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Abstract

Trajectory Optimization and Control of Small Spacecraft Constellations

by

Emmanuel Joseph Sin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Murat Arcak, Chair

Large (> 1000kg), expensive (> $1bn), monolithic, flagship-class satellites (e.g., Hubble,
Chandra, James Webb telescopes) may soon be overshadowed by constellations of many,
smaller, cheaper, more agile spacecraft working together as a coordinated system. In this
work, we study several important attitude and orbit control problems relevant to the forma-
tion and operation of small spacecraft constellations. Our example problems include agile
attitude maneuvering for multi-target acquisition in an Earth observation application, a cen-
tralized approach to constellation formation in low Earth orbit, a distributed approach to
constellation formation in Mars areostationary orbit, and orbital rendezvous with objects
in the inner Solar System. Our main tool is trajectory optimization, an approach that
is appropriate for spacecraft applications where we often seek solutions that are optimal
(e.g., minimum-time, minimum-fuel, minimum-control-effort) in the presence of mission or
spacecraft constraints. We employ recent advances in sequential convex programming to effi-
ciently handle the nonlinear dynamics and non-convex constraints that exist in our problem
formulations.
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Chapter 1

Introduction

The first artificial spacecraft to orbit the Earth was Sputnik, launched in October, 1957.
With a mass of 25 kg, the 1-meter diameter spherical satellite had four long antennas that
allowed it to intermittently transmit radio waves, signaling its presence to the world. A few
months later, a 14 kg, 2-meter long pencil-shaped Explorer 1 launched into orbit as the first
satellite to carry a science instrument - a cosmic ray sensor that led to the discovery of the
Van Allen radiation belt. Since then, thousands of spacecraft have been launched and there
are currently more than 3,000 operational satellites in Earth orbit today [1]. Employed in
various commercial, defense, civil, and science applications with sophisticated sensors and
instruments, satellite mass and size have increased over the decades. For example, the James
Webb telescope, scheduled to launch in October 2021, has a mass of 6,500 kg and a footprint
greater than the size of a tennis court. In civil and government applications, satellites
have allowed us to further scientific knowledge (planetary science, astrophysics, heliophysics,
Earth science) and have provided invaluable global positioning and navigation services. In
the commercial space, satellites have connected the world by providing television and radio
broadcasts, telecommunication services and space-based Internet. In military applications,
they have allowed for reconnaissance and space-based defense. In general, these exquisite
spacecraft require many years of development and hundreds of millions (even billions) of
dollars in investment.

In the past decade we have witnessed several trends that are reshaping the spacecraft
industry and are enabling exciting new opportunities across sectors and industries:

• proliferation of low-cost launch providers to low Earth orbit

• miniaturization of satellites

• advancement of continuous, low-thrust, electric propulsion technology

• megaconstellations in Low Earth Orbit (LEO)

Within the next decade, it is expected that more than 10,000 small satellites will be launched
into orbit, 84 percent of which will be involved in megaconstellations [2]. In traditional mis-
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sions involving a single satellite, satellite operators have planned and executed spacecraft
attitude and orbital maneuvers “manually” from a mission control center, uplinking maneu-
ver commands via ground stations distributed over the Earth’s surface. In the future, small
satellite constellation operators must manage hundreds and thousands of spacecraft, present-
ing interesting technical challenges in autonomy and coordination of multi-body systems.

In this dissertation we study attitude and orbital maneuvers relevant to the operation
and maintenance of small spacecraft constellations. Our main tool is trajectory optimiza-
tion. Using recent advances in sequential convex programming, we solve optimal control
problem formulations involving high-fidelity dynamical models and non-convex constraints.
In particular, the dissertation makes the following specific contributions:

• Problem formulations that address important maneuvers used in the formation, oper-
ation, and maintenance of spacecraft constellations

• The application of recent advances in sequential convex programming (SCP) to the
problem formulations. Some new additions or extensions to SCP introduced in this
dissertation include:

1. the ability to use dynamical models where parameters are in the form of look-up
tables or black-box functions

2. multi-body problem formulations where trajectories spanning different time scales
may be simultaneously optimized in a single program

3. the use of forcing functions to represent known but time-dependent processes in
the problem formulation

• A 3-dimensional approach to spacecraft constellation trajectory optimization

In Chapter 2, we present Background material that is used throughout the dissertation.
We first present the dynamical models and equations that we assume govern or describe
spacecraft motion. In particular, we derive the equations that describe the orbital dynamics
of a spacecraft under the influence of central body gravity, atmospheric drag, oblate Earth
gravity, solar radiation pressure, and continuous low-thrust via electric propulsion. We then
introduce the models used for attitude dynamics, namely a version of Euler’s equations used
to describe the rotational motion of a gyrostat (i.e., rigid body with a system of reaction
wheels) and the quaternion kinematics, used to represent attitude motion. The rest of the
chapter describes a state-of-the-art implementation of sequential convex programming, the
trajectory optimization method used to approach most of the problems studied in this work.

Chapter 3 assumes that a constellation is in its desired orbital configuration and is in
the operational phase of its mission. As required by remote sensing missions, each satellite
may be tasked to perform rapid acquisition, precise pointing or tracking of targets. Agile
attitude maneuvering maximizes the utility of such remote sensing satellite constellations.
We explicitly consider the physical properties of a reference spacecraft and its actuator char-
acteristics to conduct agile remote sensing maneuvers beyond conventional slew-and-stabilize
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maneuvers. We present two problem formulations. The Minimum-Time Slew Optimal Con-
trol Problem determines the minimum slew time, required energy, and optimal trajectory
for a reference satellite to slew between any two orientations while satisfying state and input
constraints. Given a desired attitude pointing schedule (i.e., sequence of attitude states), the
Minimum-Effort, Multi-Target Pointing Optimal Control Problem produces a continuous at-
titude state/input trajectory that achieves the given schedule while minimizing control effort
and satisfying constraints. In the presence of external disturbances or model mismatch, a
low-level tracking controller can be used to mitigate deviation from the desired trajectory.
We demonstrate our approach with an example of a reference satellite in Sun-synchronous
orbit passing over globally-distributed, Earth-observation targets.

As a stepping stone to the multi-body problems of constellations, we first study contin-
uous low-thrust orbital maneuvers for a single spacecraft in Chapter 4. The initial set of
problem formulations focus on changing the size and shape of an orbit (e.g., orbit raising,
orbit circularization). The next set of problems address the ability to change the orientation
of orbits with respect to an inertial reference frame (e.g., inclination change, ascending node
change, argument of periapsis change). For these problems we assume continuous low-thrust
is achieved by an electric propulsion system. For the last problem of the chapter, we change
our reference frame to investigate optimal rendezvous trajectories to objects in the Solar
System that leverage solar radiation pressure in an approach called “solar sailing.”

Constellation formation refers to a class of problems where a group of spacecraft must be
maneuvered to achieve a desired spatial configuration. Constellations may be designed with
certain relative position requirements; for example, satellites occupying the same orbital
plane should maintain equal angular spacing. Hence, the spacecraft maneuvers must be
coordinated. Chapter 5 introduces a centralized approach to constellation formation, where
we assume that a central entity (e.g., mission control at the constellation operator) has
accurate state information from all satellites and can uplink optimized maneuver commands
to all satellites of a constellation. This assumption is valid for constellations operating in
low Earth orbit where satellites have low-latency communication with a network of ground
stations. We introduce the optimal orbit phasing problem where the objective is to form an
equally-spaced constellation in minimum-time.

Chapter 6 considers the case where a centralized approach to constellation formation
is not possible. For example, due to the lack of ground stations or a communication infras-
tructure on Mars, it would be difficult to implement the centralized approach demonstrated
in Chapter 3. Instead, we design a distributed control law that each satellite can implement,
requiring only relative state information of neighboring satellites. The stability of the con-
stellation about its equilibrium point under the proposed control law is proved based on the
interconnection structure of the constellation and the passivity properties of the subsystems.
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Chapter 2

Background

2.1 Notation, Nomenclature, and Conventions

A scalar is denoted by an unbolded, lowercase letter, e.g., x ∈ R is a real scalar-valued
variable. Unless otherwise specified, a vector is denoted by a bold, lowercase letter; e.g.,
x ∈ Rn is a real vector-valued variable of size n. An unbolded lowercase letter with a
subscript i (e.g., xi) refers to the ith entry of the vector x. A bold lowercase letter with
subscript i refers to the ith instance of a vector; e.g., xi may refer to the state vector for
the ith satellite of a constellation. Unless specifically noted, all vectors are column vectors
x ∈ Rn ⇐⇒ x ∈ Rn×1. A matrix is denoted by an unbolded, uppercase letter, e.g.,
A ∈ Rm×n is a real matrix-valued variable with m rows and n columns.

Nomenclature and Conventions

a semi-major axis, [AU]
p semi-latus rectum, [AU]
aG acceleration due to central body gravity, [m/s2]
aD acceleration due to atmospheric drag, [m/s2]
aJ2 acceleration due to J2 (oblate Earth) gravity, [m/s2]
aT acceleration due to thrust, [m/s2]
aS acceleration due to solar radiation pressure, [m/s2]
AU astronomical unit (mean distance from center of Earth to center of Sun), [m]
AS reference surface area for solar radiation pressure, [m2]
Ar actuator Jacobian, columns are rotor axes of rotation w.r.t. body-fixed frame
CD atmospheric drag coefficient, [ ]
α solar sail cone angle, [rad]
β solar sail clock angle, [rad]
ε specific orbital energy [m2/s2]
εr tolerance value associated with r
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e eccentricity vector, [ ]
e eccentricity, [ ]
g standard gravitational acceleration at surface of the Earth, [m/s2]
µ standard gravitational parameter of central body, [m3/s2]
i inclination of orbit
In identity matrix of size n
Isp specific impulse of propulsion system, [s]
J2 second zonal harmonic coefficient of Earth gravitational field, [ ]
J mass moment of inertia matrix of rigid body in body-fixed frame, [kg· m2]
Jr mass moment of inertia of momentum rotor about axis of rotation, [kg· m2]
Jobj objective function in an optimization problem formulation
Jtr thrust region penalty in objective function of an optimization problem formulation
Jvc virtual control penalty in objective function of an optimization problem formulation
K number of discretization nodes
l true longitude, [rad]
p semi-latus rectum, [AU]
P magnitude of solar radiation pressure, [N/m2]
S reference surface area for atmospheric drag, [m2]
m mass, [kg]
N number of spacecraft
nx number of states per spacecraft
nu number of inputs per spacecraft
rE mean radius of Earth, [m]
ρ atmospheric density, [kg/m3]
ρr rotor angular momentum vector, [Nms]
r position vector, [m]
v velocity vector, [m/s]
ν true anomaly, [rad]
ν virtual controls in an optimization problem formulation
h specific angular momentum vector of an orbit, [m2/s]
hr rigid body (or gyrostat) angular momentum vector, [Nms]
q unit quaternion, attitude of body-fixed frame w.r.t. inertial frame, [ ]
ω angular velocity of rigid body about body-fixed frame axes, [rad/s]
ω argument of periapsis, [rad]
Ω right ascension of the ascending node, [rad]
w weighting term in objective function of an optimization problem formulation
vR radial orbital speed, [m/s]
vT tangential orbital speed, [m/s]
vN normal orbital speed, [m/s]
vC circular orbital speed, [m/s]
t time, [s]
t0 initial time, [s]
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tf final time, [s]
τ normalized time, [ ]
τr rotor torque vector, [Nm]
T thrust vector, [N]

[h]B vector h coordinated in body frame
IRB rotation matrix from body frame to inertial frame, such that [h]I = IRB [h]B

0m×n zero matrix of size m× n
[ ]× skew symmetric operator such that a× b = [a]×b
ω× skew symmetric matrix corresponding to vector ω
Φ† pseudo-inverse of matrix Φ
x vector of state variables
x(t) vector of state variables evaluated at time t
u vector of input variables
u argument of latitude, [rad]
ẋ derivative of state vector w.r.t. time, i.e., ẋ := d

dt
x

x′ derivative of state vector w.r.t. normalized time, i.e., ẋ := d
dτ

x
‖x‖ Euclidean norm of x, i.e., ‖x‖ := ‖x‖2
x̂ unit vector corresponding to x, i.e., x̂ := x

‖x‖
r̂ unit vector aligned with orbital radial direction

t̂ unit vector aligned with orbital tangential direction

ĥ unit vector aligned with orbital normal direction
n̂ unit vector normal to solar sail surface
n̂AN unit vector aligned with node vector pointing toward orbit ascending node
∇xf gradient of scalar-valued function f w.r.t. x
f(·) vector-valued function representing dynamical equations of motion
g(·) vector-valued function representing constraints
Dxf(x̄) partial derivative of vector-valued function f w.r.t. x, evaluated at x̄,

i.e., Dxf(x̄) := ∂
∂x

f(x)

∣∣∣∣
x=x̄

2.2 Dynamical Models

For simplicity, we study the translational and rotational motion of a spacecraft separately.
The three degree-of-freedom (3-DOF) translational motion of the spacecraft is introduced
in the following subsection on Orbital Dynamics. We then discuss the 3-DOF rotational
motion in the subsequent subsection on Attitude Dynamics. When the models are considered
together, we can represent the full 6-DOF motion of a spacecraft.
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Orbital Dynamics

We first introduce the equations of Keplerian motion, that is, motion of a body influenced
only by a central gravitational force. It can be shown that the motion of a spacecraft in a Ke-
plerian orbit remains in a 2-dimensional plane, fixed in 3-dimensional space with an inertial
frame of reference. The spacecraft’s orbital trajectory takes on the shape of a conic section
(i.e., circle, ellipse, parabola, hyperbola). We then introduce the most significant perturba-
tions present in low Earth orbit, namely, gravitational acceleration due to the oblateness of
the Earth (J2 gravity), acceleration due to atmospheric drag, and acceleration due to thrust
from an onboard propulsion system. Finally, we introduce orbital parameters and properties
that can be computed from the position and velocity states of the spacecraft.

Keplerian Motion

Under the assumptions for central force motion, namely:

• only force is due to gravity between a central body and an orbiting body,

• central body is spherical with uniformly distributed mass,

• central body’s mass is significantly large than the orbiting body’s mass

the equations of motion for the orbiting body are:

ṙ(t) = v(t) (2.1)

v̇(t) = aG(µ; r(t)) (2.2)

where the acceleration due to central body gravity is:

aG(µ; r(t)) = − µ

‖r(t)‖3
r(t) (2.3)

The position vector is r and the velocity vector is v. The constant parameter µ is the
standard gravitational parameter of the central body being considered (e.g., Earth, the
Sun). The position and velocity vectors are coordinated in an inertial reference frame placed
at the center of the central body with its “z-axis” aligned with rotation axis of the central
body. When the central body is the Earth, the inertial reference frame is called the “Earth-
Centered-Inertial” (ECI) frame, and when the central body is the Sun, it is called the “Sun-
Centered-Inertial” (SCI) frame. For simplicity, we assume that the states describing orbital
motion are coordinated in an inertial frame and drop the bracket notation, i.e., r = [r]ECI.

Parameters of orbital motion

Given a spacecraft’s position and velocity state vectors, expressed in a Cartesian coordinate
system about an inertial reference frame, we may compute certain useful orbital parameters
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and state representations. The specific angular momentum vector is defined as:

h = h(r,v) = r× v (2.4)

Unit vectors pointing in the radial and velocity directions are:

r̂ = r̂(r) =
r

‖r‖
(2.5)

v̂ = v̂(v) =
v

‖v‖
(2.6)

The unit vector pointing in the direction of the angular momentum vector (also called the
orbit normal unit vector) is:

ĥ = ĥ (h) =
h

‖h‖
=

r× v

‖r× v‖
= ĥ (r,v) (2.7)

The unit vector pointing in the orbital tangential direction is:

t̂ = t̂(r̂, ĥ) = ĥ× r̂ =
r× v

‖r× v‖
× r

‖r‖
= t̂ (r,v) (2.8)

We may then compute the components of the velocity vector in the orbit radial, tangential,
and normal directions:

vR(r,v) = v>r̂ (r) (2.9)

vT (r,v) = v>t̂ (r,v) (2.10)

vN(r,v) = v>ĥ (r,v) (2.11)

In general, we may coordinate a vector between the inertial reference frame (located at the
center of the central body) and the rotating “RTN” frame (located at the center of the
orbiting spacecraft body) with the appropriate time-varying rotation matrices:

[x(t)]ECI =

r̂(r(t)) t̂(r(t),v(t)) ĥ(r(t),v(t))

 [x(t)]RTN (2.12)

[x(t)]RTN =

 r̂(r(t))>

t̂(r(t),v(t))>

ĥ(r(t),v(t))>

 [x(t)]ECI (2.13)

At any given altitude, the tangential component of velocity (i.e., speed) required for a circular
Keplerian orbit is:

vC(µ; r) =

√
µ

‖r‖
(2.14)
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It is also necessary for the radial and normal speeds to equal zero for a circular orbit. The
angular speed for a circular orbit is:

ωC(µ; r) =

√
µ

‖r‖3
(2.15)

The specific orbital energy (or vis-viva energy) is the sum of the specific potential energy
and the total specific kinetic energy. Under the assumption of Keplerian motion (i.e., no
perturbations), specific orbital energy is conserved. For elliptical orbits, it can be shown
that the specific orbital energy is equal to the following expression involving the orbit’s
semi-major axis, a:

ε =
‖v‖2

2
− µ

‖r‖
= − µ

2a
(2.16)

Using the vis-viva equation from above (also known as the orbital energy invariance law),
we have the following expression for the orbit’s semi-major axis:

a = a(r,v) =

(
2

‖r‖
− ‖v‖

2

µ

)−1

(2.17)

The orbital period for a Keplerian (circular or elliptical) orbit is:

Tp(µ, a) = 2π

√
a3

µ
(2.18)

The eccentricity vector points from the center of the central body towards the nearest
point of approach of the orbiting spacecraft (i.e., the periapsis):

e = [ex ey ez]
> = e(r,v) =

v × h(r,v)

µ
− r̂(r) (2.19)

The magnitude of the eccentricity vector is called the eccentricity of the orbit:

e = e(e) = ‖e‖ (2.20)

A value of e = 0 corresponds to a circular orbit, 0 < e < 1 for elliptical orbits, e = 1 for a
parabolic trajectory, and e > 1 for hyperbolic trajectories. The unit vector pointing in the
direction of the eccentricity vector is:

ê = ê (e) =
e

‖e‖
(2.21)

The eccentricity of the orbit may also be computed with the semi-major axis a and
semi-latus rectum p:

e = e(r,v) =

√
1− p

a
where p = p(r,v) =

‖h(r,v)‖2

µ
(2.22)
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We note that the specific orbital energy, specific angular momentum vector, eccentricity
vector, semi-major axis, and semi-latus rectum remain constant for Kepler orbits but vary
when perturbations are considered.

In addition to parameters that describe the size and shape of an orbit, we introduce
parameters that describe the orientation of the orbital plane with respect to the central
body-centered inertial frame. The inclination of an orbit with respect to the central body’s
equatorial (xy) plane is:

i = i(r,v) = arccos

(
hz

‖h(r,v)‖

)
(2.23)

where hz is the third element of the specific angular momentum vector.
For inclined orbits, the node vector pointing towards the ascending node of an orbit (i.e.,

the point on an orbit where a spacecraft crosses the central body’s equatorial plane in a
northerly direction) is defined as:

nA = [nAx nAy nAz ]
> = nA(r,v) = k̂× h(r,v) = [−hy hx 0 ]> (2.24)

where k̂ := [0 0 1]> is the positive “z-direction” of the inertial reference frame about which
the central body rotates. The unit vector pointing in the direction of the node vector is:

n̂A = n̂A (nA(r,v)) =
nA(r,v)

‖nA(r,v)‖
(2.25)

The angle between some reference direction, that we call the origin of longitude, and the
node vector is defined as the longitude of the ascending node. As a convention, we set the
positive “x-direction” of the inertial reference frame to align with the origin of longitude.
For geocentric orbits, where the Earth’s equatorial plane serves as the reference plane and
the First Point of Aries is designated as the origin of longitude, this angle is also called the
right ascension of the ascending node (RAAN), measured in the counterclockwise direction
(as seen from north) from the origin of longitude:

Ω = Ω (r,v) =

arccos
(
nAx
‖nA‖

)
, nAy ≥ 0

2π − arccos
(
nAx
‖nA‖

)
, nAy < 0

(2.26)

In the case of non-inclined (i.e. equatorial) orbits, the RAAN is undefined. As a convention,
we set Ω = 0 and the “ascending node” is aligned with the reference direction: nA = [ 1 0 0 ]>.

For inclined, elliptical orbits, the argument of periapsis is defined as the angle between
the node vector and the eccentricity vector, measured in the counterclockwise direction from
the node vector:

ω = ω (r,v) =

{
arccos (n̂A · ê) , ez ≥ 0

2π − arccos (n̂A · ê) , ez < 0
(2.27)
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In the case of equatorial orbits (i.e., zero inclination and RAAN set to zero), the argument
of periapsis is defined as:

ω =

{
arctan 2 (ey, ex) , hz ≥ 0 (counterclockwise orbit)

2π − arctan 2 (ey, ex) , hz < 0 (clockwise orbit)
(2.28)

In the case of circular orbits, the argument of periapsis is undefined. As a convention, we
set ω = 0 so that the “periapsis” is aligned with the node vector: e = nA.

For inclined, elliptical orbits, the true anomaly is defined as the angle between the ec-
centricity vector and the radial position vector, measured in the counterclockwise direction
from the eccentricity vector:

ν = ν (r,v) =

{
arccos (ê · r̂) , (r · v) ≥ 0

2π − arccos (ê · r̂) , (r · v) < 0
(2.29)

For circular orbits, the true anomaly is undefined since the periapsis is not uniquely deter-
mined. Instead, the argument of latitude may be defined as the angle between the node
vector and the position vector:

u = u (r,v) =

{
arccos (n̂A · r̂) , rz ≥ 0

2π − arccos (n̂A · r̂) , rz < 0
(2.30)

where rz is the z-component of the position vector. For circular orbits with zero inclination,
both the periapsis and the line of nodes are not uniquely determined. Instead, we may use
the true longitude, defined as the angle between the origin of longitude and the position
vector:

l = l (r,v) =

arccos
(
rx
‖r‖

)
, vx ≥ 0

2π − arccos
(
rx
‖r‖

)
, vx < 0

(2.31)

where rx and vx are the x-components of the position and velocity vectors, repectively.

Perturbations

In terms of magnitude, the gravitational force caused by an oblate Earth is the most signifi-
cant perturbation to a spacecraft in low Earth orbit. The gravitational potential around an
oblate Earth may be modeled with an infinite sum of spherical harmonics, functions defined
on the surface of a sphere. The most significant term in the infinite sum is called the second
zonal term with a corresponding second zonal harmonic coefficient (“J2”). This J2 term is
over 1000 times larger than the rest of the sum, hence we approximate the oblate Earth
gravitational perturbation with this single term. The acceleration due to J2 gravity may be
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modeled with the following expression :

aJ2(µ, J2, rE; r(t)) = 1.5J2µ
r2
E

‖r(t)‖5


5
(
rz(t)
‖r(t)‖

)2

− 1 0 0

0 5
(
rz(t)
‖r(t)‖

)2

− 1 0

0 0 5
(
rz(t)
‖r(t)‖

)2

− 3

 r(t)

(2.32)

where J2 is the second zonal harmonic constant, rE is the mean radius of the Earth and rz
is the third element of the position vector r.

To illustrate the effect of J2 gravity, we simulate the orbit of a highly inclined orbit
with and without the J2 perturbation. In Fig. 2.1, the first plot shows that the spacecraft’s
orbital plane remains fixed in inertial space when under the influence of central gravity alone.
However, the second plot shows that the orbital plane does not remain fixed when J2 gravity
is included in the model. The normal to the orbital plane precesses about the rotation axis
of the central body.

Figure 2.1: Effect of J2 perturbation on inclined low Earth orbit

Another significant perturbation in low Earth orbit is the acceleration due to atmospheric
drag, which may be modeled with the following expression:

aD(CD, ρ(·); r(t),v(t),m(t), S(t)) = −1

2

ρ(r(t))

m(t)
CDS(t)‖v(t)‖v(t) (2.33)

Atmospheric density, ρ, can be modeled as a function of the spacecraft altitude. Commonly
used models include Harris-Priester [3] and the Jacchia-Roberts [4] models. When the space-
craft employs a propulsion system, we must consider a varying mass m. For a spacecraft
orbiting at a certain altitude in the atmosphere, the drag coefficient CD is a function of the
Reynolds number, the Mach number, and the direction of the relative flow. It is common
practice to assume a fitted or even constant drag coefficient (e.g. CD = 2.2) for spacecraft
with compact shapes [5]. The spacecraft’s reference drag area S, that is exposed to the
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incident atmosphere as it moves through the fluid, may also be assumed to be a constant
value or a function of the spacecraft’s attitude.

In addition to natural, environmental perturbations such as atmospheric drag and oblate
Earth gravity, the spacecraft may generate its own perturbations through actuators, such as
a propulsion system that produces thrust. The acceleration due to continuous thrust can be
modeled as:

aT(m(t),T(t)) =
T(t)

m(t)
(2.34)

where we assume that we may apply a thrust vector T in any direction but with a bounded
magnitude. Since thrust is produced by accelerating and ejecting a reaction mass (i.e.,
propellant), we model the vehicle’s total mass as a state variable governed by the following
equation:

ṁ(t) = −‖T(t)‖
g0Isp

(2.35)

where g0 is the standard acceleration due to gravity in a vacuum near the surface of the
Earth and Isp is the specific impulse, measured in seconds, of the propulsion system (engine
and propellant). Specific impulse is a measure of how efficiently a propulsion system pro-
duces thrust (i.e., how many seconds an engine can accelerate a unit mass of propellant at a
continuous value of standard gravity until the given mass is depleted). In general, chemical
propulsion systems may produce large amounts of thrust (thousands of Newtons) with spe-
cific impulse values up to 500 seconds, whereas current electric propulsion systems produce
thrust on the order of fractions of a Newton but with specific impulse values on the order of
thousands of seconds.

Equations of Translational Motion in Low Earth Orbit

Considering the dominant perturbations described above, the equations of orbital motion in
low Earth orbit are:

ṙ(t) = v(t) (2.36)

v̇(t) = aG(r(t)) + aJ2(r(t)) + aD(r(t),v(t),m(t)) + aT(m(t),T(t)) (2.37)

ṁ(t) = −‖T(t)‖
g0Isp

(2.38)

Other perturbations that may be included in the model are solar radiation pressure (i.e.,
force caused by solar radiation being absorbed and reflected on the spacecraft’s surfaces)
and gravitational accelerations caused by “third bodies” (e.g., Moon, Sun, other planets).
These perturbations should be considered for spacecraft trajectories that go beyond low
Earth orbit.
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Attitude Dynamics

Attitude dynamics describes how applied torques affect the rotational motion and orientation
of a body with respect to an inertial reference frame. The rotational motion is governed by
rigid body dynamics and the corresponding change in attitude or orientation is described
by attitude kinematics. In this section we derive an extension of the Euler’s equations for
gyrostats, a system of rigid bodies whose relative motion does not change the total system
moment of inertia. A rigid spacecraft body consisting of a set of reaction wheels (i.e., spinning
rotors) may be modeled as a gyrostat. We then present the unit quaternion as our choice
for attitude parameterization and the equations for quaternion kinematics. As a convention
common in aerospace applications, we assume our attitude parameterization describes the
orientation of the spacecraft body frame with respect to some chosen inertial frame. That
is, we use the quaternion to represent the rotation required to express a vector coordinated
in the spacecraft body frame as a vector coordinated in the inertial frame.

Gyrostat Dynamics

Given the mass moment of inertia matrix J for a rigid body and its angular velocity with
respect to a reference frame, the angular momentum vector hr is constant when there are
no external torques:

τ = 0 =⇒ ḣr = 0 =⇒ hr = Jω = constant (2.39)

Coordinated in an inertial frame, we have:

[hr]
I = [J ]I[ω]I (2.40)

When there exist external torques, we note that the moment of inertia is no longer constant,
i.e., [J̇ ]I 6= 0:

[ḣr]
I = [J ]I[ω̇]I + [J̇ ]I[ω]I = [τ ]I (2.41)

For this reason, we consider it better to work in a body-fixed frame where the inertia matrix
[J ]B is constant for a rigid body or gyrostat:

[ḣr]
B = [J ]B[ω̇]B = [τ ]B (2.42)

A vector coordinated in the body frame or inertial frame are related through a rotation
matrix: [x]I = IRB[x]B. We use the Transport Theorem to relate the time derivative of
vector in an inertial frame to its time derivative in the rotating body frame:

[ḣr]
I = IRB

(
[ḣr]

B + [ω]B × [hr]
B
)

(2.43)

[τ ]I = IRB
(

[ḣr]
B + [ω]B × [hr]

B
)

(2.44)
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After coordinating in the body frame and plugging in expressions for the angular momentum
vector and its derivative, we get:

BRI[τ ]I =
(

[ḣr]
B + [ω]B × [hr]

B
)

(2.45)

[τ ]B = [ḣr]
B + [ω]B × [hr]

B (2.46)

= [J ]B[ω̇]B + [ω]B × [J ]B[ω]B (2.47)

Dropping the bracket notation, we recognize the well-known Euler equations for rigid body
dynamics, coordinated in a body-fixed frame:

τ = ḣr + ω × hr (2.48)

= Jω̇ + ω × Jω (2.49)

We now assume that the rigid body encases a set of rotors, each spinning about an axis fixed
with respect to the rigid body. The total momentum for the coupled system is now:

hr = Jω + ρ (2.50)

where ρ ∈ R3 is the effective angular momentum of the rotors, expressed in the body-fixed
frame. If we plug in the new expressions for hr and ḣr = Jω̇ + ρ̇ into (2.48), we get:

τ = (Jω̇ + ρ̇) + ω × (Jω + ρ) (2.51)

Rearranging terms, we have:

ω̇ = −J−1 (ω × (Jω + ρ) + ρ̇− τ ) (2.52)

The effective angular momentum of the rotors ρ can be expressed as:

ρ := Arρr , (2.53)

where, if we assume that the number of rotors equals four (nr = 4), then the rotor momenta
vector is:

ρr :=
[
ρr1 ρr2 ρr3 ρr4

]>
(2.54)

and Ar ∈ R3×nr is the actuator Jacobian, whose columns represent the axes of rotation for
the rotors.

We assume single-integrator dynamics for the rotors: ρ̇r = τ r, where τ r ∈ Rnr is the
applied torque about each rotor:

τ r :=
[
τr1 τr2 τr3 τr4

]>
(2.55)
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We also assume there are no external torques, that is, we set τ = 0 in (2.52). We then have
the gyrostat equations of motion:

ω̇(t) = −J−1
(
ω(t)× (Jω(t) + Arρr(t)) + Arτ r(t)

)
(2.56)

ρ̇r(t) = τ r(t) (2.57)

where we explicitly show the time-dependence of the angular velocity state vector, rotor
angular momentum state vector, and the rotor torque input vector.

Another way to approximately express the gyrostat equations are:

ω̇(t) = −J−1
(
ω(t)× Jω(t)− τ ctrl(t)

)
ρ̇r(t) = τ r(t)

τ r(t) = A†r (−ω(t)× Arr(t)− τ ctrl(t))

A common approach in attitude control is to directly design a control law for the effective
torque on the rigid body: τ ctrl ∈ R3. A control law can be designed with constraints on
τ ctrl and the body angular velocity ω, also known as the slew rate. However, it is then
assumed that the onboard attitude control and determination system (ADCS) can achieve
the effective torque command τ ctrl by applying the appropriate actuator command τ r ∈ R4.
This may be problematic when the actual rotor dynamics are more complicated than the
single-integrator assumption and when there are actuator constraints. Momentum actuators,
such as reaction wheels, often have bounds on the magnitude of the rotor momentum and the
magnitude of the rotor torque. Furthermore, the use of the pseudo-inverse on the actuator
Jacobian assumes a minimum Euclidean norm solution for the choice of τ r to achieve τ ctrl.
For these reasons, we use the gyrostat equations as represented by (2.56)-(2.57) and seek to
design optimal trajectories and control laws for the rotor momenta and torques. While the
equations of orbital motion, from the previous section, are coordinated in the inertial frame,
the gyrostat equations are coordinated in the body frame.

Quaternion Kinematics

Let us consider an arbitrary unit vector d ∈ R3, where ‖d‖ = 1, as an axis of rotation.
We define θ ∈ (−π, π] as an angle of rotation about this axis. As a convention, we assume
rotation in the counterclockwise direction is positive.

Following [6] and [7], we define the unit quaternion (or Euler Symmetric Parameters) as:

q :=


qv


qs

 :=


q1q2
q3


q4

 :=


d sin( θ

2
)


cos( θ

2
)

 (2.58)

We use the convention of stacking the vector part on top of the scalar part. We may confirm
that, by definition, ‖q‖2 = 1. Furthermore, we note that the unit quaternion representation
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of a rotation is not unique, that is, q = −q as demonstrated below:
d sin( θ+2π

2
)


cos( θ+2π

2
)

 =


−d sin( θ

2
)


− cos( θ

2
)

 = −q (2.59)

We define quaternion multiplication between two quaternions qa and qb as:

qaqb =

[
qasq

b
v + qbsq

a
v + qav × qbv

qasq
b
s − (qav)

>qbv

]
(2.60)

=

[
qas I + (qav)

× qav
−(qav)

> qas

] [
qbv
qbs

]
(2.61)

=

[
qbsI− (qbv)

× qbv
−(qbv)

> qbs

] [
qav
qas

]
(2.62)

The quaternion multiplication operation is associative and distributive, but, in general, it is
not commutative, i.e., qaqb 6= qbqa.

We introduce certain properties of the (unit) quaternion. First, we note that there exists
an identity quaternion:

qI :=


d sin(0

2
)


cos(0

2
)

 =


0
0
0
1

 (2.63)

such that qqI = qIq = q. Furthermore, we have the quaternion inverse, as known as the
quaternion conjugate:

q−1 :=


d sin( -θ

2
)


cos( -θ

2
)

 =


-d sin( θ

2
)


cos( θ

2
)

 =


-qv


qs

 =: q+ (2.64)

such that q+q = qq+ = qI. Using the quaternion conjugate, the following relationship holds:
q3 = q2q1 ⇐⇒ q1 = (q2)+q3 for different quaternions q1 and q2.

As defined in [7] and used in [8] and [9], we may measure the attitude error between a
given quaternion q and a desired quaternion q̄ by computing the error quaternion:

qe =


qe1
qe2
qe3
qe4

 := q̄+q =

[
q̄+
s I + (q̄+

v )× q̄+
v

−(q̄+
v )> q̄+

s

]
q1

q2

q3

q4

 =


q̄4 q̄3 -q̄2 -q̄1

-q̄3 q̄4 q̄1 -q̄2

q̄2 -q̄1 q̄4 -q̄3

q̄1 q̄2 q̄3 q̄4



q1

q2

q3

q4

 (2.65)
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Note that if q = q̄, then their corresponding error quaternion equals the identity quaternion,
i.e., qe = q̄+q = q̄+q̄ = qI.

We recall our convention of using attitude parameterizations to represent the orientation
of the body frame with respect to an inertial frame, not vice versa. That is, we use attitude
parameterizations (e.g., rotation matrix, unit quaternion, Euler axis and angle) to represent
the rotation required to express a 3-dimensional vector coordinated in the body frame as a
vector coordinated in an inertial frame. The following relationship using the rotation matrix:

[x]I = IRB[x]B (2.66)

may also be represented using the unit quaternion:[
[x]I

0

]
= q

[
[x]B

0

]
q+ (2.67)

where we represent a 3-dimensional vector x as a “pure” quaternion
[
x> 0

]>
. The rotation

matrix corresponding to a quaternion is found with the following equation, derived in (B.1):

IRB = I + 2q×v
(
qsI + q×v

)
(2.68)

The time derivative of the quaternion is:

q̇(t) =
1

2
q(t)

[
ω(t)

0

]
(2.69)

The expression shows that the time derivative of the quaternion is equal to one-half of the
product of the quaternion, representing the attitude of the body frame w.r.t. inertial frame,
and the pure quaternion representation of the body angular velocity w.r.t inertial frame.
The derivation of this expression is shown in (B.2).

Equations of Rotational Motion

The equations of rotational motion for a gyrostat, consisting of a rigid body and a set of
actuation rotors with rotation axes fixed w.r.t. the rigid body, are

q̇(t) =
1

2
q(t)

[
ω(t)

0

]
(2.70)

ω̇(t) = −J−1
(
ω(t)× (Jω(t) + Arρr(t)) + Arτ r(t)− τ ext(t)

)
(2.71)

ρ̇r(t) = τ r(t) (2.72)

where have combined equations (2.56), (2.57) and (2.69). External moments (e.g., due to
gravity gradient, atmospheric drag, solar radiation pressure, Earth’s magnetic field) may be
include in the τ ext term.
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2.3 Trajectory Optimization

As surveyed by Betts [10], there is an expanse of literature on trajectory optimization meth-
ods that may be characterized by, for example, the solution approach (i.e., indirectly sat-
isfying necessary conditions for optimality or directly solving a transcribed version of the
problem), or the transcription process (shooting versus collocation). In [11], various direct
collocation methods are introduced while [12] focuses on an indirect pseudospectral method
that has been used in practice, for example, to control the International Space Station with a
zero-propellant maneuver. Regardless of the approach, many trajectory optimization meth-
ods treat a problem in its original nonlinear, non-convex form, requiring the use of a nonlinear
programming solver [13], which may be computationally inefficient with long solution times.

Recent advances in sequential convex programming (SCP) have enabled efficient com-
putation of locally optimal trajectories for nonlinear systems with non-convex constraints
and objectives. SCP is an iterative method that repeatedly formulates and solves a con-
vex, finite-dimensional parameter optimization problem that approximates the original non-
convex optimal control problem. A convex formulation is typically achieved by linearizing the
nonlinear system around a nominal trajectory (i.e., the solution from the previous iteration)
and approximating any non-convex constraints and objective with Taylor series expansions.
Fast and reliable Interior Point Method algorithms [14] may be used to solve these convex
subproblems. In the early works of [15] and [16], successive convexification, a specific im-
plementation of the SCP method, is introduced to find minimum-fuel and minimum-time
trajectories in a 6-DOF rocket landing problem. In [17]- [18], certain details of the implemen-
tation, including choice of discretization method, constraint satisfaction between temporal
nodes, convexification of non-convex constraints, and algorithm convergence properties are
explored. Finally, the works of [19]- [20] introduce state-triggered constraints and address
real-time, onboard implementations that may produce solutions in a fraction of a second.

In this section, we first describe how a general optimal control problem (OCP) is tran-
scribed into a convex, finite-dimensional parameter optimization problem (OPT). We then
review the sequential convex programming algorithm used in this paper. Consider the fol-
lowing continuous-time dynamical system:

ẋ(t) :=
d

dt
x(t) = f(x(t),u(t)) ∀ t ∈ [t0, tf ] (2.73)

defined over the given time span, where x(t) ∈ Rnx is the state of the system and u(t) ∈ Rnu

is the input to the system.

Scaling of System Variables and Parameters

As suggested by [13], [12], [21], scaling (or nondimensionalization) is widely used in numerical
methods for trajectory optimization. Using the initial conditions and parameters intrinsic
to the dynamical system or problem, we define the following designer units:
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Orbital Problems

r0 := ‖r(t0)‖ displacement (initial distance) (2.74)

s0 := 2π

√
r3

0

µ
time (initial orbital period) (2.75)

v0 :=
r0

s0

speed (2.76)

g0 :=
r0

s2
0

acceleration (2.77)

m0 := m(t0) mass (initial mass) (2.78)

T0 :=
m0r0

s2
0

force (2.79)

P0 :=
m0

r0s2
0

pressure (2.80)

S0 := r2
0 area (2.81)

µ0 :=
r3

0

s2
0

standard gravitational parameter (2.82)

ρ0 :=
m0

r3
0

atmospheric density (2.83)

Attitude Problems

r0 := 1[m] displacement (2.84)

s0 := 1[s] time (2.85)

m0 := m mass (2.86)

J0 := m0r
2
0 mass moment of inertia (2.87)

ω0 :=
1

s0

angular velocity (2.88)

ρr0 :=
m0r

2
0

s0

angular momentum (2.89)

τr0 :=
m0r

2
0

s2
0

moment (2.90)

(2.91)

Using the designer units listed above, we scale system variables and parameters such that
the equations of motion are nondimensionalized:

Orbital System Variables

m̄ =
m

m0

r̄ =
r

r0

v̄ =
v

v0

T̄ =
T

T0

(2.92)



CHAPTER 2. BACKGROUND 21

Attitude System Variables

q̄ = q ω̄ =
ω

ω0

ρ̄r =
ρr

ρr0
τ̄ r =

τ r

τr0
(2.93)

System Parameters

t̄ =
t

s0

Īsp =
Isp
s0

ḡ =
g

g0

µ̄ =
µ

µ0

r̄E =
rE
r0

S̄ =
S

S0

ρ̄ =
ρ

ρ0

P̄ =
P

P0

C̄D = CD J̄2 = J2 J̄ =
J

J0

J̄r =
Jr
J0

(2.94)

In all problem formulations to follow, we assume that system variables and parameters have
already been scaled, and we drop the overbar notation signifying scaled quantities.

Time Normalization

In addition to scaling system variables and parameters, we normalize the independent vari-
able of time t in the dynamical system (2.73) so that our problems, originally defined on
t0 ≤ t ≤ tf , are transformed to be defined on t0

tf
≤ τ ≤ 1. Normalized time τ is related to

the original time t via a a normalization factor tf :

τ :=
t

tf
(2.95)

In free-final-time (e.g., minimum-time) problems, tf is treated as a decision variable to be
solved for [16]. In fixed-final-time problems, we can treat tf either as a constant parameter
or as a decision variable, that we constrain to take on a fixed value. For the fixed-final-time
problems in this dissertation, we take the latter approach to maintain general notation that
is also used for free-final-time problems.

Since t = tfτ ⇒ dt = tfdτ ⇒ dt
dτ

= tf , the derivative of the scaled state with respect to
normalized time is:

x′(t) :=
d

dτ
x(t) =

dt

dτ

d

dt
x(t) = tf f(x(t),u(t)) ∀ t ∈ [t0, tf ] (2.96)

Note that the original time t can be expressed as a function of τ , i.e., t(τ) = tfτ . If we
assume t0 = 0, we can represent (2.96) in terms of normalized time:

x′(t(τ)) = x′(τ) = tf f(x(τ),u(τ)) =: f̃(x(τ),u(τ), tf ) ∀ t ∈ [0 , 1] (2.97)

In this final expression, it is clear that the dynamical system is a function of state x, input
u, and final time tf .
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Linearization of Dynamics

Assuming (2.97) is a nonlinear but differentiable function, we may approximate it with a
first-order Taylor expansion about a given trajectory {x̄, ū, t̄f}:

x′(τ) = f̃(x(τ),u(τ), tf ) ≈ A(τ)x(τ) +B(τ)u(τ) + Σ(τ)tf + ξ(τ) ∀ τ ∈ [0 , 1] (2.98)

where we denote the first-order partial derivative matrices of f̃(x(τ),u(τ), tf ), evaluated
about {x̄(τ), ū(τ), t̄f}, as

A(τ) := Dx̃f(x̄(τ), ū(τ), t̄f ) = t̄fDxf(x̄(τ), ū(τ)) (2.99)

B(τ) := Dũf(x̄(τ), ū(τ), t̄f ) = t̄fDuf(x̄(τ), ū(τ)) (2.100)

Σ(τ) := Dtf f̃(x̄(τ), ū(τ), t̄f ) = f(x̄(τ), ū(τ)) (2.101)

with the following dynamical approximation offset term:

ξ(τ) := −(A(τ)x̄(τ) +B(τ)ū(τ)) (2.102)

Discretization of Linearized Dynamics

As described in [22], the process of converting an optimal control problem into a parameter
optimization problem begins by dividing the time duration of the optimal control problem
into intervals using K temporal nodes. The nodes may be chosen to be equally spaced,
creating K − 1 equally-sized time intervals:

0 =: τ1 < τ2 < · · · < τk < . . . < τK−1 < τK := 1 (2.103)

We refer to state, input, and offset terms at each node with the following shorthand notation:

xk := x(τk), uk := u(τk), ξk := ξ(τk) ∀ k = 1, . . . , K (2.104)

We use the First-Order Hold (FOH)-interpolation based discretization method in our im-
plementation. As demonstrated in [23], the FOH discretization provides fast computational
time and achieves similar accuracy when compared to more advanced pseudospectral meth-
ods. Furthermore, it was shown that if convex input constraints are satisfied at the nodes,
then inter-nodal convex input constraint satisfaction is also guaranteed [17]. For convenience,
we review the process used in [15]- [24] below.

The FOH interpolation represents the input within each of the K − 1 intervals as:

u(τ) = λ−k uk + λ+
k uk+1 ∀ τ ∈ [τk, τk+1] , k = 1, . . . , K − 1 (2.105)

where

λ−k :=
τk+1 − τ
τk+1 − τk

, λ+
k :=

τ − τk
τk+1 − τk

(2.106)
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The exact discretization of (2.98) is then:

xk+1 = Akxk +B−k uk +B+
k uk+1 + Σktf + ξk ∀ k = 1, . . . , K − 1 (2.107)

Ak := Φ(τk+1, τk) (2.108)

B−k := Ak

∫ τk+1

τk

Φ−1(τ, τk)λ
−
k (τ)B(τ)dτ (2.109)

B+
k := Ak

∫ τk+1

τk

Φ−1(τ, τk)λ
+
k (τ)B(τ)dτ (2.110)

Σk := Ak

∫ τk+1

τk

Φ−1(τ, τk)Σ(τ)dτ (2.111)

ξk := Ak

∫ τk+1

τk

Φ−1(τ, τk)ξ(τ)dτ (2.112)

The state transition matrix satisfies the following matrix differential equation and initial
condition within each interval:

d

dτ
Φ(τ, τk) = A(τ)Φ(τ, τk), Φ(τk, τk) = Inx (2.113)

In practice, the integrands of (2.109)-(2.112) along with (2.113) and (2.97) are numerically
integrated from the start to the end of each interval using a nominal trajectory {x̄k, ūk, t̄f , ξ̄k}
for k = 1, . . . , K − 1. Note that we initialize the numerical integration for each interval with
points from a nominal trajectory, rather than with the terminal points found by integration
in the previous temporal interval. This approach resembles a multiple-shooting discretization
method, which has shown to improve convergence of the SCP algorithm by keeping solutions
closer to the nominal trajectory. In contrast, a single shooting method allows approximation
errors to grow in later temporal intervals [23].

Sequential Convex Programming Method

For the trajectory optimization applications in this dissertation, we use the Penalized Trust
Region (PTR) variant of SCP described in [20]. A key difference with Successive Convexifi-
cation (SCvx) studied in [18] is that PTR treats trust regions as soft constraints placed in the
objective whereas SCvx enforces hard trust region constraints that are updated based on a
rule. An advantage of SCvx is that convergence of this method is guaranteed. However, the
method employs slack variables that may cause the approximately solved problem to be far
from the original problem if they take on non-zero values in the solution. Hence, a converged
solution via SCvx may be infeasible for the original problem. In the following subsections we
describe the PTR implementation of SCP, which employs virtual controls and trust regions,
as well as an approach to constraint convexification.
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Virtual Controls

While iteratively solving a trajectory optimization problem using sequential convex program-
ming, the approximated convex problem may become infeasible at an intermediate iteration
before convergence. This artificial infeasibility [16] is frequently encountered in the early
iterations of the algorithm if the dynamics are linearized about a poor initial guess. To alle-
viate this issue, slack variables called virtual controls νk ∈ Rnx are added to the discrete-time
equations of motion (2.107) at the temporal nodes:

xk+1 = Akxk +B−k uk +B+
k uk+1 + Σktf + ξk + νk ∀ k = 1, . . . , K − 1 (2.114)

These virtual controls act as dynamic relaxation terms that take on nonzero values, when
necessary, to prevent dynamic infeasibility. In turn, use of these slack variables is heavily
penalized with a term added to the objective function:

Jvc
(
{νk}Kk=1

)
= wvc

K∑
k=1

‖νk‖1 = wvc‖ν‖1 (2.115)

where wvc is a large positive weight and ν = [ν>1 , . . . ,ν
>
K ]>. Minimization of the 1-norm

term encourages sparsity in the virtual control vector ν.

Trust Regions

We also implement a trust region penalty term to ensure that the solver does not stray too
far from a nominal trajectory, where the linearized model becomes less accurate. In PTR,
the deviation of decision variables from the solution of the previous iteration is penalized
with the 2-norm of weighted deviations:

Jtr
(
{xk,uk}Kk=1, tf

)
= wtr

K∑
k=1

∥∥∥∥[xkuk

]
−
[
x̄k
ūk

]∥∥∥∥
2

+ wtr ‖tf − t̄f‖2 (2.116)

Note that we use a single, scalar weight wtr > 0 in the penalty term above to equally penalize
deviations in the state, input and final-time decision variables, assuming the variables have
been scaled. However, we may modify the expression to have relative or adaptive weighting.

Constraint and Objective Approximation

Let us consider a set of general (non-convex) constraints at each time τ on the continuous-
time variables x and u:

gτ (x(τ),u(τ)) ≤ 0 ∀ τ ∈ [0 , 1] (2.117)

These constraints can be approximated by linearizing about a nominal trajectory:

g̃τ (x(τ),u(τ)) := gτ (x̄(τ), ū(τ)) +Dgτ (x̄(τ), ū(τ))

([
x(τ)
u(τ)

]
−
[
x̄(τ)
ū(τ)

])
≤ 0 ∀ τ ∈ [0 , 1]

(2.118)
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We further approximate the constraints by explicitly enforcing them only at the temporal
nodes of our discretization:

g̃k(xk,uk) ≤ 0 ∀ k = 1, . . . , K (2.119)

In general, inter-nodal constraint satisfaction is not guaranteed. However, the constraints
at the nodes can be carefully designed so that constraints are enforced for all time [17]. In
a similar fashion, any non-convex cost terms Jobj may also be approximated with a Taylor
series expansion about a nominal trajectory to form J̃obj.

We may also approximate integral constraints involving non-convex functions:∫ tf

0

h(x(t),u(t))dt ≤ 0 (2.120)

=⇒
∫ 1

0

tfh(x(τ),u(τ))dτ ≤ 0 (2.121)

=⇒
∫ 1

0

tf h̃(x(τ),u(τ))dτ ≤ 0 (2.122)

=⇒ tf
K − 1

(
K−1∑
k=2

h̃(xk,uk) +
h̃(x1,u1) + h̃(xK ,uK)

2

)
≤ 0 (2.123)

where non-convex constraint terms h(x,u) may be approximated with their first-order Tay-
lor series expansions h̃(x,u), evaluated about a nominal trajectory. Note that we use the
trapezoidal rule to approximate the definite integral.

Problem Transcription

In this section, we summarize the process to transcribe an infinite-dimensional optimal con-
trol problem (OCP) into a convex, finite-dimensional optimization problem (OPT).

Consider a general OCP formulation, where the objective function, dynamics and con-
straints may be non-convex in the decision variables:

minimize
x,u

Jobj (x,u, tf ) (2.124)

subject to:

ẋ(t) = f (x(t),u(t)) ∀ t ∈ [t0, tf ] (2.125)

gt(x(t),u(t)) ≤ 0 ∀ t ∈ [t0, tf ] (2.126)

x(t0) = xinitial (2.127)

After the time normalization step, the final time tf becomes a decision variable, and the
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problem is defined on the fixed interval τ ∈ [0, 1]:

minimize
x,u,tf

Jobj (x,u, tf ) (2.128)

subject to:

x′(τ) = f̃ (x(τ),u(τ), tf ) ∀ τ ∈ [0, 1] (2.129)

gτ (x(τ),u(τ)) ≤ 0 ∀ τ ∈ [0, 1] (2.130)

x(0) = xinitial (2.131)

Non-convex objective and constraint functions are approximated as convex functions by
using the procedure described in the previous section. The dynamics are also approximated
by linearizing about a nominal trajectory {x̄(τ), ū(τ), t̄f} to get:

minimize
x,u,tf

Jobj (x,u, tf ) (2.132)

subject to:

x′(τ) = A(τ)x(τ) +B(τ)u(τ) + Σ(τ)tf + ξ(τ) ∀ τ ∈ [0, 1] (2.133)

g̃τ (x(τ),u(τ)) ≤ 0 ∀ τ ∈ [0, 1] (2.134)

x(0) = xinitial (2.135)

Finally, we discretize the linearized, continuous-time model, and employ both virtual control
and trust region terms to get the following OPT formulation:

minimize
{xk,uk,νk}Kk=1,tf

Jobj
(
{xk,uk}Kk=1, tf

)
+ Jtr

(
{xk,uk}Kk=1, tf

)
+ Jvc

(
{νk}Kk=1

)
(2.136)

subject to:

xk+1 = Akxk +B−k uk +B+
k uk+1 + Σktf + ξk + νk ∀ k = 1, . . . , K − 1 (2.137)

g̃k(xk,uk) ≤ 0 ∀ k = 1, . . . , K − 1 (2.138)

x1 = xinitial (2.139)

Algorithm

The sequential convex programming algorithm used in this paper is listed in Algorithm 1
where S0 is an initial guess at the solution. As a notation convention used in the algorithm,
superscript i refers to the solution at the ith iteration of the algorithm:

Si :=


{x̄i1, . . . , x̄ik, . . . , x̄iK},
{ūi1, . . . , ūik, . . . , ūiK},
{ν̄i1, . . . , ν̄ik, . . . , ν̄iK},

t̄ if

(2.140)
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The algorithm stops when either (1) the user-defined maximum number of SCP iterations
Nmax have been executed, or (2) the algorithm has converged on a solution, where we define
convergence at the ith iteration as the satisfaction of the following two conditions:(

Jvc
(
Si
)
≤ εvc

)
∧
(
Jtr
(
Si
)
≤ εtr

)
(2.141)

where εvc and εtr are user-defined convergence tolerances. The first condition ensures that
a negligible amount of virtual controls is used, indicating that the converged solution is dy-
namically feasible. The second condition ensures that the solution remains sufficiently close
to the nominal trajectory upon which the linearized dynamics assumed in the problem for-
mulation is accurate. If the SCP algorithm converges on a solution, we record the iteration
at which it converged.

Algorithm 1: Sequential Convex Programming

Input : S0

Output : Si, flag
for i = 1 : Nmax do

transcribe OPTi (Si−1)
Si ← OPTi (Si−1)
if Si converged then

Nconverge = i
return

if i = Nmax then
Nconverge = ∅
return
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Chapter 3

Agile Attitude Maneuvers

3.1 Motivation

Due to the proliferation of launch providers to low Earth orbit (LEO) and the trend towards
smaller and more cost-efficient spacecraft, satellite constellations are enabling scientific mis-
sions and commercial applications that are otherwise impossible with a single, larger satellite.
For example, a constellation of satellites in LEO may be coordinated to point towards coastal
regions around the world to measure ocean color, atmospheric properties, phytoplankton
concentrations, and ultimately assess the health of global coral reef ecosystems [25]. LEO
constellations may also be employed to measure episodic precipitation and subsequent water
flow in flood-prone cities [26]- [27]. Furthermore, constellations may be tasked to measure
soil moisture in targeted regions to assess the risk of wildfires [28]. In addition to climate
and environment monitoring, Earth-observing constellations are providing commercial and
economic value by measuring, for instance, agricultural crop growth, infrastructure devel-
opment, or logistical activity at airports and shipping container routes [29]. Beyond these
Earth observation applications, LEO satellite constellations are also enabling space-based
Internet and telecommunication services [30].

A satellite constellation can be viewed as an interconnection of cyber-physical systems
to be precisely coordinated throughout each stage of a mission. Once a group of satellites
is deployed into a desired orbital plane by a launch vehicle, the satellites enter the orbit
acquisition stage where they must be phased relative to each other to achieve desired angu-
lar spacing. In [31], it is assumed that the orientation of the satellites may be controlled,
with respect to their orbital velocities, so that either a minimum or maximum surface area
is exposed to the LEO atmosphere. By inducing either a low or high atmospheric drag on
each satellite, using a bang-bang control approach, the resulting differential drag between
satellites is used to create angular separation. In [32], simulated annealing is used to design
time-optimal differential drag commands for a group of up to 100 satellites. The method is
demonstrated on actual constellations deployed in LEO. Assuming accurate attitude point-
ing, [33] formulates a linear program that produces differential drag commands taking on
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continuous values between the minimum and maximum values, allowing the constellation
to form not only under a minimum-time objective but also with a maximum altitude (or
equivalently, maximum constellation lifetime) objective. A distributed controller approach
is presented in [34], where it is assumed that the attitude of the satellites can be controlled
to apply continuous low-thrust in the appropriate direction. Regardless of where the con-
trol authority is derived from (e.g., differential drag commands or thrust commands), these
constellation acquisition methods require accurate attitude pointing.

In the subsequent operational stage, the satellites must perform various scheduled tasks
including targeted remote sensing (e.g., imaging, radiometry), downlinking/uplinking data
to/from ground stations, orbital station-keeping and other maintenance activities. In [25]-
[28], an automated scheduler is developed to run autonomously on either ground stations
(with schedules uplinked to satellites) or onboard in a distributed approach. Based on dy-
namic programming or mixed integer programming, the scheduler produces imaging sched-
ules for each satellite that maximizes the number of observations and/or observation times
for the constellation as a whole. In addition to maximizing spatial imaging coverage, [29]
also addresses the problem of maximizing data downlinked by the constellation. We note
that the schedulers in these works make inherent assumptions on the agility and pointing
performance of the attitude control subsystem on board each satellite. For instance, in order
to produce a feasible schedule that provides sufficient time to slew between desired orienta-
tions, the scheduler must know the dynamically-feasible, minimum slew time between any
two desired orientations. This minimum slew time depends on the physical properties of the
spacecraft (i.e., mass moment of inertia, actuator configuration) and actuator constraints
(e.g., maximum rotor torque and momentum). Once an optimized schedule is produced
for the constellation, each satellite must then generate and track an attitude trajectory
that realizes its given schedule. Such an attitude trajectory may be optimized to minimize
desired-actual attitude error at specific times of the trajectory and minimize control effort
over the course of the trajectory.

Predicting future spacecraft will require agile attitude control systems that provide rapid
multi-target pointing and tracking capabilities, [8] proposes a feedback regulator to conduct
large-angle, rest-to-rest slew maneuvers using the Euler’s eigenaxis rotation between any
two orientations. Resembling feedback linearization, the proposed law introduces a nonlin-
ear term to cancel out the coupling between body angular velocities and replaces it with
linear error-quaternion and body rate feedback terms. In [35], a large class of attitude
tracking control laws that have the general form of proportional-derivative (PD) feedback
and feedforward compensation is obtained with proofs of global asymptotic stability in the
closed-loop. Minimum-time, rest-to-rest slew maneuvers for an inertially symmetric rigid
spacecraft with independent three-axis controls are studied in [36], which shows that the
optimal maneuver is not, in general, an eigenaxis rotation but one that includes significant
nutation of the instantaneous axis of rotation. Furthermore, the structure of the optimal
control is different for small and large reorientation angles. While [8], [35], and [36] focus
on rigid body dynamics under ideal, body-fixed control torques, [9] considers actuator dy-
namics and presents a feedback control logic that produces near minimum-time eigenaxis



CHAPTER 3. AGILE ATTITUDE MANEUVERS 30

slew maneuvers under actuator saturation, slew rate limit, and control bandwidth limit.
The control laws are used in [37] to demonstrate rapid multi-ground-target acquisition by
stepping through reference set-points that define successive scan trajectories. We note that
the attitude control strategy in [25] also uses a minimum-time, eigenaxis slew maneuver and
switches to a PD control law for small angles. Based on closed-loop simulations with this
control strategy, a polynomial fit of minimum maneuver time as a function of the eigenaxis
slew angle is used in a scheduler [26].

Although eigenaxis-based minimum-time control laws may be applied to general minimum-
time problems to produce near-optimal maneuvers, they do not explicitly address nonlinear-
ities that arise from, for instance, actuator dynamics nor do they explicitly consider general
state and input constraints (e.g., bounds on momentum, power and energy). Moreover, when
directly applying a feedback control strategy to track a desired sequence of discrete orienta-
tions, the feedback gains between each pair of orientations must be carefully tuned to achieve
settling times that satisfy a desired pointing schedule, without missing any targets. In these
minimum-time or minimum-attitude-error applications, we may use trajectory optimization
methods to not only explicitly deal with nonlinearities and constraints, but to also automate
the generation of continuous attitude trajectories for autonomous execution.

Main Contributions of Chapter

The main contributions of this chapter are the formulation and application of two optimal
control problems (OCPs):

1. An off-line method to produce accurate estimates of the optimal slew time and required
energy for a reference satellite to conduct a rest-to-rest maneuver between any two
arbitrary orientations. The time and energy estimates can be used by a scheduler to
produce dynamically-feasible pointing schedules for each satellite of a constellation.
The corresponding problem is called the Minimum-Time Slew OCP.

2. An on-line method to produce continuous attitude trajectories that satisfy desired
multi-target pointing schedules with minimum control effort. This method may be run
on-board to generate trajectories for a low-level tracking controller to then follow. The
corresponding problem is called the Minimum-Effort Multi-Target Pointing OCP.

These two contributions can be applied together to support the scheduler [38]. The first con-
tribution allows a constellation scheduler to make informed multi-target pointing decisions
(i.e., pointing schedules) based on an accurate assessment of a spacecraft’s maneuvering capa-
bilities. The second contribution allows a spacecraft to plan a continuous attitude trajectory
that feasibly satisfies a desired pointing schedule generated by the constellation scheduler.
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Preliminaries

A satellite with a reaction wheel based attitude determination and control system (ADCS)
can be modeled as a gyrostat [39], consisting of a rigid body (i.e., spacecraft bus) encasing
rotors that are in a fixed orientation. The state vector for this system of rigid bodies may
be represented as:

x = [q> ω> ρ>r ]> = [q1 q2 q3 q4 ωx ωy ωz ρr1 ρr2 ρr3 ρr4 ]
> (3.1)

where q ∈ R4 is the unit quaternion that describes the orientation of the spacecraft’s body-
fixed frame with respect to an inertial frame, ω ∈ R3 is the angular velocity vector of the
spacecraft with components expressed about the body-fixed frame, and ρr ∈ R4 represents
the angular momentum of each spinning rotor about its axis of rotation. Note that we
assume the spacecraft has four actuation rotors. The input vector consists of the torques
produced by the rotors about their axes:

u = τ r = [τr1 τr2 τr3 τr4 ]
> (3.2)

The differential equations describing the motion of this 11-state, 4-input system consist of
the quaternion kinematics, gyrostat equation, and a single-integrator model for the rotors:

ẋ(t) = f(x(t),u(t))

=

fq (q(t),ω(t))

fω (ω(t),ρr(t), τ r(t))
fρr (τ r(t))

 =


1
2
q(t)

[
ω(t)

0

]
−J−1

(
ω(t)× (Jω(t) + Arρr(t)) + Arτ r(t)

)
τ r(t)

 (3.3)

The positive definite matrix J represents the mass moment of inertia of the spacecraft in
the body-fixed frame and Ar ∈ R3×4 is the actuator Jacobian, where each column represents
a rotor’s axis of rotation with respect to the body-fixed frame. We model our reference

Parameter Value Units Description

m 110 [kg] Satellite mass
l × w × h 60 × 60 × 95 [cm] Satellite dimensions (cuboid)

J
[

8.5 0.0 0.0
0.0 8.5 0.0
0.0 0.0 6.0

]
[kg m2] Satellite inertia matrix

Jr 0.01 [kg m2] Rotor inertia
ρmaxr 0.80 [Nms] Maximum rotor momentum
τmaxr 0.06 [Nm] Maximum rotor torque

Ar

[
-0.68 0.68 0.68 -0.68
-0.68 -0.68 0.68 0.68
0.26 0.26 0.26 0.26

]
[ ] Actuator Jacobian (4 rotors)

Table 3.1: Reference satellite parameters
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satellite based on the physical parameters listed in Table 3.1, representative of Planet’s
Skysat, a satellite capable of agile maneuvering and imaging with sub-meter resolution [40].
Note that we assume a pyramid actuator Jacobian that has the torque envelope illustrated
in Fig. B.2, with normalized units.

3.2 Minimum-Time Slewing

We formulate the Minimum-Time Slew OCP for a gyrostat to perform a time-optimal, large-
angle, rest-to-rest slew maneuver:

minimize
τ r,tf

∫ tf

t0

1 dt (3.4)

subject to:

q̇(t) =
1

2
q(t)

[
ω(t)

0

]
∀ t ∈ [t0, tf ] (3.5)

ω̇(t) = −J−1
(
ω(t)× (Jω(t) + Arρr(t)) + Arτ r(t)

)
∀ t ∈ [t0, tf ] (3.6)

ρ̇r(t) = τ r(t) ∀ t ∈ [t0, tf ] (3.7)

‖ω(t)‖2 < ωmax ∀ t ∈ [t0, tf ] (3.8)

‖ρr(t)‖∞ < ρmaxr ∀ t ∈ [t0, tf ] (3.9)

‖τ r(t)‖∞ < τmaxr ∀ t ∈ [t0, tf ] (3.10)

q(t0) = qinitial , ω(t0) = ωinitial , ρr(t0) = ρrinitial
(3.11)

q(tf ) = qfinal , ω(tf ) = ωfinal (3.12)

The integral term in (3.4) captures the minimum-time objective. By following the time
normalization procedure in Sec. 2.3, we note that the objective function can be written as:

Jobj (x,u, tf ) =

∫ tf

t0

1 dt =

∫ 1

0

tf dτ = tf (3.13)

The quaternion kinematics are represented by (3.5) and the gyrostat dynamics are included
in (3.6). The gyrostat dynamics may be modified to include other actuators, such as magne-
torquers and propulsive thrusters. We may also include modeled environmental disturbances,
such as moments due to gravity gradient, atmospheric drag, solar radiation pressure, and the
magnetic field of Earth. Furthermore, the actuator dynamics in (3.7) may use higher-fidelity
models that consider, for example, brushless DC motor dynamics and rotational friction.
The quaternion kinematics and the gyrostat dynamics are non-convex in the state and input
variables, however, they may be linearized using the approach described in Sec. (2.3). The
angular velocity slew rate is bounded using (3.8). This constraint may be included when,
for example, sensors such as star trackers limit how fast the spacecraft body can slew while
maintaining accurate sensor measurements. Bounds on the maximum rotor momentum and
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rotor torque are enforced by (3.9) and (3.10), respectively. Finally, the initial and final
conditions are given in (3.11) - (3.12).

The Minimum-Time Slew OCP may be transcribed and solved using the sequential convex
programming (SCP) method of Sec. 2.3. We note that the bounds on the state and input
variables are convex. However, the constraints are approximately enforced since they are
applied only at the temporal nodes of the discretization.

Example Application

A target-sensing or data-downlinking schedule prescribes a sequence of desired instrument
and/or antenna pointing directions at specified times. To plan a schedule for each satellite
in the constellation, the scheduler must consider the time it takes for the satellite to slew
from one orientation to another. For example, if the angular displacement between two
consecutively scheduled targets on the Earth’s surface is large, it may not be feasible for the
satellite to slew from one pointing orientation to another in a given amount of time. The
slew time depends not only on a satellite’s orbital motion and the relative distance between
targets, but also on the spacecraft’s mass moment of inertia and its actuator specifications.
To our knowledge, a closed-form expression for computing minimum slew times between
any arbitrary orientations does not exist (even for a symmetric rigid body with independent
three-axis control).

Our approach is to apply the Minimum-Time Slew OCP over a gridded space of 3D
rotations. Since an attitude maneuver between any two arbitrary orientations can be sum-
marized by a single rotation about some eigenaxis, we parameterize the rotations using
the Euler axis-angle attitude parameterization. As illustrated in Fig. 3.1, we consider 100
equidistributed axes of rotation and 88 rotations of increasing magnitude: θ ∈ (-180,+180]
degrees to cover a relatively fine grid of the entire space of 3D rotations, resulting in 8,800
unique Euler axis-angle tuples. We set up 8,800 instances of the Minimum-Time Slew OCP,
where we set the initial value of the quaternion in (3.11) to be the identity quaternion (i.e.,
qinitial = qI) and the final desired quaternion in (3.12) to be the quaternion representation
of an Euler axis-angle rotation. The initial and final body angular velocities are set to zero
for a rest-to-rest maneuver. The initial rotor momenta are set to zero and the final rotor
momenta are free variables. Using the sequential convex programming method, we efficiently
solve each problem instance off-line with a computation time on the order of seconds. More
efficient SCP implementations [20] may solve each problem in milliseconds and the overall
procedure can be parallelized for even faster off-line computation. By recording the mini-
mum maneuver time and ADCS energy consumption of each solved problem instance, we
can produce lookup tables or data-fitted functions to be used by a scheduler.

Results

To illustrate the Minimum-Time Slew OCP, we study the solution for a large-angle (60-
degree) slew maneuver about an arbitrary non-principal axis. Using the trajectory opti-
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Figure 3.1: Rotation axes represented by equidistributed points on unit sphere and depiction
of 8,800 unique rotations of a pointing vector.

mization method described in Sec. 2.3, we start the SCP Algorithm (1) with a crude initial
guess S0, as represented in (2.140), that consists of a spherical linear interpolated [41] tra-
jectory between desired quaternions, zero body angular velocity, zero rotor momenta, and
zero rotor torque. We recall that our reference satellite is modeled after Planet’s Skysat with
physical parameters listed in Table 3.1. In Table 3.2, we note that the Minimum-Time Slew
OCP is transcribed into an OPT using K = 30 discretization nodes (2.103). We choose a
relatively small number of nodes for the Minimum-Time Slew OPT since we expect that it
is sufficient for the short time scales in this class of problems. That is, a minimum-time slew
between any two orientations should be on the order of seconds.

Problem Formulation

OPT K γ ρ
Min-Time (θ = 60◦) 30 - -
Min-Error, Mult-Pt 601 1e5 1e0

(Eqn No.) (2.103) (3.14) (3.14)

Table 3.2: Objective function parameters for Attitude OCPs

In Table 3.3, we list the parameters used to decide SCP algorithm convergence (2.141).
We note that the algorithm converges on a solution for the 60-degree minimum-time slew
OCP in ten iterations with a run-time of 20.3 seconds. For each of the 8,800 instances of
the Minimum-Time Slew OCP, we find a solution before reaching the maximum number of
iterations, Nmax = 20. The problems are written in MATLAB and solved using CVX, a
package for specifying and solving convex programs [42], on a 2015 MacBook Pro with 2.5
GHz Intel Core i7 processor.
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SCP Algorithm Convergence Results

OPT Nmax wvc wtr εvc εtr Nconverge tconverge
Min-Time (θ = 60◦) 20 1e5 1e-1 1e-5 1e-5 10 20.3 sec
Min-Error, Mult-Pt 20 1e5 1e-1 1e-3 1e-4 9 144.6 sec

(Eqn No.) Algo (1) (2.115) (2.116) (2.141) (2.141) Algo (1) -

Table 3.3: SCP algorithm parameters and convergence results for Attitude OCPs

In Fig. 3.2, we illustrate the spacecraft’s motion where the blue vector represents the
body z-axis, aligned with an instrument’s pointing vector. The trajectories traced out by the
body axes represent the minimum-time slew maneuver to achieve the desired reorientation.
We qualitatively note that this maneuver about an arbitrary non-principal axis does not
resemble an eigenaxis slew. However, for slews about any of the principal axes, we confirm
that the minimum-time maneuver is an eigenaxis slew aligned with the principal axis.

Figure 3.2: Minimum-time slew maneuver (60-degree rotation about an arbitrary axis)

We characterize the solution for this particular problem instance using five quantities:
maneuver time, rotor momenta, rotor torque, ADCS instantaneous power drawn and ADCS
cumulative energy consumption. In Fig. 3.3, we note that the quaternion trajectory starts
from a nominal orientation (represented by the identity quaternion) and reaches the desired
terminal nodes, corresponding to the desired Euler axis-and-angle rotation. Figure 3.4 shows
that the body starts and ends with zero angular velocity, representing a rest-to-rest slew ma-
neuver. The angular speed is greatest about the body z-axis, confirming the predominantly
yaw-axis rotation depicted in Fig. 3.2.
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Figure 3.3: Quaternion trajectory for minimum-time slew
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Figure 3.4: Body angular velocity for minimum-time slew

Figure 3.5 shows that the rotor momenta do not saturate for this 60-degree maneuver.
For larger rotation magnitudes, we expect that the momentum trajectories may approach
the magnitude bound of 0.80 Nms, impacting maneuver time. We note the non-zero rotor
momenta at the end of the maneuver caused by the input torques. In practice, momentum
will also build up in the rotors as they counteract torques due to environmental disturbances.
This momentum buildup may be dumped with magnetorquers or other compensating mech-
anisms. In Fig. 3.6, we observe that the torque from each rotor saturates at 0.06 Nm and
follows a “bang-bang” structure, consistent with classical minimum-time maneuvers [43]-
[44]. This observation confirms our intuition that performing a rotation in minimum time
requires the actuators to perform at their torque limits.

In Fig. 3.7, we note that the peak instantaneous power drawn by the attitude determi-
nation and control system (ADCS) stays below 15 W and in Fig. 3.8 we observe that the
total energy consumption is less than 150 J for the maneuver. Given mission constraints
on the instantaneous power or energy consumption, we may enforce constraints (3.27) and
(3.28) in our problem formulation.

The optimal value associated with this instance of the Minimum-Time Slew OCP is 21.2
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Figure 3.5: Rotor momenta for minimum-time slew
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Figure 3.6: Rotor torque for minimum-time slew
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Figure 3.7: ADCS instantaneous power drawn for minimum-time slew
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Figure 3.8: ADCS energy consumption for minimum-time slew

seconds. That is, we expect that it requires at least 21.2 seconds to conduct this 60-degree,
rest-to-rest slew maneuver. We expect that a smaller spacecraft with less mass moment of
inertia, but the same actuator specifications, requires less maneuver time to conduct the same
reorientation. Hence, the trend towards small satellites not only results in cost efficiency but
also more nimble operation.

We perform the same trajectory optimization for each of the 8,800 problem instances
described in the Example Application. After solving each problem instance, we plot the cor-
responding slew maneuver time and ADCS energy consumption as functions of the rotation
magnitude in Fig. 3.9 and Fig. 3.10, respectively. For each of the 100 equidistributed axes of
rotation, we observe that the optimal maneuver time is a power function of the rotation mag-
nitude. We also observe that the energy consumed to conduct a minimum-time maneuver
is a linear function of the rotation magnitude. These relationships allow us to approximate
the fastest maneuver time and the required energy to conduct any arbitrary rotation by the
reference satellite described in Table 3.1. The relationships may be represented in lookup
tables or function approximators that can be quickly evaluated by an on-line constellation
scheduler.

To empirically verify the optimality of the solutions found by our approach, we solve the
Minimum-Time Slew OPT for rotations about the principal axes (i.e., about body x-, y-, and
z-axes). Using least-squares fitting, we determine the coefficients for a minimum-time power
model, T = aθb, and an energy linear model, E = cθ+d, valid for eigenaxis rotations |θ| > 1◦

about each axis. As shown in Table 3.4, the power coefficient in the minimum-time model
approximately takes on the value of b = 0.5 for principal axis rotations. Hence, we observe
that the optimal maneuver time for a principal axis rotation is proportional to the square-
root of the rotation magnitude (in radians). We note that the well-known minimum-time,
rest-to-rest, double-integrator problem also reveals this relationship, as mentioned in [36]
and proved in [43] - [44]. Intuitively, we may infer that a minimum-time maneuver about
a principal axis is equivalent to the minimum-time eigenaxis slew, which in turn can be
modeled as the double-integrator problem. Since the maneuver is purely about a principal
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Figure 3.9: Slew time as a function of eigenaxis rotation magnitude θ
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axis, the body angular velocities are decoupled, simplifying the rotational dynamics into a
double-integrator system from torque input to rotation angle. This result provides assurance
that our method is indeed finding approximately optimal values and solutions.

Body Axis a b c d

x 14.4371 0.5000 78.0329 -0.0225
y 14.4371 0.5000 78.0329 -0.0225
z 19.7292 0.5033 123.1154 12.5189

Table 3.4: Minimum-time and energy model coefficients (valid for θ > 1◦)

Beyond double-integrator dynamics about principal axes, our approach can be applied to
high-fidelity spacecraft models and arbitrary rotations. Since the Minimum-Time Slew OCP
can be applied to non-rest-to-rest and non-principal axis rotations, the optimal slew times
found by our approach may be more accurate than those based on the classical rest-to-rest
eigenaxis slew solution. Furthermore, we may explicitly consider constraints that are not
included in the classical formulation (e.g., bounds on body slew rate or rotor momenta).

3.3 Minimum-Effort Multi-Target Pointing

We formulate the Minimum-Effort Multi-Target Pointing OCP for a gyrostat to achieve a
multi-target pointing schedule with minimum control effort:

minimize
τ r

∑
k∈K

{∥∥q̄+(tk)q(tk)− qI
∥∥

2
+ γ ‖ω(tk)− ω̄(tk)‖2

}
+ ρ

∫ tf

t0

‖τ r(t)‖2
2 dt (3.14)

subject to:

q̇(t) =
1

2
q(t)

[
ω(t)

0

]
∀ t ∈ [t0, tf ] (3.15)

ω̇(t) = −J−1
(
ω(t)× (Jω(t) + Arρr(t)) + Arτ r(t)

)
∀ t ∈ [t0, tf ] (3.16)

ρ̇r(t) = τ r(t) ∀ t ∈ [t0, tf ] (3.17)

‖ω(t)‖2 < ωmax ∀ t ∈ [t0, tf ] (3.18)

‖ρr(t)‖∞ < ρmaxr ∀ t ∈ [t0, tf ] (3.19)

‖τ r(t)‖∞ < τmaxr ∀ t ∈ [t0, tf ] (3.20)

q(t0) = qinitial , ω(t0) = ωinitial , ρr(t0) = ρrinitial
(3.21)

q(tf ) = qfinal , ω(tf ) = ωfinal (3.22)

In this problem formulation we maintain the same constraints as those in Sec. 3.2. The final
time tf is no longer a decision variable but a fixed parameter. Given a schedule (i.e., sequence)
of desired quaternions and angular velocities at specified times: {tk, q̄(tk), ω̄(tk)} ∀ k ∈
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K, where K is a finite set of indices, the objective in (3.14) minimizes the error at those
discrete time points while also minimizing the continuous control effort. The control effort
is represented by the the energy of the input signal, defined as

∫ tf
t0
‖u(t)‖22 dt. The definite

integral term representing the control effort is approximated with the trapezoidal rule:∫ tf

t0=0

‖τ r(t)‖2
2 dt =

∫ 1

0

tf ‖τ r(τ)‖2
2 dτ (3.23)

≈ tf
K − 1

(
K−1∑
k=2

‖τ r[k]‖2
2 +
‖τ r[1]‖2

2 + ‖τ r[K]‖2
2

2

)
(3.24)

The user-defined parameter γ > 0 weighs the angular velocity error relative to the quaternion
error while ρ > 0 weighs the control penalty term relative to the total attitude error.

We note that an alternative “constraint formulation” of the Minimum-Effort Multi-Target
Pointing OCP would remove the attitude penalty terms in the objective and implement them
as constraints: ∥∥q̄+(tk)q(tk)− qI

∥∥
2
≤ εq ∀ k ∈ K (3.25)

‖ω(tk)− ω̄(tk)‖2 ≤ εω ∀ k ∈ K (3.26)

where εq ≥ 0 and εω ≥ 0 are user-defined error tolerances. However, if the error tolerance
values are set too tight for a given attitude schedule, then the problem may be infeasible.
Hence, when specific error tolerance values are not required, we may choose to solve the
original “penalty formulation” of the problem.

Additional constraints that we may include in the problem formulations are bounds on
the maximum instantaneous power drawn Pmax and maximum energy consumed Emax by
the attitude control system (i.e., all four rotors combined):

4∑
i=1

∣∣∣∣τri(t) · 1

Jr
ρri(t)

∣∣∣∣ < Pmax ∀ t ∈ [t0, tf ] (3.27)

∫ tf

t0

{
4∑
i=1

∣∣∣∣τri(t) · 1

Jr
ρri(t)

∣∣∣∣
}
dt < Emax (3.28)

where Jr is the rotor inertia. Apart from the equations of motion, we note that the instan-
taneous power and energy constraints are non-convex due to being bilinear in the decision
variables of τ r and ρr.

Example Application

Given a desired attitude pointing schedule {tk, q̄(tk), ω̄(tk)} ∀ k ∈ K, we use the Minimum-
Effort Multi-Target Pointing OCP to plan a continuous trajectory that passes through each
attitude point in the sequence. As an example, we consider the remote-sensing application
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described in [26], where a 24-satellite, 3-plane Walker-Delta constellation is simulated in 710
km altitude, 98.5 deg inclined, circular sun-synchronous orbits (SSO) over a 6-hour duration
with the orbital mechanics module of the D-SHIELD software suite [28]. Simulation results
include the orbital states of the satellites at each time step as well as access times when user-
defined target grid points (described by latitude and longitude coordinates) are observable
by a satellite. In our example we consider 42 urban regions that experience frequent episodic
precipitation and are prone to flooding [26]. Each of these globally-distributed watersheds
covers an 80 km2 area spanned by 121 grid points.

Figure 3.11: Groundtrack of a satellite in a 710km SSO orbit over 16 observable watersheds
and a zoomed-in view of a cluster of 6 watersheds

We focus on a single satellite of the constellation and observe in Fig. 3.11 that the satel-
lite can access 16 of the 42 watersheds during the 6-hour time span. Only a subset of the 42
watersheds are accessible due to either access restrictions, bounds on maximum off-pointing
angles, or occlusion by the Earth’s surface. Fig. 3.11 also provides a zoomed-in view of the
groundtrack, showing a dense cluster of 6 regions with a total of 726 potentially accessible
target grid points. As the satellite passes over this dense cluster, the satellite may be com-
manded by the scheduler to perform a rapid sequence of agile slewing maneuvers to acquire,
point, and track desired target grid points. The commanded schedule during this part of
the orbital trajectory may be the most difficult to execute by an attitude control system,
requiring high-frequency intra-region slewing as well as large-angle, inter-region slewing. We
design a pointing schedule that maximizes the number of observed grid points in this 6-region
cluster, treating it as a stress test for the Minimum-Effort Multi-Target Pointing OCP.

From left to right, the plots in Fig. 3.12 show the satellite’s orbit expressed in both the
Earth-Centered Inertial (ECI) and Earth-Centered Earth-Fixed (ECEF) frames. The origin
of the ECI frame is placed at the Earth’s center and the frame remains fixed in inertial space.
The satellite’s orbital plane also appears fixed to a stationary observer while the Earth rotates
beneath. The ECEF frame is also placed at the Earth’s center but rotates with the Earth’s
rotation about its axis. To an observer rotating with the frame, points on the Earth’s surface
remain fixed but the satellite orbit appears to change. Plots using the ECI frame are useful
for describing the motion of spacecraft in orbit while plots using the ECEF frame are useful
for describing the position of points on the Earth’s surface. In either plot, the red vectors
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point from the satellite to green grid points on the Earth’s surface. We note that the stress
test focuses on a subset of the 16 accessible regions shown in Fig. 3.12 . At any given time, a
desired pointing frame may be uniquely defined with its z-axis aligned with the red pointing
vector, x-axis in the orbital plane towards the direction of motion, and y-axis completing
the right-hand triad. The orientation of this frame with respect to the ECI frame is the
desired pointing attitude to acquire. When a desired attitude is defined at a particular time
instance, we may also define the desired body angular velocity to be zero for an interval about
the specified time instance (e.g., if ∃ q̄(tk), then {ω̄(tk−1), ω̄(tk), ω̄(tk+1)} = 0). Specifying
zero velocity at the time of target observation may mitigate the effects of motion blur while
imaging.

Figure 3.12: Satellite orbit expressed in ECl and ECEF coordinate systems with green urban
regions on Earth surface and red pointing vectors

Using the following guidelines, we manually design an attitude pointing schedule (i.e.,
sequence of desired pointing orientations) to maximize grid point (GP) observations across
the dense 6-region cluster:

• Include as many of the 726 GPs as feasibly possible (6 regions, 121 GPs per region).

• Visit each of the six regions (or as many as possible).

• Finish observing a region before moving to the next region (i.e., cannot return to a
previously observed regions).

• Observe GPs using a “sweeping” pattern, similar to the whiskbroom pattern used by
early Landsat satellites [45].

• The first accessible points in a region are observed first, deciding the direction of the
intra-region, sweeping pattern.

• The first accessible regions are observed first, deciding the direction of the inter-region
slewing.
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As the satellite passes over the 6-region cluster, it has a ∼10-minute window from the
time when one of the 726 GPs first becomes accessible to the time that none are accessible.
From an altitude of 710km, we estimate that the satellite requires at least 2 seconds to
conduct a minimum-time, rest-to-rest slew from a grid point in the nadir direction to an
adjacent grid point 8 km away. We also estimate that it can require at least 15 seconds
to slew the several hundreds of kilometers between certain pairs of regions in the cluster.
Our slew time estimates, between neighboring GPs (intra-region slewing) and neighboring
regions (inter-region slewing), are based on results gained from the Minimum-Time Slew
OCP application of the previous section.

Figure 3.13: Inter-region slewing pattern visits 5 regions and intra-region slewing points at
33 GPs per region

The first plot of Fig. 3.13 shows a manually-designed schedule that visits five of the
six regions. The second plot of Fig. 3.13 illustrates the “sweeping” pattern that is used to
observe 33 GPs per region. A red marker signifies a GP chosen for observation and a green
marker is a GP not chosen for observation. The red path illustrates the sequence in which
the GPs are observed as well as the approximate trajectory of the satellite’s pointing vector
on the Earth’s surface. With 33 GPs in five regions, the manually designed schedule covers a
total of 165 GPs (or 22.7 percent of the total number of accessible GPs). We omit the region
located near 25◦ lattitude and 85◦ longitude since its inclusion reduces the total number of
GP observations, assuming the same number of GP observations per region. Given the 10-
minute window and the slew time necessary between GPs and between regions, we find that
our 165-GP pointing schedule is ambitious and close to the maximum number of grid points
that a satellite may feasibly observe across the 6-region cluster. The other grid points must
be observed on a subsequent revisit or by another satellite. Compared to this heuristics-based
schedule, we expect that an optimization-based schedule could further maximize the number
of GP observations. An optimization-based scheduler may explicitly use minimum-time
estimates (found in the previous section) to optimize an attitude trajectory that maximizes
the number of observations or the quality of measurements, which is a function of the look
angle and slew rate at time of sensor measurement [28].
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Results

We apply the Minimum-Effort Multi-Target Pointing OCP to the 165-GP attitude pointing
schedule for the 6-region cluster example. In Table 3.2, we list the penalty weights used in
the objective function (3.14) as well as the number of discretization nodes used to transcribe
the OCP into an OPT. We use K = 601 nodes so that each node represents a second of the
10-minute observation schedule.

The SCP convergence parameters for the Minimum-Effort Multi-Target Pointing OPT
are listed in 3.3. With 601 discretization nodes, the algorithm requires nine iterations and
144.6 seconds of run-time to converge to a solution. Figure 3.14 illustrates how the virtual
control and trust region penalty terms for the Minimum-Effort Multi-Target Pointing OPT
decrease below user-defined tolerance values by the 9th SCP iteration. The small value for
Jvc signifies that the dynamics, state constraints and input constraints are satisfied using
the input trajectory {τ r[k]}Kk=1 and only a negligible contribution from virtual controls.
Furthermore, the small value for Jtr shows that the solution at the 9th iteration has not
changed significantly from that of the previous iteration. This signifies that the current
solution is based on an accurate approximation of the nonlinear dynamics, linearized about
the previous solution, and that negligible improvement may be found in further iterations.
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Figure 3.14: SCP algorithm convergence as Virtual Control Jvc and Trust Region Jtr penalty
terms fall under tolerance values (εvc, εtr)

We recall that the schedule is a discrete sequence of desired pointing orientations:

{tk, q̄(tk), ω̄(tk)} ∀ k ∈ K, where |K| = 165

In Fig. 3.15, we represent the 165 desired quaternion points with un-filled, circular
markers. The colored lines with filled markers represent a feasible, continuous quaternion
trajectory that passes through all desired points at the specified times.

To quantify the error in the quaternion trajectory with respect to the desired schedule,
we introduce performance metrics:



CHAPTER 3. AGILE ATTITUDE MANEUVERS 46

0 1 2 3 4 5 6 7 8 9 10
t [min]

-1

-0.5

0

0.5

1
q 

[ ]

q1
q2
q3
q4

Figure 3.15: Quaternion trajectory for minimum-effort multi-target pointing maneuver
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Figure 3.16: Body angular velocity for minimum-effort multi-target pointing maneuver

qmaxe = max
k∈K

∥∥q̄+
k qk − qI

∥∥
2

(3.29)

qavge =
1

|K|
∑
k∈K

∥∥q̄+
k qk − qI

∥∥
2

(3.30)

Equation (3.29) measures the largest point-wise error among the 165 observation points
specified by the attitude schedule, whereas equation (3.30) measures the average error across
all 165 points. As recorded in Table 3.5, we compute the maximum point-wise quaternion
error to be qmaxe = 0.0079 and the average quaternion error to be qavge = 0.0014.

Figure 3.16 shows the corresponding angular velocity trajectory and observe that the
spacecraft reaches near-zero angular velocity at all 165 desired points. Similar to the perfor-
mance metrics for the quaternion trajectory, we also introduce equations (3.31) and (3.32)
to quantify the maximum point-wise error and the average error in the angular velocity
trajectory with respect to the desired schedule. We record a maximum point-wise error of
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Quaternion Error Angular Velocity Error

qmaxe qavge ωmaxe ωavge

0.0079 0.0014 0.8135 0.1980

Table 3.5: Reference trajectory error with respect to desired GP schedule

ωmaxe = 0.8135 and an average error of ωavge = 0.1980.

ωmaxe = max
k∈K

‖ωk − ω̄k‖2 (3.31)

ωavge =
1

|K|
∑
k∈K

‖ωk − ω̄k‖2 (3.32)

To further reduce the angular velocity error, we may increase the relative state penalty γ in
the Minimum-Effort Multi-Target Pointing OCP objective (3.14). We may also choose to
include an explicit constraint on the error using (3.26) and attempt to find a solution.

In Fig. 3.16 we also note that the angular velocity components peak when conducting
large-angle slewing between the five regions. The large peaks are due to the limited time
spans allotted for the inter-region slews specified in the schedule. Imposing body slew rate
constraints would reduce the amplitude of the peaks but may also increase quaternion error,
especially for the initial points in each region when high slew rates are required to move
quickly from the previous region. A “relaxed” schedule that allows for more time to conduct
inter-region slews could satisfy slew rate constraints with minimal quaternion error but at
the expense of observing fewer GPs.

As shown in Fig. 3.17, the rotor momenta stay within the 0.8 Nms bounds and peak
when conducting large angle maneuvers, such as slewing between regions. Despite the large
distances between certain pairs of regions, the rotor momenta do not saturate. This obser-
vation suggests that the reference spacecraft is capable of very large-angle slew maneuvers
before rotor momenta saturation.

Despite the control effort penalty in the Minimum-Effort Multi-Target Pointing objective
(3.14), which encourages minimal control effort, we observe that the rotor torques saturate
at the 0.06 Nm bounds in Fig. 3.18 in a “bang-bang,” minimum-time fashion. This suggests
that the spacecraft is working at its performance limits to achieve an aggressive pointing
schedule. We expect actuator saturation to occur for schedules that maximize the number
of observations in a finite amount of time.

The rotor momentum and torque trajectories inform us of the reference spacecraft’s
agile performance limits. Schedules requiring large-angle slew maneuvers may saturate rotor
momentum bounds, limiting how far the spacecraft’s pointing vector can span in a given
amount of time. Schedules requiring rapid slewing between attitude points may saturate
rotor torque bounds. Roughly speaking, for a given spacecraft design (i.e., mass moment-of-
inertia, actuator specifications), rotor momentum and torque bounds dictate spatial range-
of-motion and speed, respectively.
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Figure 3.17: Rotor momenta for minimum-effort multi-target pointing maneuver

0 1 2 3 4 5 6 7 8 9 10
-0.05

0
0.05

u
1 [N

m
]

0 1 2 3 4 5 6 7 8 9 10
-0.05

0
0.05

u
2

0 1 2 3 4 5 6 7 8 9 10
-0.05

0
0.05

u
3

0 1 2 3 4 5 6 7 8 9 10
t [min]

-0.05
0

0.05

u
4

Figure 3.18: Rotor torque for minimum-effort multi-target pointing maneuver

Similar to the body angular velocity and rotor momentum trajectories, we observe in Fig.
3.19 that the total instantaneous power drawn by the rotors peaks when slewing between
regions. We recall that if maximum power bounds must be enforced on the rotors, we may
add constraint (3.27) in our problem formulation.

In Fig. 3.20, we observe that the ADCS requires approximately 550 J to perform the
desired ten-minute, minimum-effort multi-target pointing trajectory. If this trajectory is too
energetically expensive, we may increase the relative control effort weight ρ in the problem
objective to further penalize energy consumption. However, the choice may come at the
expense of increased attitude error. If energy consumption must be constrained, we may
explicitly enforce it by adding (3.28) to the problem formulation. If we cannot find a fea-
sible trajectory in the presence of the energy consumption constraint, the attitude pointing
schedule may need to be relaxed to observe fewer regions.
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Figure 3.19: ADCS instantaneous power for minimum-effort multi-target pointing maneuver
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Figure 3.20: ADCS energy consumption for minimum-effort multi-target pointing maneuver

Open-loop versus Closed-loop Performance

With a solution to the Minimum-Effort Multi-Target Pointing OCP, we can apply the refer-
ence torque trajectory as a linearly-interpolated, open-loop control command τOLr := τ̄ r in
simulation with the dynamics described in (3.3) and parameters listed in Table 3.1. We con-
firm that the state trajectory of the open-loop simulation matches the solution {q̄, ω̄, ρ̄r}
with negligible error, signifying that the OPT approximation, solved using sequential convex
programming, has produced a feasible solution for the original OCP formulation.

In the presence of external disturbances, parameter uncertainty or unmodeled dynamics,
the open-loop simulated trajectories do not match the solution well. A feedback control law
must be applied to mitigate the model mismatch and effectively track the desired attitude
trajectory. As described in Sec. B.4, we design an optimal tracking controller based on
the solution to the LQR problem. The control law is used as a feedback term to regulate
deviations from the desired trajectory. The rotor torque command that we apply to (3.3)
consists of both feedforward and feedback terms: τ CLr := τ̄ r + δτ r, where δτ r is the time-
varying state feedback tracking law.
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To compare open-loop versus closed-loop performance in presence of model mismatch,
we perturb the inertia matrix used in simulation. While we assume a nominal inertia matrix
J in the OCP formulation and the LQR tracking control law design, we use a significantly
perturbed J̃ in simulation:

J =

8.5 0.0 0.0
0.0 8.5 0.0
0.0 0.0 6.0

 kg·m2 J̃ =

15.0 -1.0 2.0
-1.0 7.0 -3.0
2.0 -3.0 9.0

 kg·m2 (3.33)

As illustrated in Fig. 3.21, applying the optimal torque reference command in open-
loop produces the dashed quaternion trajectory, which fails to pass through the desired
quaternion points specified by the multi-target pointing schedule. However, when using
the LQR tracking controller, the closed-loop trajectory passes through most of the desired
quaternion points. We also confirm that the amplitude of the angular velocity peaks during
inter-region slewing are reduced in Fig. 3.22.
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Figure 3.21: LQR closed-loop vs. open-loop quaternion trajectories
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Figure 3.22: LQR closed-loop vs. open-loop angular velocity trajectories
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Using the performance metrics defined in Sec. B.5, we measure the error of both the
open-loop and closed-loop (LQR tracker) simulated trajectories with respect to the optimized
reference trajectory.

Quaternion Error Angular Velocity Error

Control Strategy qmaxe qavge ωmaxe ωavge

Open-loop 0.5947 0.3417 3.5724 0.4116
LQR tracker 0.0653 0.0085 2.0227 0.3515

Table 3.6: Simulation trajectory error with respect to reference trajectory

As shown in Table 3.6, the closed-loop (LQR tracker) trajectory results in smaller error
across all four performance metrics, when compared to the errors of the open-loop trajectory.
In particular, the maximum point-wise quaternion (i.e., attitude) error is reduced by an
order of magnitude when using the tracking controller. In Fig. 3.23, we directly plot the
quaternion and angular velocity errors and observe that the maximum point-wise error in
the open-loop quaternion trajectory coincides with the final point in the trajectory. Since
the error accumulates over time, we can infer that schedules prescribed for long durations of
time will result in very large attitude errors if optimal torque commands are applied in open-
loop. In contrast, the LQR tracker significantly reduces error in the closed-loop quaternion
trajectory. Furthermore, both the maximum and average angular velocity error is reduced
with the LQR tracker. Further reduction in the angular velocity error may be achieved (at
the expense of either increased quaternion error or more control effort) by tuning the LQR
weight matrices (B.30).
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Figure 3.23: LQR closed-loop vs. open-loop attitude error
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3.4 Summary

We have formulated two optimal control problems, the Minimum-Time Slew OCP and the
Minimum-Effort Multi-Target Pointing OCP, that can be applied to high-fidelity spacecraft
models with practical mission objectives and constraints. The 3-DOF, rotational motion
of a spacecraft may be modeled with nonlinear gyrostat and actuator dynamics, quater-
nion kinematics, arbitrary physical parameters, and arbitrary actuator configurations. Con-
straints such as bounds on rotor torque, rotor momentum, body slew rate, ADCS power
and energy are included. Using state-of-the-art techniques in sequential convex program-
ming, we transcribe the non-convex, continuous-time optimal control problems into convex,
finite-dimensional optimization problems (OCP→OPT) to be solved efficiently.

The Minimum-Time Slew OPT accurately estimates the required time and energy to
conduct time-optimal, rest-to-rest maneuvers between any two arbitrary orientations. Com-
pared with simulation-based approaches that implement near-optimal, eigenaxis-slew control
laws about body-fixed control axes, our trajectory optimization approach is not restricted
to eigenaxis slews and can be applied to more general spacecraft models and constraints.
The time and energy estimates can be computed on a grid of the space of 3D rotations to
produce models for use by a constellation scheduler.

Given a desired schedule of discrete pointing orientations, the Minimum-Effort Multi-
Target Pointing OPT produces a dynamically-feasible, continuous reference trajectory that
can achieve the pointing schedule with minimal effort. To mitigate the effects of model mis-
match or external disturbances, a trajectory-tracking controller is used to regulate deviations
from the trajectory. Compared to existing approaches that step from one discrete reference
set-point to another, our method allows us to design the entire multi-target pointing tra-
jectory as a single unabridged maneuver. We have applied both problems formulations to
an example multi-target observation mission and reference spacecraft, demonstrating their
potential use by a remote sensing constellation scheduler.

The two problem formulations are complementary and may significantly elevate the per-
formance of agile, remote sensing satellite constellations. With more accurate estimates of
the minimum time and energy required to conduct particular reorientations, a constellation
scheduler is better informed to design aggressive multi-target pointing schedules that max-
imize constellation utility (e.g., quantity or science value of observations). The satellites of
the constellations may then execute the schedules by planning feasible attitude trajectories
that explicitly consider state and input constraints. Furthermore, given recent advances in
the computing power of small satellite on-board computers, real-time solver implementations
allow a constellation to respond quickly to changes in the environment or mission objectives.
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Chapter 4

Continuous Low-Thrust Orbit
Maneuvers

4.1 Motivation

Orbital maneuvering using impulsive thrust from chemical rockets is a well-established tech-
nology. Continuous low-thrust maneuvering, however, is still an active area of research. We
consider two methods of continuous low-thrust. In the first application of this chapter, we
use continuous low-thrust (e.g., from an electric propulsion engine) to conduct a simultane-
ous orbit raise and circularization maneuver. In the second, we use solar sails to harness
solar radiation pressure for rendezvous trajectories to near Earth objects (NEO). The ap-
proach described in this chapter is applied to single-spacecraft problems before scaling up to
multi-spacecraft constellation problems in the subsequent chapter.

 

Figure 4.1: Initial parking orbit and desired operational orbit
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Preliminaries

We consider three fundamental objective functions that are often considered in orbital trajec-
tory optimization problems. A minimum-fuel solution may be found by maximizing the total
mass of the spacecraft over the duration of the problem, which is equivalent to minimizing
the following objective:

Jobj (r,v,m,T, tf ) = −
∫ tf

t0

ṁ(t) dt = −m(tf ) +m(t0) (4.1)

A minimum-time solution can be found by minimizing the following objective:

Jobj (r,v,m,T, tf ) =

∫ tf

t0

1 dt = tf − t0 (4.2)

A minimum-control-effort solution is achieved by minimizing the energy of the input signal:

Jobj (r,v,m,T, tf ) =

∫ tf

t0

‖T(t)‖2
2 dt (4.3)

Given a particular objective function, the most basic version of an orbital trajectory
optimization problem may be defined as follows:

minimize
T, tf

Jobj (r,v,m,T, tf ) (4.4)

subject to:

ṙ(t) = v(t) ∀t ∈ [t0, tf ] (4.5)

v̇(t) = aG(r(t)) + aT(m(t),T(t)) ∀t ∈ [t0, tf ] (4.6)

ṁ(t) = −‖T(t)‖
g0Isp

∀t ∈ [t0, tf ] (4.7)

rmin ≤ ‖r(t)‖ ≤ rmax ∀t ∈ [t0, tf ] (4.8)

Tmin ≤ ‖T(t)‖ ≤ Tmax ∀t ∈ [t0, tf ] (4.9)

mmin ≤ m(tf ) ∀t ∈ [t0, tf ] (4.10)

r(t0) = r̄ , v(t0) = v̄ , m(t0) = m̄ (4.11)

In this basic version, we only consider the accelerations due to central body gravity and
continuous low thrust in (4.6). As propellant is expelled to produce thrust, the mass of the
vehicle decreases according to (4.7). Using (4.8), we may impose bounds on the altitude of
the spacecraft to ensure that it is maneuvering within operational guidelines. Similarly, we
use (4.7) to impose bounds on the thrust magnitude, ensuring that the trajectory is feasible
given the maximum and minimum thrust provided by the engine. Constraint (4.9) ensures
that the trajectory is feasible given the finite amount of fuel on board. Finally, (4.10) states
the initial conditions of the spacecraft.
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4.2 Orbit Raise and Circularization

When a spacecraft is launched, it is generally first placed into a parking orbit by the launch
vehicle, as shown in Fig. 4.1. From this orbit, the spacecraft may perform an “orbit raise”
maneuver to reach a higher altitude used for the mission. A final circularization maneuver
is performed to exit the transfer orbit and enter a final desired circular orbit. In [46], it is
shown that applying continuous low-thrust in the tangential direction allows a spacecraft to
slowly spiral outwards from a circular orbit. In [47] and [48], continuous low-thrust steering
control laws are developed based on the Pontryagin Maximum Principle. In [48], numerical
methods are proposed to determine the initial conditions of Lagrange multipliers used in the
steering laws, however, the authors admit that the process may be time-consuming. In this
section, we consider orbit raising problem formulations with input and state constraints that
may be solved efficiently.

Problem Formulation without Perturbations

The following problem formulation is used to simultaneously raise the orbit of a spacecraft
and circularize under the assumption of no environmental perturbations:

minimize
T, tf

Jobj (r,v,m,T, tf ) (4.12)

subject to:

ṙ(t) = v(t) ∀t ∈ [t0, tf ] (4.13)

v̇(t) = aG(r(t)) + aT(m(t),T(t)) ∀t ∈ [t0, tf ] (4.14)

ṁ(t) = −‖T(t)‖
g0Isp

∀t ∈ [t0, tf ] (4.15)

rmin ≤ ‖r(t)‖ ≤ rmax ∀t ∈ [t0, tf ] (4.16)

Tmin ≤ ‖T(t)‖ ≤ Tmax ∀t ∈ [t0, tf ] (4.17)

mmin ≤ m(tf ) ∀t ∈ [t0, tf ] (4.18)

‖r(tf )‖ = rdes (4.19)

vT (r(tf ),v(tf )) = vC (r(tf )) (4.20)

vR (r(tf ),v(tf )) = 0 (4.21)

vN (r(tf ),v(tf )) = 0 (4.22)

r(t0) = r̄ , v(t0) = v̄ , m(t0) = m̄ (4.23)

Note that we have implemented the basic orbital trajectory optimization formulation with
the addition of constraint (4.19), used to specify the final desired altitude, and (4.20) - (4.22),
used to achieve the velocity required for a circular orbit. The approximation of non-convex
constraints is described in (C.2).
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Problem Formulation with Perturbations

In the following problem formulation, we consider the dominant perturbations in low Earth
orbit. Namely, we include the accelerations due to oblate Earth “J2” gravity and atmospheric
drag (4.26). Since a circular orbit will immediately become elliptical under the influence of J2

gravity, we do not enforce constraints (4.19)-(4.22) in this formulation. We must be content
with nearly circular orbits in the presence of perturbations such as J2 gravity. We instead
replace the desired radius and circularization constraints with a terminal constraint on the
final semi-major axis (4.31) and the final eccentricity (4.32):

minimize
T, tf

Jobj (r,v,m,T, tf ) (4.24)

subject to:

ṙ(t) = v(t) ∀t ∈ [t0, tf ] (4.25)

v̇(t) = aG(r(t)) + aJ2(r(t)) + aD(r(t),v(t),m(t)) + aT(m(t),T(t)) ∀t ∈ [t0, tf ] (4.26)

ṁ(t) = −‖T(t)‖
g0Isp

∀t ∈ [t0, tf ] (4.27)

rmin ≤ ‖r(t)‖ ≤ rmax ∀t ∈ [t0, tf ] (4.28)

Tmin ≤ ‖T(t)‖ ≤ Tmax ∀t ∈ [t0, tf ] (4.29)

mmin ≤ m(tf ) ∀t ∈ [t0, tf ] (4.30)

a (r(tf ),v(tf )) = ades (4.31)

e (r(tf ),v(tf )) = edes (4.32)

r(t0) = r̄ , v(t0) = v̄ , m(t0) = m̄ (4.33)

Example Application

We consider a spacecraft in an initial 250 km altitude circular orbit at an inclination of
28.5 degrees, the approximate latitude of the launch facilities in Cape Canaveral, Florida,
USA. The objective is to reach a 550 km circular orbit in minimum-time. The spacecraft
has an initial wet mass of 100 kg, of which 20 kg is propellant mass. The electric propulsion
system has a maximum thrust magnitude of 0.1 N and a specific impulse of 3000 seconds.
We constrain the spacecraft to maneuver above 200 km altitude, to prevent excessive drag,
and below 700 km, to avoid other spacecraft. Given these example parameters, we solve
two formulations of the simultaneous orbit raise and circularization problem. The first
formulation only considers the accelerations due to central body gravity and continuous
low-thrust. The second formulation includes the perturbations of atmospheric drag and J2

gravity. For both problems, we design an initial guess at the solution by propagating the
spacecraft from its initial state with maximum thrust in the tangential direction. In the case
of the problem formulation with perturbations, we propagate the spacecraft states with J2

gravity and atmospheric drag included in the simulation environment.
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In Fig. 4.2, we show the optimal thrust trajectory, expressed in the spacecraft’s RTN
frame (orbit radial, tangential, and normal directions), for both problem formulations, i.e.,
with and without perturbations. We first note that the minimum-time to conduct a 250km-
to-500km orbit raise is approximately 48 hours when not considering perturbations. However,
when considering J2 gravity and atmospheric drag, the maneuver requires approximately 51
hours. We attribute the difference to the time required to overcome the effects of perturba-
tions during the orbit raise and circularization maneuver. For example, atmospheric drag
acts directly against the velocity of the spacecraft, retarding any maneuvers made through
the atmosphere. The J2 gravity perturbation adds non-radial accelerations depending on
position of the spacecraft. The solutions to both problems apply maximum thrust in the
tangential direction for a significant duration of the maneuver. We also note that thrust is
applied in the normal direction is much greater when J2 gravity is considered.

0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.05

0

T
R

 [
N

]

0 5 10 15 20 25 30 35 40 45 50
-0.1

0

0.1

T
T
 [

N
]

0 5 10 15 20 25 30 35 40 45 50

time [hours]

-0.05

0

0.05

T
N

 [
N

]

no perturbation

J2 + atm drag

Figure 4.2: Optimal thrust trajectory for problem with and without perturbations

In the following figures of this section, we study simulation results of applying the optimal
thrust trajectories in open-loop. In Fig. 4.3, we compare the acceleration from central body
gravity to the acceleration from thrust for the unperturbed problem. We first note that the
acceleration due to thrust is much smaller than that of gravity, by a factor of almost 10−4.
Despite this, the spacecraft is able to conduct the orbit raise maneuver. As expected, the
acceleration due to gravity is only present in the (negative) radial direction and decreases
as the spacecraft raises altitude. Although a component of thrust acceleration exists in the
radial direction, it is significantly smaller than that of central body gravity. Most of the
thrust acceleration is applied in the tangential direction and we observe that the minimum-
time strategy is to initially decelerate before applying maximum acceleration for the rest of
the maneuver. We observe a small amount of thrust maneuvering in the normal direction
that we attribute to the initial inclination of the orbit. In general, we find that the solution
to the orbit raise problem does not stray far from the initial guess.

In Fig. 4.4, we compare all four accelerations (central body gravity, J2 gravity, atmo-
spheric drag, thrust) in the perturbed case. Central body gravity remains the dominant
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Figure 4.3: Optimal accelerations for problem without perturbations
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Figure 4.4: Optimal accelerations for problem with perturbations

acceleration in the radial direction. In both tangential and normal direction, J2 gravity is
the most significant acceleration on the spacecraft, with a maximum value that is more than
two times larger than the maximum thrust magnitude. However, unlike the acceleration due
to drag, the J2 acceleration is periodic, changing with the orbital position of the spacecraft.
The optimal maneuver is similar to the unperturbed case where maximum thrust is applied
in the positive tangential direction for most of the maneuver.

Figure 4.5 shows the altitude climb resulting from the solutions to the unperturbed and
perturbed problems. In both instances, the spacecraft reaches the desired altitude of 550
km. For the unperturbed case, this is achieved by satisfying constraint 4.19. However, in the
perturbed case we note the bounded oscillation of the spacecraft altitude under J2 gravity.
Hence, we use constraint 4.31, which is essentially a constraint on the average altitude of the
spacecraft, ensuring that the spacecraft oscillates about the desired 550 km altitude orbit.
From this plot it is also clear that perturbations affect the time required to complete an
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orbit raise maneuver, resulting in a longer-duration trajectory.
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Figure 4.5: Minimum-time altitude climb for problem with and without perturbations

We recall the circularization condition implied by constraints on the velocity components
(4.20)-(4.22) or by a constraint on the orbit eccentricity (4.32). In Fig. 4.6, we observe
that both approaches lead to the spacecraft obtaining the necessary speed for a circular
orbit at the desired 550 km altitude. We find that the zero eccentricity constraint is a more
relaxed condition compared to the constraints on the velocity components, well-suited for
the perturbed problem formulation. Furthermore, an advantage of using a constraint on the
eccentricity is that we can design not only circular orbits but also elliptical orbits that may
be useful in certain applications (e.g., Molniya orbits).
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Figure 4.6: Optimal speed for problem with and without perturbations

In Fig. 4.7, we note that the radial component of the velocity reaches zero at the end
of the maneuver in both the unperturbed and perturbed cases. Furthermore, the tangential
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Figure 4.7: Optimal velocity components for problem with and without perturbations

component of the velocity matches the speed required for a 550 km circular orbit. The
velocity in the normal direction is negligible.

In Fig. 4.8, we show how the orbital elements change during the maneuver in both the
unperturbed and perturbed cases. The first plot shows the semi-major axis of the orbit and
we note that the perturbed trajectory requires more time to reach the desired semi-major
axis (i.e., altitude) compared to the unperturbed trajectory. We attribute the delay to the
atmospheric drag that retards the spacecraft motion throughout the maneuver. We also note
the oscillations in the perturbed trajectory due to J2 perturbation. The second plot shows
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Figure 4.8: Optimal orbital elements for problem with and without perturbations

the instantaneous eccentricity of the trajectories. The application of thrust acceleration
causes both unperturbed and perturbed trajectories to take on elliptical orbits, reaching
minimum eccentricity values at the periapsis of every orbital revolution. We also observe
how the J2 perturbation causes more elliptical orbits. Finally, the third plot shows how J2

gravity causes small oscillations in the orbital inclination.
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4.3 Orbital Rendezvous using Solar Radiation

Pressure

In the previous section, we described how the basic orbital trajectory optimization problem
can be used to change the size, shape, or orientation of an orbit. We now consider the problem
of performing a rendezvous maneuver with a moving target, such as a planet or asteroid.
Rendezvous requires the spacecraft’s position and velocity vectors to match those of the
target. In this section we consider continuous low-thrust derived not from onboard propulsion
but from solar sails that take advantage of the radiation pressure from the Sun [49].
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Figure 4.9: Solar sail orbital rendezvous with Near Earth Object

Problem Formulation

We consider an orbital rendezvous problem where our input acceleration is derived from
solar radiation pressure (C.5). Our problem formulation is described below:

minimize
α, β, tf

∫ tf

t0

1 dt (4.34)

subject to:

ṙ(t) = v(t) ∀t ∈ [t0, tf ] (4.35)

v̇(t) = aG(r(t)) + aS(r(t),v(t), α(t), β(t)) ∀t ∈ [t0, tf ] (4.36)

− π

2
≤ α(t) ≤ π

2
∀t ∈ [t0, tf ] (4.37)

0 ≤ β(t) ≤ 2π ∀t ∈ [t0, tf ] (4.38)

‖r(tf )− rdes(tf )‖ ≤ εr (4.39)

‖v(tf )− vdes(tf )‖ ≤ εv (4.40)

r(t0) = r̄ , v(t0) = v̄ (4.41)
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Unlike propulsive methods of acceleration that require a propellant to be spent, solar sails
do not require fuel and only rely on the Sun’s radiation. Hence, we use a minimum-time
objective in the formulation. In the equations of motion, we include the accelerations due
to the Sun’s gravity and solar radiation pressure (4.36). The cone angle and clock angle are
restricted to the intervals in (4.37) and (4.38) to ensure that the solar sail’s orientation may
be uniquely defined by a given pair. Most importantly, the rendezvous condition is described
by constraints (4.39) and (4.40) which ensure that the position and velocity of the spacecraft
are within a specified Euclidean distance of those of the target body (e.g., planet, asteroid,
near Earth object). We assume that the position and velocity of the target body are known,
and we treat them as forcing functions in our problem formulation. Furthermore, we note
that these two constraints are not only functions of the state variables but also of the final
time, a decision variable in our problem formulation.

Example Application

We consider a spacecraft in a circular, ecliptic orbit at a distance 1 [AU] from the center of
the Sun. The objective is to rendezvous with a target body that is in a 2[AU] circular orbit,
with an inclination of 5 degrees from the ecliptic plane. As a reference, we note that the
orbit of Mars has a semi-major axis of approximately 1.524 [AU], an eccentricity of 0.0934,
and an inclination of 1.85 degrees.

In Fig. 4.10, we show the time-optimal rendezvous trajectory of the spacecraft in the
Sun-centered inertial frame, where the Sail’s trajectory is shown in blue and the near Earth
object (NEO)’s trajectory is shown in red.. The black vectors on the Sail’s trajectory show
the direction of the SRP acceleration vector; we note that it has both a radial and tangential
component.

Figure 4.10: Sail-NEO rendezvous trajectory with SRP acceleration vector

In Fig. 4.11, we show that the Sail’s orbital “altitude” reaches that of the NEO in



CHAPTER 4. CONTINUOUS LOW-THRUST ORBIT MANEUVERS 63

approximately 2 years. The speed of the Sail also matches that of the NEO at the final
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Figure 4.11: Radial distance of Sail and NEO from Sun

time in Fig. 4.12. By observing the components of the position vector in the inertial frame
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Figure 4.12: Speed of Sail and NEO

(Fig. 4.13), we confirm that the Sail’s position is co-located with the position of the NEO
at the final time. Similarly, we verify that the components of the Sail’s velocity vector
align with those of the NEO (Fig. 4.14), confirming the rendezvous condition. Once the
maneuver is complete and we set the cone angle to 90 degrees, the spacecraft’s motion will
coincide with that of the NEO. Using the position and velocity vectors, we may represent
the orbital elements for the Sail and the NEO in Fig. 4.15. In particular, we focus on the
instantaneous semi-major axis, eccentricity, and inclination of the two bodies and confirm
that they are in the same orbit. In Fig. 4.16, we note that most the Sail’s speed is in its
tangential direction of motion. However, a significant speed of 4 km/s is achieved in the
initial part of the trajectory. As expected, the tangential speed decreases as we spiral out
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Figure 4.13: Position of Sail and NEO expressed in SCI frame
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Figure 4.14: Velocity of Sail and NEO expressed in SCI frame

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

3

s
m

a
 [

k
m

] 10
8

SAIL

NEO

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

e
c
c
 [

 ]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [years]

0

5

in
c
 [

d
e

g
]

Figure 4.15: Semi-major axis, eccentricity, inclination of Sail and NEO
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from the center of the Sun. We attribute the small component of velocity in the orbital
normal direction to numerical error. The optimal cone and clock angle are shown in Fig.
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Figure 4.16: Velocity of Sail expressed in RTN frame

4.17. We note that the cone angle remains in the range of 35 degrees, which is the optimal
angle for maximizing orbital semi-major axis. Furthermore, we observe that the clock angle
eventually reaches a value near 90 degrees after the 5 degree orbital inclination error has
been zeroed out. Finally, in Fig. 4.18 we observe that the inward “pull” of the Sun’s gravity
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Figure 4.17: Cone and clock angles of Sail

is the dominant acceleration component. Nevertheless, the spacecraft is able to maneuver
outwards by applying acceleration in the tangential direction of orbital motion.

We note that this problem may be repeated for the same two bodies (i.e., Sail and NEO)
when they are at different positions in the orbit. By choosing the appropriate “departure”
date and time, we may find not only the optimal rendezvous trajectory but also the optimal
departure time.
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Figure 4.18: Accelerations due to SRP and gravity expressed in RTN frame

4.4 Summary

We have developed a basic orbital trajectory optimization framework upon which application-
specific dynamics, constraints and objectives can be added. We demonstrated this general
approach on two different examples. We first optimized a minimum-time trajectory to per-
form a simultaneous orbit raise and circularization maneuver in low Earth orbit. In addition
to central body gravity and continuous low-thrust, we considered the dominant perturba-
tions in low Earth orbit: J2 gravity and atmospheric drag. We then optimized a rendezvous
trajectory to an asteroid in the heliocentric inertial frame, considering the Sun’s gravity and
the acceleration due to solar radiation pressure. In the subsequent chapter, we continue to
build upon this framework to also approach multi-spacecraft constellation problems.
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Chapter 5

Centralized Approach to
Constellation Formation

5.1 Motivation

With the trend towards smaller satellites, launch vehicles intended for carrying large payloads
may now deploy tens and even hundreds of satellites into orbit. When a group of small
satellites is deployed into its designated orbit from the same launch vehicle, the satellites
are subsequently spaced out into a desired constellation formation. In general, constellations
are designed so that satellites occupying the same plane are positioned in an equally-spaced
formation. The procedure for spacing the satellites is called constellation phasing. To aid
the phasing procedure, a launch vehicle will enter a spin so that each satellite is given a
small initial ejection speed upon deployment. However, to fully phase a constellation, the
spacecraft must use onboard propulsion or differential drag to change their relative positions.
The use of differential drag has been demonstrated on orbit by Planet Labs [50] and usually
requires months of time to fully phase a constellation. In comparison, continuous low-thrust
propulsion may require only days or weeks, as demonstrated by SpaceX [51]. In both [32]
and [52], the authors focus on time-optimal trajectories to constellation phasing by deciding
the amount of time each satellite spends in a high- or low- drag configuration (i.e., by inducing
differential drag) or the amount of time applying thrust. Both works assume planar motion
and [52] assumes thrust is only applied in the tangential direction (i.e., no thrust in the
radial direction). With such problem formulations, it may be difficult to assess the impact
of perturbations that act normal to the orbital plane, such as J2 gravity. Furthermore, the
orientation of the constellation in 3-dimensional space may not be controlled with a planar
problem formulation.

In this chapter, we propose a 3-dimensional, centralized approach to constellation phasing
using the trajectory optimization framework described in Chapter 4. This approach allows
us to consider out-of-plane perturbations and maneuvers.
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5.2 Constellation Phasing in Circular Orbits

In Fig. 5.1, we illustrate an equally-spaced constellation consisting of four satellites. The
radial unit vector r̂i points to the ith satellite and the angle θi is the angular spacing between
the ith and (i+ 1)st satellites.
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<latexit sha1_base64="kbuKKWaYnZGDKwBEIiAEKp44owo=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBKp1GPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3Sua369dlNt1oswynAOF3AFPjSgCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxMxi4g=</latexit>

✓1

<latexit sha1_base64="okCJ85XhhFEuxRXbgfnxiibpqVM=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8lUQqeix48VjBfkAbymY7bZduNnF3IpTQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWandpRES6/m9UtmreHO4q8TPSRly1Hulr24/5mmEirhkxnR8L6EgY5oElzgtdlODCeNjNsSOpYpFaIJsfu/UPbdK3x3E2pYid67+nshYZMwkCm1nxGhklr2Z+J/XSWlwE2RCJSmh4otFg1S6FLuz592+0MhJTixhXAt7q8tHTDNONqKiDcFffnmVNC8rfrVydV8t16p5HAU4hTO4AB+uoQZ3UIcGcJDwDK/w5jw6L86787FoXXPymRP4A+fzB8vJj8Y=</latexit>

✓2

<latexit sha1_base64="DfIKDlwk3M0ADgezqw+s2Bi0eeI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY8FLx4r2A9oQ9lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK3T6OOdJBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni3hm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzJ8nQ6E5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXql69enVfrzTqeRxFOINzuAQPrqEBd9CEFjCQ8Ayv8OY8Oi/Ou/OxbC04+cwp/IHz+QPNTY/H</latexit>

✓3

<latexit sha1_base64="QE3GKlWOy4uGdXcdlYXMqiTuhlg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseCF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGn/sl+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmldVL1a9eq+VqnX8jiKcAKncA4eXEMd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfO0Y/I</latexit>

r̂1

<latexit sha1_base64="K/ut9eEw0nvRuZjBIFqpBx5cTds=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRS0WXBjcsK9gFNKJPppB06mYSZG7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkAiuwXG+rcrG5tb2TnW3trd/cHhkH9d7Ok4VZV0ai1gNAqKZ4JJ1gYNgg0QxEgWC9YPZbeH3H5nSPJYPME+YH5GJ5CGnBIw0suvelEDmRQSmQZipPB+5I7vhNJ0F8DpxS9JAJToj+8sbxzSNmAQqiNZD10nAz4gCTgXLa16qWULojEzY0FBJIqb9bJE9x+dGGeMwVuZJwAv190ZGIq3nUWAmi5B61SvE/7xhCuGNn3GZpMAkXR4KU4EhxkUReMwVoyDmhhCquMmK6ZQoQsHUVTMluKtfXie9y6bbal7dtxrtVllHFZ2iM3SBXHSN2ugOdVAXUfSEntErerNy68V6tz6WoxWr3DlBf2B9/gB9x5Sy</latexit>

r̂2

<latexit sha1_base64="6tpm3Caka6UjRiDRJuR3MVqTeAs=">AAAB+3icbVBNS8NAFHypX7V+xXr0slgETyUpFT0WvHisYFuhCWWz3bRLN5uwuxFLyF/x4kERr/4Rb/4bN20O2jqwMMy8x5udIOFMacf5tiobm1vbO9Xd2t7+weGRfVzvqziVhPZIzGP5EGBFORO0p5nm9CGRFEcBp4NgdlP4g0cqFYvFvZ4n1I/wRLCQEayNNLLr3hTrzIuwngZhJvN81BrZDafpLIDWiVuSBpTojuwvbxyTNKJCE46VGrpOov0MS80Ip3nNSxVNMJnhCR0aKnBElZ8tsufo3ChjFMbSPKHRQv29keFIqXkUmMkipFr1CvE/b5jq8NrPmEhSTQVZHgpTjnSMiiLQmElKNJ8bgolkJisiUywx0aauminBXf3yOum3mm67eXnXbnTaZR1VOIUzuAAXrqADt9CFHhB4gmd4hTcrt16sd+tjOVqxyp0T+APr8wd/S5Sz</latexit>

r̂3

<latexit sha1_base64="17sZAzTkg+SToYi93J9Sk+Dp3BI=">AAAB+3icbVBNS8NAFHypX7V+xXr0slgETyXRih4LXjxWsLXQhLDZbtqlm03Y3Ygl5K948aCIV/+IN/+N2zYHbR1YGGbe481OmHKmtON8W5W19Y3Nrep2bWd3b//APqz3VJJJQrsk4Ynsh1hRzgTtaqY57aeS4jjk9CGc3Mz8h0cqFUvEvZ6m1I/xSLCIEayNFNh1b4x17sVYj8Mol0URXAR2w2k6c6BV4pakASU6gf3lDROSxVRowrFSA9dJtZ9jqRnhtKh5maIpJhM8ogNDBY6p8vN59gKdGmWIokSaJzSaq783chwrNY1DMzkLqZa9mfifN8h0dO3nTKSZpoIsDkUZRzpBsyLQkElKNJ8agolkJisiYywx0aauminBXf7yKumdN91W8/Ku1Wi3yjqqcAwncAYuXEEbbqEDXSDwBM/wCm9WYb1Y79bHYrRilTtH8AfW5w+Az5S0</latexit>

r̂4

<latexit sha1_base64="das+AmTMIWFrnwZrAnBKBKGpnq8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiQS0WXBjcsK9gFNCJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DMnTBmVyra/jdrG5tb2Tn23sbd/cHhkHjf7MskEJj2csEQMQyQJo5z0FFWMDFNBUBwyMghnt6U/eCRC0oQ/qHlK/BhNOI0oRkpLgdn0pkjlXozUNIxyURSBG5gtu20vYK0TpyItqNANzC9vnOAsJlxhhqQcOXaq/BwJRTEjRcPLJEkRnqEJGWnKUUykny+yF9a5VsZWlAj9uLIW6u+NHMVSzuNQT5Yh5apXiv95o0xFN35OeZopwvHyUJQxSyVWWYQ1poJgxeaaICyozmrhKRIIK11XQ5fgrH55nfQv247bvrp3Wx23qqMOp3AGF+DANXTgDrrQAwxP8Ayv8GYUxovxbnwsR2tGtXMCf2B8/gCCU5S1</latexit>

1

<latexit sha1_base64="1iJTk5kp8o3+LBo1/mlulnAwqCM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WvW6WavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBeP+Mrw==</latexit>

2

<latexit sha1_base64="X1DHSK3Idnv8nFEfa2X+LMInWCc=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkmp6LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyterXLdrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBeoOMsA==</latexit>

3

<latexit sha1_base64="uAAXmfWg40qUpY3IBpxXaBNSA2c=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolW9Fjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqXPVLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGtn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVa8auW6US3XqnkcBTiFM7gAD26gBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kDfAeMsQ==</latexit>

4

<latexit sha1_base64="kbuKKWaYnZGDKwBEIiAEKp44owo=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBKp1GPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPRQH1aqXs1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3Sua369dlNt1oswynAOF3AFPjSgCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBxMxi4g=</latexit>

✓1

<latexit sha1_base64="okCJ85XhhFEuxRXbgfnxiibpqVM=">AAAB73icbVBNS8NAEJ34WetX1aOXYBE8lUQqeix48VjBfkAbymY7bZduNnF3IpTQP+HFgyJe/Tve/Ddu2xy09cHA470ZZuaFiRSGPO/bWVvf2NzaLuwUd/f2Dw5LR8dNE6eaY4PHMtbtkBmUQmGDBElsJxpZFEpshePbmd96Qm1ErB5okmAQsaESA8EZWandpRES6/m9UtmreHO4q8TPSRly1Hulr24/5mmEirhkxnR8L6EgY5oElzgtdlODCeNjNsSOpYpFaIJsfu/UPbdK3x3E2pYid67+nshYZMwkCm1nxGhklr2Z+J/XSWlwE2RCJSmh4otFg1S6FLuz592+0MhJTixhXAt7q8tHTDNONqKiDcFffnmVNC8rfrVydV8t16p5HAU4hTO4AB+uoQZ3UIcGcJDwDK/w5jw6L86787FoXXPymRP4A+fzB8vJj8Y=</latexit>

✓2

<latexit sha1_base64="DfIKDlwk3M0ADgezqw+s2Bi0eeI=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY8FLx4r2A9oQ9lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gNOE+xEdKREKRtFK3T6OOdJBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni3hm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophjd+JlSSIldsuShMJcGYzJ8nQ6E5Qzm1hDIt7K2EjammDG1EJRuCt/ryOmnXql69enVfrzTqeRxFOINzuAQPrqEBd9CEFjCQ8Ayv8OY8Oi/Ou/OxbC04+cwp/IHz+QPNTY/H</latexit>

✓3

<latexit sha1_base64="QE3GKlWOy4uGdXcdlYXMqiTuhlg=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oseCF48V7Ae0oWy2m3bpZhN3J0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilTg9HHGn/sl+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn83ik5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophjd+JlSSIldssShMJcGYzJ4nA6E5QzmxhDIt7K2EjaimDG1EJRuCt/zyKmldVL1a9eq+VqnX8jiKcAKncA4eXEMd7qABTWAg4Rle4c15dF6cd+dj0Vpw8plj+APn8wfO0Y/I</latexit>

r̂1

<latexit sha1_base64="K/ut9eEw0nvRuZjBIFqpBx5cTds=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRS0WXBjcsK9gFNKJPppB06mYSZG7GE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkAiuwXG+rcrG5tb2TnW3trd/cHhkH9d7Ok4VZV0ai1gNAqKZ4JJ1gYNgg0QxEgWC9YPZbeH3H5nSPJYPME+YH5GJ5CGnBIw0suvelEDmRQSmQZipPB+5I7vhNJ0F8DpxS9JAJToj+8sbxzSNmAQqiNZD10nAz4gCTgXLa16qWULojEzY0FBJIqb9bJE9x+dGGeMwVuZJwAv190ZGIq3nUWAmi5B61SvE/7xhCuGNn3GZpMAkXR4KU4EhxkUReMwVoyDmhhCquMmK6ZQoQsHUVTMluKtfXie9y6bbal7dtxrtVllHFZ2iM3SBXHSN2ugOdVAXUfSEntErerNy68V6tz6WoxWr3DlBf2B9/gB9x5Sy</latexit>

r̂2

<latexit sha1_base64="6tpm3Caka6UjRiDRJuR3MVqTeAs=">AAAB+3icbVBNS8NAFHypX7V+xXr0slgETyUpFT0WvHisYFuhCWWz3bRLN5uwuxFLyF/x4kERr/4Rb/4bN20O2jqwMMy8x5udIOFMacf5tiobm1vbO9Xd2t7+weGRfVzvqziVhPZIzGP5EGBFORO0p5nm9CGRFEcBp4NgdlP4g0cqFYvFvZ4n1I/wRLCQEayNNLLr3hTrzIuwngZhJvN81BrZDafpLIDWiVuSBpTojuwvbxyTNKJCE46VGrpOov0MS80Ip3nNSxVNMJnhCR0aKnBElZ8tsufo3ChjFMbSPKHRQv29keFIqXkUmMkipFr1CvE/b5jq8NrPmEhSTQVZHgpTjnSMiiLQmElKNJ8bgolkJisiUywx0aauminBXf3yOum3mm67eXnXbnTaZR1VOIUzuAAXrqADt9CFHhB4gmd4hTcrt16sd+tjOVqxyp0T+APr8wd/S5Sz</latexit>

r̂3

<latexit sha1_base64="17sZAzTkg+SToYi93J9Sk+Dp3BI=">AAAB+3icbVBNS8NAFHypX7V+xXr0slgETyXRih4LXjxWsLXQhLDZbtqlm03Y3Ygl5K948aCIV/+IN/+N2zYHbR1YGGbe481OmHKmtON8W5W19Y3Nrep2bWd3b//APqz3VJJJQrsk4Ynsh1hRzgTtaqY57aeS4jjk9CGc3Mz8h0cqFUvEvZ6m1I/xSLCIEayNFNh1b4x17sVYj8Mol0URXAR2w2k6c6BV4pakASU6gf3lDROSxVRowrFSA9dJtZ9jqRnhtKh5maIpJhM8ogNDBY6p8vN59gKdGmWIokSaJzSaq783chwrNY1DMzkLqZa9mfifN8h0dO3nTKSZpoIsDkUZRzpBsyLQkElKNJ8agolkJisiYywx0aauminBXf7yKumdN91W8/Ku1Wi3yjqqcAwncAYuXEEbbqEDXSDwBM/wCm9WYb1Y79bHYrRilTtH8AfW5w+Az5S0</latexit>

r̂4

<latexit sha1_base64="das+AmTMIWFrnwZrAnBKBKGpnq8=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiQS0WXBjcsK9gFNCJPppB06mYSZiVhCfsWNC0Xc+iPu/BsnbRbaemDgcM693DMnTBmVyra/jdrG5tb2Tn23sbd/cHhkHjf7MskEJj2csEQMQyQJo5z0FFWMDFNBUBwyMghnt6U/eCRC0oQ/qHlK/BhNOI0oRkpLgdn0pkjlXozUNIxyURSBG5gtu20vYK0TpyItqNANzC9vnOAsJlxhhqQcOXaq/BwJRTEjRcPLJEkRnqEJGWnKUUykny+yF9a5VsZWlAj9uLIW6u+NHMVSzuNQT5Yh5apXiv95o0xFN35OeZopwvHyUJQxSyVWWYQ1poJgxeaaICyozmrhKRIIK11XQ5fgrH55nfQv247bvrp3Wx23qqMOp3AGF+DANXTgDrrQAwxP8Ayv8GYUxovxbnwsR2tGtXMCf2B8/gCCU5S1</latexit>

Figure 5.1: Constellation with equal spacing

Problem Formulation

The following problem formulation is used to form a single-plane, circular constellation from
a set of initial satellite states. We assume the only accelerations acting on the spacecraft are
central body gravity and continuous low-thrust. The objective, dynamics and most of the
constraints are shared with the single spacecraft problem formulation of the previous chapter.
However, we now have N as many constraints for each satellite. We note the addition of two
new sets of constraints. First, the set of constraints in (5.12) enforce all spacecraft to occupy
the same orbital plane at the end of the phasing maneuver. The constraints represented
by (5.13) ensure that the relative angular spacing between neighboring satellites take on
desired values. For an equally spaced constellation we note that the desired angular spacings
should be θdesi = 2π

N
for all i = 2, . . . , N . In this problem formulation, the spacecraft are only

coupled by constraint set (5.13) and the objective function.
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minimize
{Ti}Ni=1, tf

Jobj
(
{ri,vi,mi,Ti}Ni=1, tf

)
(5.1)

subject to:

ṙi(t) = vi(t) ∀t ∈ [t0, tf ],∀i ∈ {1, N} (5.2)

v̇i(t) = aG(ri(t)) + aT(mi(t),Ti(t)) ∀t ∈ [t0, tf ],∀i ∈ {1, N} (5.3)

ṁi(t) = −‖Ti(t)‖
g0Isp

∀t ∈ [t0, tf ],∀i ∈ {1, N} (5.4)

rmin ≤ ‖ri(t)‖ ≤ rmax ∀t ∈ [t0, tf ],∀i ∈ {1, N} (5.5)

Tmin ≤ ‖Ti(t)‖ ≤ Tmax ∀t ∈ [t0, tf ],∀i ∈ {1, N} (5.6)

mmin ≤ mi(tf ) ∀t ∈ [t0, tf ],∀i ∈ {1, N} (5.7)

‖ri(tf )‖ = rdes ∀i ∈ {1, N} (5.8)

vT (ri(tf ),vi(tf )) = vC (ri(tf )) ∀i ∈ {1, N} (5.9)

vR (ri(tf ),vi(tf )) = 0 ∀i ∈ {1, N} (5.10)

vN (ri(tf ),vi(tf )) = 0 ∀i ∈ {1, N} (5.11)

ĥdes · ĥ (ri(tf ),vi(tf )) = 1 ∀i ∈ {1, N} (5.12)

r̂i−1(tf )
>r̂i(tf ) = cos(θdesi−1) ∀i ∈ {2, N} (5.13)

ri(t0) = r̄i , vi(t0) = v̄i , mi(t0) = m̄i ∀i ∈ {1, N} (5.14)

Example Application

In our numerical example, we solve a minimum-time constellation phasing problem with the
following objective:

Jobj
(
{ri,vi,mi,Ti}Ni=1, tf

)
=

∫ tf

t0

1 dt (5.15)

We assume that all spacecraft have the same initial conditions, reflecting an equatorial,
circular orbit at 600 km altitude. Each spacecraft has an initial wet mass of 100 kg, of
which 20 kg is propellant mass. The electric propulsion system on each spacecraft has a
maximum thrust magnitude of 0.1 N and a specific impulse of 3000 seconds. We constrain
the spacecraft to maneuver in a radial band between 300 km and 900 km altitudes. The
constraints on the final states require that all satellites return to the same 600 km altitude,
circular orbit at the end of the phasing maneuver.

In order to start the trajectory optimization process, we provide an initial guess inspired
by the solution to a planar version of the problem that assumes the use of differential drag
[33]. For each satellite we apply zero thrust in the radial and normal directions. However,
in the tangential direction, we apply the thrust profile shown in Fig. 5.2. The small values
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Figure 5.2: Initial Guess for thrust commands

of radial thrust in the figure are due to numerical error when mapping RTN frame thrust
values to ECI frame values, and vice versa.

The trajectory optimization problem converges on a solution with the thrust profile
shown in Fig. 5.3. We first note the non-negligible radial thrust trajectories. Furthermore,
the tangential thrust trajectories are qualitatively very different from those of the initial
guess. No thrust is applied in the normal direction.
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Figure 5.3: Optimal thrust commands

Figure 5.4 shows an equally-spaced constellation achieved by applying the solution to the
trajectory optimization problem in open-loop.

In Fig. 5.5, we observe that the angular spacing of the satellites reach the desired 90
degree spacing at the end of the maneuver.

Although we have shown that the angular spacing constraint has been satisfied at the
end of the maneuver, we must confirm that the constellation will remain equally spaced after
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Figure 5.4: Equally-spaced constellation of four satellites in circular low Earth orbit
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Figure 5.5: Angular spacing of neighboring satellites during phasing maneuver
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the maneuver. In Fig 5.6, we show the change in altitude of each of the spacecraft during
the phasing maneuver. We note that at the end of the maneuver, all satellites have returned
to the desired orbital altitude of 600 km.
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Figure 5.6: Altitude of constellation during phasing maneuver

In Fig. 5.7, we observe the change in orbital speed for each satellite and note that as
a spacecraft drops in altitude, its orbital speed increases. We also note that all satellites
achieve the same final orbital speed at the end of the maneuver.
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Figure 5.7: Spacecraft speed during phasing maneuver

Achieving the same altitude and speed are necessary to maintain an equally-spaced con-
stellation but we must also check the velocity components of each satellite. In Fig. 5.8,
we confirm that the radial and normal velocity components of all satellites reach zero at
the end of the maneuver. Furthermore, the tangential speed of all spacecraft reach the same
value. We have confirmed that the constellation will remain in formation under the dynamics
assumed in this problem.
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Figure 5.8: RTN velocity components during phasing maneuver

Another representation of the spacecraft states are the orbital elements. In Fig. 5.9, we
confirm that the satellites have reached the same semi-major axis and zero eccentricity at
the end of the maneuver. Furthermore, the inclination of the satellites’ orbits remain zero.
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Figure 5.9: Orbital elements during phasing maneuver

Finally, in Fig. 5.10 we show that the decrease in total spacecraft mass due to propellant
use. This minimum-time formulation results in uneven fuel usage among the satellites. We
may infer that the first and last satellites use the most fuel while the satellites towards the
middle of the group consume the least. In future work, we may consider different formulations
to minimize the difference in fuel usage.
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Figure 5.10: Spacecraft mass during phasing maneuver

5.3 Summary

We have formulated a constellation phasing problem that not only produces an equally-
spaced formation but also enforces constraints on the final states of each spacecraft. By
placing the spacecraft into circular orbits with the same orbit normal direction, we ensure
that the constellation maintains the desired formation after the phasing maneuver. Future
work will include perturbations including atmospheric drag and J2 gravity, requiring a general
problem formulation that allows the specification of elliptical orbits.
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Chapter 6

Distributed Approach to
Constellation Formation

6.1 Motivation

A satellite constellation is a group of satellites that are coordinated to achieve objectives
that may not be possible with a single satellite. Constellations have been applied to serve as
telecommunications or broadcasting networks, provide global imagery and weather services,
and enable global positioning and navigation capabilities. The control of such constellations
can be divided into two different problems: formation and station-keeping. formation refers
to the process of forming the constellation once the satellites have been deployed by the
delivery vehicle. For example, we may spread out a cluster of satellites in a desired orbital
plane to form an equally-spaced constellation. Once the desired constellation is acquired,
station-keeping refers to the process of maintaining relative positions and velocities in the
presence of disturbances. The formation of a small spacecraft constellation in low Earth
orbit, using a centralized approach, is studied in [33]. A centralized approach may be used
if, for example, a large number of ground stations are available to measure and control the
satellites.

In this chapter, we shift our focus to a distributed approach for acquiring and station-
keeping a constellation. A distributed control strategy is appealing for satellite constellations
in situations where centralized control is difficult or impossible. For example, as thousands
of satellites are employed in constellations, the resulting uplink/downlink demands on a
network of Earth-based ground stations may become unmanageable. A distributed strategy
is also critical for a constellation orbiting a planet without ground stations.

Passivity-based methods are well suited for distributed control of large-scale, intercon-
nected systems [53–55]. We model our constellation as an interconnected system where we
assume each satellite has a communication link with neighboring satellites, sharing relative
angular position information. An internal feedback control law is designed for the satellites
and we certify that each satellite and communication link is equilibrium independent pas-
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Figure 6.1: Constellation where each satellite shares state information with neighbors via
communication links

sive with respect to proposed storage functions. A constellation coordination control law
is introduced to interconnect the subsystems in a skew-symmetric coupling structure. The
equilibrium-independent passivity property of each subsystem and the skew-symmetry of
their interconnection enables us to prove the stability of the constellation at equilibrium.

Preliminaries

We use a compositional approach to certify the stability of a large system consisting of
interconnected, dissipative subsystems. We briefly state results that extend the works in
[56–58], which are used in a later section to prove stability of the constellation under a
closed-loop formation and station-keeping control law. Consider the system Σ described by

ẋ(t) = f(t, x(t), u(t)) , y(t) = h(t, x(t), u(t)) , (6.1)

where x(t) ∈ Rnx is the state, u(t) ∈ Rnu is the input, and y(t) ∈ Rny is the output.
Furthermore, suppose there exists a nonempty set X ⊂ Rnx where, for every x̄ ∈ X , there
exists a unique ū ∈ Rnu satisfying f(t, x̄, ū) = 0

Definition 1. The system (6.1) is equilibrium independent dissipative (EID) with
supply rate s(·, ·) if there exist continuously differentiable functions V : R × Rnx × X 7→ R
and

¯
V : Rnx ×X 7→ R satisfying the conditions

V (t, x, x̄) ≥
¯
V (x, x̄) > 0 ∀ (x, x̄) s.t. x 6= x̄, (6.2a)

V (t, x̄, x̄) = 0,
¯
V (x̄, x̄) = 0, (6.2b)

V̇ (t, x, x̄) := ∇tV (t, x, x̄) +∇xV (t, x, x̄)>f(t, x, u) ≤ s(u− ū, y − ȳ),

∀ (t, x, x̄, u, ū) ∈ R× Rnx ×X × Rnu × Rnu ,where ȳ = h(t, x̄, ū). (6.2c)

A system is equilibrium-independent passive (EIP) if it is EID with respect to the supply
rate

s(u− ū, y − ȳ) = (u− ū)>(y − ȳ) (6.3)
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and it is output strictly equilibrium-independent passive (OSEIP) if, for some ε > 0, it is
EID with respect to

s(u− ū, y − ȳ) = (u− ū)>(y − ȳ)− ε(y − ȳ)>(y − ȳ) . (6.4)

6.2 System Dynamics

Instead of creating a monolithic model of the constellation, we decompose it into subsys-
tems and consider the interconnections between them. By characterizing the input-output
properties of each individual subsystem and the interconnections that exist between them,
we may certify stability and convergence properties of the constellation.

Planar Satellite Model

In our constellation, we refer to the constituent satellites as subsystems. Each satellite is
under the influence of the gravitational pull from the central body, the thrust applied by the
satellite, and natural perturbing forces (e.g., atmospheric drag, gravity from moons, solar
radiation pressure). To model the motion of a satellite orbiting a planet, we start with the
central-force problem (or restricted two-body problem) where we assume that the barycenter
of the system is co-located with the center of a spherically, symmetric central body (i.e., the
mass of the satellite is negligible). The satellite’s motion can be described by the following
second-order ordinary differential equation known as the fundamental orbital differential
equation (FODE) with specific force perturbations [59]:

r̈ = − µ

‖r‖3
2

r +
1

m
τ + aperturb , (6.5)

where r ∈ R3 is the position vector pointing from the center of the planet to the satellite, µ
is the gravitational parameter of the central body (i.e., gravitational constant multiplied by
the mass of the planet), m is the mass of the satellite, τ ∈ R3 is thrust, and aperturb ∈ R3

represents the specific forces due to perturbations.
It is well known that two-body motion in an inertial frame is planar. Since atmospheric

drag acts against the direction of motion, a satellite under atmospheric drag remains in planar
motion. Furthermore, if a satellite and the moons of a planet lie in the same plane (e.g.,
equatorial plane), then the gravitational perturbations from the moons may be approximated
as planar. Hence, for certain examples, we may use a polar coordinate system to represent
the satellite orbital kinematics in the plane:

r = rer (6.6a)

ṙ = ṙer + rθ̇eθ (6.6b)

r̈ =
(
r̈ − rθ̇2

)
er +

(
2ṙθ̇ + rθ̈

)
eθ . (6.6c)
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We denote the magnitude of the radial position with r and the angular position with θ. We
use er and eθ as the unit vectors in the radial and tangential directions of the orbital plane,
respectively.

If we include the specific forces from the right-hand side of (6.5), we get the following
model representing the ith satellite’s motion in the radial and tangential directions, respec-
tively:

r̈i = riθ̇
2
i −

µ

r2
i

+
1

mi

τr,i + (~aperturb,i)r (6.7a)

θ̈i =
−2ṙiθ̇i
ri

+
1

miri
τθ,i +

1

ri
(~aperturb,i)θ . (6.7b)

Finally, if we implement a change of variables so that v := ṙ and ω := θ̇, we get the following
set of first-order differential equations to describe each satellite of the constellation

ṙi = vi (6.8a)

v̇i = riω
2
i −

µ

r2
i

+
1

mi

τr,i (6.8b)

ω̇i =
−2viωi
ri

+
1

miri
τθ,i . (6.8c)

Note that we exclude θ̇i = ωi from the set of equations. The θ state does not appear in the
equations of motion (6.8), hence, it is not needed in our state feedback controller design.
Furthermore, we omit the terms representing specific forces due to perturbations. Through
an example simulation we will show that our state feedback controller based on the model
described by (6.8) is robust to unmodeled disturbances that are present in the simulation
model, described by (6.7).

Interconnections

We assume that only neighboring satellites may communicate with each other. The topology
of this particular information exchange is illustrated by the undirected graph shown in Fig.
6.1. If the ith and jth subsystems have access to relative state information, then the ith and
jth nodes of the graph are connected by a link l = 1, . . . ,M . Although the communication
is assumed to be bidirectional, we assign an orientation to the graph by considering one
of the nodes of a link to be the positive end. As a convention, we set the direction of a
communication link to point in the direction of the orbital motion. Hence, the incidence
matrix D of the graph is defined as:

Dil =


+1 if ith node is positive end of lth link
−1 if ith node is negative end of lth link

0 otherwise.
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In this application, for a constellation with N satellites that only communicate with neigh-
bors, the incidence matrix D is

D =


1 0 0

−1
. . . 0

0
. . . 1

0 0 −1

 ∈ RN×M , (6.9)

where M := N − 1. Note that we assume the 1st and N th satellites do not communicate;
hence, they do not share a communication link. All other satellites have two links each.

6.3 Control Strategy

We now describe an internal feedback control strategy for each satellite that renders a linear
map between the input (to be designed with a simple state feedback law) and the output
variable of interest. Subsequently, we add a constellation coordination term that regulates
the relative angular spacing error between neighboring satellites.

Internal Feedback Control

For each subsystem, we propose the following thrust control laws in the radial and tangential
directions:

τr,i = mi

(
−riω2

i +
µ

r2
i

)
− kv(vi − vd)− kr(ri − rd) (6.10a)

τθ,i = mi

(
2viωi − kω(ωi − ωd) +

ri
kc
ui

)
, (6.10b)

where rd, vd, and ωd are the desired radius, radial velocity, and angular velocity for every
satellite to maintain an areostationary orbit. The term ui is a constellation coordination
control law to be designed. The controller gains kr, kv, kω, kc > 0 are discussed and chosen
in the subsequent stability analysis and simulation results.

If we substitute the thrust control laws (6.10a)-(6.10b) into the equations of motion
(6.8a)-(6.8c), the dynamics of each satellite, Σi for i = 1, . . . , N , take the form of

ṙi = vi (6.11a)

v̇i = −kv(vi − vd)− kr(ri − rd) (6.11b)

ω̇i = −kω
ri

(ωi − ωd) +
1

kc
ui (6.11c)

zi = ωi , (6.11d)

where the output variable zi of interest is the angular velocity of the satellite. Note that we
have transformed the radial dynamics (6.11a) - (6.11b) to be independent of the ω state.
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Constellation Coordination Control

The subsystems are dynamically decoupled, however, we may coordinate their relative mo-
tion through a constellation coordination control law where we use feedback of local informa-
tion from spatially neighboring subsystems. We assume that this local information is shared
via inter-satellite communication links [60]- [61]. The links can be expressed as subsystems
Λl for l = 1, . . . ,M :

θ̇rell = el (6.12a)

yl = hl(θ
rel
l ) , (6.12b)

where el is the input and yl is the output of each communication link. The subsystem Λl keeps
track of a state θrell ∈ R and outputs a signal of interest that is measured through the function
hl : R 7→ R. We assume hl is strictly increasing and onto, and that lima→∞ hl(a) =∞.

Let us refer to satellite inputs and outputs in compact form as u := [u1, . . . , uN ]> and
z := [z1, . . . , zN ]>, respectively. Similarly, we refer to the communication link inputs and
outputs collectively as e := [e1, . . . , eM ]> and y := [y1, . . . , yM ]>, respectively.

Figure 6.2: Interconnected system

We construct an interconnection between the satellites Σ1, . . . ,ΣN and the communica-
tion links Λ1, . . . ,ΛM as shown in Fig. 6.2 and define the following input-output mappings:

e := D>z =


ω1 − ω2

ω2 − ω3
...

ωN−1 − ωN

 ≡

θ̇rel1

θ̇rel2
...

θ̇relM

 =: θ̇rel (6.13a)

u := −Dy = −D

 h1(θrel1 )
...

hM(θrelM )

 = −Dh(θrel) . (6.13b)
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Note that the input applied to the ith satellite,

ui = −
M∑
l=1

Dilhl(θ
rel
l ) , (6.14)

is based only on local information since Dil = 0 when the ith subsystem does not have
access to information on the lth communication link. Hence, we have a distributed control
architecture where local controllers act on local information.

6.4 Stability Analysis

We first show the existence and uniqueness of an equilibrium point whose stability will be
subsequently analyzed. At equilibrium, the right-hand sides of (6.11a), (6.11b), (6.11c) for all
i = 1, . . . , N , and (6.12a) for all l = 1, . . . ,M must equal zero. The equilibrium states of the
radial dynamics (6.11a)–(6.11b) may be found by inspection to be (r̄i, v̄i) = (rd, vd) = (rd, 0).
For the right-hand side of (6.12a) to vanish, el must equal zero for l = 1, . . .M . In other
words,

ē = D>ω̄ = 0. (6.15)

By definition of D given in (6.9), we have D>1 = 0. Since nullity(D>) = 1, the span of 1
constitutes the entire null space of D>. Therefore, ω̄ = ω01 is the unique solution to (6.15),
where ω0 is the common angular velocity of all N satellites. That is, all satellites must have
the same angular velocity. Finally, the right-hand side of (6.11c) must vanish:

−kω
ri

(ω0 − ωd) +
1

kc
ūi = 0, for i = 1, ..., N. (6.16)

From (6.13b) and the fact that 1>D = 0>, we have
∑N

i=1 ui = 1>u = −1>Dh(θrel) = 0.
Adding (6.16) from i = 1 to i = N yields the following equation:

−(ω0 − ωd)
N∑
i=1

kω
ri

= 0,

which requires that ω0 = ωd, and therefore ω̄ = ωd1. Substituting this value for ω0 back into
(6.16), we get

ūi = −
M∑
l=1

Dilhl(θ̄
rel
l ) = 0 for i = 1, ..., N, (6.17)

which amounts to

h1(θ̄rel1 ) = 0,

−hl−1(θ̄rell−1) + hl(θ̄
rel
l ) = 0, l = 2, ...,M, (6.18)

−hM(θ̄relM ) = 0.
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A solution θ̄rell for l = 1, . . . ,M exists and is unique since hl is onto and strictly increasing.
In summary, there exists a unique equilibrium point for a desired constellation given by
(r̄i, v̄i, ω̄i) = (rd, 0, ωd), i = 1, . . . , N and θ̄rell , l = 1, . . . ,M that satisfy (6.18). Furthermore,
we note that ωd =

√
µ/r3d for a circular orbit at a given altitude.

We use a compositional approach to analyze the stability properties of the closed-loop
constellation under our proposed internal feedback and coordination control laws. First, we
show the stability of an equilibrium point for the radial component of each individual Σi sub-
system (6.11a)–(6.11b). Second, we propose storage functions for each of the interconnected
subsystems, comprised of the tangential component of the Σi subsystems (6.11c)–(6.11d),
i = 1, . . . , N and the Λl subsystems (6.12), l = 1, . . . ,M , and certify that they are EID as
defined in (6.2). We then use the storage functions to compose a Lyapunov function for the
interconnected system.

For the radial component of the Σi subsystem (6.11a) - (6.11b), we choose kr, kv so that
the closed-loop system is stable. We define rei = ri − r̄i, and vei = vi − v̄i = vi, then (6.11a)
and (6.11b) can be rewritten as [

ṙei
v̇ei

]
=

[
0 1
−kr −kv

] [
rei
vei

]
. (6.19)

It can be verified that the equilibrium point (r̄i, v̄i) of (6.11a)–(6.11b) is exponentially stable
if and only if kr > 0 and kv > 0.

We now proceed to prove stability of the tangential component of the subsystems under
the influence of both the internal feedback law (6.10b) and the constellation coordination
law (6.13b). In the internal feedback law (6.10b), we utilize a positive parameter kc to scale
down the magnitude of the constellation coordination control input ui. More specifically, we
assume that kc is a time-varying parameter:

kc(t) ≥
¯
kc > 0, k̇c(t) ≤ 0, ∀ t ≥ 0, (6.20)

that decreases and converges to a positive limit
¯
kc.

We propose the following storage function for the ith subsystem:

Si(t, ωi, ω̄i) =
kc(t)

2
(ωi − ω̄i)2 . (6.21)

We can verify that Si(t, ωi, ω̄i) ≥ 1
2¯
kc(ωi − ω̄i)2 > 0, for all (ωi, ω̄i) such that ωi 6= ω̄i, and

that Si(t, ω̄i, ω̄i) = 0.
If we take the derivative of the storage function we get

Ṡi(t, ωi, ω̄i) = kc(t)(ωi − ω̄i)ω̇i +
k̇c(t)

2
(ωi − ω̄i)2

= kc(t)(ωi − ω̄i)
(
−kω
ri

(ωi − ωd) +
1

kc(t)
ui

)
+
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k̇c(t)

2
(ωi − ω̄i)2 (6.22)

= (ui − ūi)(ωi − ω̄i)−

(
kc(t)kω
ri

− k̇c(t)

2

)
(ωi − ω̄i)2 (6.23)

where we have used ω̄i = ωd, ūi = −
∑M

l=1Dilhl(θ̄
rel
l ) = 0. We note that ri(t) > 0, ∀i =

1, ..., N is always satisfied (i.e., the radius is always positive). Hence, the storage function Si,
described by (6.21), certifies that the tangential component of the Σi subsystems (6.11c)–
(6.11d), is OSEIP, as defined in (6.4).

For the links Λl, we propose

Tl(θ
rel
l , θ̄rell ) =

∫ θrell

θ̄rell

(
hl(z)− hl(θ̄rell )

)
dz. (6.24)

Since hl is strictly increasing, we can verify that Tl(θ
rel
l , θ̄rell ) > 0 for all θrell 6= θ̄rell and

Tl(θ̄
rel
l , θ̄rell ) = 0.
If we take the derivative of the storage function we get

Ṫl(θ
rel
l , θ̄rell ) = θ̇rell

(
hl(θ

rel
l )− hl(θ̄rell )

)
= (el − ēl) (yl − ȳl) (6.25)

where we have used ēl =
∑N

i=1Dilz̄i =
∑N

i=1Dilω̄i = 0 and ȳl = hl(θ̄
rel
l ). We note that the

storage function Tl certifies that each communication link Λl is EIP as defined in (6.3).

Figure 6.3: Interconnected system in canonical form

Now that we have shown that each of the subsystems is equilibrium-independent pas-
sive, we note that the interconnected system as shown in Fig. 6.2 may be brought into
the canonical form of Fig. 6.3 where the upper block has the subsystems along its diag-
onal and the lower block contains a skew symmetric matrix. As shown in [56], since the
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equilibrium-independent passive subsystems are coupled through a skew symmetric inter-
connection matrix, an equilibrium point of the interconnected system, if it exists, is stable
and the sum of the individual subsystems provides a Lyapunov function.

Let us sum the storage functions for all the Σi subsystems and Λl subsystems:

V (t, x, x̄) =
N∑
i=1

Si(t, ωi, ω̄i) +
M∑
l=1

Tl(θ
rel
l , θ̄rell ) (6.26)

where we use x := (ω, θrel), x̄ := (ω̄, θ̄rel). The time-varying Lyapunov function (6.26) can
be lower and upper bounded:

¯
V (x, x̄) ≤ V (t, x, x̄) ≤ V̄ (x, x̄) , (6.27)

where

¯
V (x, x̄) =

N∑
i=1

¯
kc
2

(ωi − ω̄i)2 +
M∑
l=1

Tl(θ
rel
l , θ̄rell ) (6.28)

V̄ (x, x̄) =
N∑
i=1

k̄c
2

(ωi − ω̄i)2 +
M∑
l=1

Tl(θ
rel
l , θ̄rell ) (6.29)

and k̄c := kc(0) ≥ kc(t) ≥
¯
kc ∀t ≥ 0. We note that

¯
V (x, x̄) and V̄ (x, x̄) are positive definite

and radially unbounded.
If we take the time derivative of (6.26), we get:

V̇ (t, x, x̄) =
N∑
i=1

Ṡi +
M∑
l=1

Ṫl

=
N∑
i=1

{
(ui − ūi)(ωi − ω̄i)−

(
kc(t)kω
ri

− k̇c(t)

2

)
(ωi − ω̄i)2

}

+
M∑
l=1

{(el − ēl) (yl − ȳl)} .

Let us define R := blkdiag(r1, ..., rN), and use ē = D>ω̄ in the expression above to get

= −kc(t)kω(ω − ω̄)>R−1(ω − ω̄) +
k̇c(t)

2
(ω − ω̄)>(ω − ω̄)

+ (ω − ω̄)>(u− ū) + (ω − ω̄)>D (y − ȳ) .

Finally, if we use our constellation coordination control law (6.13b) and ū = −Dȳ, then

= −kc(t)kω(ω − ω̄)>R−1(ω − ω̄) +
k̇c(t)

2
(ω − ω̄)>(ω − ω̄). (6.30)
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Note that the expression above is negative semi-definite. As a result, (r̄i, v̄i, ω̄i, θ̄
rel
l ) =

(rd, 0, ωd, θ̄
rel
l ), for all Σi, i = 1, . . . N and all Λl, l = 1, . . .M is a stable equilibrium point

of the interconnected system shown in Fig. 6.2, where θ̄rell satisfies equations (6.18).
Due to the time-varying parameters r and kc, the interconnected constellation is a non-

autonomous system for which the Lasalle-Krasovskii Invariance Principle is not applicable.
Although we may not conclude asymptotic stability of an equilibrium, we may prove the
weaker result [62] that ωi, i = 1, . . . , N converges to the desired ωd value. Physically, this
signifies that the constellation will maintain a circular orbit.

As shown in [62], x(t) is bounded by using (6.27) and the dynamics are locally Lipschitz
in x and bounded in t, implying that ẋ(t) is also bounded for all t ≥ 0. Hence, x(t) is
uniformly continuous for t ≥ 0. Define a negative semi-definite function

W (x) = −
¯
kckω(ω − ω̄)>R−1(ω − ω̄). (6.31)

As a result, W (·) is uniformly continuous on the bounded domain of x(t). From (6.30) we
can verify that

V̇ (t, x(t), x̄) ≤ W (x(t)).

Integrating the expression over [0, T ], we get

V (T, x(T ), x̄)− V (0, x(0), x̄) ≤
∫ T

0

W (x(t))dt ,

which implies

−
∫ ∞

0

W (x(t))dt ≤ V (0, x(0), x̄) <∞.

Using Barbalat’s Lemma, since W (·) is uniformly continuous and
∫∞

0
W (x(t))dt exists,

W (x(t)) → 0 as t → ∞, which implies that x(t) approaches E = {x : W (x) = 0}. In
other words, ωi(t)→ ω̄i = ωd.

6.5 Numerical Example

Consider a cluster of N = 10 satellites that have been batch deployed into a nearly-circular,
equatorial, prograde orbit around the planet Mars at a desired altitude of approximately
17 032 km above the Martian surface. Assuming the equatorial radius of Mars is 3396.2 km,
each satellite in this orbit has desired equilibrium states of (rd, vd, ωd) = (rd, 0,

√
µ/r3d) where

rd = 20 428.2 km. This specific orbit, from the class of areosynchronous (i.e., Martian syn-
chronous) orbits, is known as an areostationary orbit. Similar to satellites in geostationary
orbit about Earth, the position of an areostationary satellite appears fixed in the sky relative
to an observer on the surface of Mars. By equally spacing the 10 satellites within this orbit,
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the resulting constellation may serve as a telecommunication network or navigation system
for the exploration of Mars.

After deployment we assume the following initial conditions for all i = 1, . . . , N satellites:
ri = (20 428.0± 0.1) km, vi = (0± 1)× 10−8 m s−1, ωi = (7.0879± 0.0100)× 10−5 rad s−1,
θi = (0± 5)× 10−3 rad. Note that the initial conditions prescribe nearly circular orbits.
The angular position θi is measured with respect to a reference horizontal line in the orbital
plane.

We assume each m = 100 kg satellite is equipped with a throttleable, continuous-thrust
propulsion system with a maximum thrust of τmax = 100 mN in each of the radial and tan-
gential directions of motion. In this example, we do not consider motion normal to the orbital
plane. Solar electric propulsion systems, which use electricity generated by solar panels to
accelerate propellant at high exhaust speeds, are capable of throttleable, continuous-thrust.
Although electric propulsion systems have high specific impulse (i.e., they are fuel efficient),
they have much weaker thrust compared to traditional chemical rockets. The NASA Evo-
lutionary Xenon Thruster [63] is an example of a solar electric propulsion system with a
maximum thrust of 236 mN. We expect that the state-of-the-art will continue to develop,
allowing for even higher thrust magnitudes in the future, but we maintain a conservative
thrust limit for this example.

In addition to the gravitational pull of Mars, we introduce perturbations due to the
gravity of Mars’ two moons. Since the inclinations of Phobos and Deimos with respect to
Mars’ equator are 1.093◦ and 0.930◦, respectively, we approximate their orbits as equatorial
in this example. Note that since Phobos and Deimos have orbital eccentricities of 0.0151
and 0.0003, respectively, their orbits are nearly circular. We use the values of 9234.42 km
and 23 455.50 km for the radial distance of each moon’s orbit at its respective periapsis.
Finally, we use values of µ = 4.282 837× 1013 m3 s−2, µPhobos = 7.161× 105 m3 s−2, and
µDeimos = 1.041× 105 m3 s−2 for the standard gravitational parameter of Mars, Phobos, and
Deimos, respectively. We find the specific force perturbation acting on each satellite by each
moon, ~ap,i (where p = {Phobos,Deimos}), by computing[

(~ap,i)r
(~ap,i)θ

]
= − µp
‖~rp,i‖3

2

[
cos θi sin θi

- sin θi cos θi

]
~rp,i , (6.32)

where ~rp,i, the expression for the relative position of the ith satellite with respect to the moon
p in the Mars-centered inertial coordinate system, is

~rp,i =

[
ri cos θi − rp cos θp
ri sin θi − rm sin θp

]
. (6.33a)

The radial and tangential components of the acceleration are found by rotating ~rp,i by the
appropriate rotation matrix.

The mission objectives are (1) spread out the initial cluster of satellites into an equally-
spaced constellation, and (2) regulate the satellites’ deviations from the desired areostation-
ary orbit as well as their relative angular positions with respect to the desired spacings, in
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the presence of unmodeled perturbations. We call these distinct phases of the mission as
formation and station-keeping.

In the formation phase, we consider a generous formation time of tf = 355 Martian days
(Sols), or approximately 1 Earth year. Although the constellation may be acquired in less
time, it may not be necessary. In various design proposals for manned missions to explore
Mars [64], plans include an initial uncrewed cargo mission so that supplies and infrastructure
are in place before the crewed missions arrive. We assume that a satellite constellation to
serve as a telecommunications network would be launched in this initial mission. Given
that subsequent crewed missions would require approximately two years to arrive, due to
launch window constraints, 1 Earth year would provide sufficient time to deploy and test the
satellite constellation before use by a crewed mission.

6.6 Results

We implement the thrust controls laws described by (6.10) where the formation control law
ui for all i = 1, . . . , N satellites is given by (6.14) and the interconnection between satellites
is described by the incidence matrix D in (6.9). In this example, the measurement output
from each of the communication links, hl(θ

rel
l ), l = 1, . . . ,M , in (6.12b) is of the form:

hl(θ
rel
l ) = θrell − θreld , (6.34)

where θreld = 2π
N

represents the desired, equal angular spacing between neighboring satellites.
The model (6.7) is used for simulation where the specific force perturbations due to Phobos
and Deimos are included using (6.32).

To regulate the radial distance, radial velocity, and angular velocity of each satellite about
the areostationary orbit, we use the gains kr = 1× 10−5, kv = 1× 10−4, and kw = 1× 104.
In the formation phase (0 ≤ t ≤ tf ), we use a time-varying constellation coordination gain

kc(t) = (k̄c −
¯
kc) exp(− c

tf
t) +

¯
kc , (6.35)

where k̄c >
¯
kc > 0 and c > 0 . We can simply calculate the time derivative of kc as

k̇c(t) = − c

tf
(k̄c −

¯
kc) exp(−c t

tf
) < 0, ∀ t ≥ 0 . (6.36)

Note that the constellation coordination gain function, (6.35), satisfies the condition in (6.20)
used for the stability analysis. For this example, we choose k̄c = 1× 1011,

¯
kc = 1× 109,

c = 30. Since the relative angle θrell is far from the desired relative angle θreld at the beginning
of the formation phase, the magnitude of control input ui derived with (6.34) is large. We
initially need a large kc to scale it down. As θrell converges to θreld , the magnitude of ui
decreases and we require less scaling. Therefore, the constantly decreasing parameter kc
allows the thrust commands τr,i and τθ,i in (6.10) to stay within a reasonable range during
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Figure 6.4: Relative states and angular spacing between neighboring satellites

Figure 6.5: Radial and tangential thrust commands to each satellite during phasing

the formation phase. After formation, we enter the station-keeping phase where we use a
constant value of

¯
kc.

The simulated states of each satellite are shown in the first three subplots of Fig. 6.4.
Despite the perturbed initial conditions and the specific force perturbations due to Phobos
and Deimos, each satellite regulates to the desired equilibrium point for an areostationary
orbit (illustrated by the dotted lines). The fourth subplot of Fig. 6.4 shows that the angular
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Figure 6.6: Stages of areostationary constellation phasing

spacing between each pair of satellites reaches the desired value of 36◦. All angular spacings
reach within a 0.5◦ tolerance of the desired value in 303.06 Sols (or approximately 311 solar
Earth days).

In Fig. 6.5, we plot the radial and tangential thrust inputs commanded by our feedback
laws (6.10). We observe that the control histories remain within the maximum thrust value
of 100 mN throughout the formation phase. We also note that, although the constellation
coordination term appears in the tangential thrust control law, most of the control action
occurs in the radial direction. This behavior signifies that the ω2

i term in the radial thrust
law (6.10a) dominates the other terms. The controller exhibits the same strategy as tradi-
tional station-keeping methods where orbital phasing maneuvers (i.e., adjusting a satellite’s
position within an orbit) can be conducted by decreasing (increasing) the altitude of a space-
craft, causing it to speed up (slown down) in the tangential direction to gain (reduce) angular
position.

Finally, we present Fig. 6.6, where the angular positions of the satellites are depicted at
different times during the formation phase. The central red body represents Mars whereas
the two gray bodies are the moons, Phobos and Deimos. We note that the orbit of the outer
moon, Deimos, is very close to that of the areostationary orbit at a distance of approximately
3000 km. Despite the close proximity, the effect of the unmodeled gravitational perturbation
is mitigated by the proposed control law. An animation of the formation phase is available
at https://youtu.be/-2y_IWRPuzU.

6.7 Summary

We have presented a control strategy to coordinate a large number of satellites to not only
acquire but also to maintain an equally-spaced constellation in areostationary orbit. The
proposed distributed control law is implemented on each satellite using only local information
from neighboring satellites. We proved that the closed-loop system, comprised of the satel-
lites and communication links, is stable at equilibrium due to the equilibrium-independent
passive property of each subsystem and the skew-symmetric coupling structure of their in-
terconnections. We further proved that the angular velocities of each satellite converge to

https://youtu.be/-2y_IWRPuzU
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the desired value necessary for a circular, areostationary orbit. We then demonstrated the
efficacy of the formation and station-keeping control strategy in simulation.

Regarding the practical implementation of our approach to constellation formation and
station-keeping, we note that although the proposed control strategy is not optimal (with re-
spect to a minimum-formation-time or minimum-fuel objective), it is a simple, distributed,
and computationally inexpensive approach that may be tuned to achieve specific mission
constraints on time or fuel. Given the time and maximum thrust constraints of our example
mission, our simulation results showed that the commanded thrust profiles are achievable
with the current state-of-the-art in electric propulsion. We also note that the proposed strat-
egy exhibits robustness to perturbed initial conditions and unmodeled disturbances. Future
work will investigate delay robustness although we do not deem the communication delay
between satellites to be significant relative to the slow time scales in which the constellation
evolves in our example. If we assume that communication delay is proportional to inter-
satellite link distance, the worst delay is when the areostationary constellation is completely
acquired and the 10 satellites are equally spaced with a line-of-sight distance of 12 625 km
between each pair. Considering that the delay between a ground station and a geostationary
satellite at an altitude of 36 000 km is approximately a quarter of a second, we can deduce
that the communication delay between our satellites will be relatively small compared to the
time it takes a circular, areostationary orbit to be influenced by low-thrust propulsion or the
time allowed in the constellation formation phase.
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Chapter 7

Conclusion

The main contribution of this dissertation is the formulation of spacecraft attitude and orbit
control problems relevant to the formation and operation of small spacecraft constellations.
We have considered applications ranging from constellations in low Earth orbit and Mars
areostationary orbit to rendezvous with other bodies in the Solar System. Our main tool
is trajectory optimization, an approach that is appropriate for these spacecraft applications
where we often seek solutions that are optimal (e.g., minimum-time, minimum-fuel) in the
presence of mission or spacecraft constraints. Furthermore, while endoatmospheric launch
or entry-decent-landing applications may be highly stochastic or uncertain, trajectory op-
timization techniques enjoy the relatively benign perturbations and high-fidelity dynamical
models that exist for vehicles in outer space. We employ recent advances in sequential convex
programming to efficiently handle the nonlinear dynamics and non-convex constraints that
exist in our problem formulations. We have shown that the method scales well to multi-
body systems with a large number of states and inputs. However, despite the benefits and
advantages, we also come to realize that the approach is indeed a local optimization method
that depends on the quality of an initial guess at the solution. We therefore conclude that
it is prudent to warm start our approach with results gleaned from decades of research on
similar but more fundamental problems and approaches.

The following topics are areas for future work:

• In our attitude trajectory optimization problems, we have assumed rigid body dy-
namics. The work may be extended to include models that consider the dynamics of
propellant fuel slosh or flexible modes (i.e., due to antennas and solar panels) that
affect agile attitude maneuvering.

• We have assumed the attitude control actuators (i.e., spinning rotors) to have single-
integrator dynamics. We should address higher-fidelity models that may include non-
linear friction and motor dynamics. We should also include other attitude control
actuators such as reaction thrusters, control-moment gyroscopes, and magnetorquers.

• Our attitude problem formulations have included constraints on the angular velocity
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state (i.e., slew rate), actuator state, and input torque. We may also consider non-
convex constraints on the quaternion states. For example, we may impose “keep-out
zones” that prohibit a spacecraft body axis from pointing in a certain direction.

• For orbit control, we have demonstrated the use of continuous low-thrust and solar
radiation pressure. We may also include higher-fidelity models of the electric propulsion
plant or the use of impulsive thrust via chemical rockets.

• We have considered the orbital perturbations of J2 gravity, atmospheric drag, solar
radiation pressure in the SCI frame, and continuous low-thrust. We should also include
orbital perturbations due to third bodies (e.g., Moon, Sun, other planets) and solar
radiation pressure in the ECI frame for high Earth orbit (HEO) applications.

• We may include attitude perturbations such as the moments due to atmospheric drag,
solar radiation pressure, Earth’s magnetic field, and gravity gradient.

• Since the attitude perturbations mentioned above depend on the orbital state of the
spacecraft, we must address the coupling between the 3-DOF attitude motion of the
spacecraft with its 3-DOF orbital motion. One approach is to sequentially solve the
problems, i.e., solve an orbit trajectory optimization problem and use the resulting so-
lution to estimate orbit-dependent attitude perturbations, representing them as forcing
functions in the subsequent attitude trajectory optimization. In return, the solution
of the attitude problem may then be used to better estimate attitude-dependent orbit
perturbations. This process may be carried out iteratively until the solutions of both
problems converge. Alternatively, we may solve a full 6-DOF problem that simultane-
ously addresses attitude and orbital motion.

• We recall that the low Earth orbit trajectory optimization problems resulted in high-
frequency orbital motion over a short duration of several hours. On the other hand, the
rendezvous problem using solar radiation pressure resulted in low-frequency orbital mo-
tion over a long duration of several years. We should also consider problems involving
high-frequency orbital motion over long durations. For example, a low-thrust trajectory
from low Earth orbit (LEO) to geo-synchronous orbit (GSO) using a geosynchronous
transfer orbit (GTO) would require many revolutions over the course of months or
years.

• Finally, future work should study problems involving multi-plane constellations, e.g.,
we may formulate a problem to convert a single-plane constellation into a multi-plane
Walker constellation.
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Appendix A

Mathematical Background

A.1 Derivatives

Jacobian

The first-order partial derivative (or Jacobian) matrix of a vector-valued, differentiable func-
tion f : Rn → Rm evaluated at the point x ∈ Rn can be denoted in the following ways:

Df(x) =
[
∂f
∂x1

(x) . . . ∂f
∂xn

(x)
]

=


∂f1
∂x

(x)
...

∂fm
∂x

(x)

 =


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xn

(x)

 ∈ Rm×n. (A.1)

Gradient

Note that the Jacobian of a scalar-valued, differentiable function f : Rn → R evaluated at
the point x ∈ Rn is a row vector:

Df(x) =
∂f

∂x
=
[
∂f
∂x1

(x) . . . ∂f
∂xn

(x)
]
∈ R1×n. (A.2)

Taking its transpose results in a column vector called the gradient of the function f at x:

∇f(x) := Df(x)> ∈ Rn×1. (A.3)

Hessian

The second-order partial derivative (or Hessian) matrix of a scalar-valued, twice-differentiable
function f : Rn → R evaluated at the point x ∈ Rn is a symmetric n× n matrix:

Hf(x) = D2f(x) = D∇f(x)> = ∇2f(x) =


∂2f

(∂x1)2
(x) . . . ∂2f

∂x1∂xn
(x)

...
. . .

...
∂2f

∂xn∂x1
(x) . . . ∂2f

(∂xn)2
(x)

 ∈ Rn×n. (A.4)



APPENDIX A. MATHEMATICAL BACKGROUND 94

Multivariable Chain Rule

To compute the derivative of composite functions, we can use the multivariable chain rule.
Let f : Rn → R so that f = f(x) = f(x1, . . . , xn). Also let functions g1, . . . gn : Rm → R so
that gi(y) = gi(y1, . . . , ym) for all i = 1, . . . , n. We define g : Rm → Rn by g = [g1, . . . , gn]>.
A composite function h : Rm → R can be created by setting xi = gi(y), so that:

h(y) = f (g(y)) = f (g1(y), . . . , gn(y)) (A.5)

By the multivariable chain rule, we then have:

∂h

∂yk
(y) =

n∑
i=1

∂f

∂xi
(g(y))

∂gi
∂yk

(y) ∀ k = 1, . . . ,m (A.6)

More generally, we can represent the derivative of a vector-valued composite function
h : Rm → Rp using the Jacobian matrix. Let f : Rn → Rp and g : Rm → Rn be differentiable
functions. We define the composite function as h = f(g(y)) where y ∈ Rm. Then h is
differentiable in y with the following Jacobian matrix evaluated at ȳ:

Dyh(ȳ) = Dgf(g(ȳ))Dyg(ȳ) (A.7)

A.2 Linear Approximation

The linear approximation of a vector-valued, differentiable function f : Rn → Rm around a
point x̄ is the first-order Taylor expansion about that point:

f(x) ≈ f(x̄) +Df(x̄)(x− x̄) (A.8)

Let us consider a vector-valued, differentiable function f : {Rn,Rm} → Rn and linearize it
about the point {x̄, ū}:

f(x,u) ≈ f(x̄, ū) +Dxf(x̄, ū)(x− x̄) +Duf(x̄, ū)(u− ū) (A.9)

If we define the following matrix-valued parameters A := Dxf(x̄, ū) and B := Duf(x̄, ū), the
expression above may be arranged into the following form:

f(x,u) ≈ f(x̄, ū) + Ax +Bu− (Ax̄ +Bū) (A.10)

Let us now define a vector-valued, differentiable function F : {Rn,Rm,R} → Rn:

F(x,u, s) := sf(x,u) (A.11)

and find its first-order Taylor expansion about the point {x̄, ū, s̄}:

F(x,u, s) ≈ F(x̄, ū, s̄) +DxF(x̄, ū, s̄)(x− x̄) +DuF(x̄, ū, s̄)(u− ū) +DsF(x̄, ū, s̄)(s− s̄)
= �����s̄f(x̄, ū) + s̄Ax + s̄Bu− s̄ (Ax̄ +Bū) + f(x̄, ū)s−�����s̄f(x̄, ū)

= Asx +Bsu + Σs+ ξ (A.12)

where As := s̄A, Bs := s̄B, Σ := f(x̄, ū), and ξ := −s̄ (Ax̄ +Bū).
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A.3 Convex Sets and Functions

In this section, we review the definitions of convex sets and functions [65].

Convex sets

A set C ⊆ Rn is convex if for all a, b ∈ C and 0 ≤ θ ≤ 1, we have:

θa+ (1− θ)b ∈ C (A.13)

The geometric intuition is that if C is convex, then for all choices of a, b ∈ C, the line segment
connecting a and b also lies in C.

Convex functions of one variable

A function f : R→ R is called convex if

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) (A.14)

for all x, y ∈ R and 0 ≤ θ ≤ 1. The geometric intuition is that if f is convex, then for all
points x and y, the graph of f lies below the line segment connecting f(x) and f(y).

Equivalent characterizations of convexity are as follows:

• If f : R→ R is continuously differentiable, then f is convex if and only if

f(x) +
d

dx
f(x)(y − x) ≤ f(y) (A.15)

for all x, y ∈ R. This condition implies that the graph of the convex function f lies
above each of its tangent lines.

• If f is twice continuously differentiable, then f is convex if and only if

d2

dx2
f(x) ≥ 0 (A.16)

for all x ∈ R.

Convex functions of multiple variables

A function f : Rn → R is called convex if

f (θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) (A.17)

for all x,y ∈ Rn and 0 ≤ θ ≤ 1.
Equivalent characterizations of multivariable convexity are as follows:
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• If f : Rn → R is continuously differentiable, then f is convex if and only if

f(x) +Dxf(x)(y − x) ≤ f(y) (A.18)

for all x,y ∈ Rn.

• If f : Rn → R is twice continuously differentiable, then f is convex if and only if

D2
xf(x) � 0 (A.19)

for all x ∈ R.

A.4 Skew-symmetric Matrices and Cross Product

A skew symmetric matrix is a square matrix whose transpose equals its negative:

A is skew-symmetric ⇐⇒ A> = −A (A.20)

We define the skew-symmetric operator [ ]× : R3 7→ R3×3 to conduct the following operation:

ω× =

 0 -ωz ωy
ωz 0 -ωx

-ωy ωx 0

 where ω =

ωxωy
ωz

 (A.21)

We note that the cross product of two vectors may be represented as the following matrix-
vector multiplication:

a× b = [a]×b (A.22)
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Appendix B

Attitude Problems

B.1 Derivation of Quaternion to Rotation Matrix

Equation

We determine the relationship between the rotation matrix IRB and q by evaluating the
matrix multiplication of (2.67):(

q

[
[x]B

0

])
q+ =

[
q+
s I− (q+

v )× q+
v

−(q+
v )> q+

s

]([
qsI + (qv)

× qv
−(qv)

> qs

] [
[x]B

0

])
(B.1)

=

[
qsI + (qv)

× −qv
(qv)

> qs

]([
qsI + (qv)

× qv
−(qv)

> qs

] [
[x]B

0

])
(B.2)

=

[
(qsI + (qv)

×) (qsI + (qv)
×) + qvq

>
v 03×1

01×3 q>v qv + (qs)
2

] [
[x]B

0

]
(B.3)

From above, we observe the relationship between the vector x coordinated in the inertial
frame and coordinated in the body frame:

[x]I =
[
(qsI + q×v ) (qsI + q×v ) + qvq

>
v

]
[x]B (B.4)

We define the rotation matrix as the following expression:

IRB : =
[
(qsI + q×v ) (qsI + q×v ) + qvq

>
v

]
(B.5)

= q2
sI + 2qsq

×
v + q×v q×v + qvq

>
v (B.6)

Noting the identity of q×v q×v = qvq
>
v − (q>v qv)I, we replace the last term in the line above to

get the following expression:

= q2
sI + 2qsq

×
v + 2q×v q×v + (q>v qv)I (B.7)

Since ‖q‖ = q>v qv + q2
s = 1 =⇒ q>v qv = (1− q2

s), we then have

= q2
sI + 2qsq

×
v + 2q×v q×v + (1− q2

s)I (B.8)
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The final expression relating the rotation matrix and unit quaternion parameterizations is:

IRB = I + 2q×v
(
qsI + q×v

)
(B.9)

B.2 Derivation of Quaternion Time Derivative

The time derivative of the quaternion is:

q̇(t) :=
d

dt
q(t) = lim

δt→0

q(t+ δt)− q(t)

δt
(B.10)

Let q = q(t) and q1 = q(t+ δt), then we have:

q̇ :=
d

dt
q(t) = lim

δt→0

q1 − q

δt
(B.11)

Since q1 may be expressed as a small rotation δq from q, such that q1 = qδq:

q̇ = lim
δt→0

qδq− q

δt
(B.12)

The small rotation δq may be expressed with its corresponding Euler axis d and angle θ:

q̇ = lim
δt→0

q

[
d sin( δθ

2
)

cos( δθ
2

)

]
− q

δt
(B.13)

For small rotations, the expression can be approximated as:

q̇ = lim
δt→0

q

[
d δθ

2

1

]
− q

δt
(B.14)

If we express the first term as a sum of quaternions and carry out the quaternion algebra,
we get :

q̇ = lim
δt→0

(
q

[
0
1

]
+ q

[
d δθ

2

0

])
− q

δt
(B.15)

= lim
δt→0

(
q + q

[
d δθ

2

0

])
− q

δt
(B.16)

= lim
δt→0

q

[
d δθ

2

0

]
δt

(B.17)

= lim
δt→0

q

[
1
2
d δθ
δt

0

]
(B.18)
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If we assume a constant angular velocity ω = d δθ
δt

(of the body frame with respect to the
inertial frame) during the infinitesimal time period of δt, we have the following expression
for the time derivative of the quaternion, also known as the quaternion kinematics equation:

q̇ =
1

2
q

[
ω
0

]
(B.19)

B.3 ADCS Actuator Configuration

The actuator Jacobian Ar ∈ R3×nr describes a specific rotor configuration where the columns
of Ar represent the axes of rotor rotation, and nr is the number of rotors. Each rotor has a
maximum torque and maximum momentum value, as prescribed by the rotor manufacturer.
Given a particular direction d, we can determine the total ADCS torque, composed of the
individual contributions from each rotor, by solving the following optimization problem:

maximize
τ r:‖τ r‖∞≤τmaxr

(Arτ r)
> d (B.20)

By rearranging the terms in the objective, we get:

maximize
τ r:‖τ r‖∞≤τmaxr

(
A>r d

)>
τ r (B.21)

We let z := A>r d:

maximize
τ r:‖τ r‖∞≤τmaxr

z>τ r (B.22)

Due to the component-wise bound on the decision variables (i.e., −τmaxr ≤ τri ≤ +τmaxr ), we
note that the components of the solution will take on the following form:

τ ∗ri =

{
+τmaxr , if zi > 0

−τmaxr , if zi < 0
(B.23)

The solution may be succinctly characterized as τ ∗ri = sign(zi)τ
max
r . When zi = 0, this

condition corresponds to a rotor axis that is orthogonal to the given direction d. Any rotor
torque about this axis does not contribute in the given direction and we may set τri = 0
since the decision variable is free.

Given nr rotors, the optimal value of the total rotor torque maximization problem is then

z>τ ∗r =
nr∑
i=1

zi (sign(zi)τ
max
r ) = τmaxr

nr∑
i=1

|zi| = τmaxr ‖z‖1 = τmaxr ‖A>r d‖1 (B.24)

Using a dense set of unit vectors {d1,d2, . . .} that represent rotation axes in 3-dimensional
space, we can then visualize the torque envelope for a particular actuator Jacobian and
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maximum rotor torque value. The surface of the torque envelope represents the maximum
total torque that can be achieved when the rotors work in unison. A similar rotor momentum
envelope can also be determined, taking the same shape as the torque envelope but scaled
by the ratio of max rotor momentum to max rotor torque in any given direction.

In Fig. B.1, we illustrate the torque envelope for a set of three rotors, each aligned with
a body frame axis (i.e., red x-axis, green y-axis, blue z-axis). We note that the maximum
torque that can be applied by the rotors is in the off-principal-axis directions.

Figure B.1: Torque envelope for three-axis ADCS rotor configuration

Although three rotors aligned orthogonal to each other is sufficient for three-axis attitude
control, it is common for spacecraft to have at least four rotors. In the case that one of
the rotors fail, the spacecraft would still maintain three-axis control. A popular four-rotor
configuration is the pyramid configuration shown in Fig. B.2. For this configuration we note
that significant torque can be applied about the body x- and y-axes. Such a configuration
is useful when, for example, an imaging instrument’s field-of-view is aligned with the body
z-axis and rotating the instrument about its line-of-sight is not critical to its operation.

Figure B.2: Torque envelope for pyramid ADCS rotor configuration

In addition to redundancy and fault tolerance measures, a fourth rotor significantly in-
creases the torque that can be applied in any given direction. In Fig. B.3, we superimpose
the torque envelopes and note that the torque envelope of the pyramid configuration includes
that of the three-axis configuration in almost entirely.



APPENDIX B. ATTITUDE PROBLEMS 101

Figure B.3: Superimposed torque envelopes of three-axis and pyramid configurations

B.4 Linear Quadratic Trajectory Tracking Controller

Design

We use the closed-form solution of the (unconstrained) finite-horizon, discrete-time LQR
problem to design a time-varying, state feedback law that regulates deviation from desired
trajectory in closed-loop simulation [43,44,66]. Due to the intrinsic unit-norm constraint on
the unit quaternion, we convert the error-quaternion (i.e., error between desired quaternion
state and the actual quaternion state) to the Euler axis and Angle representation with a
transformation φ = h(q̄+q) ∈ R3 in our tracking controller implementation. Details on the
transformation may be found in [6, 7, 39].

We use error variables φ, δω := (ω − ω̄) and δρr := (ρr − ρ̄r) to represent deviations
from the desired trajectory:

δx(t) := [φ(t)> δω(t)> δρr(t)
>]> (B.25)

δu(t) := τ r(t)− τ̄ r(t) (B.26)

The error system dynamics are:

˙δx(t) = Â(t)δx(t) + B̂(t)δu(t) , (B.27)

Â(t) :=

−[ω̄(t)]× I3 03×4

03×3 −J−1
(
[ω̄(t)]×J − [Jω̄(t) + Arρ̄r(t)]

×) −J−1[ω̄(t)]×Ar
04×3 04×3 04×4

 (B.28)

B̂(t) :=

 03×4

−J−1Ar
I4

 (B.29)

where 0 and I are null and identity matrices, respectively, and we use the skew-symmetric
matrix operator [ ]× described in Sec A.4. In the model above, note that we have ap-
proximated the error-quaternion kinematics using the Euler axis and angle representation.
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Assuming a sample time of ∆t =
tf
K−1

, we discretize the error dynamics with a zero-order
hold on δu. The attitude trajectory tracking problem is formulated as:

minimize
{δxk,δuk}Kk=1

δx>KQKδxK +
K−1∑
k=1

{
δx>kQkδxk + δu>k Rδuk

}
(B.30)

s.t. δxk+1 = Âkδxk + B̂kδuk ∀ k = 1, . . . , K − 1 (B.31)

with weight matrices designed so that state trajectory deviations at the observation points
can be penalized more heavily using a scaling term α:

Qk :=

{
Q, k 6∈ K

α ·Q, k ∈ K
where Q � 0 , R � 0 , α > 1 . (B.32)

The problem formulation admits a unique closed-form solution with feedback control law
{δuk := −Kkδxk}K−1

k=1 , where:

Kk = (Rk + B̂>k Pk+1Bk)
-1B̂>k Pk+1Âk (B.33)

and Pk is found recursively from PK = QK using the following discrete-time dynamic Riccati
equation:

Pk = K>k RkKk + (Âk − B̂kKk)
>Pk+1(Âk − B̂kKk) +Qk . (B.34)

B.5 ADCS Constraints and Performance Metrics

We define standard metrics to measure Attitude Determination and Control System (ADCS)
performance in achieving a desired attitude trajectory. The metrics may be used to formulate
performance constraints in trajectory optimization problem formulations.

Body angular speed (“slew rate”)

‖ω(t)‖2 < ωmax ∀ t ∈ [t0, tf ] (B.35)

Rotor momentum

‖ρr(t)‖∞ < ρmaxr ∀ t ∈ [t0, tf ] (B.36)

Rotor torque

‖τ r(t)‖∞ < τmaxr ∀ t ∈ [t0, tf ] (B.37)
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Instantaneous power drawn by ADCS

4∑
i=1

∣∣∣∣τri(t) · 1

Jr
ρri(t)

∣∣∣∣ < Pmax ∀ t ∈ [t0, tf ] (B.38)

Energy consumption by ADCS∫ tf

t0

{
4∑
i=1

∣∣∣∣τri(t) · 1

Jr
ρri(t)

∣∣∣∣
}
dt < Emax (B.39)

Maximum point-wise deviation between actual and desired quaternion

max
k∈K

∥∥q̄+
k qk − qI

∥∥
2
≤ qmaxe (B.40)

Average deviation between actual and desired quaternion

1

|K|
∑
k∈K

∥∥q̄+
k qk − qI

∥∥
2
≤ qavge (B.41)

Maximum point-wise deviation between actual and desired slew rate

max
k∈K

‖ωk − ω̄k‖2 ≤ ωmaxe (B.42)

Average deviation between actual and desired slew rate

1

|K|
∑
k∈K

‖ωk − ω̄k‖2 ≤ ωavge (B.43)
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B.6 Attitude Motion of a Gyrostat

State vector

x = [q> ω> ρ>r ]> = [q1 q2 q3 q4 ωx ωy ωz ρr1 ρr2 ρr3 ρr4 ]
> (B.44)

Input vector

u = τ r = [τr1 τr2 τr3 τr4 ]
> (B.45)

Time derivative of state vector (i.e., the dynamics)

ẋ(t) = f(x(t),u(t))

=

fq (q(t),ω(t))

fω (ω(t),ρr(t), τ r(t))
fρr (τ r(t))

 =


1
2
q(t)

[
ω(t)

0

]
−J−1

(
ω(t)× (Jω(t) + Arρr(t)) + Arτ r(t)

)
τ r(t)

 (B.46)

Dynamics linearized about a nominal trajectory

f(x,u) ≈ f(x̄, ū) +Dxf(x̄, ū)(x− x̄) +Duf(x̄, ū)(u− ū) (B.47)

The partial of f with respect to x, evaluated at the point {x̄, ū}, is:

Dxf (x̄, ū) =

Dqfq (q̄, ω̄) Dωfq (q̄, ω̄) 04×4

03×4 Dωfω (ω̄, ρ̄r, τ̄ r) Dρrfω (ω̄, ρ̄r, τ̄ r)
04×4 04×3 04×4

 (B.48)

and the partial of f with respect to u, evaluated at the point {x̄, ū}, is:

Duf (x̄, ū) =

 04×4

Dτ rfω (ω̄, ρ̄r, τ̄ r)
I4

 (B.49)

The partial of the quaternion kinematics with respect to the quaternion vector is:

Dqfq(q,ω) =
1

2

[
(03×3 − ω×) ω
−ω> 0

]
=

1

2


0 ωz −ωy ωx

−ωz 0 ωx ωy
ωy −ωx 0 ωz
−ωx −ωy −ωz 0

 (B.50)
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The partial of the quaternion kinematics with respect to the angular velocity vector is:

Dωfq(q,ω) =
1

2

[
qsI + (qv)

×

−(qv)
>

]
=

1

2


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (B.51)

The partial of the gyrostat dynamics with respect to the angular velocity vector is:

Dωfω (ω,ρr, τ r) = −J−1
(
ω×J − [Jω + Arρr]

×) (B.52)

The partial of the gyrostat dynamics with respect to the rotor momenta vector is:

Dρrfω (ω,ρr, τ r) = −J−1ω×Ar (B.53)

The partial of the gyrostat dynamics with respect to the rotor torque vector is:

Dτ rfω (ω,ρr, τ r) = −J−1Ar (B.54)
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Appendix C

Orbital Problems

C.1 Partial Derivatives of Orbital Elements,

Directions, Speeds, and Accelerations

Angular momentum vector

The partial derivative of the angular momentum vector with respect to the radius and
velocity vectors are:

Drh(r,v) =
∂

∂r
(−v × r) = −v × I = − [v]× (C.1)

Dvh(r,v) =
∂

∂v
(r× v) = r× I = [r]× (C.2)

where, for example, [r]× is the skew-symmetric matrix corresponding to the vector r.

Eccentricity vector

The partial derivative of the eccentricity vector with respect to the radius vector is:

Dre(r,v) = Dr

(
v × h(r,v)

µ
− r̂(r)

)
(C.3)

=
1

µ
v ×Drh(r,v)−Drr̂(r) (C.4)

=
1

µ
[v]×Drh(r,v)−Drr̂(r) (C.5)
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and its partial with respect to the velocity vector is:

Dve(r,v) = Dv

(
v × h(r,v)

µ
− r̂(r)

)
(C.6)

=
1

µ
(Dvv × h(r,v) + v ×Dvh(r,v)) (C.7)

=
1

µ
(−h(r,v)×Dvv + v ×Dvh(r,v)) (C.8)

=
1

µ

(
−[h(r,v)]×I + [v]×Dvh(r,v)

)
(C.9)

Node vector

The partial derivative of the node vector with respect to the radius and velocity vectors are:

DrnA(r,v) = [k̂]×Drh(r,v) (C.10)

DvnA(r,v) = [k̂]×Dvh(r,v) (C.11)

Unit vectors

The partial derivative of the unit vector pointing in the direction of the radius vector, with
respect to the radius vector, is:

Drr̂(r) =
∂

∂r

(
r‖r‖−1

)
= ‖r‖−1I− ‖r‖−3rr> (C.12)

The partial derivative of the unit vector pointing in the direction of the velocity vector, with
respect to the velocity vector is:

Dvv̂(v) =
∂

∂v

(
v‖v‖−1

)
= ‖v‖−1I− ‖v‖−3vv> (C.13)

The partial derivative of the unit vector pointing in the direction of the angular momentum
vector, with respect to the angular momentum vector is:

Dhĥ(h) =
∂

∂h

(
h‖h‖−1

)
= ‖h‖−1I− ‖h‖−3hh> (C.14)

The partial derivative of the unit vector pointing in the direction of the eccentricity vector,
with respect to the eccentricity vector is:

Deê(e) =
∂

∂e

(
e‖e‖−1

)
= ‖e‖−1I− ‖e‖−3ee> (C.15)

The partial derivative of the unit vector pointing in the direction of the node vector, with
respect to the node vector is:

DnAn̂A(nA) =
∂

∂nA

(
nA‖nA‖−1

)
= ‖nA‖−1I− ‖nA‖−3nA(nA)> (C.16)
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With the expressions above, we may compute the partial derivative of the unit vector pointing
in the direction of the angular momentum vector, with respect to the radius vector, using
the chain rule:

Drĥ(r,v) = Dhĥ (h(r,v))Drh(r,v) (C.17)

=
(
‖h(r,v)‖−1I− ‖h(r,v)‖−3h(r,v)h(r,v)>

) (
− [v]×

)
(C.18)

and the partial derivative with respect to the velocity vector:

Dvĥ(r,v) = Dhĥ(h (r,v))Dvh(r,v) (C.19)

=
(
‖h(r,v)‖−1I− ‖h(r,v)‖−3h(r,v)h(r,v)>

) (
[r]×

)
(C.20)

To verify these partial derivatives, we can derive their expressions explicitly. We first consider
the partial of the angular momentum unit vector with respect to the radius vector:

∂ĥ

∂r
=

∂

∂r

(
r× v

‖r× v‖

)
(C.21)

= ‖r× v‖−1 (−v × I) + (r× v)

(
−‖r× v‖−2 (r× v)>

‖r× v‖
(−v × I)

)
(C.22)

= −‖r× v‖−1 [v]× + ‖r× v‖−3 (r× v) (r× v)> [v]× (C.23)

=
(
‖r× v‖−1I− ‖r× v‖−3 (r× v) (r× v)>

) (
− [v]×

)
(C.24)

=
(
‖h‖−1I− ‖h‖−3hh>

) (
− [v]×

)
(C.25)

=
∂ĥ

∂h

∂h

∂r
(C.26)

Similarly, the partial of the angular momentum unit vector with respect to the velocity
vector may also be explicitly verified.

The partial derivative of the unit vector pointing in the orbit tangential direction, with
respect to the radius vector, is:

Drt̂(r,v) = Dr

(
ĥ(r,v)× r̂(r)

)
(C.27)

=
(
Drĥ (r,v)× r̂(r)

)
+
(
ĥ (r,v)×Drr̂(r)

)
(C.28)

=
(
−r̂(r)×Drĥ(r,v)

)
+
(
ĥ(r,v)×Drr̂(r)

)
(C.29)

=
(
− [r̂(r)]×Drĥ(r,v)

)
+

([
ĥ(r,v)

]×
Drr̂(r)

)
(C.30)
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and the partial with respect to the velocity vector is:

Dvt̂(r,v) = Dv

(
ĥ(r,v)× r̂(r)

)
(C.31)

=
(
Dvĥ (r,v)× r̂(r)

)
+
(
ĥ (r,v)×Dvr̂(r)

)
(C.32)

=
(
−r̂(r)×Dvĥ(r,v)

)
+
(
ĥ(r,v)× 03×3

)
(C.33)

= − [r̂(r)]×Dvĥ(r,v) (C.34)

We may compute the partial derivatives of the unit vector pointing in the direction of
the orbital eccentricity vector:

Drê (e(r,v)) = Deê (e(r,v))Dre(r,v) (C.35)

Dvê (e(r,v)) = Deê (e(r,v))Dve(r,v) (C.36)

We may also find the partial derivatives of the unit vector pointing in the direction of
the orbital node vector:

Drn̂A(r,v) = DnAn̂A(nA(r,v))DrnA(r,v) (C.37)

Dvn̂A(r,v) = DnAn̂A(nA(r,v))DvnA(r,v) (C.38)

Orbital elements

Given the state vector of a spacecraft, semi-major axis of its orbit can be found with the
following expression:

a = a(r,v) =

(
2

‖r‖
− ‖v‖

2

µ

)−1

(C.39)

The partial derivatives of the semi-major axis with respect to the radius and velocity vectors
are:

Dra(r,v) = −
(

2

‖r‖
− ‖v‖

2

µ

)−2 (
−2‖r‖−3r>

)
(C.40)

Dva(r,v) = −
(

2

‖r‖
− ‖v‖

2

µ

)−2(
− 2

µ
v>
)

(C.41)

The partial derivative of the orbit eccentricity e = ‖e(r,v)‖ with respect to the eccen-
tricity vector is:

Dee (e(r,v)) =

(
∂

∂e
‖e(r,v)‖

)
(C.42)

=
e(r,v)>

‖e(r,v)‖
(C.43)
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and its partials with respect to the radius and velocity vectors are:

Dre (e(r,v)) = Dee (e(r,v))Dre(r,v) (C.44)

Dve (e(r,v)) = Dee (e(r,v))Dve(r,v) (C.45)

We recall the eccentricity of the orbit may also be computed with the semi-major axis a and
semi-latus rectum p:

e = e (p(r,v), a(r,v)) =

√
1− p(r,v)

a(r,v)
where p = p(h) = p(r,v) =

‖h(r,v)‖2

µ
(C.46)

The partial of the semi-latus rectum with respect to the angular momentum vector is:

Dhp(h) =
1

µ

∂

∂h
‖h‖2 =

2

µ
h> (C.47)

and its partials with respect to the radius and velocity vectors are:

Drp(r,v) = Dhp(r,v)Drh(r,v) (C.48)

Dvp(r,v) = Dhp(r,v)Dvh(r,v) (C.49)

The partials of the eccentricity with respect to the semi-latus rectum and semi-major axis
are:

Dpe(p, a) =
1

2

(
1− p

a

)− 1
2 (−a−1

)
(C.50)

Dae(p, a) =
1

2

(
1− p

a

)− 1
2 (
pa−2

)
(C.51)

Finally, the alternative expressions for the partials of the eccentricity with respect to the
radius and velocity vectors are:

Dre(r,v) = Dpe (p(r,v), a(r,v))Drp(r,v) +Dae (p(r,v), a(r,v))Dra(r,v) (C.52)

Dve(r,v) = Dpe (p(r,v), a(r,v))Dvp(r,v) +Dae (p(r,v), a(r,v))Dva(r,v) (C.53)

Note that with these expressions, we do not explicitly use the eccentricity vector e.
The orbital inclination with respect to the central’s body equatorial plane is:

i = i(h(r,v)) = arccos

(
hz(r,v)

‖h(r,v)‖

)
(C.54)

The partial derivative of orbit inclination with respect to the angular momentum vector is:

Dhi(h) = − 1√
1− (hz‖h‖−1)2

(
‖h‖−1 ∂

∂h
hz + hz

∂

∂h
‖h‖−1

)
(C.55)



APPENDIX C. ORBITAL PROBLEMS 111

where:

∂

∂h
hz = [0 0 1]> (C.56)

∂

∂h
‖h‖−1 = −‖h‖−3h> (C.57)

The partial derivatives of orbit inclination with respect to radius and velocity vectors are:

Dri(r,v) = Dhi (h(r,v))Drh(r,v) (C.58)

Dvi(r,v) = Dhi (h(r,v))Dvh(r,v) (C.59)

Orbital speeds

The partial derivatives of the orbital radial speed, with respect to the radius and velocity
vectors are:

DrvR(r,v) = Dr

(
v>r̂ (r)

)
= v>Drr̂ (r) (C.60)

DvvR(r,v) = Dv

(
v>r̂ (r)

)
= r̂ (r)>Dvv = r̂ (r)> I (C.61)

The partial derivatives of the orbital tangential speed, with respect to the radius and velocity
vectors are:

DrvT (r,v) = Dr

(
v>t̂ (r,v)

)
= v>Drt̂ (r,v) (C.62)

DvvT (r,v) = Dv

(
v>t̂ (r,v)

)
= t̂ (r,v)> I + v>Dvt̂ (r,v) (C.63)

The partial derivatives of the orbital normal speed, with respect to the radius and velocity
vectors are:

DrvN(r,v) = Dr

(
v>ĥ (r,v)

)
= v>Drĥ (r,v) (C.64)

DvvN(r,v) = Dv

(
v>ĥ (r,v)

)
= ĥ (r,v)> I + v>Dvĥ (r,v) (C.65)

The partial derivative of orbit circular speed, with respect to the radius vector is:

DrvC(r) =
∂

∂r

(
µ‖r‖−1

) 1
2 = −1

2
µ

1
2‖r‖−

5
2 r> (C.66)

Acceleration due to central gravity

Recall the acceleration due to central body gravity is:

aG(r) = − µ

‖r‖3
r (C.67)

The partial derivative of the acceleration due to central body gravity, with respect to the
radius vector is:

DraG(r) = − µ

‖r‖3
I +

3µ

‖r‖5
rr> (C.68)
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Acceleration due to J2 gravity

Recall the acceleration due to J2 gravity in an Earth-Centered Inertial (ECI) frame:

aJ2(r) = kJ2
1

‖r‖5
GJ2(r)r (C.69)

where:

kJ2 : = 1.5J2µr
2
E (C.70)

GJ2(r) : = diag

([
5

(
rz
‖r‖

)2

− 1 , 5

(
rz
‖r‖

)2

− 1 , 5

(
rz
‖r‖

)2

− 3

])
(C.71)

Its partial derivative with respect to the radius vector is:

DraJ2(r) = kJ2GJ2(r)r

(
−5

r>

‖r‖7

)
+

kJ2

‖r‖5


rx

∂
∂r

(
5
(
rz
‖r‖

)2

− 1

)
ry

∂
∂r

(
5
(
rz
‖r‖

)2

− 1

)
rz

∂
∂r

(
5
(
rz
‖r‖

)2

− 3

)

+
kJ2

‖r‖5
GJ2(r)I (C.72)

where the partial derivative of the recurring term (where c is a scalar constant), with respect
to the radius vector, is:

∂

∂r

(
5

(
rz
‖r‖

)2

− c

)
= 5r2

z

(
−2

r>

‖r‖4

)
+

5

‖r‖2

[
0 0 2rz

]
(C.73)

Acceleration due to atmospheric drag

Recall the acceleration due to atmospheric drag in an Earth-Centered Inertial (ECI) frame:

aD(r,v,m) = −1

2

ρ

m
CDS‖v‖v (C.74)

Its partial derivatives, with respect to the radius vector, velocity vector, and mass are:

DraD(r,v,m) = − 1

2m
CDS‖v‖v

(
∂ρ

∂‖r‖
r>

‖r‖

)
(C.75)

DvaD(r,v,m) = −1

2

ρ

m
CDS

(
‖v‖I +

1

‖v‖
vv>

)
(C.76)

DmaD(r,v,m) = +
1

2

ρ

m2
CDS‖v‖v (C.77)
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Acceleration due to thrust

Recall the acceleration due to thrust:

aT(m,T) =
T

m
(C.78)

The partial derivatives of this acceleration with respect to mass and the thrust vector are:

DmaT(m,T) = − T

m2
(C.79)

DTaT(m,T) =
1

m
I3 (C.80)

Acceleration due to solar radiation pressure in SCI frame

Recall the acceleration due to solar radiation pressure in a Sun-Centered Inertial (SCI) frame:

aS(r,v, α, β) = ac

(
rAU
‖r‖

)2
r̂ t̂ ĥ

 cos3 α
sinα cos2 α sin β
sinα cos2 α cos β

 (C.81)

The partial of the SRP acceleration with respect to the radius vector is:

DraS(r,v, α, β) = . . .

ac

(
rAU
‖r‖

)2 (
(cos3 α)Drr̂(r) + (sinα cos2 α sin β)Drt̂ (r,v) + (sinα cos2 α cos β)Drĥ (r,v)

)
+ acr

2
AU

r̂ t̂ ĥ

 cos3 α
sinα cos2 α sin β
sinα cos2 α cos β

 ∂

∂r

(
1

‖r‖2

)
(C.82)

where

∂

∂r

(
1

‖r‖2

)
= −2

r>

‖r‖4
(C.83)

The partial of the SRP acceleration with respect to the velocity vector is:

DvaS(r,v, α, β) = . . .

ac

(
rAU
‖r‖

)2 (
(cos3 α)Dvr̂(r) + (sinα cos2 α sin β)Dvt̂ (r,v) + (sinα cos2 α cos β)Dvĥ (r,v)

)
(C.84)

The partial of the SRP acceleration with respect to the cone angle is:

DαaS(r,v, α, β) = ac

(
rAU
‖r‖

)2
r̂ t̂ ĥ

 −3 sinα cos2 α
cosα sin β(cos2 α− 2 sin2 α)
cosα cos β(cos2 α− 2 sin2 α)

 (C.85)
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The partial of the SRP acceleration with respect to the clock angle is:

DβaS(r,v, α, β) = ac

(
rAU
‖r‖

)2
r̂ t̂ ĥ

 0
sinα cos2 α cos β
− sinα cos2 α sin β

 (C.86)

C.2 Approximation of Orbital Constraints

Bounds on radial distance

Lower and upper bounds on the radial distance ensure that the spacecraft operates within
a given altitude range:

rmin ≤ ‖r(t)‖2 ≤ rmax ∀ t ∈ [t0, tf ] (C.87)

The upper bound on the radial distance is a convex constraint, but we note that the lower
bound is not convex. We linearize the lower bound constraint about a trajectory r̄ to get
the following approximation:

rmin ≤ ‖r̄(t)‖2 +Dr‖r̄(t)‖2 (r(t)− r̄(t)) ∀ t ∈ [t0, tf ]

rmin ≤ ‖r̄(t)‖2 +

(
r̄(t)>

‖r̄(t)‖2

)
(r(t)− r̄(t)) ∀ t ∈ [t0, tf ]

rmin ≤ ‖r̄(t)‖2 +
r̄(t)>

‖r̄(t)‖2

r(t)− r̄(t)>

‖r̄(t)‖2

r̄(t) ∀ t ∈ [t0, tf ]

rmin ≤
r̄(t)>

‖r̄(t)‖2

r(t) ∀ t ∈ [t0, tf ] (C.88)

The bounds on the radial distance are now represented by the following two constraints:

rmin ≤
r̄(t)>

‖r̄(t)‖2

r(t) , ‖r(t)‖2 ≤ rmax ∀ t ∈ [t0, tf ] (C.89)

Bounds on thrust magnitude

Lower and upper bounds on the thrust magnitude may be specified by the spacecraft’s
propulsion system:

Tmin ≤ ‖T(tf )‖2 ≤ Tmax ∀ t ∈ [t0, tf ] (C.90)

We also linearize the lower bound constraint about a trajectory T̄ to get the following two
constraints:

Tmin ≤
T̄(t)>

‖T̄(t)‖2

T(t) , ‖T(t)‖2 ≤ Tmax ∀ t ∈ [t0, tf ] (C.91)
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Constraint on radial distance

The following equality constraint on the final radial distance:

‖r(tf )‖2 = rdes (C.92)

may be approximated with the following inequality constraints:

rdes − εr ≤ ‖r(tf )‖2 ≤ rdes + εr (C.93)

where εr is a small positive scalar. We further approximate the lower bound with a convex
constraint by linearizing about a trajectory r̄:(

rdes − εr
)
≤ r̄(tf )

>

‖r̄(tf )‖2

r(tf ) , ‖r(tf )‖2 ≤
(
rdes + εr

)
(C.94)

Constraint on semi-major axis

The following equality constraint on the final semi-major axis:

a (r(tf ),v(tf )) = ades (C.95)

may be approximated with the following two inequality constraints:

ades − εa ≤ a (r(tf ),v(tf )) ≤ ades + εa (C.96)

where εa is a small positive scalar. We further approximate the non-convex constraints by
linearizing about a trajectory {r̄, v̄}:

ades − εa ≤

a (r̄(tf ), v̄(tf )) +
[
Dra (r̄(tf ), v̄(tf )) Dva (r̄(tf ), v̄(tf ))

]([r(tf )
v(tf )

]
−
[
r̄(tf )
v̄(tf )

])
(C.97)

≤ ades + εa

Constraint on eccentricity

The following equality constraint on the final eccentricity:

e (r(tf ),v(tf )) = edes (C.98)

may be approximated with the following two inequality constraints:

max(0, edes − εe) ≤ e (r(tf ),v(tf )) ≤ edes + εe (C.99)

where εe is a small positive scalar. We further approximate the non-convex constraints by
linearizing about a trajectory {r̄, v̄}:

max(0, edes − εe) ≤

e (r̄(tf ), v̄(tf )) +
[
Dre (r̄(tf ), v̄(tf )) Dve (r̄(tf ), v̄(tf ))

]([r(tf )
v(tf )

]
−
[
r̄(tf )
v̄(tf )

])
(C.100)

≤ edes + εe
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Constraint on radial speed

The constraint on the final radial orbital speed:

vR(r(tf ),v(tf )) = 0 (C.101)

may be approximated with the following expression where εvR is some small value:

|vR(r(tf ),v(tf ))| ≤ εvR (C.102)

This constraint is also linearized about r̄ and v̄:∣∣∣∣vR(r̄(tf ), v̄(tf )) +
[
DrvR (r̄(tf ), v̄(tf )) DvvR (r̄(tf ), v̄(tf ))

]([r(tf )
v(tf )

]
−
[
r̄(tf )
v̄(tf )

])∣∣∣∣ ≤ εvR

(C.103)

Constraint on normal speed

A similar constraint on the normal speed:

vN(r(tf ),v(tf )) = 0 (C.104)

is approximated with:

|vN(r(tf ),v(tf ))| ≤ εvN (C.105)

and then linearized about a trajectory:∣∣∣∣vN(r̄(tf ), v̄(tf )) +
[
DrvN (r̄(tf ), v̄(tf )) DvvN (r̄(tf ), v̄(tf ))

]([r(tf )
v(tf )

]
−
[
r̄(tf )
v̄(tf )

])∣∣∣∣ ≤ εvN

(C.106)

Constraint on tangential speed

We define a constraint on the final tangential speed to equal the speed for a circular orbit
at the final altitude:

vT (r(tf ),v(tf )) = vC (r(tf )) (C.107)

The constraint may be approximated so that the tangential speed is within an εvT interval
of the desired value:

(vC (r(tf ))− εvT ) ≤ vT (r(tf ),v(tf )) ≤ (vC (r(tf )) + εvT ) (C.108)

The corresponding convex approximation is:

(vC (r̄(tf )) +DrvC (r̄(tf )) (r(tf )− r̄(tf ))− εvT ) ≤

vT (r̄(tf ), v̄(tf )) +
[
DrvT (r̄(tf ), v̄(tf )) DvvT (r̄(tf ), v̄(tf ))

]([r(tf )
v(tf )

]
−
[
r̄(tf )
v̄(tf )

])
(C.109)

≤ (vC (r̄(tf )) +DrvC (r̄(tf )) (r(tf )− r̄(tf )) + εvT )
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Constraint on orbital specific angular momentum unit vector

We desire the specific angular momentum unit vector to be aligned with a desired direction:

ĥdes · ĥ (r(tf ),v(tf )) = 1 (C.110)

A relaxation is to constrain the specific angular momentum vector to lie within a cone about
the desired direction:

ĥdes · ĥ (r(tf ),v(tf )) ≥ cos(εh) (C.111)

Since the constraint is not convex in {r, v}, we linearize it to get the following approximation:

ĥdes ·
(

ĥ (r̄(tf ), v̄(tf )) +
[
Drĥ (r̄(tf ), v̄(tf )) Dvĥ (r̄(tf ), v̄(tf ))

]([r(tf )
v(tf )

]
−
[
r̄(tf )
v̄(tf )

]))
≥ cos(εh) (C.112)

Constraint on relative angular spacing

The final angular spacing between neighboring pairs of satellites can be specified by the
following constraint:

r̂ (ri+1(tf ))
> r̂ (ri(tf )) = cos

(
θdesi

)
∀ i = 1, . . . , N − 1 (C.113)

For equal angular spacing, we can set the desired spacing value as:

θdesi =
2π

N
∀ i = 1, . . . , N − 1 (C.114)

We can approximate (C.113) with the following set of constraints:

r̂ (r̄i+1(tf ))
> r̂ (r̄i(tf )) +[

r̂ (r̄i+1(tf ))
>Drr̂ (r̄i(tf )) r̂ (r̄i(tf ))

>Drr̂ (r̄i+1(tf ))
]([ ri(tf )

ri+1(tf )

]
−
[

r̄i(tf )
r̄i+1(tf )

])
= cos

(
θdesi

)
+ di ∀ i = 1, . . . , N − 1 (C.115)

where d = [d1, . . . , dN−1]> are slack variables penalized in the objective function with a large
weight wd > 0:

minimize
x,u,tf ,d

Jobj(x,u, tf ) + wd‖d‖1 (C.116)
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C.3 Orbital Motion in ECI frame using Continuous

Low Thrust Propulsion

State vector

x = [r> v> m]> = [rx ry rz vx vy vz m]> (C.117)

Input vector

u = T = [Tx Ty Tz]
> (C.118)

Time derivative of state vector (i.e., the dynamics)

ẋ(t) = f(x(t),u(t)) (C.119)

=

fr (v(t))
fv (r(t),v(t),m(t),T(t))
fm(T(t))

 (C.120)

=

 v(t)
aG(r(t)) + aJ2(r(t)) + aD(r(t),v(t),m(t)) + aT(m(t),T(t))

−‖T(t)‖
g0Isp

 (C.121)

Dynamics linearized about a nominal trajectory

f(x,u) ≈ f(x̄, ū) +Dxf(x̄, ū)(x− x̄) +Duf(x̄, ū)(u− ū) (C.122)

The partial of f with respect to x, evaluated at the point {x̄, ū}, is:

Dxf (x̄, ū) = 03×3 I3 03×1

[DraG(r̄) +DraJ2(r̄) +DraD(r̄, v̄, m̄)] DvaD(r̄, v̄, m̄)
[
DmaD(r̄, v̄, m̄) +DmaT(m̄, T̄)

]
01×3 01×3 0


(C.123)

and the partial of f with respect to u, evaluated at the point {x̄, ū}, is:

Duf (x̄, ū) =

 03×3

DTaT(m̄, T̄)
DTfm(T̄)

 (C.124)

The partial of the mass dynamics with respect to thrust, evaluated at the point T̄, is:

DTfm(T) = − T>

g0Isp‖T‖
(C.125)
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C.4 Derivation of Acceleration due to Solar

Radiation Pressure

We derive the relationships between the solar sail’s cone and clock angles with respect to the
spacecraft’s RTN frame. Using these angles, we may express the acceleration due to solar
radiation pressure in the RTN frame. A rotation is used to coordinate the SRP acceleration
vector in the Sun-centered inertial frame for use in the equations of orbital motion.
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Figure C.1: Cone and clock angles Figure C.2: Cone angle w.r.t. SRP direction

Referring to Fig. C.1, the angle between the spacecraft’s radial unit vector r̂ and the
solar sail normal unit vector n̂ is called the cone angle α, uniquely defined as follows:

n̂ · r̂ = cosα , 0 ≤ α ≤ π

2
(C.126)

We define the vector p as the projection of the solar sail normal unit vector n̂ onto the plane
spanned by the t̂ and ĥ unit vectors, and note its length is

‖p‖ = ‖n̂‖ sinα (C.127)

We now define the clock angle β as the angle between the orbital angular momentum unit
vector ĥ and the projected vector p. As a convention, we measure positive angular displace-
ment towards the orbital tangential unit vector t̂ over the following range:

0 ≤ β ≤ 2π (C.128)

We allow the clock angle to be non-unique only at the end points of the given range.
We may now express the solar sail normal vector in the spacecraft’s orbital RTN frame

using the cone and clock angles:

[n̂]RTN =

‖n̂‖ cosα
‖p‖ sin β
‖p‖ cos β

 =

‖n̂‖ cosα
‖n̂‖ sinα sin β
‖n̂‖ sinα cos β

 =

cosα
sinα sin β
sinα cos β

 (C.129)
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In Fig. C.2, we illustrate the direction of incident and reflected solar radiation pressure
on the solar sail surface. The pressure causes forces on the spacecraft proportional to the
incident area Ai of the sail.

fi = PAiûi (C.130)

fr = −PAiûr (C.131)

The total force due to solar radiation pressure is the sum of the incident and reflected forces:

fS = fi + fr (C.132)

= PAi(ûi − ûr) (C.133)

Using the Householder transformation:

= PAi(2n̂n̂>ûi) (C.134)

We then express the incident area as a function of the reference area A, the solar sail normal
vector, and the orbit radial unit vector:

= P (An̂ · ûi)(2n̂n̂>ûi) (C.135)

Rearrange terms, we get:

= 2PA(n̂ · ûi)
2n̂ (C.136)

By evaluating the dot product, we have:

fS = 2PA(cosα)2n̂ (C.137)

Now that we have expression for the force due to solar radiation pressure, we define the
corresponding acceleration as:

aS =
2PA

m

(
cos2 α

)
n̂ (C.138)

The magnitude of the solar radiation pressure is:

P (r) =
GSC

c

(
rAU
‖r‖

)2

(C.139)

where GSC is the solar constant at 1AU, c is the speed of light, and rAU is the length of one
Astronautical unit (i.e., the distance from the Sun to the Earth). We may then express the
acceleration term as:

aS = ac

(
rAU
‖r‖

)2 (
cos2 α

)
n̂ (C.140)



APPENDIX C. ORBITAL PROBLEMS 121

where the characteristic acceleration is defined as:

ac :=
2GSCA

mc
(C.141)

Coordinated in the RTN frame, the acceleration due to solar radiation pressure is:

[aS]RTN = ac

(
rAU
‖r‖

)2 (
cos2 α

)
[n̂]RTN (C.142)

= ac

(
rAU
‖r‖

)2
 cos3 α

sinα cos2 α sin β
sinα cos2 α cos β

 (C.143)

To express the SRP acceleration vector in the inertial frame, we use the following relationship:

aS := [aS]Inertial =

r̂ t̂ ĥ

 [aS]RTN (C.144)

We have derived the expression for the acceleration due to solar radiation pressure, coordi-
nated in the Sun-centered inertial frame:

aS(r,v, α, β) = ac

(
rAU
‖r‖

)2
r̂ t̂ ĥ

 cos3 α
sinα cos2 α sin β
sinα cos2 α cos β

 (C.145)
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C.5 Orbital Motion in SCI frame using Solar

Radiation Pressure

State vector

x = [r> v>]> = [rx ry rz vx vy vz]
> (C.146)

Input vector

u = [α β]> (C.147)

Time derivative of state vector (i.e., the dynamics)

ẋ(t) = f(x(t),u(t))

=

[
fr (v(t))
fv (r(t),v(t), α(t), β(t))

]
=

[
v(t)

aG(r(t)) + aS(r(t),v(t), α(t), β(t)

]
(C.148)

Dynamics linearized about a nominal trajectory

f(x,u) ≈ f(x̄, ū) +Dxf(x̄, ū)(x− x̄) +Duf(x̄, ū)(u− ū) (C.149)

The partial of f with respect to x, evaluated at the point {x̄, ū}, is:

Dxf (x̄, ū) =

[
03×3 I3

DraG(r̄) +DraS(r̄, v̄, ᾱ, β̄) DvaS(r̄, v̄, ᾱ, β̄)

]
(C.150)

and the partial of f with respect to u, evaluated at the point {x̄, ū}, is:

Duf (x̄, ū) =

[
03×1 03×1

DαaS(r̄, v̄, ᾱ, β̄) DβaS(r̄, v̄, ᾱ, β̄)

]
(C.151)
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