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ABSTRACT OF THE DISSERTATION

Cross-Layer Optimization for Transmission of Delay-Sensitive and Bursty Traffic

in Wireless Systems

by

Somsak Kittipiyakul

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California, San Diego, 2008

Professor Tara Javidi, Chair

High demands on the quality of service (QoS), in terms of throughput,

delay, and packet loss, in wireless systems have fueled substantial research interest

in jointly considering different layers of protocol stack. Integrated design of wireless

systems from physical to application layers is challenging due to high variability of

wireless channels and stochastic and delay-sensitive nature of traffic. Following this

research interest, the current dissertation considers resource allocation in wireless

systems for transmission of delay-sensitive and bursty traffic in two main areas.

xv



In the first chapter of this dissertation, a subcarrier allocation problem

in OFDMA downlink system is studied, where given the knowledge of the channel

and queue states, the optimal centralized allocation policy seeks to minimize the

average packet delay. The problem is modeled as a multi-queue multi-server as-

signment problem with time-varying connectivities. For on-off connectivities and

homogeneous users, we show, using a dynamic programming approach, that a si-

multaneous maximum-throughput and load-balancing policy is delay-optimal. For

more general connectivities, we propose heuristic policies that use different de-

grees of queue and channel state information to provide good delay performance

for various traffic loads.

The rest of the dissertation is concerned with cross-layer design of wireless

data networks, when there is no channel state information at the transmitter and

no retransmission. In Chapter 3, we study how to set up various physical layer pa-

rameters, e.g., coding block length and channel transmission rate of point-to-point

wireless fading channels, such that the total probability of bit loss is minimized,

where bit losses account for both erroneous decoding at the receiver as well as vi-

olation of a specified delay constraint. We simplify the problem by considering an

asymptotic high signal-to-noise-ratio (SNR) regime and assuming smoothly scaling

(with SNR) bit-arrival processes.

Extending this study to multi-user settings, in Chapter 4 we study how

to select the optimal channel spatial-diversity in MIMO multiple access channels

in order to minimize the asymptotic high-SNR error probability. We also quantify

xvi



the amount of the performance improvement that can be achieved from using

an optimal queue-aware dynamic rate scheduler. While Chapter 4 answers the

above question for sufficiently large delay constraints, Chapter 5 considers a case

of finite and small buffer constraints. Finally, in Chapter 5, we propose a large-

deviations analysis of the asymptotic buffer overflow probability for a maximum-

weight dynamic scheduling policy with simplex rate region, assuming properly-

scaled arrival processes.

Extending this study to multi-user settings, in Chapter 4 we study how

to select the optimal channel spatial-diversity in MIMO multiple access channels

in order to minimize the asymptotic high-SNR error probability. We also quantify

the amount of the performance improvement that can be achieved from using

an optimal queue-aware dynamic rate scheduler. While Chapter 4 answers the

above question for sufficiently large delay constraints, Chapter 5 considers a case

of finite and small buffer constraints. Finally, in Chapter 5, we propose a large-

deviations analysis of the asymptotic buffer overflow probability for a maximum-

weight dynamic scheduling policy with simplex rate region, assuming properly-

scaled arrival processes.

xvii



Chapter 1

Introduction

In the context of wireless data networks, high demands on the quality

of service (QoS), in terms of throughput, delay, and packet loss, have attracted

substantial research interest in jointly considering physical layer and higher net-

working layer issues in an integrated framework. It is well known that this cross-

layer resource allocation approach, compared to a traditional layered architecture

approach, can provide a significant performance gain for wireless fading channels

(e.g., see [7, 33, 54]). The motivation for the cross-layer approach lies in the fact

that wireless channel is an inherently multi-access channel where the channel ca-

pacity is time-varying and susceptible to interference among users. In this way, the

knowledge of the channel variability (e.g., in time, frequency, and space) can be

exploited by the system to significantly improve performance. This improvement

is a result of transmitting more information in good channel states and less in

poor conditions. When there are multiple users, the channel quality varies across

1
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the users and hence, the system can selectively transmit to the users with good

channel conditions.

On the other hand, the knowledge of the current channel state may be un-

available at the transmitters in which case the system cannot dynamically allocate

resource according to channel variability. In this case, the channel variability can

still be used to improve the reliability of reception (diversity gain) or increase the

rate of communication for a fixed reliability level (multiplexing gain) via innovative

(space-time) coding schemes. For example, in slow-fading multiple transmit and

receive antenna (MIMO) systems, the spatial variability of the channels across the

transmit and receive antennas can be exploited to simultaneously provide diversity

and multiplexing gains, whose relationship follows a fundamental tradeoff known

as diversity-multiplexing tradeoff (DMT), first introduced by Zheng and Tse [90].

A fundamental cross-layer question of interest is how to select the optimal oper-

ating diversity and multiplexing gains, when the network layer performance such

as delay violation probability, as well as the physical layer performance such as

channel error performance, are jointly considered.

In this dissertation we study resource allocation problems under both as-

sumptions regarding channel state knowledge. In the first scenario where the chan-

nel state is available at the transmitter, we examine the problem of delay-optimal

subcarrier allocation in orthogonal frequency-division multiple access (OFDMA)

downlink systems. On the other hand, in the second scenario where the channel

state is unavailable, we examine the problem of optimal selection of the static
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operating PHY parameters such that the asymptotic total error performance is

optimized. The specific contributions of this work can be characterized as follows.

Chapter 2: Delay-Optimal Server Allocation in Multi-Queue Multi-

Server Systems With Time-Varying Connectivities

In the presence of frequency selectivity, code-division, or spatial degrees

of freedom, many wireless systems with multiple orthogonalized sub-channels and

multiple users can be viewed as multi-queue multi-server queuing systems which

enable transmission of packets in a parallel manner. Examples of such systems

include OFDMA systems, where the total available bandwidth is divided into

multiple orthogonal narrow subcarriers to be shared by users [83]. Usually data

packets in such systems arrive stochastically to each user and are stored in buffers

prior to transmission. In this context, there is a limited number of subcarriers,

not allowing simultaneous transmission of all queued packets. This gives rise to

a scheduling problem involving the allocation of the orthogonal channels to the

different data streams.

In addition, due to selective fading for instance, the “quality” of these

channels as perceived by different users varies stochastically with time and users.

This introduces the notion of stochastic server quality, also known as connectivity.

In the presence of reliable estimates of channel quality at the transmitter, the

stochastic variation across users provides opportunities for selectively scheduling

the transmission among users to benefit from multi-user diversity gain [48].

The focus of Chapter 2 is the optimal delay performance of a multi-server
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queueing system with stochastic channel state (connectivity) and arrival processes.

It is known that, in general, delay-optimal policies must trade off between two

competing goals: the desire to get maximum throughput now (which is achieved

by opportunistic scheduling) and the desire to get the maximum throughput in the

future (which is achieved by balancing the remaining load). The second goal, under

admissible traffic regimes, accounts for queue occupancies; the intuitive reasoning

is that the queued packets should be spread over multiple queues so that the system

will have a better chance of avoiding idling any subcarriers in the future. These

goals, in general, can be incompatible over short timescales, implying an empty

intersection between the two classes of policies.

In Chapter 2 we establish the existence and delay optimality of a pol-

icy achieving both goals, when the connectivities between each queue and each

server are random but binary (either “on” or “off”). The existence of this op-

timal policy (MTLB policy), which simultaneously maximizes the instantaneous

throughput and balances the queues at every timeslot, is shown constructively,

while the proof of the optimality of the MTLB policy is based on properties of the

dynamic programming value function.

For the systems whose connectivities are more general than the on-off

model, we utilize the insights gained from the MTLB policy to propose heuristic

policies that use different degrees of channel and queue state information. We il-

lustrate how the significance of queue vs. channel state information varies with the

traffic load. This important observation is not only used to devise algorithms with
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good average delay performance, but also of practical interest when one considers

the overhead associated with channel estimation and feedback.

Chapter 3: High-SNR Analysis of Outage-Limited Communications

with Bursty and Delay-Limited Information

Communication of delay-sensitive bits over wireless fading channels has

been recently addressed under various assumptions and settings. An objective of

interest is in the quality of service (QoS), in terms of both packet losses and packet

delays in the system due to queueing and transmission delays. Often asymptotic

approximations are employed to enable tractable analysis of the problems.

Following this research interest, a significant portion of this dissertation

(i.e., Chapters 3 and 4) investigate communication problems of delay-sensitive and

bursty data over wireless fading channels. In contrast to Chapter 2, the setting

of interest is the case where there is no channel state information available at the

transmitter and no feedback from the receiver (hence, no possibility for retrans-

missions of erroneous packets). Furthermore, in this segment of the dissertation,

the notion of delay performance measure is the probability of bits violating a strict

delay requirement (hard delay performance) as opposed to the average delay (soft

delay performance) used in Chapter 2. Our performance objective integrates both

packet losses and packet delays and defined as the total bit error probability where

the bit errors are caused by erroneous decoding at the receiver or violation of the

delay constraint.

In this chapter, we study how to set up the coding block length and chan-
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nel transmission rate (or PHY parameters in general) for point-to-point wireless

fading channels such that the total probability of bit loss is minimized. We assume

that the values of the PHY parameters can be optimally selected prior to the start

of the operation by using the given knowledge of the statistics of the channel and

bit-arrival processes.

In general it is difficult to derive the exact relationship between the system

parameters and the probabilities of channel decoding error and delay violation. In-

stead, we simplify the problem by studying an asymptotic approximation when the

signal-to-noise ratio (SNR) is asymptotically high. This asymptotic approximation

greatly benefits in establishing intuitive understanding of the relation between the

system parameters and the performance objective.

The contributions of this chapter are as follow. First, we formulate and

express the exponent of the asymptotic high-SNR total error probability for the

above setting. Since it is meaningful to ask about the optimal coding block du-

ration only when the optimal value is finite, we propose to study the bit-arrival

processes that are smoothly scaling with SNR. This scaling assumption provides

the asymptotic high-SNR approximation of the delay violation probability that

is valid at finite and small delay constraints. We show that, only at the proper

scaling of the source processes with SNR, we can find a non-trivial optimal coding

block length and transmission rate that maximize the exponent of the asymptotic

total error probability. This optimal exponent reveals a tradeoff that addresses

the question of how much of the delay budget and channel capacity should be ex-
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pended for gaining reliability over the channel and how much for accommodating

the burstiness with delay constraints. Finally, we illustrate the applications of the

results in different outage-limited communication settings. For examples, we use

the results to find the optimal cluster size in cooperative wireless networking and

to find the optimal multiplexing gain in quasi-static MIMO communications.

Chapter 4: Optimal Operating Point for MIMO Multiple Access Chan-

nel With Bursty Traffic

In this chapter, we extend our study of the optimal selection of PHY

parameters in Chapter 3 to the multiple access control (MAC) layer. In particular,

we study a multi-user setting of MIMO multiple access channel (MIMO-MAC) with

a dynamic longest-delay-first (LDF) rate scheduler that dynamically allocates rates

within some rate region to the users, in response to the delays of the head-of-the-

line bits.

As discussed earlier, in the point-to-point MIMO channel, the relationship

between the spatial diversity gain (channel reliability) and the spatial multiplex-

ing gain (transmission rate) follows the Zheng-Tse diversity-multiplexing tradeoff

(DMT) [90]. In a multiple-access situation, multiple receive antennas can also be

used to spatially separate signals from different users (multiple-access gain). For a

given spatial-diversity gain, the spatial-multiplexing rates can be anywhere within

the corresponding rate region. The fundamental relationship between the spatial-

diversity gain and the spatial-multiplexing rate region follows the Tse-Viswanath-

Zheng DMT tradeoff [78], which shows that the shape of the spatial-multiplexing
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rate region depends on the spatial-diversity gain.

On the other hand, a dynamic scheduling can provide a statistical mul-

tiplexing gain to improve delay performance (e.g., see [9, 72]). From a scheduling

perspective, statistical-multiplexing is a key mechanism by which the network re-

sources are used to improve the delay performance for bursty users. In particular,

statistical-multiplexing capitalizes on the fact that peaks in traffic of simultane-

ously ongoing traffic streams rarely coincide.

Combining the multiple-access and statistical-multiplexing gains, we pro-

vide bounds on the asymptotic high-SNR total error probability, when the delay

bound requirement is sufficiently large. Using these expressions, we find the bounds

on the optimal spatial-diversity gain and the corresponding rate region for the

MIMO-MAC channel to operate such that the exponent of the asymptotic total

error probability is maximized.

An important consequence of our results is that we can quantify the

amount of the statistical multiplexing gain that can be achieved and observe the

interplay between the optimal exponent of the asymptotic total error probability

and the system parameters (traffic load and delay bound). For example, we show

that, when the traffic load is sufficiently light, the optimal exponent is equivalent

to the case when only one user is transmitting in the system. In this case there is

no resource sharing and hence no statistical-multiplexing gain. On the other hand,

at higher traffic loads, there is some statistical-multiplexing gain whose amount

depends on the values of the traffic load and delay bound. The highest gain is
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achieved when the traffic load and delay bound are at medium values. In this case,

the optimal performance allows each user to perceive the whole resource dedicated

to itself.

Chapter 5: Many-Sources Large Deviations for Max-Weight Scheduling

This chapter was originally motivated by our interest in extending the

study in Chapter 4 to include the study of optimal selection of the coding block

length as in Chapter 3 but in a multi-user setting. Toward this goal, we need

to have the asymptotic high-SNR approximation of the delay violation probability

that is valid even for finite and small delay constraints in a multi-queue system with

a Largest Delay First scheduler. To the best of our knowledge, all existing results in

the literature for large-deviations performance analysis of the largest-delay-first (or

longest-queue-first) scheduler are concerned about the asymptotic approximations

when the delay or buffer constraints are asymptotically large (see [9, 72, 75]).

The only large-deviations analysis of multi-queue systems dealing with

finite and small delay constraints in the literature provides a large deviations prin-

ciple for a Generalized Processor Sharing (GPS) scheduler (e.g., see [68]) and for

scheduling policies favoring short jobs (e.g., see [85]), all under a many-sources (or

many-flows) asymptotic regime. Instead of assuming scaling of the delay bound

(known as large-buffer scaling), these results assume a different scaling of the

arrival processes, where the arrival process for each user is assumed to be an

aggregation of multiple i.i.d. flows or sources (hence, the terms many-flows and

many-sources). The many-sources large-deviations analysis in [68,85], for instance,
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studies the performance of dynamic schedulers with L i.i.d. flows to each queue

and a server capacity of Lc (for some constant c) as L grows to infinity.1

Following this many-sources framework, in this chapter we are interested

in a many-sources large-deviations analysis of the buffer overflow probability for

the longest-queue-first scheduler (or equivalently, a maximum-weight scheduler

when the weights are the queue lengths). In particular, we assume that there is

one server of fixed capacity c which is allocated to serve the user with the longest

queue when the arrival process to each queue is an average of L i.i.d. flows. The

quantity of interest in our study is the buffer overflow probability.

The result on the buffer overflow probability could be used in the multi-

user study similar to the single-user study in Chapter 3, in which the delay violation

probability is replaced with a requirement on buffer overflows. In addition, we

believe that the result in Chapter 5 is a useful and interesting contribution to

the large-deviations literature by and of itself. We believe that our result can

be taken as a first step in an extension of the large-deviations analysis of the

maximum-weight scheduler in the many-sources framework. In fact, the many

sources traffic scaling is of practical interest in real applications, where there is a

large number of traffic flows passing through each network element. This traffic

scaling usually gives a more refined approximation to the probabilistic quantities

of interest by incorporating the impact of the statistical-multiplexing gain among

1This many-sources limit was first introduced by Weiss in [81] and has been extensively studied
in queuing analysis, starting from the works in [11,15,70]. For an excellent introduction of many-
sources and large-buffer scalings to queueing applications, see [29, 82].
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flows (for discussions on the two scaling regimes, see, e.g., [11, 47, 68]).



Chapter 2

Delay-Optimal Server Allocation

in Multi-Queue Multi-Server

Systems With Time-Varying

Connectivities

Abstract

This chapter considers the problem of optimal server allocation in a time-

slotted system with N statistically symmetric queues and K servers when the ar-

rivals and channels are stochastic and time-varying. In this setting we identify

two classes of “desirable” policies with potentially competing goals of maximizing

instantaneous throughput versus balancing the load. Via an example, we show

that these goals, in general, can be incompatible, implying an empty intersection

12
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between the two classes of policies. On the other hand, we establish the existence

of a policy achieving both goals when the connectivities between each queue and

each server are random and either “on” or “off”. We use dynamic programming

and properties of the value function to establish the delay-optimality of a policy

which, at each time-slot, simultaneously maximizes the instantaneous throughput

and balances the queues. For the systems whose connectivities can be general

than the on-off model (such as OFDMA wireless systems), we utilize the insights

learned from the MTLB policy to create heuristic policies that use different de-

grees of channel and queue state information. We illustrate how the significance

of queue vs. channel state information varies with the traffic load. This is of ex-

treme practical interest when one considers the overhead associated with channel

estimation and feedback.

In the presence of frequency selectivity, code-division, or spatial degrees

of freedom, many wireless systems with multiple “orthogonalized sub-channels”

and multiple users can be viewed as multi-queue multi-server queuing systems

which enable transmission of packets in a parallel manner. Examples of such

systems include OFDMA systems where the total available bandwidth is divided

into multiple orthogonal narrow subcarriers to be shared by users [83].

The focus of this chapter is the optimal delay performance of the system

with stochastic channel state and arrival processes. In other words, we are inter-

ested in the delay performance of the system under stochastic admissible traffic.



14

In general, delay-optimal policies must trade off between two competing goals:

the desire to get maximum throughput now (which is achieved by opportunistic

scheduling) and the desire to get the maximum throughput in the future (which

is achieved by balancing the remaining load). These goals, in general, can be in-

compatible over short timescales, implying an empty intersection between the two

classes of policies.

In this chapter, we investigate the delay-optimality of a certain policy in

a multi-queue multi-server system with random binary connectivities. Delay opti-

mal policies have been studied in many queuing systems with stochastically varying

connectivities under different settings [2,21,30,31,34,56,60,69,76,87]. In this chap-

ter, we consider a statistically symmetric case of arrival and connectivity processes.

The intuition behind a symmetric system is that relabeling the queues leads to a

statistically identical system. In many instances, as stated in [31], “symmetry

sometimes leads to rather simple optimal policies, although their optimality can

be hard to establish.” The most related models to our work are those introduced

in [76] and [31], while our proof technique is closely related to those developed

in [20, 21, 34, 40, 49]. In their seminal work, Tassiulas and Ephremides [76] stud-

ied a single-server N -queue assignment problem where the connectivity followed

an on-off model, i.e., the connectivity was described by a binary vector of dimen-

sion N . They showed that a longest-connected-queue (LCQ) policy maximizes the

stability region of the system (i.e., throughput-optimal) and is also average-delay

optimal when the arrival processes and the channel processes are statistically iden-
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tical among users, i.e., the users are symmetric. Ganti et al. [30, 31] generalized

the problem to a symmetric K-server, N -queue allocation problem with binary

connectivity vector of dimension N . However, in their multi-server generalization,

no more than one server can be allocated to a queue.1 The main contribution of

our work is a generalization of the model and results in [31,76] to (1) a connectivity

model of a K-by-N matrix form, (2) more general arrival processes, not restricted

to only Bernoulli (and variation thereof as discussed in Section III of [31]), and (3)

a generalization where any queue can be served simultaneously by multiple servers.

These generalizations, though, have been established in two restricted cases: (i)

with the constraint on the number of users to N = 2 and (ii) with the constraint

of fluid server allocation.

The chapter is organized as follows. We first model the multi-channel allo-

cation problem as a multi-queue multi-server allocation problem in Section 2.1. We

account for stochastically varying channel states, via a general notion of connectiv-

ity. In Section 2.2, we discuss two classes of “desirable” policies: the instantaneous

throughput maximizing policies and load-balancing policies. Via a simple example,

we show that, in general, the intersection of these two classes of policies can be

empty. This results in a complicated structure for the optimal policy in the general

case. However, in Section 2.3, we show that when connectivity profile has a binary

form (on-off connectivity), it is possible to construct a policy which simultaneously

maximizes the instantaneous throughput and balances the load. In Section 2.4,

1This constraint is relaxed only when a relaxation of integral allocation is also allowed; this
is sufficiently different from our scenario of interest.



16

we show the optimality of this maximum-throughput and load-balancing (MTLB)

policy when there are N = 2 users, using dynamic programming (DP) arguments

and the properties of the DP value function. In Section 2.5, we show that if frac-

tional server allocations are allowed, then the fluid version of the MTLB policy is

optimal for general N . For general connectivity model, Section 2.6 provides heuris-

tic policies that use different degrees of channel and queue state information. We

illustrate how the significance of queue vs. channel state information varies with

the traffic load. Section 2.7 concludes the chapter.

2.1 Problem Formulation and Assumptions

2.1.1 Model and Notations

We consider a multi-queue multi-server system with stochastic connec-

tivities as shown in Figure 2.1. There are N queues (users) and K servers (sub-

carriers). Let U = {1, . . . , N} be the set of all queues and V = {1, . . . , K} the

set of all servers. Fixed-size packets arrive stochastically for each user and are

transmitted over a set of allocated servers. Each user has an infinite buffer to

store the data packets that cannot be immediately transmitted. The system is

time-slotted. The users have the same priority and are symmetric, i.e., they have

statistically identical arrival and channel connectivity processes. At the beginning

of each timeslot, the assignment of servers to users is instantaneous and made by a

centralized resource manager. The resource manager has perfect knowledge of the



17

1

2

3

K

Users/
Queues

Subcarriers/
Servers

1

2

N

c11

cK1

cKN

c1Na 1

a 2

a N

c12

Figure 2.1 Multi-queue-multi-server allocation problem with time-varying connec-

tivities.

current queue backlogs and the connectivities which are assumed constant during

a timeslot but varying independently over timeslots (e.g. block fading model). We

do not allow sharing of any servers and assume no error in the transmission.

The following notations are used throughout the chapter. Note that we

use the following conventions: lower-case letters for scalar, bold-faced lower-case

letters for row vectors, upper-case letters for matrices and scripted upper-case

letters for space of matrices.

• b(t) = (b1, . . . , bN ): Backlogs (in units of packets) of each queue at the

beginning of timeslot t.

• a(t) = (a1, . . . , aN): Stochastic number of fixed-length packets arrived to

each queue during timeslot t. The new packet arrivals at time t can be
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served only at time t+ 1 or after.

• C(t) = [cij ]: the K-by-N stochastic connectivity matrix at timeslot t where

cij ∈ {0, 1, . . . , cmax < ∞} denotes the maximum number of packets subcar-

rier i can serve from queue j at time t.

• W (t) = [wij]: the K-by-N allocation matrix at the beginning of timeslot t

where wij ∈ {0, 1} and wij = 1 denotes that subcarrier i is assigned to serve

queue j during time t.

The dynamics of the queue length vectors under an allocation W (t) is

described by the equation

b(t+ 1) = [b(t) − 1
(
W (t) � C(t)

)
]+ + a(t), t = 1, 2, . . . (2.1)

where an element-wise productW (t)�C(t) is a matrix [wijcij ], 1 is aK-dimensional

row vector of K ones, and, for a vector v ∈ RN , [v]+ =
[
v+
1 , . . . , v

+
N

]
with

v+
j = max {0, vj}. For the case of the on-off connectivities, where cmax = 1, the

above queue dynamics reduces to:

b(t+ 1) = [b(t) − 1W (t)]+ + a(t), t = 1, 2, . . . . (2.2)

Definition 2.1. For a row vector x = (x1, . . . , xN) and a matrix Y = [y1, . . . ,yN ]

where yj is a column vector, a column-by-column matrix permutation Ππ corre-

sponding to a permutation π is defined as, for any j and k ∈ {1, . . . , N},

π(xj) = xk ⇔ Ππ(yj) = yk
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Using the above notations and definition, we make the following symmet-

ric assumptions on the arrival and connectivity processes.

(A1) The packet arrival processes [a(t)] are i.i.d. across timeslots and symmetric

or exchangeable, i.e., the joint probability mass function (pmf) is permutation

invariant. That is,

P [a(t) = π(x)] = P [a(t) = x] (2.3)

for any t, vector x, and permutation π.

(A2) The connectivity profiles [C(t)] are i.i.d. across timeslots and exchangeable

across users, i.e., the joint pmf for [C(t)] is column-by-column permutation

invariant. That is,

P [C(t) = Ππ(Y )] = P [C(t) = Y ]

for any t, matrix Y , and column-by-column permutation matrix Ππ.

Assumption (A2) is valid when the channel and mobility create a homo-

geneous environment for all users. Note that (A1) and (A2) imply independence

across time but not across users, i.e., at a given time the arrivals to various queues

or connectivities among users or servers need not be independent.

2.1.2 Problem Formulation

Problem (P)
Consider the system described above, we wish to determine a Markov

server allocation policy σ that minimizes the cost function at the finite
horizon T :

Jσ
T = E[Λσ

T |I0] (2.4)
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where I0 summarizes all information available at time zero and Λσ
T

denotes the cost under the Markov policy σ over horizon T :

Λσ
T =

T∑

t=0

φ(b(t)) (2.5)

where the cost function φ(b) =
∑N

j=1 ξ(bj) and ξ is a convex and strictly
increasing function.

We note that the restriction to Markov policies does not entail any loss

of optimality because Problem (P) is a stochastic control problem with perfect

observations [51]. Also, note that when ξ is an identity function, Problem (P)

reduces to an average total backlog
(
E[
∑T

t=0

∑N
j=1 bj(t)]

)
minimization problem

over horizon T . From Little’s Theorem [8], any optimal policy that achieves the

minimum average backlog achieves the minimum average packet delay as well.

Thus, our study includes the study of the average-delay minimization.

2.2 Instantaneous Throughput Maximizing vs.

Load-Balancing Policies

In this section, we consider two classes of server allocation policies: a class

comprising of instantaneous throughput maximizing (MT) policies and another

class of load-balancing (LB) policies. As discussed in the introduction, each class

represents one of the competing goals: an MT policy maximizes the number of

packets being served now, while an LB policy maximizes the number of non-empty

queues (hence, the multiuser diversity gain and the number of packets served) in
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the future. We demonstrate by an example that, in general, the intersection of

the two classes of policies can be empty. In such cases, the optimal policies for

Problem (P) remains and can be, in general, a complicated mixture of policies

carefully chosen at different time from one of the above two classes of policies. To

be precise, we first define the feasible allocation and non-idling feasible allocation.

Then, we describe the two classes of policies mentioned above.

2.2.1 Feasible and Non-Idling Allocations

Assume that at the beginning of time slot n, the state of the system is

(b, C). An allocation W = [wij]K×N is a feasible allocation for time slot n if

(a) wij ∈ {0, 1};

(b) cij = 0 ⇒ wij = 0; and

(c)
∑N

j=1wij ≤ 1, ∀ i = 1, . . . , K.

The set of all feasible allocations is denoted by W(C). In addition, define W(b, C) ⊆

W(C) to denote the set of all non-idling feasible allocation W if W also satisfies

(d)
∑K

i=1wijcij ≤ bj , ∀ j = 1, . . . , N .
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2.2.2 Instantaneous Maximum Throughput Policies (MT)

An MT allocation WMT = [wMT
ij ] ∈ W(b, C) is a non-idling allocation

that achieves the maximum throughput at time t if for all W = [wij] ∈ W(b, C),

N∑

j=1

K∑

i=1

wMT
ij cij ≥

N∑

j=1

K∑

i=1

wijcij . (2.6)

2.2.3 Load-Balancing (LB) Policies

It is reasonable to maximize the expected number of packets served in

future under stochastic arrival and connectivity processes. For that reason, we

consider a load-balancing policy which distributes the future workload among the

queues as evenly as possible as to minimize the expected future server idling.

This roughly ensures a larger set of allocation policies in the future. The future

workload is defined as the queue length vector after assignment, i.e., the leftover

queue vector. The Longest Connected Queue policy [76] and Most Balanced policy

[30] are some examples of the LB policies. Note that the LB policies potentially

sacrifice the current throughput (by giving priority to long queues) for the future

throughput.

To introduce the LB policy, we need the following definition to compare

queue vectors in term of their load distribution:

Definition 2.2. We say x ≤LQO y (x is more balanced than y) iff ord(x) ≤lex

ord(y) where vector ord(v) has the ordered elements of v in descending order, and

the relation ≤lex on RN is the lexicographic ordering.
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Example 2.3. i) (5, 1, 4, 2) ≤LQO (0, 3, 5, 4) because ord(5, 1, 4, 2) = (5, 4, 2, 1)

≤lex (5, 4, 3, 0) = ord(0, 3, 5, 4). ii) (3, 3) ≤LQO (4, 1), although (3, 3) has more

total number of packets than (4, 1).

Load Balancing: An LB allocation W LB ∈ W(b, C) is a non-idling allocation

that produces the most balanced future (leftover) queue distribution if, for all

W ∈ W(b, C),

[b− 1
(
W LB � C

)
]+ ≤LQO [b− 1

(
W � C

)
]+. (2.7)

2.2.4 Example

Here we show that the incompatibility of the MT and LB policies exists

even in a single server case.

Example 2.4. If b = (6, 2) and C = (1, 2), then the MT allocation WMT = (0, 1)

achieves the throughput of 2 and leaves the remaining queue highly unbalanced

at b −WMT = (6, 0). The system with this unbalanced queue state is unlikely to

benefit from any multiuser diversity in the next timeslot. In contrast, the load-

balancing allocation W LB = (1, 0) sacrifices the throughput with the balancedness

of the remaining queues at (5, 2).

Note that, in this example, the two goals of throughput maximization

and queue balancing cannot be achieved simultaneously.
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2.3 Special Case: On-Off Channel

In this section, we consider a special case of the connectivity process

where cij only takes values 0 (OFF) or 1 (ON). Under this on-off connectivity, we

show that 1) a policy that simultaneously maximizes the instantaneous through-

put and balances the loads always exists, and 2) for the case of two users, this

maximum-throughput and load-balancing (MTLB) policy is an optimal policy for

Problem (P).

2.3.1 MTLB Policy

Here we define a class of MTLB policies specific for the on-off channel

connectivity.

Definition 2.5. Given state (b, C) at the beginning of time slot t, the MTLB

policy chooses a non-idling feasible allocation W ∗ = [w∗
ij] ∈ W(b, C) such that it

satisfies the following two conditions:

(C1) Maximum Throughput (MT): W ∗ achieves the maximum throughput,

i.e., for all W = [wij] ∈ W(b, C),

N∑

j=1

K∑

i=1

w∗
ij ≥

N∑

j=1

K∑

i=1

wij. (2.8)

(C2) Load Balancing (LB): W ∗ produces the most balanced queue configura-

tion, i.e., for all W = [wij ] ∈ W(b, C),

b− 1W ∗ ≤LQO b− 1W. (2.9)
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Example 2.6. If C =







1 1 1 1

0 0 1 1







and b = [3, 3, 2, 2], an MTLB allocation is

WMTLB =







1 0 0 0

0 0 1 0







, resulting in the leftover queues b−1WMTLB = [2, 3, 1, 2].

In addition,







0 1 0 0

0 0 0 1







is another possible MTLB allocation, resulting in the

leftover queues [3, 2, 2, 1]. For this (b, C), there are four possible MTLB allocations.

Hence,the MTLB policy is not uniquely defined. However, if b = [4, 3, 3, 2], then

there is only one MTLB allocation







1 0 0 0

0 0 1 0







.

2.3.2 Existence of MTLB Policy

Due to the on-off connectivity, the following result shows that there always

exists an MTLB allocation satisfying conditions (C1) and (C2) at every timeslot

and for any (b, C).

Theorem 2.1. For any given (b, C), an MTLB allocation always exists.

Proof. See Appendix A.1.

2.3.3 Construction of MTLB Policy

In this subsection, we specifically propose an algorithm to construct an

MTLB assignment. We first convert the original graph of queues and servers

(Figure 2.1) into the following Equivalent Bipartite Graph with proper weights on
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the edges.

Equivalent Bipartite Graph Construction

1. Associated with each queue j, construct mj = min(bj ,
∑K

i=1 cij) nodes labeled

as aj1, aj2, . . . , ajmj
.

2. Let Ueq = {a11, a12, . . . , a1m1 , a21, . . . , aNmN
} be the set of all such nodes.

3. Let V eq = {vi}K
i=1 be the set of servers.

4. Let Eeq = {(ajm, vi) : cij = 1} be the set of edges representing connectivities.

5. Let ψ : Eeq 7→ Z++, ψ(ajt, ∗) = bj − t + 1 be the positive integer weight of

all edges incident to node ajt in Eeq.

To arrive at an MTLB allocation, we run a Maximum Weight Matching

(MWM) algorithm on the equivalent bipartite graph. In Proposition 2.9, we show

that the resulting assignment satisfies conditions (C1) and (C2), hence, it is an

MTLB allocation. Before we proceed with Proposition 2.9, we provide the following

definitions:

Definition 2.7. [58] Consider a bipartite graph (U, V, E) with two vertex sets U

and V , an edge set E ⊆ U × V , and a weight function ψ : E 7→ R. A matching

M is a subset of E such that no two edges in M share an endpoint. The weight

of a matching M is ψ(M) =
∑

e∈M ψ(e). A matching M is a maximum weight

matching (MWM) if its weight is no less than the weight of any other matching.
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Figure 2.2 Example of MTLB construction (a) queue lengths and connectivities; (b)

The equivalent bipartite graph with the weights are shown at each subnode, e.g.,

the weights of the edges (a11, A) and (a11, B) are five. The thick edges indicate the

maximum weight matching; (c) The edges indicate the resulted MTLB assignment.



28

Definition 2.8. A server allocation W = [wij] and a matching M are said to

be equivalent when 1) M is a matching on the equivalent bipartite graph, and 2)

wij = 1 if and only if there exists m such that (ajm, vi) is a matching edge, i.e.,

(ajm, vi) ∈M .

Proposition 2.9. A maximum weight matching on the equivalent bipartite graph

is MTLB, i.e., it satisfies conditions (C1) and (C2).

Proof. See Appendix A.1.

An example of the MTLB assignment based on the proposed algorithm

is shown in Figure 2.2. It is intuitive to see that the maximum weight matching

on the equivalent bipartite graph achieves an MTLB assignment. This is because

the equivalent bipartite graph, in effect, expands the individual packets that can

possibly be served into nodes and basically labels each packet with the number

of packets waiting behind it (see Figure 2.2(b)). The maximum weight matching

selects the matching that serves the packets with the most number of packets

waiting behind them. This guarantees the maximum throughput and the load-

balancing properties at the same time. Over-assignments are avoided since, in

the equivalent bipartite graph, only min
{

bj ,
∑K

i=1 cij

}

packets from each node j

is expanded. Again, note that since a graph can have multiple maximum weight

matchings, MTLB allocation is not unique. The complexity of finding MTLB

allocation is equal to the complexity of the existing maximum weight matching

algorithm applied to the equivalent bipartite graph which is at most O(K2(N +
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logK)) [58].

2.4 Optimality of MTLB Policy for Two Users

With the existence of the MTLB policy, we proceed to establish its opti-

mality:

Theorem 2.2. Consider Problem (P) with on-off connectivity and N = 2 users.

The MTLB policy is optimal for all choices of g, T, and I0 as defined in Prob-

lem (P).

Remark 2.10. The optimality of the MTLB policy shown in Theorem 2.2 implies

that the maximum instantaneous throughput criterion (condition C1) is not suf-

ficient to guarantee the delay optimality unless it is complemented by the load-

balancing criterion (condition (C2)).

To show Theorem 2.2, we use a similar framework as in [20, 21, 34, 49]

as follows: we first define a class of functions, F , which contains, for instance,

any cost functions φ(b) of the form
∑N

j=1 ξ(bj), where ξ is strictly increasing and

convex. We, then, show that if the cost function φ belongs to F , the average

optimal cost-to-go function (derived via a dynamic programming equation) also

belongs to F . The properties of F are then used to show the optimality of the

MTLB policy.
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2.4.1 Class of Cost Functions

Here we give the definition of class-F functions. This is the class of the

cost functions for which the solution to Problem (P) is proved to be the MTLB

policy (Theorem 2.2). But first we define the following for convenience:

Definition 2.11. Rij(b) := b − ei + ej , where em is a row vector of zeros except

for the mth element which is one, is equivalent to a transfer of a packet from queue

i to queue j.

Definition 2.12. A function f : ZN
+ → R belongs to the set F if, for any i 6= j ∈

{1, . . . , N}, f satisfies the following conditions:

(B.1) (monotonicity condition)

f(b) ≤ f(b + ei);

(B.2) (permutation invariance condition)

f(b) = f(π(b)) for any permutation π;

(B.3) (supermodularity condition)

f(b + ei) − f(b) ≤ f(b + ei + ej) − f(b + ej);

(B.4) (coordinate-wise convexity condition)

2f(b) ≤ f(b + ei) + f(b− ei);

(B.5) (convexity along a constant-sum line condition)

2f(b) ≤ f(Rij(b)) + f(Rji(b)); and

(B.6) (balancing advantage condition)

f(Rij(b)) ≤ f(b) if and only if bi ≥ bj + 1.



31

The terminologies in (B.3)-(B.5) follow that used in [49]. Conditions

(B.3)-(B.5) are second-order relations related to convexity over lattice spaces.2

Condition (B.6) establishes the optimality of the MTLB policy. It can be easily

shown that:

Fact 2.13. Any function of the form φ(b) =
∑N

j=1 ξ(bj), where ξ is strictly in-

creasing and convex, belongs to F .

2.4.2 Dynamic Programming Formulation

Next we use a dynamic programming approach to relate the cost function

in (2.4) to the expected cost-to-go V σ
n (b, C) at time t = T − n (i.e., at horizon

n) under a Markovian policy σ. Let allocation W σ(b, C) ∈ W(b, C) denote the

allocation at state (b, C) prescribed by policy σ. Note that, in general, the action

W σ(b, C) depends on horizon n and is assumed implicitly. It is clear that the

following recursion:

V σ
0 (b, C) = φ(b),

and for n ≥ 1,

V σ
n (b, C) = φ(b) + E

a,C̃[V σ
n−1(b + a − 1W σ(b, C), C̃)] (2.10)

is related to the cost function in (2.4) as

Jσ
T = EC[V σ

T (b, C)] (2.11)

2Due to the symmetric assumptions (i.e., condition (B.2)) in our model, conditions (B.3)-
(B.5) are special cases of the multimodularity condition in [1].
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when I0 = b. This is due to the validity of the dynamic programming theorem for

a finite horizon Markov Decision Process (MDP) [51]. Define

V ∗
n (b, C) := min

σ∈Un

V σ
n (b, C) (2.12)

to be the minimum cost-to-go over the set Un of all Markovian policies at horizon

n. Furthermore, we define the average optimal cost-to-go function as

vn(b) := Ea,C [V ∗
n (b + a, C)] . (2.13)

In the following Proposition we show the recursive structure of vn.

Proposition 2.14. Given a horizon n, the average optimal cost-to-go at n, vn(b),

satisfies the following recursions:

v0(b) = φ̄(b) := Ea [φ(a + b)] (2.14)

vn(b) = φ̄(b) + Ea,C

[

min
W∈W(C)

vn−1

(
[b + a − 1W ]+

)
]

.

Proof. From the recursion in (2.10), we have the following recursion for the optimal

cost-to-go V ∗
n (b, C):

V ∗
0 (b, C) = φ(b)

V ∗
n (b, C) = φ(b) + min

W∈W(b,C)
E

a,C̃[V ∗
n−1(b + a − 1W, C̃)]

= φ(b) + E
a,C̃

[

V ∗
n−1(b + a− 1W ∗(b, C), C̃)

]

= φ(b) + vn−1 (b − 1W ∗(b, C)) , (2.15)

where W ∗(b, C) denotes an optimal allocation at horizon n when the state of the

queue backlogs is equal to the vector b and the connectivity profile is C. In other
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words, W ∗(b, C) ∈ arg minW∈W(b,C) vn−1(b−1W ). Now taking the expectation of

both sides we have:

vn(b) = Ea,C [V ∗
n (b + a, C)]

= φ̄(b) + Ea,C

[

min
W∈W(b+a,C)

vn−1(b + a − 1W )

]

= φ̄(b) + Ea,C

[

min
W∈W(C)

vn−1([b + a− 1W ]+)

]

,

where the last equality holds because, for any allocation W ∈ W(C), there exists

W ′ ∈ W(b, C) such that b−1W ′ = [b−1W ]+. Finally, v0(b) = Ea,C [V ∗
0 (b + a, C)]

= φ̄(b).

2.4.3 Proof of the Optimality

Using the above class of functions F and the recursive structure of vn in

Proposition 2.14, we are ready to prove Theorem 2.2. Note that the lemmas used

here are proved in Appendix A.2.

Proof of Theorem 2.2. We first show the strict monotonicity of vn for all horizon

n, using the strict monotonicity of the cost function. This is shown in the following

lemma:

Lemma 2.15. vn(b) is strictly increasing on b for all n = 0, . . . , T , i.e., b′ >

b ⇒ vn(b′) > vn(b).

Next, we show that, for any horizon n, the MTLB policy is optimal at

time n + 1 whenever vn ∈ F . This is shown in the following lemma:
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Lemma 2.16. For any horizon n, if vn ∈ F , then the MTLB policy is optimal at

horizon n+ 1.

The above lemma immediately establishes Theorem 2.2 if we can show

that vn ∈ F for all n = 0, . . . , T . To show that vn ∈ F for all n = 0, . . . , T , we use

the following induction:

Induction basis: From Proposition 2.14, v0(b) = φ̄(b) =
∑

a
Pa(a)φ(b +

a), where Pa(a) is the probability of the arrival vector is a. Using Fact 2.20 below,

v0 ∈ F since φ ∈ F .

Induction step: Suppose vn ∈ F . To show that vn+1 ∈ F , we recall from

Proposition 2.14 that

vn+1(b) = φ̄(b) + Ea,C

[

min
W∈W(C)

vn([b+a−1W ]+)

]

. (2.16)

We find that it is more convenient to work with a relaxed version of vn which allows

the queue vector to be negative. That is, we work with v̂n where v̂n(b) = vn([b]+)

for b ∈ Z
N . This relaxation technique (used in [20, 21, 34, 49]) removes the need

for the separate treatment of various boundary cases. To facilitate this relaxation,

we define an extended class of functions F̂ as follows:

Definition 2.17. Consider f : ZN
+ → R. We denote f̂ : ZN → R as an extension

of f on ZN such that f̂(b) = f([b]+). Furthermore, we define an extension F̂ of

F :

F̂ :=
{

f̂ : Z
N → R : f̂ meets (B.1) to (B.6)

}

(2.17)
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With this extension, it is clear that vn+1 in (2.16) is the restriction of

v̂n+1 to the non-negative domains, where for b ∈ ZN ,

v̂n+1(b) = ˆ̄φ(b) + Ea,C

[

min
W∈W(C)

v̂n(b + a− 1W )

]

. (2.18)

Now, we show that vn+1 ∈ F via the following four steps:

Assuming vn ∈ F

Step 1−−−→ v̂n ∈ F̂ (Fact 2.18)

Step 2−−−→ Ea,C

[

min
W∈W(C)

v̂n(b+a−1W )

]

satisfies (B.3) to (B.6)

(Lemmas 2.23 and 2.24)

Step 3−−−→ v̂n+1 ∈ F̂ (Lemmas 2.15, 2.22 and Facts 2.18, 2.19)

Step 4−−−→ vn+1 ∈ F (Fact 2.21)

where the facts and lemmas in the parentheses indicate how to establish the above

steps. For completeness, the statements of these facts and lemmas are listed below

after the proof. All steps except Step 3 are immediate from the listed facts and

lemmas. In Step 3, we first show that v̂n+1 satisfies (B.3) to (B.6) (note that

φ̄ ∈ F and Fact 2.18 imply that ˆ̄φ(·) ∈ F̂). Then, using Lemmas 2.15 and 2.22

and Fact 2.18, v̂n+1 satisfies (B.1) and (B.2) as well. Hence, v̂n+1 ∈ F̂ . Note that

Lemmas 2.23 and 2.24, which establish Step 2, also use the fact (Lemma 2.16) that

the optimal allocation W at horizon n+ 1 is MTLB if v̂n ∈ F̂ .3

Here we list the facts and the (remaining) lemmas used in the above proof.

3Although Lemma 2.16 assumes vn ∈ F , it is easy to show that the lemma works with v̂n ∈ F̂
as well.
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All the facts are taken from [34], [21] and can be easily verified. The lemmas are

proved in Appendix A.2.

Fact 2.18. If f ∈ F , then the function f̂ : ZN → R defined as f̂(b) = f([b]+) is

in F̂ .

Fact 2.19. If f̂1, f̂2, . . . are functions that belong to F̂ , then ĥ(b) =
∑

l plf̂l(b)

also belongs to F̂ , where pl are non-negative constants.

Fact 2.20. If f1, f2, . . . are functions that belong to F , then h(b) =
∑

l plfl(b)

also belongs to F , where pl are non-negative constants.

Fact 2.21. If f̂ ∈ F̂ , then the restriction of f̂ to non-negative domain is in F .

Lemma 2.22. vn(b) is permutation invariant on b for all n = 0, . . . , T .

Lemma 2.23. Assuming N = 2 and v̂n ∈ F̂ . For any state b,

Ea,C

[

min
W∈W(C)

v̂n(b + a − 1W )

]

satisfies (B.3), (B.4), and (B.5).

Lemma 2.24. Assuming N = 2 and v̂n ∈ F̂ . For any state b such that b1 ≥ b2+1,

Ea,C

[
minW∈W(C) v̂n(b + a − 1W )

]
satisfies condition (B.6).

Remark 2.25. All the above lemmas and facts, except Lemmas 2.23 and 2.24, hold

for general N . Lemmas 2.23 and 2.24 are proved for N = 2. We detail the difficulty

in extending these lemmas to general N after Theorem 2.3 in Section 2.5 and also

after the proof of Lemma 2.24 in Remark A.11 in Appendix A.2.
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Remark 2.26. Theorem 2.2, in addition, can be extended to the optimality of the

MTLB policy in an expected average cost sense for an infinite horizon problem.

Corollary 2.27. Consider an infinite horizon version of Problem (P), where the

cost is modified to be the average expected cost at each horizon. Then the MTLB

policy is optimal for any initial state I0 = b.

Proof. Theorem 2.2 proves that there exists a stationary MTLB policy which is

optimal for Problem (P) for any finite horizon T . Hence, our MTLB policy achieves

the minimization of the average expected cost Λπ
T/T for any finite horizon T . Since

the policy is independent of the horizon T , it is optimal with respect to an average

expected cost criterion for the infinite horizon version of the problem.

2.5 Optimality of MTLB Policy under Fluid Re-

laxation

In the previous section, we established the optimality of the MTLB policy

for a very restricted case of N = 2. As we will see later, the major difficulty in

extending the proof to general N is due to the integral server allocation constraint.

In this section, we study a relaxed system where we allow each server to serve a

fractional (fluid) number of packets from queues as long as the total number of

packets served per server is no greater than one. In other words, we consider a real

allocation W = [wij ] ∈ RK×N , with wij ∈ [0, 1]. We call this relaxed constraint the

fluid server allocation relaxation or fluid relaxation. Under this fluid relaxation, we
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can show the optimality of the MTLB policy for general N and the on-off channel

model. Before we proceed, we provide a modification of W(b, C) to include fluid

allocations and a definition of the fluid version of the MTLB policy:

Definition 2.28. A class of fluid non-idling feasible allocations Wf (b, C) is equiv-

alent to W(b, C) with the fluid server allocation condition, i.e., W = [wij] ∈

Wf (b, C) if

(a’) 0 ≤ wij ≤ 1;

(b) cij = 0 ⇒ wij = 0;

(c)
∑N

j=1wij ≤ 1, ∀ i = 1, . . . , K; and

(d)
∑K

i=1wij ≤ bj , ∀ j = 1, . . . , N .

Definition 2.29. The MTLB-F policy is a fluid version of the MTLB policy

defined in Section 2.3.1, i.e., the MTLB-F policy chooses W ∗ ∈ Wf (b, C) such

that (C1) and (C2) are satisfied.

Example 2.30. It is clear that the MTLB-F policy is not uniquely defined al-

though the leftover queue vector is. For example, for the C =







1 1 1 1

0 0 1 1







in

Example 2.6, if b = [3, 3, 3.3, 3.1] then all allocations of the form






0.4 0.4 x 0.2 − x

0 0 y 1 − y






,

where x ∈ [0, 0.2] and y = 0.7−x, are MTLB-F allocations, resulting in the unique

leftover queues [2.6, 2.6, 2.6, 2.6].
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Assume that the cost function φ(b) is convex on b ∈ R
N
+ , we have the

following result:

Theorem 2.3. For the problem (P) with the fluid server allocation relaxation, the

MTLB-F policy is optimal.

Proof. See Appendix A.3.

The key element in the proof of Theorem 2.3 is the convexity of the

cost-to-go function vn in the fluid relaxation, for all n = 0, . . . , T . This convexity

property directly establishes the optimality of the MTLB-F policy. However, under

the integral server allocation constraint, it is hard to establish a similar convexity

property over lattices. In fact, one can interpret the difficulty in establishing

Lemma 2.23 and 2.24 as an indication that the properties (B3) - (B6) of the set

F provide a sufficient set of properties for convex functions over two dimensional

lattices, while they fail to sufficiently capture the convexity in higher dimensional

lattices.

2.6 Application of MTLB Policy in OFDMA

Wireless Systems

This section considers the issue of delay optimal subcarrier allocation in

OFDMA wireless networks. In previous studies, we have shown that the opti-

mal policy is complicated and unknown when the channel connectivities are more
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general than the on-off channel model. However, based on the insights learned

from the MTLB policy, this section provides heuristic policies that use different

degrees of channel and queue state information. More importantly, these examples

show how the significance of queue vs. channel state information varies with the

traffic load. This is of extreme practical interest when one considers the overhead

associated with channel estimation and feedback.

2.6.1 Heuristic Policies and Value of QSI versus CSI

1) Algo-I (full QSI, On-Off CSI): The subcarrier assignment uses full

information about the queue lengths (full QSI) and binary (ON-OFF) information

about the channel: a subcarrier is considered ON if cij ≥ cthreshold
4. Then, MTLB

policy [43] is used for subcarrier allocation.

Algo-I:

• c̄ij =

{

1 if cij ≥ cthreshold,

0 otherwise.

• For state (b/cthreshold, C̄) compute an MTLB allocation W ∗.

2) Algo-II (full CSI, On-Off QSI): The subcarrier allocation uses full

information about the channel (full CSI) and minimal information about the queue

lengths (On-Off QSI). The subcarrier allocation considers only the queues which

have some data to transmit.

4The threshold is arbitrarily chosen. It should be adjusted depending on the load of the
system and the number of subcarrier and users. We assume here that the threshold is fixed in
our simulation.



41

Algo-II:

• Assign W ∗ =
[
w∗

ij

]
such that w∗

ij∗(i) = 1 where

j∗(i) = arg max
j∈{1,...,N}

cijI{bj>0}.

3) Algo-III (full CSI and full QSI): Algo-III is the Maximum-Weight

policy proposed in [39] where each subcarrier is assigned to the queues to achieve

the highest value of cijbi.

Algo-III:

• Assign W ∗ =
[
w∗

ij

]
such that w∗

ij∗(i) = 1 where

j∗(i) = arg max
j∈{1,...,N}

bjcij .;

4) Algo-IV (full CSI and full QSI): Since Algo-III may over assign sub-

carriers to some users, and with an insight into the significance of load-balancing,

we modify the known Algo-III to avoid imbalanced queues.

Algo-IV:

• X = {1, . . . , K};
• Loop (until stop):

– If X = ∅, then stop;

– (i∗, j∗) = arg maxi∈X,j∈{1,...,N} bjcij;

– If bj∗ci∗j∗ > 0, then w∗
i∗j∗ = 1 else stop;

– bj∗ = bj∗ − ci∗j∗ and X = X − {i∗};
• Assign W ∗ =

[
w∗

ij

]
.

2.6.2 Numerical Comparisons and Simulation

We consider a downlink OFDMA system in a single cell with one base

station composed of N = 32 statistically independent and identical users and

K = 128 subcarriers. We generate a frequency-selective channel by using 26-tap
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multipath with exponential intensity profile and use adaptive QAM modulation.

We use the fact that there is only a very small loss of channel capacity if a white

power spectrum is used (i.e. each subcarrier receives equal power) instead of the

optimal power spectrum [16]. The channel gain hij can be mapped to the number

of packets per time slot, cij , that subcarrier i can potentially transmit for user j

as [16]:

cij =
D

β
max

{

0,

⌊

0.31(10 log10(
P |hij|2
KNo

) − 6.7)

⌋}

(2.19)

where D the number of QAM symbols per channel in a timeslot, β the fixed packet

length (in bits) and No is the noise power in the subcarrier. The parameters P,D, β

and No are chosen such that the allocation of subcarriers over a block is equiv-

alent to the server scheduling problem where the connectivity cij ∈ {0, 1, 2, 3}.

All simulations are conducted over 6,000 timeslots. We consider arrivals of fixed-

size packets where the number of arrivals per timeslot for each queue is a ran-

dom variable having one of the two distributions: bounded pareto (α = 2 and

xmin/E(x) = 1/2) [79] and Poisson.

Figure 2.3 and Figure 2.4 provide comparisons of the performance of the

proposed algorithms under different traffic models in terms of the average total

queue backlog (equivalently, in terms of the average delay by Little’s Theorem). For

all traffic types, Algo-IV, as expected, outperform the others, since it mimics IMT

and LB policies as closely as possible. This observation is consistent with those

studies in literature which take advantage of backlog information (e.g. [53] and

[71]). However, the more interesting and important observation is the performance
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Figure 2.3 Average queue backlog for bounded pareto distribution.

of Algo-I in the light-to-moderate traffic regime (below 6 packets/user/timeslot).

Before the performance of Algo-I sees a sharp degradation reflecting the policy’s low

throughput, it outperforms Algo-II and Algo-III in light-to-moderate traffic, even

though it does ignore much of CSI available to the other algorithms. This insight

sheds light on nature of delay performance versus throughput considerations and

the benefit of using queue information. When considering light-to-moderate traffic

intensity (resulting in reasonable delays), the value of QSI outplays that of CSI.

This is of extreme practical interest when one considers the overhead associated

with CSI estimation and feedback in an OFDMA system with large number of

subcarriers.
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Figure 2.4 Average queue backlog for the Poisson distribution.

2.7 Summary

In this chapter, we have considered the problem of optimal server alloca-

tion in a time-slotted system with N symmetric queues and K servers when the

arrivals and channels are stochastic and time-varying. Focusing on a long-term

average-delay objective, we identified the MTLB policy that achieves the instanta-

neous maximum throughput as well as balancing the queue lengths. Such a policy

always exists when the channel connectivity follows an on/off model. In such a

case, we proved that the MTLB policy achieves the minimum average delay (mean

response time) at any time when there are only N = 2 users.

Although the on-off connectivity model may seem restricted for practi-

cal wireless systems, the optimality of the MTLB policy in such on-off model can
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lead to useful insight for the general connectivity setting. We have obtained excel-

lent performance for the general connectivity using some MTLB-based heuristic

policies. We showed by simulation that the value of CSI and QSI in optimiz-

ing the performance heavily depends on the arrival statistics. We showed that in

low-to-moderate traffic regime and from a delay optimality perspective, balancing

the queues is more critical than opportunistically taking advantage of CSI. The

opposite becomes true in the heavy traffic regime.
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Chapter 3

High-SNR Analysis of

Outage-Limited Communications

with Bursty and Delay-Limited

Information

Abstract

This chapter analyzes the high-SNR asymptotic error performance of

outage-limited communications with fading, where the number of bits that ar-

rive at the transmitter during any time slot is random but the delivery of bits at

the receiver must adhere to a strict delay limitation. Specifically, bit errors are

caused by erroneous decoding at the receiver or violation of the strict delay con-

straint. Under certain scaling of the statistics of the bit-arrival process with SNR,

46
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this paper shows that the optimal decay behavior of the asymptotic total prob-

ability of bit error depends on how fast the burstiness of the source scales down

with SNR. If the source burstiness scales down too slowly, the total probability of

error is asymptotically dominated by delay-violation events. On the other hand,

if the source burstiness scales down too quickly, the total probability of error is

asymptotically dominated by channel-error events. However, at the proper scaling,

where the burstiness scales linearly with 1√
log SNR

and at the optimal coding dura-

tion and transmission rate, the occurrences of channel errors and delay-violation

errors are asymptotically balanced. In this latter case, the optimal exponent of

the total probability of error reveals a tradeoff that addresses the question of how

much of the allowable time and rate should be used for gaining reliability over the

channel and how much for accommodating the burstiness with delay constraints.

This chapter analyzes the high signal-to-noise-ratio (SNR) performance

of outage-limited communications where the information to be communicated is

delay-limited and where the information arrives at the transmitter in a stochastic

manner. We consider the following setting (Figure 3.1) in our study:

• A random number of bits arrive at the transmitter during any given times-

lot. Bits accumulate in an infinite buffer while waiting for their turn to be

bunched into codewords and transmitted under a first-come, first-transmit

policy.

• There is no feedback to the transmitter; retransmission of the bits in error
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Figure 3.1 System model for point-to-point communication

is not considered.

• Communication over the fading channel is outage-limited ( [62, 90]), where

the transmitter is unaware of the instantaneous channel state and, as a con-

sequence, operates at a fixed transmission rate, R. During a deep fade (also

known as an outage), the channel seen by the decoder is too weak to al-

low recovery of the data content from the transmitted signal. Characteristic

settings are those of MIMO and cooperative outage-limited communications.

• Coding takes place in blocks where each codeword spans over a fixed and

finite integral number, T , of timeslots. Each codeword has an information

content of RT bits. In addition, coding is “fully-diverse,” i.e., the decoding

at the receiver takes place only at the end of the coding block.

• The delay bound, D, is a maximum allowable time duration from the moment

a bit arrives at the transmitter until the moment it is decoded at the receiver.

The delay experienced by a bit is the sum of the time spent waiting in the

buffer and the time spent in the block decoding process. Note that the

waiting time in the buffer is random due to the stochastic arrival process.
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• A bit is declared in error either when it is decoded incorrectly at the decoder,

or when it violates the delay bound.

For the above setting, we are interested in the high-SNR asymptotic total

probability of bit error. Note that for a given transmission rate, R, and a coding

block duration, T , there exists a tradeoff between the probabilities of decoding

error versus the delay violation. We expect that longer coding blocks allow the

encoded bits to be transmitted over more fading realizations and hence, achieve

higher diversity and fewer decoding errors. However, longer coding blocks cause

more bits to violate the delay requirement. In other words, one intuitively expects

that there is an optimal choice of the fixed transmission rate, R, and the fixed

coding block duration, T , for which the total probability of bit error is minimized.

The goal of this chapter is to analytically identify these optimal quantities.

3.0.1 Prior Work and Our Contribution

High demands on the quality of service (QoS), in terms of both packet

losses and packet delays, have fueled substantial research interest in jointly con-

sidering channels and queues. Communication of delay-sensitive bits over wireless

channels has been addressed under various assumptions and settings in works such

as [5, 6, 10, 55, 61, 63]. Often, asymptotic approximations are employed to enable

tractable analysis of the problem. Below we detail the existing work with their

corresponding settings and the relationships to this chapter.

The first group we discuss, [5, 6, 61, 63], consists of scenarios where the
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current channel state information (CSI) is assumed to be known at both the trans-

mitter and receiver. For example, in [6] and [5], Berry and Gallager address the

tradeoff between the minimum average power consumption and the average delay

(the power-delay tradeoff) over a Markovian fading channel with CSI both at the

transmitter and the receiver. In such a setting, the transmitter dynamically varies

power (i.e., the rate) in response to the current queue length and channel state.

In [63], Rajan et al. derive optimal delay-bounded schedulers for transmission of

constant-rate traffic over finite-state fading channels. In [61], Negi and Goel apply

the effective capacity [84] and error exponent techniques to find the code-rate al-

location that maximizes the decay rate of the asymptotic probability of error for a

given asymptotically-large delay requirement. Similar to [6] and [5], the proposed

dynamic code-rate allocation in [61] is in response to the current channel fading

and is possible by assuming CSI knowledge at the transmitter.

A second group of work (e.g., [10, 55]) focuses on scenarios where CSI is

unknown to the transmitter but there is a mechanism for retransmission of code-

words when the channel is in outage. As a tradeoff to protection against channel

outage, this retransmission incurs extra delays to the bits in the buffer. In [10],

for example, Bettesh and Shamai (Shitz) address the problem of minimizing the

average delay, under average power constraints and fixed transmission rate. They

provide asymptotic analysis, under heavy load condition and asymptotically large

queue length, for the optimal adaptive policies that adjust the transmission rate

and/or transmission power in response to the current queue length at the trans-
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mitter. In another example, Liu et al. in [55] study the problem of optimal (fixed)

transmission rate to maximize the decay rate of the probability of buffer over-

flow for on-off channels and Markov-modulated arrivals. The channel is considered

“off” when outage occurs.

Although our work uses a similar performance measure to [61], namely the

decay rate of the asymptotic probability of error, it covers the scenarios in which

CSI is not available to the transmitter (no CSIT) and there is no retransmission.

In such a setting, the variation of the fading channel is combatted via a coding

over multiple independent fading realizations.1 While this approach improves the

transmission reliability, its longer coding duration increases the end-to-end delay

any bit faces, and can potentially increase the probability of delay violation. In

other words, in the absence of CSIT and retransmission, the transmission relia-

bility, as well as the delay violation probability, are functions of the coding rate

and duration. Consequently, our work compliments this previous research as it

considers the effect of a delay violation requirement, in the absence of CSI at the

transmitter and retransmission, on the operation of the physical layer. We consider

a fixed transmission rate and code duration, as opposed to dynamic policies.

Since it is difficult to derive the exact relationship between the system pa-

rameters and the probabilities of channel decoding error and the delay violation, we

choose to study an asymptotic approximation when the signal-to-noise ratio (SNR)

1For example, the multiple independent fading realizations can be a result of fading in multiple
channel coherence time intervals (known as time diversity), or fading in multiple independent spa-
tial channels, as in MIMO channel (spatial diversity), or cooperative relay channel (cooperative
diversity).
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is asymptotically high. The first advantage of this choice is the availability of an

asymptotic high-SNR analysis for the channel decoding error probability. This

high-SNR analysis is known as the diversity-multiplexing-tradeoff (DMT) analy-

sis [90] and has received a great deal of attention during the past few years. Another

advantage of the high-SNR analysis is that, for the class of arrival processes we

consider in this chapter, we can derive an asymptotic approximation of the delay

violation probability that is valid even when the delay requirement D is finite and

small. This derivation (Lemma 3.10) is based on a large-deviations result known

as the Gärtner-Ellis theorem (see e.g., [18]) and extends the large deviations expo-

nent for a queue with asymptotic number of flows (as provided in [11, 15, 29, 81])

to a queue with batch service discipline. Given that the asymptotic expression of

the total probability of bit error is valid without requiring asymptotically large D,

it is then meaningful to ask about the optimal coding block duration, a question

which is not answered in studies with asymptotic D (e.g., [5, 6, 26, 44, 45, 61]).

We also would like to point out that our work was motivated by the

work of Holliday and Goldsmith [36] where, under a high-SNR asymptotic ap-

proximation, the optimal operating channel transmission rate for a concatenated

source/channel system is studied. Following the approach in [36], we study a

concatenated queue/channel system under a high-SNR approximation.
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3.0.2 Overview of the Results

This chapter focuses on the notion of SNR error exponent as a measure

of performance. Specifically, we are interested in finding how the asymptotic total

probability of error decays with SNR. To keep the problem meaningful, we consider

a scenario under which the overall traffic loading of the system (the ratio between

the mean arrival rate and the ergodic capacity of the channel) is kept independent

of SNR. That is, we consider a case where the arrival rate scales with log SNR.

Note that this scaling of arrival process is necessary to ensure a fixed loading and

hence a comparable cross-layer interaction as SNR scales.

From the DMT result, we already know that, if the channel operates below

the channel ergodic capacity, the asymptotic probability of channel decoding error

decays with SNR. The best one can hope for is that the asymptotic total probability

of error decays exponentially with SNR. For that, the asymptotic probability of

delay violation needs to decay with SNR. Specifically, we consider a class of i.i.d.2

arrival processes with light tail (i.e., the processes have all moments finite) whose

burstiness (defined as the ratio of the standard deviation over the mean of the

number of bits arrived at a timeslot) monotonically goes to zero as SNR goes to

infinity. We show that for all such processes (called smoothly-scaling processes),

the total probability of error decays.

2Note here that the channel is not necessarily i.i.d. in time. Since the adopted channel model
is not assumed to be i.i.d., assuming an i.i.d. arrival process, intuitively, is not consequential:
think of our chosen time slot as an upperbound for the “coherence time” of the arrival process.
The i.i.d. source assumption mostly serves to simplify the exposition and presentation of results,
and does not fundamentally limit the setting.
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The main result of the chapter shows that the optimal decay behavior of

the asymptotic total probability of bit error depends on how fast the burstiness of

the source scales down with SNR. If the source burstiness scales down too slowly

(too quickly), the majority of the errors are due to delay violation (channel error),

i.e., the total probability of error is asymptotically dominated by delay-violation

(channel-error) events. However, at the proper scaling where the burstiness scales

linearly with 1√
log SNR

and with the optimal coding duration and transmission rate,

the occurrences of channel errors and delay-violation errors are asymptotically

balanced. Equivalently, one can interpret our result, the optimal choice of block

coding duration and transmission rate, as that which balances the channel atyp-

icality (deep fading or outage events) and the arrival atypicality (large bursts of

arrivals).

We apply this result to several examples of outage-limited communication

systems to find the optimal setting of the operating parameters.

3.0.3 Outline of the Chapter

The precise models for the coding and channel process and the bit-arrival

and queue process are described in Section 3.1. We precisely define the scaling of

the source process with SNR and give a simple example of such source processes.

Section 3.2 provides the asymptotic probability of delay violation. The main result

of the chapter is found in Theorem 3.1 of Section 3.3. This theorem provides

the optimal asymptotic decay rate of the total error probability as well as the
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optimal coding duration and transmission rate. Section 3.4 gives some examples

to illustrate the utility of Theorem 3.1. These examples consider the question of

optimally communicating delay sensitive packet stream with a compound Poisson

traffic profile over the following outage-limited channels: SISO Rayleigh fast-fading

channel, quasi-static cooperative relay channel, and quasi-static MIMO channel.

Section 3.5 concludes the chapter.

3.0.4 Notations

We use the following symbols and notations. We use ρ to denote SNR.

The notation
g
= for a strictly increasing and positive-valued function g represents

the equivalence between y(ρ)
g
= z(ρ) and lim

ρ→∞
log y(ρ)
g(log ρ)

= lim
ρ→∞

log z(ρ)
g(log ρ)

. We define
g

≥

and
g

≤ in a similar manner. Note that when g is an identity function, then
g
= is

equivalent to the familiar
.
= notation in the DMT analysis [90].

We denote the high-SNR approximation of the ergodic capacity of AWGN

channel by N := log ρ and use N and log ρ interchangeably. The sets Z, N, and

Z+ represent the set of all, positive, and non-negative integers, respectively. In

addition, the set T represents the set {1, 2, . . . ,
⌊

D
2

⌋
}. Flooring and ceiling functions

are denoted by b·c and d·e, respectively. For all a ≤ b, [x]ba = max(a,min(b, x)) and

[x]+ = max(x, 0). We write g(x) = Θ(h(x)) to denote that the function g scales

linearly with the function h, i.e., lim
x→∞

g(x)
h(x)

<∞ and lim
x→∞

h(x)
g(x)

<∞. Finally, for any

function f , we denote its convex conjugate or the Fenchel-Legendre transform, f ∗,
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by

f ∗(x) = sup
θ∈R

θx− f(θ). (3.1)

3.1 System Model

As discussed in the introduction, we consider a system composed of a

bursty and delay-limited information source, concatenated with an infinite buffer

and a fading channel, as shown in Figure 3.1. We assume the queue follows a

first-come-first-serve (FCFS) discipline. The departures out of the queue occur

according to a block channel coding scheme, while the arrivals to the queue follow

a stochastic model. If the transmission rate is above the instantaneous capacity of

the channel, an outage event is said to occur where the received signal is erroneously

decoded. The delay requirement asks that each bit of information be decoded at

the destination within a maximum allowable delay of D time-slots from the time

it arrives at the buffer. Otherwise, the bit will be obsolete, discarded, and counted

as erroneous.We assume no retransmission of unsuccessful transmissions or those

bits which violate the delay bound.3 In the next three subsections, we describe in

detail the models for the channel, the arrival process, and the system performance

measure.

3Note that due to the constant service rate of the queue and the FCFS service discipline, any
bits arriving at the queue know immediately whether they will exceed their delay constraints,
using the knowledge of the current queue length. It seems wise to drop these bits immediately
after their arrivals to improve the system performance. However, we do not need to consider such
method because it has been established (see [29, Theorem 7.10]) that, in the asymptotic regime
of interest, such method does not improve the exponent of the delay violation probability.
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3.1.1 Channel and Coding Model

We consider a general fading-channel model,

y = Hx+ w,

where x is the transmitted vector, H is the channel matrix, y is the received signal,

and w is the noise vector. The average SNR is defined as [90]

ρ :=
E[‖Hx‖2]

E[‖w‖2]
,

and in the asymptotic scale of interest, it is equivalent to

ρ
.
= E[‖x‖2].

Coding takes place over T timeslots, using rate-R, length-T codes that meet the

DMT tradeoff dch(r, T ) [90], defined as

dch(r, T ) := − lim
ρ→∞

logPch(r, T, ρ)

log ρ
, (3.2)

where Pch(r, T, ρ) is the codeword error probability induced by the channel, given

an optimal code of multiplexing gain r, coding block size T timeslots4, and average

SNR ρ. The channel multiplexing gain r is related to the transmission rate R as

(refer to [90])

r := lim
ρ→∞

R

log ρ
. (3.3)

That is, the transmission rate R is assumed to scale linearly as r log ρ. We denote

by rmax the maximum value of r, i.e., 0 ≤ r ≤ rmax. This rmax relates to the ergodic

4For most settings, there exist codes that meet the entire DMT tradeoff in minimum delay,
independent of channel dimensionality and fading statistics [27, 77, 86].
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capacity as

rmax = EH

maxpx I(x; y)

log ρ

and is the smallest r such that dch(r, T ) = 0.

The DMT tradeoffs have been extensively studied for various finite dura-

tion communication schemes (for example, see [13, 23, 27, 28, 77] for MIMO point-

to-point communications, [78] for multiple access communications, [4, 52] for co-

operative communications, and [24,86] for cooperative communications with small

delay).

Remark 3.1. The condition that each bit be transmitted over all timeslots in the

coding block5, together with the first-come first-transmit service discipline, makes

it so that every T timeslots, the RT oldest bits are instantaneously removed6 from

the queue and are transmitted over the next T timeslots. We assume that it is

only at the end of the T timeslots that all the RT bits are decoded by the decoder.

Example 3.2 (Rayleigh Fast-Fading SISO Channel). Consider the single-input

single-output (SISO) time-selective channel with Rayleigh fading coefficients (cor-

related or uncorrelated) and with additive white Gaussian noise at the receiver.

The corresponding channel model over T timeslots is given by

y = diag(h) x+ w,

where y, h, x, and w are T × 1 vectors and H = diag(h) is a T ×T diagonal fading

5Currently, all known minimum-delay DMT optimal codes over any fading channel with non-
zero coefficients ask that each bit be transmitted over each timeslot.

6If an insufficient number of bits exists in the buffer, null bits are used and the rate is main-
tained. It is easy to show that, in the asymptotic scale of interest, the use of null-bits does not
incur any change in the SNR exponent of the probability of error.
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matrix with the fading at the tth timeslot, ht, as its (t, t) element. The optimal

DMT, given optimal signaling, takes the form

dch(r, T ) := − lim
ρ→∞

log Pr
(
I(x; y|h) < 2RT

)

log ρ

= − lim
ρ→∞

log Pr
(∏T

t=1(1 + ρ|ht|2) < ρrT
)

log ρ
.

For the fast-fading case where the coherence time is equal to one timeslot and the

elements of h are Rayleigh i.i.d. random variables, the tradeoff takes the form

dch(r, T ) = T (1 − r), (3.4)

and it can be met entirely in T timeslots (see [1]). This SISO channel allows for

rmax = 1.

Other examples which will be discussed later in Section 3.4 are quasi-

static MIMO and cooperative-relay channels. In this chapter, for simplicity we

assume that dch(r, T ) is continuous on r, decreasing on r, and increasing on T .

3.1.2 Smoothly-Scaling Bit-Arrival Process

In this subsection, we describe the SNR-scaling of a family of arrival

processes of interest. The specific choice of SNR-scaling for the statistics of the

bit-arrival process is such that the average traffic load of the system (defined as

the ratio of the average arrival rate over the ergodic capacity) is kept constant,

independent of SNR.7 This means that scaling in the ergodic capacity rmax log ρ

7It can be seen that unless the traffic load (average bit arrival rate over the channel rate) scales

as log(SNR), i.e., limρ→∞

E[At]
log ρ

= ` for some fixed 0 < ` < ∞, the problem is void of cross-layer
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(= rmaxN) is matched by scaling the average bit-arrival rate as λ log ρ (=λN) as

well, for some λ > 0. Now we are ready to introduce the arrival process of interest:

The sequence of asymptotically smoothly-scaling bit-arrival processes, in which the

process becomes “smoother” for increasing N .

Definition 3.3. Let G denote a class of functions which contains any function

g : R
+ 7→ R

+ (called scaling function) which is continuous and strictly increasing

and whose tail behavior is such that

lim
x→∞

g(x)

log x
= ∞. (3.5)

Definition 3.4. (g-smoothly-scaling source) Consider a scaling function g ∈ G

and a family of bit-arrival processes (A(N), N ∈ N), where A(N) = (A
(N)
t , t ∈ Z)

denotes an i.i.d. sequence of the random numbers A
(N)
t of bits that arrive at time

t with E[A
(N)
t ] = λN , for all t. The family of bit-arrival processes is said to be

g-smoothly-scaling if the limiting g-scaled logarithmic moment generating function,

defined for each θ ∈ R as

Λ(θ) = lim
N→∞

logE[exp( θg(N)
N

A
(N)
1 )]

g(N)
, (3.6)

exists as an extended real number in R∗ := R∪{∞} and is finite in a neighborhood

of the origin, essentially smooth, and lower-semicontinuous.8

interactions. Otherwise if ` = 0, corresponds to the case where too few bits arrive and effectively
there is no queuing delay. On the other hand, when the traffic load scales much faster than
log(SNR), i.e., ` = ∞, the overall performance is dominated by queueing delay, independently of
the channel characteristics.

8 [29] A function f : R 7→ R∗ is essentially smooth if the interior of its effective domain
D = {x : f(x) < ∞} is non-empty, if it is differentiable in the interior of D and if f is steep, which
means that for any sequence θn which converges to a boundary point of D, then limn→∞ |f ′(θn)| =
+∞. f is lower-semicontinuous if its level sets {x : f(x) ≤ α} are closed for α ∈ R.
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Remark 3.5. It is straight forward to show that Λ is convex and Λ′(0) = λ (see [29,

Lemma 1.11]).

Note that λ describes how close the average bit-arrival rate is to the

asymptotic approximation of the ergodic capacity of the channel. For stability

purpose and to ensure the existence of a stationary distribution, we require that

λ < rmax. Also, note that we abuse the notation and denote the arrival process by

A
(N)
t , despite its possible dependency on the scaling function g.

Motivation for Smoothly-Scaling Assumption

The assumption of g-smoothly-scaling arrival processes allows us to find

the decay rate of the tail probability of the sequence of process (S
(N)
t , N ∈ N),

which is a sum process defined as

S
(N)
t =

t∑

j=1

A
(N)
j , t ∈ N;

since (A
(N)
j , j ∈ Z) are i.i.d., S

(N)
t is also a g-smoothly scaling process with the

limiting g-scaled log moment generating function ΛSt given as

ΛSt(θ) := lim
N→∞

logE[exp( θg(N)
N

S
(N)
t )]

g(N)
= tΛ(θ). (3.7)

Now, given that the sequence (S
(N)
t , N ∈ N) is g-smoothly-scaling, we can use

the Gärtner-Ellis theorem (see e.g., [18] and [29]) to give the following result on

the decay rate of the tail probability of the sequence. The following proposition

provides an important basis for the analysis of the asymptotic probability of delay

violation in Section 3.2.
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Proposition 3.6. (Gärtner-Ellis theorem for g-smoothly-scaling process) Con-

sider g ∈ G and a family of g-smoothly-scaling processes (A(N), N ∈ N) with the

limiting g-scaled log moment generation function Λ. Let S
(N)
t =

∑t
i=1A

(N)
i , for

t ∈ N. Then, for a > λt, we have

lim
N→∞

1

g(N)
log Pr

(

S
(N)
t

N
> a

)

= −tΛ∗(a/t), (3.8)

where Λ∗ is the convex conjugate of Λ.

Proof. See Appendix B.1.

Asymptotic Characteristic of Smoothly-Scaling Processes

Intuitively, the g-smoothly-scaling arrival processes become smoother as

SNR increases. This intuition follows from (3.6), which implies that for θ ∈ R such

that Λ(θ) <∞ and ε > 0, there exists N0 such that for N > N0,

exp (g(N)Λ(θ) − g(N)ε) < E

[

exp

(
θg(N)

N
A

(N)
1

)]

< exp (g(N)Λ(θ) + g(N)ε) .

Then, if we let Yg(N) be a sum of g(N) i.i.d. random variables (i.e., Yg(N) :=

X1+· · ·+Xg(N) with E[eθX1 ] = eΛ(θ)), we have E[eθ(Yg(N))] = eΛ(θ)g(N). Therefore, at

sufficiently large N , g(N)
N
A

(N)
t and Yg(N) have the same moment generating function

and hence the same distribution. If we define the burstiness of the random variable

A
(N)
1 as the (dimensionless) ratio of its standard deviation over its mean,9 then,

9Note that the burstiness definition here is basically the normalized variation of the random
variable around its typical value (its mean). A more familiar definition of traffic burstiness would
involve how the traffic are correlated with time, i.e., a bursty source tends to have large bursts
of arrivals in a short period of time. However, since we only consider the source which is i.i.d.
over time, we use this definition of burstiness.
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using the above intuition, the burstiness
std(A

(N)
1 )

E[A
(N)
1 ]

for large N is approximately

equal to
std
(

N
g(N)

∑g(N)
i=1 Xi

)

λN
, which is reduced to std(X1)

λ
√

g(N)
. Hence, the burstiness of

A
(N)
1 decays to zero approximately as 1√

g(log ρ)
. In other words, the g-smoothly-

scaling arrival processes become smoother as SNR increases.

Examples of Smoothly-Scaling Processes

One of the common arrival processes used for traffic modeling is a com-

pound Poisson process with exponential packet size, denoted as CPE. For this

source, the random number of bits, A
(N)
t , arrived at timeslot t, is i.i.d. across time

t and is in the form of

A
(N)
t =

M
(N)
t∑

i=1

Y
(N)
i,t , (3.9)

where M
(N)
t is the random variable corresponding to the number of packets that

have arrived at the tth timeslot, and where Y
(N)
i,t corresponds to the random number

of bits in the ith packet. M
(N)
t are independently drawn from a Poisson distribu-

tion with mean ν(N); and Y
(N)
i,t , i = 1, . . . ,M

(N)
t , are independently drawn from

an exponential distribution with mean 1
µ(N)

(nats per packet). Note that the as-

sumption that E[A
(N)
t ] = λN forces that ν(N)

µ(N)
= λN . In addition, a larger average

packet size 1
µ(N)

implies a more bursty arrival process.10 It is known (see [44]) that

10It can be easily shown that the burstiness of this CPE process, as defined in Section 3.1.2,

is
√

2
λNµ(N) .
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the log moment generating function of this CPE random variable A
(N)
t is

logE[eθA
(N)
t ] =







θν(N)
µ(N)−θ

, θ < µ(N),

∞, otherwise.

(3.10)

The following examples illustrate that, depending on the scaling of the

average packet arrival rate and the average packet size, some CPE processes may

or may not be g-smoothly-scaling.

Example 3.7 (g-smoothly-scaling CPE process). For g ∈ G and µ > 0, consider a

CPE process A
(N)
t with packet arrival rate µλg(N) and average packet size N

µg(N)
.

This family of processes is g-smoothly-scaling because, using (3.10), we have

Λ(θ) := lim
N→∞

logE[e
θg(N)

N
A

(N)
1 ]

g(N)
=







µλθ
µ−θ

, θ < µ,

∞, otherwise,

(3.11)

which satisfies the conditions in the definition of g-smoothly-scaling. Since we will

use this particular g-smoothly-scaling CPE process for examples in the chapter,

we denote it as CPE(λ, µ, g,N). It is useful to note a particular case when g(N)

grows linearly with N . Using a property of the Poisson process [79], this particular

scaling case can be viewed as aggregating an increasing number of Poisson traffic

streams (this number grows linearly with N), with each stream having the same

packet length distribution.

To complete our discussion on smoothly-scaling processes, we give an

example below of a family of CPE arrival processes which is not g-smoothly-scaling.
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Example 3.8. A family of CPE processes where A
(N)
t has packet arrival rate µλ

and average packet size N/µ (note the dependence on N only in the average packet

size) is not g-smoothly-scaling for any g ∈ G. This is because, using (3.10), we

have

lim
N→∞

logE[e
θg(N)

N
A

(N)
t ]

g(N)
=







0, θ ≤ 0,

∞ otherwise,

which is not finite in the (open) neighborhood of θ = 0. Hence, this family of

processes is not g-smoothly-scaling.

Remark 3.9. The scaling function, g, describes the way the source statistics scale

with SNR. Example 3.7 describes the case of the compound Poisson process, where

g can be identified as the function that specifies how the average packet arrival

rate (µλg(log SNR)) and the average packet size ( log SNR
µg(log SNR)

) scale with SNR.

3.1.3 Performance Measure and System Objective

The overall performance measure is the total probability of bit loss,

Ptot(r, T ), where loss can occur due to channel decoding error or the end-to-end

delay violation. Specifically,

Ptot(r, T ) := Pch(r, T ) + (1 − Pch(r, T ))Pdelay(r, T ), (3.12)

where Pch(r, T ) denotes the probability of decoding error due to channel outage

and Pdelay(r, T ) denotes the probability of delay violation. We are interested in

finding the high-SNR asymptotic approximation of Ptot(r, T ) as a function of r, T ,
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SNR, D, as well as the source and channel statistics (including λ and the source

scaling function g). In the interest of brevity, we denote Ptot as a function of only

r and T , the two parameters over which the performance will later be optimized.

Since the high-SNR asymptotic expression of Pch(r, T ) is already given by

the DMT in (3.2), what remains is to find the asymptotic expression for Pdelay(r, T ),

which is shown in the next section.

3.2 Asymptotic Analysis of Probability of Delay

Violation

In this section, we derive the asymptotic probability of delay violation

Pdelay(r, T ) for the channel multiplexing rate r and coding block size T . We observe

that the adopted block coding forces the queue to have a batch service that occurs

every T timeslots with the instantaneous removal of the oldest rNT bits. The

decay rate of the asymptotic tail probability of the sum arrival process, given

in Proposition 3.6, in conjunction with an asymptotic analysis of a queue with

deterministic batch service, gives the following result:

Lemma 3.10. Given g ∈ G, T ∈ T, r > λ, a batch service of rNT every T

timeslots, and a g-smoothly-scaling bit-arrival process characterized by the limiting

g-scaled log moment generation function Λ, the decay rate of Pdelay(r, T ) is given
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by the function I, i.e.,

lim
N→∞

1

g(N)
logPdelay(r, T ) = −I(r, T ), (3.13)

where

I(r, T ) = min
t∈Z+:

tT+T−1−k>0

(tT + T − 1 − k)Λ∗
(

r +
(D + 1 − 2T )r

tT+T−1−k

)

, (3.14)

for k = D( mod T ). In addition, I(r, T ) is lower-semicontinuous and increasing

on r.

Proof. See Appendix B.2.

Approximation 3.11. Relaxing the integer constraint in (3.14) gives the lower

bound of I as

I(r, T ) ≥ δrr(D + 1 − 2T ) =: Iir(r, T ), (3.15)

where

δr = sup{θ > 0 : Λ(θ) < θr}. (3.16)

We use this lower bound as an approximation to I as well, i.e.,

I(r, T ) ≈ Iir(r, T ) = δrr(D + 1 − 2T ). (3.17)

Proof. See Appendix B.2.

Example 3.12. For a g-smoothly-scaling CPE(λ, µ, g,N) bit-arrival process, the

function I in (3.14) can be calculated exactly with the following Λ∗:

Λ∗(x) = µ
(√

x−
√
λ
)2

, x ∈ R. (3.18)
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However, an approximation of I in (3.17) is simpler to work with and given as

I(r, T ) ≈ Iir(r, T ) = µ(r − λ)(D + 1 − 2T ), (3.19)

where, using (3.16) and (3.11), δr is given as

δr = µ

(

1 − λ

r

)

. (3.20)

We will see via numerical examples in Section 3.4.1 that the approximation in

(3.19) is sufficient for our purpose.

3.3 Main Result: Optimal Asymptotic Total

Probability of Error

In this section, we present the main result of the chapter which states

the optimal decay rate of the high-SNR asymptotic total probability of bit error.

Recall the definition of Ptot from (3.12):

Ptot(r, T ) := Pch(r, T ) + (1 − Pch(r, T ))Pdelay(r, T ),

where we now know that

Pch(r, T )
.
= ρ−dch(r,T )

and

Pdelay(r, T )
g
= e−I(r,T )g(log ρ).

Hence, the asymptotic optimal decay behavior of Ptot depends on the function g.

The following theorem gives the main result of the chapter.
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Theorem 3.1. Consider g ∈ G and a g-smoothly-scaling bit-arrival process. The

optimal rate of decay of the asymptotic probability of total bit error, maximized over

all r ∈ (λ, rmax) and T ∈ T, and the optimizing r∗ and T ∗ are given, depending on

the tail behavior of the function g, as follows:

Case 1: If lim
N→∞

g(N)
N

= γ ∈ (0,∞), then

d∗ := sup
r∈(λ,rmax)

T∈T

lim
ρ→∞

− logPtot(r, T )

log ρ
= dch(r

∗, T ∗) = γI(r∗, T ∗), (3.21)

where

r∗(T ) := inf{r ∈ (λ, rmax) : γI(r, T ) = dch(r, T )} (3.22)

T ∗ = arg max
T∈T

I(r∗(T ), T ) (3.23)

r∗ = r∗(T ∗). (3.24)

Case 2: If lim
N→∞

g(N)
N

= 0 and lim
N→∞

g(N)
log N

= ∞, then

sup
r∈(λ,rmax),

T∈T

lim
ρ→∞

− logPtot(r, T )

g(log ρ)
≤ max

T∈T

I(rmax, T ). (3.25)

Case 3: If lim
N→∞

g(N)
N

= ∞, then

sup
r∈(λ,rmax),

T∈T

lim
ρ→∞

− logPtot(r, T )

log ρ
≤ dch

(

λ,

⌊
D

2

⌋)

. (3.26)

Proof. See Appendix B.3.

Theorem 3.1 shows that the optimal decay behavior of the asymptotic

total probability of error depends on the tail behavior of the function g. As dis-

cussed earlier, the burstiness of the g-smoothly-scaling arrival process scales down
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as Θ( 1√
g(log ρ)

). Below, we discuss each case of Theorem 3.1, with respect to the

scaling of the source burstiness:

In Case 1, where the source burstiness scales down with Θ( 1√
log ρ

), both

components of the probability of error decay exponentially with log ρ. In this set-

ting, one can optimize the choices of r and T to arrive at a non-trivial optimal decay

rate d∗. The optimal r∗ and T ∗ balance and minimize the decay rate in Pch(r,T)

and Pdelay(r, T ). Hence, for Case 1, the optimal asymptotic total probability of

error decays as follows:

Ptot(r
∗, T ∗)

.
= Pdelay(r

∗, T ∗)
.
= Pch(r

∗, T ∗)
.
= ρ−d∗ .

Note that d∗ is nothing but the optimal negative SNR exponent.

In Case 2, where the source burstiness scales down slower than Θ( 1√
log ρ

)

but faster than Θ( 1√
log log ρ

), we have that Ptot(r, T ) is asymptotically equal to

Pdelay(r, T ) for all r ∈ (λ, rmax) and T ∈ T. In this case, the decay rate of Ptot(r, T )

is equal to I(r, T ). In other words, the channel error (outage) probability is dom-

inated by the delay violation probability and, hence, can be ignored.

Finally, in Case 3, when the source burstiness scales down faster than

Θ( 1√
log ρ

), we have the opposite of Case 2. In Case 3, the delay violation probability

is dominated by the channel error probability and, hence, can be ignored.
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3.3.1 Approximation of the Optimal Negative SNR Expo-

nent

For Case 1 in Theorem 3.1, we use the following approximation which is

an immediate result of relaxing the integer-constrained optimizations of I and T ∗ to

obtain approximated expressions with much simpler forms. These approximations

become especially useful in Section 3.4.

Approximation 3.13. Relaxing the integer constraints in the calculation of I

(as in Approximation 3.11) and T ∗ in (3.23) gives the following “integer-relaxed”

approximations for d∗, r∗, and T ∗:

d∗ ≈ d∗ir := dch(r
∗
ir, T

∗
ir), (3.27)

T ∗ ≈ T ∗
ir, and r∗ ≈ r∗ir,

where, for δr given in (3.16) and any T ∈ T,

r∗ir(T ) := min{r ∈ (λ, rmax) : dch(r, T ) = γδrr(D−2T+1)}, (3.28)

and

T ∗
ir =

[

min

{

T ∈ R
+ :

d

dT

(
dch(r

∗
ir(T ), T )

)
= 0

}]bD
2 c

1

, (3.29)

r∗ir = r∗ir(T
∗
ir). (3.30)

3.4 Applications of the Result

In this section, we apply the result of Case 1 in Theorem 3.1 to analyze

and optimize the end-to-end error probability of systems communicating delay-
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sensitive and bursty traffic over three outage-limited channels: SISO Rayleigh

fast-fading channel, quasi-static cooperative relay channel, and quasi-static MIMO

channel.

To illustrate the methodology, we restrict our attention to the case of

CPE(λ, µ, g, log ρ) arrival process where g(log ρ) = log ρ, for simplicity. Note that

to better gain insights, we use the integer-relaxed approximations obtained in

Approximation 3.13.

3.4.1 SISO Rayleigh Fast-Fading Channel

Our first example considers an example of SISO Rayleigh fast-fading

channel, whose dch(r, T ) = T (1 − r) (see (3.4)). Combining this with (3.20) and

(3.28) gives the optimal choice of multiplexing gain when the coding duration is

fixed at T as

r∗ir(T ) = λ+
1 − λ

1 + µ(D+1−2T )
T

. (3.31)

In addition, using (3.29), the integer-relaxed approximated optimal coding dura-

tion can be expressed as

T ∗
ir =

[

1

1 + 1√
2µ

D + 1

2

]bD
2 c

1

. (3.32)

Inserting T ∗
ir into (3.31), we get the approximated optimal channel multiplexing

gain as

r∗ir = r∗ir(T
∗
ir) =

[

λ+
1 − λ

1 +
√

2µ

]r∗ir(bD
2 c)

r∗ir(1)

. (3.33)
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Also, from (3.27), the approximated optimal negative SNR exponent is given as:

d∗ir = T ∗
ir(1 − r∗ir) =

[

1

(1 + 1√
2µ

)2

(D + 1)

2
(1 − λ)

]bD
2 c(1−r∗ir(bD

2 c))

1−r∗ir(1)

. (3.34)

Below, we provide some observations of the above results:

• The above result on d∗ can also be interpreted as a tradeoff which

describes the relation between the normalized average arrival rate,

λ := lim
N→∞

(
average bit-arrival rate

)
/N = lim

N→∞

E[AN
t ]

N
,

and the corresponding optimal negative SNR exponent d∗ir(λ) as a function of

the delay bound D, and the average packet size 1/µ. For constant bit arrivals

(CBR) at rate λ log ρ, i.e., mathematically when 1/µ → 0, any coding durations

less than half11 of D (or more precisely
⌊

D
2

⌋
) and any channel multiplexing rates

greater than λ result in zero probability of delay violation. Hence, the optimal

negative SNR exponent of the total error probability, denoted by d∗CBR, is equal

to the corresponding channel diversity when the optimal coding duration is at its

maximum value,
⌊

D
2

⌋
, and the channel multiplexing gain is at its minimum, λ.

That is,

d∗CBR(λ) =

⌊
D

2

⌋

(1 − λ).

It is not surprising that this coincides with the classical DMT. With traffic bursti-

ness, however, the optimal negative SNR exponent d∗ir(λ) given in (3.34) is smaller

than d∗CBR(λ). The ratio

d∗ir(λ)

d∗CBR(λ)
≈ 1

(1 + 1√
2µ

)2
≤ 1

11The first half of D is spent waiting for the next coding block and the other half waiting to
be decoded at the end of the block.
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Figure 3.2 Optimal negative SNR exponent for SISO, Rayleigh fast-fading channel.

The solid line describes the DMT (r = λ). The dashed and dotted lines describe

d∗ir(λ) for various µ and D.

can be interpreted as the reduction factor on the SNR exponent in the presence of

burstiness. Figure 3.2 shows the impact of traffic burstiness (which is parameter-

ized by µ) on d∗ir(λ).

• From a coding point of view, T ∗
ir is independent of the average bit-

arrival rate λ. This implies that for a fixed value of the average packet size 1/µ,

the optimal negative SNR exponent is achieved by a fixed-duration 1 × T ∗
ir code.

Optimal codes for this setting exist for all values of r and T ([24, 77, 86]). On the

other hand, if T is already given, the performance is optimized when the coding
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multiplexing gain is chosen as in (3.31), i.e.,

r∗ir(T ) = λ+
1 − λ

1 + µ(D+1−2T )
T

.

• Since rmax = 1 for this SISO channel, we can verify that r∗ir ↗ rmax

for very bursty traffic (i.e., 1/µ→ ∞). That is for very bursty traffic the channel

should operate close to its highest possible rate, which is the channel ergodic

capacity.

Numerical Comparison of the Approximation

Before we move to the next example, we illustrate numerically that the ap-

proximations in (3.32)-(3.34) well approximate their actual values in Theorem 3.1.

In Figure 3.3, we show an example of a comparison at 1/µ = 100 and various

values of D and λ. We observe that the approximated values match well with the

exact values if D is sufficiently large. The matching is remarkably good for d∗ and

d∗ir. Note that r∗ir is independent of D, except when D is so small that T ∗
ir = 1.

3.4.2 Cooperative Wireless Networking with Optimal Clus-

tering

As studied in [25, 46], we consider communicating bursty and delay-

limited information from an information source in a cooperative wireless relay

network, shown in Figure 3.4, where the diversity benefit of user cooperation is

due to encoding across space and time [52,66]. In the absence of delay limitation,
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(a) d∗ and d∗ir vs D and λ
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Figure 3.3 Comparisons of the exact values d∗, T ∗, and r∗ and the integer-relaxed

approximations d∗ir, T
∗
ir, and r∗ir, at various D and λ. The dotted lines with markers

correspond to the exact solutions while the solid lines represent the approximated

solutions.
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Figure 3.3 Comparisons of the exact values, continued.

having more cooperative users almost always improves performance. This is not

the case, though, when one considers burstiness and delay QoS requirement. Take

for example a network where the information-source node cooperates with v relays,

under an orthogonal amplify-and-forward (OAF) cooperative diversity scheme and

half-duplex constraint. This cooperation scheme gives the DMT:

dcoop
ch (r) = (v + 1)(1 − 2r).

Note that rmax = 1/2 under this protocol. To realize this amount of diversity, the

coding duration T is required to be at least 2(v + 1) channel uses or timeslots.

This means that, in spite of the increase in the negative SNR exponent of the

probability of decoding error with the number of cooperative relays, relaying over
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all nodes in the network might not be desirable as it increases the delay violations.

Applying the result of Approximation 3.13 to CPE source and the above dcoop
ch (r)

with T = 2(v+ 1), the optimal performance is achieved when the nodes cooperate

in clusters with

v∗ ≈ v∗ir =

[

D + 1

4(1 + 1√
2µ

)
− 1

]v

1

relays and transmit at multiplexing rate,

r∗ ≈ r∗ir =
1

2
−

1
2
− λ

1 + 1√
2µ

.

Note that v∗ir is independent of the traffic average arrival rate λ. This means that

meeting the optimal tradeoff for various values of λ does not require modifying

the cluster sizes, unless the traffic burstiness (parameterized by the average packet

size 1/µ) changes.

3.4.3 MIMO Quasi-Static Communications

In the case of the MIMO Rayleigh fading channel with nt transmit and

nr receive antennas, and with complete channel state information at the receiver

(CSIR) and no CSI at the transmitter, the channel diversity gain dch(r) is shown

(see [90]) to be a piecewise linear function that connects points

(k, (nt − k)(nr − k)), k = 0, 1, . . . ,min(nt, nr). (3.35)

The entire tradeoff is met if T ≥ nt [27]. An example of the effect of burstiness is

shown in Figure 3.5, for the case of the 2×2 Rayleigh fading channel (nt = nr = 2).

By assuming that T is given (not an optimizing parameter) and equal to 2, the
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Figure 3.4 Snapshot of a cooperative relay wireless network, where the source node

utilizes a subset of its peers (nodes 1, 2, . . . , v∗) as relays for communicating with

the destination.

optimal multiplexing gain r∗, which balances the SNR exponents of the probabili-

ties of delay violation and decoding error, is the solution to dch(r
∗) = I(r∗, T = 2).

Using the approximation (3.19) of I for CPE source, the approximation r∗ir is the

solution to

dch(r
∗
ir) − µ(r∗ir − λ)(D − 3) = 0,

where dch is the piecewise linear function connecting points in (3.35). In other

words, r∗ir is given as

r∗ir =







λ+ 2−λ
1+µ(D−3)

, if λ ∈ [1 − 1
µ(D−3)

, 2),

λ+ 4−3λ
3+µ(D−3)

, if λ ∈ (0, 1 − 1
µ(D−3)

].
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Figure 3.5 MIMO, quasi-static, coherent 2x2 channel. d∗ v.s. λ for different values

of D and µ.

Figure 3.5 shows the resulting d∗(λ) = dch(r
∗
ir) for various values of burstiness µ

and D.

3.5 Summary

This chapter offers a high-SNR asymptotic error performance analysis for

communications of delay-limited and bursty information over an outage-limited

channel, where errors occur either due to delay or due to erroneous decoding. The

analysis focuses on the case where there is no CSIT and no feedback, and on the

static case of fixed rate and fixed length of coding blocks. This joint queue-channel

analysis is performed in the asymptotic regime of high-SNR and in the assumption
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of smoothly scaling (with SNR) bit-arrival processes. The analysis provides closed-

form expressions for the error performance, as a function of the channel and source

statistics. These expressions identify the scaling regime of the source and channel

statistics in which either delay or decoding errors are the dominant cause of errors,

and the scaling regime in which a prudent choice of the coding duration and rate

manages to balance and minimize these errors. That is, in this latter regime, such

optimal choice manages to balance the effect of channel atypicality and burstiness

atypicality. To illustrate the results, we provide different examples that apply the

results in different communication settings. We emphasize that the results hold

for any coding duration and delay bound.
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Chapter 4

Optimal Operating Point for

MIMO Multiple Access Channel

With Bursty Traffic

Abstract

Multiple antennas at the transmitters and receivers in a multiple ac-

cess channel (MAC) can provide simultaneous diversity, spatial multiplexing, and

space-division multiple access gains. The fundamental tradeoff in the asymptot-

ically large SNR regime is shown by Tse et al. [78]. On the other hand, MAC

scheduling can provide a statistical-multiplexing gain to improve the delay perfor-

mance as shown by Bertsimas et al. [9] and Stolyar and Ramanan [72]. In this

chapter, we formulate and analytically derive bounds on the optimal operating

point and the asymptotic (high-SNR and large delay bound D) error performance

82
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of MIMO-MAC channel for bursty sources with delay constraints. Our system

model brings together the four types of gains: diversity, spatial multiplexing, space-

division multiple-access, and statistical-multiplexing gains. As in Chapter 3, our

objective is to minimize the end-to-end performance as defined by the delay bound

violation probability as well as the channel decoding error probability. We find the

optimal diversity gain and rate region in which the system should operate. As an

example, we illustrate our technique and the optimal operating point for the case of

a compound Poisson source. In addition, we note an interesting interplay between

the intensity of the traffic and resource pooling with regard to both multiple-access

and statistical-multiplexing gains.

Multiple antennas can be used to enhance the performance of wireless

systems. The multiple antennas can be used to simultaneously boost the reliability

(providing diversity gain) and the data rate (providing spatial multiplexing gain).

In addition, in multiple access scenarios where multiple users are transmitting to

a common receiver, multiple receive antennas also provide multiple-access gain by

allowing for spatial separation of the signals of different users. Tse, Viswanath,

and Zheng [78] have characterized the fundamental tradeoff between these three

types of gains at high SNR.

In this chapter, we consider a system where each user has a bursty source

concatenated with an infinite buffer and a MIMO multiple access channel (MIMO-

MAC). The end-to-end performance metric of interest is the total bit error prob-
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ability, where bit errors can be due to either delay violation or decoding errors in

the MIMO-MAC channel. From a user’s perspective, we face the following trade-

off: the higher the multiplexing gain the better the delay performance, but the

inevitable decrease in diversity results in an increase in MIMO channel errors. At

the same time, the statistical variation in the traffic patterns among users provides

us with flexibility in allocating the resources.

Hence, in this chapter, we study the similar cross-layer queue-channel

optimization problem studied in Chapter 3, but in a multi-user context where the

dynamic scheduling of the resources can improve the delay violation probability.

Like Chapter 3, the analysis is performed in the asymptotic regime of high-SNR.

However, unlike Chapter 3, we assume large delay bound D in the analysis so that

we can utilize existing results in [9, 72].

The main contribution of this chapter is the formulation of a cross-layer

optimal operating point for a MIMO-MAC channel with bursty sources and de-

lay constraints. In particular, we provide a methodology for characterizing the

optimal diversity gain and rate region in which the system should operate in a

MIMO-MAC channel with a given high SNR and description of the bursty traffic

sources. To achieve this, we assume an optimal scheduler design which dynam-

ically controls users’ transmission rates (or equivalently, the multiplexing gains)

as a function of queue backlogs. This dynamic adaptation of multiplexing gains

accounts for statistical-multiplexing while leveraging the known tradeoff between

diversity, spatial multiplexing, and multiple-access gains given in [78]. From a
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scheduling perspective, statistical-multiplexing is a key mechanism by which the

network resources are used to improve the delay performance for bursty users. In

particular, statistical-multiplexing capitalizes on the fact that peaks in traffic of

simultaneously ongoing traffic streams rarely coincide. We believe that our result

can be viewed as a first step in integrating the known spatial diversity and mul-

tiplexing and multiple-access gains with that of the statistical-multiplexing. In

other words, for the first time, our model brings together the four types of gains

offered at a MIMO MAC.

The remainder of the chapter is organized as follows. In Section 4.1,

we provide a detailed description of the system model as well as the problem

formulation for general number of users. In Section 4.2, we provide the main

analytical results and bounds on the optimal channel diversity gain. We also

discuss the notion of statistical-multiplexing and its benefits. In Section 4.3, we

find the optimal operating diversity gain d∗ or its bounds for a particular class of

compound Poisson sources. Section 4.4 summarizes the chapter.

4.1 System Model

We consider the architecture shown in Figure 4.1. The system is time-

slotted and consists of three main components, each shown with a different num-

ber. The first component consists of K homogeneous users, each of which has an

identical but independent bursty source: each source generates information bits

according to a stochastic process. When appropriate, the bits are buffered prior to
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transmission over the channel. The second component of interest is a MIMO mul-

tiple access channel without channel state information (CSI) at the transmitters

but with perfect CSI at the receiver. The receiver consists of a joint maximum-

likelihood decoder. In the absence of CSI at the transmitters, we assume that the

MIMO-MAC operates at a common diversity gain, which in turn specifies the cor-

responding capacity region of the MIMO MAC channel as given in [78]. However,

the individual rate of each user is determined dynamically by the rate scheduler

which is the third component in our system. This is a centralized rate scheduler

that dynamically determines the transmission rates of the individual users given

queue state information (QSI) of each user.

We assume no retransmission of the bits in error and map our objective to

the sum of the probability of delay violation and the probability of channel error.

In order to mathematically define this problem, we now model each of the above

components precisely.

4.1.1 Source Model

We assume that the total number of information bits generated by user

i (i = 1, . . . , K) is given by a sequence Si = {Si
t , t = 1, 2, . . .}, where Si

t is the

total number of bits of user i generated up to timeslot t and Si
0 ≡ 0. In addition,

we assume that the arrival processes Si, i = 1, . . . , K, are identical and mutually

independent. We also assume that each arrival process Si has stationary increments

and satisfies a Large Deviations Principle (LDP) defined in Definition 4.1. In the
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appendix, we discuss an additional sample path LDP assumption (Assumption B)

on the arrival processes. Here, to keep the flow of the chapter, in this section

we only provide the LDP assumption and the consequent characterization of the

sources which is based on LDP.

In general, consider a source process S generating a sequence (St, t ∈ Z+)

of random variables, where St is the total number of bits generated up to timeslot

t. The following definition gives a rough definition of the LDP, suitable for our

purpose in this chapter.

Definition 4.1. A source S is said to satisfy an LDP with rate function1 Λ∗ :

R → [0,∞] if, for large enough t and for small ε > 0,

Pr

[
St

t
∈ (a− ε, a+ ε)

]

≈ e−tΛ∗(a) (4.1)

where Λ∗ is a lower semicontinuous function and has compact level sets2 (see [9]

and [18] for more discussions in the LDP).

Fact 4.2 (Gärtner-Ellis theorem). Suppose a source S satisfies the following:

Assumption 4.2.A:

1. The limiting log-moment generating function

Λ(θ) := lim
t→∞

1

t
log E[eθSt ] (4.2)

exists for all θ, where ±∞ are allowed both as elements of the sequence and

as limit points.

1In large deviations literature, the Λ∗ function is typically called a “rate” function. Here we
use the same name, but caution the reader not to confuse with the transmission rate.

2The level set {x : Λ∗(x) ≤ a} is compact for every real a
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2. The origin is in the interior of the domain DΛ := {θ|Λ(θ) <∞} of Λ(θ).

3. Λ is essentially smooth, i.e., Λ(θ) is differentiable in the interior of DΛ and

the derivative tends to infinity as θ approaches the boundary of DΛ.

4. Λ(θ) is lower semicontinuous, i.e. lim infθn→θ Λ(θn) ≥ Λ(θ) for all θ.

Then the source S satisfies an LDP and its decay function described by (4.1) is

given as

Λ∗(a) = sup
θ

[θa− Λ(θ)]. (4.3)

Remark 4.3. It can be shown that Λ∗ is a convex function taking values in [0,∞]

such that Λ∗(E[S1]) = 0 where E[S1] is the average arrival rate of process S

(see [18]).

Remark 4.4. Many source models commonly used to model bursty traffic in com-

munication networks satisfy Assumptions A and B. Such source models include

renewal processes, Markov-modulated processes, and more generally stationary

processes with mild mixing conditions [9].

4.1.2 MIMO-MAC Channel Model and PHY Model

We use the same symmetric MIMO multiple access channel model as de-

scribed in [78] which assumes symmetric transmitters seeing i.i.d. fading channels,

perfect symbol synchronization and perfect CSI at the receiver but no CSI at any

transmitters. Each transmitter has nt transmit antennas, while the receiver has
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nr receive antennas. Space-time coding happens over a channel coherence time

which is assumed to contain T symbols3. We assume the duration of a timeslot is

equal to the channel coherence period, i.e., a timeslot contains T symbols. Since

the transmitters are assumed to know only the channel statistics, including the

average received SNR, they always transmit at the maximum powers which are

equal for all transmitters. The channel fading processes of the transmitters are as-

sumed to be stationary over time, mutually independent, and identical. For each

transmitter, the channel fadings for different antenna paths are assumed to be slow

block-fading with i.i.d. Rayleigh fading where the fadings stay constant during a

timeslot and change independently and simultaneously over timeslots. We denote

by ρ the average received signal-to-noise ratio (SNR) at each receive antenna.

From a system perspective, at each SNR level ρ, the PHY layer for the

MIMO-MAC channel provides a tradeoff between the reliability of the transmis-

sions and the transmission rates. Equivalently, we can say that the PHY layer

provides a tradeoff between a common diversity d and the multiplexing gain re-

gion, denoted by R(d), where d and R(d) are as defined in [90] and [78]. We state

these definitions below.

Definition 4.5. (Theorem 2 in [78]) Let ri
t be the multiplexing gain of user i,

i = 1, . . . , K, at time t. Given a common diversity requirement d for all users, i.e.,

P i
ch

.
≤SNR−d, i = 1, . . . , K, (4.4)

3We assume either a sufficiently large symbol rate or a sufficiently small number of antennas
such that T ≥ Knt + nr − 1.
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where P i
ch is the average error probability for user i. Then the spatial multiplex-

ing gains (r1
t , . . . , r

K
t ) at any timeslot t must be within the (time-independent)

multiplexing gain region

R(d) =

{

(r1, . . . , rK) :
∑

s∈S

rs ≤ r∗|S|nt,nr
(d), ∀S ⊆ {1, . . . , K}

}

. (4.5)

where r∗m,n(d) for any integers m and n is the largest multiplexing gain achieved for

an m×n point-to-point MIMO link for a given diversity d and is defined as a piece-

wise linear function joining the points ((m−k)(n−k), k) for k = 0, . . . ,min(m,n).

In this chapter, we consider a system which always operates at a common

diversity gain d at any time t. This d directly determines the multiplexing region

R(d) and its shape. In particular, d determines the sum of all the rates at all time

t, i.e.
∑K

i=1 r
i
t ≤ r∗Knt,nr

(d), which is independent of time. However, the individual

rate at time t, ri
t, i = 1, . . . , K, is determined dynamically by the rate scheduler

discussed later.

In Figure 4.2, we illustrate the dependence of the shape of R(d) and d

for a simple case of K = 2 users and nt = nr = 2. As seen in this figure, there

exists a diversity gain d0 (in this example, d0 = 2) such that, for large d (d > d0),

the shape of R(d) follows a rectangular shape (single-user performance regime),

while, for small d (d < d0), R(d) is a polymatroid shape (antenna-pooling regime).

Furthermore, [78] shows that d0 is the unique solution to

r∗Knt,nr
(d0) = Kr∗nt,nr

(d0). (4.6)

Later we will see the impact of this change of shape on the working of the scheduler
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block.

4.1.3 Rate Scheduler

Given that each user operates at a fixed and common diversity gain d

and given an average SNR of ρ in the MIMO-MAC subsystem, the function of

scheduler Hd : R
K
+ 7→ R(d) is to allocate, at the beginning of every timeslot t,

the set of feasible multiplexing gains to the users. This is done, equivalently, by

selecting a vector of spatial multiplexing gains (r1
t , . . . , r

K
t ) from the multiplexing

gain region R(d). The decision is based on the delay of the head-of-the-line bit in

queue i, denoted by Di
t, i = 1, . . . , K, at the beginning of timeslot t. Specifically,

we assume that

(r1
t , . . . , r

K
t ) = Hd(D

1
t , . . . , D

K
t ).
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Without loss of optimality, one can assume that the rate scheduler always assigns

the highest possible sum rate. At timeslot t, an amount of ri
tT log ρ bits are taken

out from head-of-the-line of the buffer of user i. We assume that if any buffers do

not have enough data to transmit, the null data is used to fulfill the rates.

Remark 4.6. Recall that the shape of the multiplexing gain R(d) depends on d

(e.g. see Figure 4.2). As a result, the choice of diversity gain d determines the class

of feasible dynamic schedulers. In the single-user performance regime (d ≥ d0),

the users are decoupled and independent from one another, hence, reducing the

scheduler to a static (and decoupled) choice of multiplexing gain ri
t = r∗nt,nr

(d) for

all i = 1, . . . , K and all time t ∈ Z. For the antenna-pooling regime (d < d0),

on the other hand, R(d) is a polymatroid. In other words, in this regime, the

multiplexing gains of the users are dependent on one another and must be jointly

allocated.

Remark 4.7. The model in this chapter assumes that there is no CSI available at

the transmitters and the central scheduler. However, the scheduler has perfect

knowledge of the queue state information (QSI). This is not unrealistic given the

fact that it is less bandwidth consuming and more accurate to send the QSI of each

buffer (an observable scalar number) to the centralized scheduler than to estimate

CSI for MIMO channels (K matrices, each of dimension nt × nr) at the receiver

and feed back these matrices to the transmitters.

Remark 4.8. Due to lack of CSI, the role of the rate scheduler in this chapter is

not to minimize the channel error performance; instead, the scheduler improves
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the delay violation probability by taking advantage of the statistical-multiplexing

gain provided by the multiple bursty sources sharing the multiple access channel.

4.1.4 Arrival Rate Scaling and Stability Condition

Since the rates of transmission in the MIMO-MAC channel are scaled as

log ρ, we scale the arrival rates with log ρ as well. In other words, we assume that

the average bit arrival rate λ̃ of each user is

λ̃ = λT log ρ (4.7)

bits per timeslot for a given constant positive λ.

In addition, to guarantee system stability, we require that the total av-

erage arrival rate to be no greater than the (sum) capacity of the MIMO-MAC

channel [72]. In particular, we assume that

Kλ̃ < min(Knt, nr)T log ρ,

or equivalently

λ < min(nt, nr/K). (4.8)

Since the system is stable, it reaches a steady state. We let Di and Qi

denote the steady-state delay and queue length, respectively, for queue i, i =

1, . . . , K.

For the rest of the chapter, we denote rav(d) as the average multiplexing
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gain at the common diversity d, defined as

rav(d) :=







r∗nt,nr
(d) if d ≥ d0,

1
K
r∗Knt,nr

(d) if d < d0.

(4.9)

and denote

Cav(d) := rav(d)T log ρ (bits per timeslot) (4.10)

as the average per-queue channel capacity at diversity d.

4.1.5 Objective

Our system objective is to find the optimal operating channel diversity

gain d∗ and the corresponding multiplexing gain region R(d∗) in which the system

should operate. This diversity d∗ minimizes the end-to-end total error probability

caused by two phenomenas: 1) delay violation of the delay bound D and 2) channel

decoding error. 4

In particular, we define the following probabilities:

P i
ch(d) := Pr[decoding error for user i]

Pch(d) := Pr[decoding error for any user] (4.11)

P i
delay(d) := Pr[delay violation of user i] = Pr[Di > D]

Pdelay(d) := Pr[delay violation for any user] = Pr[ max
i=1,...,K

Di > D]. (4.12)

With the above definitions, the total error probability Ptot(d) is expressed

4We assume no retransmission for the lost bits due to channel decoding errors or delay viola-
tion. Furthermore, the source processes are not effected by the lost bits.
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as

Ptot(d) := max
i=1,...,K

Pr[bit loss for user i]

= max
i=1,...,K

{
P i

ch(d) + (1 − P i
ch(d))P

i
delay(d)

}
, (4.13)

where P i
ch(d) + (1 − P i

ch(d))P
i
delay(d) is the total error probability of user i due to

channel and delay violation. We will later show that P i
ch(d)

.
= Pch(d)

.
= ρ−d and

P i
delay(d)

.
= Pdelay(d)

.
= ρ−f(d) where f is some functional taking positive values.

Hence, the asymptotic large-SNR expression of Ptot(d) is given as

Ptot(d)
.
= Pch(d) + Pdelay(d)

.
= ρ−d + ρ−f(d). (4.14)

We note that both probabilities Pch(d) and Pdelay(d) are functions of the

diversity gain d as well as the average SNR ρ. However, there is a tradeoff between

the two probabilities as a function of d: Intuitively, for a fixed ρ, we expect that a

high diversity gain, which translates into a smaller transmission rate region, results

in faster queue build-up and larger delays. On the other hand, this higher diversity

gain yields better channel performance.

In the remainder of the chapter, we will derive analytically large SNR

approximations for Pdelay(d) and Pch(d) and show that given a fixed and high ρ,

Pdelay(d) is increasing on d while Pch(d) is decreasing on d (confirming the above

intuition). Furthermore, we find the best PHY layer operating point, i.e. diversity

gain d∗, so as to minimize the total error probability Ptot in the high SNR regime.

In other words, we will find d∗ that balances the exponents of the two probabilities.
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4.2 Problem Analysis

In this section, we analytically derive the two loss probabilities, Pch(d)

and Pdelay(d), for asymptotically large SNR. As we will see, the two probabilities

decay exponentially with SNR. For the channel, the definition of diversity gain [78]

gives a direct asymptotic approximation of Pch(d) for large SNR. Obtaining the

asymptotic Pdelay(d), however, requires more work. Depending on the value of d,

we either directly compute the asymptotic Pdelay(d) or provide lower and upper

bounds of the asymptotic Pdelay(d).

4.2.1 Asymptotic Pch(d)

The asymptotic expression of Pch(d) for large SNR comes directly from

the definition of diversity gain. By the union bound and the symmetry among

users, we have the following bounds:

P 1
ch(d) ≤ Pch(d) ≤ KP 1

ch(d)

where P 1
ch(d) is the probability of decoding error for user 1. Using P 1

ch(d)
.
= ρ−d in

Definition 2 and the fact that K is a constant independent of ρ, we have

Pch(d)
.
= ρ−d. (4.15)
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4.2.2 Asymptotic Pdelay(d)

Similarly, by the union bound and the symmetry among users, we have

the following bounds:

Pr[D1 > D] ≤ Pdelay(d) ≤ K Pr[D1 > D], (4.16)

where Pr[D1 > D] implicitly depends on d.

Now, let us first focus on Pr[D1 > D]. To get an analytical expression

for the asymptotic Pr[D1 > D], we consider two cases depending on the value of

d.

Case 1: Single-user performance regime (d0 ≤ d < ntnr)

As discussed in Section II-C, the multiplexing gain region R(d) in this

regime is a square and the scheduler assign decoupled rates to the queues. Hence,

the optimal scheduler simply assigns a fixed transmission rate of Cav(d) given in

(4.10) to each user (i.e. we call this the symmetric static scheduler). Therefore,

the asymptotic approximation (when D is sufficiently large) of the delay violation

probability is given as follows.

Lemma 4.9. For d0 ≤ d ≤ ntnr and sufficiently large D, the asymptotic large-

SNR approximation of Pr[D1 > D] is such that

lim
ρ→∞

log Pr [D1 > D]

log ρ
= −σs(d)DTrav(d) (4.17)

where σs(d) is defined such that

Λ(σs(d)) = σs(d)Cav(d). (4.18)
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Equivalently, we can write (4.17) as

Pr[D1 > D]
.
= ρ−σs(d)DTrav(d), (4.19)

where the proof of this Lemma is given in Appendix C.2.

Case 2: Antenna-pooling regime (0 < d < d0)

In this case, the multiplexing gain region R(d) is polymatroid and the

transmission rates of the users must be jointly allocated by a scheduler. Since

the optimal policy (with respect to the delay violation probability objective) is

unknown, we provide the following lower bound and upper bound to Pr[D1 > D].

Upper Bound on Pr[D1 > D]

An upper bound on Pr[D1 > D] is easily found since any feasible schedul-

ing policy can provide an upper bound. In particular, to arrive at the upper bound

P u(d), we consider the same symmetric static scheduler as described in Case 1:

the symmetric static scheduler always assigns the symmetric rate of Cav(d) to each

user at all time. By Lemma 4.9, the asymptotic approximation of P u(d) for large

D is given as

P u(d)
.
= ρ−σs(d)DTrav(d). (4.20)

We note that this upper bound becomes tighter as d increases to d0 since R(d)

approaches a K-dimensional hypercube.
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Lower Bound on Pr[D1 > D]

The lower bound P l(d) on Pr[D1 > D] is obtained from Fact 4.10, the

construction of a fictitious system, and Fact 4.11, as follow.

Fact 4.10. Consider two systems whose multiplexing gain regions are given by R1

and R2, respectively, where R1 ⊆ R2. The delay violation probability associated

with the second system is no greater than that of the first system.

For a given d, consider a fictitious system whose multiplexing gain region

is given by

Rfic(d) :=

{

(r1, . . . , rK) :

K∑

i=1

ri ≤ r∗Knt,nr
(d)

}

. (4.21)

Since R(d) ⊆ Rfic(d), Fact 4.10 states that the delay violation probability

for this system is a lower bound for Pr[D1 > D]. Stolyar and Ramanan [72] have

shown that the largest-delay-first (LDF) policy achieves the minimum asymptotic

delay violation probability for this fictitious system.

Fact 4.11. (Theorem 2.2 in [72]) Consider a single-server queuing model with K

users (illustrated in Figure 4.4(iii) for K = 2). For the sources considered in this

chapter, the largest-delay-first (LDF) policy achieves the minimum delay violation

probability Pr[maxi=1,...,K Di > D] when D is large. 5

Hence, we compute the minimum asymptotic delay violation probability

5See more details of this fact in Fact C.1. The result in [72] is much more general than this.
It works with any weighted delays, i.e. Pr[maxi=1,...,K Di/αi > D], where αi is the weight for
user i.
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for this fictitious system to arrive at a lower bound, P l(d), for Pr[D1 > D], as

given in the following Lemma:

Lemma 4.12. For 0 < d < d0 and sufficiently large D, the asymptotic large-SNR

approximation of P l(d) is given by

P l(d)
.
= ρ−Kσs(d)DTrav(d). (4.22)

Proof. See Appendix II.

We also note that P l(d) becomes a tighter bound as d→ 0.

Remark 4.13. Comparing the exponents in (4.20) and (4.22), we see that the LDF

scheduler improves the exponent of the delay violation probability by K times of

that of the symmetric static scheduler. Talking in the language of channel diversity,

the LDF scheduler improves the diversity gain by K folds by taking advantage of

statistical-multiplexing of the sources. However, we want to emphasize that the

lower bound in P l(d) derived from the fictitious system with the multiplexing gain

region Rfic(d) becomes more loose as the number of usersK grows. This is expected

because the actual multiplexing gain region R(d) in (4.5) is a polymatroid (see an

example of K = 3 users in Figure 4.3) while that of the fictitious system is just

the K-dimensional simplex given by the constraint
∑K

i=1 ri ≤ r∗Knt,nr
(d). Thus, the

lower-bound becomes more optimistic as the number of users increases.

Remark 4.14. For an example of K = 2 users, Figure 4.4 summarizes the two

bounds with the queuing models in mind. The upper bound P l(d) is the tail

probability of system (i) which always serves each queue with multiplexing gain
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0 < d < d 2

Figure 4.3 The MIMO-MAC multiplexing gain region R(d) and the multiplexing

gain region of the fictitious system Rfic(d) for K = 3 users.

2a+bb aa
a

+ b/2
a

+ b/2

(i) (ii) (iii)

Figure 4.4 Queuing models of the upper and lower bounds of Pr[D1 > D] for the

case of K = 2 users and the antenna-pooling regime (r∗2nt,nr
(d) ≤ 2r∗nt,nr

(d)), where

a and b are defined such that a + b = r∗nt,nr
(d) and 2a+ b = r∗2nt,nr

(d).
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r∗2nt,nr
(d)/2. The lower bound P l(d) is the tail probability of system (iii) which

assigns the single server of multiplexing gain r∗2nt,nr
(d) based on LDF scheduling.

System (ii) is the queuing model given by the multiplexing gain region R(d).

Now, using the above two cases and the bounds in (4.16), we arrive at an

asymptotic characterization of Pdelay(d) as follows

Pdelay(d)
.
= Pr[D1 > D], (4.23)

and, in particular, when d0 ≤ d < ntnr,

Pdelay(d)
.
= ρ−σs(d)DTrav(d) (4.24)

and, when 0 < d ≤ d0,

ρ−Kσs(d)DTrav(d)
.
≤Pdelay(d)

.
≤ ρ−σs(d)DTrav(d). (4.25)

In summary, so far, we have seen that Pdelay(d) and Pch(d) exponentially

decay with ρ. The rate of decay of Pch(d) is known. When d > d0, the rate of

decay of Pdelay(d) is known via (4.24). The rate of decay of Pdelay(d) when d < d0

is, however, unknown but is bounded as in (4.25).

Next, with Pdelay(d) and Pch(d) at hand, we proceed with the minimization

of the total error probability.

4.2.3 Minimizing Asymptotic Total Error Probability

From the asymptotic expressions of Pch(d) given in (4.15) and Pdelay(d)

in (4.24) and (4.25), the asymptotic characterization of the total error probability

Ptot(d)
.
= Pdelay(d) + Pch(d) is immediate:
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For d0 ≤ d ≤ ntnr,

Ptot(d)
.
= ρ−σs(d)DTrav(d) + ρ−d. (4.26)

For 0 < d < d0,

ρ−Kσs(d)DTrav(d) + ρ−d
.
≤ Ptot(d)

.
≤ ρ−σs(d)DTrav(d) + ρ−d. (4.27)

Since the term σs(d)DTrav(d) is decreasing in d while the term d is in-

creasing on d, the minimum of Ptot(d) in (4.26) or its bounds in (4.27) happen when

the value of d makes the exponents of the two terms are within o(1) of each other

(note that if the exponents were not in the same order, one term would dominate

in the sum as ρ → ∞). We now introduce an algorithm which guarantees such

choices of d:

Algorithm 1:

1. Solve for d which is a solution of

σs(d)DTrav(d) = d. (4.28)

If d ≥ d0, then d∗ = d∗u = d∗l = d and stop. Otherwise, set d∗l = d. Go to

Step 2.

2. Solve for d which is a solution of

Kσs(d)DTrav(d) = d (4.29)

and set d∗u = min(d, d0).
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Theorem 4.1. Algorithm 1 results in a closed interval [d∗l , d
∗
u] in which the optimal

common diversity gain d∗ lies.

Proof. See Appendix C.2.

Notice that the optimal diversity d∗ and its bounds depend on the sta-

tistical characteristics of the symmetric sources (Λ, µ, λ), the parameters of the

MIMO-MAC channel (e.g. T, nt, nr), and the delay bound D.

4.2.4 Statistical-Multiplexing and Optimal Diversity Gain

From the above analysis, we obtain the following critical observation.

Given a delay constraint, the statistical property of the source has a significant

impact on the level of diversity a well-designed system can enjoy. In other words,

the optimal scheduler which statistically multiplexes the MIMO resources allows

the combined bursty sources to perceive as smaller aggregate traffic and hence

a higher degree of diversity. Rigorously, this performance improvement can be

attributed to a statistical-multiplexing gain as follows:

Definition 4.15. An optimal dynamic scheduler with the total error probability

P ∗
tot provides statistical-multiplexing gain of s over the static rate scheduler with

P f
tot, where

s := − lim
ρ→∞

logP ∗
tot − logP f

tot

log ρ
. (4.30)

From this definition and the fact that P f
tot

.
= ρ−d∗l , the following lemma

is immediate.
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Lemma 4.16. Consider the system model in Section II. The optimal statistical-

multiplexing gain s∗ is given by

s∗ = d∗ − d∗l . (4.31)

Furthermore, it is bounded above by d∗u − d∗l .

Remark 4.17. The two concepts of “statistical-multiplexing gain” and “multi-user

diversity gain” are related conceptually. The former takes advantage of the troughs

(due to burstiness) of the traffic of different users while the latter takes advantage

of the peaks (due to fadings) of the channels of different users. But their impacts

on the design are sufficiently different, as multi-user diversity gain requires channel

CSI at the transmitters while statistical-multiplexing requires QSI.

4.2.5 Resource Pooling and Statistical-Multiplexing

Here we discuss the effect of the arrival rate λ and the average delay bound

D to the performance region of the MIMO-MAC. The relationship between (λ,D)

and the system performance is summarized in Figure 4.5. The system performance

is divided into three main regions: the single-user performance region, the antenna-

pooling with significant statistical-multiplexing region, and the antenna-pooling

with insignificant statistical-multiplexing region. In the single-user performance

region, the achieved optimal diversity gain d∗ is equivalent to the case when only

one user is in the system, i.e. the case d∗ ≥ d0. Specifically, this case happens when
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Figure 4.5 The relation between (λ,D) to the system performance.

λ is sufficiently small and D is sufficiently large. We denote this region as A1.

A1 :=

{

(λ,D) : λ ≤ r0, D ≥ d0

σs(d0)Tr0

}

where r0 = r∗nt,nr
(d0).

6 Since in this region the transmission rate of each user is

independent, there is no resource sharing and hence no statistical-multiplexing

gain.

On the other hand, the significance of statistical-multiplexing gain outside

A1 is impacted by the rate of arrivals λ as well as the average delay bound D. In

particular, for (λ,D) in the neighborhood of A1, the statistical-multiplexing gain

is not significant as the queues still behave in a roughly independent manner.

Similarly, as λ increases to an overload situation or the delay bound D becomes

6Note that d0

σs(d0)Tr0

is an increasing function on λ since σs(d0) which is the delay violation

exponent is itself decreasing on the arrival rate λ.
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very tight, the benefits of juggling resources diminishes. In contrast, for medium

values of λ and D and under the optimal dynamic scheduler, each queue perceives

the whole (pooled) resource to itself, compared to 1/K of the resource as in case

of a symmetric static scheduler.

To illustrate the approach shown in this chapter and the corresponding

calculation, we look at a simple example of a compound Poisson source with K = 2

users in the next section.

4.3 Example: Compound Poisson Sources and

K = 2

In this section, we illustrate the proposed approach via an example. We

consider two independent but identical source processes. For each source i, arrivals

are independent across timeslots. The number of bits that arrive in a timeslot t, Ai
t,

is an aggregation of a random number of packets whose sizes are also random, i.e.

Ai
t =

∑N
n=1 Yn. Furthermore, we assume that the number of packets at each slot,

N , is an independent Poisson random variable with rate ν packets per timeslot,

while the length of the packets, Yi, i = 1, 2, . . . , are i.i.d. random variables with

exponential distribution of mean 1/µ. The average bit arrival rate λ̃ for each source

is equal to ν/µ and scales with log ρ as in (4.7), i.e.

λ̃ = ν/µ = λT log ρ. (4.32)
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Proposition 4.18. For the compound Poisson source with exponential packet

length, the σs(d) defined in Lemmas 4.9 is given as

σs(d) = µ(1 − λ

rav(d)
). (4.33)

Proof. See Appendix C.2.

Note that the ratio of the per-queue average bit arrival rate over the

average service rate, λ
rav(d)

, can be called the traffic load per queue. It is important

to note that the delay violation exponent in (4.33) is a decreasing function of the

average packet size 1/µ, for a fixed packet arrival rate ν. A larger packet size in

effectively creates more burstiness in the arrivals, hence a higher delay violation

probability.

With Proposition 4.18 in hand, we are now ready to use Algorithm 1 to

obtain d∗ (or its bounds). Figure 4.6 shows the optimal d∗ and its bounds when

nt = nr = 4, the average packet size 1/µ is 100 nats, and the symbol rate such that

there are T = 2nt +nr −1 = 11 symbols per timeslot. In these figures, we plot the

exponents of Pdelay(d) or its bounds, i.e. −σs(d)DTrav(d) and −2σs(d)DTrav(d),

and the exponent of Pch(d), i.e. −d. To better illustrate the procedure followed by

Algorithm 1, we plot the exponents of Pdelay(d) and Pch(d) separately. Note that

when d ≤ d0 (d0 = 7.3 in this example), we only have lower and upper bounds for

the exponents of Pdelay(d). In this case, in addition to the bounds, we plot a linear

approximation (dotted line) to emphasize the tightness of the lower bound around

d0 and the upper bound around 0. The optimal diversity gain d∗ or its bounds (d∗l
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and d∗u) are shown in each plot as the crossing of the exponents.

As we discussed in Section 4.2.5, the statistical-multiplexing gain s∗ de-

fined in (4.31) depends on the optimal choice of d∗ which itself is a function of

the arrival rate λ and the average delay bound D. Depending on λ and D, we

may or may not have statistical-multiplexing gain. For example, Figure 4.7(a)

shows that, in the case of sufficiently low arrival rates and a large delay bound,

the optimal P ∗
tot happens when the users operate in the single-user performance

region. Hence, in this case, there is no statistical-multiplexing gain to be achieved

by dynamic scheduler. Here, the dominant form of loss occurs on the channels.

On the other hand, Figure 4.6(b) corresponds to the case of large arrival rate and

small delay bound, where the loss probability due to delay violation dominates

that of the channel. In this case, the optimal diversity d∗ necessitates resource

sharing in form of antenna pooling. As a result, the impact of n optimal dynamic

scheduler, in a form of statistical-multiplexing gain, becomes more significant.

Figure 4.8 illustrates the performance region discussed in Section 4.2.5.

In particular, the figure gives a characterization of the region shown in Figure 4.5

for the compound Poisson case. We approximate the statistical-multiplexing gain

s∗ = d∗ − d∗l achieved with an optimal dynamic scheduler with that of a simple

linear approximation d∗a − d∗l , where d∗a is the optimal diversity gain derived from

the dotted line in Figure 4.6 and Figure 4.7.
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Figure 4.6 Plots of the exponents of Pdelay(d) and Pch(d) for two different average

arrival rates (λ = 0.5 and 1) and delay bound D = 20. For d < d0 = 7.3, the upper

and lower bounds of the exponent of Pdelay(d) are shown. A simple linear estimate

(dotted line) of the exponent of Pdelay(d) between the two bounds is also drawn.
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Figure 4.7 Similar plots as in Figure 4.6 but with delay bound D = 150.
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Figure 4.8 3D and contour plots characterizing the statistical-multiplexing gain,

approximated by d∗a − d∗l , v.s. delay bound D and arrival rate λ.
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4.4 Summary

In this chapter, we considered a system of bursty and delay-sensitive sym-

metric sources concatenated with a symmetric MIMO-MAC channel. We assumed

no CSI information available to the transmitters and a block fading model with a

block coding whose block lengths are matched to the coherence time of the chan-

nel. Furthermore, we assumed a fixed and equal high transmission power at each

transmitter, i.e., high SNR regime. We addressed the optimal choice of the spatial

diversity gain d∗ such that it minimizes an end-to-end loss performance where loss

can occur due to delay violation as well as channel decoding error. We showed how

an optimal choice of diversity gain d∗ depends on a queue-based scheduler module

whose job is to statistically multiplex the resources of the MIMO-MAC. In doing

so, we integrated the notion of statistical-multiplexing gain with those of spatial

diversity, multiplexing, and multi-access gains provided by the MIMO-MAC.
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Chapter 5

Many-Sources Large Deviations

for Max-Weight Scheduling

Abstract

In this chapter, we establish a many-sources large deviations principle

(LDP) for the stationary workload of a multi-queue single-server system with

simplex capacity, operated under a stabilizing and non-idling maximum-weight

scheduling policy. Assuming a many-sources sample path LDP for the arrival

processes, we establish an LDP for the workload process by employing Garcia’s

extended contraction principle that is applicable to quasi-continuous mappings.

The LDP result can be used to calculate asymptotic buffer overflow probabilities

accounting for the multiplexing gain, when the arrival process is an average of i.i.d.

processes. We express the rate function for the stationary workloads in term of

the rate functions of the finite-horizon workloads when the arrival processes have

115
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i.i.d. increments.

In this chapter, we consider a single-server multi-class discrete-time queue-

ing system where the server is allocated to queues according to a maximum weight

scheduler, which is known to be stabilizing [2]. We provide a refined analysis of

the statistical performance of this policy under stochastic arrivals. In particular,

with K independent queues we seek to derive the probability of buffer overflow.

Specifically, for a given finite value B, we consider the transient behavior, i.e.,

quantities such Pr(Q0,T ≥ B1K) where Q0,T ∈ RK
+ is the workload (to be formally

defined later) at time 0 with “zero” initial workload at time −T and 1K ∈ R
K
+

is the vector of all 1s, as well as the stationary behavior, i.e., the similar prob-

abilistic quantities as before for the limiting workload vector as T → ∞. Like

many recent papers on analysis of scheduling algorithms [9, 67, 68, 72, 75, 85, 88],

our work considers logarithmic asymptotics to the probabilities by analyzing a

large-deviation approximation to the problem. The present chapter is closely re-

lated to [75], where the buffer overflow probability for the workload processes of a

single-server multi-queue queueing system under max-weight policies and general

compact and convex capacity regions was established. While [75] addresses the

large-buffer scaling regime, this chapter establishes similar results for a classical

multi-class single-server (simplex capacity region) system under a “many-sources”

asymptotic regime (see [11, 15, 29, 68, 70, 81, 82, 85]).
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In a many-sources asymptotic regime, one considers a sequence of queue-

ing systems indexed by the number of the (independent) sources multiplexed (or

averaged) over a particular queue, i.e., the arrival process to each queue is the

average of L processes. The analysis focuses on the asymptotic behavior of the

systems when L → ∞. The motivation to consider many-sources scaling includes

the following considerations: 1) practical interest in real applications when there

are large number of flows to each user or node. This asymptote usually gives

a more refined approximation to the probabilistic quantities of interest by incor-

porating the impact of the multiplexing gain [11, 12, 14, 15, 19, 70, 81]; and 2) a

cross-layer optimization for the optimal duration of the finite code blocks when

the transmission channel is operated at high-SNR regime (see [42]).

Given a sample path large deviation principle for the arrival processes (in

the space of real-valued sequences with the scaled uniform topology), we derive a

large deviations principle for the workload. In particular, we first show that the

workload is a quasi-continuous map of the arrival process. The first contribution

of the chapter is, thus, obtained based on a recent extension of the contraction

principle by J. Garcia [32]. More precisely, we use Garcia’s extended contraction

principle together with an assumed sample path large deviations principle (LDP)

(see Definition 5.2) for the arrival process to establish an LDP for the workload at

any given time t as well as the stationary workload. The LDP results (Theorems 5.1

and 5.2) directly imply that the probability of buffer overflow has an exponential

tail whose decay rate is dictated by a good rate function whose form is determined
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by the statistics of the arrival process. This rate function can be expressed as a

solution to a finite-dimensional optimization problem which has the same flavor

of a deterministic optimal control problem. When the arrival process has i.i.d.

increments, we provide a simplified form for the rate function.

The outline of the chapter is as follows. The problem formulation is given

in Section 5.1. Section 5.2 provides background and preliminary results on the large

deviations principle. The main results of the chapter, which are the LDPs of the

workloads, are given in Section 5.3. Section 5.4 gives simplified expressions of the

rate functions. We conclude in Section 5.5.

5.1 Problem Formulation

We consider a discrete-time queueing system with K independent queues

and one server with capacity c (bits per timeslot). For every queue k ∈ K :=

{1, . . . , K} we assume that work (in bits) arrives into the queue given by a sequence

(Ak
t , t ∈ N) where Ak

t ∈ R+ is the work brought in at time −t. For 0 ≤ m1 ≤ m2

integers, we define Ak(m1, m2] :=
∑m2

t=m1+1A
k
t as the total amount of work to arrive

for user k from timeslot −m2 and until timeslot −m1 − 1. We also write Ak
(m1,m2]

to denote the finite sequence of arrivals Ak restricted to time {−m2, . . . ,−m1−1},

i.e., Ak
(m1,m2]

is the vector (Ak
m1+1, A

k
m1+2, . . . , A

k
m2

) ∈ R
m2−m1
+ .

We assume a maximum-weight server allocation policy where the weights

are functions of the unfinished workloads, and under which we are interested in the

statistical properties of the unfinished workload in queue k at time t. Let Qk
t ∈ R+



119

be the unfinished workload (queue length) of queue k at the beginning of time −t

and Rk
t be the amount of service allocated to queue k during time (−t,−t+1]. Let

Qt := (Qk
t , k ∈ K) be the corresponding workload vector and Rt := (Rk

t , k ∈ K) be

the rate vector. One can define a simplex rate region R,

R :=

{

r = (r1, . . . , rK) ∈ R
K
+ :

K∑

k=1

rk ≤ c

}

, (5.1)

as the set of server’s operating points, i.e., Rt ∈ R. At the beginning of timeslot

−t, the rate vector Rt ∈ R is selected by a work-conserving max-weight scheduler

H in response to the current workload Qt; that is, Rt = H(Qt) where the scheduler

H serves c bits from the queue k∗ which has the largest workload Qk
t when the

workload of the longest queue is at least c. In case of a tie, the scheduler chooses

the queue with the lowest index. To make the scheduler non-idling, we assume

the scheduler splits the service when the unfinished workload in each queue is less

than c. That is, we assume that the scheduler assigns H(x) = ProjR(x) when

x ∈ [0, c)K , where ProjB(b) is the projection of vector b on the set B. Specifically,

for x ∈ R
K
+ we consider H(x) to be given by

H(x) :=







e(x) if x 6∈ [0, c)K;

ProjR(x) if x ∈ [0, c)K.

(5.2)

Above e(x) is defined as the K-dimensional vector whose elements are zeros except

for the k∗th element which is c, where k∗ = min{k : k ∈ arg maxi∈K xi}. For



120

example, when K = 2, the scheduler H in (5.2) becomes

H(x) =







(c, 0), if x1 ≥ x2, x1 ≥ c

(0, c), if x1 < x2, x2 ≥ c,

ProjR(x), if x1 < c, x2 < c.

(5.3)

For t ∈ N, the dynamics of the workloads of queue k ∈ K is

Qk
t−1 = [Qk

t − Rk
t ]

+ + Ak
t , (5.4)

where for x ∈ R, [x]+ := max{0, x}. We assume that the arrival vector At happens

any time in (−t,−t+ 1) but cannot be served in that timeslot t.

In this chapter, we are interested in the asymptotic probabilities of the

finite-horizon and infinite-horizon workloads. The finite-horizon workload, de-

noted by Q0,T , is the workload at time 0, assuming the initial condition at time

−T is QT ∈ R. The index T in Q0,T reminds us of this initial condition.1 The

infinite-horizon workload, Q, is defined as Q = Q(A) := limT→∞Q0,T (A(0,T ]). We

assume that the limit exists but may be infinite. It can be shown that Q is the

stationary workload when the system is stable. We will use the function GT to

mean GT (A(0,T ]) = Q0,T (A(0,T ]) and the function G to mean G(A) = Q(A). To aid

in describing our results we further define Ga

T and Ga in the following way:

Definition 5.1. For a function F : X 7→ Y and x ∈ X , we define

F x := {y ∈ Y : (∃xn → x) such that F (xn) → y}. (5.5)

1The initial condition is normally taken to be the zero vector but the result remains valid
even when the initial condition is within R. With QT ∈ R, we always have the workload at time
−T + 1 be QT−1 = [QT − H(QT )]+ + AT = AT from the non-idling condition that we imposed
on the server allocation mechanism.
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Note that F (·) is a set-valued mapping. It is single-valued at x where F

is continuous (i.e., F x = {F (x)}).

We consider a sequence of queueing systems indexed by L ∈ N and will be

interested in the behavior of the queueing system L as L becomes large. For each

user k ∈ K and system indexed by L, we assume a stationary arrival process of work

brought into the system given by a sequence Ak,L := (Ak,L
t , t ∈ N) where Ak,L

t ∈ R+

is the work (in bits) brought in at time −t into the queue of user k. The arrivals

to different queues/users are mutually independent. We follow the many-sources

scaling regime on the system with index L. The arrival process to each queue

k is assumed to be an average of L i.i.d. processes, i.e., Ak,L := 1
L

∑L
i=1A

k,(i),

where each Ak,(i) is an independent identically distributed copy of a stationary

process A. We denote the mean arrival rate by µ := EAk,L
1 = EA1. Also let

AL := (Ak,L, k ∈ K) be the sequence of arrival vectors.

5.1.1 Main Results

Assuming that the sequence of the arrival processes {AL} satisfies a many-

sources sample path LDP with a continuous rate function (Assumptions 5.3 and

5.5, respectively, given in Section 5.2), the main results of the chapter are the

following LDP’s for the finite and infinite-horizon workloads. We also provide a

simplification of the rate functions when the arrival processes have i.i.d. incre-

ments.

Theorem 5.1. For t ∈ N, the sequence of the finite-horizon workloads
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{Q0,t(A
L
(0,t]) := Gt(A

L
(0,t])} satisfies an LDP on R

K
+ with the rate function It, where

for b ∈ RK
+

It(b) = inf
x∈R

K×t
+ :Gx

t 3b

I]
t(x) (5.6)

Theorem 5.2. If Kµ < c, the sequence of infinite-horizon workloads {Q(AL) :=

G(AL)} satisfies an LDP on RK
+ with rate function J , where for b ∈ RK

+

J(b) = inf
a∈DK

µ :Ga3b

I](a). (5.7)

In the above results, a denotes a sequence taking values in RK
+ and DK

µ

is a special subset of sequences taking values in RK
+ which will be clarified in

Section 5.2.1 .

5.2 Background and Assumptions

5.2.1 Topology for Sample Paths

Since a large deviations principle is defined with topological entities and

since we will deal with continuity and convergence of the workload mappings, we

need to precisely specify the topology for the space of the arrival sample paths. We

use the scaled uniform topology as in [82] for our analysis. Let D denote the space

of sample paths (non-negative discrete-time functions), i.e., D := {x : N 7→ R+},

and let DK be the K cartesian product of D. Let || · ||u be the scaled uniform norm

on D, i.e., ||x||u := supt∈N

∣
∣
∣
x(0,t]

t

∣
∣
∣ for all x ∈ D while for all a = (ak, k ∈ K) ∈ DK ,

where ak ∈ D, the scaled uniform norm of a is ||a||u := maxk∈K ||ak||u. Define a
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subspace Dµ of D which contains all the arrival paths whose average arrival rate is

equal to the expected rate µ, i.e., Dµ :=
{

x ∈ D : limt→∞
x(0,t]

t
= µ

}

and DK
µ the

K products of Dµ. Again, we equip Dµ and DK
µ with the scaled uniform topology.

For metric spaces like Rn
+, n ∈ N, we use the square uniform topology with the

square metric ρ [59], where ρ(x,y) := maxi∈{1,...,n} |xi − yi|.

5.2.2 Large Deviations Principle

The following definition of a large deviations principle is taken from [82].

For an excellent full introduction to the theory, definitions, and tools, see [18] and

for queueing applications, see [29].

Definition 5.2 (Large deviations principle). A sequence of random variablesXL in

a Hausdorff space X with σ-algebra B is said to satisfy a large deviations principle

(LDP) with good rate function I if, for any set B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
L→∞

1

L
log Pr(XL ∈ B) ≤ lim sup

L→∞

1

L
log Pr(XL ∈ B) ≤ − inf

x∈B̄
I(x),

(5.8)

where Bo and B̄ are the interior and the closure of B, respectively, and the rate

function I : X 7→ R+∪{∞} has compact level sets, where the level sets are defined

as {x : I(x) ≤ α}, for α ∈ R. If XL is a mapping from N to R describing sample

path of a random sequence, the LDP is referred to as a sample path LDP.

We are interested in finding an LDP for the sequence of the workloads

Q(AL) and Q0,T (AL
(0,T ]), assuming the following sample path LDP of the arrival

processes AL.



124

5.2.3 Sample Path LDP of Arrival Processes

The following sample path LDP for the sequence of arrival processes AL

is the starting point of our analysis.

Assumption 5.3 (Many-sources sample path LDP). The sequence {AL} satisfies

a sample path LDP in DK
µ equipped with the scaled uniform topology with rate

function I], where the rate function I] is given as

I](a) := sup
t∈N

I]
t(a(0,t]) = lim

t→∞
I]

t(a(0,t]) (5.9)

for a ∈ DK
µ , where for x = (xk ∈ Rt

+, k ∈ K) ∈ RKt
+ ,

I]
t(x) :=

K∑

k=1

Λ∗
t (x

k), (5.10)

and Λ∗
t is the convex conjugate or Fenchel-Legendre transform of Λt:

Λ∗
t (y) := sup

θ∈Rt

θ · y − Λt(θ), for y ∈ R
t, (5.11)

Λt(θ) := logE exp
(
θ ·A(0,t]

)
, for θ ∈ R

t. (5.12)

Remark 5.4. Assumption 5.3 implies that the sequence {AL} also satisfies an LDP

on DK equipped with the scaled uniform topology, with rate function I] where

I](a) = ∞ for a ∈ DK/DK
µ [29]. It is shown in [29, Lemma 7.8] that under

Assumption 5.3, Λ∗
t (·) is non-negative, Λ∗

t is convex, and Λ∗
t (µ1t) = 0, where 1n is

the vector of all ones in Rn. Hence, I]
t(µ1Kt) = 0 and I]

t is convex.

In this chapter, we also assume the following continuity condition on the

rate function I] in (5.9):
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Assumption 5.5. I] is continuous on its effective domain defined as {x ∈ DK :

I](x) <∞}.

Remark 5.6. As shown in [82] and [29], the above many-sources sample path LDP

(Assumption 5.3) holds when the underlying arrival process A satisfies mild regu-

larity conditions. This implies that several standard stationary processes used for

traffic modeling, such as i.i.d. increment processes, Markov-modulated, a general

class of Gaussian, and fractional Brownian processes (for long-range dependent or

heavy-tailed traffic), satisfy Assumptions 5.3 and 5.5.

5.2.4 Garcia’s Extended Contraction Principle

The contraction principle (see [18, p. 126]) says that if we have an LDP

for a sequence of random variables, we can effortlessly obtain LDP’s for a whole

other class of random sequences that are obtained via continuous transformations.

However, due to the inherent discontinuity in the max-weight scheduling function,

the usual contraction principle fails to provide sufficient structure. Instead, we

will utilize the following powerful extension of the contraction principle for quasi-

continuous transformations on metric spaces, given by Garcia [32]. First, let us

provide the definition and condition of the quasi-continuity:

Definition 5.7 (Quasi-continuity). A (single-valued) function F : X 7→ Y is quasi-

continuous at x ∈ X if for every y ∈ F x and every pair (U, V ) of neighborhoods of x

and y respectively, there is a nonempty open subset U0 of U such that F (U0) ⊆ V .

We say that F is quasi-continuous if it is quasi-continuous at every point of its
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domain. We also say that F is strictly quasi-continuous at x ∈ X if F is quasi-

continuous but not continuous at x.

Fact 5.8. [32, Theorem 3.2] If X ,Y are complete metric spaces, a function F :

X 7→ Y is quasi-continuous if and only if for each x ∈ X , there is a sequence {xn}

such that xn → x, F (xn) → F (x), and such that for all n, F is continuous at xn.

Remark 5.9. The definition of quasi-continuity is similar to that of continuity,

where F is continuous at x ∈ X if for every neighborhood V of F (x), there is

a neighborhood U0 of x such that F (U0) ⊆ V [59]. Obviously, every continuous

function is quasi-continuous. A step function F : R 7→ R, where F (x) = 0 for

x < 0, F (x) = 1 for x ≥ 0, is quasi-continuous. But if F (0) = 1/2, then F is not

quasi-continuous. From this example, we can infer that our scheduling function H

is quasi-continuous.

Remark 5.10. An interesting property is that if F is a continuous function and G

is a quasi-continuous function, then F ◦ G is quasi-continuous but G ◦ F is not

necessarily quasi-continuous [32].

Fact 5.11 (Garcia’s Extended Contraction Principle). Assume Ω
XL

→ X F→ Y,

X ,Y are metric spaces, and {XL} satisfies a large deviation principle with good

rate function I]. If at every x with I](x) < ∞, F is quasi-continuous and I] is

continuous, then {F (XL)} satisfies the LDP with rate function given by

I(y) = inf
{
I](x) : y ∈ F x

}
. (5.13)
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Hence, given Assumption 5.5, the LDP’s for the sequences of finite-

and infinite-horizon workloads would follow as a direct consequence of the quasi-

continuity of the mappings Gt and G. The quasi-continuity of the workload map-

pings is inherited from the quasi-continuity of the scheduler H .

5.3 Analysis: LDP’s for Workloads

In this section, we present the main result of the chapter: LDP’s for the

sequences of the finite- and infinite-horizon workloads. We first establish an LDP

for the sequence of the finite-horizon workloads.

5.3.1 LDP for Finite-Horizon Workloads

In this section, for t ∈ N, we establish an LDP for finite-horizon workloads

{QL
0,t := Gt(A

L
(0,t])}. The approach is to first show that the mapping Gt : R

K×t
+ 7→

RK
+ is quasi-continuous, then use Garcia’s extended contraction principle to obtain

an LDP for the finite-horizon workloads from the LDP assumption for {AL
(0,t]}.

Lemma 5.12. For t ∈ N, Gt is quasi-continuous on R
K×t
+ with respect to the

uniform topology.

Proof. See Appendix. The idea of the proof relies on the quasi-continuity of the

scheduler H and the linear dependence of the workload Qs at time −s on As+1 for

all s ∈ (0, t− 1].

Now, as already discussed, the proof of Theorem 5.1 is complete. We refer
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to the corresponding rate function, It, as the finite-horizon rate function. Next,

we discuss the LDP for the infinite-horizon workloads.

5.3.2 LDP for Infinite-Horizon Workloads

In this section, we establish an LDP of the sequence of the infinite-horizon

workloads {QL = G(AL)} where AL ∈ DK . Similar to the last section, we first

show that the mapping G is quasi-continuous on DK
µ when Kµ < c, and then use

Garcia’s extended contraction principle to establish the desired LDP.

Lemma 5.13. If Kµ < c, the mapping G is quasi-continuous on DK
µ with respect

to the scaled uniform topology.

Proof. See Appendix. The main idea is to use the fact that the sum (over all

queues) workload process behaves like that of a single queue.

Again, the above lemma and Garcia’s extended contraction principle to

the sequence of {AL} immediately give the LDP for the sequence of the infinite-

horizon workload in Theorem 5.2. Recall that the set DK
µ contains all arrival

sample paths a such that I](a) <∞ and E[ak
t ] = µ for all k ∈ K and t ∈ N.

Let us now consider the problem of calculating the rate function. Eqn.

(5.7) suggests that the rate function J , where J(b) = infa∈DK
µ :Ga3b I

](a), could

be interpreted as the minimum-cost solution among all paths a ∈ DK
µ such that

b ∈ Ga, where the cost of the path a is I](a) and convex. Hence, the problem

of finding the rate functions is a deterministic optimal control problem like those
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in [67, 75].

The expressions for the rate functions It and J in (5.6) and (5.7) are of

little use in their current forms, as their computation is far from straight forward.

In the next section, we simplify the rate functions when the arrival processes are

limited to having i.i.d. increments.

5.4 I.I.D. Increments: Simplified Rate Functions

In this section, we give a calculation of the finite-horizon and infinite-

horizon rate functions in the case when the arrivals have i.i.d. increments. In this

case, the cost of a sample path a ∈ DK , which is I](a), is additive and the total

cost of any arrival sample path is the sum of the cost over all timeslots and queues.

This property helps us to simplify the calculation of the rate functions.

Consider the underlying arrival process A to be a process with i.i.d. in-

crements, e.g., a compound Poisson arrival process with exponential packet length

(see [42]). For these i.i.d. increment arrival processes, it is easy to show that for

x ∈ R
t
+, Λ∗

t (x) =
∑t

i=1 Λ∗(xi), where Λ∗ is the Fenchel-Legendre transform of Λ

and Λ(θ) = logE exp(θA1) [29]. Hence, for a finite vector a = (ak
i , k ∈ K, i ∈

(0, t]) ∈ R
K×t
+ , the cost I]

t(a) in (5.10) can be written as

I]
t(a) =

t∑

i=1

XA(ai), (5.14)

where we define XA(x) :=
∑K

k=1 Λ∗(xk), for x ∈ RK
+ , as the per-timeslot cost

of a K-dimensional sample path. Next, we simplify the rate functions for the
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infinite-horizon and finite-horizon workloads, respectively.

5.4.1 Infinite-Horizon Rate Function

The following lemma expresses the infinite-horizon rate function J as the

infimum of the finite-horizon rate functions It over all time t.

Lemma 5.14. For i.i.d. increment arrivals and Kµ < c, the infinite-horizon rate

function J is simplified as

J(b) = inf
t≥1

It(b). (5.15)

Proof. The cost of a sample path over time is the sum of the cost of arrivals in all

timeslots. As in the proof of Lemma 5.13, for a ∈ DK
µ where Kµ < c, we can find

t := s∗(a) such that Qt(a) ∈ R. Hence, for a such that b ∈ Ga, one can reduce

the cost of the path by setting av = µ for all v > t while keeping Ga 3 b. This

is because XA(µ1K) = 0 and implies that I](a) = I]
t(a(0,t]). On the other hand,

since Qt(a) ∈ R, we can write b ∈ G
a(0,t]

t . All of these imply that

J(b) = inf
a∈DK

µ :Ga3b

I](a) = inf
t≥1

inf
x∈RKt

+ :Gx

t 3b

I]
t(x) = inf

t≥1
It(b),

by the definition of It(b) in (5.6).

With this simplification available, we now look at the finite-horizon rate

function It in more details.
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5.4.2 Finite-Horizon Rate Function

In this subsection, we provide a further simplified expression of the finite-

horizon rate function It.

Lemma 5.15. For t ∈ N, the finite-horizon rate function It is simplified as

It(b) = min
u∈(0,t]

inf
x∈A(u,b)

I]
u(x) (5.16)

for b ∈ RK
+ , where

A(u,b) :=
{
a ∈ R

K×u
+ : b ∈ Ga

u, Gu−v(a(v,u]) 6∈ R, ∀v ∈ [1, u− 1]
}
. (5.17)

Proof. This follows the idea from the proof of Lemma 5.14. Let t ∈ N. For

a ∈ R
K×t
+ such that b ∈ Ga

t , we let

u = min
{
t,min{s ∈ [1, t− 1] : Qs = Gt−s(a(s,t]) ∈ R}

}
.

In other words, −u is the last time the workload vector is inside the capacity

region R before time 0. By definition of It, we already know that the workload

vector starts initially inside R at time −t. With this definition of u, we have

Qv 6∈ R for all v ∈ [1, u − 1]. We can find another path ã ∈ RKt
+ with a reduced

cost while keeping the workloads at time −u + 1 to 0 (i.e., Qu−1 to Q0) intact

by setting ãv = µ1K , ∀v ∈ (u, t] and ãv = av otherwise. Since XA(µ1K) = 0, we

have I]
t(a) ≥ I]

t(ã) = I]
u(a(0,u]) and yet b ∈ G

ã(0,u]
u = Gã

t . Since by definition

Qv = Gu−v(a(v,u]) for v ∈ [1, u− 1], we have

It(b) = inf
x∈RKt

+ :Gx

t 3b

I]
t(x)

= min
u∈(0,t]

inf
x∈RKu

+ :b∈Gx,Gu−v(x(v,u])6∈R
I]

u(x) = min
u∈(0,t]

inf
x∈A(u,b)

I]
u(x),
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where A(u,b) is defined as in (5.17).

Remark 5.16. The above lemma reduces the set of feasible sample paths to the set

A(u,b) for u ∈ (0, t]. It is interesting to note the property of the sample paths in

this set. For any x ∈ A(u,b), we have Q̂0(x) = x̂(0, u] − c(u − 1) = b̂, recalling

that the ·̂ notation is the sum over queues. There is no wastage of service capacity

over the u− 1 timeslots because ∀v ∈ [1, u− 1], Qv = Gu−v(x(v,u]) 6∈ R and hence

Q̂v > c. That is, any sample path x ∈ A(u,b) has its sum of the arrivals over time

(0, u] and queues equal to x̂(0, u] = b̂ + c(u− 1).

In addition, an immediate implication of Lemma 5.15 is that we can

rewrite J in (5.7) as

J(b) = inf
t≥1

It(b) = inf
t≥1

min
u∈(0,t]

inf
x∈A(u,b)

I]
u(x) = inf

t≥1
inf

x∈A(t,b)
I]

t(x). (5.18)

If we denote t∗ as the optimizer of the last equation, then t∗ is called the critical

timescale (see [82]). It can be interpreted that t∗ is the length of time which the

buffers are most likely to take to fill from “empty” level (more precisely, anywhere

within R) to a given level b.

Note that for fixed u ∈ N, infx∈A(u,b) I
]
u(x) is a optimization problem,

with a convex cost function I]
u(·) and a set A(u,b) of feasible solutions .real

K(u−1)-dimensional This problem is difficult to solve analytically. Since the cost

function I]
u(x) =

∑u
i=1 XA(xi) is additive, a possible numerical method is the

numerical backwards induction of dynamic programming. However, the method

suffers from the curse of dimensionality and hence is not practical for large u and
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b. Hence, we turn our attention to finding some simplified bounds of the rate

functions. This can be done by employing the additivity and convexity of the rate

function I]
t. Next we derive some bounds when K = 2 queues.

5.4.3 Properties of the Minimum-Cost Sample Paths

Here, we see that the convexity of the cost function Λ∗ induces two prop-

erties for the optimal paths.

Property 5.17. Constant-speed linear path is the cheapest. Among all arrival

sample paths x ∈ Rt
+ to a queue in an interval of t timeslots, with the only

constraint is to reach a common end point x(0, t] = d at the end of time t, the

cheapest or minimum-cost path is the constant-speed linear path, where the arrival

in each timeslot is equal to d/t.

Proof. This is because the path cost function is additive, i.e., Λ∗
t (x) =

∑t
i=1 Λ∗(xi),

and the per-timeslot cost function Λ∗ is convex. Applying Jensen’s inequality [64]

gives

Λ∗
t (x) =

t∑

i=1

Λ∗(xi) ≥ tΛ∗

(

1

t

t∑

i=1

xi

)

= tΛ∗(d/t),

with equality when xi = d/t for all i. See an illustration in Figure 5.1(a).

Property 5.18. Constant-speed linear path closest to the equal line is the cheapest.

For K = 2, among constant-speed linear paths a ∈ R
Kt
+ with the sum â(0, t] = d,

lying on the line perpendicular to the equal line, the path with destination closer

to the equal line has a cheaper cost.
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Proof. Since the arrival paths are constant-speed linear path, without loss of gen-

erality we can consider arrival paths in a single timeslot. Consider path x =

(x, d − x) ∈ R2
+ and y = (y, d− y) ∈ R2

+, where y > x > d/2. That is, x is closer

to the equal line (closer to the point (d/2, d/2)) than y does. The costs of paths x

and y are Λ∗(x) + Λ∗(d− x) and Λ∗(y) + Λ∗(d− y), respectively. By convexity of

Λ∗, we have Λ∗(x) + Λ∗(d− x) ≤ Λ∗(y) + Λ∗(d− y), and hence, x is cheaper than

y.

These properties are also used in [9, 67, 88] for large-deviations analysis

of scheduling disciplines. Next, we use these properties to calculate I2 and bounds

on It for t ∈ N.

5.4.4 Example: Calculation of I2

Here we look at an example for calculation of the finite-horizon rate func-

tion It to illustrate that the calculation is rather involved. For simplicity, we

consider the case when t = 2 and K = 2 queues. From (5.16), I2(b) for b ∈ R2
+

can be written as

I2(b) = min

{

XA(b), inf
(x1,x2)∈A(2,b)

XA(x1) + XA(x2)

}

, (5.19)

where A(2,b) =
{

(a1, a2) ∈ R4
+ : a2 6∈ R,b ∈ G

(a1,a2)
2

}

. The workload at time zero

is q0 = G2(a1, a2) = a1 + [a2 − H(a2)]
+, which is equal to a1 + a2 − H(a2) since

a2 6∈ R. On the other hand, we require q0 = b. Hence, using the scheduler

H given in (5.3), we can express A(2,b) as A(2,b) = A(1) ∪ A(2) ∪ A(3), where
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Figure 5.1 Two properties of the minimum-cost sample paths: (a) Property 1:

the minimum-cost path is the constant-speed linear path. (b) Property 2: Path 1

which is closer to the Equal Line has a lower cost than Path 2.
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A(j) ⊆ R
4
+, j = 1, 2, 3, are defined as

A(1) := {(a1, a2) ∈ R
4
+ : a1

2 ≥ a2
2, a

1
2 ≥ c, a1 + a2 = b + (c, 0)}

A(2) := {(a1, a2) ∈ R
4
+ : a1

2 ≤ a2
2, a

2
2 ≥ c, a1 + a2 = b + (0, c)}

A(3) := {(a1, a2) ∈ R
4
+ : a1

2 ≤ c, a2
2 ≤ c, a1

2 + a2
2 ≥ c, a1 + a2 = b + ProjR(a2)}.

Hence, the second term in the RHS of (5.19) can be rewritten as

inf
a∈A(2,b)

XA(a1) + XA(a2) = min
j∈[1,3]

inf
a∈A(j)

XA(a1) + XA(a2).

Trajectories of some examples of the (accumulated) arrival sample paths are il-

lustrated in Figure 5.2(a) and their corresponding workload trajectories in Figure

5.2(b). Figure 5.2(a) shows example trajectories of the accumulated arrival sample

paths A(j) ∈ A(j), j = 1, 2, 3, in the calculation of I2(b), where b = (4, 2), c = 1.

For example, when j = 1, A(1) = (a(1),1, a(1),2) ∈ A(1) shows that a(1),2 = (2.5, 1)

and a(1),1 + a(1),2 = (5, 2). Figure 5.2(b) shows the workload paths q(j) corre-

sponding to the arrival path A(j), j = 1, 2, 3. For example, the figure shows that

q
(1)
1 = a(1),2 = (2.5, 1) and q

(1)
0 = a(1),1 + a(1),2 − (c, 0) = (4, 2).

This example underlines the difficulty in finding the rate function even

for small timescales. We expect that the number of constrained sets like A(j) will

grow exponentially with time duration t. However, the example gives us some

insight on how to find some simple upper and lower bounds of It for any t ∈ N.
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Figure 5.2 Example of accumulated arrival and workload paths for calculation of

I2(b).
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5.4.5 Bounds on It

In this subsection, we find simple expressions that give lower or upper

bounds of infx∈A(u,b) I
]
u(x), which in turn give the bounds on It and J . We focus

on K = 2 but similar result can be obtained for general K.

Lemma 5.19. For K = 2, b ∈ R
2
+, It(b) can be bounded as

It(b) ≥ min
u∈(0,t]

uX
(

1

u
ProjX(u,b)(0)

)

(5.20)

and when b 6∈ [0, c)2,

It(b) ≤ min
u∈(0,t]

uX
(

1

u
(b + (u− 1)H(b))

)

, (5.21)

where the convex set X(u,b) ⊆ R2
+ is defined as

X(u,b) := {b + (v1, v2) : v1 + v2 = (u− 1)c, v1, v2 ≥ 0}. (5.22)

Proof. Let b ∈ R2
+, time u ∈ (0, t], arrival path a ∈ A(u,b), and qi ∈ R2

+ be the

workload vector at time −i for i ∈ (0, u]. We first show the lowerbound (5.20). As

we have noted earlier that for a ∈ A(u,b), the [·]+ function can be removed from

the queue dynamics. Hence, we have a(0, u] = b +
∑u−1

i=1 H(qi), where qu ∈ R

and qi 6∈ R for all i ∈ (0, u − 1]. Using this and the fact that H(qi) ∈ {(v1, v2) :

v1 + v2 = c, v1, v2 ≥ 0}, for all i ∈ (0, u − 1], we have a(0, u] ∈ X(u,b) where

X(u,b) is defined above. Now, given any point d ∈ X(u,b), the constant-speed

linear path with increments of d/u is the minimum-cost path among all the paths

with the same destination (using Property 1). In addition, among all the paths to

destinations in X(u,b), the closest constant-speed linear paths a∗ to the equal line
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is the minimum-cost path (using Property 2). Since the closest point in X(u,b) to

the equal line is ProjX(u,b)(0), we have a∗ = (a∗
i = 1

u
ProjX(u,b)(0), i ∈ (0, u]). Since

the set of paths with destination in X(u,b) includes all paths in A(u,b), from (5.6)

we have the lowerbound (5.20):

It(b) = min
u∈(0,t]

inf
x∈A(u,b)

K∑

i=1

XA(xi)

≥ min
u∈(0,t]

inf
x∈RKt

+ :x(0,u]∈X(u,b)

K∑

i=1

XA(xi)

= min
u∈(0,t]

uX
(

1

u
ProjX(u,b)(0)

)

.

To show the upperbound (5.21), we only need to show that the constant-

speed linear path a = (ai = 1
u
(b + (u − 1)H(b)), i ∈ (0, u]), is in A(u,b), when

b 6∈ [0, c)2. Without loss of generality, we consider only when b1 ≥ b2 and b1 ≥ c.

In this case, H(b) = (c, 0) and the queue dynamics gives

qi =
(u− i)

u
(b + (u− 1)(c, 0)) − (u− 1 − i)(c, 0),

for all i ∈ (0, u − 1]. Since b1 ≥ c, we have q1
i ≥ c and q1

i ≥ q2
i , and hence

H(qi) = (c, 0) for all i ∈ (0, u− 1]. Hence, a ∈ A(u,b)).

Next we look at the tightness of the above bounds for an example of

compound Poisson source process with exponential packet size. We expect the

tightness to depend on the traffic loads.
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5.4.6 Comparison of the Bounds: Numerical Examples

Here we illustrate the tightness of the bounds given in Lemma 5.19, via

an example of compound Poisson source process with exponential packet size (the

CPE process with g(N) = N , described in Section 3.1.2). Let the average packet

arrival rate denoted by λ and the average packet size denoted by 1/µ. The function

Λ∗ for this process is simple and given as in (3.18). Figure 5.3(a) shows the upper

and lower bounds and the actual values of It, for t = 10, at µ = 0.01, c = 1, and

various values of λ = 0.1, 0.2, 0.3 and when b = (b1, b2 = 1) for various values of

b1. Figure 5.3(b) shows the corresponding minimizing t∗ for the bounds and the

actual expression of It. We note that for all b in this example, J(b) is actually

equal to It(b) for t = 10 since all optimizing t∗ is less than 10 (see (5.18)). This

example shows that, in the range of b in consideration, both bounds are tight and

almost coincide when the traffic load is small, i.e., λ = 0.1. However, when the

traffic load is higher, the lowerbound becomes loose while the upperbound is still

considerably tight.

It is interesting to note the optimal timescale t∗ which the queues most

likely to take to reach the level b. Figure 5.3(b) shows that, for example, it is

most likely to take only two timeslots for CPE process with λ = 0.2 to reach the

buffer level b = (3, 1), while the most likely timescale is four timeslots when the

traffic load is higher (λ = 0.3). Figure 5.3(c) and Figure 5.3(d) show the optimal

trajectories of the accumulated arrival process and the workload process for λ = 0.2

and 0.3, respectively.
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Figure 5.3 Example of the rate function I10(b) and its upper and lower bounds, and

their corresponding optimizing t∗ and optimal trajectories, when b = (b1, b2 = 1).
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Figure 5.3 Example of the rate functions, continued.
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5.5 Summary

In this chapter, we have established a many-sources LDP for the station-

ary (infinite-horizon) workload for multi-queue single-server system with simplex

capacity, operated under the maximum-weight scheduling with the arrival pro-

cesses assumed to satisfy a many-sources sample path LDP. To extend the LDP of

the arrival processes to the LDP of the workloads, we employed Garcia’s extended

contraction principle, which applies to quasi-continuous mappings. Along the way,

we also establish an LDP for the finite-horizon workload. We gave the associated

rate functions and the expression of the infinite-horizon rate function in term of

the finite-horizon ones, when the arrivals processes have i.i.d. increments.

Acknowledgment

This chapter, in part, appears in the following publication. The disserta-

tion author was the primary investigator and author of this paper.

• S. Kittipiyakul, T. Javidi, and V. G. Subramanian, “Many-sources large

deviations for max-weight scheduling,” to appear in the 46th Annual Allerton

Conference on Communication, Control, and Computing (Allerton’08).

I would like to thank my coauthors Dr. Vijay G. Subramanian and Prof.

Tara Javidi.



Chapter 6

Conclusions

In this work, we have examined several resource allocation problems for

wireless data communications of delay-sensitive and bursty data. We considered

the scenario where the channel state information at the transmitter (CSIT) is

available and the scenario when it is not. In the first scenario, the knowledge

of the channel states, together with the queue state information, can be utilized

to improve the packet delay performance of the system. In particular, in this

work we studied the problem of delay-optimal subcarrier allocation problem in

OFDMA downlink systems. On the other hand, in the second scenario when

the CSIT is not available, the question of interest is how to select the optimal

operating PHY parameters, when the network layer performance (delay violation

probability), as well as the physical layer performance (channel decoding error

probability), are jointly considered. Given the knowledge of the source and channel

statistics, we studied how to set up the systems so that they operate at their

144
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best performance in term of the asymptotic high-SNR total error probability. We

considered both single-user setting and multi-user setting with dynamic queue-

aware rate schedulers. As there are always extensions to any piece of work, below

we provide some suggestions for future extensions.

6.1 Future Work

6.1.1 Future Work for Chapter 2

In Chapter 2, we used a dynamic programming approach to show that

the MTLB server allocation policy is delay-optimal when the connectivities follow

a binary on-off model. We established this result for N = 2 users. The difficulty

in showing the optimality for general N lies in the constraint that the server

allocation must be integral, i.e., a server can be assigned to only one queue. When

this constraint is relaxed to a fluid allocation constraint, i.e., any server can be

assigned to serve multiple queues as long as it serves no more than one packet

in total, we showed that the MTLB-F policy, which is the fluid version of the

MTLB policy, is optimal for the general N case. Some interesting and important

extensions are as follow.

Extension 6.1. Extension to general N with the integral server allocation con-

straint. Form the above results, an interesting extension is a verification of the

following conjecture:

Conjecture 6.2. In the case of N > 2 statistically symmetric users with the on-off
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channel connectivity and the integral server allocation constraint, the MTLB policy

is optimal.

The conjecture seems intuitive due to the assumed symmetry of the users

and the convexity of the cost function. The conjecture has indeed been established

in several special cases. For the case of single server and Bernoulli arrivals, Tassiu-

las and Ephremides [76] proved the optimality of the LCQ policy, which coincides

with the MTLB policy for K = 1 server. For the case of multiple servers and

Bernoulli arrivals but with vector connectivity (i.e., each user is either connected

to all servers or none) and the integral server allocation constraint, the LCQ policy

(a more generalized multi-queue version of the LCQ policy in [76]) is optimal [31].

This LCQ policy serves the longest connected queues – this is equivalent to the

MTLB policy with the integral server allocation constraint. It is interesting to

note the complimentary roles of the stochastic coupling and majorization tech-

niques used in [76] and [31] and the dynamic programming technique we employed

in this chapter. These roles, in nature, are closely related to the results discussed

in [50].

Extension 6.3. Generalization to channel connectivity models more general than

the binary model, as well as to heterogeneous users. This extension is of practical

concern, but it is challenging to find an optimal policy and even more to establish

its optimality. Although we have proposed several heuristic algorithms that per-

form well at various traffic loads in the case of homogeneous users, the question of

optimal scheduling policy remains open.
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6.1.2 Future Work for Chapter 3

In Chapter 3, our analysis assumed no feedback, no retransmission, and

a static allocation of the multiplexing rate r and coding block length T . Some

interesting extensions, especially when these assumptions are relaxed, are as follow:

Extension 6.4. Improvement of the system performance by adjusting r and T

according to the current queue length. For example, when the queue length is

short, it seems intuitive that reducing T improves the channel error performance,

possibly at the cost of longer delays of the bits that arrive later. However, since

in high-SNR analysis the probability of error is asymptotically dominated by the

worst case probability, it is not clear whether such adaptive mechanism will improve

the asymptotic channel error performance.

Extension 6.5. Allowing retransmission mechanism. With retransmission, the di-

versity of the channel can be improved considerably [22] but at the cost of random

transmission delays.

Extension 6.6. Fine-tuning the high-SNR asymptotic analysis for the regime of

finite SNR. Our result focuses on the asymptotic high-SNR approximation and

the notion of SNR error exponent as a measure of performance. This view of com-

munication systems provides a tractable and intuitive characterization of various

suggested schemes in the high-SNR regime. It would be interesting to fine-tune

the analysis and verify the results via simulations when SNR is finite.
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6.1.3 Future Work for Chapter 4

In Chapter 4, we bounded the delay violation probability by the per-

formances of a static rate scheduler and a largest-delay-first rate scheduler with

simplex rate region. Some suggestions that can extend the utilization of the system

resources in other aspects are as follow:

Extension 6.7. Time-diversity: It is interesting to extend our study to include the

time-diversity, as a result of either coding over multiple fixed coherence times as in

Chapter 3 or coding over random coherence times as in hybrid ARQ (see [22, 37,

38]). This extension requires the asymptotic high-SNR delay violation probability

that must be valid for finite and small delay bound D. Although the asymptotic

buffer overflow probability result we developed in Chapter 5 could be used in the

multi-user study of time-diversity when the delay violation probability is replaced

with the buffer overflow probability, a direct analysis in the delay performance like

that in [72] would be more beneficial in highlighting the effect of different coding

block durations.1

Extension 6.8. Cooperative multiple-access channel: As mentioned in Section 3.4.2,

cooperation among users can substantially improve the reliability of communica-

tion by providing a form of virtual MIMO communications [65], but at the cost of

additional delays. It is interesting to extend the single-user study in Section 3.4.2

1We note that an analysis on the delay performance in the multi-user setting with dynamic
scheduler is challenging since in this case the delay that a bit will experience in the system is
not simply related to the queue length the bit sees upon its arrival. This is unlike the single-user
case in Chapter 3, where the delay can be immediately calculated from the queue length because
the server capacity to the queue is always fixed.
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to the multi-user setting of cooperative multiple-access channel (see [3]). However,

such extension requires a DMT tradeoff result for this channel.

6.1.4 Future Work for Chapter 5

Finally, in Chapter 5, we analyzed the LDP of the stationary workload

processes of the maximum-weight scheduling policy when the rate region R is

simplex. To establish the LDP of the stationary workload process, we showed the

quasi-continuity of the stationary workload process mapping G. Some suggestions

for future works are as follow:

Extension 6.9. Extension to the case where R is any compact and convex region.

This extension will complement the recent result by Subramanian in [74] which

studies the LDP of the finite-horizon workload process in the large-buffer frame-

work. Assuming the following conjecture, the main difficulty in establishing the

LDP for the infinite-horizon workload for general R seems to lie in showing the

quasi-continuity of the mapping G as in Lemma 5.13, in particular, in establishing

a similar result as in Claim D.4.

Conjecture 6.10. Given any convex and compact region R, there exists a quasi-

continuous, max-weight scheduling function H. With H being quasi-continuous,

the finite-horizon workload mapping Gt, for t ∈ N, is quasi-continuous.

We believe that the first part on H in the above conjecture is not too

difficult to verify because the maximum-weight type schedulers are invariant with
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respect to scalings of the queues, i.e., a scaling of all queue lengths by the same

factor at any given time does not change the scheduling choice.2 For the second

part about Gt, we believe that this is an immediate result from the quasi-continuity

of H (see the proof of Lemma 5.12).

Extension 6.11. Consideration of non-i.i.d. arrivals. In this chapter we character-

ized the rate functions in the case of i.i.d. bit-arrival processes. An interesting

extension is to consider non-i.i.d. (correlated in time) arrivals, which are of prac-

tical interest since realistic traffic streams, such as video, usually have bursts of

arrivals which are correlated in time. For these processes, we expect that the char-

acterization of the rate functions in the multi-user setting could benefit from the

results and proof techniques already established in the single-user setting (e.g.,

see [82]).

2See more discussion of this property in [73] which considers a large-deviations analysis of the
Exponential (EXP) scheduler, which is not invariant to the scalings of the queues.



Appendix A

Appendix for Chapter 2

A.1 Existence Proof of MTLB: Proof of Theo-

rem 2.1

In this section, we prove Theorem 2.1 and Proposition 2.9 using the no-

tions of alternating, balancing, and throughput-increasing paths, which are the

concepts taken from graph literature [35]. We note that some of the results here

are useful in the next appendices. Note that the discussions in this section (both

the existence proof as well as the construction of the MTLB allocation) are valid

for general N .
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A.1.1 Alternating, Balancing, and Throughput-Increasing

Paths

For convenience and simplicity of the proofs, we adopt the language of

graph literature. Let G = (V, U, C) be a bipartite graph with U the set of queues,

V the set of servers, and edge set C ⊆ V ×U representing the set of connectivities

between queues and servers. Each allocation matrix W = [wi,j] can be thought

of an edge set where an edge (v, u) ∈ W if wv,u = 1. Hence, an edge set W is a

(feasible) allocation (i.e., W ∈ W(C)) if each vertex v ∈ V is incident with exactly

one edge in C. Furthermore, W is non-idling (i.e., W ∈ W(b, C) ⊆ W(C)) if W

is feasible and
∑K

i=1wiu ≤ bu for each u ∈ U .

Definition A.1. A vertex in V that is incident to any edge in the allocation

is called matched, and unmatched otherwise. A queue or vertex u in U with

bu −∑K
i=1wiu > 0 is called non-empty, and empty otherwise.

Definition A.2. For a given allocation W ⊆ W(b, C) in G, an alternating path

S(W,u0, uk) with respect to W is a sequence of edges with distinct vertices,

S(W,u0, uk) := {(v1, u0), (v1, u1), (v2, u1), . . . , (vk, uk)}, (A.1)

from a queue u0 ∈ U to a queue uk ∈ U , through matched servers, with vi ∈ V ,

ui ∈ U , (vi, ui−1) ∈ C\W , and (vi, ui) ∈W for each i = 1, . . . , k.

Definition A.3. An alternating path S(W,u0, uk) is called a balancing path if it

satisfies bu0 −
∑K

i=1wi,u0 ≥ buk
−∑K

i=1wi,uk
+ 2.
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For convenience, we treat paths as a sequence of vertices. For example,

we write

S(W,u0, uk) = (u0, v1, u1, v2, . . . , vk, uk)

to show S(W,u0, uk) as a sequence of vertices alternatively taken from U and V

starting from u0 and ending at uk.

Definition A.4. A throughput-increasing path relative to W , from an unmatched

server v0 ∈ V to a non-empty queue uk ∈ U , is a sequence of distinct vertices (or

equivalently, a sequence of edges)

I(W, v0, uk) := (v0, u1, v1, u2, . . . , vk−1, uk)

with vi ∈ V , ui ∈ U , (vi−1, ui) ∈ C\W , and (vi, ui) ∈W for each i.

Definition A.5. For the alternating path S = S(W,u0, uk) given in (A.1), W a(S)

is the alternating allocation of the allocationW along an alternating path S if server

vl is reassigned to serve queue ul−1, ∀l = 1, . . . , k. If, in addition S is a balancing

path, then W a(S) is specifically called the balancing allocation and denoted by

W b(S). In a similar fashion, W t(I) is called the throughput-increasing allocation if

I is a throughput-increasing path and W t(I) assigns server vl to serve queue ul+1,

∀l = 0, . . . , k − 1. Equivalently, we can write W a(S) = W ⊕ S, W b(S) = W ⊕ S,

and W t(I) = W ⊕ I, where A⊕B := (A\B) ∪ (B\A) for any sets A,B.

An example of some alternating path and alternating allocation is shown

in Figure A.1. It is easy to see that W a(S(W,u0, uk)) ∈ W(b, C) if u0 is non-empty
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under W . Obviously, W b(S) ∈ W(b, C). Note that the alternating allocations

(when u0 is non-empty) and the balancing allocations leave the cardinality of the

allocation (i.e., throughput) unchanged, while throughput-increasing allocations

increase the current throughput by one. In addition, when u0 is non-empty under

W , the allocations W and W a(S = S(W,u0, uk)) result in the leftover queues that

are identical except for queues u0 and uk. In other words, if we denote the leftover

queues under W and W a(S) as l = b − 1W and la = b − 1W a(S), respectively,

then lau0
= lu0 − 1, lauk

= luk
+ 1, and lau = lu, for all u ∈ U\{u0, uk}.

Notice that the above notion of throughput-increasing path is conceptu-

ally related to the notion of the alternating path in the graph matching litera-

ture [57]. Likewise, our notion of balancing path is related to the notion of the

cost-reducing path in [35] where cost is the “unbalancedness” of the queues.

A.1.2 Proof of Existence of MTLB Policy

The following Proposition is used to find the necessary and sufficient

condition for policies to satisfy (C1) and show the existence of the MTLB policy

(Theorem 2.1).

Proposition A.6. An allocation achieves the maximum throughput (C1) if and

only if it has no throughput-increasing paths.

Proof. Obviously, if there is a throughput-increasing path for a given allocationW ,

then W does not achieve the maximum throughput. To show that not having any

throughput-increasing paths is a sufficient condition for achieving the maximum
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Figure A.1 Example of an alternating path and the alternating allocation from

queue u1 to queue u3 (a) Alternating path S = (u1, v1, u2, v2, u3). The dotted and

solid lines show the connectivities while the solid lines show the allocation. (b)

The solid lines show the alternating allocation W a(S).

throughput, the proof follows the standard graph technique used in [57] which

turns the problem into a maximum network flow problem. We refer interested

readers to [57] for a more detailed proof.

Theorem 2.1. For any given (b, C), an MTLB allocation always exists.

Proof. Without loss of generality, consider (b, C) such that W(b, C) 6= ∅. Let

WMT = WMT(b, C) ⊆ W(b, C) contain all (maximum-throughput) allocations

satisfying (C1) and WLB = WLB(b, C) ⊆ W(b, C) contain all (load-balancing)

allocations satisfying (C2). Since there is a finite number of servers, clearly the

maximum throughput is finite and there exists a maximum-throughput allocation.

In other words, WMT 6= ∅.
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Now, we show that WLB 6= ∅. That is, there must exist an allocation

W LB ∈ W(b, C) such that l(W LB) ≤LQO l(W ) for all W ∈ W(b, C), where we

let l(W ) := b − 1W be the leftover queue vector under any allocation W . Since

the ≤LQO ordering is basically a lexicographic ordering, we can always rank any

two elements in W(b, C) using the ≤LQO relation1 and find the least element (not

necessarily unique), say W LB, such that l(W LB) ≤LQO l(W ) for all W ∈ W(b, C).

Next, we show the existence of an MTLB allocation, satisfying (C1) and

(C2), by showing that WLB ∩ WMT 6= ∅. Using Proposition A.6, we observe

that, for any allocation satisfying (C2) but not (C1), there would be idle servers

that could have been assigned via some throughput-increasing allocations to serve

more packets. With such allocations of the idle servers, the queues will be no less

balanced than before. Thus, we have shown that there exists an MTLB allocation.

A.1.3 Necessary and Sufficient Condition for MTLB Policy

The following Proposition gives a necessary and sufficient condition for

the MTLB policy. This result will be useful in the proof of the optimality of the

MTLB policy in the next Appendix.

Proposition A.7. Any allocation satisfying the maximum-throughput condition

(C1) also satisfies the load-balancing condition (C2) if and only if it has no bal-

ancing path.

1For any W, W ′ ∈ W(b, C), either l(W ) ≤LQO l(W ′) or l(W ′) ≤LQO l(W ), with the exception
that l(W ) ≤LQO l(W ′) and l(W ′) ≤LQO l(W ), when l(W ′) = π(l(W )) for some permutation π.
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Proof. Without loss of generality, consider (b, C) such that W(b, C) 6= ∅. The

only if part is obvious, i.e., if there is a balancing path S relative to an allocation

W ∈ W(b, C), then b − 1W b(S) ≤LQO b − 1W but b − 1W 6≤LQO b − 1W b(S),

i.e., W does not satisfy (C2).

What remains is the if part: if a maximum-throughput allocation does

not satisfy (C2), then it has at least one balancing path. Let W ∈ W(b, C) be

a maximum-throughput allocation (satisfying (C1)) but is not the most balanced

(not satisfying (C2)). We show that a balancing path relative to W must exist.

Since at least one MTLB allocation exists (by Theorem 2.9), we let W ∗ ∈ W(b, C)

be an MTLB allocation. If more than one MTLB allocations exist, we pick W ∗

such that the number of edges in the symmetric difference W ∗ ⊕W = (W ∗\W ) ∪

(W\W ∗) is minimized among all MTLB allocations. That is, W ∗ is the “closest”

MTLB allocation to W , i.e., among all MTLB allocations, W ∗ requires the mini-

mum number of servers to be reassigned to get to W . Now, let Gd be the subgraph

of the bipartite graph G = (V, U, C) induced by the edges of W ∗ ⊕W . Color the

edges of W ∗\W green and the edges of W\W ∗ red. Direct the green edges from

V to U and the red edges from U to V . Let the leftover queue vectors under W

and W ∗ be l = b − 1W and l∗ = b − 1W ∗, respectively.

We claim that for every directed path P in Gd from u1 ∈ U to u2 ∈ U ,

we have

l∗u1
≤ l∗u2

. (A.2)

To see this, let P = (u1, . . . , u2) be a directed path in Gd. By the choice of the
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directions for the edges, P must be alternating between red and green edges. If

l∗u2
< l∗u1

− 1 then P is a balancing path for W ∗, and b− 1W b(P ) ≤LQO b− 1W ∗

but b− 1W ∗ 6≤LQO b− 1W b(P ), contradicting to the assumption that W ∗ satisfy

(C2). Similarly, if l∗u2
= l∗u1

−1 then by alternating the assignment of the V -vertices

along P , we can get another MTLB allocation W ∗∗ such that the number of edges

in W ∗∗ ⊕W is strictly less than that in W ∗ ⊕W , in contradiction to the choice of

W ∗. Hence, we must have that l∗u2
≥ l∗u1

. Using a similar argument, we can also

show that Gd is acyclic.

Since both W ∗ and W achieve the maximum throughput, we have that

∑N
i=1 li =

∑N
i=1 l

∗
i . But since W does not satisfy the LB condition (C2), there

must exist u1 ∈ U such that

lu1 < l∗u1
. (A.3)

Obviously, there is a red edge directed out of u1. Starting from u1 we build an

alternating red-green path P ′ in Gd as follows: (1) From an arbitrary vertex u ∈ U

(including u1), if there is a red edge directed out of u and lu ≤ lu1 +1, we build P ′

by arbitrarily select one of the red edges directed out of u. (2) From an arbitrary

v ∈ V , we build P ′ by following the single green edge directed out of v. Such a

green edge always exist.2 (3) Otherwise, stop.

Using the fact that Gd is acyclic, P ′ is well-defined and finite. Let u2 ∈ U

be the final vertex on the path. These are two possible cases:

Case 1: lu2 > lu1 + 1. In this case, we reverse the order of nodes in P ′ to

2Otherwise, combining the red edge coming into v with W ∗ would have yielded a non-idling
feasible allocation with additional one packet throughput, a contradiction to (C1).
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arrive at a balancing path relative to W .

Case 2: There is no red edge directed out of u2. Thus, P ′ arrived at u2

via a green edge. This means that u2 is served at least one more packet under

W ∗, relative to W . Hence, lu2 > l∗u2
. This together with (A.2) and (A.3) give

lu2 > l∗u2
≥ l∗u1

> lu1 , which means lu2 ≥ lu1 + 2. Reversing the order of nodes in

P ′ gives a balancing path relative to W .

Since there exists a balancing path in both cases, we have the assertion

of the proposition.

The above Proposition states that all MTLB allocations are such that

they have no balancing path. The results in the proof that Gd is acyclic and has

finite edges immediately implies the following result:

Corollary A.8. The minimum number of balancing allocations required to turn

any maximum throughput allocation satisfying (C1) to an MTLB allocation is

finite.

A.1.4 Proof of Proposition 2.9

The equivalence of the MWM matching on the equivalent bipartite graph

and the MTLB allocation (Proposition 2.9 in Section 2.3.3) can be proved as

follows:

Proof of Proposition 2.9. Since all weights are strictly positive, the MWM match-

ing on the equivalent bipartite graph necessarily matches all possible servers and
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hence the equivalent allocation (defined in Definition 2.8) achieves the maximum-

throughput condition (C1). We prove the load-balancing condition (C2) by con-

tradiction. Suppose the maximum weight matching M results in the allocation W

that achieves the maximum throughput but does not produce the most balanced

queues. From Proposition A.7, we know that there must exist a balancing path

S(W, j, i) from some queue j to queue i such that bj − wj ≥ bi − wi + 2, where

ws =
∑K

m=1 wm,s for s = i, j. Let us denote the balancing allocation of W along

S(W, j, i) as W b. Let M b be the equivalent matching to W b. According to M ,

node aiwi
is matched and aj(wj+1) is not, while the reverse is true for M b. In other

words, ψ(M b) − ψ(M) = bj − wj − (bi − wi + 1) ≥ 1. But this is a contradiction

to the assumption that M is the maximum weight matching on the equivalent

bipartite graph.

A.2 Supporting Lemmas for Theorem 2.2

In this appendix we establish the proofs for lemmas 2.15 to 2.24 stated

in Section 2.4.3. The first lemma establishes the strict monotonicity of vn for all

n = 0, . . . , T . Hence, vn satisfies (B.1) for all n as well.

Lemma 2.15. vn(b) is strictly increasing on b for all n = 0, . . . , T , i.e., b′ >

b ⇒ vn(b′) > vn(b).

Proof. Since vn is linearly related to V ∗
n by (2.13), it suffices to show the strict

monotonicity of V ∗
n (b, C) for any C. We show by induction.
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Induction Basis: V ∗
0 (b, C) = φ(b) =

∑N
j=1 ξ(bj) is strictly increasing by

the assumption of ξ.

Induction Step: Assume V ∗
n−1(b

′, C) > V ∗
n−1(b, C) for any b′ > b, then

V ∗
n (b′, C) = φ(b′) + min

W ′∈W(b′,C)
E

a,C̃[V ∗
n−1(b

′ − 1W ′ + a, C̃)]

≥ φ(b′) + min
W ′∈W(b′,C)

E
a,C̃[V ∗

n−1(b− 1W (W ′) + a, C̃)]

≥ φ(b′) + min
W∈W(b,C)

E
a,C̃[V ∗

n−1(b − 1W + a, C̃)]

> φ(b) + min
W∈W(b,C)

E
a,C̃[V ∗

n−1(b − 1W + a, C̃)]

= V ∗
n (b, C),

where, for each allocation W ′ ∈ W(b′, C), we define W (W ′) ∈ W(b, C) as the

allocation that assigns to each queue j the same number of servers (the same

servers) as W ′ does unless the queue is empty, in which case it assigns only bj .

In other words, 1W (W ′) = b − [b − 1W ′]+. In light of this, the first inequality

holds by the induction hypothesis and noticing that b− 1W (W ′) = [b− 1W ′]+ ≤

[b′−1W ′]+ ≤ b′−1W ′, where the [·]+ is removed because we know that b′ ≥ 1W ′

from W ′ ∈ W(b′, C). The second inequality holds because W (W ′) ∈ W(b, C).

The third inequality is a result of the strict monotonicity of φ.

The following Lemma 2.16 shows that the MTLB policy is optimal at

horizon n+ 1 if we know that vn ∈ F .

Lemma 2.16. If vn ∈ F , then the MTLB policy is optimal at horizon n+ 1.

Proof. We need to show that vn(b − 1W ∗) = minW∈W(b,C) vn(b − 1W ) when
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W ∗ = [w∗
ij ] ∈ W(b, C) is an MTLB allocation.

We first show that W ∗ must satisfy the maximum-throughput condition

(C1). Assume W ∗ does not satisfy (C1), i.e.,
∑

i,j w
∗
ij < L, where L is the

maximum achievable throughput. By Proposition A.6, there exists at least one

throughput-increasing path I. The throughput-increasing allocation W t(I) results

in one more throughput and smaller leftover queues, i.e., b− 1W t(I) < b− 1W ∗.

Hence, by Lemma 2.15, vn(b− 1W t(I)) < vn(b− 1W ∗), a contradiction with the

optimality of W ∗.

Next, we show that W ∗ must also satisfy (C2). Assume W ∗ satisfies

(C1) but not (C2). Hence, by Proposition A.7, there must exist a balancing

path S = S(W ∗, i, k) for some queues i, k. Let W ′ be the corresponding balancing

allocation. Let l∗ = b−1W ∗ and l′ = b−1W ′. Since S is a balancing path and W ′

is the balancing allocation, we know that l∗i ≥ l∗k + 2 and l′ = Rik(l
∗). Using this

fact and the assumption that vn ∈ F (hence, vn satisfies (B.6)), we have vn(l′) =

vn(Rik(l
∗)) ≤ vn(l∗). Hence, W ′ is also optimal. Since any maximum-throughput

allocations can be made to some MTLB allocation via some finite sequence of

balancing allocations (Corollary A.8), we have that any MTLB allocation is also

optimal.

The rest of the appendix provides Lemmas 2.22 to 2.24, necessary to

establish that vn+1 ∈ F if vn ∈ F , as discussed in the proof of Theorem 2.2. The

next lemma shows that vn satisfies (B.2) for all n = 0, . . . , T .

Lemma 2.22. vn(b), n = 0, . . . , T , is permutation invariant on b, i.e., vn(π(b)) =
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vn(b) for any permutation function π.

Proof. From (2.13) and Assumption (A1), it suffices to show the permutation

invariance property of V ∗
n (b, C) for any (b, C).

Induction Basis: V ∗
0 (b, C) = φ(b) =

∑N
j=1 ξ(bj) is clearly permutation

invariant.

Induction Step: Assume V ∗
n−1(π(b),Ππ(C)) = V ∗

n−1(b, C), then

V ∗
n (π(b),Ππ(C)) = min

W∈W(π(b),Ππ(C))
E

a,C̃[V ∗
n−1(π(b)−1W+a, C̃)] + φ(π(b))

= min
W∈W(π(b),Ππ(C))

E
a,C̃[V ∗

n−1(π(b)−1W+π(a),Ππ(C̃))] + φ(b),

where the last equality is a direct result of Assumptions (A1) and (A2). Now,

using the fact that

W ∈ W(b, C) ⇔ Ππ(W ) ∈ W(π(b),Ππ(C))

and the induction hypotheses, we have

V ∗
n (π(b),Ππ(C)) = min

W∈W(b,C)
E

a,C̃[V ∗
n−1(π(b) − 1Ππ(W ) + π(a),Ππ(C̃))] + φ(b)

= min
W∈W(b,C)

E
a,C̃[V ∗

n−1(b−1W+a, C̃)] + φ(b)

= V ∗
n (b, C).

Next, we establish Lemmas 2.23 and 2.24. Specifically, given that v̂n ∈

F̂ , we show that Ea,C

[
minW∈W(C) v̂n(b− 1W + a)

]
satisfies (B.3) to (B.5) in

Lemma 2.23 and satisfies (B.6) in Lemma 2.24. Without loss of generality, we
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consider i = 1 and j = 2 in (B.3) to (B.6). Note that from now on we are working

with the relaxed problem where overallocation is allowed, i.e., we are consider-

ing allocations in W(C), instead of W(b, C). Before we proceed, for notational

convenience, we write

T a,C
n (b) := min

W∈W(C)
v̂n(b − 1W + a), (A.4)

and define the set of optimal allocations as follows:

Definition A.9. Define X ∗(b, C) to be the set of all optimal (not necessarily

non-idling) allocations when the state of the system is (b, C). In other words, at

horizon n+ 1,

X ∗(b, C) := {W ∗ ∈ W(C) : vn([b − 1W ∗]+) = min
W∈W(C)

vn([b − 1W ]+)} (A.5)

We are now ready to show the following important lemma:

Lemma 2.23. Assuming N = 2 and v̂n ∈ F̂ . For any state b, Ea,C

[
T a,C

n (b)
]

satisfies (B.3), (B.4), and (B.5).

Proof. By using Fact 2.19, it suffices to show that T a,C
n (b) satisfies conditions

(B.3) to (B.5) for any realization (a, C) of the arrival and connectivity processes.

From (B.3) to (B.5) and the definition of T a,C
n (b) in (A.4), it is equivalent to

show the non-negativity of the following quantities, respectively:

[i] min
W∈W(C)

v̂n(b′+e1+e2−1W ) + min
W∈W(C)

v̂n(b′−1W )

− min
W∈W(C)

v̂n(b′+e1−1W ) − min
W∈W(C)

v̂n(b′+e2−1W ), (A.6)
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[ii] min
W∈W(C)

v̂n(b′ + e1 − 1W ) − 2 min
W∈W(C)

v̂n(b′ − 1W ) + min
W∈W(C)

v̂n(b′ − e1 − 1W ),

(A.7)

and

[iii] min
W∈W(C)

v̂n(R12(b
′) − 1W ) − 2 min

W∈W(C)
v̂n(b′ − 1W )

+ min
W∈W(C)

v̂n(R21(b
′) − 1W ), (A.8)

where we let b′ := a + b for convenience. The non-negativity of (A.6) to (A.8)

is shown by using the assumption that v̂n ∈ F̂ (hence, v̂n satisfies conditions

(B.1) to (B.6)) and the fact that the MTLB policy is optimal at horizon n + 1

(Lemma 2.16).

Since the MTLB policy is optimal at horizon n + 1, we first make the

following important observation:3

Observation A.10. For N = 2 users, there exists an MTLB allocation W ∗ ∈

X ∗(b′, C) at horizon n + 1 such that W ∗ ∈ X ∗(b′, C) ∩ X ∗(b′ + e1, C) ∩ X ∗(b′ +

e1 + e2, C).

This is because 1) adding one packet to each queue does not create any

balancing paths, i.e., W ∗ ∈ X ∗(b′ + e1 + e2, C); and 2) W ∗ can always be chosen

such that it gives priority to serving queue 1, hence, adding one packet to queue 1

does not create any balancing paths, i.e., W ∗ ∈ X ∗(b′ + e1, C).

Now, with this choice of W ∗ ∈ X ∗(b′, C)∩X ∗(b′ + e1, C)∩X ∗(b′ + e1 +

3As we will discuss later, this observation which is essential in proving the lemma does not
hold in the case of general N(≥ 3).
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e2, C) and d := b′ − 1W ∗, we rewrite some terms in (A.6) to (A.8):

min
W∈W(C)

v̂n(b′ − 1W + e1 + e2) = v̂n(d + e1 + e2), (A.9)

min
W∈W(C)

v̂n(b′ − 1W ) = v̂n(d), (A.10)

min
W∈W(C)

v̂n(b′ + e1 − 1W ) = v̂n(d + e1). (A.11)

Now, we are ready to show that T a,C
n (b) satisfies (B.3) to (B.5), respectively.

(i) T a,C
n (b) satisfies (B.3).

min
W∈W(C)

v̂n(b′+e1+e2−1W ) + min
W∈W(C)

v̂n(b′−1W )

− min
W∈W(C)

v̂n(b′+e1−1W ) − min
W∈W(C)

v̂n(b′+e2−1W )

= v̂n(d + e1 + e2) + v̂n(d) − v̂n(d + e1) − min
W∈W(C)

v̂n(b′+e2−1W )

≥ v̂n(d + e1 + e2) + v̂n(d) − v̂n(d + e1) − v̂n(d + e2)

≥ 0,

where the equality is due to (A.9)-(A.11), the first inequality is due to the obser-

vation that W ∗ ∈ X ∗(b′, C) ⊆ W(C) (but not necessarily in X ∗(b′ + e2, C)), and

the last inequality holds because v̂n ∈ F̂ and hence satisfying condition (B.3).

(ii) T a,C
n (b) satisfies (B.4).

Using (A.10) and (A.11), this is equivalent to showing

v̂n(d + e1) − 2v̂n(d) + min
W∈W(C)

v̂n(b′ − e1 − 1W ) ≥ 0

To show this, we consider the following two cases, depending on whether W ∗ ∈

X ∗(b′ − e1, C) or not.
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Case 1: If W ∗ ∈ X ∗(b′ − e1, C), then

v̂n(d + e1) − 2v̂n(d) + min
W∈W(C)

v̂n(b′ − e1 − 1W )

= v̂n(d + e1) − 2v̂n(d) + v̂n(d− e1) ≥ 0,

since v̂n satisfies (B.4).

Case 2: W ∗ 6∈ X ∗(b′ − e1, C). Thus, there exists a balancing path

S(W ∗, 2, 1) from queue 2 to queue 1 and d2 = d1 + 1. Note that since there

are only two queues, this balancing path is simply a balancing path (2, v, 1) for

some server v ∈ V , which is connected to both queues but is being assigned to

queue 1 under W ∗. Hence, the balancing allocation (W ∗)b(S) is in X ∗(b′ − e1, C)

and we have 1(W ∗)b(S) = R12(1W
∗) = 1W ∗ − e1 + e2. In other words,

v̂n(d + e1) − 2v̂n(d) + min
W∈W(C)

v̂n(b′ − e1 − 1W )

= v̂n(d + e1) − 2v̂n(d) + v̂n(b′ − e1 − 1(W ∗)b(S))

= v̂n(d + e1) − 2v̂n(d) + v̂n(d − e2)

= v̂n(d + e1) − v̂n(d) − v̂n(π12(d)) + v̂n(d− e2)

= v̂n(d + e1) − v̂n(d) − v̂n(d + e1 − e2) + v̂n(d− e2)

≥ 0,

where the second equality holds because b′ − e1 − 1(W ∗)b(S) = d − e2, the third

equality holds because v̂n satisfies (B.2), the fourth equality follows from d2 =

d1 + 1, and the last inequality because v̂n satisfies (B.3).

(iii) T a,C
n (b) satisfies (B.5).
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This is equivalent to showing

min
W∈W(C)

v̂n(R12(b
′) − 1W ) − 2v̂n(d) + min

W∈W(C)
v̂n(R21(b

′) − 1W ) ≥ 0 (A.12)

To show this, we consider the following three cases.

Case 1: If W ∗ ∈ X ∗(R21(b
′), C)∩X ∗(R12(b

′), C), then we are done since

v̂n satisfies (B.5).

Case 2: If W ∗ 6∈ X ∗(R21(b
′), C), then there exists a balancing path

S(W ∗, 1, 2). Since W ∗ ∈ X ∗(b′ + e1, C) (i.e., W ∗ was chosen to give priority

to serving queue 1), we must have d1 = d2. Hence, (W ∗)b(S) ∈ X ∗(R21(b
′), C).

Furthermore, 1(W ∗)b(S) = R21(1W
∗). Thus, for this case, the LHS of (A.12)

becomes:

min
W∈W(C)

v̂n(R12(b
′) − 1W ) − 2v̂n(d) + min

W∈W(C)
v̂n(R21(b

′) − 1W )

= min
W∈W(C)

v̂n(R12(b
′) − 1W ) − 2v̂n(d) + v̂n(d)

= min
W∈W(C)

v̂n(R12(b
′) − 1W ) − v̂n(d) (A.13)

Next we consider the two following subcases:

Case 2.1: If W ∗ ∈ X ∗(R12(b
′), C), then (A.13) is equal to v̂n(R12(d)) −

v̂n(d) ≥ 0, because d1 = d2 and v̂n ∈ F̂ .

Case 2.2: If W ∗ 6∈ X ∗(R12(b
′), C), then there exists a balancing path

S(W ∗, 2, 1). Hence, (W ∗)b(S) ∈ X ∗(R12(b
′), C), ensuring that 1(W ∗)b(S) =

R12(1W
∗). Thus, (A.13) is equal to zero.

Case 3: If W ∗ ∈ X ∗(R21(b
′), C) but W ∗ 6∈ X ∗(R12(b

′), C), then, by the

permutation invariance property of v̂n, this reduces to Case 2.1 above.
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Lemma 2.24. Assuming N = 2 and v̂n ∈ F̂ . For any state b such that b1 ≥ b2+1,

Ea,C[T a,C
n (b)] satisfies condition (B.6).

Proof. To show that Ea,C[T a,C
n (b)] meets condition (B.6) is equivalent to show the

non-negativity of Ea,C

[
T a,C

n (b) − T a,C
n (R12(b))

]
. For convenience, let us define

Za,C(b) := T a,C
n (b) − T a,C

n (R12(b)). (A.14)

Using the permutation invariance property of the arrival and connectivity processes

(Assumptions A1 and A2), we can rewrite Ea,C[Za,C(b)] as

Ea,C

[
Za,C(b)

]
=

1

2
Ea,C

[
Za,C(b) + Zπ12(a),Ππ12 (C)(b)

]
.

Thus, it suffices to show that, for any (a, C) and b1 ≥ b2 + 1,

Za,C(b) + Zπ12(a),Ππ12 (C)(b) ≥ 0.

We show this by noticing that

Za,C(b) + Zπ12(a),Ππ12 (C)(b) = Za,C(b) + Za,C(π12(b))

= Za,C(b) + T a,C
n (π12(b)) − T a,C

n (π12(R12(b)))

= T a,C
n (b0) − T a,C

n (b1) + T a,C
n (bM) − T a,C

n (bM−1)

(A.15)

where M := b1 − b2 (≥ 1) and bm := b − me1 + me2, for m = 0, . . . ,M . The

first equality follow from the permutation invariance property, while the second

and third equalities follow from (A.14). Note that π12(b) = b2e1 + b1e2 = b −

(b1 − b2)e1 + (b1 − b2)e2 = bM , π12(R12(b)) = bM−1, bm+1 = R12(b
m), and

bm−1 = R21(b
m).
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Now notice that if M = 1, then the RHS of (A.15) is zero. If M ≥ 2, we

have

T a,C
n (b0) − T a,C

n (b1) − T a,C
n (bM−1) + T a,C

n (bM)

=
M−1∑

m=1

{
T a,C

n (bm−1) − 2T a,C
n (bm) + T a,C

n (bm+1)
}

=

M−1∑

m=1

{T a,C
n (R21(b

m)) − 2T a,C
n (bm) + T a,C

n (R12(b
m))}

≥ 0,

where the inequality holds because v̂n ∈ F̂ and, from Lemma 2.23, T a,C
n (·) satisfies

condition (B.5).

Remark A.11. The proofs for Lemmas 2.23 and 2.24 are valid only for N = 2. The

main difficulty in the extension to the general case of N > 2 is with Lemma 2.23,

Observation A.10, where we cannot claim that there exists an MTLB allocation

W ∗ ∈ X ∗(b′, C) such that W ∗ ∈ X ∗(b′, C)∩X ∗(b′ + e1, C)∩X ∗(b′ + e1 + e2, C).

This reflects a major obstacle that adding one packet to queue 1 and/or queue

2 may generate a balancing path in the original optimal allocation. For general

N , we will need to explore more cases and require extra convexity properties of

functions in F . Currently, we do not know which extra conditions are needed

and how to show that these conditions of vn carried over to vn+1. Therefore, the

extension to the general case of N > 2 remains open.
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A.3 Supporting Lemmas and Proof of

Theorem 2.3

In this appendix, we prove the optimality of the MTLB-F policy for

the fluid server allocation relaxation. We assume that the cost function φ(b) is

monotonically increasing, permutation invariant, and convex on b ∈ RN
+ . It is easy

to see that the strict monotonicity and permutation invariance of vn in the fluid

relaxation (Lemmas 2.15 and 2.22) still hold for all n. Next we show the convexity

of vn for all n.

Lemma A.12. vn(b) is convex on b for all n = 0, 1, . . . , T .

Proof. It suffices to show the convexity of V ∗
n (b, C) for every C. We show this by

induction: V ∗
0 (b, C) = φ(b) is convex on b. Assume V ∗

n−1(b, C) convex on b. For

i = 1, 2, let W i ∈ Wf (bi, C) be an optimal allocation at time n for (bi, C), i.e.,

V ∗
n (bi, C) = φ(bi) + E

a,C̃

[

V ∗
n−1(b

i + a− 1W i, C̃)
]

. (A.16)

Then, for any β ∈ [0, 1], let W β = βW 1 + (1 − β)W 2 and bβ = βb1 + (1 − β)b2.

We can easily see that W β ∈ Wf (bβ , C) since it satisfies the conditions (a’) to (d)
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in Definition 2.28. Then, we have

V ∗
n (bβ, C) = φ(bβ) + min

W∈Wf (bβ ,C)
E

a,C̃

[

V ∗
n−1(b

β + a − 1W, C̃)
]

≤ φ(bβ) + E
a,C̃

[

V ∗
n−1(b

β + a − 1W β, C̃)
]

≤ φ(bβ) + E
a,C̃

[

βV ∗
n−1(b

1+a−1W 1, C̃)
]

+ E
a,C̃

[

(1 − β)V ∗
n−1(b

2+a−1W 2, C̃)
]

≤ β
(

φ(b1) + E
a,C̃

[

V ∗
n−1(b

1+a−1W 1, C̃)
])

+ (1 − β)
(

φ(b2) + E
a,C̃

[

V ∗
n−1(b

2+a−1W 2, C̃)
])

= βV ∗
n (b1, C) + (1 − β)V ∗

n (b2, C),

where the second inequality follows from the induction hypothesis, the last in-

equality from the convexity of the cost function φ, and the last equality from

(A.16).

The notions of alternating, balancing, and throughput-increasing paths

and allocations can be generalized as follows:

Definition A.13. For ε > 0, an ε-alternating path from queue u0 ∈ U to queue

uk ∈ U with respect to W ∈ Wf (b, C) is a sequence of distinct vertices

S(W,u0, uk, ε) := (u0, v1, u1, v2, . . . , vk, uk),

with vi ∈ V , ui ∈ U , wvi,ui
≥ ε for each i = 1, . . . , k. An ε-alternating path

S(W,u0, uk, ε) is called an ε-balancing path if

(

bu0 −
K∑

i=1

wi,u0

)

−
(

buk
−

K∑

i=1

wi,uk

)

≥ 2ε.
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Definition A.14. For ε > 0, an ε-throughput-increasing path relative to W ∈

Wf (b, C), is a sequence of distinct vertices

I(W, v0, uk, ε) := (v0, u1, v1, u2, . . . , vk−1, uk)

with (a) vi ∈ V , ui ∈ U , and wvi,ui
≥ ε for each i, (b) v0 is not fully matched, i.e.,

1 −∑N
j=1wv0,j ≥ ε, and (c) uk is non-empty, i.e., buk

−∑K
i=1wi,uk

≥ ε.

Definition A.15. Given an ε-balancing path S = S(W,u0, uk, ε) for ε > 0, an

ε-balancing allocation W b,ε(S) balances the queue u0 and uk by ε packets by reas-

signing server vl to serve ε packets more from queue ul−1 and ε packets less from

queue ul, ∀l = 1, . . . , k.

Definition A.16. Given an ε-throughput-increasing path I = I(W, v0, uk, ε) for

ε > 0, an ε-throughput-increasing allocation W t,ε(I) ∈ Wf (b, C) achieves addi-

tional throughput of ε packets by assigning v0 to serve ε more packets from u1 and

reassigning server vl to serve ε packets more from queue ul+1 and ε packets less

from queue ul, ∀l = 1, . . . , k − 1.

Note that the throughput-increasing and balancing paths previously con-

sidered under the integral server allocation (Definitions A.3 and A.4) are equivalent

to the fluid versions (Definitions A.13 and A.14), when we take ε = 1.

We see that similar results as in Appendix A.1 hold for the ε-throughput-

increasing and ε-balancing paths as well. The existence of the MTLB-F policy

could be similarly established as in Theorem 2.1 using the following result:
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Proposition A.6’. An allocation achieves the maximum throughput (C1) if and

only if it has no ε-throughput-increasing paths for any ε > 0.

Proof. Similar to the proof in Proposition A.6.

Proposition A.7’. Any allocation satisfying the maximum-throughput condi-

tion (C1) also satisfies the load-balancing condition (C2) if and only if it has

no ε-balancing path for any ε > 0.

Proof. The proof is very similar to that of Proposition A.7 but here we allow ε ∈

(0, 1] packets to be reallocated. It suffices to show that if a maximum-throughput

allocation W = [wi,j] ∈ Wf (b, C) does not satisfy (C2), then W has at least one

ε-balancing path for some ε > 0. Let W ∗ = [w∗
i,j] ∈ Wf (b, C) be an MTLB-F

allocation, chosen such that ||W ∗ −W || is minimized, where ||X|| :=
∑

i,j |xij| for

any matrix X = [xij ]. Now let Gd be the weighted subgraph of the bipartite graph

G = (V, U, C) induced by the allocation difference matrix W ∗ −W . Specifically,

Gd contains an edge (v, u) for v ∈ V and u ∈ U if and only if |w∗
v,u −wv,u| > 0. We

assign the weight of the edge (v, u) as |w∗
v,u − wv,u|. Color the edges (v, u) of Gd

green if w∗
v,u −wv,u > 0, and red if w∗

v,u −wv,u < 0. Direct the green edges from V

to U and the red edges from U to V . Let the leftover queue vectors under W and

W ∗ be l = b− 1W and l∗ = b − 1W ∗, respectively.

We claim that for every directed path P in Gd from u1 ∈ U to u2 ∈ U ,

we have

l∗u1
≤ l∗u2

. (A.17)
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To see this, let P = (u1, . . . , u2) be a directed path in Gd. By the choice of

the directions for the edges, P must be alternating between red and green edges.

Let ε′ be the minimum of the weights of the edges along this path (ε′ > 0 by

construction of Gd). If l∗u1
> l∗u2

then P is an ε-balancing path for W ∗ with

ε = min{ε′, (l∗u1
− l∗u2

)/2} > 0, contradicting to the assumption that W ∗ satisfy

(C2).

Next, we claim that Gd is acyclic. Assume Gd is cyclic, i.e., there is a

red-green alternating and directed path P = (u1, . . . , u1) in Gd, for some u1 ∈ U ,

with the minimum weight ε > 0 along this path. Then, we get another MTLB-F

allocation W ∗∗ = [w∗∗
i,j] by letting w∗∗

v,u = w∗
v,u − ε for all green edges (v, u) ∈ P ,

w∗∗
v,u = w∗

v,u + ε for all red edges (v, u) ∈ P , and w∗∗
v′,u′ = w∗

v′,u′ for all edges

(v′, u′) not in P . We see that W ∗∗ is closer to W than W ∗ is to W because

|w∗∗
v,u − wv,u| = |w∗

v,u − wv,u| − ε ≥ 0 for each edge (v, u) in P . In other words,

||W ∗∗ −W || < ||W ∗ −W ||, in contradiction to the choice of W ∗. Hence, we must

have that Gd is acyclic.

Now, since both W ∗ and W achieve the maximum throughput, we have

that
∑N

i=1 li =
∑N

i=1 l
∗
i . But since W does not satisfy the LB condition (C2), there

must exist u1 ∈ U such that

lu1 < l∗u1
. (A.18)

Obviously, there is a red edge directed out of u1. Starting from u1 we build an

alternating red-green and directed path P ′ in Gd as follows: (1) From an arbitrary

vertex u ∈ U (including u1), if there is a red edge directed out of u and lu ≤ lu1 , we
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build P ′ by arbitrarily select one of the red edges directed out of u. (2) From an

arbitrary v ∈ V , we build P ′ by arbitrarily follow one of the green edges directed

out of v. Such a green edge always exist.4 (3) Otherwise, stop.

Using the fact that Gd is acyclic, P ′ is well-defined and finite. Let u2 ∈ U

be the final vertex on the path and ε′ > 0 be the minimum weight along P ′. There

are two possible cases:

Case 1: lu2 > lu1 . In this case, we reverse the order of nodes in P ′ to

arrive at an ε-balancing path relative to W , where ε = min{ε′, (lu2 − lu1)/2} > 0.

Case 2: There is no red edge directed out of u2. Thus, P ′ arrived at

u2 via a green edge (v, u2) for some v ∈ V . This means that u2 is served at

least w∗
v,u2

− wv,u2 > 0 packets more under W ∗, relative to W . Hence, lu2 > l∗u2
.

This together with (A.17) and (A.18) give lu2 > l∗u2
≥ l∗u1

> lu1 , which means

lu2 > lu1. Reversing the order of nodes in P ′ gives a ε-balancing path relative to

W , ε = min{ε′, (lu2 − lu1)/2} > 0.

Since there exists an ε-balancing path in both cases for some ε > 0, we

have the assertion of the proposition.

Using the above results, we can show the following:

Theorem 2.3. For the problem (P) with the fluid server allocation relaxation, the

MTLB-F policy is optimal.

4Otherwise, combining one of the red edges coming into v with W ∗ would have yielded a non-
idling feasible allocation with additional positive packet throughput, a contradiction to (C1).
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Proof. We need to show that

vn(b− 1W ∗) = min
W∈Wf (b,C)

vn(b− 1W ), (A.19)

where W ∗ ∈ Wf (b, C) is MTLB-F. Since Wf (b, C) is convex and compact, there

exists an optimal allocation W ∗. Similarly as in the proof of Lemma 2.16, we can

show thatW ∗ must satisfy (C1) using Proposition A.6’ and the strict monotonicity

of vn (Lemma 2.15).

Now assume W ∗ satisfies (C1) but not (C2). By Proposition A.7’, there

must exist an ε-balancing path S = S(W ∗, i, k, ε) relative to W ∗, for some ε > 0

and some queues i, k ∈ U . Let W ′ = W b,ε(S) be the corresponding ε-balancing

allocation. Let l∗ = b−1W ∗ and l′ = b−1W ′. We then have l′i = l∗i −ε, l′k = l∗k+ε,

and l′u = l∗u for all u 6= i, k. By the convexity and permutation invariance properties

of vn, we can show that vn(l′) ≤ vn(l∗) [31] as follows: Since l∗ and l′ differ only in

the ith and kth components, it suffices to consider a function vn of two variables.

We notice that (l∗i − ε, l∗k + ε) lies on the interval joining (l∗i , l
∗
k) and (l∗k, l

∗
i ). Hence,

for some γ ∈ [0, 1], we have (l∗i − ε, l∗k + ε) = γ(l∗i , l
∗
k) + (1 − γ)(l∗k, l

∗
i ). Using

the convexity and the permutation invariance of vn, we obtain vn(l∗i − ε, l∗k + ε) ≤

γvn(l∗i , l
∗
k) + (1 − γ)vn(l∗k, l

∗
i ) = vn(l∗i , l

∗
k). Hence, vn(l′) ≤ vn(l∗) and W ′ is also

optimal but more balanced than W ∗. Thus, we can conclude that any MTLB-F

allocation is optimal.
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Appendix for Chapter 3

B.1 Proof of Proposition 3.6

Proposition 3.6. Consider a g-smoothly-scaling process A(N) with the limiting

g-scaled log moment generation function Λ. Let S
(N)
t =

∑t
i=1A

(N)
i , for t ∈ N.

Then, for a > λt, we have

lim
N→∞

1

g(N)
log Pr

(

S
(N)
t

N
> a

)

= −tΛ∗(a/t), (B.1)

where Λ∗ is the convex conjugate of Λ.

Proof. Let n = g(N) and Y
(n)
t = g(N)

N
S

(N)
t . From (3.7) and the property of Λ for

the g-smoothly-scaling process, we have

ΛYt(θ) := lim
n→∞

1

n
logE[eθY

(n)
t ] = ΛSt(θ) = tΛ(θ),

which exists for each θ ∈ R as an extended real number and is finite in a neighbor-

hood of θ = 0, essentially smooth, and lower-semicontinuous. Then, the Gärtner-

178
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Ellis theorem (Theorem 2.11 in [29]) shows that Y
(n)
t /n (which, in this case, is

equivalent to S
(N)
t /N) satisfies the large deviations principle (LDP) in R with

good convex rate function

Λ∗
Yt

(x) := sup
θ∈R

θx− ΛYt(θ) = sup
θ∈R

θx− tΛ(θ) = tΛ∗(x/t).

For a > E[
S

(N)
t

N
] = λt, the LDP result gives the assertion of the proposition (see

Lemma 2.6 and Theorem 2.8 in [29]).

B.2 Proof of Lemma 3.10

Lemma 3.10. Given g ∈ G, T ∈ T, r > λ, a batch service of rNT every T

timeslots, and a g-smoothly-scaling bit-arrival process characterized by the limiting

g-scaled log moment generation function Λ, the decay rate of Pdelay(r, T ) is given

by the function I, i.e.,

lim
N→∞

1

g(N)
logPdelay(r, T ) = −I(r, T ) (B.2)

where

I(r, T ) = min
t∈Z+:

tT+T−1−k>0

(tT + T − 1 − k)Λ∗
(

r +
(D + 1 − 2T )r

tT+T−1−k

)

, (B.3)

and k = D( mod T ). In addition, I(r, T ) is lower-semicontinuous and increasing

on r.

Proof. Let g ∈ G, T ∈ T = {1, 2, . . . ,
⌊

D
2

⌋
}, r > λ, and k = D( mod T ). Without

loss of generality, we assume that I(r, T ) <∞.
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For any given SNR ρ and N = log ρ, there are A
(N)
t bits arriving at time t.

The queue is being served exactly at times mT , for m ∈ Z, with an instantaneous

removal of the oldest RT = rNT bits. The corresponding queue dynamics for the

queue size Q
(N)
t , at time t, are as follows.

Q
(N)
t =







[

Q
(N)
t−1 + A

(N)
t − TR

]+

, if t = mT, m ∈ Z,

Q
(N)
t−1 + A

(N)
t , otherwise,

(B.4)

where Q
(N)
−∞ ≡ 0. Since the arrival process is stationary and the system started

empty at time −∞, then Q
(N)
i has the same steady-state distribution as that of

Q
(N)
mT+i, m ∈ Z, for each i = 0, . . . , T − 1. The delay at time i also has the

same steady-state distribution as the delay at time mT + i. Since Pdelay(r, T ), as a

function of r, T , is defined as the probability of the steady-state delay being greater

than D, we have

Pdelay(r, T ) := Pr(steady-state delay of a bit > D)

=
1

T

T−1∑

i=0

Pr(s-s delay of a bit arriving at time i > D), (B.5)

where the equality holds since the arrivals are independent across time. From

Lemma B.2 in Appendix B.5, we have that the delay violation probability of any

bit arriving at time i is asymptotically equal to the delay violation probability of

the last bit arriving at time i, (B.5) becomes

Pdelay(r, T )
g
=

1

T

T−1∑

i=0

Pr(Q(N)
i )

g
=

T−1∑

i=0

Pr(Q(N)
i ), (B.6)

where Q(N)
i denotes the event that the last bit arriving at timeslot i violates the
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delay bound D. This holds because T is a constant independent of ρ. Hence, (B.6)

says that Pdelay is asymptotically equal to the sum of Pr(Q(N)
i ).

Next, we relate the event Q(N)
i to a condition on the queue length Q

(N)
i ,

for i = 0, . . . , T − 1. To do this, we need to describe the condition that the delay

of the last bit arriving at timeslot i violates the delay bound D. Upon arrival,

the last bit sees Q
(N)
i bits (including itself) waiting in the queue. Since the batch

service happens exactly in multiples of T , the bit must wait T − i timeslots for the

next service to start and another

⌈

Q
(N)
i

RT

⌉

T timeslots for all Q
(N)
i bits (including

the last bit) to get served and be decoded. Hence, the last bit arriving at time i

violates the delay bound D if, and only if,

T − i+

⌈

Q
(N)
i

RT

⌉

T > D.

Let Ω(N) contains all measurable random events. The condition above implies that

the delay violation event for the last bit is given as

Q(N)
i := {ω ∈ Ω(N) : T − i+

⌈

Q
(N)
i (ω)

RT

⌉

T > D}. (B.7)

Using (B.4) and (B.7), we show in Lemma B.1 of Appendix B.4 that

Pdelay(r, T )
g
= Pr(Q(N)

T−1−k)
g
= Pr(Q

(N)
T−1−k > (D−T−k)R). (B.8)

Intuitively, this means that Pdelay(r, T ) is asymptotically equal to Pr(Q(N)
T−1−k),

equivalently Pdelay(r, T ) is asymptotically equal to the probability that the last

bit arriving at time T− 1− k sees a queue length greater than (D− T− k)R bits.
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Finally, using (B.8), what remains is to establish that

lim
N→∞

log Pr(Q
(N)
T−k−1 > (D−T−k)rN)

g(N)

= −I(r, T )

= − min
t∈Z+:

tT+T−1−k>0

(tT+T−k−1)Λ∗
(

r +
(D + 1 − 2T )r

tT+T−k−1

)

. (B.9)

For notational simplicity, let i := T − 1 − k and q := (D − T − k)r. Note that

q > ri ≥ 0 since T ∈ {1, 2, . . . ,
⌊

D
2

⌋
} and k = D( mod T ). Now, since

q + rT t

T t+ i
= r +

(D + 1 − 2T )r

tT + T − k − 1
,

it is sufficient to show that

lim
N→∞

log Pr(Q
(N)
i > Nq)

g(N)
= − min

t∈Z+:
tT+i>0

(Tt+ i)Λ∗(
q + rT t

T t+ i
). (B.10)

We separately show (matching) upper and lower bounds.

First, we show the lower bound. By using the queue dynamics in (B.4)

recursively and the assumption of Q
(N)
−∞ = 0, the queue length Q

(N)
i is related to

the arrivals A
(N)
j , j ≤ i, in the following manner:

Q
(N)
i = sup

t∈Z+

(
i∑

j=−tT+1

A
(N)
j − rtTN

)

, (B.11)

where we use the convention that
∑0

j=1A
(N)
j ≡ 0. Using this relation and the fact

that q > 0, we have

Pr(Q
(N)
i >Nq) = Pr

(

sup
t∈Z+

i∑

j=−tT+1

A
(N)
j −rtTN > Nq

)

= Pr



 sup
t∈Z+:

tT+i>0

i∑

j=−tT+1

A
(N)
j −rtTN > Nq



 .
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Now, for any fixed t ∈ Z
+ so that tT + i > 0, we have

Pr(Q
(N)
i > Nq) ≥ Pr

(
i∑

j=−tT+1

A
(N)
j − rtTN > Nq

)

= Pr

(
tT+i∑

j=1

A
(N)
j > N(q + rT t)

)

= Pr

(

S
(N)
Tt+i

N
> q + rT t

)

.

Taking the limit of both sides and using Proposition 3.6, we have

lim inf
N→∞

log Pr(Q
(N)
i > Nq)

g(N)
≥ −(Tt+ i)Λ∗(

q + rT t

T t+ i
). (B.12)

Since t is arbitrary, maximizing the RHS over t gives the appropriate lower bound:

lim inf
N→∞

log Pr(Q
(N)
i > Nq)

g(N)
≥ − inf

t∈Z+:
tT+i>0

(Tt+ i)Λ∗(
q + rT t

T t+ i
). (B.13)

For the upper bound, we use the following result from Lemma B.3 in

Appendix B.6:

lim sup
N→∞

log Pr(Q
(N)
i > Nq)

g(N)
≤ − inf

t∈Z+:
tT+i>0

(Tt+ i)Λ∗
(
q + rT t

T t+ i

)

,

noting that the RHS is strictly greater than −∞, by assumption. Hence, the lower

and upper bounds coincide and (B.10) holds.

To complete the proof, we show the properties of I(r, T ) for T ∈ T. First,

I is increasing on r ≥ λ because Λ∗(x) is increasing on x ≥ λ (Lemma 2.7 in [29]).

Second, I(r, T ) is lower-semicontinuous on r because I is the minimum of a number

of function Λ∗ which are lower-semicontinuous (Lemma 2.7 in [29]).

Approximation 3.11. Relaxing the integer constraint in (3.14) gives the lower
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bound of I as

I(r, T ) ≥ δrr(D + 1 − 2T ) =: Iir(r, T ), (B.14)

where

δr = sup{θ > 0 : Λ(θ) < θr}. (B.15)

Proof. By the definition of I, we have

I(r, T ) = min
t∈Z+:

tT+T−1−k>0

(tT+T−1−k)Λ∗(r + r
D − 2T + 1

tT+T−1−k
)

≥ min
τ∈R+

τΛ∗(r + r
D − 2T + 1

τ

)

= δrr(D − 2T + 1),

where the last equality is a result of Lemma 3.4 of [29] with δr defined as in

(B.15).

B.3 Proof of Theorem 3.1

Proof of Theorem 3.1. Recall that:

Ptot(r, T ) := Pch(r, T ) + (1 − Pch(r, T ))Pdelay(r, T ), (B.16)

where, from (3.2),

Pch(r, T )
.
= ρ−dch(r,T ) (B.17)

and, from Lemma 3.10,

Pdelay(r, T )
g
= e−I(r,T )g(log ρ). (B.18)
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Case 1: when lim
N→∞

g(N)
N

= γ ∈ (0,∞). We have

Pdelay(r, T )
.
= ρ−γI(r,T ) (B.19)

and

Ptot(r, T )
.
= ρ−min{γI(r,T ), dch(r,T )}. (B.20)

The optimal negative SNR exponent of Ptot is

d∗ := sup
r∈(λ,rmax)

T∈T

{

lim
ρ→∞

− logPtot(r, T )

log ρ

}

= sup
r∈(λ,rmax)

T∈T

{min {γI(r, T ), dch(r, T )}}

= max
T∈T

{

sup
r∈(λ,rmax)

{min {γI(r, T ), dch(r, T )}}
}

. (B.21)

We first solve the optimization sub-problem within the bracket for any given integer

T ∈ T. Because I(r, T ) is increasing on r ≥ λ while dch(r, T ) is strictly decreasing

on r ∈ [0, rmax], the sub-problem is solved by the optimal choice of multiplexing

gain when the coding duration is fixed at T as

r∗(T ) := inf{r ∈ (λ, rmax) : γI(r, T ) = dch(r, T )}. (B.22)

Hence, (B.21) is solved with the optimal coding duration T ∗, given as

T ∗ = arg max
T∈T

γI(r∗(T ), T ),

and the optimal multiplexing gain r∗, given as

r∗ = r∗(T ∗).
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Note that, since I(r, T ) > 0 when r > λ and dch(r, T ) > 0 when r < rmax, it is

guaranteed that r∗(T ) ∈ (λ, rmax).

Case 2: when lim
N→∞

g(N)
N

= 0 and lim
N→∞

g(N)
log N

= ∞. In this case, for all

r ∈ (λ, rmax) and all T ∈ T, we have Pdelay(r, T ) asymptotically dominates Pch(r, T )

and hence Ptot(r, T ) is asymptotically equal to Pdelay(r, T ). Since, for any T ∈ T,

I(r, T ) is increasing on r > λ, we have

sup
r∈(λ,rmax),

T∈T

lim
ρ→∞

− logPtot(r, T )

g(log ρ)
≤ max

T∈T

{

sup
r∈(λ,rmax)

I(r, T )

}

= max
T∈T

I(rmax, T ).

Case 3: when lim
N→∞

g(N)
N

= ∞. This case is an opposite of Case 2. Here,

Ptot(r, T ) is asymptotically equal to Pch(r, T ) for all r ∈ (λ, rmax) and all T ∈ T.

Since dch(r, T ) is decreasing on r and increasing on T , we have

sup
r∈(λ,rmax),

T∈T

lim
ρ→∞

− logPtot(r, T )

log ρ
≤ max

T∈T

{

sup
r∈(λ,rmax)

dch(r, T )

}

= max
T∈T

dch(λ, T )

= dch(λ,

⌊
D

2

⌋

).

B.4 Proof of Lemma B.1

In this appendix, we prove the following lemma which is used in Ap-

pendix B.2.
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Lemma B.1. Consider g ∈ G, T ∈ T = {1, . . . ,
⌊

D
2

⌋
}, r > λ, a family of g-

smoothly-scaling bit-arrival processes characterized by the limiting g-scaled log mo-

ment generation function Λ, and a periodic batch service of rNT bits at timeslots

mT , m ∈ Z. Let Q
(N)
i be the queue length at time i ∈ {0, . . . , T − 1}. Then, the

event Q(N)
T−k−1, defined as

Q(N)
T−k−1 =

{

ω ∈ Ω(N) : k + 1 +

⌈

Q
(N)
T−k−1(ω)

RT

⌉

T > D

}

,

with k = D( mod T ), asymptotically dominates Pdelay(r, T ). In other words,

Pdelay(r, T )
g
= Pr

(
Q

(N)
T−k−1 > (D − T − k)r log ρ

)
. (B.23)

Proof. Let k = D( mod T ) and i ∈ {0, . . . , T − 1}. Recall from (B.7) that

Q(N)
i = {ω ∈ Ω(N) : T − i+

⌈

Q
(N)
i (ω)

RT

⌉

T > D}.

Now using the observation that, for any x, y ∈ R,

dxe > y ⇔ dxe > byc ⇔ x > byc ,

we have

Q(N)
i =

{

ω :
Q

(N)
i (ω)

RT
>

⌊
D + i− T

T

⌋}

=







{
ω : Q

(N)
i (ω) > (D−T−k)R

}
, i ∈ [0, T−k−1]

{
ω : Q

(N)
i (ω) > (D−k)R

}
, i ∈ [T−k, T−1].

(B.24)
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On the other hand, (B.6) implies that

Pdelay(r, T )
g
=

T−1∑

i=0

Pr(Q(N)
i )

=
T−k−1∑

i=0

Pr(Q(N)
i ) +

T−1∑

i=T−k

Pr(Q(N)
i )

g
=
(a)

Pr(Q(N)
T−k−1) + Pr(Q(N)

T−1)

g
= max{Pr(Q(N)

T−k−1),Pr(Q(N)
T−1)}

=
(b)

max{Pr(Q
(N)
T−k−1>(D−T−k)R),Pr(Q

(N)
T−1>(D−k)R)}

=
(c)

Pr(Q
(N)
T−k−1>(D−T−k)R), (B.25)

where the equality in (b) is from (B.24). Next, we establish the (asymptotic)

equalities (a) and (c). For (a), we first need to show that

T−k−1∑

j=0

Pr(Q(N)
j )

g
= Pr(Q(N)

T−k−1). (B.26)

To establish this, we first observe that

Q
(N)
j (ω) = Q

(N)
i (ω) + A

(N)
i+1(ω) + . . .+ A

(N)
j (ω)

︸ ︷︷ ︸

≥0

≥ Q
(N)
i (ω), (B.27)

for all ω ∈ Ω(N) and 0 ≤ i ≤ j ≤ T − 1. Hence, from (B.24), we have

Pr(Q(N)
T−k−1) ≥ Pr(Q(N)

i ), i ∈ {0, . . . , T − k − 1},

which implies
T−k−1∑

i=0

Pr(Q(N)
i ) ≤ (T − k)Pr(Q(N)

T−k−1). (B.28)

On the other hand, from the non-negativity of probability, we have

T−k−1∑

i=0

Pr(Q(N)
i ) ≥ Pr(Q(N)

T−k−1). (B.29)



189

Combining (B.28) and (B.29), we have (B.26). Similarly, we can show that

T−1∑

j=T−k

Pr(Q(N)
j )

g
= Pr(Q(N)

T−1). (B.30)

Combining (B.26) and (B.30), equality (a) in (B.25) is established.

To establish equality (c), it is sufficient to show that

Pr(Q
(N)
0 >D′R) ≤ Pr(Q

(N)
j >D′R) ≤ Pr(Q

(N)
0 > (D′−T )R), (B.31)

for any D′ > T and j ∈ {0, . . . , T − 1}. This is because for j1 = T − 1 and

D′
1 = D − k, we get

P
(
Q

(N)
T−1 > (D − k)R

)
≤ P

(
Q

(N)
0 > (D − T − k)R

)
,

while for j2 = T− k− 1 and D′
2 = D− T− k, we get

P
(
Q

(N)
0 > (D − T − k)R

)
≤ P

(
Q

(N)
T−k−1 > (D − T − k)R

)
,

asserting (c).

We prove (B.31) in two steps. The lower bound directly follows from

(B.27), i.e.,

Q
(N)
j (ω) ≥ Q

(N)
0 (ω), ∀ω ∈ Ω(N).

For the upper bound, we notice that, for D′ > T and

ω ∈
{

ω ∈ Ω(N) : Q
(N)
j (ω) > D′R

}

⊆
{

ω ∈ Ω(N) : Q
(N)
j (ω) > TR

}

,

Q
(N)
j (ω) is related to Q

(N)
T (ω) as

Q
(N)
T (ω) = [Q

(N)
j (ω) + A

(N)
j+1(ω) + · · · + A

(N)
T (ω) − TR]+

= Q
(N)
j (ω) + A

(N)
j+1(ω) + · · · + A

(N)
T (ω) − TR,
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where [·]+ is removed. As a result, we have

Pr(Q
(N)
j > D′R) = Pr(Q

(N)
T −

{

A
(N)
j+1 + . . .+ A

(N)
T

}

+ TR > D′R)

≤ Pr(Q
(N)
T > (D′ − T )R)

= Pr(Q
(N)
0 > (D′ − T )R),

where the last equality holds since Q
(N)
T and Q

(N)
0 have the same stationary distri-

bution.

B.5 Proof of Lemma B.2

This appendix shows that the average probability of delay violation for

bits that arrive at time i is asymptotically equal to the corresponding probability

for the last bit arriving at that time. The proof is mainly based on the definition

of the g-smoothly-scaling process.

Lemma B.2. Consider g ∈ G and a family of g-smoothly-scaling bit-arrival pro-

cesses ((A
(N)
t , t ∈ Z), N ∈ N), characterized by the limiting g-scaled log moment

generation function Λ. For any given N , let W (N) be a random variable having

the same distribution as the steady-state distribution of the delay of a randomly

chosen bit that arrives at time i ∈ {0, . . . , T − 1} while Z(N) is a random variable

having a distribution that is identical to the steady-state distribution of the delay

for the last bit that arrives during time i. Then, for any D > 0,

Pr(W (N) > D)
g
= Pr(Z(N) > D). (B.32)
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Proof. We show (B.32) by showing the upper bound:

Pr(W (N) > D) ≤ Pr(Z(N) > D) (B.33)

and the lower bound:

Pr(W (N) > D)
g

≥ Pr(Z(N) > D). (B.34)

The upper bound is an immediate consequence ofW (N)(ω) ≤ Z(N)(ω) for ω ∈ Ω(N).

Below we prove the lower bound. We have

Pr(W (N) > D) =
∑

a∈N

Pr(W (N) > D|A(N)
i = a)Pr(A

(N)
i = a). (B.35)

Now, given that A
(N)
i = a bits arrive at time i, we index the a bits as bit 1 to a,

where bit 1 arrives first and bit a arrives last. Given A
(N)
i = a, we let W

(N)
j to be

the steady-state delay of the j-th bit, j ∈ {1, . . . , a}. Since the bit can have any

index, from 1 to a, with equal probability of 1/a, we have

Pr(W (N)>D|A(N)
i =a) =

1

a

a∑

j=1

Pr(W
(N)
j >D|A(N)

i =a).

Ignoring all but the last term in the sum, we have

Pr(W (N) > D|A(N)
i =a) ≥ 1

a
Pr(W (N)

a > D|A(N)
i =a) =

1

a
Pr(Z(N) > D|A(N)

i =a),

where the equality is a result of how Z(N) is defined. This means that

Pr(W (N)>D) ≥
∑

a∈N

1

a
Pr(Z(N)>D|A(N)

i =a)Pr(A
(N)
i =a)

=
∑

a∈N

1

a
Pr(Z(N)>D and A

(N)
i =a).
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Now, for a given β > 0, define

B(N) := {b ∈ N : b < eβg(N)}.

We can further lower bound Pr(W (N)>D) as follows:

Pr(W (N) > D) ≥
∑

a∈B(N)

1

a
Pr(Z(N) > D and A

(N)
i = a)

≥ e−βg(N)
∑

a∈B(N)

Pr(Z(N) > D and A
(N)
i = a)

= e−βg(N)Pr(Z(N) > D and A
(N)
i ∈ B(N)), (B.36)

where the second inequality holds because 1/a > e−βg(N) for any a ∈ B(N).

Next, we show that Pr(A
(N)
i ∈ B(N)) → 1 as N → ∞. We do this by

using the definition of the g-smoothly-scaling process: there exists θ > 0 such that

lim
N→∞

logE[eθA
(N)
i g(N)/N ]

g(N)
= Λ(θ) <∞.

Hence, for any ε > 0, there exists N0 = N0(ε) such that for all N > N0, we have

g(N)(Λ(θ) + ε) > logE[eθA
(N)
i g(N)/N ]. (B.37)

The RHS can be lower-bounded, for any a1 ∈ N:

logE[eθA
(N)
i g(N)/N ] = log

(
∑

a∈N

Pr(A
(N)
i = a)eθag(N)/N

)

≥ log

(
∑

a≥a1

Pr(A
(N)
i = a)eθag(N)/N

)

≥ log
(

Pr(A
(N)
i ≥ a1)e

θa1g(N)/N
)

= θa1
g(N)

N
+ log Pr(A

(N)
i ≥ a1).
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This together with (B.37) gives

log Pr(A
(N)
i ≥ a1) < g(N)[Λ(θ) + ε− θa1

N
],

for all a1 ∈ N. Now, we select a1 = eβg(N) to get

log
(

1 − Pr(A
(N)
i ∈ B(N))

)

= log Pr(A
(N)
i ≥ eβg(N)) < g(N)[Λ(θ) + ε− θeβg(N)

N
].

Since lim
N→∞

g(N)
log N

= ∞, we, then, have

Pr
(

A
(N)
i ∈ B(N)

)

→ 1. (B.38)

Finally, combining (B.38) and (B.36) implies that, for any β > 0,

lim
N→∞

log Pr(W (N) > D)

g(N)
≥ lim

N→∞

log Pr(Z(N)>D)

g(N)
− β.

Since β can be chosen arbitrarily small, we have the lower bound in (B.34), hence

the assertion of the lemma.

B.6 Proof of Lemma B.3

In this appendix, we prove the following lemma which is used in Ap-

pendix B.2.

Lemma B.3. Consider g ∈ G, T ∈ T = {1, . . . ,
⌊

D
2

⌋
}, r > λ, a family of g-

smoothly-scaling bit-arrival processes characterized by the limiting g-scaled log mo-

ment generation function Λ, and a periodic batch service of rNT bits at timeslots

mT , m ∈ Z. Let Q
(N)
i be the queue length at time i ∈ {0, . . . , T − 1}. Then, for
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q > ir, we have

lim sup
N→∞

log Pr(Q
(N)
i >Nq)

g(N)
≤ − inf

t∈Z+:
tT+i>0

(Tt+ i)Λ∗
(
q + rT t

T t+ i

)

, (B.39)

assuming that the RHS is strictly greater than −∞.

Proof. The proof uses the same technique as in [29, Lemma 1.10 and 1.11]. Using

(B.11), we have the following bound:

Pr(Q
(N)
i >Nq) = Pr



 sup
t∈Z+:

tT+i>0

i∑

j=−tT+1

A
(N)
j −rtTN >Nq





= Pr



 sup
t∈Z+:

tT+i>0

S
(N)
tT+i − rtTN > Nq





≤
∑

t:t>− i
T

Pr
(

S
(N)
tT+i > N(q + rT t)

)

.

Now, for any fixed t0 ∈ N, we have

Pr(Q
(N)
i >Nq) ≤

∑

− i
T

<t≤t0

Pr(S
(N)
tT+i > N(q + rT t)) +

∑

t>t0

Pr(S
(N)
tT+i > N(q + rT t)).

(B.40)

Employing the principle of the largest term1 gives

lim sup
N→∞

log Pr(Q
(N)
i > Nq)

g(N)

≤ max

(

max
− i

T
<t≤t0

lim sup
N→∞

log Pr(S
(N)
tT+i > N(q + rT t))

g(N)
,

lim sup
N→∞

1

g(N)
log
∑

t>t0

Pr(S
(N)
tT+i > N(q + rT t))

)

. (B.41)

1The principle of the largest term [29, Lemma 2.1]: Let an and bn be sequences in R+. If
n−1 log an → a and n−1 log bn → b, then n−1 log(an + bn) → max(a, b). This extends easily to
finite sums.
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For the first term (the t ≤ t0 term) in the maximum, we use Proposi-

tion 3.6 to get

max
− i

T
<t≤t0

lim sup
N→∞

1

g(N)
log Pr

(

S
(N)
tT+i

N
> q + rT t

)

≤ max
− i

T
<t≤t0

−(Tt+ i)Λ∗
(
q + rT t

T t+ i

)

≤ − inf
t∈Z+:

tT+i>0

(Tt+ i)Λ∗
(
q + rT t

T t+ i

)

,

(B.42)

which is the RHS of (B.39) and finite by assumption.

Now, we show that we can select t0 appropriately such that the second

term (the t > t0 term) in the RHS of (B.41) is also no greater than the RHS of

(B.39). In other words, we show that there exists t0 such that

lim sup
N→∞

1

g(N)
log
∑

t>t0

Pr
(

S
(N)
tT+i > N(q + rT t)

)

≤ − inf
t∈Z+:

tT+i>0

(Tt+ i)Λ∗
(
q + rT t

T t+ i

)

.

(B.43)

This is shown by proving that there exist some θ > 0 and ε > 0 such that

lim sup
N→∞

1

g(N)
log
∑

t>t0

Pr
(

S
(N)
tT+i > N(q + rT t)

)

≤ −εθ
(
(t0 + 1)T + i

)
, (B.44)

for all t0 ∈ N. Now, selecting

t0 =







1

εθT
inf

t∈Z+:
tT+i>0

(Tt+ i)Λ∗
(
q + rT t

T t+ i

)






provides (B.43).
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To prove (B.44), we first use Chernoff bound as follows:

∑

t>t0

Pr(S
(N)
tT+i > N(q + rT t))

=
∑

t>t0

Pr
(

e
θg(N)

N
S

(N)
tT+i > e

θg(N)
N

N(q+rT t)
)

≤
∑

t>t0

e−θg(N)(q+rT t)E[eθS
(N)
tT+i

g(N)
N ]

=
∑

t>t0

e−θg(N)(q+rT t)(E[eθA
(N)
1

g(N)
N ])tT+i

=
∑

t>t0

exp

(

−g(N)(tT + i)

[

θ

(
q + rtT

tT + i

)

− logE[e
θg(N)

N
A

(N)
1 ]

g(N)

])

, (B.45)

where θ is an arbitrary positive scalar and the second equality is a consequence of

i.i.d. assumption on A
(N)
t .

Next, we use the convexity of Λ and the fact that Λ′(0) = λ < r (Re-

mark 3.5) to establish that there exist some θ > 0 and ε > 0 for which

Λ(θ) < θ(r − 2ε). (B.46)

On the other hand, from (3.6), we know that log E[e
θg(N)

N
A

(N)
1 ]

g(N)
→ Λ(θ). This

means that there exists a N0 = N0(θ, ε) such that, for all N > N0,

logE[e
θg(N)

N
A

(N)
1 ]

g(N)
< Λ(θ) + θε.

Combining this with (B.46), we have

logE[e
θg(N)

N
A

(N)
1 ]

g(N)
< θ(r − 2ε) + θε = θ(r − ε), (B.47)

for all N > N0.
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Hence, using (B.47), the term inside the square bracket in (B.45) can be

bounded, uniformly over all t > t0, as

θ

(
q + rtT

tT + i

)

− logE[e
θg(N)

N
A

(N)
1 ]

g(N)
= θ

(

r +
q − ir

tT + i

)

− logE[e
θg(N)

N
A

(N)
1 ]

g(N)

> θr − logE[e
θg(N)

N
A

(N)
1 ]

g(N)

> θr − θ(r − ε)

= θε, (B.48)

where the first equality holds because q > ir, by assumption.

Inserting (B.48) into (B.45), we have (B.44):

lim sup
N→∞

1

g(N)
log
∑

t>t0

Pr
(

S
(N)
tT+i > N(q + rT t)

)

≤ lim sup
N→∞

1

g(N)
log
∑

t>t0

exp (−g(N)(tT + i)θε)

= lim sup
N→∞

1

g(N)
log

(
e−g(N)θε((t0+1)T+i)

1 − e−g(N)θεT

)

= −εθ
(
(t0 + 1)T + i

)
,

and, hence, the assertion of the lemma.



Appendix C

Appendix for Chapter 4

C.1 Additional Assumption on Source Model

Here we give the additional assumption B on the source we consider in

this paper. Assumption B is required in the proof of Lemma 4.12.

Assumption B. (Sample path LDP for partial sum process (see [9, 89]))

For an arrival sequence {S1, S2, . . .}, for all m ∈ N, for every ε1, ε2 > 0,

and for every scalar a0, . . . , am−1, there exists M > 0 such that for all n ≥M and

all k0, . . . , km with 1 = k0 ≤ k1 ≤ · · · ≤ km = n,

exp

{

−nε2 −
m−1∑

i=1

(ki+1 − ki)Λ
∗(ai)

}

≤ Pr
[∣
∣Ski+1

− Ski
− (ki+1 − ki)ai

∣
∣ ≤ nε1, i = 1, . . . , m− 1

]

≤ exp

{

nε2 −
m−1∑

i=1

(ki+1 − ki)Λ
∗(ai)

}

198
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C.2 Proofs of Lemmas and Proposition

C.2.1 Proof of Lemma 4.9

Proof of Lemma 4.9. Since the symmetric static scheduler always assigns the ser-

vice rate Cav(d) to each queue, we have that

Pr[D1 > D] = Pr[Q1 > DCav(d)]. (C.1)

To be more specific, the statement holds because any bits delayed more than D

timeslots see at least DCav(d) bits before them, and any bits delayed less than D

timeslots must see less than DCav(d) bits before them. This is valid because of

the first-come-first-serve discipline assumption. Hence, the two events {D1 > D}

and {Q1 > DCav(d)} are equivalent and have the same probability.

Now, since Pr[Q1 > DCav(d)] is equal to the tail probability for a buffer

which is served at fixed capacity of Cav(d) and whose arrival process is described

by Λ(·) and satisfying LDP, one can calculate the tail probability for a single queue

system with a fixed service rate c as (see [41], [29] and [80])

lim
B→∞

1

B
log Pr[Q1 > B] = −θ∗

where θ∗ is the largest positive root of equation Λ(θ)
θ

= c. By replacing B with

DCav(d) and c with Cav(d) and using (4.10), we have

lim
ρ→∞

log Pr[Q1 > DCav(d)]

log ρ
= −σs(d)DTrav(d)

where σs(d) is given as the solution to Λ(σs(d)) = σs(d)Cav(d).
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C.2.2 Proof of Lemma 4.12

Before showing the proof of Lemma 4.12, we recall the following result on

the asymptotic tail probability of the maximal weighted delay under the longest-

weighted-delay-first (LWDF) scheduling discipline from [72] and simplify the result

to our specific assumptions of symmetric users with LDF scheduling discipline.

Fact C.1. (Theorem 2.2 in [72]) Consider a single server of fixed service rate

1 and K mutually independent source processes with stationary increments. The

total number of information bits generated by source i (i = 1, . . . , K) is given

by a sequence
{

Ŝi
t , t = 1, 2, . . .

}

where Ŝi
t is the cumulative total number of work

arrived until time t from source i. We assume
{

Ŝi
t , t = 1, 2, . . .

}

satisfies LDP and

sample path LDP (Assumptions A and B) with the convex decay function Λ̂∗
i and

the convex log moment generating function Λ̂i. Assume KE[Ŝ1
1 ] < 1 for stability.

Let αi be the weight for user i (assuming 0 < α1 ≤ α2 ≤ · · · ≤ αK). Consider

the longest-weighted-delay-first (LWDF) scheduling discipline, which always assign

the server to the longest waiting (i.e. head-of-the-line)) customer of the source

i which has the maximal weighted delay. Then, the LWDF scheduling discipline

maximizes the exponential decay rate of the stationary distribution of the maximal

delay, among all causal and work-conserving scheduling disciplines. Furthermore,

the probability is given as

lim sup
n→∞

1

n
log Pr

[
1

n
max

i∈1,...,K
ŵi > 1

]

≤ −J∗ (C.2)
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where and ŵi is the stationary delay for user i, i = 1 . . . , K, and J∗ is given as:

J∗ = min
j;x1,...,xj

1

γ

j
∑

i=1

(1 − αiγ)Λ̂
∗
i (xi) (C.3)

subject to

j ∈ {1, . . . , K} , xi > 0,

j
∑

i=1

xi > 1 (C.4)

and

1

αj+1
< γ =

∑j
i=1 xi − 1
∑j

i=1 αixi

≤ 1

αj
(C.5)

with αK+1 ≡ ∞.

Since in this paper we consider symmetric users and LDF scheduling

which is the LWDF discipline with equal weights, the following corollary gives a

specific expression of J∗ which will be used to show Lemma 4.12.

Corollary C.2. Under the assumptions of symmetric users with equal weights,

i.e. Λ̂∗
i = Λ̂∗, Λ̂i = Λ̂, and αi = 1 for all i = 1, . . . , K, J∗ in Fact C.1 is reduced to

J∗ = sup
{

θ : Λ̂(θ) ≤ θ/K
}

. (C.6)

Proof. Under the assumption of equal weights (i.e. αi = 1 for all i = 1, . . . , K),

there are feasible values of γ in (C.5) only when j = K. Hence, the minimization

in (C.3) is reduced to

J∗ = min
x1,...,xK

1 − γ

γ

K∑

i=1

Λ̂∗(xi) (C.7)

subject to
K∑

i=1

xi > 1, xi > 0, i = 1, . . . , K (C.8)
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and

1

αK+1

= 0 < γ =

∑K
i=1 xi − 1
∑K

i=1 xi

≤ 1. (C.9)

However, we notice that condition (C.9) is satisfied with any choices of {xi} satis-

fying condition (C.8). Hence, plugging the expression of γ into (C.7), we get

J∗ = min
x1,...,xK

1
∑K

i=1 xi − 1

K∑

i=1

Λ̂∗(xi) (C.10)

subject to (C.8).

We can simplify J∗ further by using the convexity property of Λ̂∗, i.e.

1

K

K∑

i=1

Λ̂∗(xi) ≥ Λ̂∗(

∑K
i=1 xi

K
) =: Λ̂∗(

Ka+ 1

K
),

where we let a be such that Ka =
∑K

i=1 xi − 1 > 0 by the condition in (C.8). The

equality holds when xi = a + 1/K for all i = 1, . . . , K. Hence, we can rewrite

(C.10) and its conditions concisely as

J∗ = min
a>0

Λ̂∗ (a + 1
K

)

a
. (C.11)

To finish the proof, we expand Λ̂∗ using its definition, as follows:

J∗ = min
a>0

1

a
Λ̂∗ (a+ 1/K)

= min
a>0

1

a
sup
θ∈R

θ(a+ 1/K) − Λ̂(θ)

= sup
θ∈R

min
a>0

θ +
θ/K − Λ̂(θ)

a

= sup
θ∈R







−∞, if θ/K < Λ̂(θ),

θ, if θ/K ≥ Λ̂(θ)

= sup
{

θ : Λ̂(θ) ≤ θ/K
}

,
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where the third equality holds because the function θ + θ/K−Λ̂(θ)
a

is convex on a

and concave on θ (since Λ̂ is convex).

Proof of Lemma 4.12. Consider a scaled version of the system in Fact C.1 where

the service rate is scaled to C (which is equal to KCav) and the arrivals are also

scaled up by C. We can think of this scaling as a change of measurement units.

We denote Di
s as the stationary delay of arrivals of user i, i = 1, . . . , K, for this

scaled single-server system with LDF scheduling. Since scaling of the service and

arrivals do not change the distribution of the delays, we have from Fact C.1 that

lim sup
n→∞

1

n
log Pr

[
1

n
max

i∈1,...,K
Di

s > 1

]

≤ −J∗. (C.12)

Noticing that the log moment generating function Λ of the scaled system is given

as

Λ(θ) = lim
t→∞

1

t
logE[eθCŜ1

t ] = Λ̂(θC), (C.13)

we have, by using Corollary C.2,

J∗ = sup
{

θ : Λ̂(θ) ≤ θ/K
}

= sup {θ : Λ(θ/C) ≤ θ/K}

= C sup
{

θ̃ : Λ(θ̃) ≤ θ̃C/K = θ̃Cav

}

= Cσs (C.14)

where σs > 0 is defined as the unique solution to Λ(σs) = σsCav. The second

equality in (C.14) follows by using (C.13); the third equality follows by letting

θ̃ = θ/C; and the last equality by using that fact that Λ is strictly convex and
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Λ′(0) = λT log ρ < Cav (the stability condition in (4.8) and the fact that Λ̂′(0) is

the average arrival rate per source [41]) and hence the supremum is attained with

θ̃ = σs.

Replacing n with D and J∗ = Cσs = KCavσs = KσsTrav log ρ in (C.12),

we have

Pr

[

max
i∈1,...,K

Di
s > D

]

.
= ρ−KσsDTrav,

for large value of D.

From symmetry, on the other hand, we have

Pr[D1
s > D] ≤ Pr

[

max
i∈1,...,K

Di
s > D

]

≤ KPr[D1
s > D].

This provides the assertion of the lemma:

P l(d) := Pr[D1
s > D]

.
= ρ−KσsDTrav.

C.2.3 Proof of Theorem 4.1

Proof of Theorem 4.1. We first show the existence of a solution d in (4.28) of

Algorithm 1. The LHS term is decreasing on d and equal to 0 for d ≥ d̄, for some

d̄ such that the arrival rate λT log ρ is equal to the service rate Cav(d̄) (in which

case, σs(d̄) = 0). On another hand, the RHS term is increasing on d and is equal

to 0 when d = 0. Hence, (4.28) must hold for some d ∈ (0, d̄). Next, if d solving

(4.28) is less than d0, this d is the lower bound d∗l (i.e. asymptotically maximizing
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the RHS term in (4.27)) and the upper bound d∗u is obtained from maximizing the

LHS in (4.27). The existence of d solving (4.29) can be shown similarly.

C.2.4 Proof of Proposition 4.18

Proof of Proposition 4.18. The limiting log moment generating function Λ(·) for

compound Poisson source with exponential packet length is derived in [44], which

is

Λ(θ) = lim
n→∞

1

n
log E

[
exp(θS1

t )
]

= lim
n→∞

1

n
log E

[

exp(θ

n∑

t=1

A1
t )

]

= log E
[
exp θA1

1

]

=







νθ
µ−θ

if θ < µ,

∞ if θ ≥ µ.

(C.15)

From Lemma 4.9, σs(d) is the solution to Λ(σs(d)) = σs(d)Cav(d). From

(C.15), this reduces to finding σs(d) such that

νσs(d)

µ− σs(d)
= σs(d)Cav(d)

⇔ µλT log ρ

µ− σs(d)
= rav(d)T log ρ

where we have replaced ν and Cav(d) from (4.32) and (4.10). Hence, σs(d) =

µ(1 − λ/rav(d)).



Appendix D

Appendix for Chapter 5

D.1 Proof of Lemma 5.12

Here we prove Lemma 5.12 which uses the following fact and lemmas, all

three of which directly result from the definitions of quasi-continuity, continuity,

and scheduler assignment H(·).

Fact D.1. Assume X F,G→ Y, X ,Y are metric spaces, and x ∈ X . If F is quasi-

continuous at x and G is continuous at x, then F +G is quasi-continuous at x.

Lemma 5.12. For t ∈ N, Gt is quasi-continuous on R
K×t
+ with respect to the

uniform topology.

Proof. Using our queueing equation we first observe the following recursive relation

between Gt and Gt−1 for any t ∈ {2, 3, . . .} and x = x(0,t] ∈ R
K×t
+ :

Gt(x(0,t]) = [Gt−1(x(1,t]) −H(Gt−1(x(1,t]))]
+ + x1, (D.1)
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where we used the fact that Q0(x(0,t]) = Gt(x(0,t]), and Q1(x(1,t]) = Gt−1(x(1,t])

when the initial backlog at time −t is small, i.e., Qt ∈ R.

Equation (D.1) says that Gt(x(0,t]) depends linearly on x1. This implies

the following simple but consequential observations:

Observation D.2. If Gt is strictly quasi-continuous at x(0,t], then it is strictly

quasi-continuous at x̃(0,t] := (x̃1,x2, . . . ,xt) for any x̃1 ∈ RK
+ . If Gt is continuous

at x(0,t], then it is also continuous at x̃(0,t].

Observation D.3. If Gt(x
n
(0,t]) → Gt(x(0,t]) for a sequence {xn

(0,t]} such that

xn
(0,t] → x(0,t], then for any sequence {x̃n

(0,t] = (x̃n
1 ,x

n
2 , . . . ,x

n
t )} where x̃n

1 → x1,

we also have Gt(x̃
n
(0,t]) → Gt(x(0,t]).

Using the recursive relation in (D.1), we prove this lemma by induction

on t ∈ N. For t = 1, G1(a1) = a1, hence G1 is continuous on RK
+ . Assuming

that Gt is quasi-continuous on RKt
+ , we want to show that Gt+1 is quasi-continuous

on R
K(t+1)
+ . Using the fact that the [·]+ function is continuous, Remark 5.10, and

Fact D.1, it suffices to show that the function Ft := Gt−H ◦Gt, is quasi-continuous

on R
Kt
+ to show that Gt+1 is quasi-continuous. In particular, for any arrival sample

path a = a(0,t] ∈ R
K×t
+ , we need to show that Ft is quasi-continuous at a(0,t] with

respect to the uniform topology. It suffices to show that it is possible to select a

sequence ân → a for which

Gt(â
n
(0,t]) → Gt(a(0,t]), (D.2)

H ◦Gt(â
n
(0,t]) → H ◦Gt(a(0,t]), (D.3)
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such that both Gt(·) and H ◦Gt(·) are continuous at every ân
(0,t].

We show this by first noting that the induction hypothesis, i.e., quasi-

continuity of Gt, and the definition of quasi-continuity ensure that there exists a se-

quence {an
(0,t]} such that an

(0,t] → a, in the uniform topology, such that Gt(a
n
(0,t]) →

Gt(a(0,t]), and Gt(·) is continuous at an
(0,t] for all n. We will construct the de-

sired sequence {ân
(0,t]} from this sequence {an

(0,t]}. We proceed by considering the

following two cases, depending on the value of a1.

Case 1: a1 > 0, i.e., every component of the a1 ∈ RK is positive. Let

ε > 0 be the smallest component of a1. Since H(·) is quasi-continuous, it is possible

to choose a sequence of (workload) vectors {wn} such that wn → Gt(a(0,t]), and H

is continuous at wn for all n. Now, we define

ãn
1 := wn − [Ft−1(a

n
(1,t])]

+ (D.4)

= wn −Gt(a
n
(0,t]) + an

1 (D.5)

=
(
wn −Gt(a(0,t])

)
+
(
Gt(a(0,t]) −Gt(a

n
(0,t])

)
+ (an

1 − a1) + a1. (D.6)

It is clear from the last equality that ãn
1 → a1 with respect to uniform topology. We

need to ensure that ãn
1 ≥ 0 since negative quantities are involved in the definition.

We do this by using the facts that every component of a1 ∈ RK is greater or equal

to ε > 0, and that wn → Gt(a(0,t]), Gt(a
n
(0,t]) → Gt(a(0,t]), and an

1 → a1. These facts

imply that there exists an nε such that for all n > nε we have ||wn −Gt(a(0,t])|| <

ε/3, ||Gt(a(0,t]) −Gt(a
n
(0,t])|| < ε/3 and ||an

1 − a1|| < ε/3 (with the L1 norm) which

then together with (D.6) imply that, for the sequence ãm+nε

1 , we always have non-
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negativity of all components. Hence, we construct a new sequence {ân
(0,t]} where

ân
1 = ãn+nε

1 and ân
(1,t] = an+nε

(1,t] .

This new sequence ân
(0,t] is the sequence we are after because using the in-

duction hypothesis together with Observations D.2 and D.3, we have thatGt(â
n) →

Gt(a), and Gt is continuous at ân for all n. Furthermore, by construction

Gt(â
n) = ân

1 + [Ft−1(â
n
(1,t])]

+ = ãn+nε

1 + [Ft−1(a
n+nε

(1,t] )]+ = wn+nε. (D.7)

Hence, we have shown that there exists a sequence ân
(0,t] satisfying (D.2) and (D.3).

In addition, the continuity of H ◦ Gt at ân
(0,t] for all n is a direct consequence of

continuity of Gt at ân
(0,t] and continuity of H at wn+nε, which is equal to Gt(â

n),

for all n.

Case 2: a1 ≥ 0. Without loss of generality by permuting the user labels,

we can assume that the first k components of a1 are 0 while the rest of the K − k

components are positive. Now the sequence am
1 with 1/m in the first k components

and the non-zero values of a1 in the remaining coefficients converges to a1 such that

for every m every component of am
1 is positive. We construct a sequence {am

(0,t]}

with this am
1 and am

(1,t] = a(1,t]. For ease of exposition we denote the vector with

1/m in the first k positions and 0s in the remaining K − k positions by [1/m]k. It

is obvious that Gt(a
m
(0,t]) → Gt(a(0,t]) since

Gt(a
m
(0,t]) = am

1 + [Ft−1(a
m
(1,t])]

+ = am
1 + [Ft−1(a(1,t])]

+ = [1/m]k +Gt(a(0,t]).
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When Gt(a(0,t]) 6∈ [0, C)K , for m large enough,1 we have

H ◦Gt(a
m
(0,t]) = e

(
Gt(a

m
(0,t])

)
= e

(
Gt(a(0,t])

)
= H ◦Gt(a(0,t]),

where the function e is defined in the definition of H in (5.2). On the other

hand, if Gt(a(0,t]) ∈ [0, C)K , then the continuity of ProjR(·) yields H ◦Gt(a
m
(0,t]) →

H ◦Gt(a(0,t]).

Since for each m we have that am
1 has all elements strictly positive, we

can use the similar construction as in Case 1 but with am
(0,t] in place of a(0,t]. In

particular, for eachm, we can now generate a sequence {ãm,n
(0,t]} such that ãm,n

1 → am
1

as n → +∞, ãm,n
(1,t] = an

(1,t], and by using Observations D.2 and D.3, the following

hold

Gt(ã
m,n
(0,t]) → Gt(a

m
(0,t]), (D.8)

H ◦Gt(ã
m,n
(0,t]) → H ◦Gt(a

m
(0,t]), (D.9)

with both Gt(·) and H ◦Gt(·) being continuous at ãm,n
(0,t] for all n.

Now we define the sequence âm
(0,t] = ãm,m

(0,t] as the sequence we are after. By

construction, we have âm
(0,t] → a(0,t] and both Gt(·) and H ◦Gt(·) continuous at all

âm
(0,t]. Since Gt(a

m
(0,t]) → Gt(a(0,t]) and H ◦Gt(a

m
(0,t]) → H ◦Gt(a(0,t]), it follows from

(D.8) and (D.9) that Gt(â
m
(0,t]) → Gt(a(0,t]) and H ◦Gt(â

m
(0,t]) → H ◦Gt(a(0,t]).

1E.g., m being greater than the reciprocal of the maximum positive component of Gt(a(0,t]).
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D.2 Proof of Lemma 5.13

Lemma 5.13. If Kµ < c, the mapping G is quasi-continuous on DK
µ with respect

to the scaled uniform topology.

Proof. The proof follows the concept in [82]. Let Kµ < c and A ∈ DK
µ . Consider

any sequence {An} such that An → A. The main step of the proof is based on the

following claim:

Claim D.4. There exists a s∗ = s∗(A) < ∞ and n′
0 such that, when n > n′

0, the

workloads at time −s∗ of the arrival sample paths An and A stay within the rate

region R, i.e., Qs∗(A
n) ∈ R and Qs∗(A) ∈ R.

With this claim and by the definition of Gs∗ , the workloads at time zero

for An and A are G(An) = Gs∗(A
n
(0,s∗]) and G(A) = Gs∗(A(0,s∗]), respectively, when

n > n′
0. In other words, we have transformed the infinite-horizon workload into the

finite-horizon workload whose mapping is already known to be quasi-continuous

by Lemma 5.12. The proof is now complete since Gs∗ is quasi-continuous on R
K×s∗

+

and An
(0,s∗] → A(0,s∗].

What is left is to show Claim D.4. To do this, we map the multi-queue

problem into a single-queue problem with sum arrival processes, sum workload

processes, and server capacity c (following the standard approach used, e.g., in

[17]). We then follow the proof in [29,82] for the (aggregate) single-queue scenario.

Given the definition of H and the simplex capacity region R, the queue dynamics

for the sum workload is that of a single queue whose arrivals are the sum of the
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arrivals, i.e.,

Q̂t−1 = [Q̂t − c]+ + Ât, (D.10)

where we define the hat (̂·) notation to mean the sum over all users, i.e. Ât =

∑K
k=1A

k
t and Q̂t =

∑K
k=1Q

k
t . Recursion of the queue dynamics (D.10) and letting

T → ∞ where QT ∈ R gives the standard expression for the stationary sum

workload [29]:

Q̂0(A) = sup
t∈N

Â(0, t] − c(t− 1). (D.11)

To prove the claim we use the fact that the rate region R is simplex,

hence Q̂s ≤ c ⇔ Qs ∈ R. That is, it suffices to show that there are a n′
0 and a

finite s such that, for n ≥ n′
0, Q̂s(A) ≤ c and Q̂s(A

n) ≤ c.

Since An → A under the scaled uniform topology, for any given ε > 0,

there exists a n0 such that for n ≥ n0, maxk∈K supt∈N |An,k(0,t]
t

− Ak(0,t]
t

| < ε. Hence,

supt | Â
n(0,t]

t
− Â(0,t]

t
| < Kε. Since A ∈ DK

µ , there is a t0 < ∞ such that for t > t0

and k ∈ K, Ak(0,t]
t

≤ µ + ε. Therefore, it follows that Â(0,t]
t

≤ Kµ + Kε for

t > t0. Since Kµ < c, we choose ε = (c − Kµ)/4K. We now have that for all

n ≥ n0 and t ≥ t0,
Ân(0,t]

t
< K(µ + 2ε) = (c + Kµ)/2 < c, and we also have that

Â(0,t]
t

≤ K(µ+ ε) = (c+ 3Kµ)/4 < c. In other words, for all n ≥ n0, the workload

at time zero is a function of only the arrivals within time (0, t0] and hence,

Q̂0(A) = sup
1≤t≤t0

Â(0, t] − c(t− 1) and Q̂0(A
n) = sup

1≤t≤t0

Ân(0, t] − c(t− 1).

Let s ≤ t0 and sn ≤ t0 be the minimum values of the optimizing t’s in the above

equations, respectively. It can be shown as in [29, Lemma 5.4] that Q̂s(A) ≤ c and
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Q̂sn(An) ≤ c (and in addition, Q̂v(A) > c and Q̂vn(An) > c for all v ∈ (0, s) and

vn ∈ (0, sn)).

Next we show that there exists n1 such that for n ≥ n1, s
n = s. This is

not difficult because it is known that Q̂0 is continuous on DKµ [82, Lemma 13].

Since Ân → Â on DKµ, we have Q̂0(A
n) → Q̂0(A) and sn → s. Since sn, s ∈ N,

there exists a n1 such that sn = s for n ≥ n1. The claim is now proved by taking

n′
0 = max(n1, n0).
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