*Oa -bOa-M̀       , *O\ -bO\-M̀       , *O®V -b®V-M̀       , 1 + 4J[½-M̀       , IJ�JPO       , �OℎO       , [®V[½  

The selected parameters include material-related parameters (�ë) and other parameters 

(±á,ë): 

• Material-related parameters (�ë): concrete strength and correlated cross-sectional 

area ([½̀; -M̀ ), quantity and yield stress of longitudinal reinforcement at the wall 

boundary (*®V; -b®V), quantity and yield stress of horizontal web reinforcement (*Oa; 

-bOa), and quantity and yield stress of vertical web reinforcement (*O\; -bO\) 

• Other parameters (±á,ë): axial load ratio 4J/([½̀-½̀), shear-span ratio IJ/(�JPO) (or 

aspect ratio ℎO/PO). 

Where all these variables have been already introduced, except for [½̀. The gross-section [½̀ 

is the wall web area ([M\) plus the area of the effective overhanging flange width  (if present) 
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at the edge (or boundary) of the wall subjected to compressive stresses due to overturning 

moment. It is also introduced now [Z® , which is the area of concentrated longitudinal tension 

reinforcement at a wall boundary within 0.20PO from the wall edge, as well as the area of 

longitudinal reinforcement located within an effective tension flange width, if it exists. If wall 

web longitudinal reinforcement is uniformly distributed, then [Z® includes the area of 

longitudinal reinforcement within 0.20PO from the wall edge, as well as longitudinal 

reinforcement within the effective flange. 

It is noted that initially, gross cross-sectional area ([½), which represents the wall web area 

and the area of the effective overhanging tension and compression flange width for an H-

shaped wall cross sections, or the entire area of barbell-shaped cross sections, was used in 

this methodology (just like in the previous chapters, because it was convenient, and due to 

symmetry, did not influence the results). However, evaluation of the second dataset (of 

unsymmetric wall cross sections) indicated that this approach was difficult to interpret for 

unsymmetrical walls (additional comments on why this term is used are presented in Step 

4). 

These parameters are rearranged into an equation that follows the “�M + �Z” (concrete 

contribution plus steel contribution) format. The “Other Parameters” (±á,ë) are normalized 

and unitless and are weights that multiply each of the “Material Parameters” (�ë) terms, 

which have units of force (e.g., kN, kips, etc.).  Figure 5.1 shows the general form of the 

equation that is used to form the starting equation that is then reduced (shrinking process). 

The starting equation is normalized to avoid the many potential issues that could arise 

during the training process (see Section 3.2. It is noted that this normalization process is 
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based on the physics of the problem, i.e., different than the normalization or scaling concepts 

used in statistics, which are still required prior to training a model. The predicted variable is 

almost the same as the one when applying the framework to set target model performances: 

                                                                         
TUJV = �J[½̀-M̀                                                                     (7.1) 

The only what changes in the definition of 
TUJV respect to that of Eq. (4.17) is that in Eq. 

(7.1) [½̀ is used instead of [½. 

 

Figure 5.1: Definition of the starting equation 

 

For the reasons mentioned in Section 5.1, it is necessary to define an effective wall height 

ℎO,Vww for wall tests with multiple lateral loads applied over the wall test specimen height or 

for walls with a moment applied at the top of the wall. As said in Section 5.1, a common 

approach is to use ℎO,Vww = IJ/�J; therefore, for most of the tests in the database, with a 

single point load applied near the top of a fixed-based, cantilever wall (see Figure 5.1), 
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ℎO,Vww = ℎO. With this definition, the same predictive equation would be achieved using 

either ℎO,Vww/PO or IJ/(�JPO). In this study, IJ/(�JPO) is used. However, for a real building, 

use of ℎO/PO versus IJ/(�JPO) would produce different results. This issue is addressed later 

in Section 8.3. 

5.3 Step 3: Training Process, Equation Simplification and Performance 

Verification 

5.3.1 Training Process and Equation Simplification 

The unknown coefficients to be studied and fitted are the �ë, �ë and �ë coefficients of the 

normalized equation shown in Figure 5.1. The database was split into the same training 

(80%) and testing (20%) sets used before (Section 4). The iterative Ë-Fold Cross Validation 

method implemented before is used here as well (see Figure 3.3). In this case, in addition to 

keeping track of the model error, p-values are also recorded. The algorithm shown in Figure 

5.2 is implemented to shrink (simplify) the starting equation until the model error meets the 

target error (see Table 3.7). 
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Figure 5.2: Algorithm implementing 4-Fold CV to shrink the starting equation 

 

The methodology involves splitting the training dataset randomly into Ë folds, Ë − 1 of the 

folds are used as sub-training datasets to train a nonlinear regression model and the 

remaining fold is used as a validation dataset. All this is done Ë times within each iteration. 

The training process produces p-values for each �ë, �ë and �ë coefficients, whereas model 

error is computed from model predictions using the validation dataset. Although root mean 

square error (RMSE) is used in the optimization process, the mean and COV of the true-to-

predicted ratio (�TUJV/�WUVX) are also computed. Once the iterative process is done, 


ëTVU × Ë = 200 errors and 
ë��� × Ë = 200 p-values for each �ë, �ë and �ë coefficients are 

obtained (in this case, Ë = 4 and 
ëTVU = 50 were used). The average error and the average 

p-value for each coefficient are calculated. The p-values indicate the statistical significance 
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for each model variable, the higher the p-value, the less significant the variable (Murtaugh, 

2014). If the average error is lower than the target error, then the variable associated to the 

largest average p-value is dropped. Judgement is applied so that the shrinking process is 

gradual, e.g., if the p-values of �� and �O\ are the first and second highest (respectively), the 

parameter associated with �O\ is the one that is dropped because it results in a more gradual 

shrinking of the equation. 

The starting equation (with all the parameters) had an average RMSE of 0.0150, and a mean 

and COV of the true-to-predicted ratio of 1.00 and 0.147, respectively. The resulting equation 

at the end of the shrinking process, see Eq. (7.2), has an average RMSE of 0.0164 and a mean 

and COV of the true-to-predicted ratio of 1.00 and 0.154, respectively. Because the nonlinear 

regressions resulted in very similar values for �®V and �Oa (after the axial load ratio 

parameter associated with coefficients �®V and �Oa were both dropped), these values were 

set equal to each other (�Z = �®V = �Oa). 

   
L = �� + �q � IJ�JPO��x Õ1 + 4J[′½-′MÖ®x + � IJ�JPO��Î ï�� *®V-b®V-′M
[®V[′½ + �¿ *Oa-bOa-′M

[M\[′½ð    (7.2) 

Results of the nonlinear regressions also produce results for fitted values for the �M , �M , �Z 

and � coefficients of Eq. (7.2). However, these fitted values (e.g., �M = −0.387, �M = 2.900 

and �Z = −0.391) are not commonly used (or typical) of a code equation. Therefore, the 

algorithm shown in Figure 5.3 was implemented to simplify the equation. 
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Figure 5.3: Algorithm to find the optimum round up values for �M , �M  and �Z coefficients 

 

This process involved selecting a range of values around the fitted values, e.g., ä�Mæ =
(0, −1/5, −1/4, −1/3, −2/5, −1/2), ä�Mæ = (1.5,2.0,2.5,3.0,3.5), and ä�Zæ = (0, −1/5, −1/
4, −1/3, −2/5, −1/2), and calibrating �ë coefficients using linear regression for each 

combination. The algorithm for this process shown in Figure 5.3 was implemented using 

Ë = 4 folds and 
ëTVU = 50 iterations. Note that since the coefficients �M∗, �M∗ and �Z∗ are 

assumed before the training process, only the �ë coefficients are calibrated. The combination 

of (�M∗, �M∗, �Z∗) values associated with the minimum average error are selected for use in the 

final equation. Some judgement can be applied in this process, i.e., the error associated for 

various combinations of �M , �M and �Z values might be similar (and meet the target error); 
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therefore, the most “convenient” values can be selected. Finally, values for ��, �q, �� and �¿ 

are selected based on the average values obtained from the 
ëTVU × Ë = 200 linear 

regressions associated with the selected (�M∗, �M∗, �Z∗) values. The obtained equation is shown 

in Eq. (7.3). 

                                             �L = /M[½̀-M̀ + /Z]*Z®-bZ® + *Oa-bOac[M\                                       (7.3) 

Where *Z® is the longitudinal reinforcement at the tensioned edge ratio defined as [Z®/[M\, 

and the /M and /Z coefficients are: 

                                                     /M = 1100 ⎝
⎜⎛9 �1 + 4J[½̀-M̀ �¿

k IJ�JPOnq/¿ − 6
⎠
⎟⎞                                                 (7.4) 

                                                                      /Z = 2
5 k IJ�JPOnq/¿                                                                 (7.5) 

 

5.3.2 Performance Verification - Symmetrical Walls 

The performance of Eq. (7.3) is first assessed with the testing set defined from the database 

of 333 symmetrical walls reported to have failed in shear. Figure 5.4 shows that similar 

values of RMSE, mean, and COV are obtained for both the training and testing sets and error 

indicators meet the requirements for a code-oriented model given in Table 3.7. Thus, the 

performance of the equation is verified when predicting values of an unknown dataset of 

symmetrical walls (rectangular, barbell, and H-shaped walls). 
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Figure 5.4: Obtained equation performance and verification: Symmetrical Walls 

 

5.3.3 Performance Verification - Asymmetrical Walls 

As noted previously, the entire methodology was first applied using [½ and a model similar 

to that shown in Eqs. (7.3), (7.4), and (7.5), was obtained. However, use of [½ could not easily 

be applied to walls with unsymmetrical cross-sectional shapes, because the longitudinal 

reinforcement at the wall boundaries and the area of concrete in compression are different 

depending on the loading direction. 

Prior studies have shown that beams (Shear, Committee on Masonry, and Structural 

Division, 1973) and walls (Kim and Park, 2020) with flanges in compression have larger 

shear strengths than beams and walls with rectangular cross sections and the same area 

longitudinal tension reinforcement, and that walls with flanges have higher shear strength 

(Gulec and Whittaker, 2011; Kassem, 2015). Since the equation developed in the first run of 

the methodology already accounted for the boundary longitudinal reinforcement in tension 

explicitly (including any reinforcement within the effective tension flange width), [Z® , it was 

decided to use the variable [½̀ (instead of [½) because this still captures the difference of the 

size of the area in compression of walls with a flange in compression respect to rectangular 

walls. It is highlighted again that Eq. (7.3) was developed using the dataset of 333 walls, 
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which included walls with both tension and compression flanges (H-shaped sections) and 

barbell-shaped sections, using variable [½̀. It is noted that the performance of the equation 

obtain in the first run of the methodology and Eq. (7.3) were essentially the same. Figure 5.5 

demonstrates how [½̀ and [Z® are defined for an unsymmetrical wall (a T-shaped wall in this 

case) based on the direction of loading and, therefore, different wall shear strengths are 

obtained for each direction of loading. 

 

Figure 5.5: Example of concrete cross-sectional area and tensioned longitudinal steel reinforcement 
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Results presented for the dataset of unsymmetric walls are provided in Figure 5.6 and 

demonstrate that the performance of the proposed approach is similar to that for the dataset 

of 333 symmetric walls. It is noted that the dataset of unsymmetrical walls is limited and that 

this approach should be reassessed if additional data become available. 

 

 

Figure 5.6: Obtained equation performance and verification: Unsymmetrical Walls 

 

5.4 Step 4: Performance of the Obtained Equation over the Complete Dataset 

Figure 5.7 shows the learning curves of the model using the training and testing sets in 

terms of the error computed as RMSE between 
TUJV and 
WUVX, and as COV between the ratio 

�TUJV/�WUVX and 1.0. The learning curves have the signature of an underfitted model (rapid 

convergence and a long plateau of the training and testing error), but with the converging 

error meeting the target error range and with the training and testing errors within the 

±10% bandwidth around the converging error (see Table 3.7). This means the predictive 

performance of the model is stable and will be essentially the same even if new data (that 

follow a similar distribution) are added to the training dataset (Amazon Web Services, 2019). 

Figure 5.8 presents the performance of Eq. (7.3) against the total database of 333 symmetric 
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walls that were reported to fail in shear. No retraining was done, i.e., the same equation 

obtained was applied to the combined training and testing dataset to compute RMSE, mean, 

and COV. 

 

Figure 5.7: Learning curves in terms of: (a) RMSE of 
TUJV  vs 
WUVX ; (b) COV of �TUJV/�WUVX  vs 1.0 

 

 

Figure 5.8: Obtained equation performance and verification: complete dataset of symmetrical walls 
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Chapter 6. Definition of the Proposed Equation 

 

The parameters involved in the equation obtained after applying the methodology described 

in the previous section (see Eq. (7.3)) must be analyzed prior giving a formal definition of 

the proposed equation, particularly those parameters that are new respect to the current 

equation in the ACI 318-19 Section 18.10. 

 

6.1 Dataset Parameter Range Limitations 

Histograms for axial load ratio 4J/][½̀-M̀ c, [½̀/[M\, and IJ/(�JPO) are presented in Figure 

6.1(a), Figure 6.1(b), and Figure 6.1(c), respectively. Based on the histograms for 

4J/][½̀-M̀ c and [½̀/[M\, limits of 0 ≤ 4J/][½̀-M̀ c ≤ 0.20 and [½̀/[M\ ≤ 1.5 are proposed for 

Eq. (7.3) because of the lack (limited) data outside these ranges. Given that shear strength 

tends to increase with increases in these ratios, the proposed limits should produce 

conservative predictions for ratios outside of these limits, except for the case of wall tension. 

However, the ACI 318-19 equation for wall shear strength also does not address wall tension. 

The histogram for IJ/(�JPO) reveals that there are relatively few tests for 2.5 ≤
IJ/(�JPO) ≤ 3.0 and no data for IJ/(�JPO) > 3.0; however, instead of limiting values for 

IJ/(�JPO), a limit of /Z ≥ 0.30 is proposed (because /Z = 0.30 for IJ/(�JPO) = 2.5, and 

would barely decrease to /Z = 0.28 for a value of IJ/(�JPO) = 3.0). 
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Figure 6.1: Histograms of parameters involved in the proposed equation 

 

6.2 Lower limit for �� 

Figure 6.2 shows that the /M coefficient obtained in this study do not follow a lognormal 

distribution, but a truncated normal distribution (Burkardt, 2014), because it can be seen 

the distribution has an abrupt ending in its left side. This truncation is understandable due 

to the mechanics of the problem actually; the coefficient /M is directly related with the 

concrete contribution, and therefore it is natural to have a lower limit for it. 

 

Figure 6.2: Histograms of parameters involved in the proposed equation 
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Table 6.1 shows the 5% of the data with lowest /M values. These coefficients have an average 

/M value of 0.009, no axial load applied and shear-span ratios ≥ 2.0. Because of these values, 

and having in consideration that nice round numbers are always preferred for an expression 

meant for a code or standard, the minimum value for /M is set to 0.010. 

Table 6.1: 5% of the data with lower /M  values 

Num. ��/(����) ÷�/]øù̀ú�̀c �� 

1 2.87 0 0.003 

2 2.39 0 0.007 

3 2.39 0 0.007 

4 2.39 0 0.007 

5 2.39 0 0.007 

6 2.39 0 0.007 

7 2.13 0 0.010 

8 2.13 0 0.010 

9 2.13 0 0.010 

10 2.13 0 0.010 

11 2.13 0 0.010 

12 2.00 0 0.011 

13 2.00 0 0.011 

14 2.00 0 0.011 

15 2.00 0 0.011 

16 2.00 0 0.011 

17 2.00 0 0.011 

Mean 2.20 0 0.009 

 

In addition to the information given in Table 6.1, the defined minimum value for /M can be 

understood by using the upper limit for the shear-span ratio imposed by the lower limit /Z ≥
0.30, i.e., IJ/(�JPO) ≤ 2.5, and a small axial load ratio that could represent the wall self-

weight: 
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4J[½̀-M̀ = 0.02  &  IJ�JPO = 2.5          →            /M = 1100 Õ9 (1 + 0.02)¿√2.5Þ − 6Ö = 0.010 

 

6.3 Comments on the Use of ��/(����) 

Current engineering practice is to use total wall height above the critical section (e.g., see ACI 

318-19 Chapter 2, ℎO or ℎO,MZ) to determine the value of ℎO/PO to use in ACI 318-19 Equation 

18.10.4.1 (to determine /M). In general, the aspect ratio ℎO/PO will be significantly larger 

than the value of the shear-span ratio IJ/(�JPO) since this latter term uses the height of the 

resultant lateral force. 

Ratios of shear-span ratio and aspect ratio are compared in Figure 6.3 for a single cantilever 

wall representing the lateral-force-resisting system for buildings with 1 to 15 stories using 

the ASCE 7-16 ELF (Section 12.8) with þJ = ÐJþ�. The results presented in Figure 6.3 

indicate that using ℎO/PO versus IJ/(�JPO) produces a conservative estimate of wall shear 

strength. 

 

Figure 6.3: Comparison of shear-span ratio to aspect ratio 
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As well, in ACI 318-19, the ASCE 7 wall shear demand �J is amplified, i.e., �V = �\Ì\�J to 

account for overstrength and higher mode contributions, where �\ = IWU/IJ for walls with 

ℎO/PO > 1.5 and �\ = 1.0 for ℎO/PO ≤ 1.5. Therefore, to account for overstrength and higher 

modes, a more realistic value of moment-to-shear demand would be: 

IWU�VPO = �\IJ�\Ì\�JPO = IJÌ\�JPO 

Since Ì\ ≥ 1.0, again, use of overall wall height (ℎO,MZ/PO) to estimate wall shear strength 

will produce even more conservative results as shown in Figure 6.4 for wall aspect ratios of 

1.0, 2.0, 3.0, 4.0 and 5.0. Given these observations, the proposed shear strength equation is 

based on using IJ/(Ì\�JPO) versus ℎO/PO. An alternative approach would be to propose 

modifications to ℎO/PO to address these issues. 

 

Figure 6.4: Impact of overstrength and dynamic amplification factors in the shear-span ratio to aspect ratio 
relationship 
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6.4 Proposed Equation                                             �L = /M[½̀-M̀ + /Z]*Z®-bZ® + *Oa-bOac[M\                                        (8.1) 

Where the /M and /Z coefficients are: 

                                              /M = 1100 ⎝
⎜⎛9 �1 + 4J[½̀-M̀ �¿

k IJÌ\�JPOnq/¿ − 6
⎠
⎟⎞ ≥ 0.010                                        (8.2) 

                                                           /Z = 2
5 k IJÌ\�JPOnq/¿ ≥ 0.30                                                        (8.3) 

and: 

• [½̀ is the wall web area [M\ plus the area of the overhanging effective flange width (if 

present) at the edge (or boundary) of the wall subjected to compression stresses due 

to overturning moment. [½̀ shall not taken greater than 1.5[M\. 

• *Z® is the boundary region longitudinal reinforcement ratio defined as [Z®/[M\ 

• [Z® is the area of nonprestressed longitudinal tension reinforcement at a wall 

boundary, including area within an effective tension flange width. If the wall has 

uniformly distributed longitudinal reinforcement, or concentrated longitudinal steel 

distributed in a region larger than 0.20PO from the wall edge, then [Z® is taken as the 

longitudinal reinforcement area within 0.20PO from the wall edge and all effective 

flange (if it is the case). 

• 4J][½̀-M̀ c shall not be taken larger than 0.20. 

• -bZ® is the specified yield strength of the boundary region longitudinal reinforcement 
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• *Oa and -bOa are the web horizontal reinforcement ratio and specified yield strength, 

respectively. 

• *O\  and -bO\ are the web vertical reinforcement ratio and specified yield strength, 

respectively. 

• 4J is the factored axial load 

• IJ is the factored moment 

• �J is the factored shear 

Finally, Figure 6.5 confirms the proper predictive performance of the proposed model 

defined as shown in Eqs. (8.1), (8.2) and (8.3) when assessing it with the training and testing 

sets. Figure 6.6 does the same, but using the complete dataset of walls with symmetrical 

cross-section. 

 

Figure 6.5: Proposed equation performance and verification: Symmetrical Walls 
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Figure 6.6: Proposed equation performance and verification: complete dataset of symmetrical walls 
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Chapter 7. Simplified Version of the Proposed Equation 

 

To provide an alternative, simplified, approach, as is commonly done in ACI 318, values for 

/M and /Z are obtained based on dividing the database into sub-groups which, as shown in 

Figure 7.1, are defined by setting specific ranges for the axial load ratio and shear-span ratio. 

An iterative process was required to obtain these limits so they allow each sub-group to 

contain a reasonable amount of samples at the same time that the limits itself are “round up” 

values. 

It is relevant to mention that, in a first instance, the /M and /Z coefficients are estimated from 

the average values obtained with the regression coefficients (Eq. (7.2)). However, these 

values were manipulated according with what the /M and /Z equations (Eq. (8.2) and Eq. 

(8.3)) suggest for each range combination of IJ/(�JPO) and 4J/][′½-′Mc. The reasons to do 

this are because nice round up numbers are preferred and also because it helps to provide a 

better understanding of the range of values that can be obtained for those sub-groups with 

less samples (specially Group 1D). 
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Figure 7.1: Definition of sub-groups 

 

Therefore, the simplified version of the proposed model consists in using the same proposed 

equation to predict wall shear strength (Eq. (8.1), shown again below), but the values of /M 

and /Z can be obtain directly from Table 7.1 instead of using the equations for it. An example 

of a potential benefit of using the simple model version is that /M and /Z will remain constant 

if the axial load ratio and shear-span ratio values remain within the same range. 

�L = /M[½̀-M̀ + /Z]*Z®-bZ® + *Oa-bOac 
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Table 7.1: Simplified method – Values for /M  and /Z coefficients 

�������� 

�� �( � ≤ ÷�ø′ùú′� < �.�� �.�� ≤ ÷�ø′ùú′� < �.�� �.�� ≤ ÷�ø′ùú′� < �.�� 
÷�ø′ùú′� ≥ �.�� 

[0, 0.75) 0.070 0.090 0.095 0.100 0.45 

[0.75, 1.25) 0.025 0.045 0.075 0.080 0.40 

[1.25, 2.00) 0.015 0.035 0.040 0.045 0.35 ≥2.0 0.010 0.015 0.020 0.040 0.30 

 

The performance of this simplified model is shown in Figure 7.2 for the training and testing 

datasets and in Figure 7.3 for the entire dataset. The mean values for all three datasets still 

meet the target values identified in Table 3.7. The COV value is still low and substantially 

lower than the value of 0.47 determined for the entire dataset for the ACI 318-19 Equation 

(18.10.4.1) and other models evaluated (Figure 4.2). It is noted that it would be a relatively 

simple process to develop an even more simplified model (with higher error) that could be 

used to simplify design for cases where wall shear demands are not expected to control. 

 

Figure 7.2: Performance and verification of the simplified model version 
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Figure 7.3: Performance of the proposed model over the complete dataset of symmetric walls 
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Chapter 8. New Shear Stress Upper Limit 

 

To avoid diagonal compression failures (Barda et al., 1977), ACI 318-19 includes an upper 

limit on wall shear stress (strength) of 10_-M̀ [M\ for an individual wall segment and 8_-M̀ [M\ 

for wall segments sharing a common lateral force. The 10_-M̀ [M\ limit was reevaluated using 

the entire dataset, which included walls failing due to flexure-shear (F-S), diagonal tension 

(D-T), and diagonal compression (D-C). Results are presented in Figure 8.1, which also make 

the difference between rectangular walls and walls with flanges (in this study, walls with H-

shaped and barbell cross-sections). The results presented in Figure 8.1 demonstrate that 

the current shear strength upper limit is too conservative when applied to the entire dataset; 

however, the limit does provide a reasonable upper limit on wall shear strength for walls 

with rectangular cross sections with D-C failures (blue dots symbols). 

 

Figure 8.1: ACI 318-19 wall shear stress limit 
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To further investigate this issue, histograms are plotted for the ratio of shear stress at failure 

to the current ACI 318-19 limit of 10_-M̀  in Figure 8.2. Most of the rectangular walls failing 

in flexure-shear (F-S) (Figure 8.2 (a)) or in diagonal-tension (D-T) (Figure 8.2(b)) are 

below the current ACI 318-19 limit (indicated by a vertical dashed line), whereas about half 

of the rectangular walls failing in diagonal-compression (D-C) are above the limit (Figure 

8.2(c)). However, the current limit does not do a good job at separating flanged walls that 

fail in diagonal-compression from flanged walls that do not fail in diagonal-compression, as 

several walls that failed in flexure-shear and diagonal-tension exceed the current limit. 

 

Figure 8.2: Current limit on ACI 318-19 vs wall shapes and shear failure types 

 

Therefore, a study was conducted to assess the potential to propose a new upper limit by 

using a logistic regression model designed to differentiate between walls that failed in F-S 

and D-T from walls that failed in D-C. 
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Figure 8.3: Manipulation of logistic regression to accommodate the desired problem 

 

The variables ×	ë  used to define the polynom í = �� + ∑ �ëë ×	ë  that defines the logistic 

function �(í) are set up as the logarithm of variables (i.e.,×	ë = P0(×ë)) that engineers would 

expect to find in an equation defining the shear stress limit. By doing so, the condition �(í) ≤
0.5 on the logistic function can be translated into ×q ≤ ����/��
ë�q×ë���/�� (see Figure 8.3). 

Therefore, by defining ×q as the shear stress (any version of it according to the needs of the 

problem) and the rest of the ×ë  as relevant variables (such as shear-span ratio, axial load 

ratio, ratio of flange area over [½ or [M\, etc.), it is possible to obtain an upper limit for the 

shear stress based on a multiplication of factors that results in walls below the limit to more 

likely to fail in either F-S or D-T than in D-C. Several models were studied, and although better 

�(í) > 0.5  Diag.-Comp �(í) ≤ 0.5  No Diag.-Comp 11 + ��� ≤ 0.5 �(í) ≤ 0.5  
í ≤ 0 �� +��ë×	ëë  ≤ 0 ×	ë = log(×ë) 

�� +��ëP�6(×ë)ë  ≤ 0 
���� ×ë��ë ≤ 1 

×q ≤ ������� ×ë�
����

ë�q  
�TUJV[M\_-M̀  5më¶ 
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results could be obtained using a complex model (see Figure 8.4 as an example), results 

obtained from a simple model more appropriate for implementation in a code or standard is 

used to develop a proposal. 

 

Figure 8.4: Example of a more complex logistic regression results 

 

To make the proposed new shear stress upper limit similar to the currently used in ACI 318-

19, just one single parameter associated with wall cross-sectional shape was included in the 

simple logistic regression (see Figure 8.5) along with the shear stress, which was expressed 

in the same way that is currently defined in ACI 318-19, i.e., �L/][M\_-M̀ c. Also, since the 

objective is to include a modification in the current shear stress limit so it behaves similarly 

on both rectangular cross-sectional shaped walls and walls with flanges. 
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The coefficients of the logistic regression of Figure 8.5 are rounded so the shear stress upper 

limit has a nicer expression. This results in the condition that wall shear stress 5L = �L/[M\ 

shall satisfy the following equation: 

                                                               5L = �L[M\ ≤ /Za�WV10_-M̀                                                       (11.1) 

Where /Za�WV is 1.0 for walls with a rectangular cross section. Otherwise, for wall cross-

sections with flanges, /Za�WV is compted using Eq. (11.2): 

                                                             /Za�WV = 0.7 Õ1 + �w�w[M\ Ö�                                                        (11.2) 

 

Figure 8.5: Simple logistic regression used to propose a new shear stress upper limit 

 

Using Eq. (11.2), /Za�WV need not be taken less than 1.0 and shall not exceed 1.5 and �w�w is 

the total area of the overhanging effective flange width (on both sides of the web, if flanges 
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exist on both sides) for the compression flange. If the flange length is different on each end 

(boundary) of a wall, then the wall shear strength may be evaluated for each direction of 

loading independently or the wall shear strength may be conservatively based on the smaller 

flange width. 

 

Figure 8.6: Comparison of current ACI 318-19 upper shear stress limit with proposed limit in function of wall 
shapes and shear failure types 
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The distribution obtained with the proposed upper limit (Figure 8.6(c)) is similar to that for 

the current limit for walls with rectangular cross sections (Figure 8.6(a)), i.e., most of the 

walls failing in flexure-shear or diagonal-tension are below the limit and those failing in 

diagonal-compression are roughly half below and half above the limit. The latter is not as 

clear in Figure 8.6(a), because there are not many rectangular walls failing in D-C, but 

Figure 8.6(d) shows that the fitted normal distribution have means of � = 0.69 and � = 1.14 

for rectangular walls failing in F-S or D-T and for rectangular walls failing in D-C, 

respectively. Figure 8.6(e) shows the fitted normal distributions for walls with flanges with 

the current ACI 318-19 limit applied, and Figure 8.6(f) shows the fitted normal distributions 

for walls with flanges with the proposed limit applied. Distributions obtained with the 

proposed upper limit (Figure 8.6(f)) are much more similar to the distributions obtained 

for the rectangular walls with the current ACI 318-19 limit applied (Figure 8.6(d)). 

Finally, for walls sharing a common lateral force, the limiting stress would be taken as 

0.8/Za�WV , similarly to what ACI 318-19 currently does. 
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Chapter 9. Comparison Study between Proposed Equation and ACI 

318-19 Equation 

 

In this chapter, a detailed assessment of the performances of the proposed equation and the 

ACI 318-19 equation is developed. First, it is noted that ACI 318-19 Eq. 18.10.4.1 assumes 

that wall shear strength is directly proportional to the quantity of web horizontal 

reinforcement provided. This assumption applied to the proposed equation (Eq. (8.1)) 

would mean to force the term /Z to be equal to 1.0. In the first sub-section, this assumption 

is evaluated with the data, and it is found that it is not correct; it over-predicts what the data 

shows. In addition, the ACI318-19 concrete contribution term is evaluated, and it is found 

that under-predicts what the data shows (second sub-section of the chapter). Finally, in the 

last sub-section, a global interpretation of the proposed equation is presented, and it is 

compared along with the ACI 318-19 equation against key parameters, such as axial load 

ratio and wall cross-section shape. 

 

9.1 Relative Contribution of Web Horizontal Reinforcement to Shear Strength 

Figure 9.1(a) shows the histogram for ratios of *Oa-bOa[M\/�TUJV, while Figure 9.1(b) 

shows the histogram of *Oa-bOa[M\/�(u��¿q¾�qÚ). First, it is noted that the range of values for 

Figure 9.1(a) is broad, with a mean of 0.61, median of 0.52, standard deviation of 0.35, and 

7.8% of the values greater than 1.0. Second, the two histograms do not line up; the data 

concentration in histogram of Figure 9.1(b) is slightly moved to the right respect to 
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histogram of Figure 9.1(a). This suggests that the ACI 318-19 approach over-predicts the 

contribution of web horizontal reinforcement to wall shear strength. 

 

Figure 9.1: Upper horizontal reinforcement contribution relative to: (a) �$%�& and (b) �' accordingly with ACI 
318-19, and �(: (c) without lower limit and (d) with lower limit 

 

In the proposed equation, /Z multiplies *Oa-bOa[M\ and thus represents an effectiveness 

factor. Figure 9.1(c) and Figure 9.1(d) present the histogram of /Z with and without the 

lower limit applied, respectively. These plots show that the mean value of the effectiveness 

of horizontal web steel in the proposed equation is much smaller than 1.0; it is 0.39 for both 

with and without application of the lower limit. In both cases the range of these values is 

fairly small (COV of 0.18 with or without the lower limit applied). 

To further evaluate the contribution of web horizontal reinforcement, pairs of companion 

test were looked for within the database where the only variable that was allow to 
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significantly change between each companion couple was the web horizontal reinforcement 

strength *Oa-bOa[M\ (note that including [M\ has no effect since the cross-section was a 

variable that was kept as constant between the companion couples). From the total of 55278 

different pairs that can be formed out of the 333 samples in the database, 67 pairs of 

companion tests were found. The difference in *Oa-bOa[M\ values was at least 3%, with an 

average difference of 72%, whereas all other parameters did not very by more than 10%. 

Therefore, since the only change between wall specimen (Test 1) and its companion wall 

specimen (Test 2) is primarily related to *Oa-bOa, the variation in shear strength estimated 

by the current equation in ACI 318-19 and by the proposed equation are shown below (see 

Eq.(10.1)  and Eq.(10.2)). 

∆�L(u��) = ∆]/M_-M̀ [M\ + *Oa-bOa[M\c 

                                                                  = ∆]/M_-M̀ [M\c���������� + ∆]*Oa-bOa[M\c                                 (10.1) = ∆]*Oa-bOa[M\c           
∆�L(sU£W��) = ∆]/M[½̀-M̀ + /Z]*Z®-bZ® + *Oa-bOac[M\c              

                                                    = ∆]/M[½̀-M̀ c�������� + ∆]/Z*Z®-bZ®[M\c������������ + ∆]/Z*Oa-bOa[M\c           (10.2) 

= ∆]/Z*Oa-bOa[M\c                                   
= /Z[M\∆]*Oa-bOac                                   

 

In both cases, the change in shear strength is function only of the web horizontal steel term. 

Figure 9.2 shows the predicted shear strength by ACI 318-19 equation, versus the actual 

(true, measured) change in shear strength. Both axes are normalized by the measured shear 

strength of companion Test 1 (�TUJV). This normalization is helpful because it converts the 
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difference as a percentage of the “initial value”, which makes the differences coming from all 

companion couples comparable. 

 

Figure 9.2: Change in shear strength of web horizontal steel companion tests 

 

From Figure 9.2 it can be seen that there are cases where the companion Test 2 has a larger 

steel contribution term than companion Test 1, i.e., ]*Oa-bOac(�) > ]*Oa-bOac(q)
. There are 

cases where the opposite happens as well. This condition is random, it just depend on what 

test was decided to be called “first” in the companion couple. Acknowledging this, it was 

decided to reverse the order of the companion couples with ]*Oa-bOac(q) > ]*Oa-bOac(�)
. 

The reason to do this is because it allows to highlight the trends by reducing the range 

covered by the samples, which is helpful in this case given that there are only 67 data points 

in the plot and that they have a large variance. Figure 9.3(a) shows the same plot that in 

Figure 9.2 but with the changes just mentioned. Figure 9.3(b) it is the same plot, but the 
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predicted shear strength variation is obtained with the proposed equation (see Eq. (10.2)). 

One pair of companion tests (Zhang et al., 2007) was too deviated from the trends, and it was 

found that both companion tests had a flexure-shear failure type, but the shear failure of both 

happened in sliding. Since the failure in both specimens happens due to a different 

mechanism, it was removed. Results from this point ae obtained with the remaining 66 

companion pairs. 

 

Figure 9.3: Change in shear strength of web horizontal steel companion tests with initial and final conditions 
inverted such as )*Oa-bOa > 0 

 

At first sight, Figure 9.3(a) and Figure 9.3(b) look very similar. However, the difference 

happens in the values of the x-axis. Figure 9.4 highlights the difference (the figure is the 

same, but it keeps the axis limits constant). 
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Figure 9.4: Change in shear strength of companion group 1 tests predicted with: (a) �Z in ACI 318-19, and (b) �Z 
in Proposed Equation 

 

The slope of the linear regressions in Figure 9.4 can be interpreted as the efficiency 

multiplier weighting the web horizontal reinforcement contribution term. Figure 9.4 (a) 

indicate that assuming 100% of efficiency on the web horizontal reinforcement 

overestimates the actual contribution coming from this term significantly because the slope 

of the regression is just 0.28. On the other hand, Figure 9.4(b) shows that when 

incorporating the /Z coefficient of the proposed equation (Eq. (8.1)), the slope of the 

regression goes up to 0.76. Even though 0.76 is much closer to 1.0, it is not as close to it. 

However, there are only 332 pairs of companion tests in these plots (one companion couple 

was removed as an outlier), and considerable dispersion is observed as well. 

Additionally, the slopes obtained in the plots shown in Figure 9.5 and Figure 9.6 are close 

to the values of the proposed /Z (see Figure 9.1), or slightly smaller. However, considerable 

dispersion is observed for walls failing in F-S and D-T. Additional data are needed to enable 

further interpretation of these trends. 
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Figure 9.5: Change in shear strength of web horizontal steel companion tests: Groups by failure mode of test (1), 
colors by failure mode of test (1) as well 
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Figure 9.6: Change in shear strength of web horizontal steel companion tests: Groups by failure mode of test (2), 
colors by failure mode of test (1) 

 

  



 

91 

 

9.2 Relative Contribution of Concrete to Shear Strength 

A second analysis of companion tests is carried out. In this case, from the total of 55278 

different pairs that can be formed out of the 333 samples in the database, 675 pairs of 

companion tests having the same shape, same horizontal web steel term (difference in 

*Oa-bOa[M\ values is zero for 238 pairs and is less than 3% for the rest), and no restriction 

on any other parameters were identified. 

According to the current ACI 318-19 equation, the change in the total shear strength comes 

from the change in the concrete term only: 

∆�L(u��) = ∆]/M_-M̀ [M\ + *Oa-bOa[M\c 

                                                                   = ∆]/M_-M̀ [M\c + ∆]*Oa-bOa[M\c������������                                 (10.3) = [M\∆]/M_-M̀ c              
On the other hand, the change in the total shear strength for these companion tests depends 

on two of the three terms of the proposed equation: 

∆�L(sU£W��) = ∆]/M[½̀-M̀ + /Z]*Z®-bZ® + *Oa-bOac[M\c              
                                                    = ∆]/M[½̀-M̀ c + ∆]/Z*Z®-bZ®[M\c + ∆]/Z*Oa-bOa[M\c������������           (10.4) 

= ∆]/M[½̀-M̀ c + [M\∆]/Z*Z®-bZ®c           
Figure 9.7(a) shows that the ACI318-19 equation underpredicts the change in shear 

strength by 56.4 of the true value (because the slope of the linear regression is 2.29). Figure 

9.7(b) shows that the proposed equation predicts the true shear strength change much more 

accurately, because the linear regression slope is 1.04. Note that in this case there is a 



 

92 

 

significant larger number of companion couples, which reduces the impact in the trends 

coming from the order in which the test within each companion couple were named. 

 

Figure 9.7: Prediction of the shear strength 

 

Figure 9.8(a), Figure 9.8(b), and Figure 9.8(c) shows the change in wall shear strength for 

the companion tests with constant web horizontal reinforcement using the ACI318-19 

equation for walls with rectangular cross section, barbell cross section, and cross sections 

with flanges, respectively. Figure 9.8(d), Figure 9.8(e), and Figure 9.8(f) plot the same but 

using the proposed equation. The results indicate that the proposed equation does a 

significantly better job at predicting the change in wall shear strength for all three wall cross-

section shapes. Also, the performance of the proposed equation is very similar for the three 

wall cross-sectional shapes. 
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Figure 9.8: Shear strength change prediction by wall cross-sectional shape using ACI 318-19 equation 

 

 

The concrete contribution from the ACI318-19 equation and the proposed equation also are 

compared to enable better understanding of the proposed equation. To accomplish this, the 

/M coefficient in ACI 318-19 Equation 18.10.4.1, which has units of _� � is normalized by 

pre- and post-multiplying the ACI 318-19 concrete contribution by _-M̀ , i.e.: 

�M = /M^[M\_-M̀  

                     = Õ /M_-M̀ Ö ^[M\_-M̀ _-M̀  

           = Õ /M_-M̀ Ö ^[M\-M̀  
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Therefore, the normalized ACI 318-19 normalized /M coefficient is defined as: 

/M,L£U¶(u��) = /M(u��)
_-M̀  

And, from the database, the mean value of 1/_-M̀  is 0.013 _� �. 

Figure 9.9(a) shows the proposed /M values using the shear-span ratio and axial load ratio 

from the database to show the range of applicability. Figure 9.9(b) shows the analytical 

values for the proposed /M (obtained with Eq. (8.2)) and /M,L£U¶(u��)
. To generate this plot, the 

shear-span ratio was taken equal to the aspect ratio, i.e., ℎO/PO = IJ/(�JPO), which is a 

reasonable assumption for wall specimens tested in the laboratory (see Section 5.1). 

However, as noted in Section 6.3 (particularly, Figure 6.3 and Figure 6.4), ℎO/PO is likely to 

be considerably greater than IJ/(�JPO). The normalized /M,L£U¶(u��)
 corresponds to values 

associated to axial load ratios 4J/][½̀-M̀ c between 5% and 10% for IJ/(�JPO) ≥ 1.0, and 

tends to significantly underestimate the concrete contribution for higher axial loads and for 

IJ/(�JPO) < 1.0. 
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Figure 9.9: Understanding of proposed /M  

 

It is important to note that, in this comparison (and in Eq. (8.1)), the influence of the 

boundary longitudinal reinforcement on wall shear strength was included as a 

“reinforcement contribution”, i.e., �Z = /Z]*Z®-bZ® + *Oa-bOac[M\. The boundary 

longitudinal reinforcement term (/Z*Z®-bZ®[M\) also could be considered as a “concrete 

contribution”, as one physical interpretation as to how this increases wall shear strength is 

that increases wall neutral axis depth, which results in larger concrete contribution (e.g., as 

is done in ACI 318-19 Table 22.5.5.1 for one-way shear strength). However, analysis of the 

data also suggested that the increase in wall shear strength might also be due, in part, to the 

possibility of increased reinforcement contribution (e.g., dowel action). Therefore, although 

the proposed model is presented as shown in Eq. (8.1), an alternative form where the 

boundary longitudinal reinforcement term is treated as a concrete contribution could also 

be derived. 
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9.3 Further Interpretation and Comparison Against ACI 318-19 Equation 

The proposed equation is explicitly accounting for effect of the axial load and for the   

longitudinal reinforcement at the edge of the wall in tension, which are not considered in the 

ACI 318-19 equation. Also, it uses the shear-span ratio instead of aspect ratio. From the 

mechanics of the problem, all these parameters were known to influence wall shear strength 

(or column shear strength). 

 

Figure 9.10: Relative shear strength contribution from each term of the proposed equation 

Figure 9.10 shows the relative contributions coming from each term of the proposed 

equation when estimating the shear strength of the walls in the database. Figure 9.10(a) 

indicates that the contribution coming from �M = /M[½̀-M̀  increases with increasing axial load 

ratio and with lower shear span ratios, as expected. In Figure 9.10(b), at zero or low axial 

stress, wall shear strength increases substantially with increases in boundary longitudinal 

reinforcement ]�Z® = /Z*Z®-bZ®[M\c, likely because neutral axis depth and dowel action 

increase, and as shear span increases, likely because overturning moment increases 

requiring greater quantities of boundary longitudinal reinforcement.  Figure 9.10(c) shows 
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that the relative contribution of the third term of the equation (directly related to web 

horizontal reinforcement contribution, �ZO = /Z*Oa-bOa[M\) is, on average 22%, and is not 

very sensitive to changes in both shear-span ratio and axial load ratio. 

Figure 9.11 and Figure 9.12 show the ACI 318-19 equation is biased and that the proposed 

equation provides a similar performance against different variables (e.g., axial load ratio, 

shear-span ratio, shear stress). The ACI 318-19 approach is generally conservative, except 

for walls low axial load ratios (Figure 9.11(a)) or rectangular walls with low normalized 

shear stress (Figure 9.12(a)) (which are likely to be correlated), it produces significantly 

different mean values for walls with higher axial loads (Figure 9.11(a)) or with different 

cross-section shapes (Figure 9.12(a)), and its limiting shear stress has the biggest impact 

on walls with axial load ratios greater than 0.05 (Figure 9.11(b)) and it affects walls with 

different cross-section shapes similarly (Figure 9.12(b)). The proposed approach provides 

a fairly uniform mean and COV values prior to application of a limiting shear stress (Figure 

9.11(c) and Figure 9.12(c)), except for a modest increase in the dispersion at very low 

normalized shear strength (Figure 9.11(a)), which mainly corresponds to walls with axial 

load ratios lesser than 0.5. This increase in dispersion is, however, smaller than the one ACI 

318-19 equation has in the same range of normalized shear stress. Applying a limiting shear 

stress for the proposed approach primarily influences barbell-shaped and H-shaped walls 

(Figure 9.12(d)) and walls with axial stress ratios either small (less than 0.05) or high 

(greater than 0.12) (Figure 9.11(d)). These wall configurations are likely to be correlated; 

a barbell or H-shaped wall with a large axial load might be obtaining a high shear strength 

contribution coming from �M = /M[½̀-M̀  (Figure 9.10(a)), while a barbell or H-shaped wall 
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with very low axial load might be getting a large shear strength contribution from �Z® =
/Z*Z®-bZ®[M\ (Figure 9.10(b)). 

 
Figure 9.11: True-to-predicted ratio using ACI 318-19, without (a) and with (b) upper limit, and the proposed 

equation without (c) and with (d) upper limit, versus shear stress. 

 

Figure 9.13(a) confirms that ACI 318-19 equation is generally more conservative than the 

proposed equation for walls with axial load ratios larger than 5%, or for walls with barbell 

or H-shaped cross-sections (Figure 9.13(c)). On the other hand, the shear strength for 

rectangular walls with low axial load ratio might be underestimated by the ACI 318-19 

equation. This is a cause of concern because short rectangular walls with low axial load ratio 

are the ones most likely to be subjected to a shear failure. Applying the upper limit on the 

equations accentuates the over-conservatism of the ACI 318-19 equation respect to the 

proposed equation for walls with axial load ratios larger than 10% (Figure 9.13(b)) and for 

walls with rectangular cross sections (Figure 9.13(d)).  
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Figure 9.12: True- to-predicted ratio using ACI 318-19, without (a) and with (b) upper limit, and the proposed 

equation without (c) and with (d) upper limit, versus shear span ratio. 

 

 

Figure 9.13: Ratio of shear strength predicted by ACI 318-19 versus shear strength predicted with the proposed 
equation.  
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Chapter 10. Strength Reduction Factor for Design Purposes 

 

10.1 Introduction 

A Monte Carlo Simulation will be run to assess the reliability associated with the strength 

reduction factor currently used in ACI 318-19, 2 = 0.75, for Maximum Considered 

Earthquake (MCE) GMs. The archetypes are designed with the ACI 318-19 equation, but their 

shear capacity will also be estimated with the proposed equation. Since it has been shown 

the performance of the proposed equation to be better than the ACI 318-19 equation, 

addressing the reliability of these ACI 318-19 compliant archetypes with the proposed 

equation will provide a better estimation of the probability of failure of these archetypes. 

Also, a relationship between the resultant strength reduction factor associated with the 

shear strength estimated by the proposed equation (2V�) and the obtained probability of 

failure is studied. 

Before running the Monte Carlo Simulation, it is necessary to define proper distributions for 

the variables with uncertainty, which are those associated with material properties (-M̀  and 

-b) and the demands (axial load, moment, and shear). The variables related to the geometry 

of the wall are considered as constants. The distributions representing the demands vary for 

the different archetypes; therefore, these distributions will be selected after analyzing the 

demands of each archetype. 

For each archetype, an OpenSees model was created considering expected material 

properties and expected axial load (coming from the load combination D+0.25L). A 

methodology, explained later, was implemented to modify the expected material properties 
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and allow the model to reproduce strength loss at its predicted roof drift capacity. From this 

model with expected material properties modified, two more models are defined where the 

only difference is the axial load applied; for one is (0.9-0.2SDS)D, and for the other is 

(1.2+0.2SDS)D+0.5L. 

 

10.2 Design of Archetypes 

Table 10.1 presents the main characteristics of the archetypes. All archetypes are 

Reinforced Concrete (RC) Wall Buildings designed in accordance with the Modal Response 

Spectrum Analysis (MRSA) of ASCE 7-16 (including accidental torsion). The calculations 

made to determine the demands and do the design are shown in Appendix A, Appendix B, 

and Appendix C for the 4-, 8-, and 12-story archetype, respectively. Effective wall flexural 

stiffness was set at 0.5�M�½ and shear stiffness at 0.4�M[½ over the entire wall height for the 

code level analysis. 

The commentary of ACI 318-19 Section 18.10.6 states that the wall P-M strength over the 

wall height should be specified so that the critical section (plastic hinge) occurs at the 

intended location. In this study, this was accomplished by amplifying the ASCE 7-16 moment 

demand IJ over the wall height by the overstrength factor at the base �\ = IWU,®�ZV/
IJ,®�ZV , where IWU,®�ZV  and IJ,®�ZV  are the maximum probable moment at the base using 

-Z = 1.25-b = 75 Ë � and the moment demand at the wall base obtained from the MRSA. The 

result of this process is illustrated in Fig. 10.1. In Fig. 10.1, the amplified moment demand is 

less than the moment capacity (2IL), at all locations over the wall height except at the 
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critical section (hinge region). Table 10.1 summarizes the main design characteristics of the 

archetypes. 

Table 10.1: Main design characteristics of the ACI 318-19 compliant RC wall archetypes 

Parameter 
4-Story 

Archetype 

8-Story 

Archetype 

12-Story 

Archetype 

MCE spectral acc. at short periods, �( 2.08g 2.08g 2.08g 

MCE spectral acc. at 1-s period, �� 0.64g 0.64g 0.64g 

Wall shape Rect. Rect. Rect. 

# of stories 4 8 12 

Fundamental period, �� (s) 0.24 0.80 1.75 

# of walls in each direction 4 4 4 

Seismic weight associated with one wall,   (kips) 3,420 7,535 11,441 

Wall thickness, $� (in) 24 30 30 

Wall length, �� (ft) 30 30 30 

Horizontal web reinforcement ratio, !�" (%) * 0.52 0.44 0.52 

Longitudinal boundary reinforcement ratio, !(# (%) * 0.53 0.33 0.33 

Nominal concrete compressive strength, ú�̀ (ksi) * 5 5 5 

Nominal yield stress of hor. web reinforcement, úê�" (ksi) 60 60 60 

Nominal yield stress of long. bound. reinforcement, úê(# (ksi) 60 60 60 

Axial load in wall due to (0.9-0.2SDS)D, ÷�,$%& (kips) * 684 1,584 2,426 

Axial load in wall due to D+0.25L, ÷�,'() (kips) * 1,157 2,674 4,098 

Axial load in wall due to (1.2+0.2SDS)D+0.5L, ÷�,$'* (kips) * 1,741 4,018 6,159 

Moment demand of wall, �� (kip-ft) * 73,815 82,299 87,139 

Shear demand of wall, �� (kips) * 1,800 1,190 1,158 

Expected shear demand of wall, �& (kips) * 2,984 3,110 3,474 

Nominal shear strength of wall, �'(ø+,)
 (kips) 4,145 4,347 4,875 

Nominal shear strength of wall, �'(÷%éè-.)
 (kips) ** 3,306 3,855 4,663 

Nominal shear strength of wall, ф�'(ø+,)
 (kips) 3,108 3,260 3,657 

DCR using Proposed Eq., �&/�'(÷%éè-.)
 0.90 0.81 0.75 

*These parameters are for the critical section, which is at the base for every archetype. 

**�'(÷%éè-.)
 is obtained using the demands coming from the load combination (1.2D+0.2SDS)D+0.5L+E. 
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Figure 10.1: Moment profile of the archetypes 

 

10.3 OpenSees Modeling 

The objective is to study what the strength reduction factor should be when using the 

proposed equation in a process of designing a code compliant wall. Because these walls are 

designed to fail in flexure before than in shear, it is appropriate to produce archetype models 

that account for strength loss at the predicted roof drift capacity. To do this, models with 

expected material properties, expected axial load and no strength loss are first produced. 
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10.3.1 Models with Expected Material Properties, Expected Axial Load, and No Strength Loss 

Due to symmetry of the building layout and the lateral system, and to simplify the modeling 

process, a 2D model consisting of one wall was used to determine the responses of each 

archetype in each direction. For each archetype model: 

• The wall was modeled using the Multi-Vertical-Line-Element (MVLE) model in 

OpenSees (Kolozvari et al. 2015). Four fiber elements were used for the first and 

second stories and subsequent levels were modeled with two elements. 

• The model considered expected material properties (-bV = 70 Ë �; -MV̀ = 1.3-M̀ =
6.5 Ë �) and the unconfined and confined concrete uniaxial stress versus strain 

relationships were estimated using the Saatcioglu and Razvi (1992) model, which 

allows for consideration of the different levels of confinement for the two principal 

direction (e.g., x, y) for the boundary elements. 

• Parameters were selected for the Concrete02 model in OpenSeeS to fit the stress 

versus strain relationships obtained with the Saatcioglu and Razvi (1992) model. 

• Reinforcement stress versus strain was modeled using the SteelMPF model in 

OpenSeeS based on the following parameters: -bV = 70 Ë �, �Z = 29000 Ë �, and 1% 

post yielding slope. 

• One load combination for gravity load was considered; D + 0.25L. 

10.3.2 Models with Modified Expected Material Properties to Produce Strength Loss 

The algorithm shown in Figure 10.2 is proposed and implemented to develop models that 

recreate strength loss at their respective predicted roof drift capacity. Obtaining the 
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expected material properties as described in the previous section correspond to the 1st step 

of the algorithm. Once the model was created, a monotonic pushover analysis was conducted 

(2nd step of Figure 10.2) to determine appropriate parameters for modeling strength loss 

(no strength loss was considered in the initial pushover analysis). The roof drift capacity at 

significant strength loss (≥20% from peak load) was estimated using the Drift Capacity 

model proposed by Abdullah and Wallace (2019). To reproduce significant strength loss at 

the predicted roof drift capacity for each archetype, the neutral axis depth and strain profile 

at the predicted roof drift capacity using the wall model with expected axial load applied 

(D+0.25L) are needed (see 3rd step in Figure 10.2). The strain at which strength 

degradation initiates in compression for both confined concrete and longitudinal boundary 

reinforcement is assumed to be the same (/®), i.e., crushing of confined concrete and buckling 

of longitudinal boundary reinforcement are coupled. If this approach is not adopted, 

compressive concrete loads are transferred to boundary longitudinal reinforcement, and 

only moderate strength loss can be achieved. In addition, for this study, the outer steel layer 

of the boundary element (BE) under tension is assumed to reach its rupture strain when 

concrete reaches its residual strength in the BE under compression. An upper strain limit, 

/UJWT, was also set for tension rupture of longitudinal reinforcement. The strain /UJWT must 

be larger than the maximum tensile strain registered at roof drift capacity with the 

monotonic pushover analysis in order to not produce strength loss before than desired. Step 

4 of Figure 10.2 details how these values are used to modify the material properties of the 

BE in the plastic hinge region to achieve strength loss. Step 5 of Figure 10.2 is to verify that 

the strength loss objectives are achieved for both monotonic and reversed-cyclic pushover 

analyses. 
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Figure 10.2: Algorithm to obtain MVLEM with strength loss at predicted roof drift capacity 
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In step 4 of the algorithm, strain values /® and /UVZ∗  (the latter is the modified strain at which 

the residual concrete capacity is reached) are selected from the monotonic pushover analysis 

of the Multi-Vertical-Line-Element-Model (MVLEM) with expected gravity load applied and 

without modified material stress versus strain relations. The strain values are determined 

from the strain profile at the wall critical section (wall-foundation interface) when the roof 

drift capacity is reached as noted below: 

• /® selected as the strain at half of the neutral axis depth (i.e., half of the strain of the 

outer compressed fiber). Once this value is reached in the compression BE of the 

MVLEM, significant strength loss will occur because half of the compressed boundary 

longitudinal reinforcement is assumed to buckle and half of the confined concrete in 

the compressed BE initiates strength loss by starting on the descending branch of the 

stress-strain relation. The expected material properties are modified to achieve this 

objective (of strength loss). 

• The modified residual concrete strength is obtained from Eq. (10.1), where /UJW is the 

strain at which the bars in tension rupture (/UJWT = 0.14, 0.12, and 0.10 was used for 

the 4-story, 8-story, and 12-story archetypes, respectively) and � is the neutral axis 

depth at roof drift capacity. Eq. (10.1) produces strength loss because the properties 

of the boundary longitudinal reinforcement in tension are modified to achieve 

strength loss exactly when the neutral axis associated to the roof drift capacity is 

reached (if we were only modifying the material relationships in tension). 

                                                           /UVZ∗ = /UJW × �PO − �                                                      (10.1) 
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It is noted that the material properties also are modified in compression, which also 

influence wall responses earlier because the strain levels associated for compression are 

lower than the strain levels associated with strength loss in tension (/® < /UVZ∗ ). Once the roof 

drift capacity is reached, the wall neutral axis depth becomes larger due to degradation in 

concrete stress capacity, and Eq. (10.1) produces rebar rupture in the BE in tension when 

the outer fibers in the compressed BE have failed (reached residual strength) as desired to 

achieve significant strength loss for both directions of loading. 

Changing the strains at peak and residual stresses in the Concrete02 material in the 

OpenSeeS model is sufficient to implement the necessary modification to the concrete stress 

versus strain relations. However, to implement the necessary modifications for the steel 

behavior it was necessary to define a Parallel material at the BE, a bilinear SteelMPF material 

with weight factor of 80% (with a strain hardening ratio equal to 0.0125) to have complete 

strength loss in tension and compression at the desired strain values (using MinMax option 

in OpenSees), and another with weight factor of 20% and elastic-perfectly plastic SteelMPF 

material to be able to reproduce appropriate residual capacity. 

 

10.4 Selection of Ground Motions at MCER Level 

For each archetype, a suite of ground motions (GMs) is selected to appropriately represent 

the spectral shape at the risk-targeted maximum considered earthquake (MCER) 

performance level at a site located in Downtown Los Angeles, California (latitude 34.059, 

longitude -118.238). This location (same considered for the design) has site spectral 
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acceleration values of 0Z = 2.086 and 0q = 0.646. The Uniform Hazard Response Spectrum 

for this site is shown in Figure 10.3. 

 

Figure 10.3: Uniform Hazard Response Spectrum for Site (USGS Unified Hazard Tool) 

 

The spectral acceleration associated with the fundamental period of each archetype (shown 

in Table 10.2) was extracted from the Uniform Hazard Response Spectrum (Figure 10.3) 

and then used to generate a Conditional Mean Spectrum (CMS) (Baker, 2011). The period 

used to match the spectrum is the fundamental period obtained from the Eigen Analysis 

performed on the OpenSees archetype model with expected gravity load applied (D+0.25L). 

Figure 10.4 illustrates how the spectra for each set of performance GM dataset matches the 

same 0� value at þq for each archetype. Table 10.2 also includes the number of records 

comprising each of the suits of MCER level GMs. The list specifying the GMs and their scale 
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factor are provided in Appendix A.6, Appendix B.6, and Appendix C.6 for the 4-, 8-, and 12-

story archetype, respectively. 

 

Table 10.2: Period and spectral acceleration used to generate the CMS 

Archetype 
Fundamental 

Period, �� (s) * 

Spectral 

Acceleration, �1 
# of GMs Selected 

4-Story Archetype 0.18 2.05g 42 

8-Story Archetype 0.52 1.18g 43 

12-Story Archetype 1.20 0.57g 46 

*The fundamental period is extracted from the OpenSees model with expected material properties that is then 

subjected to the suite of GMs. 

 

 

Figure 10.4. Response spectra of selected GMs for each archetype 

 

Once the suite of GMs is selected, dynamic analyses are run with it for each archetype using 

the three load combinations previously mentioned: (0.9-0.2SDS)D, D+0.25L, and 

(1.2+0.2SDS)D+0.5L. The hysteretic results are obtained in terms of moment versus 

curvature at the base because the plots are cleaner compared to base shear vs drift, and 

because the predicted roof drift capacity can be translated into total plastic hinge rotation as 



 

111 

 

described by Abdullah and Wallace (2019). Table 10.3 shows the plastic hinge rotation at 

strength loss. 

Table 10.3: Predicted total hinge rotation capacity 

Archetype Total Hinge Rotation Capacity, 2 (rad) 

4-Story Archetype 0.031 

8-Story Archetype 0.030 

12-Story Archetype 0.033 

 

Figure 10.5 shows the moment versus curvature associated with the GM that causes the 

largest hysteretic cycle (i.e., maximum total rotation in the plastic hinge region) for each 

archetype. The results in Figure 10.5 are from the model with gravity load coming from the 

load combination (1.2+0.2SDS)D+0.5L. The rotations are below the total rotation capacity for 

the 4- and 12-story archetypes. For the 8-story archetype, there is only one GM that make 

the building to surpass its deformation capacity, and from Figure 10.5 it can be seen that 

the strength loss actually starts to happen at around 0.03 rad, as indicated in Table 10.3. 

The results of the dynamic analyses for all GMs can be found in Appendix A.7.2.3, Appendix 

B.7.2.3, and Appendix C.7.2.3 for the 4-, 8-, and 12-story archetype, respectively. 

 

Figure 10.5: Moment versus curvature of the GM that causes the largest hysteresis cycle – LC: (1.2+0.2SDS)D+0.5L 
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10.5 Probability Distributions for Actual-to-Nominal Material Properties Ratio 

The database used for this study also includes nominal material properties. However, this 

information is not always reported. Therefore, there are 254 tests that reported the nominal 

-M̀ , 247 tests that reported the nominal -b®Z of the longitudinal boundary reinforcement, and 

249 tests that reported the nominal -bOa of the horizontal web reinforcement. Figure 10.6 

shows the density histograms of the expected-to-nominal material properties, along with the 

fitted normal and log-normal distributions. The log-normal distribution is chosen as the one 

that better represents the data for the three cases. 

 

Figure 10.6: Density histograms and fitted distributions of the expected-to-nominal material properties 

 

Therefore, the selected distributions to represent the actual-to-nominal material properties 

are the ones indicated in Table 10.4. 
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Table 10.4: Selected distributions to represent the actual-to-nominal material properties 

Variable Distribution Type Parameter 1 Parameter 2 -M,V` /-M,L£¶`  Log-Normal �m£½ = 0.08 �m£½ = 0.12 -bZ®,V/-bZ®,L£¶ Log-Normal �m£½ = 0.12 �m£½ = 0.13 -bOa,V/-bOa,L£¶ Log-Normal �m£½ = 0.15 �m£½ = 0.15 

 

10.6 Reliability Analysis for the 4-Story Archetype 

Before running a Monte Carlo simulation, it is necessary to estimate the probability 

distributions for actual-to-nominal demand ratios. These distributions vary for the different 

archetypes and therefore the are obtained by assessing the dynamic analyses run for each of 

them. Because this is the first archetype, the reasoning and description of the steps will be 

provided within this section. 

10.6.1 Probability Distribution for Actual-to-Nominal Demands Ratio 

The density histograms of the actual-to-nominal shear ratios obtained with the OpenSees 

model for the three load combinations studied are shown in Figure 10.7 and Figure 10.8. 

Figure 10.7 shows the ratio of the actual shear demand (�V,V) over the nominal amplified 

shear demand obtained according to the ACI 318-19 prescriptions (�V,L£¶). Figure 10.8 

shows the ratio of the actual shear demand (�V,V) over the nominal shear demand obtained 

by MRSA (�J,L£¶). 
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Figure 10.7: Density histograms and fitted distributions of the actual-to-demand shear ratios, where the 

nominal value is the amplified shear demand �� obtained using ACI 318-10 provisions – 4-Story Archetype 

 

 

Figure 10.8: Density histograms and fitted distributions of the actual-to-nominal shear ratios, where nominal 

value is the demand �� without amplification – 4-Story Archetype 
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Even though similar histograms can be obtained for axial load and moment demands, it 

would not be representative to draw random samples from distributions based on those 

histograms when performing a Monte Carlo simulation to simulate the variability of these 

demands. The reason for this is because they are correlated with the lateral force imposed 

by the ground motion. Therefore, a relationship between these demands and the base shear 

is sought and found. Figure 10.9 shows how the 4J,V/4J,L£¶ ratio correlates with the 

�V,V/�V,L£¶ ratio for the different load combinations, while Figure 10.10 does the same but 

between IJ,V/IJ,L£¶ and �V,V/�V,L£¶. 

 

Figure 10.9: Relationship between actual-to-nominal axial load ratio and actual-to-nominal shear ratio – 4-
Story Archetype 
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Figure 10.10: Relationship between actual-to-nominal moment ratio and actual-to-nominal shear ratio – 4-
Story Archetype 

 

It is considered that a linear regression estimates these trends good enough. Therefore, the 

approach is to make the 4J,V/4J,L£¶ to follow a normal distribution with a mean value that 

follows the linear regression in Figure 10.9 for each load combination. Similarly, 

IJ,V/IJ,L£¶ is set to follow a normal distribution which mean value follows the linear 

regression in Figure 10.10 for each load combination.  

With the mean value of the distribution already defined, the standard deviation is the only 

parameter left to define for these distributions. The standard deviation of a sample around 

a mean value is obtained based on the differences between the samples and the mean value, 

as show in Eq. (10.2). 

                                                                 � = 34ë5qL (×ë − �·)�0 − 1                                                            (10.2) 

By looking at Eq. (10.3), it is clear that the standard deviation is a measurement of the error 

when the values of a sample are estimated just by the sample mean. Similarly, the residuals 
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of a regression are the error between the observed (actual) value and the predicted one, i.e., 


ë,£®Z − 
ë,WUVX. The analogy is clear by looking at Eq. (10.4). 

                                                                          ×ë = �· + /ë                                                                   (10.3) 

                                                                   ×ë = �� + �q×ë6778779:�
+ /ë                                                             (10.4) 

The residual standard error of a sample represented by a regression is defined on the same 

way that the standard deviation is defined for a sample represented by its mean. Thus, the 

standard deviation of a normal distribution which mean values follows a linear regression 

can be obtained using Eq. (10.5). In Eq. (10.5), instead of dividing by the sample size 0, which 

gives us the root mean square error (RMSE), the denominator corresponds to the degrees of 

freedom (statistical concept, not the one used in structural engineering) because is works 

better in order to obtain an unbiased estimation. The statistical degree of freedom 

corresponds to the number of samples minus the number of parameters that are estimated, 

which are two in this case (intercept and slope of the linear regression). 

        Residual Standard Error = 34ë5qL ]
ë − 
ë,WUVXc�0 − 2 = 34ë5qL ]
ë − (�� + �q×ë)c�0 − 2          (10.5) 

Figure 10.11 shows the residual and their corresponding residual standard error of the 

linear regression between �V,V/�V,L£¶ and 4J,V/4J,L£¶ shown in Figure 10.9. Same thing is 

done in Figure 10.12.  
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Figure 10.11: Residuals and residual standard deviations for actual-to-nominal axial demands – 4-Story 
Archetype 

 

 

Figure 10.12: Residuals and residual standard deviations for actual-to-nominal moment demands – 4-Story 
Archetype 

 

Finally, by considering the actual-to-nominal shear demand distributions of Figure 10.7 and 

Figure 10.8, the linear regressions shown in Figure 10.9 and Figure 10.10, and the 

associated residual standard errors shown in Figure 10.11 and Figure 10.12, the 

probability distributions representing the actual-to-nominal demands can be defined for this 

archetype. Table 10.5 summarizes this information. 
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Table 10.5: Selected actual-to-nominal demand probability distributions for the 4-Story Archetype 

Load 

Combination 
Variable Distribution Type Parameter 1 Parameter 2 

(0.9-0.2SDS)D �V,V/�V,;<= Log-Normal �m£½ = −0.08 �m£½ = 0.15 �V,V/�J,;<= Log-Normal �m£½ = 0.42 �m£½ = 0.15 

4J,V/4J,;<= Normal �ë = 0.73 + 0.58 Õ �V,V�V,;<=Öë � = 0.12 

IJ,V/IJ,;<= Normal �ë = 0.57 + 0.81 Õ �V,V�V,;<=Öë � = 0.07 

D+0.25L �V,V/�V,;<= Log-Normal �m£½ = 0.00 �m£½ = 0.14 �V,V/�J,;<= Log-Normal �m£½ = 0.50 �m£½ = 0.14 

4J,V/4J,;<= Normal �ë = 1.02 + 0.14 Õ �V,V�V,;<=Öë � = 0.07 

IJ,V/IJ,;<= Normal �ë = 0.56 + 0.85 Õ �V,V�V,;<=Öë � = 0.07 

(1.2+0.2SDS)D+0.5L �V,V/�V,;<= Log-Normal �m£½ = 0.05 �m£½ = 0.13 �V,V/�J,;<= Log-Normal �m£½ = 0.56 �m£½ = 0.13 

4J,V/4J,;<= Normal �ë = 0.86 + 0.24 Õ �V,V�V,;<=Öë � = 0.04 

IJ,V/IJ,;<= Normal �ë = 0.45 + 0.97 Õ �V,V�V,;<=Öë � = 0.07 

 

10.6.2 Monte Carlo Simulation Results 

10.6.2.1 Verification of Correlation Between Demands 

A Monte Carlo Simulation using 10,000 iterations is carried out for each load combination. 

The correlation of the simulated actual-to-nominal axial and moment demands with the 

actual-to-nominal shear ratios are first verified (see Figure 10.13 and Figure 10.14, 

respectively). 
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Figure 10.13: Relationship between simulated actual-to-nominal axial demands versus actual-to-nominal shear 
demands – 4-Story Archetype 

 

 

Figure 10.14: Relationship between simulated actual-to-nominal moment demands versus actual-to-nominal 
shear demands – 4-Story Archetype 
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10.6.2.2 Reliability Results Expressed in Terms of �' − �& 

Because the variables (strength and demand) are dependent, the plots are expressed only as 

a junction variable. In this case, is in terms of the difference between strength and demand 

(�L − �V), where the failure condition corresponds to �L − �V ≤ 0. Figure 10.15 presents the 

results when using the ACI 318-19 equation, whereas Figure 10.16 does the same but using 

the proposed equation. It is relevant to recall that these archetypes are ACI 318-19 compliant 

walls. Therefore, the results obtained with the proposed equation (Figure 10.16) can be 

understood as a more accurate estimation, because the better performance of the proposed 

equation has already been demonstrated. 

For the worse scenario, i.e., gravity load coming from the (1.2+0.2SDS)D+0.5L load 

combination, results say that ACI 318-19 estimates this archetype to have 0.8% of 

probability of failure, whereas the proposed equation says its probability of failure is actually 

closer to 7%. It is worth to highlight that the shear strength estimated with the proposed 

equation is �L(sU£W��) = 3,306 Ë�� , which is equivalent to have used a strength reduction 

factor of only 2 = �V/�L(sU£W��) = 0.90 (see Table 10.1) in order to satisfy 2�L(sU£W��) = �V. 
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Figure 10.15: Reliability results using the ACI 318-19 equation, in terms of �L − �V , for the 4-Story Archetype 

 

 

Figure 10.16: Reliability results using the proposed equation, in terms of �L − �V , for the 4-Story Archetype 
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10.6.2.3 Reliability Results Expressed in Terms of �&/�' 

The proposed equation estimates a much higher probability of failure for this ACI 318-19 

compliant archetype respect to what the ACI 318-19 equation does. 

 

Figure 10.17: Reliability results using the ACI 318-19 equation, in terms of �V/�L , for the 4-Story Archetype 

 

 

Figure 10.18: Reliability results using the proposed equation, in terms of �V/�L , for the 4-Story Archetype 
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Even though expressing the results in terms of the �V/�L ratio instead of the difference �L −
�V says the same in terms of the reliability index and probability of failure, it provides a better 

understanding of the demand-to-strength relationship. This can also give a general view 

about the reduction factor associated with these actual values (demand and strength). Table 

10.6 indicates the mean values of the �V/�L distributions shown in Figure 10.17 and Figure 

10.18. 

Table 10.6: Mean values of the actual shear demand over the actual shear strength 

Load Combination > �&�'(ø+,)?ø�$�1��&1'
 > �&�'(÷%éè-.)?ø�$�1��&1'

 

(0.9-0.2SDS)D 0.60 0.74 

D+0.25L 0.65 0.79 

(1.2+0.2SDS)D+0.5L 0.68 0.83 
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10.7 Reliability Analysis for the 8-Story Archetype 

10.7.1 Probability Distribution for Actual-to-Nominal Demands Ratio 

 

Figure 10.19: Density histograms and fitted distributions of the actual-to-demand shear ratios, where the 

nominal value is the amplified shear demand �� obtained using ACI 318-10 provisions – 8-Story Archetype 

 

Figure 10.20: Density histograms and fitted distributions of the actual-to-nominal shear ratios, where nominal 

value is the demand �� without amplification – 8-Story Archetype 
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Figure 10.21: Relationship between actual-to-nominal axial load ratio and actual-to-nominal shear ratio – 8-
Story Archetype 

 

 

 

Figure 10.22: Relationship between actual-to-nominal moment ratio and actual-to-nominal shear ratio – 8-
Story Archetype 
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Figure 10.23: Residuals and residual standard deviations for actual-to-nominal axial demands – 8-Story 
Archetype 

 

 

 

Figure 10.24: Residuals and residual standard deviations for actual-to-nominal moment demands – 8-Story 
Archetype 
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Table 10.7: Selected actual-to-nominal demand probability distributions for the 8-Story Archetype 

Load 

Combination 
Variable Distribution Type Parameter 1 Parameter 2 

(0.9-0.2SDS)D �V,V/�V,;<= Log-Normal �m£½ = −0.21 �m£½ = 0.31 �V,V/�J,;<= Log-Normal �m£½ = 0.75 �m£½ = 0.31 

4J,V/4J,;<= Normal �ë = 1.10 + 0.29 Õ �V,V�V,;<=Öë � = 0.26 

IJ,V/IJ,;<= Normal �ë = 1.11 + 0.18 Õ �V,V�V,;<=Öë � = 0.11 

D+0.25L �V,V/�V,;<= Log-Normal �m£½ = −0.08 �m£½ = 0.34 �V,V/�J,;<= Log-Normal �m£½ = 0.88 �m£½ = 0.34 

4J,V/4J,;<= Normal �ë = 1.11 + 0.12 Õ �V,V�V,;<=Öë � = 0.16 

IJ,V/IJ,;<= Normal �ë = 1.19 + 0.27 Õ �V,V�V,;<=Öë � = 0.11 

(1.2+0.2SDS)D+0.5L �V,V/�V,;<= Log-Normal �m£½ = 0.02 �m£½ = 0.31 �V,V/�J,;<= Log-Normal �m£½ = 0.98 �m£½ = 0.31 

4J,V/4J,;<= Normal �ë = 0.99 + 0.20 Õ �V,V�V,;<=Öë � = 0.10 

IJ,V/IJ,;<= Normal �ë = 1.48 + 0.16 Õ �V,V�V,;<=Öë � = 0.11 

 

 

 

 

 

 

 

 

 



 

129 

 

10.7.2 Monte Carlo Simulation Results 

10.7.2.1 Verification of Correlation Between Demands 

 

Figure 10.25: Relationship between simulated actual-to-nominal axial demands versus actual-to-nominal shear 
demands – 8-Story Archetype 

 

 

Figure 10.26: Relationship between simulated actual-to-nominal moment demands versus actual-to-nominal 
shear demands – 8-Story Archetype 
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10.7.2.2 Reliability Results Expressed in Terms of �' − �& 

 

 

Figure 10.27: Reliability results using the ACI 318-19 equation, in terms of �L − �V , for the 8-Story Archetype 

 

 

Figure 10.28: Reliability results using the proposed equation, in terms of �L − �V , for the 8-Story Archetype 
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10.7.2.3 Reliability Results Expressed in Terms of �&/�' 

The proposed equation estimates a moderate lower probability of failure for this ACI 318-

19 compliant archetype respect to what the ACI 318-19 equation does. 

 

Figure 10.29: Reliability results using the ACI 318-19 equation, in terms of �V/�L , for the 8-Story Archetype 

 

 

Figure 10.30: Reliability results using the proposed equation, in terms of �V/�L , for the 8-Story Archetype 
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Table 10.8: Mean values of the actual shear demand over the actual shear strength – 8-Story Archetype 

Load Combination > �&�'(ø+,)?ø�$�1��&1'
 > �&�'(÷%éè-.)?ø�$�1��&1'

 

(0.9-0.2SDS)D 0.55 0.61 

D+0.25L 0.63 0.71 

(1.2+0.2SDS)D+0.5L 0.69 0.80 
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10.8 Reliability Analysis for the 12-Story Archetype 

10.8.1 Probability Distribution for Actual-to-Nominal Demands Ratio 

 

Figure 10.31: Density histograms and fitted distributions of the actual-to-demand shear ratios, where the 

nominal value is the amplified shear demand �� obtained using ACI 318-10 provisions – 12-Story Archetype 

 

Figure 10.32: Density histograms and fitted distributions of the actual-to-nominal shear ratios, where nominal 

value is the demand �� without amplification – 12-Story Archetype 
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Figure 10.33: Relationship between actual-to-nominal axial load ratio and actual-to-nominal shear ratio – 12-
Story Archetype 

 

 

 

Figure 10.34: Relationship between actual-to-nominal moment ratio and actual-to-nominal shear ratio – 12-
Story Archetype 
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Figure 10.35: Residuals and residual standard deviations for actual-to-nominal axial demands – 12-Story 
Archetype 

 

 

 

Figure 10.36: Residuals and residual standard deviations for actual-to-nominal moment demands – 12-Story 
Archetype 
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Table 10.9: Selected actual-to-nominal demand probability distributions for the 12-Story Archetype 

Load 

Combination 
Variable Distribution Type Parameter 1 Parameter 2 

(0.9-0.2SDS)D �V,V/�V,;<= Log-Normal �m£½ = −0.31 �m£½ = 0.34 �V,V/�J,;<= Log-Normal �m£½ = 0.79 �m£½ = 0.34 

4J,V/4J,;<= Normal �ë = 1.04 + 0.31 Õ �V,V�V,;<=Öë � = 0.09 

IJ,V/IJ,;<= Normal �ë = 1.00 + 0.43 Õ �V,V�V,;<=Öë � = 0.11 

D+0.25L �V,V/�V,;<= Log-Normal �m£½ = −0.22 �m£½ = 0.32 �V,V/�J,;<= Log-Normal �m£½ = 0.88 �m£½ = 0.32 

4J,V/4J,;<= Normal �ë = 1.01 + 0.21 Õ �V,V�V,;<=Öë � = 0.04 

IJ,V/IJ,;<= Normal �ë = 1.36 + 0.23 Õ �V,V�V,;<=Öë � = 0.09 

(1.2+0.2SDS)D+0.5L �V,V/�V,;<= Log-Normal �m£½ = −0.12 �m£½ = 0.33 �V,V/�J,;<= Log-Normal �m£½ = 0.98 �m£½ = 0.33 

4J,V/4J,;<= Normal �ë = 0.93 + 0.21 Õ �V,V�V,;<=Öë � = 0.05 

IJ,V/IJ,;<= Normal �ë = 1.66 + 0.19 Õ �V,V�V,;<=Öë � = 0.10 
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10.8.2 Monte Carlo Simulation Results 

10.8.2.1 Verification of Correlation Between Demands 

 

Figure 10.37: Relationship between simulated actual-to-nominal axial demands versus actual-to-nominal shear 
demands – 12-Story Archetype 

 

 

Figure 10.38: Relationship between simulated actual-to-nominal moment demands versus actual-to-nominal 
shear demands – 12-Story Archetype 
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10.8.2.2 Reliability Results Expressed in Terms of �' − �& 

 

 

Figure 10.39: Reliability results using the ACI 318-19 equation, in terms of �L − �V , for the 12-Story Archetype 

 

 

Figure 10.40: Reliability results using the proposed equation, in terms of �L − �V , for the 12-Story Archetype 

 

 



 

139 

 

10.8.2.3 Reliability Results Expressed in Terms of �&/�' 

The proposed equation estimates a much lower probability of failure for this ACI 318-19 

compliant archetype respect to what the ACI 318-19 equation does. 

 

Figure 10.41: Reliability results using the ACI 318-19 equation, in terms of �V/�L , for the 12-Story Archetype 

 

 

Figure 10.42: Reliability results using the proposed equation, in terms of �V/�L , for the 12-Story Archetype 
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Table 10.10: Mean values of the actual shear demand over the actual shear strength 

Load Combination > �&�'(ø+,)?ø�$�1��&1'
 > �&�'(÷%éè-.)?ø�$�1��&1'

 

(0.9-0.2SDS)D 0.49 0.48 

D+0.25L 0.54 0.56 

(1.2+0.2SDS)D+0.5L 0.59 0.65 

 

 

10.9 Further Assessment of the Archetypes Reliability Analyses Results 

Even though the archetypes are ACI 318-19 compliant, a relationship between the 

probability of failure and the strength reduction factor when using the proposed equation 

can be obtained. Using the proposed equation, different shear strengths for the different load 

combinations can be estimated; for each axial load, the associated probable moment is 

obtained from the unreduced P-M diagram (obtained using 1.25-b = 75 ksi), and then the 

amplified shear demand is calculated accordingly with the resultant overstrength factor 

�\ = IWU/IJ. The /M and /Z coefficients are calculated using its more generalized form, as 

shown in Eq. (10.6) and (10.7), respectively. Note that these expressions are equivalent to 

the ones presented before for the load combination producing the largest axial demand, 

unless Ì\�\ ≥ 3.0. 

                                            /M = 1100 ⎝
⎜⎛9 Õ1 + 4J[′½-′MÖ¿

�IWU�VPO�q/¿ − 6
⎠
⎟⎞ ≥ 0.010                                       (10.6) 
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                                                            /Z = 2
5 �IWU�VPO�q/¿ ≥ 0.30                                                          (10.7) 

The demands and shear strength are shown in Table 10.11, where in addition of presenting 

the �V/�L(sU£W��)
 ratio, an “equivalent strength reduction factor” (2V�) is included. This 2V� 

represents the strength reduction factor that would have been applied if designing the 

archetype with the proposed equation in order to comply with the condition 2�L ≥ �V. The 

margin between 2�L and �V is usually small, e.g., it is between 4% and 5% for the ACI 318-19 

compliant archetypes of this study. Therefore, the factor 2V� in Table 10.11 is estimated as 

1.05 �V/�L(sU£W��)
. The probability of failure (�w) obtained with the Monte Carlo simulation 

analysis is also tabulated. 

Table 10.11: Shear strength �L(sU£W��)
  for each load combination and associated 2V� 

Archetype 
Load ** 

Combination 

÷� 

(kip) 

�è% 

(kip-ft) 

�& 

(kip) 

ALR 

(%) 
SSR 

�'(÷%éè-.)
 

(kip) 

�&�'(÷%éè-.) 
èú 

(%) 
@&. 

4-Story 

Archetype 

LC_min 684 110,572 2,692 1.6 1.37 3,031 0.89 0.9 0.93 

LC_avg 1,157 115,891 2,826 2.7 1.37 3,154 0.90 3.6 0.94 

LC_max 1,741 122,361 2,984 4.0 1.37 3,306 0.90 6.8 0.95 

8-Story 

Archetype 

LC_min 1,584 107,716 2,487 2.9 1.44 3,212 0.77 0.1 0.81 

LC_avg 2,674 120,058 2,772 5.0 1.44 3,493 0.79 3.1 0.83 

LC_max 4,018 134,678 3,110 7.4 1.44 3,855 0.81 6.1 0.85 

12-Story 

Archetype 

LC_min 2,426 117,283 2,716 4.5 1.44 3,961 0.69 0.0 0.72 

LC_avg 4,098 135,520 3,138 7.6 1.44 4,072 0.77 0.0 0.81 

LC_max 6,159 156,260 3,618 11.4 1.44 4,663 0.78 0.4 0.82 

LC_max* 6,159 156,260 3,474 11.4 1.50* 4,589 0.76 0.4 0.79 

*The only difference in the calculation of the values in this row respect to the one above, is that the upper limit for the 

amplification factor was considered (��A� ≤ B.�). 

**LC_min = (0.9-SDS)D ; LC_avg = D+0.25L ; LC_max = (1.2+0.2SDS)D+0.5L 
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Figure 10.43(a) highlights the trends between the probability of failure and axial load ratio, 

Figure 10.43(b) associates probability of failure and the ratio of shear demand over the 

shear upper limit (note that /Za�WV = 1.0 for rectangular walls). Naturally, with higher shear 

demand, the probability of failure increases. Figure 10.43(c) relates the probability of 

failure with the strength reduction factor 2V� . From this plot it can be seen that values vary 

between approximate values of 0.75 and 0.95, keeping the probability of failure always 

below 10%, which is the threshold for MCE level defined in ASCE 7-16. 

Since these archetypes are ACI 318-19 compliant, the results here show what was said before 

in Chapter 10. Shear strength for rectangular walls with low levels of axial load ratio is 

underestimated by the ACI 318-19 equation, which results in a larger probability of failure 

for the 4-Story Archetype in this case. However, it is relevant to acknowledge that the 

variation of axial load around the average value estimated from D+0.25L shows a positive 

correlation with the probability of failure (Figure 10.43(a)). 

 

Figure 10.43: Probability of failure trends and its relationship with associated 2V� 

 



 

143 

 

Figure 10.43(c), computed without the upper limit for �V currently considered in ACI 318-

19, suggest that using 2 ≤ 0.80 might result in probability of failures that are always very 

small (close to 0%). For values of 2 > 0.80 it can be seen that the probability of failure varies 

from ~0% to ~6% for the 8-story archetype, and from ~1% to ~7% for the 4-story 

archetype. In other words, the probability of failure for each archetype varies depending on 

the vertical load combination, thus defining a variability region for �w, as shown in Figure 

10.44(a). If the upper limit that ACI 318-19 currently has for the shear demand amplification 

factor is considered (Ì\�\ ≤ 3.0), then the variability region for �w increases, but around the 

portion related to lower 2 factors and lower �w (Figure 10.44(b)). 

 

Figure 10.44: Relationship between �w and 2V� to assess selection of 2 for the proposed equation 

  



 

144 

 

Chapter 11. Conclusions 

 

The performance of existing RC wall shear strength equations (used in building codes or 

standards or proposed in the literature) vary substantially when evaluated with different 

databases and generally perform poorly when evaluated against a common database (i.e., 

high error and/or high variance). Some of the more complex models reported in the 

literature indicate good performance by showing that the more complex model performance 

is better than simpler models, which is an unfair comparison because it is expected to obtain 

better predictions if the model is more complex. As well, comparisons between two models 

of similar model complexity level are not enough to say the one with better performance is 

a good model, because it can be the case that a third equivalent complexity model could have 

better performance. This led to pose the problem of establishing objective model 

performance criteria. The problem was addressed by implementing a systematic combined 

ML-Statistics methodology to establish target errors for different model complexity levels. 

The methodology was applied to the problem of RC walls shear strength prediction using a 

comprehensive database. Based on the results obtain with this framework, the following 

specific conclusions are drawn: 

• The proposed methodology can be used as a framework to obtain relationships 

between target model performance for models with different complexity levels and 

can be particularly useful when addressing a mechanic-based problem with a small 

database.  
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• A comprehensive database of 333 RC walls reported to have failed in shear is obtained 

from the UCLA-RC Shear Walls Database.  Each test includes approximately 30 

variables, which enables a detailed assessment of how each variable influences wall 

shear strength. This database is large by structural engineering standards for large 

scale tests, but still relatively small to take advantage of ML approaches.  

• The framework used in this study can be implemented as means to determine if a 

properly trained complex ML model can make a big difference in terms of predictive 

power respect to a simple linear regression model obtained from the ENMs analysis. 

• When applied to the RC wall shear strength capacity estimation problem, the 

framework shows that a systematic methodology that recognizes the mechanics of 

the problem and the availability of limited data (compared to those databases with 

thousands or millions of samples available in fields where ML shows its greats 

potential) can produce simple models with performance as good as complex ML 

models. 

• The proposed iterative sensitivity analysis enables clear ML hyper-parameters trends 

to be identified which made it easier to select the optimum set of hyper-parameter 

values. Including the standard deviation of the errors obtained for each hyper-

parameter configuration in the trend plots helps to assess the underfitting-overfitting 

trade-off and it shows how a non-appropriate hyper-parameter selection could be 

made if only one iteration is run. 

• When coming up with a new model (ML model or not), it is required to split the 

dataset into testing and training sets. Before using the entire database to refine the 

model, it is a requisite for the model to have similar predictive power against both 
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training and testing sets. This should be verified not only in terms of the error 

indicator selected for the optimization process, but also (at a minimum) in terms of 

mean of �TUJV/�WUVX and its COV. 

• Defining the starting features and the predicted variable as normalized (unitless) and 

mechanic-based is one of the key initial steps in the framework to make: (1) the 

database representative of full-scale test specimens, because structural laboratory 

tests are often conducted at less than full-scale; (2) the error indicator used in the 

optimization process more robust; (3) the ENMs better able to capture data trends. 

• All ML models considered in this study at their optimum complexity level (ANN, RF 

Regression and LASSO model), result in very similar predictive performance. This 

result is taken as a validation for using underfitted models derived from the optimum 

LASSO model as a soft relaxation away from the optimum when looking for target 

model performance (errors) that fulfill user requirements for less complex models. 

• Target performance of a model to predict reinforced concrete wall shear strength for 

implementation in codes and standards should achieve a �TUJV/�WUVX mean ratio very 

close to 1.0 with a COV in the range of 0.16 to 0.19 when faced against the 

comprehensive database provided in this study (or a similar one). In addition, the 

training and testing errors should be within a margin of ±10% of the converging error 

(in terms, at least, of the error used in the optimization process and in terms of COV). 

• Complex ML models are required to have a �TUJV/�WUVX mean ratio of 1.0 (or very close 

to) with a COV of 0.12 or lower, and to verify a training and testing error within a 

margin of ±20% of the converging error (in terms, at least, of the error used in the 

optimization process and in terms of COV). 
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After applying the framework and established objective model performance criteria for the 

reinforced concrete wall shear strength problem, several existing models in codes, 

standards, and literature were studied. None of the existing code-oriented models meets the 

target performance for a simplified shear strength model, which suggested there is room for 

improvement in terms of code equation predictive performance.  

Using a methodology, that involves statistical and ML approaches, applied to the same 

comprehensive and cleanse database of 333 walls that are reported to have failed in shear, 

a new wall shear strength equation is obtained. Also, a modification on the current shear 

stress upper limit is proposed.  

• The proposed equation satisfies the target model performance for a code-oriented 

equations. A simplified version of the equation is obtained, and it also meets the target 

model performance objectives.  

• The proposed equation applies to walls with rectangular, barbell, and flanged (C-, H-

, T- and L-shaped) cross-sections, although the validation was limited for asymmetric 

cross-section shapes due to lack of data (database with only 13 samples).  

• Unlike the ACI 318-19 equation, the proposed equation has practically the same 

performance (prior to application of a limiting shear stress) for walls with different 

cross-section shape, axial load ratio, shear-span ratio, or aspect ratio.  

• Analyses of two companion tests groups indicate that the shear strength contribution 

coming from the terms of the proposed equation are more accurate than the 

contributions coming from the terms on the ACI 318-19 equation, which tends to 
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significantly underestimate and overestimate the contributions associated with 

concrete and horizontal web reinforcement, respectively. 

• The coefficients on the equation are unitless, which provides a more natural use of 

the equation because it does not depend on the specific set of units the engineer is 

using. 

• The proposed shear strength upper limit is simple and is designed to have the 

performance similar to the limit in ACI 318-19 for rectangular walls (most of walls 

not failing in diagonal-compression below the limit and about half of the walls failing 

in diagonal-compression above the limit), but for all walls. The proposed limit 

consists in including the /Za factor (function of the cross-section area of the 

compressed flange over [M\) to the current upper bound definition, which allows 

shear stresses (5L = �L/[M\) up to 15_-M̀  for walls with flanges. 

 

Finally, a reliability analysis is performed through a Monte Carlo Simulation. Three ACI 318-

19 compliant archetypes were studied, for which the shear strength was also estimated using 

the proposed equation. It is found that the shear strength reduction factor associated with 

the proposed equation can vary between approximately values of 0.75 and 0.95, keeping a 

probability of failure less than 10% for MCE level, and practically in 0% for 2 values around 

0.80 or less. Also, the reliability analysis presents results that are consistent with those 

obtained by performing comparisons of the proposed equation and the ACI 318-19 equation 

on the database; the ACI 318-19 equation underestimates the shear strength of rectangular 

walls and walls with low axial load ratio, and it overestimates it for barbell walls or walls 

with flanges, or walls with high axial load. Explicitly: 
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• The proposed equation estimates a much higher probability of failure for the 4-story 

rectangular wall respect to what the ACI 318-19 equation does. 

• The proposed equation estimates a moderate lower probability of failure for the 8-story 

rectangular wall respect to what the ACI 318-19 equation does. 

• The proposed equation estimates a much lower probability of failure for the 12-story 

rectangular wall respect to what the ACI 318-19 equation does. 
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A.3 Wall Sketches 

 

NOTES: 

CROSSTIES IN THE WEB ARE NOT SHOWN 

THE DRAWING OF THE DETAILING OF THE BOUNDARY ELEMENT MIGHT NOT SATISFY ALL ACI 318-19 REQUIREMENTS, HOWEVER 

THE PURPOSE OF PROVIDING ENOUGH TRANSVERSE STEEL AND ESTIMATE THE CORRESPONDING CONFINEMENT IS MET. 
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A.6 Selection of MCE Level Ground Motions 

The methodology described by Baker and Lee (2018) was implemented. The scripts 

developed by the authors are available in Baker’s GitHub repository (link here). The period 

used as the input ����� in Table A.1 corresponds to the fundamental period obtained with 

the OpenSees model. The spectral acceleration used as target when computing the 

conditional spectrum, ��������	 in Table A.1, was obtained by interpolating ����� in the 

Uniform Hazard Response Spectrum of the site (shown in Figure 10.3). 

Table A.1: Input values used in “Main_select_motions.m” script by Baker and Lee (2018) 

Parameter Value 

Tcond 0.18 

Tmin 0.01 

Tmax 5 

SaTcond 0.57 

rup.M_bar 6.92 

rup..Rjb 8.4 

rup.eps_bar 1.31 

rup.Vs30 760 

rup.z1 999 

rup.region 1 

rup.Fault_Type 1 

rup.Rrup 4.60 

rup.Rx 4.60 

rup.W 11 

rup.Ztor 0 

rup.Zbot 11 

rup.dip 90 

allowedRecs.Vs30 [560  1130] 

allowedRecs.Mag [6.2   8.2] 

allowRecs.D [0    50] 
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Table A.2: Selected ground motions for the 4-Story Archetype MCE level analysis 

Tag RSN* Earthquake Name Year Horizontal Acc. Filename Utilized 
Scale 

Factor 

EQ 401 1012  "Northridge-01" 1994  RSN1012_NORTHR_LA0270.AT2  2.8 

EQ 402 1020  "Northridge-01" 1994  RSN1020_NORTHR_H12090.AT2 3.94 

EQ 403 1023  "Northridge-01" 1994  RSN1023_NORTHR_L09090.AT2  2.21 

EQ 404 1078  "Northridge-01" 1994  RSN1078_NORTHR_SSU090.AT2  1.77 

EQ 405 1126  "Kozani_ Greece-01" 1995  RSN1126_KOZANI_KOZ--L.AT2 3.32 

EQ 406 1350  "Chi-Chi_ Taiwan" 1999  RSN1350_CHICHI_ILA067-N.AT2  3.7 

EQ 407 1520  "Chi-Chi_ Taiwan" 1999  RSN1520_CHICHI_TCU088-E.AT2  2.63 

EQ 408 1633  "Manjil_ Iran" 1990  RSN1633_MANJIL_ABBAR--L.AT2 1.04 

EQ 409 288  "Irpinia_ Italy-01" 1980  RSN288_ITALY_A-BRZ270.AT2  3.62 

EQ 410 3943  "Tottori_ Japan" 2000  RSN3943_TOTTORI_SMN015EW.AT2  2.84 

EQ 411 4213  "Niigata_ Japan" 2004  RSN4213_NIIGATA_NIG023EW.AT2  2.09 

EQ 412 4227  "Niigata_ Japan" 2004  RSN4227_NIIGATA_NIGH10NS.AT2 3.43 

EQ 413 4229  "Niigata_ Japan" 2004  RSN4229_NIIGATA_NIGH12NS.AT2 2.44 

EQ 414 4231  "Niigata_ Japan" 2004  RSN4231_NIIGATA_NIGH15EW.AT2  4.95 

EQ 415 4455  "Montenegro_ Yugoslavia" 1979  RSN4455_MONTENE.GRO_HRZ000.AT2 2.71 

EQ 416 4483  "L'Aquila_ Italy" 2009  RSN4483_L-AQUILA_AM043YLN.AT2  3.09 

EQ 417 4842  "Chuetsu-oki_ Japan" 2007  RSN4842_CHUETSU_65005EW.AT2  1.41 

EQ 418 4845  "Chuetsu-oki_ Japan" 2007  RSN4845_CHUETSU_65008NS.AT2 1.4 

EQ 419 4858  "Chuetsu-oki_ Japan" 2007  RSN4858_CHUETSU_65028EW.AT2  3.99 

EQ 420 4867  "Chuetsu-oki_ Japan" 2007  RSN4867_CHUETSU_65040NS.AT2 2.4 

EQ 421 4869  "Chuetsu-oki_ Japan" 2007  RSN4869_CHUETSU_65042EW.AT2  3.53 

EQ 422 4873  "Chuetsu-oki_ Japan" 2007  RSN4873_CHUETSU_65056EW.AT2  1.96 

EQ 423 495  "Nahanni_ Canada" 1985  RSN495_NAHANNI_S1280.AT2  0.83 

EQ 424 5285  "Chuetsu-oki_ Japan" 2007  RSN5285_CHUETSU_NIGH12EW.AT2  2.67 

EQ 425 5474  "Iwate_ Japan" 2008  RSN5474_IWATE_AKT019EW.AT2  3.46 

EQ 426 5623  "Iwate_ Japan" 2008  RSN5623_IWATE_IWT015EW.AT2  3.69 

EQ 427 5807  "Iwate_ Japan" 2008  RSN5807_IWATE_55462NS.AT2 4.15 

EQ 428 5809  "Iwate_ Japan" 2008  RSN5809_IWATE_55465NS.AT2 3.37 

EQ 429 5819  "Iwate_ Japan" 2008  RSN5819_IWATE_4CA71NS.AT2 2.98 

EQ 430 6928  "Darfield_ New Zealand" 2010  RSN6928_DARFIELD_LPCCN80E.AT2 2.6 

EQ 431 71  "San Fernando" 1971  RSN71_SFERN_L12021.AT2 1.42 

EQ 432 72  "San Fernando" 1971  RSN72_SFERN_L04201.AT2  3.46 

EQ 433 763  "Loma Prieta" 1989  RSN763_LOMAP_GIL337.AT2  1.78 

EQ 434 801  "Loma Prieta" 1989  RSN801_LOMAP_SJTE315.AT2  3.4 

EQ 435 809  "Loma Prieta" 1989  RSN809_LOMAP_UC2000.AT2 2.27 

EQ 436 80  "San Fernando" 1971  RSN80_SFERN_PSL270.AT2  4.39 

EQ 437 810  "Loma Prieta" 1989  RSN810_LOMAP_LOB090.AT2  1.86 

EQ 438 8164  "Duzce_ Turkey" 1999  RSN8164_DUZCE_487-NS.AT2 2.55 

EQ 439 8165  "Duzce_ Turkey" 1999  RSN8165_DUZCE_496-EW.AT2  0.63 

EQ 440 825  "Cape Mendocino" 1992  RSN825_CAPEMEND_CPM000.AT2 0.76 

EQ 441 87  "San Fernando" 1971  RSN87_SFERN_SAD003.AT2 4.92 

EQ 442 957  "Northridge-01" 1994  RSN957_NORTHR_HOW330.AT2  4.13 
*Record Sequential Number of the PEER NGA-West2 database 
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A.7 OpenSees Analysis Results 

A.7.1 Model with Expected Material Properties and Expected Axial Load 

This model uses the expected material properties defined by the application of the Saatcioglu 

and Razvi (1992) model. The applied gravity load comes from the load combination D+0.25L. 

 

Figure A.1: Base shear versus roof drift – Monotonic Pushover with 
���  and w/o modification to expected 

material properties (4-Story Archetype) 

 

Figure A.2: Base moment versus curvature – Monotonic Pushover with 
���  and w/o modification to expected 

material properties (4-Story Archetype) 
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Figure A.3: Monotonic pushover results at predicted roof drift capacity (4-Story Archetype) 
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A.7.2 Model with Modified Expected Material Properties and Expected Axial Load 

A.7.2.1 Monotonic Pushover Results 

 

Figure A.4: Base shear versus roof drift – Monotonic Pushover with 
���  and modified expected material 

properties (4-Story Archetype) 

 

 

Figure A.5: Base moment versus curvature – Monotonic Pushover with 
���  and modified expected material 

properties (4-Story Archetype) 
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A.7.2.2 Cyclic Pushover Results 

 

Figure A.6: Base shear versus roof drift – Cyclic Pushover with 
���  and modified expected material properties 

(4-Story Archetype) 

 

 

Figure A.7: Base moment versus Curvature – Cyclic Pushover with 
���  and modified expected material 

properties (4-Story Archetype) 
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A.7.2.3 Dynamic Analysis Results – LC: (1.2+0.2SDS)D+0.25L 
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B.3 Wall Sketches 

 

NOTES: 

CROSSTIES IN THE WEB ARE NOT SHOWN 

THE DRAWING OF THE DETAILING OF THE BOUNDARY ELEMENT MIGHT NOT SATISFY ALL ACI 318-19 REQUIREMENTS, HOWEVER 

THE PURPOSE OF PROVIDING ENOUGH TRANSVERSE STEEL AND ESTIMATE THE CORRESPONDING CONFINEMENT IS MET. 
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B.6 Selection of MCE Level Ground Motions 

The methodology described by Baker and Lee (2018) was implemented. The scripts 

developed by the authors are available in Baker’s GitHub repository (link here). The period 

used as the input ����� in Table A.1 corresponds to the fundamental period obtained with 

the OpenSees model. The spectral acceleration used as target when computing the 

conditional spectrum, ��������	 in Table A.1, was obtained by interpolating ����� in the 

Uniform Hazard Response Spectrum of the site (shown in Figure 10.3). 

Table B.1: Input values used in “Main_select_motions.m” script by Baker and Lee (2018) 

Parameter Value 

Tcond 0.52 

Tmin 0.01 

Tmax 5 

SaTcond 0.57 

rup.M_bar 6.92 

rup..Rjb 8.4 

rup.eps_bar 1.31 

rup.Vs30 760 

rup.z1 999 

rup.region 1 

rup.Fault_Type 1 

rup.Rrup 4.60 

rup.Rx 4.60 

rup.W 11 

rup.Ztor 0 

rup.Zbot 11 

rup.dip 90 

allowedRecs.Vs30 [560  1130] 

allowedRecs.Mag [6.2   8.2] 

allowRecs.D [0    50] 
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Table B.2: Selected ground motions for the 8-Story Archetype MCE level analysis 

Tag RSN* Earthquake Name Year Horizontal Acc. Filename Utilized 
Scale 

Factor 

EQ 801 1012  "Northridge-01" 1994  RSN1012_NORTHR_LA0180.AT2 1.72 

EQ 802 1078  "Northridge-01" 1994  RSN1078_NORTHR_SSU000.AT2 2.49 

EQ 803 1091  "Northridge-01" 1994  RSN1091_NORTHR_VAS090.AT2  3.87 

EQ 804 1111  "Kobe_ Japan" 1995  RSN1111_KOBE_NIS000.AT2 0.6 

EQ 805 1211  "Chi-Chi_ Taiwan" 1999  RSN1211_CHICHI_CHY052-N.AT2 2.52 

EQ 806 1234  "Chi-Chi_ Taiwan" 1999  RSN1234_CHICHI_CHY086-E.AT2 3.05 

EQ 807 1281  "Chi-Chi_ Taiwan" 1999  RSN1281_CHICHI_HWA032-N.AT2  5 

EQ 808 1485  "Chi-Chi_ Taiwan" 1999  RSN1485_CHICHI_TCU045-E.AT2 0.93 

EQ 809 1492  "Chi-Chi_ Taiwan" 1999  RSN1492_CHICHI_TCU052-E.AT2 2.14 

EQ 810 1618  "Duzce_ Turkey" 1999  RSN1618_DUZCE_531-E.AT2  2.89 

EQ 811 291  "Irpinia_ Italy-01" 1980  RSN291_ITALY_A-VLT000.AT2 4.7 

EQ 812 3472  "Chi-Chi_ Taiwan-06" 1999  RSN3472_CHICHI.06_TCU076E.AT2  4.46 

EQ 813 3943  "Tottori_ Japan" 2000  RSN3943_TOTTORI_SMN015NS.AT2 2.79 

EQ 814 4213  "Niigata_ Japan" 2004  RSN4213_NIIGATA_NIG023NS.AT2 1.73 

EQ 815 4227  "Niigata_ Japan" 2004  RSN4227_NIIGATA_NIGH10NS.AT2 3.53 

EQ 816 4229  "Niigata_ Japan" 2004  RSN4229_NIIGATA_NIGH12EW.AT2  2.17 

EQ 817 4455  "Montenegro_ Yugoslavia" 1979  RSN4455_MONTENE.GRO_HRZ090.AT2  4.74 

EQ 818 4481  "L'Aquila_ Italy" 2009  RSN4481_L-AQUILA_FA030XTE.AT2 2.23 

EQ 819 4483  "L'Aquila_ Italy" 2009  RSN4483_L-AQUILA_AM043YLN.AT2  2.72 

EQ 820 4841  "Chuetsu-oki_ Japan" 2007  RSN4841_CHUETSU_65004EW.AT2  2.4 

EQ 821 4842  "Chuetsu-oki_ Japan" 2007  RSN4842_CHUETSU_65005EW.AT2  2.12 

EQ 822 4843  "Chuetsu-oki_ Japan" 2007  RSN4843_CHUETSU_65006EW.AT2  1.92 

EQ 823 4845  "Chuetsu-oki_ Japan" 2007  RSN4845_CHUETSU_65008EW.AT2  2.8 

EQ 824 4846  "Chuetsu-oki_ Japan" 2007  RSN4846_CHUETSU_65009EW.AT2  1.76 

EQ 825 4854  "Chuetsu-oki_ Japan" 2007  RSN4854_CHUETSU_65020NS.AT2 4.36 

EQ 826 4858  "Chuetsu-oki_ Japan" 2007  RSN4858_CHUETSU_65028NS.AT2 2.72 

EQ 827 4864  "Chuetsu-oki_ Japan" 2007  RSN4864_CHUETSU_65037NS.AT2 1.59 

EQ 828 4865  "Chuetsu-oki_ Japan" 2007  RSN4865_CHUETSU_65038EW.AT2  2.2 

EQ 829 4868  "Chuetsu-oki_ Japan" 2007  RSN4868_CHUETSU_65041NS.AT2 1.37 

EQ 830 4869  "Chuetsu-oki_ Japan" 2007  RSN4869_CHUETSU_65042EW.AT2  3.8 

EQ 831 4874  "Chuetsu-oki_ Japan" 2007  RSN4874_CHUETSU_65057EW.AT2  0.72 

EQ 832 4887  "Chuetsu-oki_ Japan" 2007  RSN4887_CHUETSU_6CB61EW.AT2  3.99 

EQ 833 495  "Nahanni_ Canada" 1985  RSN495_NAHANNI_S1280.AT2  1.45 

EQ 834 5623  "Iwate_ Japan" 2008  RSN5623_IWATE_IWT015EW.AT2  2.63 

EQ 835 5806  "Iwate_ Japan" 2008  RSN5806_IWATE_55461NS.AT2 2.05 

EQ 836 6928  "Darfield_ New Zealand" 2010  RSN6928_DARFIELD_LPCCN80E.AT2 2.14 

EQ 837 748  "Loma Prieta" 1989  RSN748_LOMAP_BES345.AT2  3.73 

EQ 838 763  "Loma Prieta" 1989  RSN763_LOMAP_GIL337.AT2  2.09 

EQ 839 801  "Loma Prieta" 1989  RSN801_LOMAP_SJTE315.AT2  2.54 

EQ 840 809  "Loma Prieta" 1989  RSN809_LOMAP_UC2000.AT2 4.44 

EQ 841 8164  "Duzce_ Turkey" 1999  RSN8164_DUZCE_487-NS.AT2 2.36 

EQ 842 957  "Northridge-01" 1994  RSN957_NORTHR_HOW060.AT2 4.11 

EQ 843 989  "Northridge-01" 1994  RSN989_NORTHR_CHL070.AT2 2.04 
*Record Sequential Number of the PEER NGA-West2 database 
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B.7 OpenSees Analysis Results 

B.7.1 Model with Expected Material Properties and Expected Axial Load 

This model uses the expected material properties defined by the application of the Saatcioglu 

and Razvi (1992) model. The applied gravity load comes from the load combination D+0.25L. 

 

Figure B.1: Base shear versus roof drift – Monotonic Pushover with 
���  and w/o modification to expected 

material properties (8-Story Archetype) 

 

Figure B.2: Base moment versus curvature – Monotonic Pushover with 
���  and w/o modification to expected 

material properties (8-Story Archetype) 
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Figure B.3: Monotonic pushover results at predicted roof drift capacity (8-Story Archetype) 
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B.7.2 Model with Modified Expected Material Properties and Expected Axial Load 

B.7.2.1 Monotonic Pushover Results 

 

Figure B.4: Base shear versus roof drift – Monotonic Pushover with 
���  and modified expected material 

properties (8-Story Archetype) 

 

 

Figure B.5: Base moment versus curvature – Monotonic Pushover with 
���  and modified expected material 

properties (8-Story Archetype) 
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B.7.2.2 Cyclic Pushover Results 

 

Figure B.6: Base shear versus roof drift – Cyclic Pushover with 
���  and modified expected material properties 

(8-Story Archetype) 

 

 

Figure B.7: Base moment versus Curvature – Cyclic Pushover with 
���  and modified expected material 

properties (8-Story Archetype) 
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B.7.2.3 Dynamic Analysis Results – LC: (1.2+0.2SDS)D+0.25L 
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Appendix C. Design and Analysis of 12-Story Archetype 
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C.3 Wall Sketches 
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  NOTES: 

CROSSTIES IN THE WEB ARE NOT SHOWN 

THE DRAWING OF THE DETAILING OF THE BOUNDARY ELEMENT MIGHT NOT SATISFY ALL ACI 318-19 REQUIREMENTS, HOWEVER 

THE PURPOSE OF PROVIDING ENOUGH TRANSVERSE STEEL AND ESTIMATE THE CORRESPONDING CONFINEMENT IS MET. 
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C.6 Selection of MCE Level Ground Motions 

The methodology described by Baker and Lee (2018) was implemented. The scripts 

developed by the authors are available in Baker’s GitHub repository (link here). The period 

used as the input ����� in Table A.1 corresponds to the fundamental period obtained with 

the OpenSees model. The spectral acceleration used as target when computing the 

conditional spectrum, ��������	 in Table A.1, was obtained by interpolating ����� in the 

Uniform Hazard Response Spectrum of the site (shown in Figure 10.3). 

Table C.1: Input values used in “Main_select_motions.m” script by Baker and Lee (2018) 

Parameter Value 

Tcond 1.20 

Tmin 0.01 

Tmax 5 

SaTcond 0.57 

rup.M_bar 6.92 

rup..Rjb 8.4 

rup.eps_bar 1.31 

rup.Vs30 760 

rup.z1 999 

rup.region 1 

rup.Fault_Type 1 

rup.Rrup 4.60 

rup.Rx 4.60 

rup.W 11 

rup.Ztor 0 

rup.Zbot 11 

rup.dip 90 

allowedRecs.Vs30 [560  1130] 

allowedRecs.Mag [6.2   8.2] 

allowRecs.D [0    50] 

  



 

249 

 

Table C.2: Selected ground motions for the 12-Story Archetype MCE level analysis 

Tag RSN* Earthquake Name Year Horizontal Acc. Filename Utilized 
Scale 

Factor 

EQ 1201 1013  "Northridge-01" 1994  RSN1013_NORTHR_LDM334.AT2  1.3 

EQ 1202 1078  "Northridge-01" 1994  RSN1078_NORTHR_SSU090.AT2  3.06 

EQ 1203 1108  "Kobe_ Japan" 1995  RSN1108_KOBE_KBU000.AT2 0.62 

EQ 1204 1202  "Chi-Chi_ Taiwan" 1999  RSN1202_CHICHI_CHY035-E.AT2 1.02 

EQ 1205 1206  "Chi-Chi_ Taiwan" 1999  RSN1206_CHICHI_CHY042-E.AT2 2.57 

EQ 1206 1234  "Chi-Chi_ Taiwan" 1999  RSN1234_CHICHI_CHY086-E.AT2 2.4 

EQ 1207 1270  "Chi-Chi_ Taiwan" 1999  RSN1270_CHICHI_HWA020-E.AT2 4.19 

EQ 1208 1279  "Chi-Chi_ Taiwan" 1999  RSN1279_CHICHI_HWA030-N.AT2  3.1 

EQ 1209 143  "Tabas_ Iran" 1978  RSN143_TABAS_TAB-L1.AT2 0.69 

EQ 1210 1492  "Chi-Chi_ Taiwan" 1999  RSN1492_CHICHI_TCU052-N.AT2  0.48 

EQ 1211 1507  "Chi-Chi_ Taiwan" 1999  RSN1507_CHICHI_TCU071-N.AT2  1 

EQ 1212 1510  "Chi-Chi_ Taiwan" 1999  RSN1510_CHICHI_TCU075-N.AT2  2.29 

EQ 1213 1511  "Chi-Chi_ Taiwan" 1999  RSN1511_CHICHI_TCU076-N.AT2  0.91 

EQ 1214 1551  "Chi-Chi_ Taiwan" 1999  RSN1551_CHICHI_TCU138-N.AT2 1.2 

EQ 1215 1787  "Hector Mine" 1999  RSN1787_HECTOR_HEC000.AT2 1.33 

EQ 1216 285  "Irpinia_ Italy-01" 1980  RSN285_ITALY_A-BAG000.AT2 1.94 

EQ 1217 3274  "Chi-Chi_ Taiwan-06" 1999  RSN3274_CHICHI.06_CHY035E.AT2  1.3 

EQ 1218 3548  "Loma Prieta" 1989  RSN3548_LOMAP_LEX000.AT2 0.66 

EQ 1219 356  "Coalinga-01" 1983  RSN356_COALINGA.H_H-SC2090.AT2  4.63 

EQ 1220 369  "Coalinga-01" 1983  RSN369_COALINGA.H_H-SCN315.AT2  1.55 

EQ 1221 3744  "Cape Mendocino" 1992  RSN3744_CAPEMEND_BNH270.AT2 1.56 

EQ 1222 3943  "Tottori_ Japan" 2000  RSN3943_TOTTORI_SMN015NS.AT2 2.74 

EQ 1223 4213  "Niigata_ Japan" 2004  RSN4213_NIIGATA_NIG023EW.AT2  2.84 

EQ 1224 4229  "Niigata_ Japan" 2004  RSN4229_NIIGATA_NIGH12EW.AT2  2.79 

EQ 1225 4481  "L'Aquila_ Italy" 2009  RSN4481_L-AQUILA_FA030XTE.AT2 1.71 

EQ 1226 4483  "L'Aquila_ Italy" 2009  RSN4483_L-AQUILA_AM043YLN.AT2  1.54 

EQ 1227 4841  "Chuetsu-oki_ Japan" 2007  RSN4841_CHUETSU_65004NS.AT2 3.39 

EQ 1228 4844  "Chuetsu-oki_ Japan" 2007  RSN4844_CHUETSU_65007NS.AT2 3.41 

EQ 1229 4850  "Chuetsu-oki_ Japan" 2007  RSN4850_CHUETSU_65013NS.AT2 1.15 

EQ 1230 4864  "Chuetsu-oki_ Japan" 2007  RSN4864_CHUETSU_65037NS.AT2 1.45 

EQ 1231 4865  "Chuetsu-oki_ Japan" 2007  RSN4865_CHUETSU_65038EW.AT2  1.1 

EQ 1232 4869  "Chuetsu-oki_ Japan" 2007  RSN4869_CHUETSU_65042EW.AT2  3.47 

EQ 1233 4873  "Chuetsu-oki_ Japan" 2007  RSN4873_CHUETSU_65056NS.AT2 2.52 

EQ 1234 5618  "Iwate_ Japan" 2008  RSN5618_IWATE_IWT010EW.AT2  2.48 

EQ 1235 5681  "Iwate_ Japan" 2008  RSN5681_IWATE_MYGH06EW.AT2  3.23 

EQ 1236 5775  "Iwate_ Japan" 2008  RSN5775_IWATE_54009EW.AT2  3.95 

EQ 1237 5806  "Iwate_ Japan" 2008  RSN5806_IWATE_55461NS.AT2 1.98 

EQ 1238 5807  "Iwate_ Japan" 2008  RSN5807_IWATE_55462NS.AT2 3.45 

EQ 1239 6891  "Darfield_ New Zealand" 2010  RSN6891_DARFIELD_CSHSN76W.AT2 3.78 

EQ 1240 751  "Loma Prieta" 1989  RSN751_LOMAP_CLR180.AT2  4.48 

EQ 1241 755  "Loma Prieta" 1989  RSN755_LOMAP_CYC195.AT2 3.11 

EQ 1242 779  "Loma Prieta" 1989  RSN779_LOMAP_LGP000.AT2 0.57 

EQ 1243 801  "Loma Prieta" 1989  RSN801_LOMAP_SJTE315.AT2  2.86 

EQ 1244 809  "Loma Prieta" 1989  RSN809_LOMAP_UC2090.AT2  2.55 

EQ 1245 8164  "Duzce_ Turkey" 1999  RSN8164_DUZCE_487-NS.AT2 2.5 
*Record Sequential Number of the PEER NGA-West2 database 
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C.7 OpenSees Analysis Results 

C.7.1 Model with Expected Material Properties and Expected Axial Load 

This model uses the expected material properties defined by the application of the Saatcioglu 

and Razvi (1992) model. The applied gravity load comes from the load combination D+0.25L. 

 

Figure C.1: Base shear versus roof drift – Monotonic Pushover with 
���  and w/o modification to expected 

material properties (12-Story Archetype) 

 

Figure C.2: Base moment versus curvature – Monotonic Pushover with 
���  and w/o modification to expected 

material properties (12-Story Archetype) 
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Figure C.3: Monotonic pushover results at predicted roof drift capacity (12-Story Archetype) 
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C.7.2 Model with Modified Expected Material Properties and Expected Axial Load 

C.7.2.1 Monotonic Pushover Results 

 

Figure C.4: Base shear versus roof drift – Monotonic Pushover with 
���  and modified expected material 

properties (12-Story Archetype) 

 

 

Figure C.5: Base moment versus curvature – Monotonic Pushover with 
���  and modified expected material 

properties (12-Story Archetype) 
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C.7.2.2 Cyclic Pushover Results 

 

Figure C.6: Base shear versus roof drift – Cyclic Pushover with 
���  and modified expected material properties 

(12-Story Archetype) 

 

 

Figure C.7: Base moment versus Curvature – Cyclic Pushover with 
���  and modified expected material 

properties (12-Story Archetype) 
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C.7.2.3 Dynamic Analysis Results – LC: (1.2+0.2SDS)D+0.25L 
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