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Abstract 

This paper considers access control in a target multiserver loss queue fed by a set of upstream 

parallel multiserver loss queues and by a stream of new customers. The target queue faces a 

choice of how many servers to reserve for each stream. Revenue is gained by each station when 

it serves a customer, but the amount of revenue at the target queue depends on the source of the 

customer. We prove that the policy that maximizes total discounted revenue consists of a set of 

monotonically decreasing thresholds as functions of the occupancy of each queue. We prove 

monotonicity properties with respect to system parameters. We show that there exists an 

ordering of the thresholds based on the relative revenue paid at the target queue. Finally, we 

compare this system with a tandem queue model. 

Keywords: Loss networks, Connection admission control, Dynamic programming 



1.  Introduction 

This paper considers access control policies in a target multiserver station fed by a set of 

upstream parallel multiserver loss queues and by a stream of new customers. Each station has 

an arbitrary number of servers, but no queue. Service times of each customer are i.i.d., but the 

revenue generated at the target queue is differentiated based on the source of the customer, with 

new customers at the target queue paying less than upstream customers. Departures from 

upstream queues are Bernoulli routed either to the target queue or out of the network. We are 

interested in the access control policy for the target queue that maximizes total discounted 

revenue. 

A network of queues can serve as a useful model for systems arising in many contexts, 

including production networks and communication networks. There is a long history of 

descriptive models being used to evaluate and predict the performance of existing and 

proposed systems, and thus improve the design of these systems. In particular, there is a rich 

literature using Markov decision processes (MDPs) to analyze control policies in such 

networks. See [1] for an excellent overview of the use of MDPs in communication networks.  

We are in particular interested in the control of loss networks, i.e. networks of queues with no 

buffer beyond one space per server. Many communication network papers have considered 

allocation of capacity and/or control of arrivals to queues, see e.g. 

[2][4][11][18][22][26][27][37]. However, few communication networks papers have 

considered admission control of networks of more than two queues. Fewer yet have considered 

admission control of networks of loss queues. 
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The queueing literature has had a similar focus. Excellent surveys of research on access control 

policies in queueing networks can be found in [29][30]. Although there is a rich literature on 

control of single multiserver queues (see e.g. [14][24][35][36]), again there are very few results 

either on control of networks of more than two queues or on control of networks of loss queues. 

We will start with a brief review of some of the literature on networks containing exactly two 

queues. Initial work approached control of such networks as a routing problem. Threshold 

policies and monotonicity properties governing routing of arrivals to one of two parallel queues 

have been proven to hold by Ephremides et al. [6]. Hajek [12] provided similar results for  more 

general two queue systems that can be either arranged either in parallel or in series, and Beutler 

and Teneketzis [3] have demonstrated that monotonicity properties of optimal routing policies 

extend to partially observable queues.  Admission control policies have also been considered in 

networks of two queues with infinite buffers. Davis [5] considered two exponential servers in 

parallel serving a renewal arrival process. An inductive proof based on value iteration shows 

that the optimal policy is admission monotonic and routing monotonic. Ghoneim and Stidham 

[10] studied two exponential servers in series. Using a similar approach, they establish that the 

optimal value function is concave in each argument and submodular. Hariharan et al. [13] 

extended the monotonicity properties derived by Davis and Hajek to control of admission and 

routing in two parallel queues, each with an infinite number of identical rate servers. Finally, 

Ku and Jordan [20] considered a system with two multiserver loss queues in series. Under 

appropriate conditions, the optimal admission policy is proven to be a monotonic threshold.  

The literature on control of networks of more than two queues focuses almost entirely on 

routing approaches, see e.g. [7-9][15-17][23][25][31][33][34]. Typical routing results govern 

which queue to send a job to or which job to service next. There are very few papers on 

admission control in networks of more than two queues. Weber and Stidham [32] demonstrate 
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monotonicity properties in a network consisting of a series of queues, but they allow for 

admission control only to the first queue. As mentioned by Stidham and Weber [30], attempts 

to generalize structural results concerning admission control to more than two queues in 

parallel have met with little success.  We have found no papers that provide results for 

admission control in loss networks of more than two queues.  

In review, almost all of the current admission control literature has assumed infinite queues, 

with holding costs as the performance metric. In contrast, here we assume a loss network, and 

use loss as the performance metric. 

In this paper, we prove that, under appropriate conditions, the optimal admission policy for the 

parallel multiserver loss system considered is given by a set of thresholds. Each threshold 

indicates whether to admit or block a customer, based on the source of that customer and on the 

occupancy of each queue. We prove that these thresholds are nonincreasing functions of the 

queue occupancies. We provide a set of results that characterize the variation of these 

thresholds with system parameters. These results, while similar to previous results for networks 

of two queues [20], are the first of their kind for networks of more than two queues. 

Our second set of results is unique to the parallel network. We find that there exists an ordering 

of the thresholds based on the relative revenue paid at the target queue. We also prove that the 

optimal policy will reserve more capacity at the target queue if the customers are distributed 

more evenly at the upstream parallel queues. Furthermore, we compare this parallel queue 

network to a tandem network in which the first queue is given by the aggregation of the 

upstream queues in the parallel network. We show that the optimal policy in the parallel 

network reserves less capacity than the equivalent tandem network. Therefore, the tandem 

model, when used as a simpler approximation to the parallel model, generates a conservative 
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policy in terms of the reservation for internal customers. These results are stronger 

characterizations of the optimal policy than are typical in most admission control research. 

Our primary technique, stochastic dynamic programming, has been used in much of the other 

research on control in queueing networks reviewed above. However, the structure of the 

network considered here is quite different than networks with infinite queues. This additional 

complexity is often presented by mutual interaction of multiple stations and presence of 

boundary states in the state space. In addition, using loss as the performance metric also 

changes the nature of the proof techniques. 

The parallel multiserver loss queue model is presented in section 2. In section 3, we 

characterize the optimal admission policies and discuss the variation of these thresholds with 

system parameters. Numerical results are presented for a small system. In section 4, we 

compare this system to the simpler tandem queue system.   

2.  Model and problem formulation 

Denote by n  the number of upstream stations in the network, and denote the target queue by 

station . Station i  is a non-preemptive loss queue with m  servers. Each station is 

presented with a Poisson stream of new customers, with arrival rate 

1+n i

iλ . Service times are i.i.d. 

and exponential at rate iµ . Departures from station i  (1 ) are routed out of the network 

with probability P  or to station  otherwise. This network is pictured in Fig. 1. i

ni ≤≤

1+n

r i

1

Revenue is paid by each customer at the start of service. If the customer entered the network at 

station i , it pays an amount  at station i  and is denoted as type .  If the customer entered at 

an upstream station, it pays an amount R  at station 

i

1+→ni +n . We assume that 
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, so that upstream stations are ordered with priority and so 

that internal customers are preferable to new customers at station , and that 1  for 

. 
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This system can be modeled as a  dimensional continuous time Markov chain, with state 1+

 defined as the number of customers at stations 1, 2, ... , n  

respectively. Ω  is the state space.  It is convenient 

to define the following quantities: 

},...,1,0{x...x} m,..., m 12 +n

1+

• ,...,1,0{x...x}1,...,1,0{x − ni mm  for 1 . ≤≤ ni

•  is the vector with 1 in the i th entry and 0 elsewhere. 

Uniformization results in an equivalent discrete time Markov chain by allowing fictitious 

transitions from a state to itself [21][24].  Choose any R∈Q  s.t.  and let (
1i

iλ +∑
=

 and  for 1 .  The equivalent discrete time system has corresponding 

parameters  and the appropriate discount factor 0

1+

1<< α . 

1n+

We consider connection admission control policies that are capable of accepting or blocking 

arrivals of each customer type (internal or new) at each station. Blocked arrivals are lost. Our 

objective is to maximize the total discounted revenue over an infinite horizon. This criterion 

assumes an appropriate discount factor α , and, among all control policies , attempts to 

maximize 







== ∑

=
+ XXXREXV

n
nn 0

0
1 ),()( αππ

∞

Xn , where E  represents the conditional 

expectation, given that control policy π  is employed ,  is the revenue associated 

with a change of state from  to , if any, and 

, X(XR n

nX 1+nX { ,1,0, =nnX  is the sequence of states. 
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An admission control policy is defined by a (  mapping matrix  

with .  a  (0) indicates the control action is to admit (reject) 

customer type  at station 

ij
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•  for a Ω  

•  for a ,  and = nj  

•  for  a ∈

Let V . A control policy  is said to be *π -optimal if V  for all (* X
π

∈X . According to Theorem 2.1 in Ross [28], this optimal control policy is chosen in each 

state to maximize the future expected discounted revenue as given by the following optimality 

equation. This dynamic programming equation, subject to the optimal control, consists of all 

possible transitions with corresponding transition probabilities. 
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If a tie occurs among multiple policies, we arbitrarily define the optimal policy to be the one 

that maximizes throughput. The optimal value function can be determined using successive 

approximation. Choose an arbitrary initial value function, V .  Then define the step h  value 0
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function, V , to be the expected discounted revenue starting in state , 

by choosing actions that maximize future expected discounted revenue, assuming that 

transitions more than one time step in the future generate an average revenue according to the 

step  value function.  Then successive approximation gives: 

)(X ),...,,(= xxxX

1−h

}

i

i

h
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XA
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1

)− ieX
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Y

hYXh YVYXRAPV )(),()(( 1                                                                   (2) 

where  is one-step transition probability. The optimal value function obeys: 

)(lim)( 1 XVXV hh −∞→
=                                                                                            (3) 

The optimal admission policy admits a customer if the immediate revenue generated by that 

customer exceeds the expected loss in future discounted revenue caused by future blocking due 

to this customer.  We define difference functions ∆  and 

 for 1

()( hh XVX =

)(( ieXV +∆ 1+≤≤ ni  and iX Ω∈ .  Thus the optimal policy, in state , 

• For 1 , admits a customer of type i  at station i  (i.e. ) iff  1+ )(Xaii

• For , admits a customer of type i  at station 1+ 1+n  (i.e. ) iff 

. 1+→ni≤ R

3.  Optimal access control 

In this section, we present a sequence of theorems characterizing the form of the optimal 

admission control. Theorems 1 and 2 state that, under appropriate conditions, type 2,…,  and 

 traffic may need to be controlled at station n . Theorems 3 and 4 state that optimal 

admission policies are given by a set of monotonically decreasing switching thresholds. 

Theorem 5 shows that there exists an ordering of the thresholds based on the relative revenue 

+n 1+
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paid at the target queue. Theorem 6 describes the variation of these thresholds with variations 

in system parameters. 

The following lemma details the structure of the optimality value function, using value 

iteration. It will be used repeatedly to prove that the optimal policy, given by the corresponding 

limit, has similar desirable properties to those described here. 

LEMMA 1 

If: 

(a) For 1 ,  is monotonically increasing in  with the others fixed 1+≤≤ ni )(1 Xn
h
+∆ ix

(b) For 1  and , ni ≤≤ iX Ω∈ i
i
h rX <∆ )(  

(c) For , ∆  1+Ω∈ nX 11
1 )( +→

+ < n
n
h RX

Then: 

(A) For 1 ,  is monotonically increasing in  with the others fixed 1+≤≤ ni )(1
1 Xn

h
+
+∆ ix

(B) For 1  and ,  ni ≤≤ iX Ω∈ i
i
h rX <∆ + )(1

(C) For ,  1+Ω∈ nX 11
1
1 )( +→

+
+ <∆ n

n
h RX

<Outline of Proof> 

In order to prove that ∆  is monotonically increasing in x  (property A), we consider 

two states 

)(1
1 Xn

h
+
+ 1

X  and X  with 11 xx <  and ii xx =  for 12 +≤≤ ni . We write 

 and substitute (2) into each term on the right hand side. 

The proof proceeds by collecting and comparing similar terms. The key is to demonstrate that 

terms generated by boundaries of the state space can be bounded by others. The resulting 

individual comparisons show that 

)))( 1
1
1 ++

+
+ +−=∆ nhh

n
h eVVX (1 X(1+ X

)(X)( 1
1

1
1 X n

h
n
h

+
+

+
+ ∆<∆ . Property (A) is then used to prove 

properties (B) and (C).  The full proofs can be found in [19]. 
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We first use this lemma to establish that customers should never be blocked at the upstream 

stations. This result is intuitive, as blocking upstream customers in stage 1 stations cannot 

increase revenue at the target stage 2 queue. 

THEOREM 1 

i
i rX ≤∆ )(  for 1  and . Consequently, it is optimal to always admit type i  

customers at station i , i.e., a . 

ni ≤≤ iX Ω∈

1)( =Xii

<Outline of Proof> 

The statement follows directly from lemma 1 (B) using the limit given in (3). From the 

optimality equations, we know that the difference in the optimal value function between two 

neighboring states dictates whether the optimal policy will accept or deny the corresponding 

upcoming customers. Therefore, if this difference is always smaller than the corresponding 

revenue, then there is no need to control that type of customer at the indicated station. 

We next use the lemma to establish that type 1 customers should never be blocked at the target 

queue. This result is also intuitive, as these customers generate the highest revenue at that 

station. 

THEOREM 2   

11
1 )( +→

+ ≤∆ n
n RX

1+n

 for .  Consequently, it is optimal to always admit type 1 customers 

at station , i.e., . 

1+Ω∈ nX

)()1(1 + Xa n 1=

<Outline of Proof> 

The statement follows directly from lemma 1 (C) using the limit given in (3).  
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We next establish the key result that the optimal access control policies consist of a set of 

thresholds. An admission control policy for type i  customers, , at station +n  is 

called a threshold policy if there exists a T  so that in state ),...,( 1
i x ,...,, n21 xx ′′′nx )1+(xX =′  type 

 customers are admitted (i.e. i ()1( 1) = ) iff . )n′,...,1 n xxx =′=1+nx′

12 +≤≤ ni 1

′+ Xa ni ( 1
i xT<

THEOREM 3 

)(1 Xn+∆  is monotonically increasing in . Consequently, the optimal access policy for the 

target queue consists of a set of thresholds. 

1+nx

<Outline of Proof> 

The statement follows directly from lemma 1 (A) using the limit given in (3). The optimal 

control policy blocks the admission of a customer to a queue iff the difference function is less 

than the corresponding revenue. Therefore, if the difference function is monotonic in the state 

of the destination queue, then the optimal policy will be of the threshold type. 

For such threshold policies, formally the thresholds are defined as follows. For  ni ≤≤2

• ) )(   min(),...,( 1
1

11 +→
+

+ >−∆= nii
n

nn
i ReXxxxT with T  if the minimum is 

undefined. 

in
i mxx =),...,( 1

Similarly define 

• ) )(   min(),...,( 1
1

11
1

+
+

+
+ >∆= n

n
nn

n rXxxxT  with T  if the minimum is 

undefined. 

11
1 ),...,( +

+ = nn
n mxx

We next establish the variation of these thresholds with the occupancies of each station. 

THEOREM 4 
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)(1 Xn+∆  is monotonically increasing in  for ix ni ≤≤1 . Consequently, the optimal switching 

policies T  are nonincreasing functions of , ,…, and . ),...,( 1 n
i xx 1x 2x nx

<Outline of Proof> 

The statement follows directly from lemma 1 (A) using the limit given in (3). If the difference 

function is monotonic in the state of the source queues, then the threshold will be also 

monotonic in those states. 

It should be noted that optimal admission policies for more general networks do not necessarily 

obey the structure of monotonically decreasing switching thresholds. In particular, adding 

additional queues in series or adding cycles can destroy such properties due to interaction 

between policies at different stations [19]. 

Theorems 3 and 4 are illustrated with the use of a numerical example for the simplest such 

parallel multiserver loss system -- one with 2 upstream queues and 1 target queue. The system 

parameters are: m , , 6= 6=m 61 2 3 , , , 1λ , 8.12 , 

8.0=3λ , 4=1µ , 32 =µ , 33 =µ , 3.0P1 = , 1.0P2 = , 51 =r , 52 =r 3r, ,  and 

. Numerical results were obtained by the method of successive approximation. The 

optimal value function is found, and from that the optimal policy is inferred. Theorems 1 and 2 

guarantee that no customers should be rejected at stations 1 and 2, and that type 1 customers 

should not be blocked at station 3. The numerical results confirm this. The access control 

policy therefore consists of policies for the admission of type 2 and 3 customers at station 3. 

These policies are verified to be threshold policies and are shown in Fig. 2 and Fig. 3. 

5= 1→R 25=3

932 =→R

=m 99995.0 100000=Q 2==α =λ

Note that the thresholds are nonincreasing functions of  and  as guaranteed by theorem 4. 1x 2x
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We now turn to a comparison of the different thresholds based on the relative revenue paid at 

the target queue. 

THEOREM 5 

(A)  For , . Consequently, if any upstream customer 

would be blocked at the target queue, then a new customer would also be blocked, when 

there are the same number of customers at each queue. 

ni ≤≤2 ),...,(),...,( 1
1

1 n
n

n
i xxTxxT +≥

(B) . )1,...,,,(...),...,1,,(),...,,1,( 321321
3

321
2 +≥≥+≥+ n

n
nn xxxxTxxxxTxxxxT

Consequently, if any upstream customer would be blocked at the target queue, then an 

upstream customer paying a lower revenue would also be blocked, when there are the same 

number of customers at each queue excluding the transitioning upstream customer. 

<Proof> 

(A) By hypothesis .  Theorems 3 and 4 thus imply 11 ++→ > nni rR

       ) )(   min(),...,( 1
1

11 +→
+

+ >−∆= nii
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i ReXxxxT  

                                ) )(   min( 1
1
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+
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n
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                           ) )(   min( 1
1

1 +
+

+ >∆≥ n
n

n rXx  

                            ),...,( 1
1

n
n xxT +=

(B) By hypothesis, . Theorems 3 and 4 thus imply 111211 ... ++→+→+→ >≥≥≥ nnnnn rRRR
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1

1321
2
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+
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nn RxxxxxxxxxxT  

                                ),..,1,,() ),,..,,,(∆   min( 321
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Theorem 5 demonstrates a form of priority at the downstream queue, based on the revenue paid 

at that queue. One may conjecture that T for  

namely that if any upstream customer would be blocked at the target queue, then any upstream 

customer with a lower priority would also be blocked when there are the same number of 

customers at each queue. This property, however, seems to depend on a "diagonal 

monotonicity" property, ∆  for )(1
j

n eX −∆ + nji ≤<≤2 , that we have been 

unable to prove [19]. 

),...,,(),...,,( 2121 n
j

n
i xxxTxxx ≥ nji ≤<≤2 ,

)(1
i

n eX ≤−+

Finally, we investigate the variation of each threshold with system parameters. 

THEOREM 6 

The admission control threshold on type i  customers, T , is for  and 

 : 

),...,,( 21 n
i xxx 12 +≤≤ ni

111211 ... ++→+→+→ >≥≥≥ nnnnn rRRR

(1) monotonically decreasing in α, λ  (1j 1+≤≤ nj ),  (1+→njR nj ≤≤1 ) and  (jm nj ≤≤1 ) 

(2) monotonically increasing in 1+nµ , r , and  (1+n jP nj ≤≤1 ) 

(3) insensitive to  (jr nj ≤≤1 ) 

Furthermore, 

(4)  (),...,( 11 n
i

n xxTm −+ 12 +≤≤ ni ) are monotonically decreasing in m , while 

. 

1+n

0),...,1 >nxx(iT

<Outline of Proof> 

The proofs for sensitivity with respect to arrival rates, service rates, first stage revenues, and 

capacities build on lemma 1 and theorems 1-4. Using appropriately linked initial values, the 

monotonicity of the thresholds demonstrated in theorem 4 is used to establish an ordering on 
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the step h difference functions. The resulting limit proves the desired property. The proofs for 

sensitivity with respect to second stage revenues use a revenue scaling to which the optimal 

policy is invariant. Then the monotonicity with respect to first stage revenues is invoked to 

prove the desired property. The full proofs can be found in [19]. 

This theorem is valuable for the design of networking systems, since it demonstrates how the 

optimal admission policies vary with the capacities of the network and with the weighted 

priorities. 

4.  Optimal access control for identical first-stage queues 

In this section, we consider the special case in which all multiserver loss queues at the first 

stage are identical with respect to arrival rates and capacities. We demonstrate two 

comparisons of efficiency. First, we show that the same or less capacity is reserved at the 

second stage queue as the disparity in occupancy of first stage queues increases. 

Second, we compare this parallel queue network with identical first stage queues to a tandem 

network in which the first queue is given by the aggregation of the upstream queues in the 

parallel network. Such a tandem model could be used as a simpler model, and computation of 

optimal policies would be much quicker. The key question is how do the optimal policies for 

the two systems compare? We demonstrate here that the tandem model reserves no less 

capacity in the second stage queue than the parallel model. 

We start with a parallel multiserver loss model in the special case in which all multiserver loss 

queues at the first stage are identical with respect to arrival rates and capacities. We also 

assume that customers leaving these upstream queues will go to station n  with the same 

probability and pay the same revenue. It follows from theorem 2 that the optimal policy admits 

1+
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all customers of types 1,…,  at the first stage queue. Lemma 2 investigates how the control 

policy for new customers at the second stage queue is affected by the distribution of customers 

at the first stage. 

1n
h
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) ≥

(1n
h
+

) ≥

n
h∆ +

+

) ≥

1
1

n
h
+
+

) ≥

+

n

LEMMA 2 

For , if statements (a), (b) and (c) in Lemma 1 hold and if: 1+Ω∈ nX

(d)  for ))1()1(()(1
jiji

n
h ekekXkekeX +−++∆>−+∆ + nk ∈  and  s.t. 

  

0>= ji xx

imk ≤+ )1( , 01( +− kx jix +

(e)  for ))1()1()(1
jiji

n
h ekekXkekeX +−++∆>−+∆ + nk ∈  and  s.t. 

  

11 >+= ji xx

imk ≤+ )1( , 01( +− kx jix +

Then: 

(D)  for ))1()1(()( 1
1

1
1 jiji

n
h ekekXkekeX +−++>−+∆ +

+ nk ∈  and  s.t. 

  

0>= ji xx

imk ≤+ )1( , 01( +− kx jix +

(E)  for ))1()1(()(1
1 jiji

n
h ekekXkekeX +−++∆>−+∆ +

+ nk ∈  and  s.t. 

  

11 >+= ji xx

imk ≤+ )1( , 01( +− kx jix +

<Outline of Proof> 

In order to prove property (D), we consider two type 1+n  differences  

and  with 

)(1
1 ji

n
h ceceX −+∆ +

+

)(1
1 ji

n
h dedeX −+∆ +

+ )0 ii xmdc ,min( ix −≤<≤ . We write 

 and substitute (2) into 

each term on the right hand side.  As with lemma 1, the proof proceeds by collecting and 

comparing similar terms. The key is again to demonstrate that terms generated by boundaries 

of the state space can be bounded by others. Unlike in the proof of lemma 1 however, this time 

we know that the optimal policies are thresholds. This information can be used in portions of 

)( 11 ++ ++− nih eceXV)(1
1

+
+ −∆ ji

n
h ceceX () 1+=−+ hji XVcece − jce
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state space. The resulting individual comparisons show that 

. The proof of property (E) is similar. The full 

proofs can be found in [19]. 

)()( 1
1

1
1 ji

n
hji

n
h dedeXceceX −+∆>−+∆ +

+
+
+

nji ≤≤ ,1 , 1+Ω∈ nX ji x≥

1
1 )( +

+ ≤ n
n rX

We can now establish our desired result. 

THEOREM 7 

For  , and x , . Consequently, the 

threshold is monotonically increasing with greater disparity in first stage queue occupancy. 

)()( 11
ji

nn eeXX −+∆≥∆ ++

<Outline of Proof> 

The statement follows directly from lemma 2 using the limit given in (3). Since type 1+n  

customers are admitted iff ∆ , the optimal policy will reserve the same or more 

spaces when customers are more equally distributed at the first stage. 

This result is intuitive. A more equal distribution will decrease the short-term blocking 

probability at the first stage. This will have a secondary effect of increasing the flow from first 

stage queues to the second stage. Finally, this increased flow may increase the desired reserved 

capacity at the second stage queue. 

We now turn to a comparison of this parallel queue network with identical first stage queues to 

a tandem network in which the first queue is given by the aggregation of the upstream queues in 

the parallel network. 

Designate the original parallel system as system 1, and the tandem system (as pictured in Fig. 4) 

as system 2. 
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In system 2, the first queue therefore has an arrival rate and a service capacity equal to n times 

the individual arrival rates and service capacities of the first stage queues in system 1. It also 

follows from theorem 2 that the optimal policy admits all internal customers. So we would like 

to compare the optimal policies for new customers at the second stage for the two systems. A 

fair comparison equates system 1 in state X to system 2 in state . 







+

=
∑ 1

1
, n

i
i xx

n

We define the following value differences for system 2: 

• )1,(),(),(Δ 1
1

1
1

1
1

1 +−= +
=

+
=

+
=

+ ∑∑∑ n

n

i
ihn

n

i
ihn

n

i
i

n
h xxVxxVxx  

• )1,(),(),(Δ 1
1

1
1

1
1

1n +−= +
=

+
=

+
=

+ ∑∑∑ n

n

i
in

n

i
in

n

i
i xxVxxVxx . 

Lemma 3 will be used to prove the main result. 

LEMMA 3 

Suppose statements (a), (b) and (c) in lemma 1 hold for ∆  for system 1 and for )(1 Xn
h
+

),( 1
1

1
+

=

+ ∑∆ n

n

i
i

n
h xx  for system 2.  Suppose also that: 

(f)  )(),( 1
1

1

1 Xxx n
hn

n

i
i

n
h

+
+

=

+ ∆>∆ ∑  for 1+Ω∈ nX  

Then : 

(F)  )(),( 1
11

1

1
1 Xxx n

hn

n

i
i

n
h

+
++

=

+
+ ∆>∆ ∑  for 1+Ω∈ nX  

<Outline of Proof> 

Denote 







= +

=
∑ 1

1
, n

n

i
i xxX .  We write ∆  and substitute (2) 

into each term on the right hand side. We similarly expand 

)()()( 111
1
1 +++

+
+ +−= nhh

n
h eXVXVX

)(1
1 Xn

h
+
+∆ . As with previous lemmas, 
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the proof proceeds by collecting and comparing similar terms. As with lemma 2, knowledge 

that the optimal policy is a threshold is helpful. The full proofs can be found in [19]. 

We can now establish our desired result. 

THEOREM 8 

)(),( 1
1

1

1 Xxx n
n

n

i
i

n +
+

=

+ ∆≥∆ ∑  for . Consequently, the threshold in the tandem system is 

no higher than the equivalent threshold in the parallel system.  

1+Ω∈ nX

<Outline of Proof> 

The statement follows directly from lemma 3 using the limit given in (3). Since type 1+n  

customers are admitted in system 1 iff ∆  and in system 2 iff 1
1 )( +

+ ≤ n
n rX

11
1

1 ),( ++
=

+ ≤∆ ∑ nn

n

i
i

n rxx , the optimal policies will reserve the same or more spaces for system 2 

given an equal number of customers in the first stage.  

This result is intuitive. The first stage in system 2 is more efficient than the first stage in system 

1, since customers in system 2 are not limited to obtaining service from a particular server. 

Therefore, the blocking probability at the first stage in system 2 is less than in system 1. 

Correspondingly, first stage throughput in system 2 is higher. Finally, this results in an equal or 

larger reservation at the second stage for system 2. 

This result can justify using the tandem model as a simpler approximation to the parallel model, 

in the sense that the resulting optimal policy for system 2 is a conservative policy for system 1 

in terms of the reservation for internal customers.  

5.  Conclusion 
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We have considered access control in a target multiserver loss queue fed by a set of upstream 

parallel multiserver loss queues and by a stream of new customers. Such models arise in 

computer and telecommunication networks, in which continued service to internal customers is 

preferable to admission of new customers. We proved that the policy that maximizes total 

discounted revenue consists of a set of monotonically decreasing thresholds as functions of the 

occupancy of each upstream queue. We proved monotonicity properties with respect to system 

parameters. We showed that there exists an ordering of the thresholds based on the relative 

revenue paid at the target queue. Finally, we compared this system with a tandem queue model. 
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Fig. 1.  Parallel multiserver loss network 
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Figure captions 

 

[1]  Fig. 1.  Parallel multiserver loss network 

[2]  Fig. 2.  The optimal threshold  on type 2 customers at station 3 ),( 21
2 xxT

[3]  Fig. 3.  The optimal threshold  on type 3 customers at station 3 ),( 21
3 xxT

[4]  Fig. 4.  Two loss queues in tandem 
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